TW463135B - Method for efficiently encoding three-dimensional graphics models - Google Patents

Method for efficiently encoding three-dimensional graphics models Download PDF

Info

Publication number
TW463135B
TW463135B TW89112851A TW89112851A TW463135B TW 463135 B TW463135 B TW 463135B TW 89112851 A TW89112851 A TW 89112851A TW 89112851 A TW89112851 A TW 89112851A TW 463135 B TW463135 B TW 463135B
Authority
TW
Taiwan
Prior art keywords
geometric value
predicted
value
error difference
patent application
Prior art date
Application number
TW89112851A
Other languages
Chinese (zh)
Inventor
Minerva Yeung
Boon-Lock Yeo
Francis Ng
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Application granted granted Critical
Publication of TW463135B publication Critical patent/TW463135B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A method of efficiently encoding the geometry of three-dimensional graphics model objects is disclosed. The disclosed method first compares a geometry value from the three-dimensional graphics model with a predicted geometry value that is created from previous geometry predictions. The method then quantizes an error difference between the actual geometry value and the predicted geometry value to produce a quantized error difference. The quantized error difference is then entropy encoded.

Description

46313 5 五、發明說明(l) 發明領域 本發明相關於電腦圖形的領域。特定的,本發明揭示一 有效編碼三維圖形模式的方法。 發明背景 ' 三維圖形的詳細程度及複雜度在這幾年急劇的增加。提 供複雜的三維圖形影像需要詳細的三維物件模式。詳細的 三維物件模式包含成千或上百萬的頂點及正交。 處理這樣大量的三維物件模式資料的能量變得日漸困 難。雖然個人電腦(PCs)的計算能力幾乎每兩年增加一 倍’處理器與主記憶體間的記憶體頻寬成為7ιαι π π〜 的,載負三維物件資料從主記憶體到處理器的通道經常不 能保持在即時提供影像所需要的資料速率。再者,主記憶 體與特定圖形控制器間的轉換也是限制效能的瓶頸。… 带!角形網狀基礎的三維物件模式中,每個三角 形表面由二個頂與三個平面正交、啐如一月 交)。在許多的三維物件模式中(^ '母頂—個正 座標儲存為四個位元組的單精母個三角形的頂與正交 網的每個三角形以七十二個點數值。因此,三角46313 5 V. Description of the Invention (l) Field of the Invention The present invention relates to the field of computer graphics. In particular, the present invention discloses a method for efficiently encoding three-dimensional graphics patterns. BACKGROUND OF THE INVENTION 'The level of detail and complexity of 3D graphics has increased dramatically in recent years. Providing complex 3D graphic images requires detailed 3D object patterns. Detailed 3D object patterns include thousands or millions of vertices and orthogonals. The energy to process such a large amount of 3D object model data becomes increasingly difficult. Although the computing power of personal computers (PCs) is almost doubled every two years, the memory bandwidth between the processor and the main memory becomes 7ιαι π π ~, the channel that carries three-dimensional object data from the main memory to the processor Often it is not possible to maintain the data rate required to provide images in real time. Furthermore, switching between main memory and specific graphics controllers is a bottleneck that limits performance. … In the three-dimensional object model with! Angular mesh foundation, each triangular surface is orthogonal to two planes by two apexes and intersects with each other like a month). In many three-dimensional object models (^ 'maternal apex — a positive coordinate stored as four bytes, the apex of a trigonometric triangle and each triangle of the orthogonal network have 72 points. Therefore, the triangle

6座標/頂χ3頂/三角形=72位元定義(4個位元组/座標X 動作,其中每個框包含一百萬個_三角形)。要產生即時的 秒,記憶體的匯流排資料速,角形而框速率為60框/ 秒。這樣的模型忽略掉色妒姓頊至少有4· 3十億位元组/ 更多的記憶體匯流排頻寬二特徵座標,其可能會消耗掉 目前的個人電腦系統通常 的3己憶體匯流排頻寬為5〇〇百6 coordinates / top χ3 top / triangle = 72-bit definition (4 bytes / coordinate X action, where each box contains one million _ triangles). To generate real-time seconds, the data rate of the memory bus is angular and the frame rate is 60 frames / second. Such a model ignores jealous surnames with at least 4.3 billion bytes / more memory bus bandwidth and two characteristic coordinates, which may consume the usual 3 memory buses of current personal computer systems. Bandwidth is 500 thousand

第5頁 46313 5 五、發明說明(2) 萬位元組/秒的範圍。很明顯的,此記憶體匯流排頻寬在 三維圖形透視圖上的主要瓶頸^在1 9 9 6的一項標題為 "Geometric compression through topological surgery"研究報告中’Taub in與Rossi gnac提議一種壓縮 及解壓縮的技術,其明顯的減少三維物件模型的大小。藉 由壓縮三維物件模型,較少的三維物件模型資料需要通過 主記憶體與處理器間頻寬受到限的匯流排。因此。更複雜 的三維物件模型可以通過相同的記憶體匯流排。Taub丨^及 Rossignac所介紹的方法就是稍後提議的動晝圖片專家小 組的第四壓縮標準的部份,所知道的MPEG4。詳細部份, 請參閱1 9 98年12月在羅馬MPEG4會議中提出IS0/IEC JTC1/SC29/WG11 WPEG98/M4312 之標題"Description of Core Experiments on 3D Model Coding"文件。 發明概要 揭示一種編碼三維圖形模型的方法。此方法首先比較一 幾何值與一具預測幾何值之三維圖形模式。此方法接著將 該幾何值與預測幾何值的誤差差異量化來產生一量化的誤 差差異13 本發明的其他目的、特色及優點將從隨附的圖示以及從 下面詳細的說明而變得明顯。 圖示簡诚 本發明的目的、特色及優點對熟習本技藝的人在下面詳 細說明的觀點下將變得明顯,其中: 圖1 A說明'MPEG4標準的編碼部份用的幾何編碼器之方塊Page 5 46313 5 V. Description of the invention (2) Range of ten thousand bytes / second. Obviously, the main bottleneck of the memory bus bandwidth in the three-dimensional graphics perspective ^ In a research report titled "Geometric compression through topological surgery" in 196, 'Taub in and Rossi gnac proposed a Compression and decompression techniques that significantly reduce the size of 3D object models. By compressing the 3D object model, less 3D object model data needs to pass through the limited bandwidth bus between the main memory and the processor. therefore. More complex 3D object models can be routed through the same memory bus. The method introduced by Taub and Rossignac is part of the fourth compression standard proposed by the Moving Picture Experts Group later known as MPEG4. For details, please refer to the document "Description of Core Experiments on 3D Model Coding", which was proposed at the Rome MPEG4 conference in December 1998. It is the title of IS0 / IEC JTC1 / SC29 / WG11 WPEG98 / M4312. SUMMARY OF THE INVENTION A method for encoding a three-dimensional graphics model is disclosed. This method first compares a geometric value with a three-dimensional graphics model with a predicted geometric value. This method then quantifies the error difference between the geometric value and the predicted geometric value to produce a quantized error difference.13 Other objects, features, and advantages of the present invention will become apparent from the accompanying drawings and from the detailed description below. The purpose, features, and advantages of the present invention will become apparent to those skilled in the art from the following detailed description, where: Figure 1 A illustrates the block of a geometric encoder used in the encoding part of the MPEG4 standard.

第6頁 46313 5 五、發明說明(3) 圖。 圖1 B洸明Μ PEG 4標準的3 D模型編碼部份用的幾何解碼器 之方塊圖。 圖2A說明根據本發明之教授所建立之幾何編碼器的方塊 圖。 圖2 B说明根據本發明之教授所建立之幾何解碼器的方塊 圖。 圖3A說明電動鑽孔機的三角網狀模型的線框透視圖。 圖3 B s尤明相對於對應圖3 A電動鑽孔機的兩個不同幾何編 碼之最大平方量化誤差而晝出的位元/三角圖表。 圖3C説明相對於對應圖3A電動鑽孔機的兩個不同幾何編 碼之均值平方量化誤差而晝出的位元/三角圖表。 圖4 A說明馬的三角網狀模型的線框透視圖。 圖4B說明相對於對應圖4 A馬的兩個不同幾何編碼之最大 平方量化誤差而晝出的位元/三角圖表。 圖4C說明相對於對應圖4 A馬的兩個不同幾何編碼之均值 平方量化誤差而晝出的位元/三角圖表。 體實例的詳細說明 揭示一種有效 一"一娜.厂.......味尘的乃次及裝置。在下3 的說明中,為了說明的目的,對特定術語加以描述 對本發明的徹底理解。然而,對熟習本技藝的 ^ 的’這些特定的細節在實做本發明時並非必要的 本發明已參考提議成為MPEG4標準的技術之—來加。以例如’ 明。然而,相同的技術可輕易的應用在其他形熊° 兒 〜、-—寒隹§ 46313 5 五、發明說明(4) 形系統。 三物件模型壓縮 複雜的三維圖形需要报大 _ 二維物件模型對電腦資源有極詳盡二維物件模型。很大的 三維物件模型需要大量的永大的要求。特定的,彳良大的 主記憶體來在透視圖時快速的陵儲存空間來儲存,大量的 流排頻寬來移動三維物件模型存取’以及很大的記憶體匯 型複雜的三維物件模型對長期到處理器做處理。要降低大 匯流排頻寬的這些需求,許多、儲存 5己憶體以及記憶體 縮此三維物件模型的方法。三=二維圖形系統已採用了壓 可提供非常好的壓縮比、最j物件模型的理想壓縮系統 做。 玟小的物件失真以及簡單的實 MPEG4 3D模型編碼 所知為動畫圖片專家小組的— _ 所知為"MPEG4,·的影像壓縮系統'經正疋義一個 定義影像中的物件來壓料/像^厭错由以三維物件模型 丁不丈项知像。被壓縮的影像可以利用三 維物件模型描给景象而加以重建。 要有效率地儲存MPEG4三維物件模型,MpEG4標準必須要 採納標準的3D模型編瑪技術,—般參考為3DMC。提議給 MPEG4委員會的其中一個3D模型編碼(3DMC)技術是Taubin 及Rossignac 在其 1996 的標題為1' Geometric compression through topological surgery"的研究報告中定義的模型 編碼系统。Page 6 46313 5 V. Description of the invention (3) Figure. Fig. 1 shows a block diagram of a geometric decoder for the coding portion of the 3D model of the MPEG 4 standard. Figure 2A illustrates a block diagram of a geometric encoder built by a professor of the present invention. Figure 2B illustrates a block diagram of a geometric decoder built by a professor of the present invention. FIG. 3A illustrates a wire-frame perspective view of a triangular mesh model of an electric drill. Figure 3 B s Youming is a bit / triangular chart corresponding to the maximum squared quantization error corresponding to the two different geometric codes of the electric drilling machine of Figure 3 A. Fig. 3C illustrates a bit / triangular graph with respect to the mean squared quantization error of the two different geometric codes corresponding to the electric drill of Fig. 3A. Figure 4 A illustrates a wireframe perspective view of a triangular mesh model of a horse. Fig. 4B illustrates a bit / triangular graph with respect to the maximum squared quantization error corresponding to the two different geometric codes of Fig. 4A. Fig. 4C illustrates a bit / triangular graph with respect to the mean squared quantization error of two different geometric codes corresponding to the horse of Fig. 4A. A detailed description of the system example reveals an effective one " 一 娜 .factory ....... The taste of the dust and the device. In the description of the following 3, for the purpose of explanation, specific terms are described to thoroughly understand the present invention. However, these specific details of ^ familiar with the art are not necessary to implement the present invention. The present invention has been referred to the technology proposed as the MPEG4 standard. Take for example '. However, the same technique can be easily applied to other shaped bears, 隹 隹 46313 5 V. Description of the invention (4) Shaped system. Three-object model compression Complicated three-dimensional graphics need to be reported. 2D object models have extremely detailed 2D object models for computer resources. Large 3D object models require a large number of everlasting requirements. In particular, the good main memory comes from fast storage space for storage in perspective, a large amount of streaming bandwidth to move the 3D object model for access, and a large memory pool for complex 3D object models. Deal with long-term processors. To reduce these requirements for bus bandwidth, there are many ways to store this memory and shrink this three-dimensional object model. The three = two-dimensional graphics system has adopted an ideal compression system that can provide a very good compression ratio and the most j-object model.物件 Small object distortion and simple real MPEG4 3D model encoding are known to the animation picture expert group — _ An image compression system known as " MPEG4, 'is a definition of the objects in the image to define the material / The image ^ annoyance is known by the three-dimensional object model. The compressed image can be reconstructed by describing the scene with a three-dimensional object model. In order to efficiently store MPEG4 3D object models, the MpEG4 standard must adopt standard 3D model coding technology, which is generally referred to as 3DMC. One of the 3D model coding (3DMC) technologies proposed to the MPEG4 committee is the model coding system defined by Taubin and Rossignac in their 1996 study entitled 1 'Geometric compression through topological surgery ".

Taubin及Rossignac所提議的3D模型編碼技術(之後參考Taubin and Rossignac's 3D model coding technology (see later)

第8頁 4 6313 5 五、發明說明(5) '~ ---- 為3DMC/TR)包含兩個主要元件:連接物編碼元件與幾何編 碼疋件。連接物編碼元件嘗試降低多面或三角形⑽網狀的 許多呈現上的冗餘本質。例如,呈現三角網狀的—個直 但非有效率的技術是藉由直接參考三角的三個頂點來表現 網狀中的每個三角。此3DMC/TR系統首先分解一個網狀成 為三角與頂點的橫跨樹狀。這些樹狀個別以無損失的方 編碼。3DMC/TR的幾何編碼元件執行損失性的壓縮來降^ 圖形資料的大小。特定% ’此幾何編碼元件壓縮頂點 座私、頂點正父、顏色及特徵座標資料。 本:明的焦點在改善三維物件模型資料之幾何編碼的技 術。因此,本文件的剩餘部份將專注 何編碼 牡扁石馬 - ° ^D.C/TRt 示)'來產生車Λ化/貝點座標幾何為單位立方體(未顯 罝化Is Q 1;化此洋點的頂點座 in。一致的純量量化器Qt截去每個正n ^固定長度的整數 數i,其中L為每個座標的量化數U乘以以來產生整 一量化可由公式加以定義卜 了數目。特定的,the此 接下來,3DMC/TR幾何編碼方法 窃 其他鄰近的量化座標間的比較。仃I化的頂點座標與 通常暗示對應頂點的幾何距離’ 頂點橫跨樹狀的距離 化的座標比較。特定的,圖u中=近量化的座標與剛剛量 橫跨樹狀的相鄰頂點an的線入$測器Ρ產生來自頂點 庄'且合來預測目前的頂點位Page 8 4 6313 5 V. Description of the invention (5) '~ ---- 3DMC / TR) contains two main components: the connector coding element and the geometry coding file. Attachment coding elements attempt to reduce the redundant nature of many presentations of polyhedrons or triangles. For example, a triangular mesh—a straight but inefficient technique—represents each triangle in the mesh by directly referring to the three vertices of the triangle. This 3DMC / TR system first decomposes a network into triangles and vertices across trees. These trees are individually encoded in a lossless manner. 3DMC / TR's geometric coding element performs lossy compression to reduce the size of graphics data. Specific% ’This geometric coding element compresses vertex coordinates, vertex parent, color and feature coordinate data. Ben: Ming's focus is on improving the technology of geometric coding of 3D object model data. Therefore, the remainder of this document will focus on how to encode a flat stone horse-° ^ DC / TRt shown) 'to generate a car Λ / Beid point coordinate geometry as a unit cube (Is not Q 1; Hua Yiyang The vertex position of the point in. Consistent scalar quantizer Qt truncates each positive integer n ^ fixed-length integer number i, where L is the quantization number U of each coordinate multiplied by the integer quantization that can be defined by the formula. The number, specifically, the next, 3DMC / TR geometric coding method to steal comparison between other adjacent quantized coordinates. 仃 I vertex coordinates and the geometric distance that usually implies the corresponding vertex ' Coordinate comparison. In particular, in the figure u = near quantized coordinates and the line just across the tree-like adjacent vertex an enter $ tester P to generate from vertex village 'and combine to predict the current vertex position

4 6 3 13 5 五、發明說明(6) 置。此方法接著將預測值⑻與實際量化的頂點位置in間 的誤差差異en編碼。當頂點座標量化為定點呈現的圊,這 些誤差差異en平均的校正向量比絕對位置有較小的量值。 因此,這些誤差差異匕校正向量可以較少的位元做無損失 方式的編碼。因此,此誤差差異en校正項進一步的以一致 性編碼器1 4 5壓縮,利用標準的無損失壓縮技術來產生最 後的連串壓缩誤差差異 3DMC/TR幾何解 對應的3DMC/TR幾何解碼器反轉圖1Α中所描述方法的處 理。圖1Β說明一3DMC/TR幾何解碼器的方塊圖。參考圖 1 Β ’ 一致性解碼器1 5 5解壓縮此壓縮的誤差差異&來產生 未壓縮的誤差信號en。預測器Ρ接著將誤差信號Α將入到預 測值纪來產生量化值。(此量化值1n被預測器p用來產生 進一步的預測值gj 。最後,ia被解量化來產生重建的幾何 值〇n 3DMC/TR幾何編碼技術的一個主要缺點是輸入頂點座標 的直接量化產生相當高位準的失真。由3DMC/TR幾何編碼 器引入的編碼3 D模型失真可能產生較不能接受的最後影 像。 壓縮3D物件的視覺品質實體估算的兩種一般採周的失真 量測為最大平方量化誤差E以及均值平方量化誤差’。 假設為原來的頂點位置而W' i為重建的頂點位置,其中 ι = 1,.·.,η而η為頂點的總數。接著最大平方量化誤差心以 以及均值平方量化誤差£_可以定義為: na4 6 3 13 5 V. Description of the invention (6). This method then encodes the error difference en between the predicted value ⑻ and the actual quantized vertex position in. When the vertex coordinates are quantized as a fixed point, the correction vector of these error differences en average has a smaller magnitude than the absolute position. Therefore, these error difference correction vectors can be encoded in a lossless manner with fewer bits. Therefore, this error difference en correction term is further compressed by a consistent encoder 1 4 5 and the standard serial lossless compression technique is used to generate the final series of compression error differences. The 3DMC / TR geometric decoder corresponds to the 3DMC / TR geometric decoder. Turn to the process of the method described in Figure 1A. Figure 1B illustrates a block diagram of a 3DMC / TR geometry decoder. Referring to FIG. 1B, the coherent decoder 155 decompresses the compressed error difference & to generate an uncompressed error signal en. The predictor P then feeds the error signal A into the predicted value record to generate a quantized value. (This quantized value 1n is used by the predictor p to generate further predicted values gj. Finally, ia is dequantized to generate reconstructed geometric values. One of the main disadvantages of the 3DMC / TR geometric coding technique is the direct quantization of the input vertex coordinates. Quite high level of distortion. The distortion of the encoded 3D model introduced by the 3DMC / TR geometric encoder may produce a less acceptable final image. The visual quality of compressed 3D objects is estimated as the maximum squared distortion of two general mining cycles. The quantization error E and the mean squared quantization error '. Assume the original vertex position and W' i is the reconstructed vertex position, where ι = 1, ..., η and η is the total number of vertices. And mean squared quantization error £ _ can be defined as: na

第10頁 46313 5 五、發明說明(7)Page 10 46313 5 V. Description of the invention (7)

EE

max=SSmax = SS

Wi - WiWi-Wi

WtWt

Emean = ~Σ 而輸入頂點座標的動態範圍為固定且已知 後),輸入資料的統計一般是未知的。因在正規化 的輸入資料設計最佳的量化器不是一個選項’斤有形態 下,量化器的最佳化參考到最小的平岣失真^種If形 高解析度的量化器才能達到低失真以及產;相:2. 速率。第二個缺點是轉換浮點值為整 ; 很大的量化誤差。 夏化產-改善的幾何編碼器/解碼器 本發明引入一種改善的編碼技術,其提供比3DMC/TR幾 何編碼器更好的結果。本發明的幾何編碼方法將輸入頂點 座標與相關預測值間的誤差差異量化,取代直接量化輸入 頂點座標。量化的差異之後加回到相同的預測值來形成重 建值。這項技術一般習知為差異脈衝編瑪調變(DPCM)並且 廣泛的使用在語音及音頻的編碼。 改良的幾何編應 圖2A說明根據本發明教授而建立之幾何編碼器的方塊 圖》參考圖2A ’由預測器p從先前再生值而產生的一預測 值ϋη減輸入值un來形成誤差信號〜。量化器Qr接著將誤差信Emean = ~ Σ and the dynamic range of the input vertex coordinates is fixed and known), the statistics of the input data are generally unknown. Because designing the best quantizer in the normalized input data is not an option. In the case of morphology, the optimization of the quantizer refers to the smallest flat distortion. If the high-resolution quantizer of the If shape can achieve low distortion and Production; phase: 2. rate. The second disadvantage is the conversion of floating point values to integers; large quantization errors. Xia Huachan-Improved Geometric Encoder / Decoder The present invention introduces an improved encoding technique that provides better results than a 3DMC / TR geometry encoder. The geometric coding method of the present invention quantifies the error difference between the input vertex coordinates and the related prediction values, instead of directly quantifying the input vertex coordinates. The quantified difference is then added back to the same predicted value to form the reconstructed value. This technique is commonly known as differential pulse modulation (DPCM) and is widely used in speech and audio coding. Improved geometric adaptation Figure 2A illustrates a block diagram of a geometric encoder built according to the teaching of the present invention. "Referring to Figure 2A 'a predicted value ϋη minus the input value un generated by the predictor p from a previously reproduced value to form an error signal ~ . The quantizer Qr then converts the error signal

第11頁 46313 5 五、發明說明(8) 號白η量化產生量化的誤差信號en。一致性編碼器壓縮此量 化的誤差信號έη來產生連串的壓縮誤差信號。 一加法器藉由將量化誤差信號‘與預測值ϋη相加產生重 建值ΰη。此預測器ρ利用一或多個重建值ΰη來形成下一個預 測值1。預測器ρ可以與用在3DMC/TR幾何編碼系統中的 預測器Ρ為相同形態。 藉由比較圖1Α與圖2Α,可以發現原有的3DMC/TR幾何編 碼器只要做一些修改九可以轉換成DPCM幾何編碼器。 這種形態的DP CM編碼是根據一項假設。如果預測值(jn為 合理的正確並且相當的接近實際座標值Un,則誤差信號^ 的大小會很小,在大部分的情形下小於實際座標值un ,這 種情形下,誤差信號en的變化將會小於座標值Un的變化—。 因此*以相同數目的量化位準來量化減少動態範圍的誤差 信號en可產生比直接量化實際座標|υη更好的結果,因 此’量化器的有效解析度在沒有增加量化位準的情況下辦 加。替代的,可藉由降低量化位準的數目來達成相同 增 真,並在使用直接量化ϋη時保持相同的失真。量各’失 至1 Ci器的齡 佳"有效"解析度將提供更為正確的量化誤差信號§ 。 此,本發明可產生更正確的重建值ϋη,其接著終n因 確的預測值ϋη。 更為正 π 二去的最佳量 :最小的平均誤差。然a —3Ten的最佳 器,因為en的統計值會隨3 D模型而劇烈變動。進—里 這個問題的,此量化器之後緊接著有一致性編辱步複 46313 5 五、發明說明(9) 用高解析度的近似同時一致及平均的失真,如A. Gersho 及R. M. Gray 之"Vector Quantization and Signal CompressiorT中說明的,已獲證明的一致的量化器在一特 定位元速率近似的達成最小平均失真。一個需·求是量化 器應設計可在高解析度下運作,如此量化位準的數目N 是 很大的,過度負.荷的機率將會非常小,而且步階的大小會 遠小於根平均平方(rms)信號值。事實上,顯示出的是如 杲來源不具記憶性,後面有一致性編碼器的單純一致量化 器,針對特定的平均失真,可從最低可達成位元速率 (Shann on低限)中產生大約〇 . 2 5 5位元的位元速率。因此, 至少針對很大的位元速率,針對無記憶來源此包含後面有 一致性編碼器的一致量化器的可變速率設計幾乎是最佳化 的0 假設輸入是靜態的而且是各狀態處理{ Xn },則量化的處 理{ Q (Χπ)}也是靜態及各狀態的。假設HQ是量化器處理的平 均量,h(XQ)是輸入的平均量而D是平均失真。利用A. Gersho and R. M. Gray 之” Vector Quantization and Signal Compression"中說明的高解析度近似,可以證明Page 11 46313 5 V. Description of the invention White quantization (8) produces a quantized error signal en. The uniform encoder compresses this quantized error signal to generate a series of compression error signals. An adder generates a reconstructed value ΰη by adding the quantization error signal ′ to the predicted value ϋη. This predictor ρ uses one or more reconstructed values ΰη to form the next predicted value 1. The predictor ρ may have the same form as the predictor P used in the 3DMC / TR geometric coding system. By comparing Fig. 1A with Fig. 2A, it can be found that the original 3DMC / TR geometric encoder can be converted into a DPCM geometric encoder with only a few modifications. The DP CM coding of this form is based on an assumption. If the predicted value (jn is reasonably correct and fairly close to the actual coordinate value Un, the magnitude of the error signal ^ will be small and in most cases is smaller than the actual coordinate value un. In this case, the error signal en changes Will be less than the change in the coordinate value Un. Therefore * quantizing the dynamic range error signal en with the same number of quantization levels can produce better results than directly quantizing the actual coordinates | υη, so the effective resolution of the quantizer Do it without increasing the quantization level. Instead, you can reduce the number of quantization levels to achieve the same fidelity, and maintain the same distortion when using direct quantization ϋη. Each amount is lost to 1 Ci device The age-efficient " effective " resolution will provide a more accurate quantization error signal §. Therefore, the present invention can generate a more correct reconstruction value ϋη, which then n is finally due to the positive prediction value ϋη. More positive π 2 The best amount to go: the smallest average error. However, a -3Ten's best device, because the statistical value of en will change dramatically with the 3D model. For this problem, the quantizer is immediately followed by Reproducible compendium 46313 5 V. Description of the invention (9) Simultaneous uniform and average distortion using high-resolution approximation, as explained in A. Gersho and RM Gray's "Vector Quantization and Signal CompressiorT", has been proven The consistent quantizer achieves the minimum average distortion at a specific bit rate approximation. A demand and demand quantizer should be designed to operate at high resolution, so the number of quantization levels N is large and excessively negative. The probability of the charge will be very small, and the size of the step will be much smaller than the root mean square (rms) signal value. In fact, it is shown that the source of Rugao is not memorable, and a simple consistent quantizer with a consistent encoder follows For a specific average distortion, a bit rate of about 0.25 bit can be generated from the lowest achievable bit rate (the lower limit of Shann on). Therefore, at least for a large bit rate, for no memory Source This variable rate design including a consistent quantizer with a consistent encoder behind is almost optimized. 0 Assuming the input is static and is processed by each state {Xn}, the quantized The theory {Q (χπ)} is also static and various states. Assume that HQ is the average amount processed by the quantizer, h (XQ) is the average amount of the input and D is the average distortion. Use "Vector Quantization" and Signal Compression "

Hq /?(Xq ) — — l〇gl2Z) 其中可以達成上面的相等,若且唯若量化器是一致性 的。 因此,選擇了單純的一致量化器做為量化的設計。然 而,一致量化器的動態範圍仍要加以選擇。如果所選擇的Hq /? (Xq) — — l0gl2Z) where the above equality can be achieved if and only if the quantizer is consistent. Therefore, a simple uniform quantizer was selected as the quantization design. However, the dynamic range of the uniform quantizer must still be selected. If selected

第13頁 4.6 31 3 5 五、發明說明(ίο) —-- 量化器動態範圍太接近的匹配輸入值的動態範圍,可達到 低失真但要犧牲高位元速率,根據方程式(丨)。再者,在 沒有第二次過程的情形下,要估計輸入值的動態範圍是相 t難的。要避免使量化器過度負荷的風險(對後.有一致性 編碼器的一欵量化器的基本假設之一),量化器的動態範 圍必須謹慎的選擇。特定的,此量化器動態範圍應該大於 輸入資料但不能太大,如此對本設計的實際益處而言失真 的降低會太小。 要進一步改善幾何編碼器,本發明建議使用”概略"量化 器Q 。此概略量化器Qr概略浮點值為最接近的固定長度整 數,取代截去此數值。在提議給MPEG4委員會的3DMC/TR幾 何編碼器中使用的量化設計Qt截去浮點值。此一截去過程 比概略浮點值產生更多的量化誤差。 改良的幾何解碼器 圖2B說明本發明的對應幾何解碼器的方塊圖。Page 13 4.6 31 3 5 V. Explanation of the invention (ίο) --- The dynamic range of the quantizer is too close to match the dynamic range of the input value, which can achieve low distortion but sacrifice high bit rate, according to equation (丨). Furthermore, it is difficult to estimate the dynamic range of the input value without a second process. To avoid the risk of overloading the quantizer (one of the basic assumptions of a quantizer that has a consistent encoder), the dynamic range of the quantizer must be carefully selected. In particular, the dynamic range of this quantizer should be greater than the input data but not too large, so the reduction in distortion will be too small for the practical benefit of this design. To further improve the geometric encoder, the present invention proposes to use a "rough" quantizer Q. This rough quantizer Qr rough floating-point value is the closest fixed-length integer, instead of truncating this value. In the 3DMC / The quantization design Qt used in the TR geometry encoder truncates floating point values. This truncation process generates more quantization errors than rough floating point values. Improved Geometry Decoder FIG. 2B illustrates a block of the corresponding geometry decoder of the present invention. Illustration.

Referring to圖2B,一致性編碼(壓縮)的量化預測誤差首 先解壓縮來產生未壓縮的量化預測誤差、。接下來,量化 的預測誤差in加以解量化形成預測誤差值^。加法器接著 將預測誤差^與預測器P的預測幾何值4相加產生產生最後 的重建幾何值C)n。應注意本發明的幾何解碼器實際上就等 於對應的幾何編碼器的一部份’除了反轉量化器,藉由比 較圖2 B的點線區域及圖2 A的點線區域。 藉由比較圖1 B與圖2 B ’可以發現到只要做一些修改, 3DMC/TR幾何解碼器可轉換成為DPCM幾何解碼器。特定Referring to FIG. 2B, the quantized prediction error of the consistent encoding (compressed) is first decompressed to generate an uncompressed quantized prediction error. Next, the quantized prediction error in is dequantized to form a prediction error value ^. The adder then adds the prediction error ^ to the predicted geometric value 4 of the predictor P to produce the final reconstructed geometric value C) n. It should be noted that the geometric decoder of the present invention is actually equivalent to a part of the corresponding geometric encoder 'except that the inverse quantizer is compared by comparing the dotted line region of FIG. 2B and the dotted line region of FIG. 2A. By comparing Fig. 1B with Fig. 2B ', it can be found that with some modifications, the 3DMC / TR geometry decoder can be converted into a DPCM geometry decoder. specific

第14頁 46313 5Page 14 46313 5

五、發明說明(11) 的’只需要改變量化器方塊與預測 3DM(VTTR幾何解碼器變成為DpcM解碼器4的順序就可將 應該注意到MPEG4 3DMC位元4 ....目脚一位70流-法不需要做任何改 變。然而,在-具體貫例中’使用在的 動態範圍可以插入到位元流中,士σ t°中的!化的 r «卜斑兀成中,如此解碼器可以知道編碼 ,的動邊範圍。在實際的理由,目定的動態範圍可預先設 置來避免3MC語法的任何改變。 $闽J頂λ又 三維幾何編碼的測試結果 為了要說明本發明的幾何編碼/解碼系統的效率,利用 不同的三。維物件模型做了幾個實驗。這些實驗利用提議給 MPEG4委貝會的3DMC/TR幾何編瑀器以及加入本發明教授的 修改3DMC幾何編碼器來壓縮某些三維物件模型。特定的, 修改的3MC幾何編碼器使用具概略量化器以的叩⑶技術。 對十五個不同的三維模型做測試。那些三維模型中的十四 個在MPEG4對3DMC的核心實驗中使用。這些三維物件模型 步載負任何色彩及正交資訊。 —使用在測試中的三維模型大小從丨〇 〇 〇個三角到丨〇 〇 〇 〇 〇個 二〇的圍。針對客觀的估算,使用不同的量化位準,也 =是1、3、5、8、1〇、16、2〇、25、3〇位元。來自大部份 資料組的誤差信號en發現到範圍從_〇· 〇5到_〇, 〇5,所以使 用動態範圍從-〇. 6到〇 · 6的—致量化器來避免過度負荷的 風險。 主觀的估算顯示在此資料 得很難辨認出來,如果用少 組中的大部分三維物件模型變 於八個位元的量化位準來量化V. Description of the invention (11) 'You only need to change the order of the quantizer block and prediction 3DM (VTTR geometry decoder to DpcM decoder 4 and you should notice that MPEG4 3DMC bit 4 ... The 70-stream method does not need to make any changes. However, in the specific example, the 'dynamic range used' can be inserted into the bit stream, which is in the σσ °°! R r «Buban Wucheng, so decode The device can know the moving edge range of the code. For practical reasons, the target dynamic range can be set in advance to avoid any changes in the 3MC syntax. The efficiency of the encoding / decoding system was performed using several three-dimensional object models. Several experiments were performed using the 3DMC / TR geometric encoder proposed to the MPEG4 Commission and the modified 3DMC geometric encoder added to the teaching of the present invention. Compressing certain 3D object models. In particular, the modified 3MC geometry encoder uses 叩 CD technology with a rough quantizer. Test on 15 different 3D models. Fourteen of those 3D models MPEG4 is used in the core experiments of 3DMC. These three-dimensional object models carry any color and orthogonal information.-The size of the three-dimensional model used in the test ranges from 100,000 triangles to 20,000 squares. For objective estimation, different quantization levels are used, which are also 1, 3, 5, 8, 10, 16, 20, 25, and 30 bits. Error signals en from most data sets It was found to range from _〇 · 〇5 to _〇, 〇5, so a dynamic quantizer with a dynamic range from -0.6 to 0.6 was used to avoid the risk of overload. Subjective estimates show that this information is very good Difficult to recognize, if the majority of the three-dimensional object model in the small group is changed to an eight-bit quantization level to quantify

O:\64\6479l.ptdO: \ 64 \ 6479l.ptd

第15頁 46 313 5 五、發明說明(12) 的話。同樣的,當量化位準太低時,之前說明的高解析度 近似假設不在成立而一致量化器的最佳性被打破。當量化 位準高於二十個位元,對於壓縮的實際益處而言位元速率 可能變得有點太高。結果,雖然可以使用大範圍的量化位 準,只有量化位準從8位元到2 0位元的結果可以在分析中 使用。三維物件模型的名稱,三角數目的大小以及以同時 使用最大平方量化誤差及均值平方量化誤差準則的DPC Μ以 及概略量化器V的位元速率降低表列在表1中° 3D繪圖物件 三角的數目 以DPCM的位元速率 降低(最大平方量化誤 差準則) 以DPCM的位元速率 降低(均値平方量化誤 差準則) 大象 29308 7.5%-16.25% 5%-18.75% 鱷魚 34404 7.5%-20% 6.7%-20°/〇 ' Wom-hand 2878 8.5%-13% 7.5%-12% 保時捷 10474 8%-12.5% 8%-15% 凸輪柄 101870 9%-20% 7.5%-20% 怪物 49478 7.5%-16.7% 8%-16.70/〇 骷髏頭 22104 8.5%-16% 7.5%-16% 大腿骨 7798 6%-16.7% 6%-16.7% 電動鑽孔機 32652 8.5%-20% 8.6%-20% 氣球 12967 8.3%-18% 9.0%_18% 將軍 22253 6.5%-11.1% 6.5%-11.8% 三奇龍 5660 4.8%-13.3°/〇 4.8%-12.5% 馬 22258 7.5%-20% 7.5%-20% 57雪佛蘭 29303 2%-5% 4%-5% 83_本田 13594 6%-12% 5.5%-12%Page 15 46 313 5 V. Statement of Invention (12). Similarly, when the quantization level is too low, the previously explained high-resolution approximation assumption is no longer valid and the optimality of the uniform quantizer is broken. When the quantization level is higher than twenty bits, the bit rate may become a bit too high for the practical benefits of compression. As a result, although a wide range of quantization levels can be used, only results with quantization levels ranging from 8 bits to 20 bits can be used in the analysis. The name of the 3D object model, the size of the number of triangles, and the bit rate reduction of DPC M and the approximate quantizer V using the maximum squared quantization error and the mean squared quantization error criterion are listed in Table 1. ° The number of 3D drawing object triangles Bit rate reduction at DPCM (maximum squared quantization error criterion) Bit rate reduction at DPCM (averaged squared quantization error criterion) Elephant 29308 7.5% -16.25% 5% -18.75% Crocodile 34404 7.5% -20% 6.7 % -20 ° / 〇 'Wom-hand 2878 8.5% -13% 7.5% -12% Porsche 10474 8% -12.5% 8% -15% Cam handle 101870 9% -20% 7.5% -20% Monster 49478 7.5% -16.7% 8% -16.70 / 〇 skull 22104 8.5% -16% 7.5% -16% femur 7798 6% -16.7% 6% -16.7% electric drill 32652 8.5% -20% 8.6% -20% Balloon 12967 8.3% -18% 9.0% _18% General 22253 6.5% -11.1% 6.5% -11.8% Sanqilong 5660 4.8% -13.3 ° / 〇4.8% -12.5% Horse 22258 7.5% -20% 7.5% -20 % 57 Chevrolet 29303 2% -5% 4% -5% 83_ Honda 13594 6% -12% 5.5% -12%

第16頁 46313 5 五、發明說明(13^ ~ ~ ----- f 1的第一攔列出所測試三維物件模型的名稱。圖3 A及 4A兒月电動鑽孔機與馬的三維模型之分別線框透視圊。表 1的第二欄列出不同物件模型的三角數目。表1的第三與第 四糊列出當使用本發明之DPCM幾何編碼器取代M-PEG4 3DMC 的標準幾何編碼器時,位元速率降低的百分比◊ 表1的第三與第四欄顯示出具概略量化器^的…⑶幾何 編碼器在位元速率上一致的勝過所提議3DMC/T{?幾何編碼 器’針對特定的最大平方量化誤差及均值平方量化誤差β 利用DP CM與概略量化器Qr的位元速率降低的百分比範圍可 以利用最大平方量化誤差的準則是從2%到20%,以及利甩 均值平方量化誤差的準則是從4%到2 0%。對於大部分的資 料組’利用D P C Μ及概略量化器Qr的位元速率絕對降低在有 興趣的區域中幾乎是固定值,所以較高的百分比降低對應 到較低位元速率區域’而較低的百分比降低對應到較高的 位元速率區域》 圖3B及4B說明相對於對應圖3A電動鑽孔機的不同幾何編 碼之最大平方量化誤差而畫出的位元/三角圊表。類似 的’圖3C及4C說明相對於對應圖3A電動鑽孔機的不同幾何 編碼之均值平方量化誤差而畫出的位元/三角圖表。由圖 3B、3C、4B及4C不證自明的,本發明的DPCM幾何編碑器一 致的勝過3DMC/TR系統。 前文已說明一種有效編碼三維圖形模型的方法所企圖 的是對本技藝具一般技巧的人可以對本發明元件的材料及 配置做出改變及修改,而不會背離本發明的範疇。Page 1646313 5 V. Description of the invention (13 ^ ~ ~ ----- The first block of f 1 lists the names of the three-dimensional object models tested. Figures 3 A and 4A Wireframe perspective of the three-dimensional model. The second column of Table 1 lists the number of triangles of different object models. The third and fourth pastes of Table 1 list the use of the DPCM geometric encoder of the present invention instead of M-PEG4 3DMC. In the case of standard geometric encoders, the percentage reduction in bit rate ◊ The third and fourth columns of Table 1 show the approximate quantizer ^ The geometric encoder consistently outperforms the proposed 3DMC / T {? Geometry encoder 'for a specific maximum squared quantization error and mean squared quantization error β The percentage range in which the bit rate of the DP CM and the rough quantizer Qr can be reduced. The maximum squared quantization error can be used. The criterion of the mean squared quantization error is from 4% to 20%. For most data sets, the absolute reduction in bit rate using DPC M and rough quantizer Qr is almost a fixed value in the area of interest, so Higher percentage reduction corresponds to Low bit-rate regions' and lower percentage reductions correspond to higher bit-rate regions "Figures 3B and 4B illustrate the bits plotted relative to the maximum squared quantization error corresponding to the different geometric codes of the electric drill of Figure 3A / Triangular table. Similar 'Figures 3C and 4C illustrate the bit / triangular graphs plotted relative to the mean squared quantization error of the different geometric codes of the electric drilling machine of Figure 3A. From Figures 3B, 3C, 4B and 4C It is self-evident that the DPCM geometric tablet composer of the present invention consistently outperforms the 3DMC / TR system. The foregoing has explained that an effective method for encoding a three-dimensional graphics model is intended for those skilled in the art to use the materials of the elements of the present invention. And configuration changes and modifications without departing from the scope of the invention.

第17頁Page 17

Claims (1)

46313 5 六、申請專利範圍 1. 一種編碼三維圖形模型的方法,該方法包含: 將來自該三維圖形模型的幾何值與一預測的幾何值比 較;以及 將該幾何值與預測幾何值間的誤差差異量化來產生量 化誤差差異。 2. 如申請專利範圍第1項的方法,該方法還包含:. 一致性地編碼該量化的誤差差異。 3. 如申請專利範圍第1項的方法,其中量化該誤差差異 包含執行一概略量化。 4. 如申請專利範圍第1項的方法,其中該預測幾何值包 含至少一個先前預測的幾何值的組合。 5. 如申請專利範圍第1項的方法,其中該方法使用MPEG4 3D模型編碼語法。 6. —種解碼三維圖形模型的方法,該方法包含: 解量化一量化誤差差異來產生所希望幾何值及預測幾 何值間的誤差差異;以及 將該誤差差異加到該預測幾何值來產生解碼的幾何 值。 7. 如申請專利範圍第6項的方法,該方法還包含: 一致性解碼編碼壓縮的量化誤差差異來產生該量化的 誤差差異。 8. 如申請專利範圍第6項的方法,其中該預測幾何值包 含至少一個先前解碼幾何值的組合。 9. 如申請專利範圍第6項的方法,其中該方法使用MPEG446313 5 VI. Scope of Patent Application 1. A method for encoding a three-dimensional graphic model, the method comprising: comparing a geometric value from the three-dimensional graphic model with a predicted geometric value; and an error between the geometric value and the predicted geometric value Difference quantization produces quantization error differences. 2. As in the method of applying for the first item of the patent scope, the method further includes: consistently encoding the quantized error difference. 3. The method according to item 1 of the patent application, wherein quantifying the error difference includes performing a rough quantization. 4. The method according to item 1 of the patent application, wherein the predicted geometric value comprises a combination of at least one previously predicted geometric value. 5. The method as described in item 1 of the patent application scope, wherein the method uses the MPEG4 3D model coding syntax. 6. —A method of decoding a three-dimensional graphics model, the method comprising: dequantizing a quantization error difference to generate an error difference between a desired geometric value and a predicted geometric value; and adding the error difference to the predicted geometric value to generate a decoding The geometric value. 7. If the method of claim 6 is applied, the method further comprises: coherently decoding the quantization error difference of the encoding compression to generate the quantization error difference. 8. A method as claimed in claim 6 wherein the predicted geometric value includes a combination of at least one previously decoded geometric value. 9. The method of claim 6 in which the method uses MPEG4 第18頁 4 6 3 13 5 六、申請專利範圍 3 D模型編碼語法。 1 0. —種編碼三維圖形模型的裝置,.該裝置包含: 一預測器,該預測器產生一預測的幾何值;and 一量化器,該量化器將實際幾何值與該預測幾何值間 的誤差差異量化來產生量化誤差差異。 11. 如申請專利範圍第1 〇項的裝置,該裝置還包含: 一致性編碼器’該一致性編碼器用來壓縮該量化誤差 差異。 12. 如申請專利範圍第1〇項的農置,其中該量化器執行 一概略量化。 1 3.如申請專利範圍第1 〇項的裝置,其中該預測器從_至 少一個先前預測的幾何值產生該預測幾何值。 1 4.如申請專利範圍第1 〇項的裝置,其中該裝置實做為 MPEG4 3D模型編碼語法。 1 5. —種用來做幾何解碼的裝置,該裝置包含: 一解量化器,該解量化器將量化的誤差差異解量化來 產生所要的幾何值與預測幾何值間未量化的誤差差異;以 及 一加法器,該加法器將該誤差差異加到該預測幾何值 來產生解碼的幾何值。 1 6.如申請專利範圍第1 5項的裝置,該裝置還包含: 一致性解碼器,該一致解碼器解碼編碼一壓縮的量化 誤差差異來產生該量化的誤差差異。 1 7.如申請專利範圍第1 5項的裝置,該裝置還包含:Page 18 4 6 3 13 5 VI. Scope of patent application 3 D model coding syntax. 1 0. A device for encoding a three-dimensional graphic model. The device includes: a predictor that generates a predicted geometric value; and a quantizer that compares the actual geometric value with the predicted geometric value. The error difference is quantized to produce a quantization error difference. 11. If the device of the scope of application for patent No. 10, the device further comprises: a consistency encoder ', the consistency encoder is used to compress the difference in quantization error. 12. As for the agricultural property with the scope of application for item 10, the quantizer performs a rough quantization. 1 3. The apparatus of claim 10, wherein the predictor generates the predicted geometric value from at least one previously predicted geometric value. 14. The device according to item 10 of the scope of patent application, wherein the device is implemented as MPEG4 3D model coding syntax. 15. A device for performing geometric decoding, the device includes: a dequantizer that dequantizes a quantized error difference to generate an unquantized error difference between a desired geometric value and a predicted geometric value; And an adder that adds the error difference to the predicted geometric value to generate a decoded geometric value. 16. The device according to item 15 of the patent application scope, further comprising: a coherent decoder that decodes and encodes a compressed quantization error difference to generate the quantized error difference. 1 7. The device according to item 15 of the patent application scope, further comprising: 第19頁 46313 5 六、申請專利範圍 一預測器,該預測器從至少一個先前的預測幾何值的 組合產生該預測幾何值。 1 8 _如申請專利範圍第1 5項的裝置,其中該預測值蒿蚶 至少一個先前解碼的幾何值的組合。 - 1 9.如申請專利範圍第1 5項的裝置,其中該裝置實做出 MPEG4 3D模型編碼語法。Page 19 46313 5 VI. Scope of Patent Application A predictor that generates the predicted geometric value from a combination of at least one previous predicted geometric value. 1 8 _ The device according to item 15 of the patent application scope, wherein the predicted value is a combination of at least one previously decoded geometric value. -1 9. The device according to item 15 of the scope of patent application, wherein the device implements MPEG4 3D model coding syntax. 第20頁Page 20
TW89112851A 1999-06-30 2000-06-29 Method for efficiently encoding three-dimensional graphics models TW463135B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34361399A 1999-06-30 1999-06-30

Publications (1)

Publication Number Publication Date
TW463135B true TW463135B (en) 2001-11-11

Family

ID=23346822

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89112851A TW463135B (en) 1999-06-30 2000-06-29 Method for efficiently encoding three-dimensional graphics models

Country Status (3)

Country Link
AU (1) AU5484100A (en)
TW (1) TW463135B (en)
WO (1) WO2001003071A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014025640B1 (en) 2012-04-18 2021-08-10 Interdigital Madison Patent Holdings METHOD AND APPARATUS TO GENERATE OR DECODE A BITS FLOW THAT REPRESENTS A 3D MODEL
CN105103192B (en) 2013-01-10 2018-09-25 汤姆逊许可公司 Method and apparatus for vertex error correction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243399A (en) * 1997-02-25 1998-09-11 Sharp Corp Code amount controller and moving image encoder provided with the same
JPH10304362A (en) * 1997-05-01 1998-11-13 Canon Inc Image signal processing unit and its method

Also Published As

Publication number Publication date
WO2001003071A1 (en) 2001-01-11
AU5484100A (en) 2001-01-22

Similar Documents

Publication Publication Date Title
US5818463A (en) Data compression for animated three dimensional objects
US20060133493A1 (en) Method and apparatus for encoding and decoding stereoscopic video
JP2001309376A (en) Picture encoding method and picture decoding method
US7177356B2 (en) Spatially transcoding a video stream
JP4592185B2 (en) Method and apparatus for inverse quantization of MPEG-4 video
JP3959039B2 (en) Image encoding device, image encoding method, image encoding program, image decoding device, image decoding method, and image decoding program
KR20010053286A (en) Image coding/decoding method and recorded medium on which program is recorded
KR100292803B1 (en) Method and Apparatus for compressing vertex position of 3D mesh model
KR100438856B1 (en) By lively table quantum/requantum making for method and status
JPH11251919A (en) Memory required amount reduction method
TW463135B (en) Method for efficiently encoding three-dimensional graphics models
US8428116B2 (en) Moving picture encoding device, method, program, and moving picture decoding device, method, and program
JP2015520886A (en) Method and apparatus for 3D model compression based on iterative structure discovery
Al-Khafaji et al. Grey-Level image compression using 1-d polynomial and hybrid encoding technique
KR20170098163A (en) Image encoding and decoding methods, encoder and decoder using the methods
KR100580616B1 (en) Coding method of the information for the deformation of 3D object and coding apparatus thereof
Sim et al. An efficient 3D mesh compression technique based on triangle fan structure
JP2006005478A (en) Image encoder and image decoder
WO2013058445A1 (en) Distributed video encoding/decoding methods for changing a picture group structure, and apparatus for performing same
KR100530566B1 (en) Image compression coding and decoding apparatus using adaptive transformation method and method thereof
Cernea et al. Wavelet-based scalable L-infinite-oriented coding of MPEG-4 MeshGrid surface models
Yao et al. Hybrid Fractal Video Coding with Neighbourhood Vector Quantisation.
JP2004312379A (en) Image compression apparatus, image compression method, and image compression program
CN116781927A (en) Point cloud processing method and related equipment
Tischler Refinement of near random access video coding with weighted finite automata