TW469497B - Sampling apparatus of environmental volatile organic compound for semiconductor operation - Google Patents

Sampling apparatus of environmental volatile organic compound for semiconductor operation Download PDF

Info

Publication number
TW469497B
TW469497B TW090104622A TW90104622A TW469497B TW 469497 B TW469497 B TW 469497B TW 090104622 A TW090104622 A TW 090104622A TW 90104622 A TW90104622 A TW 90104622A TW 469497 B TW469497 B TW 469497B
Authority
TW
Taiwan
Prior art keywords
sampling
volatile organic
item
patent application
sampling device
Prior art date
Application number
TW090104622A
Other languages
English (en)
Inventor
Jiun-Guang Luo
Min-Nan Lin
Original Assignee
Jiun-Guang Luo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiun-Guang Luo filed Critical Jiun-Guang Luo
Priority to TW090104622A priority Critical patent/TW469497B/zh
Priority to US09/883,515 priority patent/US20020157483A1/en
Application granted granted Critical
Publication of TW469497B publication Critical patent/TW469497B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Description

469497 五、#明說明(1) 發明領域 本 案 係 有 化 合物 之 採樣 作 業環 境 中 揮 發 明背 景 近 年 來 光 且 帶動 國 内 經 使 用大 量 的 毒 業 人員 的 疏 忽 進 而逸 散 至 大 成 健康 上 的 危 在 半 導 體 烧 、異 丙 醇 及 異+丙 醇 為 常 苯 則存 在 微 影 用 後會 隨 著 排 響 0 針 對 環 境 不 鏽:鋼 罐 採樣 劑 採樣 法 等 Ο 法 ,因 為 以 固 有 選擇 性 j 可 縮 效果 t 可 提 關一種應用於 裝置,X指一 發性有機化合 半導體作業環境 種利用多重床吸 物進行採樣之裝 業已成為國内之 。但是,在半導 溶,劑,這些有害 不當維護或特殊 ’對作業環境中 所使用之有機溶 二氣乙及丙酿j 洗溶劑或為原料 劑成分中。此類 區’對周遭環境 化合物的採樣方 樣法、液體吸收 體吸附劑採樣法 管進行採樣時, 物的基質干擾, 電及半導體產 濟的快速成長 性氣體及有機 、處理設備的 氣中造成污染 害。 作業環境中, 甲苯、1,1, 1 ~ 用之擦拭及清 製程某些光阻 放系統排出礙 中揮發性有機 法、採樣袋採 其中,又以固 體吸附劑採樣 避免其它化合 高靈敏度,且 中揮發性有機 附管對半導體 置。 明星產業,並 體製程中均需 物可能由於作 的化學反應, 的工作人員造 劑包括二氯甲 等。其中丙酮 之溶液,而甲 有機溶劑於使 造成不良影 法主要可分為 法及固體吸附 為一常用的方 因其吸附劑具 再加上其有濃 469497 五、發明說明(2) 便及花費便 時,採樣環 影響吸附劑 限,牽涉到 目前對 (charcoal) 附後注入氣 碳、甲苯、 造成二次污 成干擾。 宜的特⑯。然而以固體吸附劑採樣管進行採樣 境的溫度、濕度、樣品的濃度及採樣流速皆會 的吸附能力。此外,樣品的保存方式及保存期 樣品在吸附劑中的穩定性。 於半導體作業環境的監測主要是使用活性碳 或矽膠(silica geu為吸附劑,再使用溶劑脫 相層析儀令分析。此法所使用的溶劑(二硫化 y醇及苯等)皆為毒性物質,易在分析過程中 染及危害’且溶劑的波帶可能對分析物圖譜造 —般而言,對於碳氫化合物之量測’ Tenax_TA為極隹 的吸附劑選擇’尤其適合於高濕環境與低漢度環境的採 樣,但其缺點為對於低沸點的碳氫化合物($ q )無法定量 吸附’因此’如欲吸附更低沸點的碳氫化合物,則需另尋 ,附力較強的吸附劑°而為了吸附較大沸點範圍化合物, #多?吸附劑合併而成多重床式(multi—sorbent traps) 管則廣為利用。但是目前所用之多重床式採樣管並無 番對半導體作業中之極性及非極性有機氣體同時吸附定 量,而且一般均需在低溫下進^吸:附採樣。 欲以Ξ此如何發展一符合實際應用於半導體作業環境中揮 發性:機化合物之採樣裝置,實為當務之所需。 鱼研资ί之故,本發明鑑於習知技術之缺失,乃悉心實驗 本鍥而不捨之精神,終發明出本案之『應用於 +導體作業環境中揮發性有機化合物之採樣裝置』。
五、發明說明(3) 發明概述 本案之主要目的為應用 機化合物之採樣裝置,在半 極性有機氣體進行吸附定量 本案之另一目的為應用 機化合物之採樣裝置,其中 附採樣。 於半導體作業環境中揮發性有 導體作業中能同時對極性與非 α 於半導體作業環境中揮發性有 該採樣裝置可在常溫下進行吸
本案之又一目的為提供一種應用於半導體作業環境中 一揮發性有機化合物之採樣裳置。該採樣裝置包括一自動 採樣裝置’以及一多重床吸附管(muUi_s〇rbent tup)可 連接於該自動採樣襞置,在常溫下用以採集吸附該揮發性 有機化合物,其中該揮發性有機化合物係含有極性與非極 性化合物。
根據本案之構想,其中該揮發性有機化合物係為丙酮 (Acetone)、異丙酵(IPA)、苯(Benzene)、三氣乙烯 (Trichloroethylene)、甲苯(Toluene)、乙酸正丁醋 (Butyl Acetate)、環戊酮(Cyclopentanone)、間位/對 位二甲苯(m,p-xylene)、2-庚酮(2-Heptanone)、鄰-二 甲苯(o-xylene)等其中之一或其任何組成等其中之一的 揮發性有機化合物。
根據本案之構想,其中該多重床吸附管可連接於一冷 凍濃縮熱脫附裝置,用以脫附該揮發性有機化合物。此 外,該冷凍濃縮熱脫附裝置亦可連接於一氣相層析儀與—
第6頁 /} P; Q AQ 7 ___ 五、發明說明(4) 質譜儀,用以定性與定量分析該揮發性有機化合物。 根據本案之構想’其中該揮發性有機化合物被偵測之最小 濃度極限為ppbv。 根據本案之構想,其中該多重床吸附管係以一石墨化 破黑(graphitized carbon black)及一碳分子篩(carb〇n mol ecu lar si eve)為一吸附劑。其中該石墨化碳黑具一大 於400 t之溫度上限’及該碳分子篩具一溫度上限為^〇〇 管 根據本案之構想’其中該多重床吸附管係為 玻璃 其中該自動採樣裝置係為一自動連 其中該自動採樣裝置包括24根該多 根據本案之構想 續採樣’裝置。 根據本案之構想 重床吸附管。 、 本案之又一目的為提供一種應用於半導體作 -揮發性有機化合物之採樣分析裝置。該採樣分析 括-自動採樣裝置,可連接於—多重床吸附管斤裝置匕 (mult卜sorbent trap),在常溫下用以採集 物…該揮發性有機化合物係含有極極 性化。物,一冷凍濃縮熱脫附裝置可 '、声十 管,用以脫附該揮發性有機化合物,以J二,多重床吸附 -質譜儀’連接於該冷凍濃縮熱脫附裝置,析儀與 量分析該揮發性有機化合物。 用以疋性與定 根據本案之構想,其中該揮發性有機化合物係為丙明 A69 497___ 五、發明說明(5) (Acetone)、異丙醇(IPA)、苯(Benzene)、三氯乙稀 (Trichloroethylene)、甲苯(Toluene)、乙酸正丁醋 (Butyl Acetate)、環戊明(Cyclopentanone)、間位/對 位二甲苯(m,p-xylene)、2-庚嗣(2-Heptanone)、鄰-二 甲苯(o-xylene)等其中之一或其任何組成等其中之一的 揮發性有機化合物。 根據本案之構想,其中該揮發性有機化合物被偵測之 最小濃度極限為,ppbv。 根據本案之構想,其中鵁多重床吸附管係以一石墨化 碳黑(graphitized carbon black)及一碳分子篩(carb〇n molecular sieve)為一级附劑°其中該石墨化碳黑具一大 於400 C之溫度上限’及該碳分子篩具一溫度上限為4〇〇 〇C。 根據本案之構想,其中該多重床吸附管係為一玻璃 管。 根據本案之構想’其巾該質譜儀與該氣相層析儀以一 串聯方式連接。 根據本案之構想,其中該自動採樣裝置係為一自動連 續採樣裝置。 根據本案之構想’其中該自動採樣裝置包括24根該多 重床吸附管。 圖示簡單說明: 第圖·係為本案最佳實施例之多重床吸附管脫附溫度與
苐8頁 469497 五、發明說明(6) ' " ' ~~~-------— 積分面積之關係圖。 第二圖:係為本案最佳實施例之多 積分面積之關係圖。 重床吸附管脫附時間 與 之 第三圖:係為本案最佳實施例之九種半導體 揮發性有機化合物之氣相層析標準圖譜。 〃 :四圖1為本案最佳實施例之半導體冑實測之分析圖 實施例說明 本案所使同之自動採樣器為利用一多重床吸附管 長時間採樣監測,其原理為利用風扇將壓克力盒中的空氣 抽出造成盒内為負壓狀態,使新鮮空氣由盒上開口導入各 内,再由主動式幫浦將空氣導入多重床吸附管中,藉由採 樣時間及流速的設定,轉盤於固定時間轉至下一採樣管位 置’在常溫下以完成長時間採樣監測。最多可設置2 4根多 重床吸附官’採樣時間設定範圍可從q . 1粆至2 4小時β 其中’該多重床吸附管是以一石墨化複黑 (graphitized carbon black)及一碳分子筛(carbon molecular sieve)為吸附劑。其中該石墨化碳黑具—大於 400 eC之溫度上限,及該碳分子篩具一溫度上限為4〇〇t。' 至於多重床吸附管的製備’則是將外徑丨/4英吋、内役4 mm之Pyrex玻璃管以去離子水浸泡,並以超音波震盪三小 時’放入烘箱以300 t的溫度烘烤1 2小時,完成上述步驟 後將玻璃管依序填入〇‘2g Carbopack C (10m2/g)、〇.2g
第9頁 4 6 9 497 五、發明說明(7)
Carbopack B (100ra2/g)及0.2g Carbosieve SE (830m2/ g),各吸附劑間以玻璃棉分隔。填充完成之轅多 重床吸附管,置於自製九支加熱管的調態器 (conditioner)中,以流速50 mL/min的氮氣吹過’教於 3 0 0 t加熱1 2小時,以去除吸附劑及玻璃棉上之不純物β 在每批次調態完成後,須從中取出一支多重床吸附管做变 白測試,以確定此批製備之多重床吸附管是否清理乾淨。 然而,無論是在多重床吸附管或是冷凝管進行熱脫附時, 為使樣品完全脫附需儘量提高溫度,但溫度過高可能使樣 品產生熱分解,故亦需對脫附溫度進行最佳化的探對。 表一’已知分析物之物化特性
質 化 化學式 分子量 (g/mole) 沸點 CO 熔點 CC) 蒸氣壓 (mm-Hg) PEL* ppm 丙嗣 (CH3)2CH3 58.08 56.2 -95.4 266 750 一異丙醇 C3HgO 60.09 82.4 -86 33 400 甲一苯 c6h5 ch3 92.14 110.6 -95 28.4 100 苯 c6h6 78 80 5.5 75 5 三氯乙稀 ci2c=chci 131.5 86.7 -73 57.8 50 乙酸正丁酯 CeHi2〇2 116 126.3 -77 .15 150 環戊酮 c5h8o 84.1 131 -58 2-庚酮 C7H,4〇 114.2 151.5 -35 1.6 50 二甲苯 CsHi〇 106.2 137-140 6-6.5 100 *PEL(Pennissible Exposure Limits):容許暴露濃度,係指空氣中有害物質之 濃度,在此濃度下每天工作八小時,一週工作五天,大部分健康勞工不致產 生影響。 第10頁 469497 發明說明(8) 本案主要針對9種半導體作業環境中極性與非極性之 揮發性有機化合物進行採樣分析,其中該揮發性有機化合 物係為丙酮(Acetonq)、異丙醇(IPA)、苯(Benzene)、 二氣乙稀(Trichloroethylene)、曱苯(Toluene)、乙酸 正丁酯(Butyl Acetate)、環戊酮(Cyclopentanone)、間 位/ 對位二甲苯(m,p-xylene)、2 -庚酮(2-Heptanone)、 鄰二甲苯(o-xylene)等其中之—或其任何組成等其中之 一的揮發性有機化合物。因此,利用表一所示之已知分析 物為樣品’以尋找多重床吸附管之一適當脫附條件,其結 果如表二及第一圖所示。將吸附有已知分析物之多重床吸 附管置於該冷凍濃縮熱脫附系統,以每分鐘3 〇毫升的氦氣 脫附5分鐘,並以μ 50 °c作為冷凝濃縮溫度,冷凝脫附溫 度為200 °C,冷凝脫附時間為5分鐘時,找尋適當的脫附溫 度°如所示’當多重床吸附管之脫附溫度為丨5 〇它時,樣 品因脫附不易,使得脫附效果不甚理想,當多重床吸附管 之脫附溫度逐漸上昇時,樣品的回收率亦逐漸增加,當脫 附溫度為230。(:或240 °C時,大部分樣品可得到較佳的回收 ,’而脫附溫度大於240 °C時,可能由於溫度過高,造成 4分樣品的分解,而使得脫附效率降低。
第11頁 469497 五、發明說明(9) 表二多重床吸附管之脫附溫度與相對回收率關係表 脫附溫度 (°C ) 150 180 200 230 240 250 270 丙酮 69.61% 73.86% 71.52% 100.00% 104.27% 97.31% 90.03% 異丙醇 34.50% 51.82% 82.29% 100.00% 111.87% 99.26% 82.22% 苯 81.47% 87.85% 92.13% 100.00% 87.09% 91.06% 90.09% 三氣乙烯 80.78% 86.35% 92.13% 100.00% 92.32% 83.23% 86.46% 曱苯 83.69% 86.91% 99.47% 100.00% 98.76% 97.38% 88.09% 乙酸正丁酯 79.20% 87.12% 97.73% 100.00% 93.44% 82.25% 88.24% 環戊酮 26.51% 57.96% 76.60% 100.00% 103.97% 93.63% 91.49% m,p-二甲苯 61.26% 70.66% 87.87% 100.00% 95.39% 95.21% 90.81% 2-庚酮 71.65% 78.89% 104.86% 100.00% 108.75% 100.72% 97.02% 〇-二曱苯 64.00% 75.67% 85.89,% 100.00% 95.79% 105.89% 98.83% 接著以多 為30mL/min , °C,冷凝脫附 附,以求得適 示。 重床吸附管之脫附溫度為2 3 0 °C,脫附流速 且冷凝溫度為-150 1,冷凝脫附溫度為200 時間為5分鐘時,以不同的脫附時間進行脫 當的脫附時間,其結果如表三及第二圖所 表三多重床吸附管之脫附溫度為230°C時,其脫附時間與相對回 收率關係表 脫附時間(min ) 4 6 8 10 12 14 丙酮 90.85% 95.51% 91.54% 100.00% 101.62% 111.55% 異丙醇 25.04% 94.17% 90.08% 100.00% 97.07% 87.50% 苯 93.26% 96.55% 92.86% 100.00% 96.38% 100.51% 三氣乙烯 93.37% 94.12% 94.88% 100.00% 96.41% 94.50% 甲苯 70.80% 84.17% 92.74% 100.00% 87.69% 91.80% 乙酸正丁酯 101.79% 96.19% 95.71% 100.00% 105.68% 89.87% 環戊酮 81.42% 96.91% 89.58% 100.00% 96.23% 83.95% m,p-二甲苯 105.86% 101.95% 100.31% 100.00% 101.65% 99.31% 2-庚酮 94.38% 81.40% 84.08% 100.00% 75.54% 72.3 8% 〇-二甲苯 95.92% 104.89% 92.40% 100.00% 99.27% 89.31%
469497 五,發明說明(ίο) 由表二及第二圖可知,當多 漸增加時樣品的脫附效率有逐^及附目' 之脫附時間逐 附管之脫附時間為! 〇分鐘時,二=3勢。當多重床吸 大的脫附效率。 。刀樣品而言,具有最 經^冷康濃縮熱脫附法辟預測之揮發性 品脫附後’該樣品將導入一氣相層析儀:一=“物樣 行定性及定量的分析。該氣相層析儀包括_ ^ f ΐ知以進 分離該揮發性有機化合物樣品。 毛3官柱用以 以】《公司所製造之㈣^毛細管柱(〇.32__膜
I 壓力為"〇 Uf ΐ佳的分析條件為’當載流氣體的入口 〒力為0:375 kg/cra2時,管柱初溫為35„c維持7分鐘 以7 C/nnii的速率昇溫至91qc,再以9ec/mU的 154 C並維持5分鐘,最後#2(rc/ffiin的速率快速 1 94pC^維持5分鐘,能夠有效地將各個揮發性有機化合物 樣品分離’且分離效果亦較使用Rtx-502.2毛細管柱時0為 佳。依此分析條件所得之標準圖譜如第三囷所示。 一 此外’本案對於半導體作業環境中揮發性有機化合物 樣品之债測極限之分析結果如表四所示;若採樣體積為1 升時’方法偵測極限為〇. 31ppb〜〇. 89ppb β . 第13頁 469497 五、發明說明(11)
表四偵測極限 lvlDL(ng) J^pb*) RSD~~~ 丙酮 0.42 3.50%~~ 異丙醇 、1.39 0.56 5.26%-1 苯 - 、2,83 0l9~~ 6.44%^ 三氯乙烯 -- 、2.90 ^0^54 4.51%Π 甲苯 ^1.65 OM 5.39% 乙酸正丁酯 ---- _ 1.45 -^όΤι~~ 3.72%~~ 環戍酮 ^2,53 0:73 5.63f Μ,ρ-二甲苯 ------ 、2.61 ^όΤόΟ 5.81%— 2-庚酮 ---- _3.〇6 0^5 6.10%~~ 〇-二甲苯 _ 3.80 ^087~ 6.70% *表採樣體積為1升 至於樣如回收率一,貝4是添加已知量的樣 二中’並以乾淨的氮氣吹拂,之後將採樣f置於冷= Μ附儀t進行脫附,重複3次分析,所得 γ縮 A二取相同於添加在採樣管中的樣品,注入空*,積^ ϋ縮rr=進行3次分析,所得積分面積為a。。回 叹早-As 'Ac X 10CU。以校正曲線上之 ^Λ〇 口 回收率之測試,再求得平均樣品回. 、鬲濃度進行 平均樣品回收率如表五所示,平 平°各濃度回收率及 〜100. 19%之間,其中苯、三氣乙=樣品回收率介於90. 41% 鯽之回收率皆在95%以上。 歸、乙醆正丁酯及2-庚
4 6 9 497 五、發明說明(12) 表五樣品回收率 濃度—平 / « rr、 兹 / η / \
* 3次實驗 此外,有關樣品儲存籍 ^ f ^ 3 ^ # ^ ^ 1 ^ ^ ^ ^ ^ ^ # 注入採樣管中,並以乾淨\進,:常溫保存是將定量樣品 吸附劑中’並以銅製盲拾〃 週鱼保存於 ^ 將採樣官兩端鎖緊’再以伴鮮腔: 密封後儲存於保鮮盒中。而9 > v 1 丹乂保鮮膜 Λ, ^ ^ 而3 C保存則是將保鮮盒置於3它 的冰I目中冷藏’使用假、、® # 士 .,、2 π & # σ低伽保存可降低樣品在採樣管内分解 及擴散,以避免樣品的流失。
第15頁 五、發明說明(13) . 在28天保存期間,其相對西收率如表六所示。 結果可知,所有的樣品於3 °C儲存的致果較室溫保°由表中 佳。苯於28天的保存期間,無論是以室溫保存= 存’其相對回收率皆可達9〇%以上,而二翕/ 保 丁酿、m,P-二曱苯及〇一二’甲苯於28天的保存 乙1正 進打保存時,其相對回收率亦可達 4,以3 c 2-庚酮外,所有樣品於7天的保存 二此外,除了 皆在90%以上。 ’ 其柄對回收率 表六樣品期限
苐16頁 469497 五、發明說明(14) 以本案之採樣裝置至科學園區之一半導體廠進行環境 實測。採樣點設在廠内的黃光區,採樣時間為5月2 3曰上 午10時15分至隔天上,午1〇時15分,每小時採集一個樣品, 共採集24個現場樣品’採樣流速介於 19,8mL/min之間。 完成採樣後,隨即將採樣管以1〇〇mL/miri乾淨的氮氣 吹拂5分鐘,並以熱脫附儀及氣相層析質譜儀進行分析, 分析結果如表七及第四圖所示。
_分析結果顯示可定性的污染物有1 2種,如第四圖所 示可疋里的污染物有7種,如表七所示。其中又以丙嗣 及異丙醇的濃度較高,其最高濃度分別為439 2 ppbv& d9 ppbv,最低濃度分別為38 7 ppbv及1〇48 ppbv, 平均濃度則為117. 9 ppbv及182. 3 ppbv。 由此可知’本、案所應用 機化合物之採樣裝置具有以 I由於本案之應用於半導體 之採樣裝置,能同時對極性 疋量,故可節省人力及時間 2·本案之應用於半導體作業 樣裝置,其中該採樣裝置在 業’不須低溫設備,故具有 综上所述,本索之應用 有機化合物之採樣裝置確實 實際應用於半導體作業環境 於半導體作業環境中揮發性有 下之優點: 作業環境中揮發性有機化合物 與非極性有機氣體進行吸附 〇 環境中揮發性有機化合物之採 常溫下即可進行吸附採樣作 方便性及應用彈性。 於半導體作業環境中一揮發性 能解決習知技術之缺央, , 且用匕 中’以解決工業安全之問題,
第17頁 469497 五、發明說明(15) 因此實具產業之應用價值。 本案創作得由熟悉此技藝之人士任施匠思而為諸般修 飾,然皆不脫如附申請專利範圍所欲保護者。 表七半導體廠實測結果
Peak 編號 1 2 8 9 12 11 Η 時間 丙酮 異丙醇 甲笨 乙酸正 丁醋 2-庚酮 m,p-二 曱苯 〇-二甲 苯 10:15 116 4 16.9 40 19.6 6 5.3 18.7 17.9 11:15 53.1 171.9 19.3 13.5 107.2 16.5 12.9 12:15 40.4 172.7 20.7 10.4 67.5 17.5 18.5 13:15 796.1 * 904.3* 14.3 13.2 9 1.0 19.2 13.6 14:15 434.6 751.6* 13.3 12.2 13 8.4 16.5 14.8 15:15 203.3 1377.5* 12.3 18.3 56.6 14.6 14.3 16:15 870.7* 360.5 11.9 10.2 6 1.1 17.6 16.8 17:15 1 44 15 6 15.4 16.4 95.4 23.6 19.8 18:15 50 132 16.8 17.3 54.3 25.8 17,6 19:15 44,7 130.3 25.3 15.0 98.8 24.9 19.7 20:15 5 1 108.8 3 1.8 10.4 104.0 17.4 13.6 2 1:15 73 115.8 37.7 19.4 77.1 16.9 17.2 22:15 47.4 234.4 27.4 19.6 68.6 18.6 19.4 23:15 4 1.8 206.2 2 1.3 22.6 134.2 24.5 20.8 00:15 55.5 127 172.0 13.0 105.0 27.5 2 1.6 01:15 128.9 185.3 2 1 27.1 67.9 2 1.3 24.3 02:15 72.5 153.8 18.9 26.6 64.7 18.2 20.8 03:15 78.4 104.8 18.3 13.8 7 1.5 15.3 18.7 0 4:15 58.1 106.3 17.4 1 5.0 86.0 19.5 13.6 05:15 38.7 137 26 20.8 7 1.7 17.6 16.4 06:15 89.4 139.6 28.7 2 1.3 69.2 18.5 17.5 07:15 2970.1 * 3 11.3 37.1 19.7 70.7 17.6 15.6 08:15 43 9.2 174.7 27.8 14.4 78.5 19.6 12.9 09:15 216.1 680.2* 24 16.9 61.0 17.4 13.4 平均值 117.9 182.3 29.1 16.9 8 1.9 19.4 17.2 最大值 439.2 416.9 172 27.1 138.4 27.5 24.3 最小值 38.7 104.8 11.9 10.2 54.3 14.6 12.9 標準差 117.7 86.5 3 1.5 4.7 22.9 3.4 3 . 1 單位:p p b *表濃度超過 校正曲線範圍,僅供參考
第18頁 46 9 49 7 圖式簡單說明 第一圖:係為本案最佳實施例之多重床吸附管脫附溫度與 積分面積之關係圖。 第二圖:係為本案最佳實施例之多重床吸附管脫附時間與 積分面積之關係圖。 第三圖:係為本案最佳實施例之九種半導體作業環境中之 揮發性有機化合物之氣相層析標準圖譜。 第四圖:係為本案最佳實施例之半導體廠實測之分析圖 譜。
第19頁

Claims (1)

  1. 4 6 9 49 7 六、申讀專利範圍 1· 一種應用於半導體作業環境中一揮發性有機化合物之 採樣裝置,其包括: 一自動採樣裝置;以及 一多重床吸附管(mul ti-sorbent trap)可連接於該自 動採樣裝置’在常溫下用以採集吸附該揮發性有機化 合物’其中該揮發性有機化合物係含有極性與非極性 化合物。 2 ·如申請專利範圍第1項之採樣裝置,其中該揮發性有機 化合物係選自於丙酮(Acetone)、異丙醇(ipA)、苯 (Benzene)、三氯乙稀(Trichloroethylene)、甲苯 (Toluene)、乙酸正丁酯(Butyl Acetate)、環戊酮 (Cyclopentanone)、間位/ 對位二甲苯(m,p-xy lene)、 2-庚酮(2-Heptanone)、鄰-二曱苯(〇-xy 1 ene)等其中 之一與其任何組成等其中之一的揮發性有機化合 物。 3. 如申請專利範圍第1項之採樣裝置,其中該多重床吸附 管可連接於一冷凍濃縮熱脫附裝置,用以脫附該揮發性 有機化合物。 4. 如申請專利範園第3項之採樣裝置,其中該冷凍濃縮熱 脫附裝置連接於一氣相層析儀與一質譜儀,用以定性與 定量分析該揮發性有機化合物。 5 ‘如申請專利範圍第1項之採樣裝置,其中該揮發性有機 化合物被偵測之最小濃度極限為ppbv。 6.如申請專利範圍第1項之採樣裝置,其中該多重床吸附
    469497
    管係以一石墨化碳黑(graphiti zed carbon black)及一 碳分子篩(carbon molecular sieve)為一吸附劑。 7. 如申請專利範園第6項之採樣裝置,其中該石墨化碳黑 具一大於400 °C之溫度上限’及該碳分子篩具一溫度上 限為4 0 0它。 8. 如申請專利範圍第1項之採樣裝置,其中該多重床吸附 管係為一玻璃管。 9. 如申請專利範圍第1項之採樣裝置,其中該自動採樣裝 置係為一自動連續採樣裝置, ^ 1 0‘如申請專利範圍第9項之採樣裝置,其中該自動採樣裂 置包括24根該多重床吸附管。 、 11. 一稜應用於半導體作業環境中一揮發性有機化合物之 採樣分析裝置,其包括: 一自動採樣裝置,.可連接於一多重床吸附管 (mul ti-sorbent trap),在常溫下用以採集吸附該揮 性有機化合物’其中該揮發性有機化合物係含有極性 非極性化合物; 興 一冷凍濃縮熱脫附裝置可連接於該多重床吸附管,用r 脫附該揮發性有機化合物;以及 一氣相層析儀與一質譜儀’連接於該冷凍濃縮熱脫附 置,用以定性與定量分析該揮發性有機化合物。 ' 、 1 2.如申請專利範圍第1丨項之採樣分析裝置,其中該揮發 性有機化合物係選自於丙網(Acetone)、異丙醇 (IPA)、苯(Benzene)、三氯乙烯
    4 6 9 4 9 7 案號 90104622 %年丨f月Γ日 修正
    六、申請專利範圍 (Trichloroethylene)、曱苯(Toluene)、乙酸正丁 g旨 (Butyl Acetate)、環戊明(Cyclopentanone)、間位/ 對位二甲苯(m,p-xylene)、 甲基正戊基酮 (2-Heptanone)、鄰-二甲苯(o-xylene)等其中之一與 其任何組成等其中之一的揮發性有機化合物。 1 3.如申請專利範圍第11項之採樣分析方法: 性有機化合物被偵測之最小濃度極限為ppbv 1 4.如申請專利範圍第11項之採樣分析裝置, 該氣相層析儀以一串聯方式連接。 1 5 ·如申請專利範圍第11項之採樣分析裝置, 床吸附管係以一石墨化破黑(graphitized carbon black)及一破分子篩(carb〇n molecular sieve)為一吸 附劑。 1 6.如申請專利範圍第丨5項之採樣分析裝置,其中該石墨 化碳黑具一大於4 〇 〇艺之溫度上限,及該碳分子篩具一 溫度上限為400。(:。 八 1 7.如申請專利範圍第11項之採樣分析裝置 床吸附管係為一玻璃管。 1 8.如申請專利範圍第11項之採樣分社裴置 採樣裝置係為一自動連續採樣裝置。 1 9.如申請專利範圍第丨8項之採樣分杜裝置 採樣裝置包括24根該多重床吸附管/>' 其中該揮發 該質譜儀與 其中該多重 其中該多重 其中該自動 其中該自動
    第22頁
TW090104622A 2001-02-27 2001-02-27 Sampling apparatus of environmental volatile organic compound for semiconductor operation TW469497B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW090104622A TW469497B (en) 2001-02-27 2001-02-27 Sampling apparatus of environmental volatile organic compound for semiconductor operation
US09/883,515 US20020157483A1 (en) 2001-02-27 2001-06-18 Sampling apparatus for adsorbing volatile organic compound in semiconductor operating environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW090104622A TW469497B (en) 2001-02-27 2001-02-27 Sampling apparatus of environmental volatile organic compound for semiconductor operation

Publications (1)

Publication Number Publication Date
TW469497B true TW469497B (en) 2001-12-21

Family

ID=21677492

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090104622A TW469497B (en) 2001-02-27 2001-02-27 Sampling apparatus of environmental volatile organic compound for semiconductor operation

Country Status (2)

Country Link
US (1) US20020157483A1 (zh)
TW (1) TW469497B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092077B2 (en) * 2001-09-24 2006-08-15 Entegris, Inc. System and method for monitoring contamination
US20040023419A1 (en) * 2001-09-24 2004-02-05 Extraction Systems, Inc System and method for monitoring contamination
GB2395785B (en) * 2002-11-30 2006-04-05 Markes Int Ltd Analytical apparatus
EP2285462B1 (en) 2008-05-27 2020-12-16 PerkinElmer Health Sciences, Inc. Method and device for modulating flow of a fluid in a chromatography system
US8365575B2 (en) * 2008-11-06 2013-02-05 Bae Systems Information And Electronic Systems Integration Inc. Chemically modified organic CDC based rapid analysis system
AU2010228936B2 (en) 2009-03-24 2015-07-09 Perkinelmer U.S. Llc Sorbent devices with longitudinal diffusion paths and methods of using them
US8388736B2 (en) * 2009-10-02 2013-03-05 Perkinelmer Health Sciences, Inc. Sorbent devices and methods of using them
EP2580585B1 (en) 2010-06-14 2019-09-18 PerkinElmer Health Sciences, Inc. Fluidic devices and methods of using them
CA2812269C (en) 2010-09-22 2019-04-09 Perkinelmer Health Sciences, Inc. Backflush methods and devices for chromatography
WO2012103249A1 (en) * 2011-01-26 2012-08-02 Energy & Environmental Research Center Measurement of multimetals and total halogens in a gas stream
WO2017004010A1 (en) 2015-06-30 2017-01-05 Perkinelmer Health Sciences, Inc. Chromatography systems with mobile phase generators
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors

Also Published As

Publication number Publication date
US20020157483A1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
TW469497B (en) Sampling apparatus of environmental volatile organic compound for semiconductor operation
AU2016256798B2 (en) Sorbent devices and methods of using them
Woolfenden Monitoring VOCs in air using sorbent tubes followed by thermal desorption-capillary GC analysis: summary of data and practical guidelines
Ras et al. Sampling and preconcentration techniques for determination of volatile organic compounds in air samples
Pellizzari et al. Collection and analysis of trace organic vapor pollutants in ambient atmospheres. Thermal desorption of organic vapors from sorbent media
US5395589A (en) Apparatus for rapid and specific detection of organic vapors
JP5049214B2 (ja) 汚染物を測定、管理するためのシステムおよび方法
US7430893B2 (en) Systems and methods for detecting contaminants
Wang et al. Determination of complex mixtures of volatile organic compounds in ambient air: canister methodology
Strandberg et al. Evaluation of two types of diffusive samplers and adsorbents for measuring 1, 3-butadiene and benzene in air
Hodgson et al. A multisorbent sampler for volatile organic compounds in indoor air
US20060258017A1 (en) Apparatus and methods for use in concentration of gas and particle-laden gas flows
WO2004086466A2 (en) System and method for monitoring contamination
Jayanty Evaluation of sampling and analytical methods for monitoring toxic organics in air
Maria Evaluation of Anasorb CMS and comparison with Tenax TA for the sampling of volatile organic compounds in indoor and outdoor air by breakthrough measurements
US20050120775A1 (en) Systems and methods for detecting contaminants
Dewulf et al. Measurement of Atmospheric Monocyclic Aromatic Hydrocarbons and Chlorinated C1-and C2-Hydrocarbons at NG. M− 3 Concentration Levels
Tombe et al. SAMPLING AND ANALYSIS OF LIGHT HYDROCARBONS (C1–C4)—A REVIEW
US7185550B2 (en) Time domain resolving chemical sampler using sorbent material
Namieśnik et al. A review of denudation—technique for sampling and measurement of atmospheric trace constituents
Yang et al. Evaluation of Tenax-TA adsorption for the measurement of toxic organic compounds in workplace air using thermodesorption/gas chromatography
JP6290564B2 (ja) 環境大気中の揮発性塩素化炭化水素の測定方法
Shen et al. Optimization of a solid sorbent dynamic personal air sampling method for aldehydes
Bayer Advances in trapping procedures for organic indoor pollutants
Seko et al. Analysis of VOCs in air by automated tube sampling and thermal desorption GC-MS

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees