TW455716B - Optical fiber Mach-Zehnder interferometer employing miniature bends - Google Patents

Optical fiber Mach-Zehnder interferometer employing miniature bends Download PDF

Info

Publication number
TW455716B
TW455716B TW89112446A TW89112446A TW455716B TW 455716 B TW455716 B TW 455716B TW 89112446 A TW89112446 A TW 89112446A TW 89112446 A TW89112446 A TW 89112446A TW 455716 B TW455716 B TW 455716B
Authority
TW
Taiwan
Prior art keywords
fiber
optical fiber
aforementioned
mach
item
Prior art date
Application number
TW89112446A
Other languages
Chinese (zh)
Inventor
Thomas Roy Burton
Colm V Cryan
Stavros Dariotis
Margaret C Manty
David W Stowe
Original Assignee
Thomas & Amp Betts Internation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomas & Amp Betts Internation filed Critical Thomas & Amp Betts Internation
Application granted granted Critical
Publication of TW455716B publication Critical patent/TW455716B/en

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

An optical fiber Mach Zehnder interferometer includes a first and second elongate optical fiber having a core and a cladding, first and second couplers wherein the cladding of the first optical fiber is coupled to the cladding of the second optical fiber. The first optical fiber includes a first elongate interfering arm where the first optical fiber extends between the first and second couplers. The first interfering arm includes a miniature bend formed therein. The second optical fiber includes a second elongate interfering arm extending between the first and second couplers and may also include a miniature bend formed therein. The miniature bends are contemplated to be either packed or unpackaged. The fibers may exhibit different coefficients of thermal expansion to maintain the path length differences of the interfering arms.

Description

經濟部智慧財產局員工消費合作杜印製 4 5 5 7 1 5 A7 ------ B7 五、發明說明(1 ) 發明領% 本發明係關於光纖馬赫-策德爾干涉儀,特別是關於在一 個或多個干涉臂上具有微型可曲波導管之光纖馬赫·策德爾 干涉儀。 習知拮術 習知是以具有兩個橫跨一對平行直線光纖之麵合器來 * 形成非對等式馬赫策德爾干涉儀。圖一描述習知典型之光纖 馬赫策德爾干涉儀10。干涉儀10包括耦合於第一與第二光柄 合器22與24之第一與第二延長光纖12與14。每個光纖12與14 分別具有延伸於耦合器22與24之間的干涉臂16與18 〇干涉臂 16與18以習知方法排列成具有不同光學長度,使得其中一干 涉臂比另一干涉臂長’以利用具有不同傳播常數或接近此種 組合之光纖^該等相敏(phase-sensitive)干涉臂之光學路徑長 度之不對等大小決定干涉儀之波長靈敏度《 若兩個相敏區域在光學路徑長度幾乎對等,射入光纖12 之光線會在耦合器22與光纖14耦合,並於耦合器24產生干 涉,因此所有光線從光纖12產生至耦合器24。若相敏區域16 與18為非對等式,則光線會依據光線波長與路徑長度不對等 大小以不同之比例從光纖12與14產生至耦合器24。一般而 言,隨著波長增加,光線震遭於上下光纖之間。路徑長度不 對等的值越大,波長改變的值越小,使得光線從一光纖轉移 至另一光纖。 然而,在不產生損失下製造出實際上不同長度之光纖區 段並不容易。而且,如圖一所示’干涉儀10的結構具有相反 方向露出之光纖,所以需有額外空間來適應隨後之包裝中光 本紙張尺度適用中國國家標準(CNS>A4規格(210 X 297公釐) —i i ----------τ' 裝1----訂---------線- (請先閲讀背面之注意事項再填寫本頁) A7 4557 16 --------- 五、發明說明(2 ) 纖兩端之弯曲半徑。 然而,光纖使用微型可曲波導管來降低彎曲度之最小半 徑亦為熟知技術。如美國第5,138,676專利所揭露,光纖之傳 輸光學核心可縮小直徑來形成。縮小的核心可被彎曲且加熱 退火以提供光纖之彎曲波導管,而表現出低能量損失。微型 可曲波導管可被形成低於〇, 5 mm的半徑且不會高衰減與具有 低内應力。例如’該技術允許低損失之180度彎曲以形成直徑 小於2.0mm且長度8.0mm之包裝。此低損失可曲波導管可形成 於單一模式或多重模式光纖。 直徑縮小一般是以化學方式移除一些被覆玻璃藉以將 光纖變細而達成’或是該等技術之組合。對於單一模式裝置, 光纖被處理過使得原始光纖之基本模式絕熱地進展成改良光 纖的基本模式以避免光線損失。該可曲波導管可被不同包裝 收容,使得沒有任何材料在處理區域與光纖接觸。 因此需要一種在光纖元件内結合微型可曲波導管之馬 赫-策德爾干涉儀,來將干涉儀的尺寸、熱靈敏度以及震動靈 敏度最小化。 ί發明概要1 本發明提供一種光纖馬赫-策德爾干涉儀,該干涉儀包含 均具有核心與被覆之第一與第二延長光纖’且具有第一與第 二耦合器,其中第一光纖之被覆被耦合於第二光纖之被覆。 本發明之馬赫-策德爾干涉儀還包括第一延長干涉臂,係由延 伸於第一與第二耦合器之第一光纖所形成,以及包含延伸於 第一與第二耦合器之間的第二光纖之第二延長干涉臂。此 外,第一干涉臂包括形成於其中之至少一微型可曲波導管。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ----:-----裝----------訂---------線, ί請先閱讀背面之注意事項再填寫本頁} 經濟部智慧財產局員工消費合作社印制衣 455716 A7 H7 五、發明說明(3 ) 第二干涉臂亦可包括形成於其中之微型可曲波導管。本發明 之一實施例中,第一干涉臂之微型可曲波導管被嵌套於第二 干涉臂。 而且,本發明之馬赫-策德爾干涉儀可結合已包裝之微型 可曲波導管或未包裝之微型可曲波導管。當使用未包裝之微 型可曲波導管時,干涉臂可利用黏性環氧基樹脂或黏性凝膠 黏著固定於一支撐基板。本發明之馬赫-策德爾干涉儀還可藉 由選擇不同熱膨脹係數之光纖來展現所減低之熱敏感,以處 理因溫度在不同長度之干涉臂所產生之不同總長度改變。 [圖式之簡單說明] 圖一顯示直線型馬赫-策德爾干涉儀之架構圖。 圖二顯示本發明在干涉臂上使用微型可曲波導管之馬 赫-策德爾干涉儀的架構圖。 圖三顯示在其中一干涉臂上使用微型可曲波導管之馬 赫-策德爾干涉儀的架構圖。 圖四顯示本發明具有3mm光學長度差值之非對等式馬 赫-策德爾干涉儀的耦合輸出之圖形》 圖五描述本發明在干涉臂上使用9〇度微型可曲波導管 之馬赫-策德爾干涉儀的另一實施例。 圖六描述本發明使用預包裝之微型可曲波導管的馬赫_ 策德_干涉儀。 圖七描述本發明在干涉臂上使用90度預包裝微型可曲 波導管之馬赫-策德爾干涉儀的另一實施例。 囷八與九描述本發明使用未包裝微型可曲波導管之馬 赫·策德爾干涉儀的其他實施例。 祕狀糾用中酬家標準(CNS)A4規格⑵0 (請先閱讀背面之注意事項再填寫本頁)Duo printed by employees of the Intellectual Property Bureau of the Ministry of Economic Affairs 4 5 5 7 1 5 A7 ------ B7 V. Description of the invention (1)% of invention invention This invention relates to fiber optic Mach-Zehnder interferometers, especially to Fiber optic Mach-Zehnder interferometer with miniature flexible waveguide on one or more interference arms. The conventional technique is to form a non-equivalent Mach-Zehnder interferometer with a facet combiner with two pairs of parallel linear optical fibers. Figure 1 depicts a conventional typical fiber optic Mach-Zehnder interferometer 10. The interferometer 10 includes first and second extension optical fibers 12 and 14 coupled to first and second optical couplers 22 and 24. Each of the optical fibers 12 and 14 has interference arms 16 and 18 extending between the couplers 22 and 24, respectively. The interference arms 16 and 18 are arranged in a conventional manner to have different optical lengths, so that one of the interference arms is longer than the other. Long 'to use optical fibers with different propagation constants or close to this combination ^ The unequal size of the optical path length of the phase-sensitive interference arms determines the wavelength sensitivity of the interferometer. The path lengths are almost equal. The light that enters the optical fiber 12 will couple with the optical fiber 14 at the coupler 22 and cause interference with the coupler 24, so all the light is generated from the optical fiber 12 to the coupler 24. If the phase sensitive regions 16 and 18 are non-equivalence, light will be generated from the optical fibers 12 and 14 to the coupler 24 in different proportions according to the unequal size of the light wavelength and the path length. In general, as the wavelength increases, the light shocks between the upper and lower fibers. The larger the path length unequal value, the smaller the value of the wavelength change, allowing light to be transferred from one fiber to another. However, it is not easy to manufacture fiber sections of virtually different lengths without loss. Moreover, as shown in Figure 1, the structure of the interferometer 10 has an optical fiber exposed in the opposite direction, so additional space is required to accommodate the subsequent paper in the packaging. The paper size applies to the Chinese national standard (CNS > A4 specification (210 X 297 mm). ) —Ii ---------- τ 'Pack 1 ---- Order --------- Line- (Please read the notes on the back before filling this page) A7 4557 16- -------- 5. Description of the invention (2) Bending radius at both ends of the fiber. However, the minimum radius of the fiber using a mini-flexible waveguide is also a well-known technology. As disclosed in US Patent No. 5,138,676 The transmission optical core of the optical fiber can be formed with a reduced diameter. The reduced core can be bent and heat-annealed to provide a curved waveguide for the optical fiber, and exhibit low energy loss. Miniature flexible waveguides can be formed below 0.5 mm Radius without high attenuation and low internal stress. For example, 'This technology allows 180-degree bending with low loss to form a package with a diameter of less than 2.0mm and a length of 8.0mm. This low-loss flexible waveguide can be formed in a single mode or Multimode fiber. The diameter is usually reduced by chemical Removal of some coated glass to thin the fiber to achieve 'or a combination of these technologies. For single-mode devices, the fiber is processed so that the basic mode of the original fiber adiabatically progresses to the basic mode of the improved fiber to avoid light loss The flexible waveguide can be housed in different packages so that no material is in contact with the fiber in the processing area. Therefore, a Mach-Zehnder interferometer incorporating a miniature flexible waveguide in the fiber optic component is needed to size the interferometer , Thermal sensitivity, and vibration sensitivity are minimized. Ί SUMMARY OF THE INVENTION 1 The present invention provides a fiber-optic Mach-Zehnder interferometer comprising first and second extension fibers with a core and a cover, and having first and second A coupler in which the coating of the first optical fiber is coupled to the coating of the second optical fiber. The Mach-Zehnder interferometer of the present invention further includes a first extension interference arm, which is formed by the first optical fiber extending from the first and second couplers. A second extended interference arm formed and including a second optical fiber extending between the first and second couplers. The first interference arm includes at least one miniature flexible waveguide formed in it. This paper size is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) ----: ------- -------- Order --------- line, ί Please read the notes on the back before filling out this page} Printed clothing for employees' cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 455716 A7 H7 V. Invention Explanation (3) The second interference arm may also include a miniature flexible waveguide formed therein. In one embodiment of the present invention, the miniature flexible waveguide of the first interference arm is nested in the second interference arm. Furthermore, The Mach-Zehnder interferometer of the present invention can be combined with a packaged miniature flexible waveguide or an unpackaged miniature flexible waveguide. When an unpackaged micro-flexible waveguide is used, the interference arm can be fixed to a supporting substrate with adhesive epoxy resin or adhesive gel. The Mach-Zehnder interferometer of the present invention can also exhibit reduced thermal sensitivity by selecting fibers with different coefficients of thermal expansion to handle different total length changes caused by interference arms of different lengths due to temperature. [Brief description of the diagram] Fig. 1 shows the structure of a linear Mach-Zehnder interferometer. Fig. 2 shows a block diagram of a Mach-Zehnder interferometer using a miniature flexible waveguide on an interference arm of the present invention. Figure 3 shows the architecture of a Mach-Zehnder interferometer using a miniature flexible waveguide on one of the interference arms. Figure 4 shows the coupled output of a non-equivalent Mach-Zehnder interferometer with a 3mm optical length difference according to the present invention. "Figure 5 depicts the Mach-Zehner using a 90-degree miniature flexible waveguide in the interference arm of the present invention. Another example of a Del interferometer. Figure 6 depicts a Mach-Zehnder-interferometer using a pre-packaged miniature flexible waveguide of the present invention. Figure 7 depicts another embodiment of a Mach-Zehnder interferometer using a 90-degree pre-packaged miniature flexible waveguide on an interference arm of the present invention. 28 and 9 describe other embodiments of the Mach-Zehnder interferometer using an unpackaged miniature flexible waveguide of the present invention. CNS A4 Specification ⑵0 (Please read the precautions on the back before filling this page)

^i I--.---til------^ I 經濟部智慧財產局員工消費合作社印製 X 297公釐) 455716 A7 B7 五、發明說明(4 ) 圖十描述本發明在干涉臂上使用9〇度預包裝微型可曲 波導管之馬赫-策德爾干涉儀的其他實施例。 f實施例1 本發明提出一種光纖馬赫-策德爾干涉儀,可在相敏區域 構成微型可曲波導管。該微型可曲波導管可用來縮短干涉儀 之長度、減少干涉儀之直徑或設計非對等式干涉儀。本發明 之馬赫-策德爾干涉儀是唯一可允許設計者調整光纖元件的 實體規劃(physical layout)來配合工作場所之空間限制^此 外,干涉儀之干涉臂的極性依存(polarization dependence)可 藉由實體調整干涉儀之干涉臂來均等化(equalized)。 圖二描述本發明之光纖馬赫_策德爾干涉儀u〇。干涉儀 110由第一與第二延長光纖112與114所構成,每個延長光纖 112與114具有核心與外部被覆。光纖112與114被連結於耗合 器116與118。光纖112提供延伸於耦合器116與118之間的第一 干涉臂120,而光纖114提供延伸於耦合器116與118之間的第 二干涉臂122。此外,每個干涉臂120與122分別包括位於核心 且彎度大約180度之微型可曲波導管124與126。干涉臂12〇與 微型可曲波導管124理想上係嵌套於干涉臂122與微型可曲波 導管126内。本發明所謂之鼓套是指一個干涉臂與所結合之微 型可曲波導管由第二干涉臂與所結合之微型可曲波導管所界 定範圍。所謂之嵌套並非規定一微型可曲波導管位於第二微 型可曲波導管之兩端之間。 因此,本發明提供一種在至少一干涉臂上使用微型可曲 波導管而大大減少直徑之干涉儀。一般之光纖,相較於核心 之較低被覆反射率在可忽略損失之情形下光線可順著光纖前 本紙張尺度適用中囤國家標準(CNS)A4規格(210 X 297公爱) (請先閲讀背面之注意事項再填寫本頁) 裝'---------訂----------線· 經濟部智慧財產局員工消費合作社印製 A7 455716 ____B7____ 五、發明說明(5 ) 進。光線可視為由核心/被覆之整體内部反射來引導。隨著微 型可曲波導管技術,光纖直徑在彎曲區域縮小,設計出光線 主要由作為被覆之四周空氣引導之架構,且在縮小直徑區域 之光纖作為核心。由於四周空氣之反射係數近乎均等,相較 於為修正光纖之0.003差值,在彎曲區域之有效的核心/被覆係 數差大約為0.46。因此,光線被更緊密地限制在彎曲區域, 且在不需連結輻射狀模式下可承受更小之彎曲半徑。 雖然具有相當小的180度彎曲,微型可曲波導管之光線損 失在整個1260至1650奈米之光譜帶是非常小,例如在光譜帶 兩側其最大損失一般低於0.2dB。因此’該可曲波導管可被使 用於1300與1550奈米之電訊窗口。且由於可曲波導管位於一 平面,假設具有微小雙折射,但所測得之極性依存損失低於 0.003dB。 圖三描述本發明另一種光纖馬赫策德爾干涉儀210。干涉 儀210由第一與第二延長光纖212與214所構成,每個延長光纖 212與214具有核心與外部被覆。光纖212與214利用耦合器216 與218連結。光纖212提供延伸於耦合器216、218之第一干涉 臂220,而光纖214提供延伸於耦合器216、218之第二干涉臂 222。此外,干涉臂220包括第一與第二微型可曲波導管224 與228。雖然清楚地考慮其他彎曲角度來對齊光纖212與214 的兩端,每個微型可曲波導管224與228形成大約120度的彎 曲。干涉臂222形成一直線。干涉儀210利用控制兩個干涉臂 的光學長度差異來控制MZI的波長響應。圖四顯示本發明干 涉儀所計算之頻譜響應’其中兩個干涉臂的光學長度差異大 約 3mm。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) <請先閱讀背面之注意事項再填寫本頁)^ i I --.--- til ------ ^ I Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs X 297 mm) 455716 A7 B7 V. Description of the invention (4) Figure 10 depicts the interference of the invention Another embodiment of a Mach-Zehnder interferometer using a 90-degree pre-packaged miniature flexible waveguide on the arm. fExample 1 The present invention proposes a fiber-optic Mach-Zehnder interferometer, which can form a miniature flexible waveguide in a phase-sensitive area. The miniature flexible waveguide can be used to shorten the length of the interferometer, reduce the diameter of the interferometer, or design non-equivalence interferometers. The Mach-Zehnder interferometer of the present invention is the only one that allows the designer to adjust the physical layout of the fiber optic components to match the space constraints of the workplace ^ In addition, the polarity dependence of the interference arm of the interferometer can be determined by The entity adjusts the interferometer arms of the interferometer to equalize. FIG. 2 illustrates the optical fiber Mach-Zehnder interferometer u0 of the present invention. The interferometer 110 is composed of first and second extension fibers 112 and 114, and each extension fiber 112 and 114 has a core and an outer cover. The optical fibers 112 and 114 are connected to the couplers 116 and 118. The optical fiber 112 provides a first interference arm 120 extending between the couplers 116 and 118, and the optical fiber 114 provides a second interference arm 122 extending between the couplers 116 and 118. In addition, each of the interference arms 120 and 122 includes miniature flexible waveguides 124 and 126 located at the core and each having a curvature of about 180 degrees. The interference arm 120 and the miniature flexible waveguide 124 are ideally nested within the interference arm 122 and the miniature flexible waveguide 126. The so-called drum cover in the present invention refers to a range bounded by an interference arm and a combined miniature flexible waveguide by a second interference arm and a combined miniature flexible waveguide. The so-called nesting does not mean that a miniature flexible waveguide is located between the two ends of the second miniature flexible waveguide. Therefore, the present invention provides an interferometer that uses a miniature flexible waveguide on at least one interference arm to greatly reduce the diameter. In general, the optical fiber has a lower coating reflectance than the core, and the light can pass through the optical fiber under the condition of negligible loss. The paper size applies to the national standard (CNS) A4 specification (210 X 297 public love) (please first Read the notes on the back and fill in this page) Install '--------- Order ---------- Line · Printed by the Consumer Consumption Cooperative of Intellectual Property Bureau of the Ministry of Economy A7 455716 ____B7____ V. Invention Explanation (5). The light can be viewed as guided by the core / clad's overall internal reflection. With the micro-flexible waveguide technology, the diameter of the optical fiber is reduced in the curved area. A structure is designed in which light is mainly guided by the surrounding air as the cover, and the optical fiber in the reduced diameter area is used as the core. Because the reflection coefficient of the surrounding air is nearly equal, the effective core / covering coefficient difference in the bending area is about 0.46 compared to the 0.003 difference for correcting the optical fiber. As a result, light is more tightly confined to the bending area and can withstand smaller bending radii without the need to connect radial patterns. Although it has a relatively small 180-degree bend, the light loss of the miniature flexible waveguide is very small over the entire 1260 to 1650 nm spectral band. For example, the maximum loss on both sides of the spectral band is generally less than 0.2 dB. So 'the flexible waveguide can be used in telecommunication windows of 1300 and 1550 nm. And because the flexible waveguide is located on a plane, it is assumed to have a small birefringence, but the measured polarity dependence loss is less than 0.003dB. FIG. 3 illustrates another fiber Mach-Zehnder interferometer 210 according to the present invention. The interferometer 210 is composed of first and second extension fibers 212 and 214, and each extension fiber 212 and 214 has a core and an outer cover. The optical fibers 212 and 214 are connected by couplers 216 and 218. The optical fiber 212 provides a first interference arm 220 extending from the couplers 216, 218, and the optical fiber 214 provides a second interference arm 222 extending from the couplers 216, 218. In addition, the interference arm 220 includes first and second miniature flexible waveguides 224 and 228. Although other bending angles are clearly considered to align the two ends of the optical fibers 212 and 214, each of the miniature flexible waveguides 224 and 228 forms a bend of approximately 120 degrees. The interference arms 222 form a straight line. The interferometer 210 controls the wavelength response of the MZI by controlling the difference in optical length of the two interference arms. Figure 4 shows the spectral response 'calculated by the interferometer of the present invention, in which the optical length difference between the two interference arms is about 3 mm. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) < Please read the notes on the back before filling this page)

裝---------訂·--------I 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 455716 五、發明說明(6 ) 參考圖五’非對等式馬赫-策德爾干涉儀410亦可構成具有 90度微型可曲波導管之新型架構,藉以應用需要以直角角度 互相引導之短型裝置的場合。干涉儀4〗〇包括安裝於直角基板 416之光纖412與414。每個光纖412與414包括一光學傳輸核心 418與同中心的被覆42(^第一光纖412定義第一干涉臂423, 而第二光纖414定義第二干涉臂425,且第一干涉臂423與第二 干涉臂425延伸於第一與第二耦合器422與424之間。干涉臂 423在耦合器422與424中間具有第一 90度微型可曲波導管 430,而干涉臂425亦於耦合器422與424中間具有第二90度微 型可曲波導管432。微型可曲波導管430被嵌套於微型可曲波 導管432。在此情形下,光纖的光路長度差異是利用微型可曲 波導管430與432之不同的彎曲半徑來建立。 本發明還考慮到用來裝配耦合器之光纖並不需如磨光 之區塊耦合器被熔合在一起。此外,本發明使用之耦合器可 為對稱式或非對稱式。本發明耦合器之分配率(spUtiing rati〇) 可為50%以外之數值。且,分配率與耦合器之最大分配率並 不需相同,例如非對稱式耦合器之分配率為4〇%。而且,本 發明之干涉臂亦不需對稱。因此,該架構可被用來製造波長 分配多工器,具有或是不具有在鄰接耦合器處所形成之光纖 布喇格(Bragg)格子(grating)。然而,根據美國申請第 〇9/421,Π3號專利,本發明還考慮到光纖布喇格格子可被形成 於鄰接每個耦合器。 本發明之干涉儀還可從一個或多個感光性的光纖來裝 配。而且,每個耦合器可由兩個以上光纖組成。例如,一個 1x3耦合器可由一個或多個感光性光纖以及其他非感性 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) ---------------裝--------訂---------線 _ (請先間讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 455716 Λ7 -------- -B7 五、發明說明(7 ) 纖來裝配。 所描述之干涉儀110與210並不具有保護外殼或安裝 面。然而’光纖之微型可曲波導管可收容於不同包裝,且沒 有包裝材料在行進區域接觸到光纖。參考圖六,本發明之光 纖馬赫-策德爾干涉儀510使用事先包裝之微型可曲波導管。 干涉儀510包括固定在延長基板516之第一延長光纖512與第 二延長光纖514。每個光纖512與514還包括光學式傳輸核心 518與同圓心被覆520。 在第一與第二耦合器522與524之間的第一光纖5 12被第 二光纖514所界定。光纖512包括延伸於耦合器522與524之間 的第一微型可曲波導管530,而光纖514亦包括延伸於耦合器 522與524之間的第二微型可曲波導管532。微型可曲波導管 532與534可事先被包裝,使得每個波導管在殼體536與538内 形成被固定之預彎曲架構,藉以組裝至基板516以及將光纖耦 合於耦合器522與524之間。光纖512與514光學耦合於第一與 第二耦合器522與524,且利用位於耦合器522與524另一邊之 第一環氧基樹脂大頭釘526與一第二環氧基樹脂大頭釘528固 定於基板516。環氧基樹脂大頭釘528最好不要與微型可曲波 導管530或532之任何部分接觸。 首先’製造可曲波導管530與532,接著包裝於個別之保 護殼體536與538。殼體536在第一光纖5 12之相對端提供一對 光纖導引部512a與512b。同樣地,殼體538在第二光纖514之 相對端提供一對光纖導引部514a與514b。之後,結合包裝後 之微型可曲波導管的導引部形成製造之耦合器522與524。因 此’干涉儀之相敏區域由延伸於耦合器522與524之間的光纖 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) (請先閱讀背面之注意事項再填寫本頁)Packing --------- Order · -------- I Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by 455716 V. Invention Description (6) Reference Fig. 5 'The non-equivalence Mach-Zehnder interferometer 410 can also form a new architecture with a 90-degree miniature flexible waveguide for applications where short devices need to be guided to each other at right angles. The interferometer 4 includes optical fibers 412 and 414 mounted on a right-angle substrate 416. Each optical fiber 412 and 414 includes an optical transmission core 418 and a concentric coating 42 (a first optical fiber 412 defines a first interference arm 423, and a second optical fiber 414 defines a second interference arm 425, and the first interference arm 423 and The second interference arm 425 extends between the first and second couplers 422 and 424. The interference arm 423 has a first 90-degree miniature flexible waveguide 430 between the couplers 422 and 424, and the interference arm 425 is also on the coupler There is a second 90-degree miniature flexible waveguide 432 between 422 and 424. The miniature flexible waveguide 430 is nested within the miniature flexible waveguide 432. In this case, the difference in the optical path length of the fiber is the use of the miniature flexible waveguide 430 and 432 are established with different bending radii. The present invention also considers that the optical fiber used to assemble the coupler does not need to be fused together like a polished block coupler. In addition, the coupler used in the present invention can be symmetrical Type or asymmetric type. The distribution ratio (spUtiing rati0) of the coupler of the present invention can be a value other than 50%. Moreover, the distribution ratio and the maximum distribution ratio of the coupler need not be the same, such as the distribution of an asymmetrical coupler The rate is 40%. The invented interference arm also does not need to be symmetrical. Therefore, this architecture can be used to make a wavelength distribution multiplexer with or without a fiber Bragg grating formed adjacent to the coupler. However, According to U.S. Application No. 09/421, Π3, the present invention also considers that the fiber Bragg grid can be formed adjacent to each coupler. The interferometer of the present invention can also be derived from one or more photosensitive optical fibers Assembly. Moreover, each coupler can be composed of more than two optical fibers. For example, a 1x3 coupler can be composed of one or more photosensitive fibers and other non-inductive. This paper is applicable to China National Standard (CNS) A4 (210 x 297 mm) Li) --------------- install -------- order --------- line_ (please read the precautions on the back before filling in this Page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 455716 Λ7 -------- -B7 V. Description of the invention (7) Fiber assembly. The described interferometers 110 and 210 do not have a protective casing or installation However, the micro-flexible waveguide of the optical fiber can be accommodated in different packaging, and there is no packaging The fiber is in contact with the optical fiber in the traveling area. Referring to FIG. 6, the optical fiber Mach-Zehnder interferometer 510 of the present invention uses a pre-packaged miniature flexible waveguide. The interferometer 510 includes a first extension fiber 512 and a first extension fiber fixed on an extension substrate 516. Two extended optical fibers 514. Each optical fiber 512 and 514 also includes an optical transmission core 518 and a concentric coating 520. The first optical fiber 5 12 between the first and second couplers 522 and 524 is defined by the second optical fiber 514 The optical fiber 512 includes a first miniature flexible waveguide 530 extending between the couplers 522 and 524, and the optical fiber 514 also includes a second miniature flexible waveguide 532 extending between the couplers 522 and 524. Miniature flexible waveguides 532 and 534 can be packaged in advance, so that each waveguide forms a fixed pre-bent structure in the housings 536 and 538 for assembly to the substrate 516 and coupling the optical fiber between the couplers 522 and 524 . The optical fibers 512 and 514 are optically coupled to the first and second couplers 522 and 524, and are fixed by using a first epoxy-based resin tack 526 and a second epoxy-based resin tack 528 on the other side of the couplers 522 and 524.于 Substrate 516. The epoxy resin tack 528 is preferably not in contact with any part of the miniature flexible waveguide 530 or 532. First, the flexible waveguides 530 and 532 are manufactured and then packaged in individual protective cases 536 and 538. The housing 536 provides a pair of fiber guide portions 512a and 512b at opposite ends of the first optical fiber 512. Similarly, the housing 538 is provided with a pair of optical fiber guide portions 514a and 514b at opposite ends of the second optical fiber 514. After that, the coupled guides of the miniature flexible waveguide are combined to form the manufactured couplers 522 and 524. Therefore, the phase-sensitive area of the interferometer consists of the optical fiber extending between the couplers 522 and 524. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love) (Please read the precautions on the back before filling in this page)

裝.------訂---I---I 4557 1 6 A7 B7__ 五、發明說明(8 ) 所定義。為了避免與基板516接觸’耦合器522與524最好懸掛 於基板516上方一個光纖直徑距離的位置,且微型可曲波導管 530與532最好懸掛於個別殼體536與538内。 本發明還利用將其中一個已包裝可曲波導管配置於比 另一已包裝可曲波導管遠離耦合器之位置,來提供在兩個干 涉儀之干涉臂之間任何所需之實體路徑長度差異。此外,當 包裝之微型可曲波導管位於接近相敏區域的中間點時,本發 明干涉儀的長度最好切成習知干涉儀1〇之大約一半的長度。 而且,所有的光纖導引部512a、512b、514a與514b從干涉儀 之一端露出’所以另一端不需導引部而靠近壁面。在此架構 中使用包已裝微型可曲波導管,若較大可曲波導管被配置於 干涉儀之相敏區域’可允許在不需大的側邊偏移值組合干涉 儀。 參考圖七’一非對等式馬赫-策德爾干涉儀61〇亦可以具 有90度預包裝之微型可曲波導管來組合,以應用於每個導引 部以直角互相露出之短裝置。干涉儀610包括安裝於直角基板 616之光纖612與614。每個光纖612與614包括光學傳輸核心 618與同圓心被覆620。第一光纖612定義第一干涉臂623 ,而 第二光纖614定義第二千涉臂625,且延伸於第一與第二耦合 器622與624之間。干涉臂623包括在耦合器622與624中間之第 一 90度微型可曲波導管630 ’相同地,光纖614包括在耦合器 622與624中間之第二90度微型可曲波導管632。微型可曲波導 管630被微型可曲波導管632所嵌套。在此情形下,光纖之間 的路徑長度差異是藉由微型可曲波導管630與632之不同f曲 半徑來建立。 本紙張尺度適用中國國家標準(CNS)A.l規格(210 x 297公釐) {請先閱讀背面之注意事項再填寫本頁) 裝 il — J— — — 訂- -- - -----· 經濟部智慧財產局員工消費合作杜印製 經濟邨智慧財產局員工消費合作社印製 4557 1 6 A1 一 —___B7_ 五、發明說明(9 ) 微型可曲波導管632與634理想上係被預包裝成為具有 保護外殼636與638之已固定預彎曲架構,用來組裝於基板616 且耦合於耦合器622與624之間的光纖。首先,製造可曲波導 管630與632,之後包裝於個別之保護外殼636與638。因此, 外殼636在第一光纖612之相對端提供一對光纖導引部612a與 612t^相同地,外殼638在第二光纖614之相對端提供一對光 纖導引部614a與614b。之後,已包裝微型可曲波導管之導引 部被結合以形成耦合器622與624。干涉儀的相敏區域由延伸 於耦合器622與624之間的光纖所定義。為了避免與基板616, 耦合器622與624最好懸掛於基板616上方一個光纖直徑距離 的位置’且微型可曲波導管630與632最好懸掛於個別殼體636 與638内。 參考圖八至十,本發明還提供一種利用在相敏區域配置 未包裝微型可曲波導管’在小型單邊架構形成實體非對等式 馬赫-策德爾干涉儀之裝置。未包裝微型可曲波導管之導引部 利用橫過四個導引部裝配兩個耦合器而用來形成干涉儀之相 敏區域。在此架構中,因為微型可曲波導管沒有其他包裝, 故耦合器為微型可曲結構之整體部分。由於微型可曲波導管 未包裝,干涉儀電路之相敏區域的結合質量實質上被減少。 基板形狀可選擇較小尺寸、熱靈敏與震動靈敏。 參考圖八,本發明提供一光纖馬赫_策德爾干涉儀3ι〇, 包括固定於延長基板316之第一延長光纖312與第二延長光纖 314。每個光纖312與314包括光學傳輸核心318與同圓心被覆 320。光纖312與314光學耦合於二個耦合器322與324,且利用 由環氧基樹脂形成之第一大頭釘324以及由凝膠形成之 本紙張尺度_中_家鮮(CN^X4祕⑵^ χ挪公髮)Equipment .------ Order --- I --- I 4557 1 6 A7 B7__ 5. Defined by the invention description (8). In order to avoid contact with the substrate 516, the couplers 522 and 524 are preferably suspended at a position with a diameter of a fiber above the substrate 516, and the miniature flexible waveguides 530 and 532 are preferably suspended in the individual housings 536 and 538. The present invention also uses one of the packaged flexible waveguides to be located further from the coupler than the other packaged flexible waveguide to provide any required physical path length difference between the interference arms of the two interferometers. . In addition, when the packaged miniature flexible waveguide is located near the middle point of the phase-sensitive area, the length of the interferometer of the present invention is preferably cut to about half the length of the conventional interferometer 10. Furthermore, all of the optical fiber guide portions 512a, 512b, 514a, and 514b are exposed from one end of the interferometer ', so the other end does not need a guide portion and approaches the wall surface. In this architecture, a packaged miniature flexible waveguide is used. If a larger flexible waveguide is placed in the phase-sensitive area of the interferometer, the interferometer can be combined without requiring large side offset values. Referring to FIG. 7 ', a non-equivalent Mach-Zehnder interferometer 61 can also be combined with a 90-degree pre-packaged miniature flexible waveguide to be applied to a short device in which each guide portion is exposed at a right angle to each other. The interferometer 610 includes optical fibers 612 and 614 mounted on a right-angle substrate 616. Each of the optical fibers 612 and 614 includes an optical transmission core 618 and a concentric coating 620. The first optical fiber 612 defines a first interference arm 623, and the second optical fiber 614 defines a second chirping arm 625, and extends between the first and second couplers 622 and 624. The interference arm 623 includes a first 90-degree miniature flexible waveguide 630 'between the couplers 622 and 624. Similarly, the optical fiber 614 includes a second 90-degree miniature flexible waveguide 632 between the couplers 622 and 624. The miniature flexible waveguide 630 is nested by the miniature flexible waveguide 632. In this case, the difference in path length between the optical fibers is established by different f-curvature radii of the miniature flexible waveguides 630 and 632. This paper size applies the Chinese National Standard (CNS) Al specification (210 x 297 mm) {Please read the precautions on the back before filling this page). Il — J — — — Order-------- · Duo printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by the consumer cooperative of the Intellectual Property Bureau of the Economic Village, printed by 4557 1 6 A1 I —___ B7_ V. Description of the invention (9) Miniature flexible waveguides 632 and 634 are ideally pre-packaged into The fixed pre-bent structure with protective shells 636 and 638 is used to assemble the optical fiber on the substrate 616 and coupled between the couplers 622 and 624. First, flexible waveguides 630 and 632 are manufactured, and then packaged in individual protective cases 636 and 638. Therefore, the housing 636 provides a pair of optical fiber guides 612a and 612t at the opposite ends of the first optical fiber 612, and the housing 638 provides a pair of optical fiber guides 614a and 614b at the opposite ends of the second optical fiber 614. Thereafter, the guides of the packaged miniature flexible waveguide are combined to form the couplers 622 and 624. The phase-sensitive area of the interferometer is defined by an optical fiber extending between couplers 622 and 624. In order to avoid contact with the base plate 616, the couplers 622 and 624 are preferably suspended at a position of a fiber diameter distance above the base plate 616 ', and the miniature flexible waveguides 630 and 632 are preferably suspended in the individual housings 636 and 638. Referring to FIGS. 8 to 10, the present invention also provides a device for forming a solid non-equivalence Mach-Zehnder interferometer in a small unilateral structure by using an unpackaged miniature flexible waveguide 'disposed in a phase-sensitive area. Unpackaged Miniature Flexible Waveguide Guides Use two couplers across four guides to form the sensitive area of the interferometer. In this architecture, because the miniature flexible waveguide has no other packaging, the coupler is an integral part of the miniature flexible structure. Since the miniature flexible waveguide is not packaged, the quality of the bonding of the phase-sensitive area of the interferometer circuit is substantially reduced. The shape of the substrate can be selected to be smaller, heat sensitive and vibration sensitive. Referring to FIG. 8, the present invention provides an optical fiber Mach-Zehnder interferometer 3 ι including a first extension optical fiber 312 and a second extension optical fiber 314 fixed to an extension substrate 316. Each of the optical fibers 312 and 314 includes an optical transmission core 318 and a concentric coating 320. The optical fibers 312 and 314 are optically coupled to the two couplers 322 and 324, and use the first tack 324 formed of epoxy resin and the paper size formed of gel_Medium_ 家 鲜 (CN ^ X4 秘 ⑵ ^ χ Norwegian public hair)

_I (請先閱讀背面之注意事項再填寫本頁) 裝---------訂----------線·_I (Please read the notes on the back before filling this page)

45 57 l Q A7 __B7__ 五、發明說明() 環氧基樹脂大頭釘326固定於基板316上,而輕輕地將光纖312 與314固定於耦合器322與324之間。由於光纖312與314並未由 環氧基樹脂大頭釘324嚴格地固定,故大頭釘326之凝膠減少 干涉儀之熱靈敏度。 第一光纖312由第二光纖314界定於第一與第二耦合器 322與324之間。光纖3 12包括延伸於耦合器322與324之間的第 一干涉臂323。干涉臂323包括所形成之微型可曲波導管33〇。 同樣地,光纖M4亦包括包括延伸於耦合器322與324之間的干 涉臂325。干涉臂325亦同樣包括所形成之微型可曲波導管 332。微型可曲波導管330與332最好事前未包裝以形成干涉儀 310 ’藉以減少關於光纖材料之質量。微型可曲波導管330與 332越過基板316之邊界被隨意支撐。 參考圖九,本發明還提供另一光纖馬赫-策德爾干涉儀 710’包括固定於延長基板716之第一延長光纖712與第二延長 光纖714。每個光纖712與714包括光學傳輸核心718與同圓心 被覆720。第一光纖712在第一與第二耦合器722與724之間被 鼓套於第二光纖Ή4。光纖712包括延伸於耦合器722與724之 間的第一干涉臂723。干涉臂723包括所形成之微型可曲波導 管730。光纖714同樣包括延伸於耦合器722與724之間的第二 干涉臂725。而且’干涉臂725同樣包括所形成之微型可曲波 導管732。微型可曲波導管730與732最好被支撐於基板716之 平面716a上方一預定距離的位置。光纖712與714光學輕合於 第一與第二耦合器722與724,且利用第一環氧基樹脂大碩釘 726與凝膠大頭釘728固定於基板716上。環氧基樹脂大頭針 726大致位於光纖712與714的自由端。凝膠大頭釘728最奸位 本紙張尺度適用中國國家標準(CNS)A4規格(2〗0 X 297公髮) (請先間讀背面之注意事項再填寫本頁) 裝---1---II 訂--------- 經濟部智慧財產局員工消費合作杜印製 4557 1 6 ------- 五、發明說明(11 , 於鄰近耦合器722與724的位置,但靠 :=r—b環氧基樹—二: 、干涉儀7U)還在基板716上提供薄金屬片或台㈣ 干涉臂723與725支樓於基板716上。台座740最好位於鄰近 膠大頭釘728的位置,藉以將干涉臂723與725支撐於基板川 上方-預定距離的位置。台座740還藉由位於合適位置來供應 接合劑,以幫助所供應之接合劑位於局部位置。凝膠大頭釘 728與台座740之間的表面張力可幫助凝膠位於局部位置,使 其不會與微型可曲波導管之處理區域或耦合器接觸。而且, 台座740亦可提供於圖五至十之任何實施例,藉以支撐干涉臂 以及將有黏性的環氧基樹脂或凝膠控制於局部適當位置。在 圖八至十的實施例中,耦合器可簡單由一邊具有有黏性的環 氧基樹脂以及另一邊具有凝膠、有黏性的環氧基樹脂或台座 支撐於基板上方。 參考圖十,一非對等式馬赫·策德爾干涉儀81〇亦可以具 有90度預包裝之微型可曲波導管來組合,以應用於每個導引 部以直角互相露出之短裝置。干涉儀810包括安裝於直角基板 816之光纖812與814。每個光纖812與814包括光學式傳輪核心 818與同圓心被覆820。第一光纖812與第二光纖814分別定義 延伸於第一與第二耦合器822與824之間的第一干涉臂823與 第二干涉臂825。干涉臂823包括位於耦合器822、824中途的 一第一90度微型可曲波導管83〇,而光纖814同樣包括位於耦 合器822、824中途的一第二90度微型可曲波導管832。微型可 曲波導管830由微型可曲波導管832所嵌套。在此實施例,光 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) f請先閱讀背面之注音?事項再填寫本I')45 57 l Q A7 __B7__ 5. Description of the invention () The epoxy resin tack 326 is fixed on the base plate 316, and the optical fibers 312 and 314 are gently fixed between the couplers 322 and 324. Since the optical fibers 312 and 314 are not rigidly fixed by the epoxy resin tack 324, the gel of the tack 326 reduces the thermal sensitivity of the interferometer. The first optical fiber 312 is defined by the second optical fiber 314 between the first and second couplers 322 and 324. The optical fiber 312 includes a first interference arm 323 extending between the couplers 322 and 324. The interference arm 323 includes a micro-flexible waveguide 33 formed. Similarly, the optical fiber M4 also includes an interference arm 325 extending between the couplers 322 and 324. The interference arm 325 also includes a micro-flexible waveguide 332 formed. Miniature flexible waveguides 330 and 332 are preferably unpackaged in advance to form an interferometer 310 'to reduce the quality of the fiber optic material. The miniature flexible waveguides 330 and 332 are arbitrarily supported across the boundary of the substrate 316. Referring to FIG. 9, the present invention also provides another fiber Mach-Zehnder interferometer 710 'including a first extension fiber 712 and a second extension fiber 714 fixed to an extension substrate 716. Each of the optical fibers 712 and 714 includes an optical transmission core 718 and a concentric coating 720. The first optical fiber 712 is drummed between the first and second couplers 722 and 724 on the second optical fiber Ή4. The optical fiber 712 includes a first interference arm 723 extending between the couplers 722 and 724. The interference arm 723 includes a micro-flexible waveguide 730 formed. The optical fiber 714 also includes a second interference arm 725 extending between the couplers 722 and 724. Moreover, the 'interference arm 725 also includes the formed miniature flexible waveguide 732. The miniature flexible waveguides 730 and 732 are preferably supported at a predetermined distance above the plane 716a of the substrate 716. The optical fibers 712 and 714 are optically light-coupled to the first and second couplers 722 and 724, and are fixed on the substrate 716 by using the first epoxy-based resin tack 726 and the gel tack 728. The epoxy resin pin 726 is located approximately at the free ends of the optical fibers 712 and 714. Gel tacks 728 are the most embarrassing. The paper size is applicable to China National Standard (CNS) A4 specifications (2〗 0 X 297). (Please read the precautions on the back before filling this page.) Pack --- 1-- -II Order --------- Consumption Cooperation between Employees and Intellectual Property Bureau of the Ministry of Economic Affairs 4557 1 6 ------- V. Description of the invention (11, near the positions of couplers 722 and 724, But by: = r-b epoxy-based tree-two :, interferometer 7U) also provides a thin metal sheet or platform on the substrate 716. The interference arms 723 and 725 are on the substrate 716. The pedestal 740 is preferably located near the rubber tack 728, so as to support the interference arms 723 and 725 at a position a predetermined distance above the base plate. The pedestal 740 also supplies the bonding agent by being in a proper position to help the supplied bonding agent be in a localized position. The surface tension between the gel tacks 728 and the pedestal 740 helps the gel to be localized so that it does not contact the processing area or coupler of the miniature flexible waveguide. In addition, the pedestal 740 can also be provided in any of the embodiments of Figs. 5 to 10, so as to support the interference arm and control the adhesive epoxy resin or gel in a suitable local position. In the embodiment of Figs. 8 to 10, the coupler can be simply supported on the substrate by an epoxy resin having a sticky side on one side and a gel or sticky epoxy based resin or a base on the other side. Referring to FIG. 10, a non-equivalent Mach-Zehnder interferometer 810 can also be combined with a 90-degree pre-packaged miniature flexible waveguide to be applied to a short device in which each guide portion is exposed at a right angle to each other. The interferometer 810 includes optical fibers 812 and 814 mounted on a right-angle substrate 816. Each of the optical fibers 812 and 814 includes an optical transmission core 818 and a concentric coating 820. The first optical fiber 812 and the second optical fiber 814 define a first interference arm 823 and a second interference arm 825 extending between the first and second couplers 822 and 824, respectively. The interference arm 823 includes a first 90-degree miniature flexible waveguide 83 in the middle of the couplers 822, 824, and the optical fiber 814 also includes a second 90-degree miniature flexible waveguide 832 in the middle of the couplers 822, 824. The miniature flexible waveguide 830 is nested by the miniature flexible waveguide 832. In this embodiment, the paper size of the paper is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love) f Please read the phonetic on the back? Matters need to be filled in this I ')

裝--------"•訂--I--— —--I 經濟部智慧財產局員工消費合作社印製 455? i 6 u Λ7 ---------B7__ 五、發明說明(12 ) 纖之間的路徑長度差異是藉由微型可曲波導管83〇與832之不 同彎曲半徑來建立。而且,干涉儀81〇在光纖812與814之相敏 區域的相對位置提供黏性大頭釘,因此避免黏性地釘住相敏 區域之干涉臂的需要。 如圖八至十所示’使用於耦合器與微型可曲波導管之間 的黏性環氧基樹脂大頭釘,如干涉儀51 〇所示,亦可因為保持 光纖與微型可曲波導管較輕的質量而被省略。或者,干涉儀 51〇所使用於耦合器與微型可曲波導管之間的環氧基樹脂可 由凝膠取代,藉以輕輕地固定光纖,而不會因為接合劑之應 力帶來熱靈敏度。由於較輕質量與較小慣性力’凝膠為本發 明適合之包裝裝置。因此,具有較低之機構(m〇(juli)的凝膠為 一適合之接合介質。而且,其產生之結構小、同時易於裝配。 而且,微型可曲波導管之材料需受限制,必須大為減少 因熱所產生之應力。還可考慮使用凝膠以外之低應力接合 劑,藉以在不引起異常熱效應或機械上的效應下將光纖附著 於基板上。凝膠或環氧基樹脂可被應用於所結合之耦合器與 微型可曲波導管之間區域的光纖。然而,若直接應用於耦合 器或可曲波導管,環氧基樹脂可能會造成裝置的重量損失, 因為光纖在該等區域會被修正而允許光學領域在光纖外緣變 的重要。 再者’所結合之架構可製成相當小巧,因此不僅改善干 涉儀之熱穩定度還縮小其外觀尺寸。在此架構中,實際麵合 器區域與微型可曲波導管應該不可接觸於例如空氣等極低折 射係數與低損失材料以外的材料,否則,與折射係數高於1 3 的材料接觸會引起耦合器或微型可曲波導管之損失。一外侧 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公复) (請先間讀背面之注意事項再填寫本頁) 裒---------訂---------線— 經濟部智慧財產局員工消費合作社印製 Λ7 4557 1 6 五、發明說明(13) 包裝(圖未示)亦可被配置於共同基板,藉以避免與微型可曲 波導管接觸而提供單一干涉儀包裝。 如圖七至十所示,若光纖被黏著固定於共同基板,本發 明之干涉儀會因為基板或所使用之接合劑的熱膨脹以及所產 生之添加於光纖的物理拉力,而敏感於熱異常。因此接合劑 成為熱敏感與相不穩定之潛在原因。在干涉儀中,任何施加 於干涉儀之耦合器間的相敏區域之外力會在兩隔區段間行進 的光線帶來不同的相位移。不同的相位移會由因長度改變或 彎曲的不同路徑長度之物質改變所產生,或是由區段之間之 折射係數不同改變所產生。 係數改變係關聯於經由光纖之光應力特質所施予的應 力。由於接合劑施予之應力一般會隨溫度改變,因此光纖會 產生長度與折射係數之改變。由於此熱敏感之結果,任何與 相敏區域之光纖接觸之環氧基樹脂或接合劑在光線經由光纖 傳送時可能會引起不同之相位移。 本發明之干涉儀可藉由選擇適合之熱膨脹係數的光纖 以及耦合器之間的適當光纖長度來製造出較低之熱敏感。耦 合器之間的非對等式構造必須使較長的腳具有比較短的腳更 大之熱膨脹。一般而言’光纖之熱膨脹可表示成:-------- " • Order --I ---- --- I Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy 455? I 6 u Λ7 --------- B7__ 5 Explanation of the invention (12) The difference in path length between the fibers is established by the different bending radii of the miniature flexible waveguides 83 and 832. Moreover, the interferometer 810 provides viscous tacks at the relative positions of the phase sensitive areas of the optical fibers 812 and 814, thus avoiding the need to tack the interference arms of the phase sensitive areas tacky. As shown in Figures 8 to 10 'The viscous epoxy resin tack used between the coupler and the miniature flexible waveguide, as shown in the interferometer 51 〇, can also Light weight is omitted. Alternatively, the epoxy resin used between the coupler and the miniature flexible waveguide of the interferometer 51 can be replaced by a gel, thereby gently fixing the optical fiber without thermal sensitivity due to the stress of the bonding agent. Due to its lighter weight and lower inertial force, the gel is a suitable packaging device for the present invention. Therefore, a gel with a lower mechanism (m0 (juli) is a suitable joining medium. Moreover, the resulting structure is small and easy to assemble at the same time. Moreover, the material of the miniature flexible waveguide needs to be limited and must be large In order to reduce the stress caused by heat, it is also possible to consider using a low-stress bonding agent other than a gel to attach the optical fiber to the substrate without causing abnormal thermal effects or mechanical effects. The gel or epoxy resin can be used An optical fiber used in the area between the coupled coupler and the miniature flexible waveguide. However, if it is directly applied to the coupler or flexible waveguide, the epoxy resin may cause the weight loss of the device because the optical fiber The area will be modified to allow the optical field to become important on the outer edge of the fiber. Furthermore, the combined architecture can be made quite small, so not only improves the thermal stability of the interferometer but also reduces its appearance. In this architecture, the actual The facet joint area and the miniature flexible waveguide should not be in contact with materials other than extremely low refractive index and low loss materials such as air, otherwise, the refractive index is higher than 1 The material contact of 3 will cause the loss of the coupler or the miniature flexible waveguide.-The paper size on the outer side is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public copy) (Please read the precautions on the back before filling in this Page) 裒 --------- Order --------- line — printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs Λ7 4557 1 6 V. Description of the invention (13) Packaging (not shown) ) Can also be arranged on a common substrate to provide a single interferometer package by avoiding contact with the miniature flexible waveguide. As shown in Figures 7 to 10, if the optical fiber is adhered and fixed to the common substrate, the interferometer of the present invention will Or the thermal expansion of the bonding agent used and the physical tensile force added to the fiber are sensitive to thermal anomalies. Therefore, the bonding agent becomes a potential cause of thermal sensitivity and phase instability. In an interferometer, any Forces outside the phase-sensitive region between the couplers will cause different phase shifts in the light traveling between the two compartments. Different phase shifts can be caused by changes in length or bending of different path length materials, or by Section The change in the refractive index varies between the factors. The change in the coefficient is related to the stress applied by the optical stress characteristics of the optical fiber. Since the stress applied by the bonding agent generally changes with temperature, the optical fiber will have a change in length and refractive index. Due to this thermally sensitive result, any epoxy-based resin or cement that is in contact with the fiber in the phase-sensitive area may cause different phase shifts when the light is transmitted through the fiber. The interferometer of the present invention can select a suitable thermal expansion coefficient Fiber and the appropriate fiber length between couplers to create a lower thermal sensitivity. The non-equivalence configuration between couplers must allow longer feet to have greater thermal expansion than shorter feet. Generally speaking, ' The thermal expansion of an optical fiber can be expressed as:

a) DeltaL=a*L*DeltaT 其中DeltaL是耗合器之間的光纖區段所增加之實體長 度’ a是熱膨脹係數’ L耦合器之間區段長度,以及〇61仏丁是 溫度的改變。膨脹差異給予干涉儀之波長相依(wavelength dependence)受到溫度之變化增加。該波長相依是由通過耦合 器之間的光纖區段的相位所決定。該相位為: 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ 297公釐) "請先閱讀背面之注意事項再填寫本頁) 裝------I--訂--- I -----.線 經濟部智慧財產局員工消費合作社印製 455716a) DeltaL = a * L * DeltaT where DeltaL is the increased physical length of the fiber section between the couplers 'a is the coefficient of thermal expansion' L section length between the couplers, and the temperature change is . The difference in dilation given to the interferometer's wavelength dependence is increased by changes in temperature. This wavelength dependence is determined by the phase through the fiber section between the couplers. The phase is: This paper size applies Chinese National Standard (CNS) A4 specification (21〇χ 297 mm) " Please read the notes on the back before filling this page) -I -----. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 455716

五、發明說明(l4 ) b) Phase=2*PI*n*L/Lambda 其中PI為常數’ η為區段之折射係數,L是區段長度,以 及Lambda是波長。為了保持干涉儀之波長相依不受溫度改 變’第一區段之相變化必須等於第二區段之相變化;亦即 c) Phasel=Phase2 通常該相穩定並不滿足於統合的干涉儀。因此’該統合 的裝置可能會由於隨著溫度產生波長與折射係數變化而顯現 出一些殘餘之溫度敏感度。 本發明提供一種非對等式摺疊馬赫-策德爾干涉儀,可藉 由選擇適當之耦合器區段之間的長度以及折射係數而製造出 非熱敏感。為了使相關係式(c)不受溫度影響,必須符合下式: d) nl*dLl/dT+Ll*dnl/dT=n2*dL2/dT+L2*dn2/dT 其 中’ d/dT為溫度導函數。 因此’本發明藉由選擇適當之光纖區段之間的長度以及 折射係數且其溫度導函數根據關係式(d)而製造出熱穩定之 干涉儀。該關係式可藉由近似不同的條件來簡化。藉由式(a) 與令nl=n2,式(d)可被近似成: e) nl*LI+Ll*dnl/dT=n2*aL2+L2*dn2/dT 或是V. Description of the invention (l4) b) Phase = 2 * PI * n * L / Lambda where PI is a constant 'η is the refractive index of the segment, L is the segment length, and Lambda is the wavelength. In order to maintain the wavelength dependence of the interferometer from temperature changes, the phase change in the first section must be equal to the phase change in the second section; that is, c) Phasel = Phase2 Usually this phase is stable and not satisfied with the integrated interferometer. Therefore, the integrated device may show some residual temperature sensitivity due to changes in wavelength and refractive index with temperature. The present invention provides a non-equivalent folded Mach-Zehnder interferometer, which can be made non-thermal sensitive by selecting the appropriate length and refractive index between the coupler sections. In order to make phase relationship (c) not affected by temperature, it must meet the following formula: d) nl * dLl / dT + Ll * dnl / dT = n2 * dL2 / dT + L2 * dn2 / dT where 'd / dT is the temperature Derivative function. Therefore, the present invention manufactures a thermally stable interferometer by selecting an appropriate length between optical fiber sections and a refractive index, and its temperature derivative function according to the relationship (d). This relationship can be simplified by approximating different conditions. By formula (a) and let nl = n2, formula (d) can be approximated as: e) nl * LI + Ll * dnl / dT = n2 * aL2 + L2 * dn2 / dT or

f) nl*a*(LI-L2)=L2*dn2/dT-Ll*dnl/dT 藉由選擇符合該等關係式之光纖可增加熱穩定性。通 常’由於其中一腳必須比另一腳長來提供所需之相位不匹 配’該較長的腳會由於該區段實體延長而有較大的相變化。 因此’最佳之匹配可藉由裝配較大之熱相依的折射係數之較 短的腳來達成。 之後’熱不敏感可藉由利用較長區段之較大延伸相位轉 本紙張尺度適用中國國家標準(CNS>A4規格(210χ297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝·-------訂---------« 經濟部智慧財產局員Η消費合作社印制^ 455716 Α7 Β7 五、發明說明(15) 移來抵銷較短腳之高溫度相依係數而達成β且需注意到,只 有在耦合器之間的區段會提供相位之熱影響,因為在此區域 之光線會行進於兩個光纖而在第二光纖造成干涉。 以上雖然說明本發明之較佳實施例,但是在不脫離本發 明之要曰下,該行業者可進行各種變形或變更。上述内容與 圖式僅為一種例式,而非限制本發明。本發明實際範圍係由 以下申請專利範圍所界定。 l·.-----------裝--------訂---------.線- (請先閱讀背面之注意事項再填寫本頁> 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 455716 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(0 ) 元件符號對照表 12 光纖 14 光纖 1 6 相敏區域 18 相敏區域 22 輕合器 24 耦合器 1 10 干涉儀 112 光纖 114 光纖 116 柄合器 118 耦合器 120 干涉臂 122 干涉臂 124 徽型可曲波導管 126 微型可曲波導管 210 干涉儀 2 12 光纖 2 14 光纖 216 輕合器 2 18 搞合器 220 干涉臂 222 干涉臂 224 微型可曲波導管 228 微型可曲波導管 410 干涉儀 412 光學纖維 414 光學纖維 4 1 6 直角基板 418 光學傳輸核心 420 同圓心被覆 423 干涉臂 425 干涉臂 430 干涉臂 432 干涉臂 5 10 干涉儀 5 12 光纖 5 12a 光纖導引部 5 12b 光纖導引部 5 14 光纖 514a 光纖導引部 5 14b 光纖導引部 516 基板 5 18 光學傳輸核心 520 同圓心被覆 <請先閱讀背面之注意ί項再填寫本頁) --------訂---------嫂- 本紙張尺度適用中國國家標準(CNSXA4規格(210 X 297公釐) 455716 A7 B7 五、發明說明(Ο 經濟部智慧財產局員工消費合作社印製 522 耦合器 524 耦合器 526 環氧基樹脂大頭釘 528 環氧基樹脂大頭 530 微型可曲波導管 532 微型可曲波導管 536 殼體 538 殼體 610 干涉儀 6 12 光纖 612a 光纖導引部 612b 光纖導引部 6 1 4 光纖 6 14a 光纖導引部 614b 光纖導引部 6 1 6 直角基板 6 1 8 光學傳輸核心 620 同圓心被覆 622 耦合器 623 干涉儀 624 耦合器 625 干涉儀 630 微型可曲波導管 632 微型可曲波導管 636 殼體 638 殼體 3 10 干涉儀 3 12 光纖 3 14 光纖 3 16 基板 3 1 8 光學傳輸核心 320 同圓心被覆 322 耦合器 323 干涉臂 324 耦合器 325 干涉臂 326 大頭釘 330 微型可曲波導螯 332 微型可曲波導管 7 10 干涉儀 7 12 光纖 714 无纖 7 1 6 基板 7 18 光學傳輸核心 720 同圊心被覆 722 輛合器 723 干涉臂 724 搞合器 適用中國國?:標準(CNU A4規格(210 X 297公爱) ------------Μ--------fST---------^ . (請先閱讀背面之注意事項再填寫本頁) A7 ^455716 -----B7 五、發明說明(U ) 經濟部智慧財產局員工消費合作社印製 度 尺 張 紙 本 725 干涉臂 726 環氧基樹脂大頭釘 728 凝膠大頭釘 730 微型可曲波導管 732 微型可曲波導管 740 台座 8 10 干涉儀 8 12 光纖 8 14 光纖 8 16 直角基板 8 18 光學傳輸核心 820 同圓心被覆 822 耦合器 823 干涉臂 824 耦合器 825 干涉臂 830 微型可曲波導管 832 微型可曲波導管 格 一規 Α4 s) N (c 準 標 ::家 釐 7V-I ςτι <請先W讀背面之注意事項再填寫本頁)f) nl * a * (LI-L2) = L2 * dn2 / dT-Ll * dnl / dT The thermal stability can be increased by choosing an optical fiber that meets these relationships. Often 'because one foot must be longer than the other to provide the required phase mismatch', the longer foot will have a larger phase change due to the physical extension of the segment. So the best match can be achieved by assembling shorter feet with larger thermally dependent refractive index. After that, the thermal insensitivity can be transferred to the paper size by using the longer extension phase of the longer section. The Chinese national standard (CNS > A4 specification (210x297 mm) is applied. (Please read the precautions on the back before filling this page). · ------- Order --------- «Printed by a member of the Intellectual Property Bureau of the Ministry of Economic Affairs and a Consumer Cooperative ^ 455716 Α7 Β7 V. Description of the invention (15) Moved to offset the high temperature of short feet The dependence coefficient is reached β and it should be noted that only the section between the couplers will provide the thermal effect of the phase, because the light in this area will travel through the two fibers and cause interference in the second fiber. The preferred embodiment of the invention, but without departing from the spirit of the present invention, those skilled in the art can make various modifications or changes. The above content and drawings are only examples and do not limit the invention. The actual scope of the invention is It is defined by the scope of the following patent applications: l · .---------------------------------------. Please fill in this page for attention. ≫ Printed by the Consumers' Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs. (CNS) A4 specifications (210 X 297 mm) 455716 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (0) Component symbol comparison table 12 Optical fiber 14 Optical fiber 1 6 Phase sensitive area 18 Phase sensitive area 22 Light coupler 24 coupler 1 10 interferometer 112 optical fiber 114 optical fiber 116 handle coupler 118 coupler 120 interference arm 122 interference arm 124 emblem flexible waveguide 126 miniature flexible waveguide 210 interferometer 2 12 optical fiber 2 14 optical fiber 216 Light coupler 2 18 Coupler 220 Interfering arm 222 Interfering arm 224 Miniature flexible waveguide 228 Miniature flexible waveguide 410 Interferometer 412 Optical fiber 414 Optical fiber 4 1 6 Right angle substrate 418 Optical transmission core 420 Concentric coating 423 Interference Arm 425 interference arm 430 interference arm 432 interference arm 5 10 interferometer 5 12 optical fiber 5 12a optical fiber guide 5 12b optical fiber guide 5 14 optical fiber 514a optical fiber guide 5 14b optical fiber guide 516 substrate 5 18 optical transmission core 520 Concentric Covers < Please read the note on the back before filling this page) -------- Order --------- 嫂-This paper size applies to China Standard (CNSXA4 specification (210 X 297 mm) 455716 A7 B7 V. Description of the invention (0 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 522 Coupler 524 Coupler 526 Epoxy resin tack 528 Epoxy resin head 530 Miniature Flexible Waveguide 532 Miniature Flexible Waveguide 536 Housing 538 Housing 610 Interferometer 6 12 Fiber 612a Fiber Guide 612b Fiber Guide 6 1 4 Fiber 6 14a Fiber Guide 614b Fiber Guide 6 1 6 Right-angle substrate 6 1 8 Optical transmission core 620 Concentric coating 622 Coupler 623 Interferometer 624 Coupler 625 Interferometer 630 Miniature flexible waveguide 632 Miniature flexible waveguide 636 Housing 638 Housing 3 10 Interferometer 3 12 Optical fiber 3 14 Optical fiber 3 16 Substrate 3 1 8 Optical transmission core 320 Concentric coating 322 Coupler 323 Interfering arm 324 Coupler 325 Interfering arm 326 Tack 330 Miniature flexible waveguide 332 Miniature flexible waveguide 7 10 Interferometer 7 12 Optical fiber 714 Fiberless 7 1 6 Substrate 7 18 Optical transmission core 720 Concentric coating 722 Couplings 723 Interference arms 724 Couplings suitable for China ? : Standard (CNU A4 specification (210 X 297 public love) ------------ M -------- fST --------- ^. (Please read first Note on the back, please fill out this page again) A7 ^ 455716 ----- B7 V. Description of the invention (U) The Intellectual Property Bureau of the Ministry of Economic Affairs Employee Co-operative Printing System Rule Sheet Paper 725 Interference Arm 726 Epoxy Resin Tack 728 Gel tack 730 Miniature flexible waveguide 732 Miniature flexible waveguide 740 Stand 8 10 Interferometer 8 12 Optical fiber 8 14 Optical fiber 8 16 Right angle substrate 8 18 Optical transmission core 820 Concentric coating 822 Coupler 823 Interference arm 824 Coupling 825 Interfering arm 830 Miniature flexible waveguide 832 Miniature flexible waveguide grid A4 s) N (c Standard :: Jiali 7V-I ττ < Please read the precautions on the back before filling this page)

Claims (1)

經濟部智慧財產局員工消費合作杜印製 ^ 45 5 7 1 6 os __ _D8 六、申請專利範圍 1 ' 一種光纖馬赫-策德爾干涉儀,包含: 第一與第二延長光纖,係具有核心與被覆; 第一與第一耦合器,其中前述第一光纖之被覆被耦合 於前述第二光纖之被覆; 第一延長干涉臂,包含延伸於前述第一與第二耦合器 之間的前述第一光纖,其中該第一干涉臂包括形成於其 中之一微型可曲波導管;以及 第二延長干涉臂,包含延伸於前述第一與第二耦合器 之間的前述第二光纖。 2、 如申請專利範圍第1項所記載之光纖馬赫-策德爾干涉 儀,其中前述第一干涉臂包括形成於其令之多於一個微 型可曲波導管。 3、 如申請專利範圍第1項所記載之光纖馬赫_策德爾干涉 儀,其中則述第二干涉臂包括形成於其中之一微型可曲 波導管。 4、 如申請專利範圍第3項所記載之光纖馬赫策德爾干涉 儀,其中前述第一干涉臂之前述微型可曲波導管被嵌套 於前述第二干涉臂之前述微型可曲波導管。 5、 如申請專利範圍第4項所記载之光纖馬赫_策德爾干涉 儀,其中前述第一與第二光纖之微型可曲波導管為預包 裝之微型可曲波導管,其中每個前述微型可曲波導管被 支撐於保護外殼内,使得每個前述光纖之相對端突出於 前述保護外殼,使前述第一與第二耦合器的位置可藉由 前述第一與第二預包裝之微型可曲波導管的保護外殼之 本紙張尺度適用中國國豕標準(CNS)A4規格(21〇 X 297公餐) (請先閱讀背面之注意事項再填寫本頁) ^ ---------訂---------線— 45 5 7 1 6 A8 B8 C8 D8 六、申請專利範圍 經濟部智慧財產局員工消費合作杜印製 間的分開長度來選擇。 6、 如申請專利範圍第1項所記載之光纖馬赫-策德爾干涉 儀’其中前述第-與第二光纖被安裝於延長基板。 7、 如申請專利範圍第6項所記載之光纖馬赫-策德爾干涉 儀〃中前述第與第二光纖之第一與第二端延伸過前 述基板之一端。 8、 如申請專利範圍第4項所記載之光織馬赫策德爾干涉 儀’其中前述第-光纖之微型可曲波導管料前述第一 光纖大約180度。 9、 如申睛專利範圍第6項所記載之光纖馬赫-策德爾干涉 儀’其中〃jit第-㈣二光纖n延伸過前述基板 之一端,以及第一與第二光纖之前述第二端延伸過前述 基板之第H前述基板之第—邊緣並未與前述基板 之第二邊緣相對。 10、 如申請專利範圍第4項所記載之光纖馬赫·策德爾干涉 儀,其中前述第一光纖之微型可曲波導管彎曲前述第一 光纖大約90度。 11、 如申請專利範圍第6項所記載之光纖馬赫策德爾干涉 儀,其中前述第一光纖之微型可曲波導管彎曲前述第一 光纖,而形成彎曲半徑大於前述第二光纖之微型可曲波 導管之彎曲半徑。 12、 如申請專利範圍第6項所記載之光纖馬赫策德爾干涉 .儀,其中前述第一與第二光纖被黏著固定於前述基板上 之則述相敏區域相對於前述第一與第二柄合器的位置, 且剛述第一光纖在前述第一與第二耗合器之間被欲套於 ^ ---------訂---------線 — (請先閱讀背面之注意事項再填寫本頁) n n n f—Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs for consumer cooperation ^ 45 5 7 1 6 os __ _D8 VI. Patent application scope 1 'A fiber-optic Mach-Zehnder interferometer, including: the first and second extension optical fibers, with core and Covering; first and first couplers, wherein the covering of the first optical fiber is coupled to the covering of the second optical fiber; a first extended interference arm including the first first extending between the first and second couplers An optical fiber, wherein the first interference arm includes a miniature flexible waveguide formed therein; and a second extended interference arm including the second optical fiber extending between the first and second couplers. 2. The fiber-optic Mach-Zehnder interferometer described in item 1 of the scope of the patent application, wherein the aforementioned first interference arm includes more than one micro-flexible waveguide formed in its order. 3. The fiber-optic Mach-Zehnder interferometer described in item 1 of the scope of the patent application, wherein the second interference arm includes a miniature flexible waveguide formed therein. 4. The fiber-optic Mach-Zehnder interferometer described in item 3 of the scope of the patent application, wherein the miniature flexible waveguide of the first interference arm is nested in the miniature flexible waveguide of the second interference arm. 5. The fiber-optic Mach-Zehnder interferometer described in item 4 of the scope of the patent application, wherein the aforementioned miniature flexible waveguides of the first and second optical fibers are pre-packaged miniature flexible waveguides, wherein each of the aforementioned miniature The flexible waveguide is supported in a protective casing, so that the opposite end of each of the optical fibers protrudes from the protective casing, so that the positions of the first and second couplers can be adjusted by the first and second pre-packaged miniature The paper size of the protective casing of the curved waveguide is in accordance with the Chinese National Standard (CNS) A4 specification (21〇X 297 meals) (Please read the precautions on the back before filling this page) ^ -------- -Order --------- Line — 45 5 7 1 6 A8 B8 C8 D8 VI. Scope of patent application Employees in the Intellectual Property Bureau of the Ministry of Economic Affairs shall select the length of separation between consumption and printing. 6. The fiber optic Mach-Zehnder interferometer described in item 1 of the scope of the patent application, wherein the aforementioned first and second optical fibers are mounted on an extension substrate. 7. The first and second ends of the aforementioned first and second optical fibers in the optical fiber Mach-Zehnder interferometer described in item 6 of the scope of the patent application extend beyond one end of the aforementioned substrate. 8. The optically woven Mach-Zehnder interferometer described in item 4 of the scope of the patent application, wherein the aforementioned first-fiber optical fiber micro-flexible waveguide material is about 180 degrees. 9. The fiber optic Mach-Zehnder interferometer as described in item 6 of the Shenjing patent scope, where the 〃jit-second optical fiber n extends over one end of the aforementioned substrate, and the aforementioned second ends of the first and second optical fibers extend The first edge of the H substrate passing through the H substrate is not opposed to the second edge of the substrate. 10. The fiber-optic Mach-Zehnder interferometer described in item 4 of the scope of the patent application, wherein the miniature flexible waveguide of the first optical fiber bends the first optical fiber by approximately 90 degrees. 11. The fiber-optic Mach-Zehnder interferometer described in item 6 of the scope of the patent application, wherein the micro-flexible waveguide of the first optical fiber bends the first optical fiber to form a micro-flexible wave with a bend radius larger than that of the second optical fiber. The bend radius of the catheter. 12. The fiber-optic Mach-Zehnder interference instrument described in item 6 of the scope of the patent application, wherein the first and second optical fibers are adhered and fixed on the substrate, and the phase-sensitive area is relative to the first and second handles. Position of the coupler, and the first optical fiber just described is intended to be placed between the aforementioned first and second couplers ^ --------- order --------- line-( (Please read the notes on the back before filling out this page) nnnf— 本紙張尺度_中國國家標準(CNS)A4規格⑵〇 x挪公 4557 1 Q 六、申請專利範圍 13 14 15 16 17 前述第二光纖。 、如申請專利範圍第6項 儀,其中針n 謂°已載之光纖馬赫-策德爾干涉 其缸—與第二光纖藉由黏性凝膠被固定於前 述基板上沿著前述相敏區域之位置。 疋心 儀如申圍第6項所記載之_馬赫-策德爾干涉 L—;::咖區域内之至少-光纖延伸過前述基 儀如申二專利範圍第1項所記載之光纖馬.策德爾干涉 2述第一延長光纖顯示第一熱膨脹係數; 前述第二延長光纖顯示第二熱膨脹係數,且前述第一 熱膨脹係數大於前述第二熱膨脹係數; 其中前述第-光纖在前述第—與第二耦合器之間被 嵌套於前述第二光纖。 、如申清專利範圍第15項所記載之光纖馬赫策德爾干涉 儀’其中前述第-與第二光纖與干涉臂係根據下式選擇 nl*dLl/dT+Ll*dnl/dT=n2*dL2/dT+L2*dn2/dT 其中d/dT表示溫度導函數’ 〇1為前述第一干涉臂之折 射係數’ L1為前述第-干涉臂之長丨’ n2為前述第二干 涉臂之折射係數,L2為前述第二干涉臂之長度。 、如申請專利範圍第15項所記載之光纖馬赫^德爾干涉 儀,其中則述第一與第二光纖與干涉臂係根據下式選擇 nl*a* (LI-L2)=L2*dn2/dT—Ll*dnl/dT 其中nl約為前述第一與第二光纖之折射係數,a約為 前述光纖之熱膨脹係數,L1為前述第一干涉臂之長度, 衣 線 本紙張尺度適用令國國家標本(CNS)A4規格mo X 297公釐^Standards of this paper_Chinese National Standard (CNS) A4 Specification ⑵〇 x Nokia 4557 1 Q Sixth, the scope of patent application 13 14 15 16 17 The aforementioned second optical fiber. For example, if the scope of the patent application is No. 6, the needle n refers to the angle of the already loaded fiber Mach-Zehnder interferes with its cylinder—and the second fiber is fixed on the aforementioned substrate along the aforementioned phase-sensitive area by a viscous gel. position. Xun Yiyi as described in Shenwei Item 6 _ Mach-Zehder Interference L-; :: at least-fiber in the coffee area extends beyond the fiber optic horse described in the aforementioned base instrument as described in Item 1 of the scope of Shen Er patent. In Interference 2, the first extension optical fiber displays a first thermal expansion coefficient; the second extension optical fiber displays a second thermal expansion coefficient, and the first thermal expansion coefficient is greater than the second thermal expansion coefficient; wherein the first-fiber is coupled to the first and second Are nested between the aforementioned second optical fibers. 2. The fiber-optic Mach-Zehnder interferometer described in item 15 of the scope of the patent application, where the aforementioned first and second optical fibers and interference arms are selected according to the following formula: nl * dLl / dT + Ll * dnl / dT = n2 * dL2 / dT + L2 * dn2 / dT where d / dT represents the temperature derivative function 〇1 is the refractive index of the aforementioned first interference arm 'L1 is the length of the aforementioned -interference arm 丨' n2 is the refractive index of the aforementioned second interference arm , L2 is the length of the aforementioned second interference arm. The optical fiber Mach ^ del interferometer described in item 15 of the scope of the patent application, wherein the first and second optical fibers and the interference arm are selected according to the following formula: nl * a * (LI-L2) = L2 * dn2 / dT —Ll * dnl / dT where nl is the refractive index of the aforementioned first and second optical fibers, a is the thermal expansion coefficient of the aforementioned optical fiber, L1 is the length of the aforementioned first interference arm, and the paper size of the clothing line is applicable to the national specimen (CNS) A4 size mo X 297 mm ^ 45 57 1 q 、申請專利範圍 第二干涉臂之長度,耐表示溫度導函數以 ,步臂切臂之折射係數,以及n2表示前述第二干 涉臂之折射係數。 申請專則⑽帛丨項所記載之光纖馬赫策德爾干涉 儀,其中前述第一與第二耗合器為不對稱。 1 :中:專利1a圍第1項所記載之光纖馬赫策德爾干涉 儀’其中前述第-與第二耗合器為對稱。 20,H利範圍第i項所記栽之錢馬赫·策德爾干涉 還包含第三光纖,其中前述第―、第二與第三光纖 之至少一光纖為感光性。 如申請專利範圍第20項所記載之光纖馬赫_策德爾干溃 儀’其中前述第-、第二與第三光纖之至少一光纖為感 光性。 如申請專利範圍第1項所記載之光纖馬赫_策德爾干涉 儀,其中前述第一耦合器顯示大約〇5之分配率。 23、如申請專利範圍第i項所記載之光纖馬赫策德爾十涉 儀,其中前述第一耦合器顯示大於〇4之分配率。 如申凊專利範圍第1項所記載之光纖馬赫策德爾千涉 儀,其中前述第一與第二耦合器顯示不同之分配率。 如申請專利範圍第1項所記載之光纖馬赫-策德爾干涉 儀,其中前述第一與第二干涉臂不均衡。 “ 如申請專利範圍第1項所記載之光纖馬赫_策德爾十涉 儀,還包含位於相鄰每個前述第一與第二耦A器之位置 的光纖布喇格格子板。 σ (請先閱讀背面之注意事項再填寫本頁) 21 22 24 - 一 - ^----r---訂---------線| 經濟部智慧財產局員工消費合作社印製 25 2645 57 1 q Scope of patent application The length of the second interference arm, the resistance indicates the temperature derivative function, the refractive index of the cutting arm of the step arm, and n2 represents the refractive index of the aforementioned second interference arm. The fiber optic Mach-Zehnder interferometer described in the application section ⑽ 帛 丨, wherein the aforementioned first and second couplers are asymmetric. 1: Middle: The fiber-optic Mach-Zehnder interferometer described in item 1 of patent 1a, wherein the aforementioned first and second consumers are symmetrical. 20. The Chan Mach-Zehdel interference recorded in item i of the H-Li range also includes a third optical fiber, in which at least one of the aforementioned first, second, and third optical fibers is photosensitive. The optical fiber Mach-Zehnder rupture meter 'described in item 20 of the scope of the patent application, wherein at least one of the aforementioned first, second, and third optical fibers is photosensitive. The fiber-optic Mach-Zehnder interferometer described in item 1 of the scope of patent application, wherein the aforementioned first coupler shows a distribution ratio of about 0.05. 23. The fiber-optic Mach-Zehnder instrument as described in item i of the patent application scope, wherein the aforementioned first coupler shows a distribution ratio greater than 0. The fiber-optic Mach-Zehnder instrument described in the first patent application, wherein the aforementioned first and second couplers show different distribution ratios. The fiber-optic Mach-Zehnder interferometer described in item 1 of the patent application range, wherein the aforementioned first and second interference arms are unbalanced. "As described in Item 1 of the scope of the patent application, the optical fiber Mach-Zehnder tenth instrument also includes an optical fiber Bragg grid plate located adjacent to each of the aforementioned first and second couplers. Σ (please first Read the notes on the back and fill out this page) 21 22 24-1-^ ---- r --- Order --------- line | Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives 25 26
TW89112446A 1999-06-23 2000-09-21 Optical fiber Mach-Zehnder interferometer employing miniature bends TW455716B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14054499P 1999-06-23 1999-06-23

Publications (1)

Publication Number Publication Date
TW455716B true TW455716B (en) 2001-09-21

Family

ID=22491730

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89112446A TW455716B (en) 1999-06-23 2000-09-21 Optical fiber Mach-Zehnder interferometer employing miniature bends

Country Status (1)

Country Link
TW (1) TW455716B (en)

Similar Documents

Publication Publication Date Title
Nguyen et al. High temperature fiber sensor with high sensitivity based on core diameter mismatch
US5048909A (en) Adiabatic reflection apparatus
Song et al. Highly sensitive twist sensor employing Sagnac interferometer based on PM-elliptical core fibers
US6563971B1 (en) Optical fiber Mach-Zehnder interferometer employing miniature bends
Zhang et al. Simultaneous measurement of curvature and temperature based on LP11 mode Bragg grating in seven-core fiber
US4514054A (en) Quadrature fiber-optic interferometer matrix
TW434427B (en) Fiber coupler variable optical attenuator
AU763412B2 (en) Optical fiber mach-zehnder interferometer employing miniature bends
AU774103B2 (en) Method of manufacturing polarization-maintaining optical fiber coupler
JP3634205B2 (en) Products containing dispersion compensating diffraction gratings with low polarization mode dispersion
JPH02275402A (en) Adiabatic polarization operation device
Vallée et al. Practical coupling device based on a two-core optical fiber
Qi et al. Cladding-mode backward-recoupling-based displacement sensor incorporating fiber up taper and Bragg grating
TW455716B (en) Optical fiber Mach-Zehnder interferometer employing miniature bends
JP2002267862A (en) Optical device
US6711327B2 (en) Device and method for compensating for chromatic dispersion
USRE35516E (en) Adiabatic reflection Y-coupler apparatus
JP3266897B2 (en) Chromatic dispersion generator, method of manufacturing the same, and chromatic dispersion compensator
EP0860686B1 (en) Fiber optic gyro sensor coil with improved temperature stability
US6535669B2 (en) Compensation of polarization mode dispersion of a grating written in an optical fiber
JP6017169B2 (en) Photocurrent detection device and method of manufacturing photocurrent detection device
JP4578733B2 (en) Long-period optical fiber grating using polarization-maintaining optical fiber
EP1014123A2 (en) An optical fibre bragg grating device with passive compensation of temperature
JP2552603B2 (en) Fiber optic gyro
JPH07168067A (en) Optical fiber

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees