TW471108B - Preparation of ultra low dielectric constant silicon dioxide film with nanometer pores - Google Patents

Preparation of ultra low dielectric constant silicon dioxide film with nanometer pores Download PDF

Info

Publication number
TW471108B
TW471108B TW89125119A TW89125119A TW471108B TW 471108 B TW471108 B TW 471108B TW 89125119 A TW89125119 A TW 89125119A TW 89125119 A TW89125119 A TW 89125119A TW 471108 B TW471108 B TW 471108B
Authority
TW
Taiwan
Prior art keywords
dielectric constant
silicon dioxide
patent application
scope
low dielectric
Prior art date
Application number
TW89125119A
Other languages
Chinese (zh)
Inventor
Jia-Ming Yang
En-Tzung Juo
Tzeng-Guang Tsai
Guei-Rung Jau
Fu-Min Pan
Original Assignee
Shr Min
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shr Min filed Critical Shr Min
Priority to TW89125119A priority Critical patent/TW471108B/en
Application granted granted Critical
Publication of TW471108B publication Critical patent/TW471108B/en

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

This invention provides the preparation of ultra low dielectric constant silicon dioxide film with nanometer pores. Firstly, a silicon dioxide precursor solution is prepared, in which there are at least a template polymer and a modifier. The precursor solution is spun coated on a silicon substrate and then a calcinations process is carried out to remove the template polymer and form a plural number of regularly aligned nanometer pores. The preliminarily prepared low dielectric constant nanometer pored silicon dioxide film has a dielectric constant of 2.50. The film is further treated by hydrogen and HMDS modifier vapor to modify pore surface, which leads to a reduced dielectric constant of 1.42-2.0 for the nanometer pored silicon dioxide film.

Description

471108 五、發明說明(1) 有關2 一種毫微米孔洞薄膜材料之製備,特別 之n具有超低介電常數之毫微米孔洞二氧化石夕薄膜 庫用程中’具有低介電常數α值)之薄膜材料可 層的製作,以解決小型化積體電路所 昭组V、八連、信號干擾以及電力耗損等問題。依 雷、鉍=I7頰,η大致將低介電常數薄膜材料區分為有機介 穩—2 ϊ無機介電材料,其中有機介電材料具有較低之熱 ^^# 、較差之材料相容性、氣體逸散以及介電穩定性等 ^粗=無機二氧化矽介電材料則具有較佳之熱穩定性盥 至二'谷性甘,若引入孔洞於薄膜中,則能將其介電常數降 電对料V/至可以降至k<2·0。目前最具代表性的無機介 包材科為孔洞二氧化矽薄膜。 叙而吕,孔洞二氧化矽薄膜的製備方法可歸納為三 ' .(1)氣凝膠(aerogel)/乾凝膠(xer〇gel)方法;(2)在 :軋化矽塗佈液中添加有機物以形成微泡沫,再利用鍛燒 ^程將有機物去除以形成孔洞;(3)在二氧化矽塗佈液中 二力:兩相Umohiphilic)分子,用來作為模板(template) 刀:,則模板分子會在塗佈過程中進行自我組構 Uelf-asseinbly)以形成特定相’進而造成規則的結構分 f ’之後利用鍛燒製程將模板分子去除後便能形成具規則 =孔洞。對於(1)氣凝膠/乾凝膠方法而言,雖然可以達 ^岗孔洞密度與超低介電常數(k = l3〜25)的要求’但是 熱處理過程中有收縮與殘留應力的問題,因此其孔洞大471108 V. Description of the invention (1) About 2 Preparation of a nanometer hole thin film material, especially n nanometer hole dioxide dioxide film with ultra-low dielectric constant in the process of using 'low dielectric constant α value) The thin film material can be made in layers to solve the problems of miniaturized integrated circuits, such as group V, eight links, signal interference, and power loss. Yi Lei, bismuth = I7 cheeks, η roughly differentiates low dielectric constant thin film materials into organic dielectric stable—2 ϊ inorganic dielectric materials, of which organic dielectric materials have lower heat ^^ # and poor material compatibility , Gas dissipation, and dielectric stability, etc. ^ Coarse = inorganic silicon dioxide dielectric materials have better thermal stability. Di-granular can be reduced if the holes are introduced into the film, which can reduce its dielectric constant. The electric pair V / can be reduced to k < 2 · 0. At present, the most representative inorganic encapsulation material is porous silicon dioxide film. Xu Erlu, the preparation method of silicon dioxide film with holes can be summarized as three. (1) aerogel / xerogel method; (2) in: rolling silicon coating solution Add organics to form microfoam, and then use the calcination process to remove organics to form pores; (3) Second force in the silicon dioxide coating solution: two-phase Umohiphilic molecules, used as template: Then the template molecules will self-structure Uelf-asseinbly during the coating process to form a specific phase 'and then cause a regular structural component f'. After the template molecules are removed by the calcination process, regular = holes can be formed. For the (1) aerogel / xerogel method, although it can meet the requirements of hole density and ultra-low dielectric constant (k = 13-25), there are problems of shrinkage and residual stress during heat treatment. So its holes are large

471108471108

小不均勻、機械性質差、較不敷實際應用。對於(2)微泡 珠法而言,雖然可以製備出均勻的孔洞尺寸,但是其孔/〜 的分佈情形不規則,會影響到孔洞二氧化矽薄膜=機= 質與電學性質。至於⑻㈣模板分子之自我組構 方法,其孔洞密度可達4 5〜7 5%、孔洞尺寸一致、孔洞呈玉 規則排列,因此一般認為此種方法可以製作出具有較== 機械性質與電學性質的孔洞二氧化矽薄膜。 、、 習知利用模板分子之自我組構的技術,大多採用沾取 塗佈(dip-coating)的方式,二氧化矽塗佈液將會同時塗 佈於晶片之上、下表面,需額外作單面清洗之製程,故其 製程效率低且不相容於現有之半導體製程。為了解決前述 之製程效率低、製程不相容等缺點,習知技術也有採用旋 轉塗佈(spin-coat ing)製程來取代沾取塗佈的方法,但是 其孔洞無法呈現規則排列,會影響到孔洞二氧化矽薄膜的 介電常數值以及機械性質。而且,從文獻中得知,其介電 常數只能低到k= 1,8〜2 · 2,且其機械性質未必能符合化學 機械研磨(chemical mechanical polish,CMP)製程以及 金屬鑲嵌製程的要求。另外,孔洞二氧化矽薄膜之表面上 具有許多Si-OH鍵結,其吸水性質往往會造成介電常數大 幅上升’因此為了要控制介電常數的穩定性,還必須將孔 洞二氡化矽薄膜之表面轉換成疏水性質 (hydrophobicity),以符合實際應用之需要。 有鑑於此,本發明之目的係在於提出一種超低介電常 數毫微米孔洞二氧化矽薄膜之製備方法,可以製作出具有Small unevenness, poor mechanical properties, less practical application. For the (2) microbubble method, although uniform pore size can be prepared, the distribution of pores / ~ is irregular, which will affect the pore silicon dioxide film = mechanical and electrical properties. As for the self-structuring method of the rhenium template molecule, its pore density can reach 4 5-75%, the pore size is consistent, and the pores are regularly arranged in jade. Therefore, it is generally believed that this method can be produced with relatively == mechanical and electrical properties. Hole in silicon dioxide film. The conventional self-structuring technology using template molecules mostly adopts the dip-coating method. The silicon dioxide coating solution will be applied to the upper and lower surfaces of the wafer at the same time, which requires additional work. Single-side cleaning process, so its process efficiency is low and it is not compatible with existing semiconductor processes. In order to solve the above-mentioned shortcomings such as low process efficiency and incompatible process, the conventional technology also uses a spin-coating process instead of the dip coating method, but its holes cannot be arranged regularly, which will affect the Dielectric constant value and mechanical properties of porous silicon dioxide film. Moreover, it is known from the literature that its dielectric constant can only be as low as k = 1,8 ~ 2 · 2, and its mechanical properties may not meet the requirements of chemical mechanical polish (CMP) process and metal damascene process. . In addition, the surface of the porous silicon dioxide film has many Si-OH bonds, and its water absorption property often causes the dielectric constant to increase significantly. Therefore, in order to control the stability of the dielectric constant, the porous silicon dioxide film must also be formed. The surface is converted into hydrophobicity to meet the needs of practical applications. In view of this, the object of the present invention is to propose a method for preparing a silicon dioxide film with ultra-low dielectric constant nanometer holes, which can be fabricated with

0522-5668TWF*ptti 第6頁 471108 五、發明說明(3) ^低介電常數(k = 1.42〜2.0)、高熱穩定性、極 二、^電性質穩定之孔洞二氧化矽薄膜,且與傳統:p 術相容,以解決習之技術之問題。 、、、、衣私 化石夕m出一種具有超低介電常數之毫微米孔洞二氧 -係絲製—二氧切前驅物溶液,立中 :物!液中至少包含有一模板)高分 :以及-TMCS改質劑,然後以旋轉塗佈的 前驅物溶液塗佈於一石夕基底上。才妾著,進扞—鍛;乎飞 (calcination)製程,將模板高分子去除以形成數個 貝排歹;之毫微来孔洞’便初步製作完成具有低介電常數 jk- 2.50)之毫微求孔洞二氧化矽薄膜。進一步以氫氣 處理以及HMDS改質劑蒸氣處理對孔洞表面進行,可制 備出超低介電常數豪微米孔洞二氧化矽 1介: 可降至k=l. 42〜2. 0 〇 八,丨私·书数 圖式簡單說明 為讓本發明之上述目的、特徵、和優點能更明顯易 :月如;文特舉一較佳實施例,並配合所附圖式,作詳細說 第1圖係顯示本發明製程的流程圖。 第2圖係顯示孔洞二氧化矽薄膜於鍛燒 繞射圖。 1 W H U Λ % 第3圖係顯示孔洞二氧化矽薄膜於鍛燒製程红 外線吸收光譜圖。 β0522-5668TWF * ptti Page 6 471108 V. Description of the invention (3) ^ Porous silicon dioxide film with low dielectric constant (k = 1.42 ~ 2.0), high thermal stability, pole two, and stable electrical properties, and is in line with traditional : p Compatible to solve the problem of Xi's technology. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, l ,,,,,,,,,,,,,,,,,,,,,,,,, &, The solution contains at least one template) high score: and -TMCS modifier, and then coated with a spin coating precursor solution on a stone substrate. I was stunned and advanced into defense-forging; the calcination process removes the template polymer to form several shells; the nanometers are pores, and they are preliminarily produced with low dielectric constant (jk- 2.50). Find microporous silicon dioxide film. Further treatment with hydrogen and steam treatment with HMDS modifier on the surface of the pores can produce ultra-low dielectric constant How micron pores of silicon dioxide 1 can be reduced to k = l 42 ~ 2. 0 〇 八 , 丨 私· Simplified illustration of books and figures In order to make the above-mentioned objects, features, and advantages of the present invention more obvious and easy: Yueru; Wen special mentions a preferred embodiment, and in conjunction with the accompanying drawings, the first picture is described A flowchart showing the process of the present invention is shown. Figure 2 shows the diffraction pattern of the holed silica film during calcination. 1 W H U Λ% Figure 3 shows the infrared absorption spectrum of a porous silicon dioxide film during the calcination process. β

471108 五、發明說明(4) 第4圖係顯示本發明孔洞二氧化;g夕薄膜之介“ & 一系列改質處理步驟中的變化情形。 "電常數在 弟5圖係顯示本發明孔洞二氧化石夕薄膜之八“ > 時間之變化圖。 電常數隨 [符號說明] 配製一酸催化二氧化石夕溶膠凝膠〜1 Q ;添力口 子〜12 ;時效處理〜14 ;添加TMCS改質劑〜16 ; ^兩相高分 程〜18 ;烘烤製程〜20 ;鍛燒製程〜22 ;第一次^ ^塗佈製 〜24 ; HMDS改質劑蒸氣處理〜26 ;第二次氫氣處A理氣^理 較佳實施例說明: 本發明提出一種具有超低介電常數之毫微来 化矽薄膜之製程,係以旋轉塗佈的方法在一二礼洞二氡 ^ 日日 f*7r | 一二氧化石夕前驅物(p r e c u r s 〇 r)溶液,利用添加、上塗佈 矽前驅物溶液之中的模板分子進行自我組構以^〜氡化 結構分佈,再藉由鍛燒製程將模板分子去除以=成規則的 孔洞。此外,本發明方法對孔洞表面進行改質^ ^毫微米 旎使孔洞二氧化矽薄膜具備極佳之熱穩定性與】=但 性,還能使其介電常數進一步降低至卜丨.42〜^ 〇。μ < 凊參考第1圖,第1圖係顯示本發明製程的流程圖。首 先,配製一 一氧化砍前驅物溶液。步驟1 Q :係以單一步驟 合成的力式配製一酸催化二氧化矽溶膠凝膠(sol—gels), 其方法疋以7 0 C的、A度、9 0分鐘的時間,對一包含有471108 V. Description of the invention (4) Figure 4 shows the pores and holes of the present invention; the change in the series of modification steps of the film "& "Earth dioxide film of pores No. 8" > Time change diagram. The electrical constants are prepared with [symbol description] an acid-catalyzed stone dioxide sol gel ~ 1 Q; Timlikou ~ 12; aging treatment ~ 14; TMCS modifier ~ 16 added; ^ two-phase high-range ~ 18; Baking process ~ 20; Calcination process ~ 22; First ^^ coating system ~ 24; HMDS modifier steam treatment ~ 26; Second hydrogen gas treatment A gas treatment ^ Description of preferred embodiments: The present invention proposes A nano-siliconized thin film process with ultra-low dielectric constant, which is spin-coated at Yilidong 2nd day f * 7r | Precursor 〇r In the solution, template molecules in the silicon precursor solution added and coated are used to self-organize and distribute the structure, and then the template molecules are removed by the calcination process to form regular holes. In addition, the method of the present invention modifies the surface of the holes ^ ^ nanometers, so that the hole silicon dioxide film has excellent thermal stability and] =, but can also further reduce its dielectric constant to 丨. 42 ~ ^ 〇. μ < 凊 Refer to FIG. 1, which is a flowchart showing the process of the present invention. First, a monoxide precursor solution is prepared. Step 1 Q: A single-step synthesis of an acid-catalyzed silica sol-gels (sol-gels). The method is to use 70 ° C, A degree, 90 minutes, and

第8頁 471108 五、發明說明(5) TEOS(tetraethyl ortho silica te)、H20、HC1 以及乙醇的 混合溶液進行回流(ref lux)。步驟12 :係於酸催化二氧化 石夕溶膠凝膠内添加兩相高分子(本發明使用tr i b k copolymer PI ur on ic, PI 23)作為一模板分子,以製備出 一二氧化矽前驅物溶液,其中各種反應物的莫耳比為 TEOS :P123 :H20 :HC1 :乙醇=;[:〇·〇〇8 〜〇·〇3 :3.5 〜5 : 0·003〜0.03 : 10〜34。步驟14 :是在室溫下且相同環境中 (ιη-situ),對二氧化矽前驅物溶液進行3_6小時的時效 (aged)處理。步驟16 :是以強烈攪拌將方式將 TMCS(trimethylchlorosilane)改質劑混合至二氧化矽前 驅物溶液之中,其中TMCS改質劑與τEOS的莫耳比值為 0. 02〜0·2 。 接著,步驟1 8 :是以旋轉塗佈的方法,在相同環境下 以1 600 rpm的轉速、1 60 0 rpm/^〇加速度、3〇秒的時間, 將二氧化矽前驅物溶液塗佈至一矽晶片之表面上。然後, 步騍20 ·疋對矽晶片進行一烘烤製程,溫度為8〇〜丨丨〇, 時間為3小時。跟著’ #驟22 :是在一氣流爐管内對石夕晶 片進行一鍛燒製程’溫度為4〇(rc,時間為3〇分鐘。由於 模板分子會在塗佈過程中進行自我組構以形成特定相,進 而每成規則的結構分佈,因此經過锻燒製程後可以將模板 分子去除,以形成規則分佈之孔洞,至此便初步完成本發 明之孔洞二氧化石夕薄膜。 一 I過實驗驗證,依據氪氣吸附與脫附等溫線的結果顯 示,本;明之孔洞二氧化矽薄膜的孔洞率可達53_了2%,孔Page 8 471108 V. Description of the invention (5) The mixed solution of TEOS (tetraethyl ortho silica te), H20, HC1 and ethanol is refluxed (ref lux). Step 12: Adding a two-phase polymer (tr ibk copolymer PI ur on ic, PI 23) as a template molecule to the acid-catalyzed silica dioxide sol gel to prepare a silicon dioxide precursor solution The molar ratios of the various reactants are TEOS: P123: H20: HC1: ethanol =; [: 〇.〇〇8 ~ 〇 · 〇3: 3.5 ~ 5: 0.003 ~ 0.03: 10 ~ 34. Step 14: The silicon dioxide precursor solution is aged for 3-6 hours at room temperature and in the same environment (ιη-situ). Step 16: Mix the TMCS (trimethylchlorosilane) modifier into the silica precursor solution by vigorous stirring, wherein the molar ratio of the TMCS modifier to τEOS is 0.02 to 0.2. Next, step 18: apply the silicon dioxide precursor solution to the spin coating method under the same environment at a speed of 1 600 rpm, an acceleration of 1600 rpm / ^ 0, and a time of 30 seconds. On the surface of a silicon wafer. Then, the silicon wafer is subjected to a baking process at step 20 · 疋, the temperature is 80 ° C to 315 ° C, and the time is 3 hours. Followed by # 22: a Shixi wafer is subjected to a forging process in a gas flow furnace tube. The temperature is 40 ° C, and the time is 30 minutes. Because the template molecules will self-structure during the coating process to form The specific phase and each have a regular structure distribution, so the template molecules can be removed after the calcination process to form a regular distribution of holes, so that the pore dioxide dioxide film of the present invention has been initially completed. I verified through experiments, According to the results of the adsorption and desorption isotherms of radon gas, the porosity of the silicon dioxide film of Ben Zhi's pores can reach 53% and the pores can reach 53%.

471108 五、發明說明(6) 洞直徑為43-80A。而且,藉由第2圖所示之又光繞射(xrd) 圖以及穿透式電子顯微鏡(TEM)照片可以觀察到孔洞微觀 結構,進而驗證本發明方法在經過锻燒製程之後,確實可 以在二氧化矽薄膜中形成具有毫微米尺寸(3〜9nm)、規則 性結構的孔洞。此外,利用一金屬絕緣半導體 (metal-insulator-semiconductor, MIS)電容器、結構,可 以量測出本發明之孔洞二氧化矽薄膜的介電常數,約為 k-2· 5,相較於應用於ULSI製程之介電材料的要求(k<3)而 言’顯示本發明方法符合實際之運用。 關於規則性分佈的孔洞的形成機制而言,由於在低水 含量之酸性水解條件下,縮合之二氧化矽溶膠具有較多之 線性組態、較少之樹枝狀組態,因此在進行時效處理後, 位於線塑之二氧化矽溶膠上且未反應之矽烷醇族(sUan〇i groups)可進一步產生縮合作用或是改質作用。當TMcs改 貝蜊加入經過時效處理的二氧化矽溶膠後,改質劑會 快速地與矽烷醇族反應,以提供所需之疏水性。後續當二 :化:溶膠與模板分子混合形成二氧化矽前驅物溶液之 後,存在曰於二氧化矽溶膠與模板分子之間的微弱作用力 、口,凡得瓦力、偶極-偶極相互作用力)以及模板分子的 二我組構,力’是形成孔洞結構的主要驅動力。如第3圖 亦丨下之紅夕線吸收光譜(1R)圖可知,利用添加有TMCS改質 之薄膜’於進行鍛燒製程之前,薄膜 中模板分子;於進行鍛燒製程之後,薄膜 及男機槟板分子已經被去除,因此IR圖中完全沒471108 V. Description of the invention (6) The diameter of the hole is 43-80A. Moreover, the microstructure of the pores can be observed by using the light diffraction (xrd) diagram and the transmission electron microscope (TEM) picture shown in FIG. 2 to verify that the method of the present invention can indeed be used after the calcination process. Holes having a nanometer size (3 to 9 nm) and a regular structure are formed in the silicon dioxide film. In addition, by using a metal-insulator-semiconductor (MIS) capacitor and structure, the dielectric constant of the hole-shaped silicon dioxide film of the present invention can be measured, which is about k-2 · 5, compared with that applied to In terms of the requirements (k < 3) of the dielectric materials of the ULSI process, it is shown that the method of the present invention is consistent with practical application. Regarding the formation mechanism of regularly distributed pores, under the condition of acidic hydrolysis with low water content, the condensed silica sol has more linear configuration and less dendritic configuration, so it is undergoing aging treatment. Afterwards, the unreacted suanol groups located on the line-shaped silica sol can further produce condensation or modification. When TMcs modified clams are added to the aging-treated silica sol, the modifier will quickly react with the silanol group to provide the required hydrophobicity. Subsequent to the second: after the sol and template molecules are mixed to form a silicon dioxide precursor solution, there is a weak force, mouth, van der Waals force, dipole-dipole interaction between the silica dioxide sol and the template molecules. (Force) and the binary structure of the template molecule, the force is the main driving force for the formation of the hole structure. As shown in Figure 3 and below, the red evening line absorption spectrum (1R) shows that using TMCS modified film 'before the calcination process, the template molecules in the film; after the calcination process, the film and the male The molecules of the machine plate have been removed, so the IR picture is completely absent.

471108 五、發明說明(7) 有s 1 -OH的吸收訊號,只有改質劑經過改質後所留下之官 能機的吸收訊號。 除此 < 外’為了要鈍化懸空键(dangi ing |3〇ncjs)與殘 餘井(residual traps),必須對孔洞二氧化矽薄膜進行進 步的改質處理’以降低其親水性與介電常數。以下係詳 細說明孔洞表面的改質處理步騾,而第4圖係顯示介電常 數在一系列改質處理步驟中的變化情形。步驟24 ••係進行 弟人氫氣處理’溫度為2 5 0 °C、時間為3 0分鐘,可以將 孔洞二氧化碎薄膜的介電常數值從k = 2· 5降至k = 2· 23,並 同時將薄膜中的碳含量降低。接著,步驟26 ••係進行一 HMDS( = exame thydi slazane)改質劑蒸氣處理,溫度為1 5〇 C、時間為60分鐘’彳以將孔洞二氧化石夕薄膜的介電常數 值進一步降至k=!· 53。最後,步驟28 ••係進行第二次氫 處理,可以將孔洞二氧化矽薄膜的介電常數值更進一 至k = l· 42。 辛 請參考第5圖所示之介電常數隨時間之變化圖,將 發明具有超低介電常數之毫微米孔洞二氧化矽薄膜置 溫下,在22天之内其介電常數值只微幅上揚7%(從卜工、 上升至k=l .52),這顯示本發明方法所製作的孔洞二氯 石夕薄膜具有極佳之介電穩定性…卜,經由量測;,化 知,本發明方法所製作的孔洞二氧化 二: 50MPa,且與矽薄膜之間具有良好的附著力。強度、々為 相較於習知技術,本發明方法於塗 改質劑,並於後續進行氫氣與膽8改質劑蒸氣處471108 V. Description of the invention (7) There is an absorption signal of s 1 -OH. Only the functional absorption signal left by the modifier after the modification. In addition to this, 'In order to passivate dangling bonds and residual traps, it is necessary to carry out progressive modification of the porous silicon dioxide film' to reduce its hydrophilicity and dielectric constant. . The following is a detailed description of the modification process of the hole surface, and Figure 4 shows the change of the dielectric constant in a series of modification processes. Step 24 •• During the hydrogen treatment of the younger brother, the temperature of 250 ° C and the time of 30 minutes can reduce the dielectric constant value of the holed dioxide film from k = 2 · 5 to k = 2 · 23 At the same time, the carbon content in the film is reduced. Next, step 26 •• is subjected to a HMDS (= exame thydi slazane) modifier steam treatment at a temperature of 150 ° C and a time of 60 minutes', so as to further reduce the dielectric constant value of the porous dioxide film. To k =! · 53. Finally, the second hydrogen treatment in step 28 •• can further increase the dielectric constant of the porous silicon dioxide film to k = 1.42. Please refer to the change of the dielectric constant with time shown in Figure 5. When the nano-silicon dioxide film with ultra-low dielectric constant is invented, its dielectric constant value will be only slightly within 22 days. The amplitude increased by 7% (from the buoy, rose to k = 1.52), which shows that the hole dichlorite film produced by the method of the present invention has excellent dielectric stability ... Bu, through measurement; The hole dioxide produced by the method of the present invention is 50 MPa, and has good adhesion to the silicon film. Compared with the conventional technology, the method of the present invention is applied to the modifier, and hydrogen and gallbladder vapor are used in the subsequent process.

471108 五、發明說明(8) 所製備之孔洞 尺寸與規則性 0),而且具有 介電穩定性。 沾取塗佈方法 效率,還能相 薄膜製程。 雖然本發 限定本發明, 神和範圍内, 當視後附之申 二氧化矽薄膜具有53-7 2%的孔洞率、毫微来 結構的孔洞以及超低之介電常數· 42〜2. 良好之機械強度、熱穩定性、材料相容性、 此外,本發明方法以旋轉塗佈方式取代習知 六佈但能製作出規則分佈之孔洞、提高製程 谷於傳統製程’因此可以應用在目前半導體 明已以較伟徐h 任何熟習此$ ^例揭露如上,然其並非用以 當可作更私項技藝者’在不脫離本發明之精 請專利範〇飾’因此本發明之保護範圍 闯所界定者為準。471108 V. Description of the invention (8) The hole size and regularity of the prepared hole are 0), and it has dielectric stability. The coating method is efficient and can also be used for thin film processes. Although the present invention is limited to the present invention, within the scope of God, when viewed as attached, the silicon dioxide film has a porosity of 53-7 2%, nano-structured holes, and an ultra-low dielectric constant of 42 ~ 2. Good mechanical strength, thermal stability, material compatibility, In addition, the method of the present invention replaces the conventional six cloth with a spin coating method, but can make holes with a regular distribution, improve the process valley to the traditional process, so it can be applied in the present Semiconductor Ming has been more familiar with this example, but it is not intended to be used as a more private artisan 'without departing from the spirit of the present invention, please patent patent 0' so the scope of the present invention The definition defined by the standard shall prevail.

Claims (1)

471108 六'申請專利範圍 氧化矽薄膜 1 · 一種具有超低介電常數之毫微米孔洞 之製程,包括下列步驟: (a )提供一矽基底; 、、(b)配製一二氧化矽前驅物溶液,該二氧化矽前 溶液中至少包含有一模板(tempiate)高分子以及 質劑; 刀于以及—TMCS改 (c)以旋轉塗佈的方式將該二氧化矽前驅物溶液塗佈 於該石夕基底上;以及 (d )進行一锻燒(ca ici nat丨〇n)製程,將該模板高分 子去除以形成複數個毫微米孔洞,以製作完成該具有超低 介電常數之氅微米孔洞二氧化石夕薄膜。 2 ·如申請專利範圍第1項所述的製程,其中該毫微米 孔洞一氡化碎薄膜之介電常數為2 · 〇〜1 · 4。 3.如申請專利範圍第1項所述的製程,其中該複數個 宅微米孔洞呈規則分佈。 4·如申請專利範圍第1項所述的製程,其中每一毫微 米孔洞之尺寸為3〜9nm。 5·如申請專利範圍第i項所述的製程,其中該步驟(b) 配製該二氧化矽前驅物溶液的方法包括有·· .(M)單一步驟合成一酸催化二氧化矽溶膠凝膠 (sol-gels); (b 2 )於該溶膠凝膠中添加該模板咼分子 (b3)進行時效(aged)處理;以及 (b4)於該溶膠凝膠中添加TMCS改質劑。471108 Six 'patent application scope Silicon oxide thin film1. A process for nanometer holes with ultra-low dielectric constant, including the following steps: (a) providing a silicon substrate; (b) preparing a silicon dioxide precursor solution The silicon dioxide pre-solution contains at least a tempiate polymer and a quality agent; and knife-and-TMCS modified (c) coating the silicon dioxide precursor solution on the stone eve by spin coating. On the substrate; and (d) performing a calcination (ca ici nat) process, removing the template polymer to form a plurality of nanometer holes, so as to complete the 氅 micron hole with ultra-low dielectric constant. Oxidized stone eve film. 2. The process as described in item 1 of the scope of the patent application, wherein the dielectric constant of the nano-hole-hole fluorinated shatter film is 2 · 0 ~ 1 · 4. 3. The process according to item 1 of the scope of patent application, wherein the plurality of micron holes are regularly distributed. 4. The process according to item 1 of the scope of patent application, wherein the size of each nanometer hole is 3 to 9 nm. 5. The process as described in item i of the scope of patent application, wherein step (b) the method for preparing the silica precursor solution includes ... (M) a single step synthesis of an acid-catalyzed silica sol gel (sol-gels); (b 2) adding the template rhenium molecule (b3) to the sol-gel for ageing treatment; and (b4) adding a TMCS modifier to the sol-gel. 0522-5668TWF-ptd 第13頁 471108 六、申請專利範圍 6. 如申請專利範圍第1項所述的製程,其中於進行該 步驟(d )之前,係先進行一乾燥與烘烤製程。 7. 如申請專利範圍第1項所述的製程,其中該製程另 外包含有步驟(e ):對該超低介電常數毫微米孔洞二氧化 矽薄膜進行一蒸氣處理製程,可以進一步降低該超低介電 常數毫微米孔洞二氧化矽薄膜之介電常數。 8. 如申請專利範圍第7項所述的製程,其中該蒸氣處 理製程包含有至少二次氫氣處理製程。 9. 如申請專利範圍第7項所述的製程,其中該蒸氣處 理製程包含有一HMDS改質劑蒸氣處理製程。0522-5668TWF-ptd Page 13 471108 6. Scope of Patent Application 6. The process described in item 1 of the scope of patent application, wherein before performing step (d), a drying and baking process is performed. 7. The process according to item 1 of the scope of patent application, wherein the process further includes step (e): performing a steam treatment process on the ultra-low dielectric constant nanometer hole silicon dioxide film, which can further reduce the ultra-low dielectric constant. The dielectric constant of a low dielectric constant nanometer hole silicon dioxide film. 8. The process according to item 7 of the scope of patent application, wherein the steam treatment process includes at least a second hydrogen treatment process. 9. The process according to item 7 of the scope of patent application, wherein the steam treatment process includes a HMDS modifier steam treatment process. 0522-5668T野_pid 第14頁0522-5668T Wild_pid Page 14
TW89125119A 2000-11-27 2000-11-27 Preparation of ultra low dielectric constant silicon dioxide film with nanometer pores TW471108B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89125119A TW471108B (en) 2000-11-27 2000-11-27 Preparation of ultra low dielectric constant silicon dioxide film with nanometer pores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89125119A TW471108B (en) 2000-11-27 2000-11-27 Preparation of ultra low dielectric constant silicon dioxide film with nanometer pores

Publications (1)

Publication Number Publication Date
TW471108B true TW471108B (en) 2002-01-01

Family

ID=21662087

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89125119A TW471108B (en) 2000-11-27 2000-11-27 Preparation of ultra low dielectric constant silicon dioxide film with nanometer pores

Country Status (1)

Country Link
TW (1) TW471108B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482676B2 (en) 2002-05-30 2009-01-27 Air Products And Chemicals, Inc. Compositions for preparing low dielectric materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482676B2 (en) 2002-05-30 2009-01-27 Air Products And Chemicals, Inc. Compositions for preparing low dielectric materials

Similar Documents

Publication Publication Date Title
US5801092A (en) Method of making two-component nanospheres and their use as a low dielectric constant material for semiconductor devices
Yang et al. Ambient-dried low dielectric SiO2 aerogel thin film
US6287979B1 (en) Method for forming an air gap as low dielectric constant material using buckminsterfullerene as a porogen in an air bridge or a sacrificial layer
US6444715B1 (en) Low dielectric materials and methods of producing same
US5504042A (en) Porous dielectric material with improved pore surface properties for electronics applications
Yang et al. Spin‐on Mesoporous Silica Films with Ultralow Dielectric Constants, Ordered Pore Structures, and Hydrophobic Surfaces
TWI284140B (en) Method for forming porous silica film
EP0684642B1 (en) Method of fabrication of a porous dielectric layer for a semiconductor device
US6277766B1 (en) Method of making fullerene-decorated nanoparticles and their use as a low dielectric constant material for semiconductor devices
US20020060364A1 (en) Silica zeolite low-k dielectric thin films
CA2583610A1 (en) Method of transformation of bridging organic groups in organosilica materials
US20030157248A1 (en) Mesoporous materials and methods
JP2005516394A (en) Dielectric film for narrow gap filling applications
KR20020020887A (en) Nanoporous material fabricated using a dissolvable reagent
Kawakami et al. Preparation of highly porous silica aerogel thin film by supercritical drying
Yang et al. Hybrid vinyl silane and P123 template sol− gel derived carbon silica membrane for desalination
WO2004026765A1 (en) Method for modifying porous film, modified porous film and use of same
JPH1070121A (en) Method of low volatile solvent group for forming thin film of nano-porous aerogels on semiconductor substrate
Eslava et al. Zeolite-inspired low-k dielectrics overcoming limitations of zeolite films
TW471108B (en) Preparation of ultra low dielectric constant silicon dioxide film with nanometer pores
US6890641B1 (en) Low dielectric materials and methods of producing same
He et al. Microstructural characterization of low dielectric silica xerogel film
JP2000340651A (en) Manufacture of film having low dielectric constant
TWI404143B (en) Method for manufacturing low-k films by using basic solution
JPWO2005007748A1 (en) Phosphorus-containing silazane composition, phosphorus-containing siliceous film, phosphorus-containing siliceous filler, method for producing phosphorus-containing siliceous film, and semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees