TW490554B - Miniaturized infrared gas analyzing apparatus - Google Patents
Miniaturized infrared gas analyzing apparatus Download PDFInfo
- Publication number
- TW490554B TW490554B TW90113756A TW90113756A TW490554B TW 490554 B TW490554 B TW 490554B TW 90113756 A TW90113756 A TW 90113756A TW 90113756 A TW90113756 A TW 90113756A TW 490554 B TW490554 B TW 490554B
- Authority
- TW
- Taiwan
- Prior art keywords
- infrared
- silicon
- scope
- patent application
- item
- Prior art date
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
490554 五、發明說明(l) 發明之領域】 本發明係關於一種紅外線氣體分析裝置,特別是關於 一種基於石夕微加工技術所製造的微型紅外線氣體分析裝 置’以及其組成元件之設計製造方法。 【習知技術之描述】 目前的氣體感測裝置,主流為利用金屬氧化物(氧化 所做之固態感測器,在高溫時(其通常為3 〇 〇〜4 〇 〇它)與 氣體反應所產生之電阻變化作為感測原理。又可細分為傳 統式與微加工式(Micromachined)。兩者差別僅止於微加 工式之功率消耗較低,適用於可攜式產品的應用,然而微 加工式氣體感測器的可靠度(Reliability)仍是最難以克 服的問題。 但不論是傳統式或微加工式,都有其最大的缺點,即 無法有效做氣體鑑別(區分氣體種類),以一氧化碳與酒精 為例’兩者都會與氧化錫反應,一旦感測到氣體,將無法 鑑別是一氧化碳或是酒精所引起的。此外固態式氣體感測 器靈敏度較低’較易受環境的干擾(如濕度與溫度等),且 材料在高溫的環境下長期操作也會有老化的問題。 運用紅外線吸收光譜技術所發展之紅外線氣體彳貞測裝 置,可解決上述固態式氣體感測裝置所遇到的困難。請參490554 V. Description of the Invention (l) Field of the Invention The present invention relates to an infrared gas analysis device, and more particularly, to a miniature infrared gas analysis device 'based on Shixi micro-machining technology, and a method for designing and manufacturing its components. [Description of Known Technology] The current gas sensing device is mainly a metal oxide (a solid-state sensor made by oxidation, which reacts with a gas at a high temperature (which is usually 3,000 to 4,000)). The generated resistance change is used as a sensing principle. It can be subdivided into traditional and micromachined. The difference between the two is only limited to the low power consumption of the micromachined type, which is suitable for the application of portable products, but micromachined Reliability of the gas sensor is still the most difficult problem to overcome. However, whether it is traditional or micro-machined, it has its biggest disadvantage, that is, it cannot effectively do gas identification (differentiate gas types), and use carbon monoxide. Take alcohol as an example. 'Both react with tin oxide. Once the gas is sensed, it cannot be identified as being caused by carbon monoxide or alcohol. In addition, solid-state gas sensors are less sensitive' and are more susceptible to environmental interference (such as Humidity and temperature, etc.), and the material will have aging problems in long-term operation under high temperature environment. Infrared gas developed using infrared absorption spectroscopy technology 技术Chase measuring device can solve the difficulties encountered by the above solid-state gas sensing device. Please refer to
第5頁 490554 五、發明說明(2) 見圖1 ’其係為不同氣體紅外線吸收光譜之特性。由圖1中 可以清楚發現不同氣體所對應的吸收波長有相當大的差距 (例如C〇2為4· 3um,C0為4· 7um),以目前光學鍍膜所製作 的各種=頻帶通濾波器(Narrow Bandpass Filter)是可以 滿足相當精細的光譜鏗別的。 然而’習知的紅外線氣體偵測裝置功率消耗大,導因 為傳統的電阻絲紅外線光源焦耳功率大。再者,以光學鍍 膜所製作的各種窄頻帶通濾波器良率低,而且環境效應所 導致的波長漂移亦是一大問題,如果同時要對多種氣體作 偵測,則必須建構多組帶通濾波器,這一些問題使得里價 f昂貴而不利於推廣。請參見美國專利編號5,852,3〇&附 件 1),5,468,962 (附件2),5,86 1 545 (附件3)。 有鑑於此,本發明將提出一嶄新的微型紅外線氣體分 衣置,基於矽微加工(Si Micr〇machining)技術所製造 瀹f種微型兀件(紅外線光源,帶通與空間濾波器,調頻 f波器及熱型感測器)以符合低功率消耗與低成本之要 :,以應用於各種氣體紅外線吸收光譜之定性及定量分 析。 發明概要】 因此,本發明之目的,係關於一種基於矽微加工技 π所製造的微型紅外線氣體分析裝置,並提供其設計製造Page 5 490554 V. Description of the invention (2) See Figure 1 ′, which shows the characteristics of the infrared absorption spectra of different gases. From Figure 1, it can be clearly found that there is a considerable gap between the absorption wavelengths corresponding to different gases (for example, C02 is 4 · 3um, and C0 is 4 · 7um). Narrow Bandpass Filter) can satisfy quite fine spectral distinction. However, the conventional infrared gas detection device consumes large power due to the large Joule power of the conventional resistance wire infrared light source. In addition, the yield of various narrow-band pass filters made with optical coatings is low, and the wavelength drift caused by environmental effects is also a major problem. If multiple gases are to be detected at the same time, multiple sets of bandpasses must be constructed. Filters, these problems make the price f expensive and not conducive to popularization. See U.S. Patent Nos. 5,852,30 & Attachment 1), 5,468,962 (Attachment 2), 5,86 1 545 (Attachment 3). In view of this, the present invention will propose a brand-new miniature infrared gas separation device, based on silicon micro-machining (Si Micromachining) technology, f types of miniature elements (infrared light source, bandpass and spatial filter, frequency modulation f Wave device and thermal sensor) to meet the requirements of low power consumption and low cost: for the qualitative and quantitative analysis of the infrared absorption spectrum of various gases. SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide a micro-infrared gas analysis device manufactured based on silicon micromachining technology π, and to provide its design and manufacture
490554 五、發明說明(3) 方法。 依本發明之一目的, 析裝置之設計。包括··一 體輻射原理,發射出一寬 鏡,將該紅外線發射單元 束;一帶通與空間濾波器 光譜在内之一紅外線波段 外線光束通過;一調頻濾 干涉儀,利用電場控制光 許單一待測氣體吸收光譜 元,根據該入射窄頻波長 類;以及一微電腦控制單 依本發明之一目的, 括:一矽微加工技術製作 黑體輕射之原理,向四面 之輻射光線;以及一等溫 熱阻紅外線發射器的溫度 特定波長的光出射度,降 係關於一種微型紅外線氣 =外線發射單元,利用熱阻刀里 f的紅外線光譜;一紅外線、準‘直 出射的紅外線變成平行紅外 ,篩選包含至少一待測氣體吸收 二且只^ s午特定幾何區域的紅490554 V. Description of the invention (3) Method. According to one object of the present invention, the design of the analysis device. Including the principle of integrated radiation, it emits a wide mirror and emits the infrared emitting unit beam; an infrared beam outside the infrared band including the bandpass and spatial filter spectrum passes; an FM filter interferometer that uses the electric field to control the light to a single standby Measure the gas absorption spectrum element according to the incident narrow-band wavelength class; and a microcomputer control unit according to one of the purposes of the present invention, including: a silicon micro-machining technology to produce a black body light emission principle, radiating light to all sides; and an isothermal The temperature of a specific wavelength of light emitted by a thermal resistance infrared transmitter is reduced to a miniature infrared gas = external line emission unit, which uses the infrared spectrum of f in the thermal resistance knife; an infrared and quasi-infrared emitted infrared rays become parallel infrared rays. Contains at least one gas to be detected
子/、振L之長度’同—時 的窄頻波長通過;及一感測單 強度判別待測氣體的濃度與種 兀’作為輸出/入界面控制。 係關於該紅外線發射單元。包 之微型熱阻紅外線發射器,$據 八方發射包含各種波段 度(電阻)驅動電路’穩定該微型 ,不受室溫漂移之影響,而影響 低量測的靈敏度。 ^ θThe length of the sub / vibration L is the same as that of the narrow-band wavelength at the same time; and the intensity of a sensing unit is used to determine the concentration and species of the gas to be measured as the input / output interface control. About this infrared emitting unit. Including a miniature thermal resistance infrared transmitter, according to the Bafang emission, it includes various waveband (resistance) driving circuits to stabilize the miniature, which is not affected by room temperature drift and affects the sensitivity of low measurement. ^ θ
依本發明之一目的,係關於該帶通與空間濾波器。包 括:一晶向為(100)的矽基板,具有第一及第二表面;一 帶通光學薄膜製作於該矽基板的該第一表面,濾除至少一 待測氣體以外之紅外線光譜波段;一具有特定幾何形狀開 口的金屬薄膜作為空間濾波器,製作於該帶通光學薄膜 上’以及一石夕異方性钱刻製作之V-型槽,該V-型槽開口形According to one object of the present invention, the present invention relates to the bandpass and spatial filter. The method includes: a silicon substrate with a crystal orientation of (100) having first and second surfaces; a band-pass optical film made on the first surface of the silicon substrate and filtering out at least one infrared spectral band except for a gas to be measured; A metal thin film with a specific geometric opening is used as a spatial filter, and is fabricated on the band-pass optical film.
第7頁 490554Page 7 490554
成於該矽基板之該弟二表面,該v—型槽蝕穿該矽基板以致 該V-型槽方形底部暴露出該帶通光學薄膜與該金屬薄膜 間濾波器之該特定幾何形狀開口。 、 依本發明之一目的,係關於該調頻光學濾波單元。包 括:一矽微加工技術製作之微型調頻濾波器,利用電場批 制藉以改變光學共振腔之長度以筛選欲债測氣體之紅外線 吸收波長;以及一驅動振盪電路,提供一直流電壓及一微 小的父流電壓,使孩微型調頻率波器兼具波長篩選盘光 調制器之功能。Formed on the second surface of the silicon substrate, the v-groove etched through the silicon substrate so that the square bottom of the V-groove exposed the specific geometric opening of the filter between the band-pass optical film and the metal thin film. According to an object of the present invention, it relates to the FM optical filter unit. Including: a micro-frequency modulation filter manufactured by silicon micro-processing technology, the use of electric field approval to change the length of the optical resonant cavity to screen the infrared absorption wavelength of the gas to be measured; and a drive oscillation circuit, which provides a DC voltage and a small The parental voltage makes the micro-frequency wave modulator have the function of the wavelength modulator of the optical disc.
依本發明之一目的,係關於該感測單元。包括:一石夕 微加工技術製作之微型熱偵測器;以及一鎖相讀取電路, 將ό亥微型熱偵測為輸出的電交流訊號與專利申請範圍第g 項該驅動振盪電路之調制頻率作比對,以提高感測訊號的 訊雜比,並且可以免除環境效應(溫度變化)造成的雜訊問 題。 【實施例之說明】According to an object of the present invention, it relates to the sensing unit. Including: a miniature thermal detector manufactured by a stone evening micromachining technology; and a phase-locked read circuit, which detects the miniature thermal heat as an output electric alternating current signal and the modulation frequency of the driving oscillation circuit of the patent application scope item g Compare to improve the signal-to-noise ratio of the sensing signal, and to avoid noise problems caused by environmental effects (temperature changes). [Description of Examples]
請參見圖2,其係為本發明微型紅外線氣體分析裝置 的功能性方塊圖(Functi〇nai Blocks)。包括:一紅外線 發射單元1 0,利用熱阻絲黑體輻射原理,發射出一寬廣的 ^外線光譜;一紅外線準直鏡(1^ C〇l lima tor) 20,將該 、、工外線發射單元1 〇出射的發散紅外線變成平行紅外線光 1束;一帶通與空間濾波器(Bandpass and Spatial Pilter〇30,篩選包含至少一待測氣體吸收光譜在内之一Please refer to FIG. 2, which is a functional block diagram (Functionai Blocks) of the miniature infrared gas analysis device of the present invention. Including: an infrared emission unit 10, using the principle of thermal resistance wire blackbody radiation, emits a broad spectrum of external lines; an infrared collimator (1 ^ C0lima tor) 20, the external line emission unit 1〇 The divergent infrared light emitted by the beam becomes a beam of parallel infrared light; a bandpass and spatial filter (Bandpass and Spatial Pilter 〇30, screening one including at least one absorption spectrum of the gas to be measured)
490554 五、發明說明(5) =外線波段,並且只允許特定幾何區域的紅外線光束 =,一調頻濾波單元50,其原理干涉 1,電%控制光學共振腔之長度,同一時間僅允許一 測,體吸收光譜的窄頻(Narr〇w Band)波長通過;及一得 ,單兀6 0,根據該入射窄頻波長強度判別待測氣體的濃&490554 V. Description of the invention (5) = Outside line band, and only infrared beams with a specific geometric area are allowed =, an FM filter unit 50, the principle of which interferes with 1, the electrical% controls the length of the optical resonant cavity, only one measurement is allowed at the same time The narrow-band (NarrOw Band) wavelength of the volume absorption spectrum passes; and one get, Unit 60, determines the concentration of the gas to be measured based on the incident narrow-band wavelength intensity &
=種類,·以及一微電腦控制單元7〇,作為輸出/入界面控X 為了清楚說明圖2所示功能性方塊圖之實體示意結 構,請參見圖3,其係為本發明微型紅外線氣體分析裝置 各組件安排示意圖。紅外線發射單元丨〇包含一矽微加、工技 術製作之熱阻(T h e r m 〇 - R e s i s t i v e )紅外線發射器(I r Emitter) l〇a及一等溫度(電阻)驅動電路丨㈣,該微型熱阻 紅外線發射器1 0 a可以視為一點光源,根據黑體輻射 (Black-Body Radiation)之原理,向四面八方發射紅外線 光譜,透過一紅外線準直鏡2〇,將所蒐集的最大錐形光束 (光線11所涵蓋角錐區域)變成平行光束21。該紅外線準直 鏡20所適用之材料為對於3〜5um抑或2〜8um有良好穿透率者 如石夕、單晶氧化銘(S a p h i r e )及氟化鎮等。 一微型帶通與空間濾、波器30,包含:一帶通光學膜 3 3 ’ 一圓形或方形開口之金屬層3 4作為空間渡波器。該帶 通光學膜3 3的主要功能為滤除至少一待測氣體以外之光譜 波段。該空間濾波器3 4,僅允許部分的光束2 1通過該金屬 層3 4之該圓形或方形開口,即光線1 2所涵蓋之區域,其目 的是配合以下之微型調頻濾波器5 0a之共振腔面積。 490554 五、發明說明(6) 一微型調頻濾波器5 0 a,利用電場控制藉以改變 Fabry-Perot共振腔之長度以篩選特定之窄頻光波長(欲偵 測氣體之紅外線吸收波長),該驅動振盈電路5 0 b提供一直 流電壓VG及一微小的交流電壓△ V s i η ω t,使該調頻率波 器5 0 a兼具波長篩選與光學調制器(Μ o d u 1 a t o r )之功能。 一微型熱偵測器60a,偵測調頻濾波器50a所篩選之該 窄頻光波長之強度,一鎖相讀取電路6 0 b比對該紅外線偵 測器6 0 a輸出之交流訊號I ( ω )與該驅動振盪電路5 〇 b之調 制頻率ω,以提高感測訊號的訊雜比(s/N Rat io),並且 可以免除環境效應(溫度變化)造成的雜訊問題。 為了更清楚說明圖3中所示利用矽微加工技術製作之 微型元件之製造方式及有別於傳統元件之優越性,以下將 以幾個單元詳細說明之。= Kind, and a microcomputer control unit 70 as an input / output interface control. X In order to clearly illustrate the physical schematic structure of the functional block diagram shown in FIG. 2, please refer to FIG. 3, which is a miniature infrared gas analysis device of the present invention. Schematic diagram of each component arrangement. The infrared emission unit includes a silicon micro-processing, thermal resistance (T herm 〇-Resistive) infrared emitter (I r Emitter) 10a and a temperature (resistance) driving circuit. The thermal resistance infrared emitter 10 a can be regarded as a point light source. According to the principle of Black-Body Radiation, it emits infrared spectrum in all directions. Through an infrared collimator 20, the collected maximum cone beam ( The pyramidal area covered by the ray 11 becomes a parallel beam 21. Suitable materials for the infrared collimator 20 are those having a good transmittance for 3 ~ 5um or 2 ~ 8um, such as Shi Xi, single crystal oxide (Sap h i r e), and fluoride town. A miniature band-pass, spatial filter, and wave filter 30 includes a band-pass optical film 3 3 ′ and a circular or square-opened metal layer 34 as a space wave filter. The main function of the band-pass optical film 33 is to filter out spectral bands other than at least one gas to be measured. The spatial filter 34 allows only part of the light beam 21 to pass through the circular or square opening of the metal layer 34, that is, the area covered by the light 12, and the purpose is to cooperate with the following micro-FM filter 50a Cavity area. 490554 V. Description of the invention (6) A miniature FM filter 50a, which uses electric field control to change the length of the Fabry-Perot resonant cavity to screen a specific narrow-band optical wavelength (to detect the infrared absorption wavelength of a gas). The driver The vibration surplus circuit 5 0 b provides a DC voltage VG and a small AC voltage Δ V si η ω t, so that the frequency-modulated wave generator 50 0 a has both a function of wavelength screening and an optical modulator (M odu 1 ator). A miniature thermal detector 60a detects the intensity of the narrow-band light wavelength screened by the FM filter 50a, and a phase-locked read circuit 60b compares the AC signal I ( ω) and the modulation frequency ω of the driving oscillation circuit 50b to improve the signal-to-noise ratio (s / N Rat io) of the sensing signal, and to avoid noise problems caused by environmental effects (temperature changes). In order to more clearly illustrate the manufacturing method of the micro-components produced by the silicon micro-processing technology shown in FIG. 3 and the advantages of the micro-components compared to the traditional components, the following will describe them in detail in several units.
微型熱阻紅外線發射器(Micro Thermo-Resistive IRMicro Thermo-Resistive IR Transmitter
Emitter) 理,3 I發熱電阻產生紅外線的方式是根據黑體輻射原 %光幸s早氏位移定理(Wiens Displacement Law)可以確 :,二射出射度(Exi tance)最大值與溫度τ及波長λ之關 係,描述如下公式(1) λΤ〜2897·8 (um K) rηEmitter), the way that the 3 I heating resistor generates infrared light is based on the black body radiant% light s early Wis Displacement Law (Wiens Displacement Law) can confirm: the maximum value of the two emission degrees (Exi tance) and the temperature τ and wavelength The relationship is described by the following formula (1) λΤ ~ 2897 · 8 (um K) rη
第10頁 490554 五、發明說明(7) " 正常人在37C ’最大出射度之波長為9.35um,當應用於氣 體之紅外線吸收光譜(3〜5um或2〜8 um ),可以想見熱阻絲的 溫度必須高達幾百°C以上方能得到足夠之光輻射出'射度',' 這使得傳統的熱阻絲紅外線發射器功率消耗相當大,^是 利用人力逐一製造,品質控管不易,增加後段^正的難疋 度,這都是使其價格昂貴的原因。而利用矽微加工技術正 可以解決功率消耗之問題,並透過石夕半導體製程批量生產 解決品質控管之問題,請參見附件4 J. S. Shie,Bruee C. S. Chou, and Y.M. CHen, High performance Pirani Vacuum gauge, J. Vac. Sc i. Tech. A ,13(1995)2972-2979·。 請參見圖4 a,其係為本發明微型熱阻紅外線發射器 10a之俯視結構示意圖。而圖4b係為圖4a沿著AA線所示之 剖面結構示意圖。其中,一晶向為(1 〇 〇 )的石夕基板1 〇 〇,一 懸浮薄板(Membrane)lOl,由四細長支腳1〇2支撐並固定於 一 V-型槽1〇6之邊緣,該V-型槽106之形成係透過蝕刻窗口 105之定義及石夕異方性餘刻(Anisotropic Etching)技術完 成。該薄板結構101及該細長支腳102係由介電材料i〇ia及 101b所組成,該介電材料1〇13及1〇113通常為半導體製程中 常見之氧化矽及氮化矽抑或上述二者之排列組合而成。在 該薄板結構1 0 1内部製作有一熱阻材料1 〇 3,其通常為高溫 度係數(Temperature Coefficient of Resistance)的熱 敏電阻材料如矽、白金等等。而懸浮薄板的最表面則製作 一黑體材料1 04,其通常為非常薄的金屬薄膜,例如金黑Page 10 490554 V. Description of the invention (7) " The wavelength of the maximum output of a normal person at 37C is 9.35um. When applied to the infrared absorption spectrum of a gas (3 ~ 5um or 2 ~ 8um), you can imagine the heat The temperature of the resistance wire must be as high as a few hundred ° C above to get enough light to radiate 'radiance'. This makes the traditional thermal resistance wire infrared emitters consume considerable power. ^ It is manufactured by humans one by one. Quality control It ’s not easy, and it is difficult to increase the difficulty of the rear section, which is why it is expensive. The use of silicon micromachining technology can solve the problem of power consumption, and solve the problem of quality control through the mass production of Shixi Semiconductor process. Please refer to Annex 4 JS Shie, Bruee CS Chou, and YM CHen, High performance Pirani Vacuum gauge, J. Vac. Sc i. Tech. A, 13 (1995) 2972-2979 ·. Please refer to FIG. 4a, which is a schematic plan view of a miniature thermal resistance infrared emitter 10a according to the present invention. Fig. 4b is a schematic cross-sectional structure view taken along line AA in Fig. 4a. Among them, a Shixi substrate 100 with a crystal orientation of (100), a suspension sheet (Membrane) 101, supported by four slender legs 102, and fixed to the edge of a V-shaped groove 106, The formation of the V-shaped groove 106 is completed by the definition of the etching window 105 and the Anisotropic Etching technology. The thin plate structure 101 and the elongated legs 102 are composed of dielectric materials 101a and 101b. The dielectric materials 1013 and 10113 are usually silicon oxide and silicon nitride or two The combination of the permutations. A thermal resistance material 103 is produced inside the thin plate structure 101, which is usually a temperature resistance coefficient (Temperature Coefficient of Resistance) thermistor material such as silicon, platinum, and the like. A blackbody material 104 is produced on the outermost surface of the suspended sheet, which is usually a very thin metal film, such as gold black
490554 五、發明說明(8) (Gold-Black)及白金黑(piatinum-Black),上击- 射的出射度。 k)猎以增加光輻 圖4所示之微型熱阻紅外線發射器藉由懸浮結構的形 成,可以有效的降低熱傳導值,其值通常介k1uW/ 〜10uW/°c,因此僅需要相當小的焦耳功率便足以產生相當 好的加熱效果。舉例說明;多晶矽熱阻絲為1Κ Ω,通過電 流為1mA,可以產生lmW的功率,如果微型熱阻紅外線發射 器的熱傳導值為3uW/ °C,則懸浮薄板結構1〇1的溫度將達 30 0 °C以上,這一良好的熱效率是傳統元件無法達=的。 同時’該細長支腳102對於該懸浮薄板結構1〇ι與該基板 1 〇 〇間的熱絕緣性相當好,以及該懸浮薄板結構丨〇 1可以視 為專溫區,而該基板1 0 〇則處於室溫。同時,薄板结構1 〇 1 1面積相當小(〜匪X mm),故可以視為點光源,這^於後 續光路的設計可相當簡化。再者透過一等溫度(電阻)驅動 電路10b的控制,可以穩定該懸浮薄板結構1〇ι的溫度\不 受室溫漂移而影響特定波長的光出射度,降低量測的當 度。 里 請參見圖5 a,其係為本發明微型熱阻紅外線發射器另 一實施例之俯視結構示意圖。而圖5b係為圖5a沿著AA線所 示之剖面結構示意圖。圖5a及圖5b所示結構與圖4a及4b差 別者僅在於利用背面異方性蝕刻形成該V-型槽1 〇 6,其餘 製程及設計皆相通,在此不贅述。 ' 微型帶通與空間濾波器(Micro Bandpass and Spatial490554 V. Description of the Invention (8) (Gold-Black) and Platinum-Black (upper-injection). k) In order to increase the light radiation, the miniature thermal resistance infrared emitter shown in Figure 4 can effectively reduce the heat conduction value by the formation of a suspension structure. Its value is usually k1uW / ~ 10uW / ° c, so only a relatively small amount is needed. Joule power is enough to produce a fairly good heating effect. For example; polycrystalline silicon thermal resistance wire is 1K Ω, with a current of 1mA, it can generate lmW power. If the thermal conductivity of the miniature thermal resistance infrared transmitter is 3uW / ° C, the temperature of the suspended thin plate structure 10 will reach 30. Above 0 ° C, this good thermal efficiency cannot be reached by traditional components. At the same time, 'the elongated leg 102 is quite good in thermal insulation between the suspended sheet structure 100m and the substrate 1000, and the suspended sheet structure 1 can be regarded as an exclusive temperature area, and the substrate 100 Is at room temperature. At the same time, the area of the thin plate structure 101 is relatively small (~ mm × mm), so it can be regarded as a point light source, which can simplify the design of subsequent light paths. Furthermore, through the control of a first-temperature (resistance) driving circuit 10b, the temperature of the floating sheet structure 10m can be stabilized without being affected by room temperature drift to affect the light emission at a specific wavelength, and the measurement accuracy can be reduced. Please refer to FIG. 5a, which is a schematic plan view of another embodiment of the miniature thermal resistance infrared emitter of the present invention. Fig. 5b is a schematic cross-sectional structure view taken along line AA in Fig. 5a. The difference between the structure shown in Figs. 5a and 5b and Figs. 4a and 4b is only that the V-shaped groove 106 is formed by using anisotropic etching on the back surface, and the rest of the processes and designs are the same, and details are not described herein. '' Micro Bandpass and Spatial Filter
490554 五、發明說明(9)490554 V. Description of Invention (9)
Filter) 習知的光學帶通濾波器係在一光學基板(例如石英玻 =^製作光學薄膜,其品質要求為該光學基板及該光學鍍 =的材料對於所要求的光學頻道穿透率好(低吸收係數), ,別是光學基板的厚度遠大於該光學薄膜,因此決定了更 二的光強度吸收,因此,尚品質的光學基板扮演重要的因 =丄同時,對於氣體紅外線吸收光譜(3〜5um或2〜8um)頻寬 吕,高穿透率的紅外線光學基板更是稀少而昂貴。為 ^ ^發明提出一微型帶通濾波器以解決上述之問題。 請參見圖6,其係為本發明微型帶通與空間濾波器別 之剖視結構示意圖。其中,31為一晶向為(1〇〇)的矽基 ί膜一面製作有一帶通光學膜33,該帶通光 、33係夕層;丨電質材料所組成。多層介電層基本組成單Filter) The conventional optical band-pass filter is made on an optical substrate (such as quartz glass to make optical films, and its quality requirement is that the optical substrate and the optical plating material have good transmittance for the required optical channel ( Low absorption coefficient), especially because the thickness of the optical substrate is much larger than the optical film, so it determines the absorption of more light intensity. Therefore, the optical substrate of high quality plays an important role = 丄 At the same time, for the gas infrared absorption spectrum (3 ~ 5um or 2 ~ 8um) bandwidth, infrared optical substrate with high transmittance is scarce and expensive. A miniature band-pass filter is proposed for the invention to solve the above problem. Please refer to FIG. 6, which is A cross-sectional structural schematic diagram of the micro-bandpass and the space filter according to the present invention, wherein 31 is a silicon-based film with a crystal orientation of (100), and a band-pass optical film 33 is produced on one side. The band-pass light, 33 series Evening layer; 丨 Composed of dielectric materials. The basic composition of multilayer dielectric layers is single
Ti〇 /:f折ϊίΐ高與折射係數低的介電材才斗,其通常為 數;、甬、ft i ί度t分別滿足^又Μ,其中η為折射係 ί = :之矽基板31 ’而暴露出部分的該帶通光 i(Diaphragm)結構35,此舉可以去除 处1 ^ ;特定光譜的吸收(例如可見光等)。捭配卜 -空間滤波器34的筛選,即為紅外線通過的幾“區Ϊ配上 的製作則是-標準的半導體製程程夂: 膜η二式所製作之金屬圖形,該金屬 鍍Ti〇 /: f is a dielectric material with a high refractive index and a low refractive index, which is usually a number ;, 甬, ft i, and the degree t respectively satisfy ^ and Μ, where η is a refractive system ί =: silicon substrate 31 ′ Whereas, a part of the band-pass light i (Diaphragm) structure 35 is exposed, which can remove 1 ^; absorption of a specific spectrum (such as visible light, etc.).捭 Matching-The filtering of the spatial filter 34, that is, for the "infrared rays" that pass through. The production is-standard semiconductor process. 夂: The metal pattern made by the film η, the metal plating
Ti/Au 或 Cr/Au ,Ml φτ : ^ r φ ^ ,、中Τι或Cr係作為附著層用。Ti / Au or Cr / Au, Ml φτ: ^ r φ ^, middle Ti or Cr is used as an adhesion layer.
第13頁 490554 五、發明說明(ίο) 微型調頻爐波器(M i c r ο T u n a b 1 e F i 11 e r) 常見的調頻遽波器是基於Fabry-Perot干涉儀(簡稱FP 干涉儀)原理’主要是利用二高反射率反射鏡所組成的可 調變(傳統調變方式為利用壓電材料調制)光學共振腔 (Resonant Cavity) ’當共振腔長度滿足特定光波長的半 整數倍m/2(m代表階數)時’輸出的光脈衝具有非常窄的半 咼寬(FWHM Full Width of Half Maximum)特性,廣泛的Page 13 490554 V. Description of the Invention (ίο) Micro Frequency Tuning Furnace (Micr ο Unab 1 e F i 11 er) The common frequency tuning chirp is based on the principle of Fabry-Perot interferometer (FP interferometer for short). It mainly uses two high-reflectance mirrors to tune (the traditional modulation method is modulation by piezoelectric materials) optical resonant cavity (Resonant Cavity) 'When the length of the resonant cavity meets a half-integer multiple of the specific light wavelength m / 2 (m represents the order) when the light pulse output has a very narrow FWHM Full Width of Half Maximum
應用於光通訊及各種光譜檢測設備。然而利用傳統的加工 技術及組裝疋無法製造出具備寬廣調變(pree spectral Range,FSR)光譜特性的FP干涉儀,主要原因為共振腔的 長度太大(FSR反比於共振腔長度)所造成。利用微加工技 術所製作的微型調頻濾波器可以解決此一問題,其光譜調 變範圍可以高達卜2um,這樣的結果使其具有等效於如光 柵(Grating)分光的光譜儀功能(請參見附件5美國專利編 唬5, 5 50, 3 75 ),這是傳統FP干涉儀所無法達到的,也是微 型调頻光學濾、波為的最大的特色。更是本發明將之利用於 紅外線光譜檢測的最主要原因。再者低功率消耗及矽半導 體似的批ϊ生產低成本也是一重大原因。Used in optical communication and various spectrum detection equipment. However, traditional processing techniques and assembly methods cannot be used to produce FP interferometers with a wide spectral range (pree spectral range, FSR) spectral characteristics. The main reason is that the resonant cavity length is too large (FSR is inversely proportional to the resonant cavity length). This problem can be solved by using a micro-frequency modulation filter manufactured by micro-processing technology. Its spectral modulation range can be as high as 2um. This result makes it equivalent to a spectrometer function such as Grating (see Appendix 5). U.S. Patent No. 5, 5, 50, 3 75), which cannot be achieved by traditional FP interferometers, is also the biggest feature of miniature FM optical filters and wave behavior. It is the most important reason why the present invention uses it for infrared spectrum detection. In addition, low power consumption and low cost of silicon semiconductor-like batch production are also a major reason.
請參見圖7 ’其係為本發明實施例微型調頻濾波器5 〇 a 之結構剖視圖。包含:一矽基板5〇〇,該矽基板5〇〇係為一 石夕絕緣層石夕晶圓(Silicon 〇n Insulator,S0I),該矽基板 50 0中間有一氧化矽絕緣層5〇 〇b將該矽基板5〇〇分為正面矽Please refer to FIG. 7 ′, which is a cross-sectional view of a structure of a miniature FM filter 50a according to an embodiment of the present invention. Including: a silicon substrate 500, the silicon substrate 500 is a silicon wafer insulation wafer (Silicon ON Insulator, SOI), a silicon oxide insulation layer 500b in the middle of the silicon substrate 500 The silicon substrate 500 is divided into front silicon
第14頁 490554 五、發明說明(11) 晶圓5 0 0c(又稱元件矽晶圓Device wafer)及反面矽晶圓 5 0 0a(又稱挾置矽晶圓Handle Wafer) 广一懸浮機械結構5 〇 1,與正面矽晶圓5 〇 〇 c表面距離一 空氣間隙5 0 6。該懸浮機械結構5 〇 1包含一薄板結構5 〇 2、 四細長支腳504以及四支撐固定區域5〇5。細長支腳5〇4之 一知點與薄板50 2連接,而細長支腳5〇4之另一端點則連接 於遠固定區域5 0 5 ’該固定區域5〇 5係透過一分隔塊 514(Spacer)連接且固定於該正面矽晶圓5〇〇c表面,分隔 塊5 1 4的厚度即為該空氣間隙5 〇 6的起始高度。 一第一反射鏡5 1 0製作於該薄板結構5 〇 2中央;一浮動 電極50 3製作於該薄板結構5〇2上,透過細長支腳5〇4連接 至固定區域5 0 5而與外界作電性連接。 一固定電極512,製作於正面矽晶圓5〇〇c表面,其位 置位於該浮動電極5 0 3正下方。 複數個V-型凹槽50 7、5 0 8製作於正面50 0c矽晶圓中, 包括位於4第一反射鏡51〇下方之共振腔v_型凹槽Mg,以 及位於該細長支腳504下方之防沾黏(Anti_Sticking)v-型 凹槽50 7,共振腔V-型凹槽508方形平坦底部暴露出位於矽 基板5 0 0中間之氧化矽絕緣層5〇〇b ;及一背面v—型凹槽5〇9 製作於反面石夕晶圓5 0 0a中,正對準於該第一反射鏡51^, 背面V-型凹槽50 9方形平坦底部暴露出位於矽基板5〇〇中間 之氧化矽絕緣層5 0 0b ,以及一第二反射鏡51 i,製作於該 背面V-型凹槽509方形平坦底部。 其中,本發明調頻光學濾波器的光學共振腔,即是由Page 14 490554 V. Description of the invention (11) Wafer 5 0c (also known as Device Silicon wafer) and reverse silicon wafer 5 0a (also known as Handle Wafer) Guangyi suspension mechanical structure 501, an air gap of 506 from the surface of the front silicon wafer 500c. The suspension mechanical structure 501 includes a thin plate structure 502, four slender legs 504, and four support fixing areas 505. One of the known points of the slender foot 504 is connected to the thin plate 502, and the other end of the slender foot 504 is connected to the far fixed area 5 0 5 'The fixed area 5 05 is through a partition 514 ( Spacer) is connected and fixed to the surface of the front silicon wafer 500c, and the thickness of the partition block 5 1 4 is the starting height of the air gap 5 06. A first reflecting mirror 5 1 0 is made in the center of the thin plate structure 50 2; a floating electrode 50 3 is made on the thin plate structure 5 0 2, and is connected to the fixed area 5 0 5 through the elongated foot 5 0 4 to communicate with the outside. Make electrical connections. A fixed electrode 512 is formed on the surface of the front silicon wafer 500c, and its position is directly below the floating electrode 503. A plurality of V-shaped grooves 50 7, 5 0 8 are fabricated on the front surface 50 0c silicon wafer, including a resonant cavity v_-shaped groove Mg located below the 4 first reflector 51 °, and the elongated leg 504 The anti-sticking v-shaped groove 50 7 below, the square flat bottom of the resonant cavity V-shaped groove 508 exposes the silicon oxide insulating layer 500b in the middle of the silicon substrate 500; and a back surface v The —-shaped groove 509 is fabricated in the reverse Shi Xi wafer 500a, which is aligned with the first mirror 51 ^, and the back V-shaped groove 509 square flat bottom exposes the silicon substrate 500. The middle silicon oxide insulating layer 500b and a second reflecting mirror 51i are formed on the square flat bottom of the V-shaped groove 509 on the back surface. The optical resonant cavity of the FM optical filter of the present invention is
490554 五、發明說明(12) 衣作於/專板結構5 〇 2上之苐一反射鏡5 1 〇,以及共振腔V —型 凹槽5 08的方形平坦底部(相連於背面v—型凹槽5〇9的方形 平坦底部的第二反射鏡5 n),所構成的二平面鏡式的光學 共振腔。 ,^本發明光學共振腔的長度d係結合了面型微細加工技 術(多晶矽犧牲層技術)及體型微加工技術(單晶矽異方性 姓,)所製作,光學共振腔的長度為正面矽晶圓500c及及 二氣間隙5 0 6兩者厚度和,其通常決定者為正面矽晶圓 5 0 0 c的厚度,此一厚度可以由商用矽絕緣層矽晶圓(s〇工) 供應商得到不同的規格(〇 3〜1〇〇11111),因此相當具有彈 ^ ’透過適當5 〇 〇 c厚度的選擇,可以得到寬廣的光譜調變 範圍丄又可以滿足光解析度的光譜特性。 浮動電極50 3及固定電極51 2的設計與製作,可以 1用電場吸引的方式調變第一反射鏡51〇與第二反射鏡5η 間光學共振腔長度’浮動電極5 〇 3及固定電極5丨2之間的間 距5 0 6製作疋透過犧牲層的製作及後續的蝕刻動作定義 的’因此可以依不同的需求定義不同的間隙5 0 6。也由於 ,間距是由犧牲層厚度所定義,其通常厚度<3um,因此僅 而要較低的電壓便可以調變光學共振腔長度。 、防沾黏V—型凹槽507製作於細長支腳5〇4的下方,用以 避免細長支腳與底部正面矽晶圓5〇〇c表面因蝕刻液體所產 生表面張力導致的相互沾黏(sticking)。 除了上述^優點外,第一反射鏡5 1 0與第二反射鏡5 11 具有絕佳的平打度。而且該調頻濾波器的特殊微結構設490554 V. Description of the invention (12) The first mirror 5 1 〇 on the special plate structure 5 〇 2 and the square flat bottom of the resonant cavity V-shaped groove 5 08 (connected to the v-shaped concave on the back) The second reflecting mirror 5 n) of the square flat bottom of the slot 509 is a two-plane mirror-type optical resonant cavity. ^ The length d of the optical resonant cavity of the present invention is made by combining the surface microfabrication technology (polycrystalline silicon sacrificial layer technology) and the body micromachining technology (single-crystal silicon anisotropic surname,). The thickness of the wafer 500c and the two air gaps 5 0 6 is the sum of the thicknesses, which is usually determined by the thickness of the front silicon wafer 5 0 c. This thickness can be supplied by commercial silicon insulation silicon wafers (s0). The quotient obtains different specifications (03 ~ 10011111), so it is quite flexible. Through the choice of an appropriate thickness of 500c, a wide spectrum modulation range can be obtained, and the spectral characteristics of the light resolution can be satisfied. The design and production of the floating electrode 50 3 and the fixed electrode 51 2 can be adjusted by the electric field attraction method. The length of the optical resonant cavity between the first reflection mirror 51 and the second reflection mirror 5η 'floating electrode 5 03 and the fixed electrode 5丨 2 the space between 5 6 production 疋 is defined by the production of the sacrificial layer and subsequent etching operations, so different gaps 5 0 6 can be defined according to different needs. Also, because the pitch is defined by the thickness of the sacrificial layer, which is usually <3um in thickness, the length of the optical cavity can be adjusted with a lower voltage. Anti-adhesion V-shaped groove 507 is made under the slender feet 504 to avoid mutual adhesion between the slender feet and the bottom silicon wafer 500c surface due to the surface tension caused by the etching liquid. (Sticking). In addition to the aforementioned advantages, the first mirror 5 1 0 and the second mirror 5 11 have excellent flatness. And the special microstructure design of the FM filter
第16頁 490554 五、發明說明(13) 計’使其並不受限於基板5 0 0效應的影響,僅需透過第一 反射鏡510與第二反射鏡511材料的選擇,便可以製作適用 於本發明氣體紅外線吸收光譜波段的調頻濾波器(相同於 前述之微型帶通濾波器之設計理念)。 其中,該固定電極5 1 2的製作方式是利用高溫擴散或 離子佈植的方式在正面矽晶圓5〇〇c表面完成之雜質渗雜。 間隔層514材料為多晶矽,該機械結構5〇1係由三層&料所 組成的三明治結構,分別為富矽氮化矽(S i 1 i con ^ i ch N 11 r l de )、多晶矽及富矽氮化矽。其中富矽氮化矽具有相 當好的機械剛性及相當低的熱殘餘應力(請參見附件6 : Bruce C.S. Chou et al., A method of fabricating low-stress dielectric thin fiim for microsensorsapplications, IEEE Electron Device Lettei:sl8’1 9 9 7,p.5 9 9- 6 0 1·),因此最適合作為高品質、 高穩定性的微型機械結構。而位於中間的多晶矽則同時作 為機械結構與浮動電極5〇3的導體材料。第一及第二反射 1 5 11為多層介電質材料所製作而成的高反射、低損 ΐ ί f鏡。多層介電層基本組成單位為一對折射係數高與 數低的介電材料,其通常為MgVTi〇2。而其厚度t 2別j足nt=又/4,其中n為折射係數,又為所調變光譜的 微型熱偵測器Page 16 490554 V. Description of the invention (13) The plan 'makes it not limited to the effect of the substrate 500 effect. It only needs to pass the selection of the materials of the first mirror 510 and the second mirror 511, and it can be manufactured and applied. The FM filter in the gas infrared absorption spectrum band of the present invention (same design concept as the aforementioned miniature band-pass filter). Wherein, the method for manufacturing the fixed electrode 5 1 2 is impurity doping on the surface of the front silicon wafer 500 c by means of high temperature diffusion or ion implantation. The material of the spacer layer 514 is polycrystalline silicon. The mechanical structure 501 is a sandwich structure composed of three layers of materials, namely silicon-rich silicon nitride (S i 1 i con ^ i ch N 11 rl de), polycrystalline silicon, and Silicon-rich silicon nitride. Among them, silicon-rich silicon nitride has fairly good mechanical rigidity and relatively low thermal residual stress (see Annex 6: Bruce CS Chou et al., A method of fabricating low-stress dielectric thin fiim for microsensors applications, IEEE Electron Device Lettei: sl8'1 9 9 7, p.5 9 9- 6 0 1 ·), so it is most suitable as a high-quality, high-stability micromechanical structure. The polycrystalline silicon in the middle serves as a conductive material for both the mechanical structure and the floating electrode 503. The first and second reflections 1 5 11 are high reflection and low loss mirrors made of multilayer dielectric materials. The basic unit of the multilayer dielectric layer is a pair of dielectric materials with a high refractive index and a low refractive index, which is usually MgVTi02. And its thickness t 2 is equal to nt = and / 4, where n is the refractive index and the miniature thermal detector whose spectrum is modulated
490554 五、發明說明(14) 熱偵測器(熱阻Bolometer、焦電Pyrometer及熱電 Thermopi le)的優點在於有相當寬廣且平坦的光譜反應特 性(Broad and Flat Spectral Response),相當適合作為 光譜之校正,但是缺點為元件之響應度(Resp〇nsivity, V/W)較差。 隨著1 9 8 0年代石夕微加工技術之發展,具有高度絕熱效 果(低熱導)的懸浮薄板結構(薄板結構可以降低熱容),使 熱電堆元件之響應度(reSp0nSiVity,V/W)和響應速率大 幅提升。因此,微型熱偵測器的發展有了更長足的進步。 特別是微型熱電堆偵測器,熱電堆元件的優點在於其本身 不消耗任何功率,因此,可免除任何從電源供應所耦合進 來的電壓雜訊,此優點乃其他電阻型(bolometric)紅外線 兀件所不及。再者,由於流經熱電堆元件本身之電流很小 (甚至為〇 ),因此,由驅動電流所引發的材料之低頻雜訊 (1/f noise)亦可忽略。在沒有輻射入射時,可將熱電偶 =熱接觸區及冷接觸區視為等溫,因此,環境溫度漂移 此種元件的影響,也遠比對電阻型紅外線元件小。所以, ,,元件適合於攜帶型及室溫操作,並且不需額外的控溫490554 V. Description of the invention (14) The advantages of thermal detectors (Bolometer, Pyrometer and Thermopile) are that they have broad and flat spectral response characteristics, which are quite suitable for the spectrum. Correction, but the disadvantage is that the responsivity (V / W) of the component is poor. With the development of Shixi micro-machining technology in the 1980s, the suspended sheet structure (thin plate structure can reduce heat capacity) with a high thermal insulation effect (low thermal conductivity), so that the responsivity of thermopile components (reSp0nSiVity, V / W) And the response rate is greatly improved. As a result, the development of miniature thermal detectors has come a long way. Especially for miniature thermopile detectors, the advantages of thermopile components are that they do not consume any power, so they can avoid any voltage noise coupled from the power supply. This advantage is other bolometric infrared elements. Out of reach. Furthermore, since the current flowing through the thermopile element itself is small (or even 0), the low frequency noise (1 / f noise) of the material caused by the driving current can also be ignored. When there is no radiation incident, the thermocouple = hot contact area and cold contact area can be regarded as isothermal. Therefore, the effect of environmental temperature drift is much smaller than that of resistive infrared components. Therefore, the components are suitable for portable and room temperature operation, and do not require additional temperature control
參見圖8a,其係為本發明實施例微型熱電堆偵测哭 a之俯視-結構示意圖。而圖8b係為圖8a沿著aa線所示⑻ Ϊ/ίη構示意圖。、/1電堆元件6〇a包含:一晶向(100)的石夕 ,及一懸浮薄板601,形成於基板6 0 0之上,且有 數之熱電偶603。熱接觸區604係位於懸浮薄板6〇1 &中Referring to FIG. 8a, it is a top view-structure diagram of a miniature thermopile detection crya according to an embodiment of the present invention. FIG. 8b is a schematic diagram of the structure of FIG. 8a along the line aa. The // 1 stacker element 60a includes: a crystalline orientation (100) Shi Xi, and a suspended sheet 601 formed on the substrate 600, and there are several thermocouples 603. The thermal contact zone 604 is located in the suspended sheet 601 &
490554 五、發明說明(15) 央部分,而冷接觸區6 0 5係為於懸浮薄板6 〇 !之周圍部分。 藉由複數之蝕刻窗口 60 6定義,可蝕刻形成懸浮薄板6^ 方之V-型槽60 7 ’以構成懸浮薄板601之結構。而懸浮 的最表面則製作一黑體材料6 0 2,其通常為非常薄的金板 薄膜,例如金黑(Gold-Black)及白金黑 (Platinum-Black),藉以增加光輻射的吸收 懸浮薄板601包含一第一介電層6〇 〇a、一熱 第電層6 0 0b、一第二熱電偶6 0 3b、」第三介 見:氣;中々該第一、二、三介電層通常為半導體製程 Ϊ二i t及氮化石夕抑或上述二者之排列組合而成。 3 i i ί 一 ί偶材料為N型及P型石夕導體所構成,抑或一 矽導,與一金屬導體所構成。 再 P汊 #如ί S 5 ,其係為本發明微型熱電堆债測器另一實 Ϊ面ΪΪ :構示意圖。而’係為圖9&沿著^線所示之 僅在於利:=圖。圖9a及圖9b所示結構與圖8a及8b差別者 及—i比相ζ面異方性蝕刻形成該V—型槽60 7,其餘製程 及e又计白相通,在此不贅述。 在實施例之詳細說明中所提出之具體施 :Ϊ: 5發二之技術内$,而非將本發明狹義地限制於上 之申請專利範圍 |讣的種種變化實施,仍屬於本發明之範圍。490554 V. Description of the invention (15) The central part, and the cold contact area 605 is the surrounding part of the suspended sheet 60. With the definition of a plurality of etching windows 60 6, a V-shaped groove 60 7 ′ of the suspended sheet 6 ^ can be etched to form the structure of the suspended sheet 601. A black body material 602 is made on the most suspended surface, which is usually a very thin gold plate film, such as Gold-Black and Platinum-Black, so as to increase the absorption of light radiation. It includes a first dielectric layer 600a, a thermoelectric layer 600b, a second thermocouple 6003b, and a third dielectric: gas; the first, second, and third dielectric layers are usually It is a combination of semiconductor manufacturing process, it and nitride, or both. 3 i i ί A ί pair of materials is composed of N-type and P-type Shi Xi conductors, or a silicon conductor and a metal conductor. Then P 汊 # 如 ί S 5 is another embodiment of the miniature thermopile debt detector of the present invention: a schematic diagram. And ′ is shown in FIG. 9 & The structures shown in Figs. 9a and 9b are different from those of Figs. 8a and 8b and -i ratio phase z-plane anisotropic etching is used to form the V-shaped groove 607. The remaining processes and e are connected in white, and are not described herein. The specific application proposed in the detailed description of the embodiments: Ϊ: within the technology of 5 rounds, instead of narrowly limiting the present invention to the scope of the patent application above | implementation of various changes, which still belongs to the scope of the present invention .
第19頁 490554 五、發明說明(16)Page 19 490554 V. Description of the invention (16)
ΙΙϋϋΙΙ 第20頁 490554ΙΙϋϋΙΙ Page 20 490554
圖式簡單說明 【圖式說明 圖1為不同氣體紅外線吸收光譜特性。 圖2本發明微型紅外線氣體分析裝置的功能性方 圖3本發明微型紅外線氣體分析裝置各組件安排示二。 圖4a本發明實施例微型熱阻紅外線發射器之 思圖。 圖。 兄〜構示意 係為圖4a沿著AA線所示之剖面結構示意圖。 圖5 a係為本發明微型熱阻紅外線發一每 結構示意圖。 力 錢施例之俯視 係為圖5a沿著ΑΑ線所示之剖面結 圖6為本發明微型帶通與空間濾波籌視^圖摄-立 圖7係為本發明實施例微型調頻濾 ^ 構不思圖。 ,係為本發明實施例微型熱電二益;構^ 構示意圖。 貝’則卯之俯視結 圖8b係為圖8a沿著AA線所示之判 圖9a係為本發明微型熱電堆偵===構示意圖。 視結構示意圖。 、、°。另一實施例之俯 圖9b係為圖9a沿著AA線所示之立丨 又4面結構示意圖。 【符號之說明】 10 10a 紅外線發射單元 熱阻型紅外線發射器Brief description of drawings [Explanation of drawings] Figure 1 shows the infrared absorption spectrum characteristics of different gases. Fig. 2 is a functional view of the miniature infrared gas analysis device of the present invention. Fig. 3 is a diagram showing the arrangement of each component of the miniature infrared gas analysis device of the present invention. Figure 4a is a schematic diagram of a miniature thermal resistance infrared emitter according to an embodiment of the present invention. Illustration. The structure is a schematic view of the cross-sectional structure shown in FIG. 4a along the line AA. Fig. 5a is a schematic diagram showing the structure of a miniature thermal resistance infrared transmitter according to the present invention. The top view of the power money embodiment is the cross-section shown in FIG. 5a along the line AA. FIG. 6 is a micro-bandpass and spatial filtering view of the present invention. ^ Photograph-elevation 7 is a micro-FM filter of the embodiment of the present invention. Don't think about it. , This is a miniature thermoelectric benefit of the embodiment of the present invention; The top view of the shell is shown in Fig. 8b, which is a judgment along the line AA in Fig. 8a. Fig. 9a is a schematic diagram of the micro thermopile detection of the present invention. Schematic diagram. ,, °. Top view of another embodiment FIG. 9b is a schematic view of the four-side structure shown in FIG. 9a along the AA line. [Explanation of symbols] 10 10a Infrared emitting unit Thermal resistance type infrared emitter
第21頁 490554 圖式簡單說明 10b〜 等溫度驅動電路 11〜 紅外線光線 12〜 紅外線光線 100〜 矽基板 m〜 懸浮薄板 102〜 細長支腳 103〜 熱阻材料 104〜 黑體材料 105〜 蝕刻窗口 106〜 V-型槽 20〜 紅外線準直鏡 21〜 平行光束 30〜 微型帶通與空間濾波器 31〜 矽基板 32〜 V-型槽 33〜 帶通光學膜 34〜 金屬薄膜空間濾波器 35〜 懸浮光學膜區域 50〜 調頻濾波單元 50a〜 微型F a b r y - P e r 〇 t調頻濾波器 50b〜 驅動振盪電路 5 0 0〜 矽絕緣層矽晶圓 5 0 0a 〜反面砍晶圓 5 0 0b 〜氧化矽絕緣層490554 on page 21 Simple illustration 10b ~ Isothermal drive circuit 11 ~ Infrared light 12 ~ Infrared light 100 ~ Silicon substrate m ~ Suspension sheet 102 ~ Slim legs 103 ~ Thermal resistance material 104 ~ Black body material 105 ~ Etching window 106 ~ V-groove 20 ~ Infrared collimator 21 ~ Parallel beam 30 ~ Micro bandpass and space filter 31 ~ Silicon substrate 32 ~ V-groove 33 ~ Bandpass optical film 34 ~ Metal thin film space filter 35 ~ Levitation optics Membrane area 50 ~ FM filter unit 50a ~ Miniature Fabry-Per 〇t FM filter 50b ~ Drive oscillation circuit 5 0 0 ~ Silicon insulation layer Silicon wafer 5 0 0a ~ Reverse cut wafer 5 0 0b ~ Silicon oxide insulation Floor
第22頁 490554 圖式簡單說明 5 0 0 c〜正面矽晶圓 5 0 1〜懸浮機械結構 5 0 2〜薄板結構 ^ 5 0 3〜浮動電極 - 5 0 4〜細長支腳 5 0 5〜懸浮機械結構固定區域 5 0 6〜空氣間隙 5 0 7〜防沾黏V -型凹槽 508〜共振腔V-型凹槽 509〜背面V-型凹槽 5 1 0〜第一反射鏡 φ 5 1 1〜第二反射鏡 5 1 2〜固定電極 5 1 3〜絕緣層 514〜多晶碎材料 6 0〜感測單元 6 0 a〜微型熱電堆偵測器 6 0 b〜鎖相讀取電路 6 0 0〜碎基板 6 0 0 a〜第一介電層 6 0 0b〜第二介電層 鲁 600 c〜第三介電層 、 601〜懸浮薄板 6 0 2〜黑體材料Page 22 490554 Brief description of the diagram 5 0 0 c ~ front silicon wafer 5 0 1 ~ suspension mechanical structure 5 0 2 ~ thin plate structure ^ 5 0 3 ~ floating electrode-5 0 4 ~ slender feet 5 0 5 ~ suspension Mechanical structure fixing area 5 0 6 ~ Air gap 5 0 7 ~ Anti-stick V-shaped groove 508 ~ Resonant cavity V-shaped groove 509 ~ Back V-shaped groove 5 1 0 ~ First reflector φ 5 1 1 ~ Second reflector 5 1 2 ~ Fixed electrode 5 1 3 ~ Insulation layer 514 ~ Polycrystalline broken material 6 0 ~ Sensing unit 6 0 a ~ Micro thermopile detector 6 0 b ~ Phase-locked read circuit 6 0 0 to broken substrate 6 0 0 a to first dielectric layer 6 0 0 b to second dielectric layer 600 c to third dielectric layer 601 to suspended sheet 6 0 2 to black body material
第23頁 490554 圖式簡單說明 6 0 3〜熱電偶 6 0 3a〜第一熱電偶導體 6 0 3b〜第二熱電偶導體 6 0 4〜熱接觸區 6 0 5〜冷接觸區 6 0 6〜蝕刻窗口 607〜V-型槽490554 on page 23 Simple illustration 6 0 3 ~ thermocouple 6 0 3a ~ first thermocouple conductor 6 0 3b ~ second thermocouple conductor 6 0 4 ~ hot contact area 6 0 5 ~ cold contact area 6 0 6 ~ Etched window 607 ~ V-groove
第24頁Page 24
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90113756A TW490554B (en) | 2001-06-06 | 2001-06-06 | Miniaturized infrared gas analyzing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90113756A TW490554B (en) | 2001-06-06 | 2001-06-06 | Miniaturized infrared gas analyzing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
TW490554B true TW490554B (en) | 2002-06-11 |
Family
ID=21678464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90113756A TW490554B (en) | 2001-06-06 | 2001-06-06 | Miniaturized infrared gas analyzing apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW490554B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102809564A (en) * | 2011-06-02 | 2012-12-05 | 江苏天瑞仪器股份有限公司 | System and method for distinguishing A-grade jade and B-grade jade |
TWI426259B (en) * | 2009-06-25 | 2014-02-11 | Panasonic Corp | Infrared gas detector and ingrared gas measurement device |
-
2001
- 2001-06-06 TW TW90113756A patent/TW490554B/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI426259B (en) * | 2009-06-25 | 2014-02-11 | Panasonic Corp | Infrared gas detector and ingrared gas measurement device |
CN102809564A (en) * | 2011-06-02 | 2012-12-05 | 江苏天瑞仪器股份有限公司 | System and method for distinguishing A-grade jade and B-grade jade |
CN102809564B (en) * | 2011-06-02 | 2016-09-21 | 江苏天瑞仪器股份有限公司 | A kind of differentiate Aeschna melanictera A goods, the system of B goods and discrimination method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6836678B2 (en) | Non-invasive blood glucose monitor | |
US20030209669A1 (en) | Miniaturized infrared gas analyzing apparatus | |
US5589689A (en) | Infrared detector with Fabry-Perot interferometer | |
EP0608049B1 (en) | Single-channel gas concentration measurement apparatus | |
US20050030628A1 (en) | Very low cost narrow band infrared sensor | |
TWI426259B (en) | Infrared gas detector and ingrared gas measurement device | |
JP4801583B2 (en) | Thermal device | |
Pisani et al. | Application of micromachined $ Y $-cut-Quartz bulk acoustic wave resonator for infrared sensing | |
CN106687781B (en) | Method and apparatus for determining spectral scale of spectrometer | |
US10151638B2 (en) | Bolometer, method of fabricating the same, and bolometric method | |
JP2007527508A5 (en) | ||
JPH07286809A (en) | Electric tunable type fabry-perot interferometer manufactured by surface micro-machining technique used for analyzing optical material | |
KR20070020166A (en) | Infrared camera system | |
US10545049B2 (en) | Method for stabilizing a spectrometer using single spectral notch | |
Rossberg | Silicon micromachined infrared sensor with tunable wavelength selectivity for application in infrared spectroscopy | |
Kao et al. | Micromachined quartz resonator based infrared detector array | |
CN111665211A (en) | Gas sensor | |
EP0682237B1 (en) | Radiation detector | |
TW490554B (en) | Miniaturized infrared gas analyzing apparatus | |
JP3287729B2 (en) | Radiation detector | |
CN1464298A (en) | Mini type infrared ray gas analysis apparatus | |
US10107743B2 (en) | Thermal infrared sensor and gas measuring apparatus | |
JP2003083889A (en) | Infrared analyzer | |
JP2003177093A (en) | Infrared analysis apparatus | |
CN108414449B (en) | Gas analysis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |