TW487993B - Non-selectivity epitaxy deposition technique - Google Patents
Non-selectivity epitaxy deposition technique Download PDFInfo
- Publication number
- TW487993B TW487993B TW89106573A TW89106573A TW487993B TW 487993 B TW487993 B TW 487993B TW 89106573 A TW89106573 A TW 89106573A TW 89106573 A TW89106573 A TW 89106573A TW 487993 B TW487993 B TW 487993B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- bipolar transistor
- scope
- patent application
- item
- Prior art date
Links
Landscapes
- Bipolar Transistors (AREA)
Abstract
Description
487993 A7487993 A7
五、發明說明(j ) 發明領域 本發明案與雙極性電晶體元件的製程領域有關,特別 是與雙極性電晶體元件的基極製作有關。 發明背景 半導體製程技術的發展是朝著高速,低功率消耗的超 大型積體電路(Very Large Scale Integration; vLSI)的方向 則進,為了達到這樣的境界,半導體元件勢必要越做越小, 因此在元件的設計上垂直部份的接面(Juncti〇n)需要越淺 越好,而且元件水平方向的幾何尺寸也需要越小越好。傳 統雙極性電晶體元件的接面深度是利用離子植入法(I〇n implantation)的方式將離子攙雜植入石夕晶格内後再以高溫 的製程將離子活化並擴散至一定的深度。而元件水平方向 的幾何尺寸則可以藉由微影(Lithography)設備的不斷進步 來縮小,而使得元件的寄生效應能持續的減少。 目前於半導體製程上有一項新的技術發展是為低溫磊 晶沉積技術(Low temperature epitaxy; LTE)。此低溫磊晶 沉積製程一般均是以化學氣相沉積系統(Chemical vapor deposition; CVD)來進行,由於此製程不能於太高的溫度下 反應,所以為了保證能得到較佳的品質(Quality),大多會以 超兩真空的化學氣相沉積系統(Ultra high vacuum chemical vapor deposition; UHV/CVD)來沉積,因為其沉積溫度低於 600°C;且由於背景壓力低於1 〇·1() torr,所以反應腔内的水 蒸氣及氧的分壓均非常的低,因此如果以此製程來製作雙 極性電晶體的基極層時,不但可以準確的控制基極的寬度 2 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂-------- 經濟部智慧財產局員工消費合作社印製 ^δ/993 Α7 Β7_________ 五、發明說明(2 ) 及濃度,且不會有以往用離子植入法的曳尾(Tailing)現象, 因 '基極的寬度可以更小而增進了雙極性電晶體元件的特 性,所以低溫磊晶沉積技術可以讓雙極性電晶體有較淺的 接面深度,並且提升元件的特性與均勻度。可是真空系統 的維護,以及產能(Throughput)太低(需將系統抽真空至 l〇'1Qton:以下),成長速度太慢(因為成長溫度太低),均是 此系統的缺點。 而現在利用磊晶成長技術發展出選擇性磊晶沉積 (Selective epitaxial growth; SEG)的製程。此選擇性磊晶 成長方式是利用矽磊晶成長技術於裸露的矽單晶上成長矽 蟲晶,但不會在二氧化石夕或氮化石夕的介電層(Dielectric layer)上沉積任何型式的矽(單晶,複晶(p〇lySilicon)或者 是非晶矽(Amorphous))。在選擇性磊晶沉積製程中,SiCl4 被經常用作為矽原子的來源,而在反應氣體中添加氫氯酸 (HC1)(或者是氯氣)可以增加成長過程中的選擇性 (Selectivity)沉積的能力。而於矽磊晶過程中影響選擇性 沉積的因素包括了石夕基板的表面情況(surface condition), 介電層開口的大小,氫氯酸的濃度,矽氣體源種類,成長壓 力和溫度。此製程中容易在靠近磊晶與介電層的介面附近 觀察到一些缺陷,這些缺陷包括差排(Dislocation),堆疊 錯誤(Stacking fault)以及微雙晶(Microtwins)等,這些缺 陷往往會造成電性上的問題,雖然大家很努力的嘗試想把 這些缺陷降低甚至去除,但是最後的結果總是無法令大家 滿意,且製程窗口(Process window)太小,也是另一個需要 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) ----- 訂·——.------. 經濟部智慧財產局員工消費合作社印製 ^ /V. Description of the Invention (j) Field of the Invention The present invention relates to the field of manufacturing process of bipolar transistor elements, and particularly relates to the fabrication of the base of the bipolar transistor elements. BACKGROUND OF THE INVENTION The development of semiconductor process technology is moving towards high-speed, low-power-consumption Very Large Scale Integration (vLSI). In order to achieve such a state, semiconductor elements must be made smaller and smaller, so In the design of the component, the junction of the vertical part (Junction) should be as shallow as possible, and the geometrical dimension of the component in the horizontal direction should be as small as possible. The junction depth of the traditional bipolar transistor is that ion implantation is used to implant ions into the stone lattice, and then the ions are activated and diffused to a certain depth by a high temperature process. The horizontal geometry of the component can be reduced by the continuous improvement of Lithography equipment, so that the parasitic effect of the component can be continuously reduced. There is a new technological development in the semiconductor manufacturing process currently being Low Temperature Epitaxy (LTE). This low-temperature epitaxial deposition process is generally performed using a chemical vapor deposition (CVD) system. Since this process cannot react at too high a temperature, in order to ensure better quality, Most will be deposited by Ultra High Vacuum Chemical Vapor Deposition System (UHV / CVD) because its deposition temperature is below 600 ° C; and because the background pressure is below 1 〇 · 1 () torr Therefore, the partial pressures of water vapor and oxygen in the reaction chamber are very low. Therefore, if the base layer of the bipolar transistor is manufactured by this process, not only the width of the base can be accurately controlled. 2 This paper size is applicable to China National Standard (CNS) A4 Specification (210 X 297 mm) (Please read the notes on the back before filling out this page) Order -------- Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ^ δ / 993 Α7 Β7 _________ 5. Description of the invention (2) and concentration, and there will be no tailing phenomenon using the ion implantation method in the past, because the width of the base can be smaller and the characteristics of the bipolar transistor element are improved, Therefore, the low temperature epitaxial deposition technology can make the bipolar transistor have a shallow junction depth, and improve the characteristics and uniformity of the device. However, the maintenance of the vacuum system, the throughput is too low (the system needs to be evacuated to 10'1 Qton: below), and the growth rate is too slow (because the growth temperature is too low) are the disadvantages of this system. Now, a selective epitaxial growth (SEG) process is developed using epitaxial growth technology. This selective epitaxial growth method uses silicon epitaxial growth technology to grow silicon worm crystals on bare silicon single crystals, but does not deposit any type on the dielectric layer of the dioxide or nitride. Silicon (single crystal, polySilicon or Amorphous). In the selective epitaxial deposition process, SiCl4 is often used as a source of silicon atoms, and the addition of hydrochloric acid (HC1) (or chlorine gas) in the reaction gas can increase the selectivity of selective deposition during growth. . The factors affecting selective deposition during the silicon epitaxial process include the surface conditions of the Shi Xi substrate, the size of the dielectric layer openings, the concentration of hydrochloric acid, the type of silicon gas source, the growth pressure and temperature. In this process, it is easy to observe some defects near the interface between the epitaxial layer and the dielectric layer. These defects include dislocation, stacking fault, and microtwins. These defects often cause electrical damage. On the issue of sex, although everyone tries very hard to reduce or even remove these defects, the final result is always unsatisfactory, and the process window is too small, which is another need for 3 paper standards for China National Standard (CNS) A4 Specification (210 X 297 mm) (Please read the precautions on the back before filling out this page) ----- Order · ——.------. Employees of Intellectual Property Bureau, Ministry of Economic Affairs Printed by Consumer Cooperatives ^ /
五 經濟部智慧財產局員工消費合作社印製 、發明說明( 面對的問題。 (請先閱讀背面之注意事項再填寫本頁) 本發明案是提出如何利用非選擇性沉積的技術成長 出具有與選擇性磊晶沉積製程相同的結果,但是卻有更大 的製程1¾ 口,以及可以大幅減少上述所提及的缺陷。 經過查詢後並沒有發現有相關的專利文件内容與本發 明案中的所提及的發明内容相似,而一些稍為類似的專 利文件特別舉出來,分別為:Herbert等人(US.5,777,3 50) 的專利-Method of forming a self-aligned bipolar junction transistor with silicide extrinsic base contacts and selective epitaxial grown intrinsic base,, 此專利中提出於雙極性電晶體中製程中利用磊晶沉積技術 製作基極層,但是其基極的接點(c ο n t a c t)處的複晶石夕層需 另外製作,所以不是自我對準(Self-aligned)的製程。Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Employee Co-operative Cooperatives, Inventions (Problems Faced. (Please read the precautions on the back before filling out this page) This invention proposes how to use non-selective deposition techniques to grow The selective epitaxial deposition process has the same results, but it has a larger process of 1¾ and can greatly reduce the above-mentioned defects. After inquiry, we have not found any relevant patent documents and the contents of the present invention. The contents of the mentioned invention are similar, and some slightly similar patent documents are specifically cited, respectively: Patent of Herbert et al. (US. 5,777, 3 50)-Method of forming a self-aligned bipolar junction transistor with silicide extrinsic base contacts and selective epitaxial grown intrinsic base, this patent proposes to use the epitaxial deposition technology to make the base layer in the process of the bipolar transistor, but the polycrystalline spar layer at the base contact (c ntact) requires It is produced separately, so it is not a self-aligned process.
Sato 等人(US5,599,723)的專利-’’ Method for manufacturing bipolar transistor having reduced b as e -collector parasitic capacitance 此專利是利用光罩製 作開口(opening)的形成是故意利用過钱刻(Over-etch)的方 式使得在邊界的地方使其產生懸浮(Onerhang),如此可以 減低矽在沉積過程中沉積到其它區域的機會。The patent of Sato et al. (US5,599,723)-`` Method for manufacturing bipolar transistor having reduced b as e-collector parasitic capacitance '' This patent is the use of a photomask to make openings and the intention is to over-etch ) Method makes it generate suspension (Onerhang) at the boundary, so as to reduce the chance of silicon deposition to other areas during the deposition process.
Kimura 等人(US 5,6 1 4,425)的專利-’’Method of fabricating a bipolar transistor operable at high speed"中 提出一個可以於同一次的磊晶過程中部份地方沉積出矽磊 晶,且於另一部份沉積複晶的製程技術。 發明目的及概述 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 五、發明說明(今) Α7 Β7 流程本發明案的主題是提出一個製作雙極性電晶體元件的 法製個主題是經由非選…晶沉積的方 沄I作氟作雙極性電晶體的基極 複晶的另—個主題是此製程的基極金屬是連接到 2明案的這些主題可以於場氧 eid Qxi及 矽单晶層的表面上沉接 „ 積一複日日矽層作為成核層(Seed layer) 、術*達成。然後在場氧化層之間的主動元件區域(N + :層的上方)形成成核層的開口,接著利用非選擇性磊晶 積的方式製作雙極性電晶體元件的基極,所以可以在基 極的兩側形成複晶的接觸區域,然後再以一般製作雙極f生電s曰體的製程-射窗(EmiUer 製作,射極複晶 (Υ emitter)姓刻,中間介電層(Inter-layer dielectric)沉 積,金屬化(%6(&114此011)製程等等,完成雙極性電晶體 的製作。 圖示簡單說明 (請先閱讀背面之注意事項再填寫本頁)The patent of Kimura et al. (US 5,6 1 4,425)-"Method of fabricating a bipolar transistor operable at high speed"-proposes that a silicon epitaxial crystal can be deposited in some places during the same epitaxial process, and The other part is the process technology for depositing polycrystals. The purpose and summary of the invention 4 The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 5. Description of the invention (today) Α7 Β7 Process The subject of the present invention is to propose a legal system for making bipolar transistor elements This subject is a non-selective ... deposited square 沄 I is used as the base complex of fluorine as a bipolar transistor. Another subject is that the base metal of this process is connected to 2 cases. These topics can be used in the field oxygen The surface of eid Qxi and the silicon single crystal layer is sunk, and the silicon layer is used as a seed layer, and the technique is achieved. Then, the active device region (N +: (Above) to form the opening of the nucleation layer, and then use the non-selective epitaxial product to make the base of the bipolar transistor, so the contact area of the polycrystal can be formed on both sides of the base, and then the double Electrode production process-made by EmiUer (EmiUer, Υ emitter) engraved, Inter-layer dielectric deposited, metallized (% 6 (& 114 this 011 ) Process and so on, complete the bipolar transistor Simple illustration (please read the notes on the back before filling this page)
-· ia-i ϋ· emmmmm t§ I 1 ^ ^ t 1_· m i·— an fl_n ϋ· I 經濟部智慧財產局員工消費合作社印製 圖一:本發明案所提出新製程前開始的橫截面圖; 圖二:與圖* 一的結構相同,但是增加了多晶矽層作為成核Μ ; 圖三:顯示出於成核層製作出基極區窗口的橫截面圖; 圖四:顯示出利用非選擇性沉積方式沉積本質基極層及複 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A7-· Ia-i ϋ · emmmmm t§ I 1 ^ ^ t 1_ · mi · — an fl_n ϋ · I Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Figure 1: Cross-sections before the new process proposed by the present invention Figures; Figure 2: The same structure as Figure * 1, but with the addition of a polycrystalline silicon layer as a nucleation M; Figure 3: A cross-sectional view showing the base region window made from the nucleation layer; Figure 4: Shows the use of non-nuclear layers Selective deposition method deposits the essential base layer and the size of the paper. Applicable to China National Standard (CNS) A4 (210 X 297 mm) A7
五、發明說明(f ) 晶接觸層後的橫戴面圖; 圖五:是指本發明案中所提出雙載子電晶體的製程,其最 後的橫截面圖。 經濟部智慧財產局員工消費合作社印製 發明詳細說明 本發明案所提出的製程中是以型晶片作為基板,厚 度約為500至550μηι,阻值約為15-25Ω一cin,如圖1中的 層次1所示。然後在晶片的表面上利用微影的製程製作出 N+埋層(層次2)的圖樣(Pattern),再經由離子植入方式將 施體離子(D0nor ion)植入晶體内,此施體離子可以是石申 (Arsenic)或者是銻(Antimony),離子植入的能量大約為65 至lOOKeV之間,使用的離子劑量為2χ10ι5至 5X1015/cm2。去除光阻後隨即進行熱退火製程,熱退火溫 度約為1150至1250。C,退火時間為50-100分鐘。緊接 著受體離子(Acceptor ion)(—般是硼離子)被植入矽晶片裏 (也是以微影方式製作其圖樣,圖中沒有表示出來),植入 的能量約為30至80 KeV,且植入的劑量約為ιχιο13至 lX1014/cm2以形成p埋層(層次3),此p埋層的深度約與 N-埋層的深度相同,然後在850至950。C的爐管中進行熱 處理,熱處理的時間約為4 0 -1 0 0分鐘。 一旦P埋層和N埋層都已經製作完成,接著利用化 學氣相沉積方式製作矽磊晶層,沉積的溫度約為1 〇 〇 〇至 120 0°C之間,石夕蠢晶層的厚度約為〇6至ι.2μιη。使用的 6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 广|:1“||.—^____________ (請先閱讀背面之注意事項再填寫本頁) 訂——、------ A7V. Description of the invention (f) A cross-sectional view after the crystal contact layer; FIG. 5: Refers to the process of the double-carrier transistor proposed in the present invention, and the final cross-sectional view thereof. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives for the detailed description of the invention The process proposed in the present invention uses a wafer as a substrate with a thickness of about 500 to 550 μηι and a resistance value of about 15-25Ω-cin, as shown in Figure 1. Shown at level 1. Then, a pattern of N + buried layer (level 2) is made on the surface of the wafer by the lithography process, and the donor ion is implanted into the crystal by ion implantation. The donor ion can be It is Shisen (Arsenic) or antimony (Antimony), the energy of ion implantation is about 65 to 10OKeV, and the ion dose used is 2 × 10ι5 to 5X1015 / cm2. After the photoresist is removed, a thermal annealing process is performed, and the thermal annealing temperature is about 1150 to 1250. C, annealing time is 50-100 minutes. Immediately after the Acceptor ion (generally boron ion) is implanted into the silicon wafer (the pattern is also made by lithography, which is not shown in the figure), the implanted energy is about 30 to 80 KeV, And the implanted dose is about ιχιο13 to lX1014 / cm2 to form a p-buried layer (level 3), the depth of this p-buried layer is about the same as the depth of the N-buried layer, and then between 850 and 950. The heat treatment is performed in the furnace tube of C, and the heat treatment time is about 40 to 100 minutes. Once both the P buried layer and the N buried layer have been fabricated, then a silicon epitaxial layer is formed by chemical vapor deposition. The deposition temperature is between about 1000 and 1200 ° C. About 0 to ι. 2 μιη. The 6 paper sizes used are in accordance with the Chinese National Standard (CNS) A4 (210 X 297 mm). Guang |: 1 "|| .— ^ ____________ (Please read the notes on the back before filling this page) Order—— 、、 ------ A7
經濟部智慧財產局員工消費合作社印製 五、發明說明(έ ) 氣體源包括SiHCl3,SiH2Cl2,PH3,H2和HC1等氣體,此 石夕磊晶層的阻值約為0.4至0.6 Ω-cm。 接著利用離子植入法植入受體離子(一般是删離子)以 形成P型井區(P-weU),植入的能量大約為150至n〇KeV, 且其植入劑量約為lX1013/cm2,此p型井區(層次4)是利 用這些棚離子的往下擴散,及P-埋層區域(層次3)的硼離 子向上擴散然後接合在一起,以形成P-型井區。 接著再利用傳統的 LOCOS(Local oxidation of silicon) 製程,於矽晶片製作出場氧化層(Field 〇xide)(層次5),此 時結構的橫截面圖如圖一所示。 參考圖二,此步驟是本發明案中·的關鍵部份,此製程 是先於矽晶片上沉積一複晶層,此複晶層可以作為成核層, 此複晶層也可以是非晶矽層,此層的厚度約為4 5 0至5 5 0 埃之間,如果是以多晶矽作為成核層時,是以SiH4及Ar 作為主要氣體,且於〇.22torr的壓力下於62(TC沉積;如 果是以非晶質矽作為成核層時,是以SiH4及Ar作為主要 氣體,且於560°C的溫度下沉積 此時結構的橫截面圖如圖二所示。 參考圖三,成核層經標準的微影製程後利用乾蝕刻的 方式於於成核層(層次6)上蝕刻出一個開口 37,此開口為 於場氧化層之間,也就是說為於N +埋層(層次2)之上,經 果此步驟後,晶片表面上開口的區域會裸露出單晶矽(層 次8) 〇 接著,利用矽磊晶沉積方式於矽晶片上成長矽的製程 7 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) --r---:---------------訂--------- (請先閱讀背面之注意事項再填寫本頁) 487993Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention (The gas source includes SiHCl3, SiH2Cl2, PH3, H2 and HC1. The resistance of this Shi Xilei crystal layer is about 0.4 to 0.6 Ω-cm. Receptor ions (generally deleted ions) are then implanted by ion implantation to form a P-well region (P-weU). The implantation energy is about 150 to nOKeV, and the implantation dose is about 1X1013 / cm2, this p-type well area (level 4) uses these ions to diffuse down, and boron ions in the P-buried layer area (level 3) diffuse up and then join together to form a P-type well area. Then, the traditional LOCOS (Local oxidation of silicon) process is used to produce a field oxide layer (level 5) on the silicon wafer. At this time, the cross-sectional view of the structure is shown in Figure 1. Referring to FIG. 2, this step is a key part of the present invention. This process is to deposit a polycrystalline layer on a silicon wafer. The polycrystalline layer can be used as a nucleation layer, and the polycrystalline layer can also be amorphous silicon. Layer, the thickness of this layer is between about 450 and 550 angstroms. If polycrystalline silicon is used as the nucleation layer, SiH4 and Ar are used as the main gases, and the pressure is 62 (TC at 0.222torr). Deposition; if amorphous silicon is used as the nucleation layer, SiH4 and Ar are used as the main gases, and the cross-sectional view of the structure at this time is deposited at a temperature of 560 ° C, as shown in Figure 2. Refer to Figure 3, After a standard lithography process, the nucleation layer uses dry etching to etch an opening 37 in the nucleation layer (level 6). This opening is between the field oxide layer, that is, in the N + buried layer. Above (level 2), after this step, single crystal silicon will be exposed in the open area on the surface of the wafer (level 8). Next, a silicon epitaxial deposition method is used to grow silicon on the silicon wafer. Applicable to China National Standard (CNS) A4 (210 X 297 mm) --r ---: --------------- --------- (Please read the Notes on the back to fill out Page) 487 993
技術,也是本發明案中關鍵的地方。如圖四所示,此層包含了兩 個部份,其一是單晶矽層41 (位於層次8之上),另外為複晶層 47(位於層次6之上且包含層次6),層次41/47的厚度約為600 至2000埃之間。此製程是先將晶片浸入RCA槽溶液中清洗後再 浸入HF溶液中約5-10秒左右以去除晶片上的原生氧化層,然後 將這些經過前處理的晶片置入晶片傳送室(Load-lock chamber)内, 此晶片傳送室需保持在獻i氣氣中,隨後在低溫的壞境中將晶片 傳送至反應腔(Reaction chamber)内,此反應腔需抽真空至10-3torr以下並維持在沉積溫度,此氣體源可以是SiH2Cl2或者是 SiH4,攙雜氣體為B2H6,沉積時的壓力為20 tor,成長速率維持 在 l-1.5pm/min 〇 經濟部中央標準局員工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) 經過這些製程後的晶片橫截面結構如圖五所示。首先,積 極層(層次41)是利用離子植入法將P型載子經由光阻圖樣植入 晶片中(BF2離子植入,植入能量約40 - 60 KeV,且植入的劑量 約為1X1013至5X1013 cnT2)。絕緣層52(厚度大約為180至220 埃之間)沉積於晶片之上並且於射極51上方蝕刻出一個開口,射 極複晶層可以沉積於此開口内。接著沉積中間介電層(層次54) 於晶片上,此N型射極(層次51)可以經由射極複晶層(層次53) 的攙雜離子向下擴散至單晶矽區域來形成,此擴散過成是藉由 快速熱退火(Rapid thermal processing; RTP)的方式進行,擴散的 深度約為300至2000埃左右。 然後利用傳統的微影製程於層次54上形成圖樣,再以乾蝕 刻的方式蝕刻層次54以分別形成射極、基極和集極的接觸窗 本紙悵尺度適用中國國家橾準(CNS ) A4規格(210Χ 297ϋ) ^ 五 修正補充 Α7 Β7 發明説明() 56、57和58.接著再沉積適宜的金屬材料層作為傳導層,最 後再以微影及蝕刻方式製作出最後的金屬導線層。 以上所述僅為本發明案的最佳實施例而已,並非用以限定 本發明案之申請範圍;/L其未麟本㈣所階示之精神下所完 成之等效改變或修倚,均應包含在下述之申請專利範圍内。兀 — : -- (請先閲讀背面之注意事項再填寫本頁} 經濟部中央標準局員工消費合作社印製 張 一紙 一本 準 I標 I家 國 一國 I中 用 一適Technology is also the key point in this invention. As shown in Figure 4, this layer contains two parts, one is a single crystal silicon layer 41 (located on level 8), and the other is a polycrystalline layer 47 (located on level 6 and includes level 6). The thickness of 41/47 is between 600 and 2000 Angstroms. In this process, the wafer is first immersed in the RCA bath solution for cleaning and then immersed in the HF solution for about 5-10 seconds to remove the native oxide layer on the wafer, and then these pre-processed wafers are placed in a wafer transfer chamber (Load-lock In the chamber, the wafer transfer chamber needs to be kept in the air supply atmosphere, and then the wafer is transferred to the reaction chamber in a low temperature environment. The reaction chamber needs to be evacuated to 10-3torr and maintained at Deposition temperature, this gas source can be SiH2Cl2 or SiH4, the doping gas is B2H6, the pressure during deposition is 20 tor, the growth rate is maintained at 1-1.5pm / min. Read the notes on the back and fill in this page.) The cross-sectional structure of the wafer after these processes is shown in Figure 5. First, the active layer (level 41) is the use of ion implantation to implant P-type carriers into the wafer via a photoresist pattern (BF2 ion implantation, the implantation energy is about 40-60 KeV, and the implanted dose is about 1X1013 To 5X1013 cnT2). An insulating layer 52 (having a thickness of approximately 180 to 220 Angstroms) is deposited on the wafer and an opening is etched above the emitter 51. An emitter polycrystalline layer can be deposited in this opening. Next, an intermediate dielectric layer (level 54) is deposited on the wafer. This N-type emitter (level 51) can be formed by doping the dopant ions of the emitter complex layer (level 53) down to the single crystal silicon region. This diffusion is formed. The over-conversion is performed by a rapid thermal annealing (RTP) method, and the diffusion depth is about 300 to 2000 angstroms. Then use the traditional lithography process to form a pattern on the level 54, and then etch the level 54 by dry etching to form the contact window of the emitter, base and collector, respectively. The paper size is applicable to the Chinese National Standard (CNS) A4 specification. (210 × 297ϋ) ^ Five amendments to supplement A7 B7 Description of invention () 56, 57 and 58. Then deposit a suitable metal material layer as a conductive layer, and finally make the final metal wire layer by lithography and etching. The above description is only the best embodiment of the present invention, and is not intended to limit the scope of the application of the present invention; / L equivalent changes or modifications made in the spirit of the steps shown in this document are all It should be included in the scope of patent application described below. Wu —:-(Please read the precautions on the back before filling out this page} Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89106573A TW487993B (en) | 2000-04-07 | 2000-04-07 | Non-selectivity epitaxy deposition technique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89106573A TW487993B (en) | 2000-04-07 | 2000-04-07 | Non-selectivity epitaxy deposition technique |
Publications (1)
Publication Number | Publication Date |
---|---|
TW487993B true TW487993B (en) | 2002-05-21 |
Family
ID=21659342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW89106573A TW487993B (en) | 2000-04-07 | 2000-04-07 | Non-selectivity epitaxy deposition technique |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW487993B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI662597B (en) * | 2016-09-09 | 2019-06-11 | 晶元光電股份有限公司 | Method for making a semiconductor device |
TWI701719B (en) * | 2016-09-09 | 2020-08-11 | 晶元光電股份有限公司 | Method for making a semiconductor device |
-
2000
- 2000-04-07 TW TW89106573A patent/TW487993B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI662597B (en) * | 2016-09-09 | 2019-06-11 | 晶元光電股份有限公司 | Method for making a semiconductor device |
TWI701719B (en) * | 2016-09-09 | 2020-08-11 | 晶元光電股份有限公司 | Method for making a semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8940595B2 (en) | Faceted intrinsic epitaxial buffer layer for reducing short channel effects while maximizing channel stress levels | |
US9159834B2 (en) | Faceted semiconductor nanowire | |
TW317648B (en) | ||
KR100657395B1 (en) | Semiconductor device and manufacturing method of the same | |
TWI298948B (en) | Pmos transistor strain optimization with raised junction regions | |
JP5328671B2 (en) | Structure and method for enhanced mobility MOSFETs with non-alloyed silicides | |
US9431494B2 (en) | Low interfacial defect field effect transistor | |
US8841191B2 (en) | Semiconductor device and method of manufacturing same | |
WO2003105206A1 (en) | Growing source and drain elements by selecive epitaxy | |
KR20120047032A (en) | Semiconductor device and method of manufacturing thereof | |
JP2000031155A (en) | Low noise vertical bipolar transistor and fabrication thereof | |
JP2006505116A (en) | Gate materials for semiconductor device manufacturing | |
US20090075447A1 (en) | Method and fabricating a mono-crystalline emitter | |
US8928107B2 (en) | Light detection devices and methods of manufacturing the same | |
KR20010023407A (en) | Method for forming monocrystalline silicon layer, method for manufacturing semiconductor device, and semiconductor device | |
TW317016B (en) | ||
JPH09283440A (en) | Method for forming selective epitaxial film | |
CN116013962B (en) | Method for manufacturing semiconductor device | |
US9752251B2 (en) | Self-limiting selective epitaxy process for preventing merger of semiconductor fins | |
JP2009043866A (en) | Semiconductor device, and manufacturing method thereof | |
JP2001244215A (en) | Semiconductor element and its manufacturing method | |
TW487993B (en) | Non-selectivity epitaxy deposition technique | |
JP2000150886A (en) | Semiconductor device and its manufacture | |
TW439299B (en) | Manufacturing method of metal oxide semiconductor having selective silicon epitaxial growth | |
US20080272393A1 (en) | Semiconductor device having strain-inducing substrate and fabrication methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |