TW463267B - P-type metal oxide semiconductor manufacture process - Google Patents
P-type metal oxide semiconductor manufacture process Download PDFInfo
- Publication number
- TW463267B TW463267B TW88109254A TW88109254A TW463267B TW 463267 B TW463267 B TW 463267B TW 88109254 A TW88109254 A TW 88109254A TW 88109254 A TW88109254 A TW 88109254A TW 463267 B TW463267 B TW 463267B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- patent application
- scope
- item
- gate
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
46326 7 五、發明說明(1) 5 -1發明領域: 本發明係有關於一種用在半導體元件製程中產生pM〇s 的方法,特別是有關於一種防止硼滲透來產生PM〇s的方法 5-2發明背景: 當積體電路之密度不斷地擴大時,為使晶片(chip)面 積保持一樣,甚至縮小’以持續降低電路之單位成本,唯 —的辦法,就是不斷地縮小電路設計規格(design rule) 。且當元件的尺寸縮小時’在源/汲極中的接合面必須配 合變淺’以避免短通道效應。因此’當我們來進行PM〇Si 接面的高摻雜汲極的離子植入時,必須使用低能量、高劑 量的硼離子(硼或氟化硼)。但是在回火製程,藉以恢復石夕 晶片表面的結晶結構的同時’也使得源及極中所植入侧 離子在矽晶片裡發生熱擴散’而使硼離子降低其靠近表面 的濃度,造成源/沒極阻值的提高與驅動電流(ID,SAT)的衰 退,進而降低半導體元件的效能。 5 - 3發明目的及概述:46326 7 V. Description of the invention (1) 5 -1 Field of the invention: The present invention relates to a method for generating pM0s used in the process of manufacturing semiconductor devices, and in particular to a method for preventing boron infiltration to generate PM0s. 5 -2 Background of the Invention: When the density of integrated circuits is continuously expanding, in order to keep the chip area the same, or even to reduce the unit cost of the circuit, the only way is to continuously reduce the circuit design specifications ( design rule). And when the size of the component is reduced, the junction surface in the source / drain must be shallower to avoid short-channel effects. Therefore, when we do ion implantation of highly doped drain electrodes at the PMOSi junction, we must use low-energy, high-dose boron ions (boron or boron fluoride). However, during the tempering process, the crystal structure on the surface of the Shi Xi wafer is restored, and at the same time, the side ions implanted in the source and the electrode undergo thermal diffusion in the silicon wafer, thereby reducing the concentration of boron ions near the surface, causing the source The increase of the non-polar resistance value and the decline of the driving current (ID, SAT) reduce the efficiency of the semiconductor device. 5-3 Invention Purpose and Overview:
第4頁 463267 五、發明說明(2) " 蓉於上述之發明背景中,傳統產生PMOS方法的諸多缺 黑本發明提供一種製程,藉以解決傳統產生PMOS的問題 “本發明的一個目的,在於提供一種產生pM〇s的方法, 精^防止硼滲透。由於本發明在產生pM〇s製程中,利用快 ,,化,氮化製程來成長薄氧化氣層,此薄氧化氮層可以 恳虱(NO)或氧化二氮(%。),#由此薄氧化氮(n〇,〜〇) '成,可有效防止源/汲極中的硼離子在回火製程中 柱,:擴散而降低其靠近表面的濃度’而達到使硼離子維 持其罪近表面的濃度的目的。 本發月的3目的’在於提供—種產生p仙 到:高效能的半導體元件,因為在後續的回火製 ^ 1植人的棚離子因熱擴散而降低其靠近表面的濃产, =成源/没極中阻值的提高與驅動電流% 化氣⑽,M)層的生成,可使爛離子維持乂 表面的濃度,導致源/汲極的低阻值和高驅 、、Page 4 463267 V. Description of the invention (2) In the above background of the invention, there are many shortcomings of the traditional method of generating PMOS. The present invention provides a process to solve the problem of traditional generation of PMOS. "An object of the present invention is to Provided is a method for generating pMos, which can prevent boron infiltration. Since the present invention uses a fast, chemical, and nitridation process to grow a thin oxide gas layer in the process of generating pMos, the thin nitrogen oxide layer can be used to lice (NO) or dinitrogen oxide (%.), #Thus the thin nitrogen oxide (n0, ~ 〇) ', which can effectively prevent boron ions in the source / drain electrode during the tempering process: diffusion and decrease Its concentration near the surface 'achieves the purpose of maintaining the concentration of boron ions near the surface. The purpose of this month is to provide a kind of semiconductor device that produces ps: high-performance semiconductor devices, because in the subsequent tempering system ^ 1 The implanted shed ions reduce their concentrated production near the surface due to thermal diffusion, = the increase in resistance in the source / pole electrode and the driving current% of the gas ions, M) the formation of rotten ions can maintain rotten ions 乂Surface concentration, resulting in low resistance of the source / drain and High drive
),進而提高半導體元件的效能。 电机、VSAT), Thereby improving the efficiency of the semiconductor device. Motor, VSAT
來產之;:,本發明提供了一種防止删參透 术產生PM0S的方法首先,一半導體底;y·廿—L =化層與問極層。然後,光阻層在間極層工面 由曝光之後圖案轉移到光阻層上,再以光阻層為遮In the future, the present invention provides a method for preventing PMOS from being generated by the deletion process. First, a semiconductor bottom; y · 廿 —L = chemical layer and interrogation layer. Then, the pattern of the photoresist layer is transferred to the photoresist layer on the working surface of the interlayer layer, and the photoresist layer is used as a mask.
第5貝 463267 五、發明說明(3) 閘極層及閘氧化層,和進行去光阻程序。接下來,利用快 速氧化及氮化製程來成長薄氧化氮層。其次,以離子植入 法進行侧離子淺接面的高摻雜汲極(HDD )。並利用低遷化 學氣相沉積法分別沉積TEOS和氮化矽,蝕刻TE〇s和氮化石夕 以形成間隙壁。接著,進行硼離子的重摻雜和回火,並把 不要的薄氧化氮(N0, 乂0)層部分去除。最後,進行金屬石夕 化物的製程。 5-4圖式簡單說明: 第一圖為本發明實施例的流程圖; 第一 A圖到第二I圖顯不本發明實施例,防止爛參 來產生PMOS的方法中’各步驟的剖面結構示意圖; 主要部分之代表符號: 10 半導體底材 1 1 閘氡化層 12 閘極層 14 氧化氣層 16 高摻雜汲極 1 6 A 源極 1 6 B 没極 18 TE〇sArticle 5 463267 V. Description of the invention (3) Gate layer and gate oxide layer, and perform photoresist removal process. Next, a rapid oxidation and nitridation process is used to grow a thin nitrogen oxide layer. Secondly, a highly doped drain (HDD) of the side ion shallow junction is performed by the ion implantation method. TEOS and silicon nitride were deposited by low migration chemical vapor deposition, and TE0s and nitride were etched to form the partition wall. Next, the boron ions are heavily doped and tempered, and the unnecessary thin nitrogen oxide (N0, 乂 0) layer is partially removed. Finally, the metal oxide process is performed. Figure 5-4 is a brief description: The first diagram is a flowchart of an embodiment of the present invention; the first diagram A to the second I show a section of each step in the method of preventing rotten parameters to generate a PMOS according to the embodiment of the present invention. Schematic diagram; Representative symbols of main parts: 10 semiconductor substrate 1 1 gated layer 12 gated layer 14 oxidized gas layer 16 highly doped drain 1 6 A source 1 6 B pole 18 TE〇s
4 6326 7 五、發明說明(4) 2 0 2 1 2 2 2 4 2 6 2 8 氮化發層 間隙壁 銘 閘極石夕化鈷 源極矽化鈷 汲極矽化鈷 -5發明詳細說明 參考第 的方法,以 步驟2提供 然後於步驟 之後圖案轉 及閉氧化層 快速氧化及 以離子植入 利用低壓化 TEOS和氮化 子的重摻雜 製程。在第 將在下面的 首先,4 6326 7 V. Description of the invention (4) 2 0 2 1 2 2 2 4 2 6 2 8 Nitride layer gap wall gate gate stone Cobalt source Cobalt silicide Drain Cobalt silicide-5 The method is provided in step 2 and then after the step, the pattern is transferred and the closed oxide layer is rapidly oxidized, and the heavily doped process using low-voltage TEOS and nitride is implanted by ion implantation. At first will be below first
一圖, 顯示本 半導體 3中, 移到光 ,和進 氮化製 法進行 學氣相 矽以形 和回火 一圖所 第二A 根據本 發明實 底材並 光阻層 阻層上 行去光 程來成 硼離子 沉積法 成間隙 。最後 提到的 圖到第 說明書所提供產生一防 施例主要步驟的流程圖 在上面形成閘氧化層與 在閘極層上形成,並且 ,再以光阻層為遮罩蝕 阻程序。接下來,在步 長薄氧化氮層。其次, 淺接面的高摻雜沒極。 刀別/儿積TE0S和氣化石夕 壁。接著,在步驟γ中 一步,步驟8進行金屬 製程中,不同的步驟的 二I圖提到與解說。 止硼滲透 。首先, 閘極層。 經由曝光 刻閑極詹 驟4利用 在步驟5 步驟6是 ,蚀刻 進行硼離 石夕化物的 適當條件 半導體底材1 〇 ,其係使用電性為Ν型的矽A diagram showing the present semiconductor 3, moving to light, and performing a nitriding process to learn the formation and tempering of fumed silicon. FIG. 2A shows a solid substrate according to the present invention and a photoresist layer resist layer to go up to the optical path. Boron ion deposition creates gaps. The last mentioned figure to the flowchart provided in the description of the main steps of generating a preventive embodiment are to form a gate oxide layer on the gate layer and a gate layer, and then use the photoresist layer as a mask to etch the resist. Next, a thin nitrogen oxide layer is formed in steps. Secondly, the shallow junctions are highly doped and non-polar. Knife / child product TE0S and gas fossils Yubi. Next, in step γ, step 8 and step 8 are performed in the metal manufacturing process. The two I diagrams of the different steps are mentioned and explained. Stop boron infiltration. First, the gate layer. After exposure, the electrode is used in step 4. In step 5 and step 6, the etching is performed under the appropriate conditions for the boron ionite semiconductor substrate 1 〇, which uses N-type silicon.
第7頁 46326 7 五、發明說明(5) 底材’送入氧化爐管内’以乾式氧化法將表面上的妙氧化 成厚度約在1 0 0到2 5 0埃的二氧化矽,這二氧化矽層將作為 半導體元件的閘氧化層ll(gate oxide)。緊接著,以低壓 化學氣相沉積法(LPCVD ’ low pressure chemicaJ[ vap〇r d epos i t i on )沉積厚度約2 0 0 0到3 0 0 0埃的多晶石夕在二氧化 矽上’其溫度控制在攝氏600至650度左右,壓力約在〇 3 到0 _ 6托(t or r )。以熱擴散法或離子植入的方式,將高濃 度的硼、磷或砷,摻入剛沉積的多晶矽裡,藉以降低閘極 的電阻率,來減少閘極導電層的"RC時間延遲(RC time de 1 ay )"。在這裡必須簡略地提到,半導體底材i 〇是有 元件的結構在裡面形成,而這些對本發明並不重要,並不 會因為沒有詳細描述細節而無法理解本發明。 然後’沉積光阻(photoresist)層在多晶石夕上,利用 步進機(stepper)進行局部性的曝光(exposure),使光罩 上的圖案完整的傳遞到光阻上,然後再進行光阻的顯影, 藉以定義閘極尺寸大小。再以光阻為蝕刻罩幕,利用自動 對準反應性離子蝕刻法(se 1 f -a 1 i gn RIE)蝕刻多晶矽, 用以形成閘極1 2結構,並將不要的閘氧化層去除《最後 ’以乾式或濕式蝕刻的方式進行光阻的去除,如第二A圖 所示。 第二B圖顯示,利用快速氧化(rap i d therma 1 oxidation,RTO)及氮化(rapid thermal nitridation)製Page 7 46326 7 V. Description of the invention (5) The substrate 'sent into the oxidation furnace tube' uses a dry oxidation method to oxidize the silicon dioxide on the surface to a thickness of about 100 to 2 50 angstroms. The silicon oxide layer will serve as a gate oxide layer 11 of the semiconductor device. Immediately afterwards, polycrystalline stones with a thickness of about 2000 to 300 angstroms were deposited on silicon dioxide by LPCVD 'low pressure chemicaJ [vap〇rd epos iti on'. It is controlled at about 600 to 650 degrees Celsius and the pressure is about 0 to 6 torr (t or r). By thermal diffusion or ion implantation, a high concentration of boron, phosphorus, or arsenic is doped into the newly deposited polycrystalline silicon to reduce the gate resistivity and reduce the "RC time delay of the gate conductive layer ( RC time de 1 ay) ". It must be mentioned briefly here that the semiconductor substrate i 0 is a structure with elements formed therein, and these are not important to the present invention, and the present invention cannot be understood because the details are not described in detail. Then, a photoresist layer is deposited on the polycrystalline stone, and a stepper is used for local exposure, so that the pattern on the photomask is completely transferred to the photoresist, and then the photoresist is performed. Resistance to define the gate size. Photoresist is used as an etching mask, and polycrystalline silicon is etched by an auto-aligned reactive ion etching method (se 1 f -a 1 i gn RIE) to form a gate 12 structure, and an unnecessary gate oxide layer is removed. Finally, the photoresist is removed in a dry or wet etching manner, as shown in FIG. 2A. Figure B shows the use of rapid oxidation (rap i d therma 1 oxidation (RTO) and rapid thermal nitridation)
4632^7 五、發明說明(6) 氮(NO, N20) 增進對硼滲 在後續的回 構,但是也 ’使硼離子 動電流( 成,可在 ion)至TE0S 沒極中的砸 低阻值和高 程在半導體底材1 〇和閘極2 2上成長薄氧化 層1 4,其氧化氮層厚度大約2〇〜3〇埃,用以 透(b〇ron penetration )之抵抗力。這是因為 火製程中,雖然可以恢復矽晶片表面的結晶結 將導致所植入的硼離子在矽晶片裡發生熱擴^ 降低其靠近表面的濃度’造成阻值的提高與驅 U'sat)的衰退。藉由此薄氧化氮(ΝΟ, Ν20)層的生 回火製程中有效防止硼滲透(b〇r〇n penetrat 層及外擴散(Oil t d i f f us i on )的發生,而使源/ 離子維持其靠近表面的濃度,導致源/汲極的 驅動電流(ID,SAT) ’進而提高半導體元件的效能 接著,我們以整個剛建立的閘極1 2為罩幕,以硼為 離子源’對整另晶片進行硼離子(硼或氟化硼)的植入。所 使用的離子植入能量約在〇. 5到8 k e V之間,所植入的摻質 浪度約1 015離子/cm2 ’主要是用來作為防短通道效應( short channel effect)發生的高摻雜汲極1 6 (high doped drain,HDD )之用,以PHDD植入稱之。且因為使用 低能量,植入離子在半導體底材内所植入的深度將比較淺 ’因此稱之為淺接面(shallow junvction)。值得注意的 是’此一淺接面的高摻雜汲極的離子植入步驟也可放在沉 積薄氧化氮層製程之前,並不會因為順序的前後對調而影 響到本發明。4632 ^ 7 V. Description of the invention (6) Nitrogen (NO, N20) enhances the subsequent restructuring of boron infiltration, but also 'makes the boron ion current (formable, can be in the ion) to TE0S stepless to reduce the resistance Value and elevation grow a thin oxide layer 14 on the semiconductor substrate 10 and the gate electrode 22, and the thickness of the nitrogen oxide layer is about 20 to 30 angstroms for resistance of penetration penetration. This is because in the fire process, although the crystalline junction on the surface of the silicon wafer can be restored, the implanted boron ions will thermally expand in the silicon wafer. ^ Decreasing the concentration near the surface will cause an increase in resistance and drive U'sat. Decline. This effectively prevents the occurrence of boron penetrat layer and external diffusion (Oil tdiff us i on) during the green tempering process of the thin nitrogen oxide (NO, Ν20) layer, so that the source / ion maintains its The concentration near the surface causes the source / drain drive current (ID, SAT) to further improve the performance of the semiconductor device. Next, we use the gate 12 just established as a screen and boron as an ion source. The wafer is implanted with boron ions (boron or boron fluoride). The ion implantation energy used is about 0.5 to 8 ke V, and the implanted dopant wave length is about 1 015 ions / cm2. It is used as a high doped drain (HDD) 16 to prevent the occurrence of short channel effects. It is called PHDD implantation, and because of the low energy, the implanted ions are in the semiconductor. The depth of implantation in the substrate will be relatively shallow, so it is called a shallow junction. It is worth noting that the highly implanted drain ion implantation step of this shallow junction can also be placed in the deposition. Before the thin nitrogen oxide layer process, it will not be affected by the sequence To the present invention.
第9頁 463267 五、發明說明¢7) 第二D圖顯示出:利用低壓化學氣相沉積法(LpcVD) 分別沉積TEOS和氮化矽在晶片上,TEOS層1 8厚度約200 到5 00埃’氮化矽層2 0厚度約在1〇〇〇到2〇〇〇埃。接著, 在第二E圖中’利用非等向性蝕刻方式將氮化矽、TE〇s蚀 刻,以形成閘極1 2侧壁上的間隙壁2 1 。 第二F圖顯示,以硼(硼或氟化硼)為離子源,對晶片 進行南濃度且深度較深的離子植入,以進行源極1 6 A 與 汲極1 6 B的重摻雜(heavy doping),濃度約1 〇ivcm2,、 以P植入稱之,接下來將經重摻雜植入後的晶片送入埶擴 散爐内’以約攝氏900到1〇〇〇度左右的高溫,進行硼原子 的擴散°同時將因離子植入’而被破壞的部分晶片表面的 矽原子結構,加以回火(annealing)。然後,把不要的薄 氧化氮(NO, Nz0)層部分去除。 從第二G圖至I圖的製程,我們稱為金屬矽化物( refractory metal silicide)的製程,其主要特性有:低 阻,(resistivity)、抗電子遷移(electr〇n migrati〇n) 、尚熔點等。主要應用在形成p〇lycide結構,有效於多晶 石=金屬導體間形成低阻值之歐姆接觸(〇hmic c〇ntact) 2低1^延遲時間,提昇元件執行速度。f用組成金屬石夕 钍蛊,兀素為鈦、自、鈕、鎢、鈷等。接下來,我們將以 鈷為例,敘述金屬矽化物的製程及條件。Page 9 463267 V. Description of the invention ¢ 7) The second D diagram shows that TEOS and silicon nitride are deposited on the wafer by low pressure chemical vapor deposition (LpcVD) respectively. The thickness of the TEOS layer is about 200 to 500 Angstroms. 'The silicon nitride layer has a thickness of about 20 to 2000 Angstroms. Next, in the second diagram E, the silicon nitride and TE0s are etched by using an anisotropic etching method to form a partition wall 2 1 on the side wall of the gate electrode 12. The second F image shows that the boron (boron or boron fluoride) is used as the ion source, and the wafer is subjected to south-concentration and deeper ion implantation to re-dop the source 16 A and the drain 16 B. (Heavy doping), with a concentration of about 10 ivcm2, referred to as P implantation, and then the heavily doped implanted wafers are sent into a krypton diffusion furnace at a temperature of about 900 to 1000 degrees Celsius. At a high temperature, diffusion of boron atoms is performed. At the same time, the silicon atomic structure on the surface of the wafer that has been damaged by ion implantation is annealed. Then, the unnecessary thin nitrogen oxide (NO, Nz0) layer is partially removed. The process from the second G chart to the I chart is called the refractory metal silicide process, and its main characteristics are: low resistance, resistivity, anti-electron migration (electrón migrati〇n), Melting point and so on. The main application is to form a polycide structure, which is effective for forming low-resistance ohmic contacts (polyhedral contact) between polycrystalline stones and metal conductors. 2 The delay time is reduced by 1 ^, which improves the speed of component execution. f is composed of metal sulphide, and the element is titanium, titanium, tungsten, cobalt, etc. Next, we will use cobalt as an example to describe the process and conditions of metal silicide.
463267 五、發明說明(8) 第二G圖顯示出:厚度约200到】〇〇〇埃的金屬鈷2 2 ,以磁控直流濺鍍的方式,沉積在整個晶片的表面。接著 ,利用約攝氏6 0 0到8 0 0度的南溫,此時,部分沉積的銪 膜,將與閘極上的多晶石夕和汲極與源極上的石夕反應,分別 形成閘極矽化鈷2 4、源極矽化鈷2 6、和汲極矽化錄2 8 ,見第二Η圖。最後’對未參與反應或反應後所剩餘的 鈷(不過’不見得一定是以鈷的形式留下來),再以濕餘刻 的方式加以去除,如第二I圖。 以上所述僅為本發明之較佳實施例而已’並非用以 定本發明=巾請專利範S];凡其它未脫離本發明所揭示之 精神r所完成之等效改變或修飾,均應包含在下 專利範圍内。 κ甲請463267 V. Description of the invention (8) The second G-graph shows that metal cobalt 2 2 having a thickness of about 200 to 1000 angstroms is deposited on the entire wafer surface by magnetron DC sputtering. Next, using the south temperature of about 600 to 800 degrees Celsius, at this time, part of the deposited hafnium film will react with the polycrystalline stone on the gate and the drain and the stone on the source to form the gate, respectively. Cobalt silicide 24, source cobalt silicide 26, and drain silicide 2 8 are shown in the second figure. Finally, the cobalt remaining after not participating in the reaction or after the reaction (but not necessarily remaining in the form of cobalt) is then removed in a wet manner, as shown in the second figure. The above description is only a preferred embodiment of the present invention, and is not used to determine the present invention = patent application S]; all other equivalent changes or modifications made without departing from the spirit r disclosed in the present invention should include Within the scope of the next patent. kappa please
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW88109254A TW463267B (en) | 1999-06-04 | 1999-06-04 | P-type metal oxide semiconductor manufacture process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW88109254A TW463267B (en) | 1999-06-04 | 1999-06-04 | P-type metal oxide semiconductor manufacture process |
Publications (1)
Publication Number | Publication Date |
---|---|
TW463267B true TW463267B (en) | 2001-11-11 |
Family
ID=21640961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW88109254A TW463267B (en) | 1999-06-04 | 1999-06-04 | P-type metal oxide semiconductor manufacture process |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW463267B (en) |
-
1999
- 1999-06-04 TW TW88109254A patent/TW463267B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6136636A (en) | Method of manufacturing deep sub-micron CMOS transistors | |
US4874713A (en) | Method of making asymmetrically optimized CMOS field effect transistors | |
JPS6072272A (en) | Manufacture of semiconductor device | |
TW201010083A (en) | Sealing structure for high-k metal gate and method of making | |
JP2002141504A (en) | Formation method of extremely shallow junction | |
JP3149414B2 (en) | Method of fabricating a semiconductor device having a shallow junction | |
US6200840B1 (en) | Method for producing PMOS devices | |
JP2004134719A (en) | Manufacturing method for semiconductor element | |
EP0459398B1 (en) | Manufacturing method of a channel in MOS semiconductor devices | |
US6180464B1 (en) | Metal oxide semiconductor device with localized laterally doped channel | |
TW574746B (en) | Method for manufacturing MOSFET with recessed channel | |
US4514893A (en) | Fabrication of FETs | |
JPH05243555A (en) | Semiconductor device and its manufacture | |
US5924001A (en) | Ion implantation for preventing polycide void | |
JP2006508548A (en) | Field effect transistor drain / source extension structure with doped high-k sidewall spacers | |
US6284612B1 (en) | Process to fabricate ultra-short channel MOSFETs with self-aligned silicide contact | |
TW463267B (en) | P-type metal oxide semiconductor manufacture process | |
US6087248A (en) | Method of forming a transistor having thin doped semiconductor gate | |
KR100223736B1 (en) | Method of manufacturing semiconductor device | |
JPH0147016B2 (en) | ||
US5021358A (en) | Semiconductor fabrication process using sacrificial oxidation to reduce tunnel formation during tungsten deposition | |
EP0403368A1 (en) | Method of fabricating an integrated circuit with a double implanted field-effect transistor | |
KR20050065899A (en) | Schottky barrier tunnel transsitor and fabricating method thereof | |
EP0292042B1 (en) | Semiconductor fabrication process using sacrificial oxidation to reduce tunnel formation during tungsten deposition | |
TW404020B (en) | The method of fabricating the core device and I/O device on the semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |