TW483100B - Method of reinforcing a low dielectric constant material layer against damage caused by a photoresist - Google Patents
Method of reinforcing a low dielectric constant material layer against damage caused by a photoresist Download PDFInfo
- Publication number
- TW483100B TW483100B TW90115087A TW90115087A TW483100B TW 483100 B TW483100 B TW 483100B TW 90115087 A TW90115087 A TW 90115087A TW 90115087 A TW90115087 A TW 90115087A TW 483100 B TW483100 B TW 483100B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- hydrogen
- low
- dielectric constant
- photoresist
- Prior art date
Links
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
Description
483100483100
、本發明提供一種強化低介電常數材料層抵抗光. 液損害的方法,尤指一種利用一含氫電漿處理步驟去除 (hydrogen-containing Plasma treatment),以強 電常數材料層抵抗光阻去除液損害的方法。 b低介 背景說明 隨著半導體元件尺寸的日益縮小以及積體電路您 不斷提高,伴隨而來的金屬導線間所產生的Rc延遲^度 (RC delay effect)已嚴重地影響到積體電路的運作^應 的 能,大大降低了積體電路的工作速度。尤其當製程 綠寬 :1 i n e w i d t h )降到0 · 2 5微米,甚至〇 · 1 3微米以下時, 遲效應所造成的影響將更為明顯。 ’ Pc延 由於在金屬内連線間所產生的RC延遲效應所造, 的程度與金屬導線的電阻值(R)及金屬導線間之介電展1 彡響 寄生電容(C)的相乘積成正比,故可利用電阻值較低二= 屬做為金屬導線,或者是降低金屬導線間介電層的寄生^電 容,以降低減少RC延遲效應。在降低電阻方面,使用純鋼 作為導線材料之銅連結線技術(C 〇 p p e r interconnect 七6〇1111〇1〇87)以取代傳統的紹銅合金(人1:〇11(0.5%))為主 要材料的多重金屬化製程(multilevel metallizationThe present invention provides a method for strengthening a low dielectric constant material layer to resist light and liquid damage, especially a method of removing hydrogen-containing plasma treatment with a hydrogen-containing plasma treatment step to resist photoresist removal with a strong dielectric constant material layer. Damage method. b. Low dielectric background. As the size of semiconductor components is shrinking and integrated circuits are increasing, the Rc delay effect (RC delay effect) between metal wires has seriously affected the operation of integrated circuits. The performance of the integrated circuit has greatly reduced the working speed of the integrated circuit. Especially when the green width of the process: 1 i n e w i d t h) drops to 0. 25 micron, or even 0. 13 micron or less, the effect of the delay effect will be more obvious. 'The Pc delay is caused by the RC delay effect generated between the metal interconnects, and the degree is the product of the resistance value (R) of the metal wire and the dielectric extension between the metal wires. It is directly proportional, so the lower resistance value can be used as the metal wire, or the parasitic capacitance of the dielectric layer between the metal wires can be reduced to reduce the RC delay effect. In terms of reducing resistance, copper connection wire technology using pure steel as the wire material (C pppp interconnect 760061111〇87) replaces traditional copper alloys (1: 010 (0.5%)) as the main 1. multilevel metallization
483100 五、發明說明(2) process),已成為勢在必行的趨勢。由於銅本身具有較低 的電阻率(1.67 // Ω -cm),並且可承載較高之電流密度而 不致產生有銘銅合金的電致遷移(electro migration)的 問題,因此可以減少金屬導線間的寄生電容以及金屬導線 的連結層數。但是單憑銅連結線技術,仍然無法大幅降低 金屬導線間所產生的RC延遲效應,而且銅連結線技術亦有 一些製程上的問題尚待解決,所以利用降低金屬導線間介 電層之寄生電容來減少RC延遲效應的方法便日形重要。 由於介電層的寄生電容與介電層的介電常數 (dielectric constant, k)相關,因此介電層的介電常數 0 越低,則形成於介電層中的寄生電容也就相對的越低。而 傳統的二氧化矽其介電常數為3. 9,已漸漸無法滿足目前 0. 1 3微米以下之半導體製程的需求,是以一些新的低介電 常數材料,例如聚醯亞胺(ρ ο 1 y i m i d e, P I )、F L A R E TM、 FPI、PAE-2、PAE-3或LOSP等材料,在近年來已被陸續提 出。然而這些低介電常數材料雖具有介於2. 6〜3. 2之間的 低介電常數值,但是這些一般主成分為碳氫氧之低介電材 料,無論在與其他材料的附著力、餘刻效果或是其本身的 各項性質等方面,都與傳統的二氧化矽有明顯差異,而且 其大部份有附著性不佳以及熱穩定性不足等缺點,因此目 前尚無法妥善地整合於一般I C常用的製程。 鲁483100 V. Description of the invention (2) process) has become an imperative trend. Since copper itself has a lower resistivity (1.67 // Ω -cm) and can carry a higher current density without causing the problem of electro migration of a copper alloy, it can reduce the Parasitic capacitance and the number of connection layers of metal wires. However, the copper connection wire technology alone still cannot significantly reduce the RC delay effect generated between the metal wires, and there are some process problems in the copper connection wire technology that need to be resolved. Therefore, the parasitic capacitance of the dielectric layer between the metal wires is reduced by using The method to reduce the RC delay effect is increasingly important. Since the parasitic capacitance of the dielectric layer is related to the dielectric constant (k) of the dielectric layer, the lower the dielectric constant 0 of the dielectric layer, the more the parasitic capacitance formed in the dielectric layer is relatively. low. The traditional silicon dioxide has a dielectric constant of 3.9, which has gradually failed to meet the current semiconductor process requirements of less than 1.3 microns. It is based on some new low-dielectric constant materials such as polyimide (ρ ο 1 yimide (PI), FLARE TM, FPI, PAE-2, PAE-3, or LOSP and other materials have been proposed in recent years. However, although these low dielectric constant materials have a low dielectric constant value between 2. 6 ~ 3.2, these general dielectric components are hydrocarbon-based low dielectric materials, regardless of their adhesion to other materials. , The effect of the afterburner, or its various properties are significantly different from the traditional silicon dioxide, and most of them have shortcomings such as poor adhesion and insufficient thermal stability, so it is currently not possible to properly Integrate into common IC process. Lu
I 因此,一些以二氧化矽為基礎然後於材料内再摻入一 <I Therefore, some are based on silicon dioxide and then doped with a <
第6頁 483100 五、發明說明(3) — 些碳氫等元素的無機低介電常數介電層,例& > ^ 為 2.8的 HSQ (hydrogen silsesquioxane)、八 電# 數值 2.7 的 MSQ (methyl silsesquioxane)以及介電 數值為 5的HOSP等材料,由於其性質與傳統二氧化石夕彳/案1值為2· 因此對目前習知的半導體製程有著較高的磐合目<去不遠, 曰後所看好。 D此力,而為 。月 >考圖一至圖二印二吗一巧百知耷 法示意圖。如圖一所示,一半導體晶片i 〇表面勺、九阻之2 底12,以及一利用化學氣相沈積法(chemi(^ai匕含一矽J deposition, CVD)或旋塗方式(spin-on)形成於Vap〇r 表面’由HSQ、MSQ或H0SP等以二氧化矽為基本社石夕基底1 ^ (si〇2-based )之材料所構成之低介電常數^料| = 圆 王固Page 6 483100 V. Description of the invention (3) — Inorganic low dielectric constant dielectric layers of some hydrocarbons and other elements, for example & > HSQ (hydrogen silsesquioxane) with 2.8, MSQ with 2.7 # methyl silsesquioxane) and HOSP with a dielectric value of 5 and other materials, because of its properties and traditional dioxide dioxide / case 1 value of 2 · Therefore, it has a high degree of understanding for the current semiconductor manufacturing process < Far, optimistic about the future. D this force, and for. Month > Schematic diagrams of the first and second illustrations and the second printed version of the coincidence method. As shown in FIG. 1, a semiconductor wafer i 0 surface scoop, nine resistance two bottom 12 and a chemical vapor deposition method (chemi (^ ai) containing a silicon J deposition, CVD) or spin-coating method (spin- on) Formed on the surface of Vapor 'Low dielectric constant composed of materials such as HSQ, MSQ, or H0SP with silicon dioxide as the basic foundation 1 ^ (si〇2-based) solid
如圖二所示,首 =層1 6,並於光阻層 &之低介電常數材料 $電常數材料層1 4, 蔡數材料層i 4中。 先於低介電常數材料層1 1 6中形成一圖案開口 1 8, 層1 4。隨後經由圖案開口 以將光阻層1 6中之圖案轉 4上塗佈一光 以暴露出部 1 8乾餘刻低 移至低介電 後如圖三所示,進行一去光阻製程,〆 a =灰化光阻層1 6,使氧電漿與光阻層丨6中的逆、&乳 =王反應形成氣態的二氧化 *厌虱凡 先阻去除液,用以浸泡(dipping)半導體晶片1〇,As shown in FIG. 2, the first layer 16 is in the low-k material of the photoresist layer & the electric constant material layer 1 4 and the Tsai number material layer i 4. A pattern opening 18 and a layer 14 are formed in the low dielectric constant material layer 1 1 6. Then, through the pattern opening, a light is applied on the pattern 4 in the photoresist layer 16 to expose the exposed portion 18 to a low dielectric constant after a dry period. As shown in FIG. 3, a photoresist removal process is performed. 〆a = ashing the photoresist layer 16 to make the oxygen plasma and the photoresist layer inverse, & milk = king reaction to form gaseous dioxide * gnat lice first blocking removal solution for dipping (dipping ) Semiconductor wafer 10,
第7頁 五、發明說明(4) 完全去除光卩且層 為基 轉移 介電 電漿 得介 阻液 鍵。 電層 層洞 然而,在對由例 本結構的無機^ 時,不論在蝕刻 層造成傷害。因ίί lashin§)t 電層表面的纟建处 反應,使受賴^ 由於水的介電常 的介電常數與漏 (pols〇n via)的 如Hsq 介電常 介電層 為去光 程與濕 容易被 電層表 數值高 電流皆 情形產 、MSQ或 數材料 或進行 随製程5 ^ ^ 氧電漿 面形成 達78, 會大幅 t,嚴 HOSP等 構成之 去光阻 通常係 阻液來 打斷, 容易吸 因此在 上升, 重影響 這些以 介電層 製程中 同時使 去除光 而與驗 附水氣 吸附水 甚至會 產品的 二氧化矽 進行圖案 ,均會對 用乾式氧 阻,故使 性之去光 的 Si-0H 氣後,介 有毒害介 可靠度。 發明概述 因此本發明之主要目的 材料層抵抗光阻去除液損宝在於提供一種強化低介電常數 中’低介電常數介電層的介=I法’以解決上述習知方法 題。 S 电$數與漏電流大幅上升的問 在本發明的最佳實施例中 低介電常數材料層。首先利用丄;:半導體晶片上包含有一 Plasma),進行一第_含奇兩〜氫電漿(hydrogen (h咖咖C。— 理步驟 dsma treatment),以強化該低Page 7 V. Description of the invention (4) The photocathode is completely removed and the layer is based on a transfer dielectric plasma to obtain a barrier liquid bond. The electrical layer has holes, however, and it does not cause damage to the etched layer when it is applied to the inorganic structure. Due to the reaction of the built-in surface on the surface of the electric layer, it depends on the dielectric constant of water and the constant dielectric constant such as Hsq. It is easy to be affected by the electric layer surface value and the high current are all produced under the condition of high current, MSQ or several materials, or with the process of 5 ^ ^ oxygen plasma surface formation up to 78, will greatly t, the removal of photoresistance composed of strict HOSP, etc. is usually a liquid barrier. Interruption, easy to absorb, so it is rising. It affects these dielectric layer processes. At the same time, the removal of light and the absorption of water and gas to absorb water and even the product's silicon dioxide will be patterned, which will use dry oxygen resistance, so After the removal of the Si-0H gas, the reliability is toxic. SUMMARY OF THE INVENTION Therefore, the main object of the present invention is to provide a material layer that resists photoresist and removes liquid damage. It is to provide a low-dielectric constant medium-low dielectric constant layer I method to solve the conventional problems. The problem of a large increase in the S charge and the leakage current In a preferred embodiment of the present invention, a layer of low dielectric constant material. First, the semiconductor wafer contains a Plasma), and a first hydrogen-containing plasma (hydrogen-ca-C. — Physical step dsma treatment) is performed to strengthen the low
* 8頁 發明說明(5) 發明說明(5) 1介電常數 I低介電常 材料層之表面抗光阻 -圖案開 I經由該圖 |層中之圖 電漿灰化 以更進一 |侵蝕能力 除液中, 數材料層上塗佈—先阻;,蝕能力。•著於該 口,以暴露出^!彳\_^ S 亚於该光阻層_形成 案開口乾::; ::該低介電常數材料層。之後 案轉移至該低介電常^^材料層,以將該光阻 該光阻層。接;】3材料層中’再利用-氧氣 步強化該低介電常;::含氫電衆處理步驟, 。最後浸、、g f H ·.材枓層之表面抗光阻去除液 以完全去除該光阻層。肢日日片於一光阻去 由於本發明之製作 ,介電常數介電層進行含礼ϋ,2 14刻製程之前先針對 ::電層表面形成-鈍化層驟以於低介電常數 | ’避免低介電常數介電層受;二”電常數介電層的接 s卜0取建形成於低介電常數人+1铪吾,並同時有效防止 所導致低介電常數介+ > 層中,徹底解決習知製程 的問題。 “層之介電常數與漏電流皆大幅J加 發明 之洋細說明 常奴請參考圖四至圖八,圖四5同、4 示數材料層抵抗光阻去除液損* = J本=強化低介電 —半導體晶片40包含一砂^ ^ 法不思圖。如圖四所 丞底4 2,以及一利用化學氣 $ 9頁 483100 五、發明說明(6)* 8 pages of invention description (5) Invention description (5) 1 Dielectric constant I Photoresistance on the surface of the low dielectric constant material layer-pattern opening I via this figure | Ability to remove liquid, coating on several material layers-first resistance ;, etching ability. • Focusing on the port to expose ^! 彳 \ _ ^ S sub-layers of the photoresist layer _ formation of the opening dry ::; :: The low dielectric constant material layer. The case is then transferred to the low dielectric constant material layer to block the photoresist layer. Continue;] 3 Recycling-Oxygen step in the 3 material layer to strengthen the low dielectric constant; Finally, dip the photoresist removal solution on the surface of the material layer to completely remove the photoresist layer. The extremities of the sun and the sun are removed in a photoresist. Because of the production of the present invention, the dielectric constant of the dielectric layer is contained. Before the 14-14 etch process, the first: the surface of the electrical layer is formed-a passivation layer is used to lower the dielectric constant | 'Avoid the low dielectric constant dielectric layer; the two "dielectric constant layer is formed from the low dielectric constant +1 人, and at the same time effectively prevent the resulting low dielectric constant dielectric + & gt In the layer, the problem of the conventional manufacturing process is completely solved. "The dielectric constant and leakage current of the layer are both large and the detailed description of the invention. Please refer to Figures 4 to 8. Figures 4 and 5 show the same material layer resistance. Photoresist removal of liquid loss * = J = = reinforced low dielectric-the semiconductor wafer 40 contains a sand ^ ^ map. Figure 4 shows the bottom 4 2 and the use of chemical gas $ 9 page 483100 V. Description of the invention (6)
相沈積法(chemical vapor deposition, CVD)或旋塗方式 (s p i η - ο η )形成於石夕基底4 2表面,由介電常數分別為2 · 8、 2.Ίίλ 2.5-^ HSQ (hydrogen silsesquioxane)、MSQ (methyl si1sesquioxane)或 HOSP (hybrid-organic-si loxane-polymer)等以二氧化矽為基 本結構(Si 〇2-based)之材料所構成之低介電常數材料層 44〇 如圖五所示,首先利用一 , 隹主dbUC之溫度與乙υυ 至3 5 0¾托耳(m Τ 〇 r r )之壓力下,藉由一流量為2 〇 〇至3 5 0標 準立方公分母分鐘(standard cubic centimeter's per minute,sccm)之氫氣,配合9〇至15〇瓦特(Watts)之無線 包功率所形成之含氫電漿(hydr〇gerl plasma),進行一第 一含氫電漿處理步驟(hydrogen—containing plasma =r=atm,nt )46達1分鐘以上。由於低介電常數介電層^含 氣石帝將i原I虛因此低介電常數介電層44的表面會與該含 Ϊ i 仃應而形成一鈍化層48,以強化低介電常數枯 ^ 之表面抗光阻去除液侵蝕的能力,有效防止水^ # 層電常數介電請表面並可用來作擴及 阻戶?〇者t ΐ所*,於低介電常數材料層44上塗佈-光 數材料層44。隨後如圖七所示,經由圖案開Phase vapor deposition (CVD) or spin coating (spi η-ο η) was formed on the surface of Shixi substrate 4 2 with dielectric constants of 2. 8 and 2. Ίλ 2.5- ^ HSQ (hydrogen silsesquioxane ), MSQ (methyl si1sesquioxane), or HOSP (hybrid-organic-si loxane-polymer) and other low-dielectric-constant material layers 44 with silicon dioxide as the basic structure (Si 〇2-based), as shown in Figure 5. As shown in the figure, first, the temperature of the main dbUC and the pressure of νυ to 3 5 0¾ Torr (m Torr) are used, with a flow rate of 2000 to 350 standard cubic denominator minutes. cubic centimeter's per minute (sccm) of hydrogen, and a hydrogen-containing plasma formed by a wireless packet power of 90 to 150 watts (Watts), and a first hydrogen-containing plasma treatment step (hydrogen —Containing plasma = r = atm, nt) 46 for more than 1 minute. Since the low dielectric constant dielectric layer ^ gas-bearing stone will be i, the surface of the low dielectric constant dielectric layer 44 will form a passivation layer 48 corresponding to the Ϊ i 仃 to strengthen the low dielectric constant. The ability of the surface to resist photo-resistance to remove the liquid, effectively prevent water ^ # The dielectric constant of the layer surface can be used to extend the resistance? 〇 t t *, the low-dielectric constant material layer 44 is coated with an optical-number material layer 44. Then, as shown in Figure 7,
483100 五、發明說明(7) 以將光阻層50中之圖案 口 52乾蝕刻低介電常數材料層^ 轉移至低介電常數材料層44中。 如 |灰化光 反應形 I漿處理 1光阻去 I液,用 5 0 〇由 I介電常 量吸附 4 4之介 圖八所示,進行一去光阻製 阻層5 0,使氧電漿與光阻屑^占先利用一氧氣電漿 成氣態的二氧化碳與水蒸^,的碳、氫元素完全 步驟,以進一步強化低介電=進行一第二含氫電 除液侵蝕能力。最後以ACT $材料層44之表面抗 以浸泡(dlpping)半導體晶片5作為一光阻去除 於低介電常數介電層44表面且右#"^全&去除光阻層 數介電層44不易於該去光F且製程中受曰σf此低 水氣的S i -0H鍵,故可有效$ # / >成會大 ^ ^ ^ 避免低介電常數介帝爲 電常數與漏電流的大幅上升。 包㊉数"弘層 明參考圖九,圖九為HSQ在不同氫電漿處理時間下所 |得到之紅外線光譜(infrared spectroscopy)。如圖九所 不,曲線A、B分別代表未經本發明方法處理之η s Q介電層 |在進行去光阻製程前、後的紅外線光譜,曲線C、d、Ε則 為HSQ介電層先利用本發明方法,分別進行3、6、9分鐘的 |含氫電黎處理步驟,再進行去光阻製程後,所得之紅外線 |光譜。其中,吸收峰1與吸收峰2分別代表si-Η與Si-ΟΗ鍵 之吸收峰’其吸收位置分別位於22〇()至230〇 cm以及3 0 0 0 至3 5 0 0cnr的波長範圍内。 483100 五、發明說明(8) 透過比較曲線A、B後可知,H S Q介電層在經過去光阻 製程後,原本位於HSQ介電層中的S i -Η鍵之吸收峰1消失, 而出現原本不存在的S i -0H鍵之吸收峰2,證明含氫電漿與 濕式去光阻液明顯造成介電層表面結構受損。而由曲線 C、D、E可得知,先經含氫電漿處理步驟之HSQ介電層的吸 收峰1仍然存在且不會產生吸收峰2,含氫電漿處理步驟能 成功防止S i - Η鍵被打斷,達到避免形成S i - 0 Η鍵之目的。 此外,S i - Η鍵之吸收峰1之吸收度明顯隨含氫電漿處理步 驟之進行時間增加而下降,故進行電漿處理時間建議控制 於2 0分鐘之内,以避免因處理時間過長而使介電層上S i - Η 官能基受損。 4 請參考圖十與圖十一,圖十與圖十一分別為含氫電漿 處理時間對HSQ介電層之介電常數以及漏電流之影響。如 圖十所示,進行含氫電漿處理步驟達3、6、9分鐘之HSQ介 電層,其介電常數均低於未經含氫電漿處理步驟之H S Q介 電層的介電常數,且在進行含氫電漿處理步驟超過3分鐘 後,HSQ介電層的介電常數即可維持在3左右,故增加含氫 電漿處理的時間並不影響介電常數的量值。如圖十一所 示,方塊、正三角形▲、倒三角形▼分別代表在經過 3、6、9分鐘之含氫電漿處理後,再進行去光阻製程的HSQ 介電層中,電場與漏電流之關係曲線,而圓型•則代表未 4 經含氫電漿處理即進行去光阻製程的HSQ介電層中,電場 與漏電流之關係曲線。如圖十一所示,相較於未經含氫電483100 V. Description of the invention (7) The pattern opening 52 in the photoresist layer 50 is dry-etched and transferred to the low-dielectric-constant material layer 44 by dry etching. For example, the ashing photoreactive type I slurry treatment 1 photoresist removes I liquid, and uses 500 to absorb the dielectric constant I of 4 4 as shown in FIG. 8, and performs a photoresist to remove the resist layer 50 to make oxygen electricity. Plasma and photoresist chip ^ first use an oxygen plasma to form gaseous carbon dioxide and water steam ^, the complete steps of carbon and hydrogen elements to further strengthen the low dielectric = to carry out a second hydrogen-containing electrolyte removal ability. Finally, the surface resistance of the ACT $ material layer 44 is dipped to remove the semiconductor wafer 5 as a photoresist on the surface of the low-k dielectric layer 44 and the right of the photoresist layer is removed. 44 is not easy to remove F and the process is affected by the low water vapor S i -0H bond, so it is effective $ # / > 成 会 大 ^ ^ Avoid low dielectric constant dielectric constant and leakage A sharp rise in current. The number of packets " Hong layer refers to Figure 9, which is the infrared spectroscopy obtained by HSQ under different hydrogen plasma treatment times. As shown in Figure 9, curves A and B respectively represent the η s Q dielectric layers that have not been treated by the method of the present invention. | Infrared spectra before and after the photoresist removal process. Curves C, d, and E are HSQ dielectric layers. First, the method of the present invention is used to perform the hydrogen-containing elenium treatment steps for 3, 6, and 9 minutes, respectively, and then the infrared-ray spectrum obtained after the photoresist removal process is performed. Among them, the absorption peak 1 and the absorption peak 2 respectively represent the absorption peaks of the si-Η and Si-Ο 'bonds, and the absorption positions thereof are in the wavelength ranges of 22 ° to 230 ° cm and 30000 to 3500cnr, respectively. . 483100 V. Description of the invention (8) After comparing the curves A and B, it can be known that after the photoresist removal process of the HSQ dielectric layer, the absorption peak 1 of the Si-Η bond originally located in the HSQ dielectric layer disappears, and appears. Absorptive peak 2 of the Si-0H bond, which did not exist originally, proves that the hydrogen-containing plasma and the wet type photoresist solution obviously cause damage to the surface structure of the dielectric layer. From the curves C, D, and E, it can be seen that the absorption peak 1 of the HSQ dielectric layer that has undergone the hydrogen-containing plasma treatment step still exists and does not generate an absorption peak 2. The hydrogen-containing plasma treatment step can successfully prevent S i -The Η key is interrupted to avoid the formation of the Si-0 Η key. In addition, the absorptivity of the absorption peak 1 of the Si-Η bond significantly decreases with the increase of the processing time of the hydrogen-containing plasma treatment step. Therefore, it is recommended that the plasma treatment time be controlled within 20 minutes to avoid the excessive processing time. If it grows, the Si-Η functional group on the dielectric layer is damaged. 4 Please refer to Figure 10 and Figure 11. Figure 10 and Figure 11 show the effects of hydrogen-containing plasma processing time on the dielectric constant and leakage current of the HSQ dielectric layer. As shown in Fig. 10, the dielectric constant of the HSQ dielectric layer subjected to the hydrogen-containing plasma treatment step for 3, 6, or 9 minutes is lower than that of the HSQ dielectric layer without the hydrogen-containing plasma treatment step. And after the hydrogen-containing plasma treatment step is performed for more than 3 minutes, the dielectric constant of the HSQ dielectric layer can be maintained at about 3, so increasing the time of the hydrogen-containing plasma treatment does not affect the value of the dielectric constant. As shown in Figure 11, the square, regular triangle ▲, and inverted triangle ▼ represent the electric field and leakage in the HSQ dielectric layer after the photoresist removal process after 3, 6, and 9 minutes of hydrogen-containing plasma treatment. The relationship curve of electric current, and the circular type represents the relationship curve of electric field and leakage current in the HSQ dielectric layer that has undergone the photoresist removal process without hydrogen plasma treatment. As shown in Figure 11, compared with
第12頁 483100 五、發明說明(9) 漿處理步驟之介電層,先經含氫電漿處理步驟之HSQ介電 層的漏電流可大幅降低2至3個級數,且增加含氫電漿處理 的時間亦不會明顯影響漏電流的大小。故在本發明之最佳 實施例中,進行含氫電漿處理步驟之時間約為3分鐘。 相較於習知技術,本發明係在進行I虫刻製程之前先針 對低介電常數介電層4 4進行含氫電漿處理步驟,以於低介 電常數介電層4 4表面形成鈍化層4 8,因此在後續進行去光 阻製程時,可減少氧電漿以及去光阻液與低介電常數介電 層4 4的接觸,進而避免低介電常數介電層4 4受到傷害。此 外,本發明之方法更可有效防止Si-0Η鍵形成於低介電常 數介電層4 4中,故可以解決習知製程所導致低介電常數介 電層之介電常數與漏電流皆大幅增加的問題。 -以上所述僅本發明之較佳實施例,凡依本發明申請專 利範圍所做之均等變化與修飾,皆應屬本發明專利之涵蓋 範圍。Page 12 483100 V. Description of the invention (9) The leakage current of the HSQ dielectric layer of the plasma treatment step of the dielectric layer can be greatly reduced by 2 to 3 stages, and the hydrogen-containing electricity can be increased. The time of pulp treatment will not significantly affect the magnitude of leakage current. Therefore, in the preferred embodiment of the present invention, the time for performing the hydrogen-containing plasma treatment step is about 3 minutes. Compared with the conventional technology, the present invention performs a hydrogen-containing plasma treatment step on the low-k dielectric layer 44 before performing the I-etching process to form a passivation on the surface of the low-k dielectric layer 44. Layer 48, so that in the subsequent photoresist removal process, the contact between the oxygen plasma and the photoresist removing solution and the low dielectric constant dielectric layer 44 can be reduced, thereby avoiding damage to the low dielectric constant dielectric layer 44. . In addition, the method of the present invention can more effectively prevent Si-0Η bonds from being formed in the low dielectric constant dielectric layer 44, so it can solve both the dielectric constant and leakage current of the low dielectric constant dielectric layer caused by the conventional manufacturing process. Significantly increased problems. -The above are only the preferred embodiments of the present invention, and any equivalent changes and modifications made in accordance with the scope of the patent application for the present invention shall fall within the scope of the patent of the present invention.
第13頁 483100 圖式簡單說明 圖示之簡單說明 圖一至圖三為習知去除光阻之方法示意圖。 圖四至圖八為本發明強化低介電常數材料層抵抗光阻 去除液損害之方法示意圖。 圖九為HSQ在不同氫電漿處理時間下所得到之紅外線 光譜。 圖十為含氫電漿處理時間對HSQ介電層之介電常數的 影響。 圖十一為含氫電漿處理時間對HSQ介電層之漏電流的 影響。 圖示之符號說明 10 半 導 體 晶 片 12 矽 基 底 14 低 介 電 常 數 材 料 層 16 光 阻 層 18 圖 案 開 口 40 半 導 體 晶 片 42 矽 基 底 44 低 介 電 常 數材料層 46 第 一 含 氫 電 漿 處 理步驟 48 鈍 化 層 50 光 阻 層 52 圖 案 開 αPage 13 483100 Simple illustration of the diagrams Simple illustration of the diagrams Figures 1-3 are schematic diagrams of conventional methods for removing photoresist. FIG. 4 to FIG. 8 are schematic diagrams of the method for strengthening the low-dielectric-constant material layer of the present invention to resist photoresist removal liquid damage. Figure 9 shows the infrared spectrum obtained by HSQ under different hydrogen plasma treatment times. Figure 10 shows the effect of the treatment time of the hydrogen-containing plasma on the dielectric constant of the HSQ dielectric layer. Figure 11 shows the effect of hydrogen plasma treatment time on the leakage current of the HSQ dielectric layer. Explanation of symbols in the figure 10 semiconductor wafer 12 silicon substrate 14 low dielectric constant material layer 16 photoresist layer 18 pattern opening 40 semiconductor wafer 42 silicon substrate 44 low dielectric constant material layer 46 first hydrogen-containing plasma processing step 48 passivation layer 50 photoresist layer 52 pattern opening α
第14頁Page 14
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90115087A TW483100B (en) | 2001-06-21 | 2001-06-21 | Method of reinforcing a low dielectric constant material layer against damage caused by a photoresist |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90115087A TW483100B (en) | 2001-06-21 | 2001-06-21 | Method of reinforcing a low dielectric constant material layer against damage caused by a photoresist |
Publications (1)
Publication Number | Publication Date |
---|---|
TW483100B true TW483100B (en) | 2002-04-11 |
Family
ID=21678601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90115087A TW483100B (en) | 2001-06-21 | 2001-06-21 | Method of reinforcing a low dielectric constant material layer against damage caused by a photoresist |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW483100B (en) |
-
2001
- 2001-06-21 TW TW90115087A patent/TW483100B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7816280B2 (en) | Semiconductor device, semiconductor wafer, and methods of producing the same device and wafer | |
TWI269373B (en) | Organic insulating film, manufacturing method thereof, semiconductor device using such organic insulating film and manufacturing method thereof | |
US6521547B1 (en) | Method of repairing a low dielectric constant material layer | |
US6475929B1 (en) | Method of manufacturing a semiconductor structure with treatment to sacrificial stop layer producing diffusion to an adjacent low-k dielectric layer lowering the constant | |
US6583067B2 (en) | Method of avoiding dielectric layer deterioration with a low dielectric constant | |
US20050218476A1 (en) | Integrated process for fuse opening and passivation process for Cu/Low-K IMD | |
KR100887225B1 (en) | Semiconductor device manufacturing method | |
US6979654B2 (en) | Method of avoiding dielectric layer deterioation with a low dielectric constant during a stripping process | |
JP3015767B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
TW201517174A (en) | Hybrid manganese and manganese nitride barriers for back-end-of-line metallization and methods for fabricating the same | |
US6797627B1 (en) | Dry-wet-dry solvent-free process after stop layer etch in dual damascene process | |
US7022582B2 (en) | Microelectronic process and structure | |
JP3015763B2 (en) | Method for manufacturing semiconductor device | |
JP3015738B2 (en) | Method for manufacturing semiconductor device | |
TW540118B (en) | Method for increasing the surface wetability of low dielectric constant material | |
TW483100B (en) | Method of reinforcing a low dielectric constant material layer against damage caused by a photoresist | |
JPH11145284A (en) | Method for manufacturing semiconductor device and semiconductor device using the same | |
TW202238843A (en) | Method for manufacturing semiconductor structure | |
TWI269352B (en) | Method for fabricating semiconductor device | |
JPH11233630A (en) | Semiconductor device and manufacture thereof | |
JP3545250B2 (en) | Method for manufacturing semiconductor device | |
TW495880B (en) | Method of repairing a low dielectric constant material layer | |
CN1205654C (en) | Method for repairing low dielectric constant material layer | |
KR20200019835A (en) | Metal oxide composite as etch stop layer | |
KR100483202B1 (en) | Method of manufacturing a semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |