經濟部智慧財產局員工消費合作社印製 4557 0 2 A7 _____^ 五、發明說明() 發明領域: 本發明係有關於一種可調法布里-珀羅(Fabry_per〇t) 光學濾波器。 發明背景: 在光學傳輪過程中,吾人可能需要針對一光學訊號遽 除所有的波長,而僅保留所想要的光波長。 為了提昇其多功能性’用於擁取吾人所需波長的遽波 器應具有可調性。在此情況下’若所需的波長已改變,則 可調濾波器可重新調整為吾人所需的波長。此種重新調整 的方式可免除使用多個濾波器,否則必須以另一對應不同 波長之單波長濾波器取代當前所使用且對應一給定波長 的單波長濾波器。 吾人亦可能需要重塑(reshape)由多個波長的光所組 成的光學訊號。此種重塑過程涉及改變光學訊號中所包含 的不同波長的光譜。例如,由等分量(以功率而言)的三個 不同波長所組成的光學訊號可被重塑,使得此等波長其中 之一分量減為原來的一半。 發明目的及概缚: 本發明係針對一種濾波器,其具有一法布里·珀羅空 腔及配置於其中的調諧器。 本發明包含一種可調法布里-珀羅(Fabry-pert)〇遽波 器。此等法布里-珀羅濾波器可被調整而改變進行光學訊 第3頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) -----I--I--J — ·裝----r ---訂----I---Γ 線 (請先間讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 455702 五、發明說明() 號之遽波的波長。調整作用係藉由提供一具有可移動調諧 元件而達成,該調諧元件具有一特定的折射率,並昱能夠 被移入及移出一法布里-珀羅空腔。在此情況下,法布里 珀羅空腔將取決於調諧元件是否位於法布里_拍羅空腔内 而具有不同的光學長度;因此,法布里_珀羅濾波器的濾 波行為即可加以改變。 在某些情沉下,吾人可能希望使用固定的調諧元件, 而在其它情況下使用可變的調諧元件。本發明係提供含有 相同或不同類型(固定/可調)之調諧元件的連續法布里”白 羅空腔。 本發明所包含的結構特徵、元件之组合以及零件之配 置’將藉由在此所揭露的内容而加以例示,同時本發明之 範圍將藉由申請專利範圍來指明。 圖式簡單說明: 在圖式中’其未必依照比例繪製,且僅用於例示,其 中在多種視圖當中的相同參照文字係代表類似的元件: 第1 A圖為一法布里-珀羅濾波器之概視圖,其具有根據本 發明之一實施例所建構的可移動固定調謂元件; 第1 B圖為一法布里-珀羅濾波器之概视圖,其具有根據本 發明之另一實施例所建構的可移動可變調讀元 件; 第2圖為一法布里-珀羅濾波器之概視圖,其具有兩個根 據本發明之另一實施例所建構的可移動固定調諧 第4頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ------------J-!裝-----r ----訂------!;.線 f請先閱讀背面之ii意事項再填寫本頁} 經濟部智慧財產局員工消費合作社印製 4 5 5 7 0 2 a7 _B7_ 五、發明說明() 元件; 第3圖為第1圖及第2圖其中之一光學調諧器沿著直線3-3 的剖面側視圖; 第4圖為光學調諧器之另一實施例的剖面側視圖,其描繪 調諧元件的第二移動方向; 第5A圖為一固定調諧器的立體圖; 第5 B圖為一可變調諧器的立體圖; 第 6A圖為一梯狀可變調諧元件之一實施例的上視平面 圖; 第6 B圖為沿著第6 A圖之直線6 - 6觀察一梯狀可變調锴元 件的正視圖; 第6 C圖為一梯狀可變調諧元件之另一實施例的上視平面 圖; 第7A圖及第7B圖為上視圖,其顯示位於兩個不同位置的 可變調諧元件; 第8圖係顯示光束通過如第1 B圖及第5 B圖所示之可變調 諧元件的上視圖; 第9圖為根據本發明之一實施例的熱電致動器的部分剖面 概視圖; 第1 0圖及第1 1圖為根據本發明之實施例的熱電致動器的 兩個實施例的概視圖; 第12圖為沿著第1A圖之直線9-9觀察一波導器的剖面 圖,該波導器係根據本發明之一實施例所建構; 第丨3 A圖及第1 3B圖係顯示當光通過波導器之間的溝槽 第5頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------------裝-----=----訂--------Γ 線 (請先閲讀背面之注意事項再填寫本頁) 455702 A7 B7 五、發明說明( 時,光束繞射與溝槽長度之間的關係; 第1 4圖及第1 5圖為概視圖,其例示用以減少光通過一溝 槽而產生繞射所採取的方式; 第1 6圖為一概視圖,其顯示配置於調諧元件附近的偏移 波導器;且 第1 7A圖及第1 7B圖係描繪根據本發明之一實施例的光學 開關的組件。 圖號對照說明: 經濟部智慧財產局員工消費合作社印製 1 法布里-珀羅濾波器 2、 2 ’ 法布里 3 調諧器 4 輸出面 6 橋接波導器 7 輸入波導器 9 輸出波導器 11 溝槽 13 基材 15 調請元件 17 連結 19 致動器 21 上包覆層 23 下包覆層 25 核心(層) 27 基材 29 輸出面 3 1 輸入面 33 頂端 34 末端 35 錐形側邊 37 錐形側邊 43 、4 3 ’、4 3 ’’ 偏移區域 44 共同中心平面 45 構件 46 平面側邊 47 加熱器 48 梯狀侧邊 49 、49’ 端點 第6頁 本纸張尺度適用令國國家標準(CNS)A4規格(210 X 297公Μ ) ----------------r---訂·-----i 1 Ί --Ί (請先閱讀背面之注意事項再填寫本頁) A7 B7 五、發明說明() 5 1 外罩 53 壓電元件 54 空 55、 5 5’ 電極 57 支撐部 59 指狀物 60 端點 65、 6 7 晶片 69 間隙壁 7 1 錐形物 73 錐形物 75 透鏡 81 ' 83 部分 101 法布里-珀羅濾, 103 調諧器 1 15 調諧元件 1 19 致動器 1 52 光束 201 法布里-珀羅濾波器 203 、2 0 3 ’ 調错器 215 調諧元件 219 熱電致動器 3 15 調諧元件 3 1 9 靜電致動器 419 壓電致動器 455702 發明詳細說明: 本發明係針對一種法布里-珀羅濾波器,其包含至少 一固定調諧器或可變調諧器,且此等調諧器可改變法布里 -珀羅濾波器的輸出波長。 在此所使用的「光訊號」和「光學訊號j等用語將交 替使用,其可涵蓋例如分波多工(WDM)、高密度分波多工 (DWDM)及超高密度分波多工(UDWDM)等訊號及其相似 者° 「光」、「光訊號」及「光學訊號」等用語係有意廣 義地被解釋和指稱為可見光、紅外光與紫外光及其相似 者。 第7頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ------------------r------r --1 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 455702 A7 B7 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 杜 印 製 五、發明說明( 本發明係提供3 包含固定調諧器及可變調諧器。固定 調諧器係將法布里、m ^ S羅2腔的光學長度改變為預設且固 定的量,而可變調增。。, 々益則將法布里-珀羅空腔的光學長唐 改變為不同長度的範固。 在此所揭露的辆 Μ增器具有共同的配置方式,依照該 置方式,當光經過攻 ’器 < 間時,例如經過由兩波導器所 界定的溝槽時,由,.由诸 吹嗶器所傳遞的光將會通過一調諧元 件。用於建構調謂开 L件的材料的折射率不同於波導器之間 的媒介的折射率。旗)a 】4 7C件會選擇性地被移入及移出兩波 導器(亦即移入及稃ψ丄 夕出由兩波導器之間所界定的光學訊 路徑)之間的溝槽,wt 以便改變波導器之間的光學長度。 接著參照詳細热闻4 的圖式,首先參照第1A圖,法布里_ 珀羅空腔2係形成*人&、 , w 1輸入波導器7與輸出波導器9之間= 更具體而言,輸入溏塭盟, 皮導益7具有平的輸出面29,而輸出波Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 4557 0 2 A7 _____ ^ V. Description of the Invention () Field of the Invention: The present invention relates to a tunable Fabry-Perot optical filter. Background of the invention: In the process of optical transmission, we may need to eliminate all wavelengths for an optical signal, while retaining only the desired wavelength of light. In order to enhance its versatility, a chirped wave device used to capture the wavelengths we need should have tunability. In this case, 'if the required wavelength has changed, the tunable filter can be readjusted to the wavelength required by us. This readjustment method can eliminate the use of multiple filters, otherwise a single wavelength filter corresponding to a different wavelength must be used to replace the single wavelength filter currently used and corresponding to a given wavelength. We may also need to reshape optical signals made up of light with multiple wavelengths. This reshaping process involves changing the spectrum of the different wavelengths contained in the optical signal. For example, an optical signal composed of three different wavelengths of equal components (in terms of power) can be reshaped so that one of these wavelengths has its component reduced by half. Object and Summary of the Invention: The present invention is directed to a filter having a Fabry-Perot cavity and a tuner disposed therein. The invention comprises a tunable Fabry-pert wave filter. These Fabry-Perot filters can be adjusted and changed for optical communication. Page 3 This paper is sized for China National Standard (CNS) A4 (210 x 297 mm) ----- I--I- -J — · Equipment ---- r --- Order ---- I --- Γ line (please read the precautions on the back before filling in this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 2. The wavelength of the chirped wave of the invention description (). The adjustment effect is achieved by providing a movable tuning element having a specific refractive index and capable of being moved into and out of a Fabry-Perot cavity. In this case, the Fabry-Perot cavity will have different optical lengths depending on whether the tuning element is located in the Fabry-Perot cavity; therefore, the filtering behavior of the Fabry-Perot filter is sufficient Change it. In some cases, we may want to use a fixed tuning element, while in other cases we use a variable tuning element. The present invention is to provide continuous Fabry-Perot cavities containing tuning elements of the same or different types (fixed / adjustable). The structural features, combination of elements, and arrangement of parts included in the present invention will The disclosed content is exemplified, and the scope of the present invention will be indicated by the scope of patent application. Brief description of the drawing: In the drawing, 'it is not necessarily drawn to scale, and it is for illustration only, and among the various views, The same reference characters represent similar elements: FIG. 1A is an overview of a Fabry-Perot filter with a movable fixed predicate element constructed according to an embodiment of the present invention; FIG. 1B FIG. 2 is a schematic view of a Fabry-Perot filter with a movable variable reading element constructed according to another embodiment of the present invention. FIG. 2 is a schematic view of a Fabry-Perot filter. View with two movable fixed tunings constructed in accordance with another embodiment of the present invention. Page 4 This paper is sized for China National Standard (CNS) A4 (210 X 297 mm) ------- ----- J-! Equipment ----- r ---- Order ------!;. Line f Please read the notice on the back of the page before filling in this page} Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 4 5 5 7 0 2 a7 _B7_ V. Invention Description () components; FIG. 3 is a cross-sectional side view of the optical tuner along line 3-3 of one of FIG. 1 and FIG. 2; FIG. 4 is a cross-sectional side view of another embodiment of the optical tuner. It depicts the second moving direction of the tuning element; FIG. 5A is a perspective view of a fixed tuner; FIG. 5B is a perspective view of a variable tuner; and FIG. 6A is an embodiment of a ladder-shaped variable tuning element. Top plan view; Figure 6B is a front view of a ladder-shaped variable tuning element viewed along line 6-6 of Figure 6 A; Figure 6C is another embodiment of a ladder-shaped variable tuning element Top plan view; Figures 7A and 7B are top views showing variable tuning elements located at two different positions; Figure 8 shows the beam passing through the variable as shown in Figures 1B and 5B Top view of the tuning element; FIG. 9 is a partial cross-sectional overview view of a thermoelectric actuator according to an embodiment of the present invention; Fig. 10 and Fig. 11 are overview views of two embodiments of a thermoelectric actuator according to an embodiment of the present invention; Fig. 12 is a sectional view of a waveguide viewed along line 9-9 of Fig. 1A The waveguide is constructed according to an embodiment of the present invention; Figures 3A and 1B show the light when the light passes through the grooves between the waveguides. Page 5 This paper applies the Chinese National Standard (CNS) A4 size (210 X 297 mm) ------------- installation ----- = ---- order -------- Γ line (please read the first Note: Please fill in this page again) 455702 A7 B7 V. Description of the invention (When the relationship between the beam diffraction and the groove length is shown in Fig. 14 and Fig. 15 are general views, the examples are used to reduce the passage of light. Fig. 16 is a general view showing an offset waveguide disposed near a tuning element; and Figs. 17A and 17B depict an implementation according to one of the present inventions Examples of optical switch components. Drawing number comparison description: Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 1 Fabry-Perot filter 2, 2 'Fabry 3 tuner 4 output surface 6 bridge waveguide 7 input waveguide 9 output waveguide 11 Groove 13 base material 15 calling element 17 connection 19 actuator 21 upper cladding layer 23 lower cladding layer 25 core (layer) 27 base material 29 output surface 3 1 input surface 33 top 34 end 35 tapered side 37 Conical side 43, 4 3 ', 4 3' 'offset area 44 common center plane 45 member 46 plane side 47 heater 48 step side 49, 49' end point Page 6 National Standard (CNS) A4 Specification (210 X 297 MM) ---------------- r --- Order · ----- i 1 Ί --Ί (Please Read the precautions on the back before filling this page) A7 B7 V. Description of the invention () 5 1 Cover 53 Piezo element 54 Empty 55, 5 5 'Electrode 57 Supporting part 59 Finger 60 End point 65, 6 7 Chip 69 Partition wall 7 1 cone 73 cone 75 lens 81 '83 part 101 Fabry-Perot filter, 103 tuner 1 15 tuning element 1 19 Actuator 1 52 Beam 201 Fabry-Perot filter 203, 2 0 3 'Error adjuster 215 Tuning element 219 Thermoelectric actuator 3 15 Tuning element 3 1 9 Electrostatic actuator 419 Piezo actuator 455702 Detailed description of the invention: The present invention is directed to a Fabry-Perot filter, which includes at least one fixed tuner or variable tuner, and these tuners can change the output wavelength of the Fabry-Perot filter. . The terms "optical signal" and "optical signal j" used herein will be used interchangeably, which may cover, for example, demultiplexing (WDM), high-density demultiplexing (DWDM), and ultra-high-density demultiplexing (UDWDM) Signals and their similarities ° The terms "light", "light signals" and "optical signals" are intentionally broadly interpreted and referred to as visible light, infrared light, and ultraviolet light and the like. Page 7 This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) ------------------ r ------ r- 1 (Please read the notes on the back before filling out this page) Printed by the Employees ’Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 455702 A7 B7 Printed by the Employees’ Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Printed description of the invention (This invention provides 3 including fixed Tuner and variable tuner. The fixed tuner changes the optical length of the Fabry, M ^ S 2 cavity to a preset and fixed amount, and the variable tuning increases. The optical length of the Perot cavity is changed to Fan Gu with different lengths. The M multiplier disclosed here has a common configuration method. According to this configuration, when light passes through the attacker < When the groove defined by the two waveguides, the light transmitted by the buzzers will pass through a tuning element. The refractive index of the material used to construct the tuning element is different from the medium between the waveguides. The index of refraction. Flag) a] 4 7C will be selectively moved into and out of the two waveguides (that is, moved into Trenches between the lemma ψ Shang evening news an optical path between the two waveguide defined), wt order to vary the length between the optical waveguide. Next, referring to the diagram of the detailed hot news 4, first referring to FIG. 1A, the Fabry_Perot cavity 2 is formed as * human &,, w 1 between the input waveguide 7 and the output waveguide 9 = more specifically and In other words, the input guide, Pi Diaoyi 7 has a flat output surface 29, and the output wave
導器9則具有平的M 輸入面31。由於輸出面29及輸入面31 為同軸且相互平杆,4 士 丁 因此法布里-珀羅空腔2可形成於兩 者之間。 輸出面29及輸入面31具有部分反射的表面,並藉以 構成法布里4羅空腔2。輸出面29及輸入面3丨所具有的 部分反射特性,可源自於材料的固有性質或薄膜塗層。 法布里-珀羅空腔2的Q因子可經由改變空腔長度與/ 或面反射率而加以控制。 法布里羅空2將以習知的方式並根據光的波長 而過濾通過其間的光。吾人已知,當空腔的長度^為(n/2) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公髮) 1 ^ I--------r--------I I —1 --- {靖先閱讀背面之注意事項再填寫本頁} 繞濟部智慧財產局員工消費合作社印製 A7 "5-5 7 0-^____bz___ 卜明說明() λ時’法布里_珀羅空腔2將出現最大輸出,其中n為一 整數’而λ為通過法布里-珀羅空腔2的光波長。此意謂 著’法布里-泊羅空腔2的输出為空腔之長度的函數。空 脸的光學長度L。為空腔的實際長度與其折射率„的乘 積’即。 因此,改變法布里-珀羅空腔2的光學長度將會同時 改變使法布里-珀羅空腔2之輸出為最大的光波長。 由於光學長度係取決於空腔的實際長度以及空腔 中的媒介的折射率,因此該等參數之一或兩者必須加以改 變’以改變由法布里-珀羅空腔2所輸出的光波長。 本發明係藉由改變法布里-珀羅空腔2的光學長度而 嗎整法布里-珀羅濾波器^此調整過程係利用一調諸器將 網諧元件1 5移入及移出法布里-珀羅空腔2中的光學路徑 而元成。調諧元件1 5的折射率不同於法布里-珀羅空腔2 的折射率,因此法布里—珀羅空腔的折射率將會隨著調諧 元件1 5位於法布里-珀羅空腔2當中的位置而改變,因而 改變空腔2的折射率。 更具體而言’同時參照第1 A圖,其描績根據本發明 之—實施例所建構的可移動固定調諧器,並概括以圖號3 來表示。έ周错器3含有調|皆元件1 5 ’而調請元件丨5可使 輸入波導器7與輸出波導器9之間的路徑引發概括為固定 的光學長度的變化。如第1Α圖、第3圖及第5Α圖所示, 網諧元件1 5可大致為平面且具有平行的平面壁,並與其 縱向長度/同向,該縱向長度的方向係垂直於由輪入波導 第9頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------^----裝---tl·! — 訂 -----1 線 (請先閱讀背面之注意事項再填寫本頁) 五 經濟部智慧財產局員工消費合作社印製 、發明說明() 器7與輸出波導器9之并 <先學路徑所界定的古 光學路徑係以X來表示。. 忐予路徑,且食 先子訊號之相位的偏弒θ 選擇材料與/或調諧元件 ]侷移I可藉法 具有所需的折射率,且;的尺’f來控制’而該調諧元科 厚度卜 ^元件15被建構成具有特定的 應了解的是’由於詞諸元件 因此其可減緩或加速光與4 * 、可特疋的折射率, .± 予訊戒通過其間的速率。孙、ά經今、 如速的效應將有增長或输短法布里♦ =或 在此情況下’光學訊號的 2的效果。 欠化5JT可由於加速或 為發生相位偏移,因為#風, 您飞減..或而被視 、 為先學訊號的相位將會相對於其序來 的相位而發生偏移。 了祀再原术 參照第1Α圖及第3 _ 在本發明炙一實施法 布里-珀羅濾波器1包本鈐 』, Q輸入波導器7及輸出波導器9,且 该+波導器係形成於以辟& ' . 夕4王之基材(僅為了舉例而言, 亦可使用石英基材)。此外, 暴材上具有夾於下包覆層23 與上包覆層21之間的核心2S。 輸入波導器7及輸出波導 ° 9可為光子線或光子井波導器,並藉由至少部分界定於 土材1 3的溝槽1 1而彼此分開。可移動調諧元件1 $係配 置於溝槽1 1 ’並T沿著溝槽"而選擇性地被移入及移出 光學路徑:該光學路徑係概括由輸入及輸出波導器核心U 所界定,且沿著輸入波導器7與輸出波導器9的縱軸。調 •白元件1 5可名著箭號ζ所指的方向而被致動器1 9移動; 舉例而言’熱電致動器2 1 9 (參照第9圖)或靜電致動器3 ! 9 或4 1 9 (參照第1 〇圖及第1丨圖)係藉由較堅硬卻重量輕的 第10頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 4 5 5 7 0 2 A7The guide 9 has a flat M input surface 31. Since the output surface 29 and the input surface 31 are coaxial and flat with each other, 4 cubes, so the Fabry-Perot cavity 2 can be formed between the two. The output surface 29 and the input surface 31 have partially reflective surfaces, thereby forming a Fabry-Perot cavity 2. The partial reflection characteristics of the output surface 29 and the input surface 3 丨 can be derived from the inherent properties of the material or the thin film coating. The Q factor of the Fabry-Perot cavity 2 can be controlled by changing the cavity length and / or the surface reflectance. Fabry-Rokong 2 will filter the light passing therethrough in a conventional manner and according to the wavelength of the light. I know that when the length of the cavity ^ is (n / 2), this paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 issued) 1 ^ I -------- r ---- ---- II —1 --- {Jing first read the precautions on the back and then fill out this page} Printed by A7 " 5-5 7 0-^ ____ bz___ Bu Ming (B) At λ, 'Fabry_Perot cavity 2 will have a maximum output, where n is an integer' and λ is the wavelength of light passing through the Fabry-Perot cavity 2. This means that the output of the 'Fabry-Poro cavity 2 is a function of the length of the cavity. Optical length L of the empty face. Is the product of the actual length of the cavity and its refractive index. Therefore, changing the optical length of the Fabry-Perot cavity 2 will also change the light that maximizes the output of the Fabry-Perot cavity 2 Wavelength. Since the optical length depends on the actual length of the cavity and the refractive index of the medium in the cavity, one or both of these parameters must be changed to change the output from Fabry-Perot cavity 2 The present invention is to adjust the Fabry-Perot filter by changing the optical length of the Fabry-Perot cavity 2 ^ This adjustment process uses a modulator to move the network resonance element 15 into And removed from the optical path in the Fabry-Perot cavity 2. The refractive index of the tuning element 15 is different from the refractive index of the Fabry-Perot cavity 2, so the Fabry-Perot cavity The refractive index of will change with the position of the tuning element 15 in the Fabry-Perot cavity 2, thus changing the refractive index of the cavity 2. More specifically, referring to FIG. 1A, its description The mobile fixed tuner constructed according to the embodiment of the present invention is summarized with the drawing number 3 It is shown in Fig. 3 that the correction device 3 contains a tuning element 1 5 'and a regulating element 5 can cause the path between the input waveguide 7 and the output waveguide 9 to induce a change in the fixed optical length. As shown in Section 1A As shown in Fig. 3, and Fig. 5A, the network resonance element 15 may be substantially planar and have parallel plane walls, and its longitudinal length / same direction, and the direction of the longitudinal length is perpendicular to the ninth by the wheel-in waveguide. The paper size of this page applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) ------- ^ ---- installed --- tl ·! — Order ----- 1 line (please (Please read the notes on the back before filling this page.) 5. Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, and a description of the invention () The combination of the device 7 and the output waveguide 9 < The ancient optical path defined by the first learning path is X To show: the pre-path, and the deviation of the phase of the eclipse signal. Θ. Select materials and / or tuning elements.] The local shift I can be obtained by the method with the required refractive index, and; The thickness of the tuning element 15 and the element 15 are constructed to have a specific understanding that 'because of the various elements, it can slow down or The speed of light and the 4 *, special index of refraction,. ± the rate of passing or passing through. The effect of Sun, petition, and speed will increase or lose Fabry ♦ = or in this case ' The effect of the optical signal 2. The under 5JT can be phase shifted due to acceleration or because of #wind, you fly down .. Or, it is considered that the phase of the first learned signal will be relative to its sequential phase. Shifting occurs. Refer to Figure 1A and Figure 3 for the re-primitive technique. _ The Fabry-Perot filter 1 package is implemented in the present invention. The Q input waveguide 7 and the output waveguide 9 are The + waveguide system is formed on the base material of the Epistar King (for example only, a quartz substrate may also be used). In addition, the storm material has a core 2S sandwiched between the lower cladding layer 23 and the upper cladding layer 21. The input waveguide 7 and the output waveguide 9 may be photonic line or photonic well waveguides, and are separated from each other by a trench 11 which is at least partially defined in the earth material 13. The movable tuning element 1 $ is disposed in the groove 1 1 'and T is selectively moved into and out of the optical path: the optical path is generally defined by the input and output waveguide core U, and Along the longitudinal axis of the input waveguide 7 and the output waveguide 9. The tuning element 15 can be moved by the actuator 19 in the direction indicated by the famous arrow ζ; for example, 'thermoelectric actuator 2 1 9 (refer to Fig. 9) or electrostatic actuator 3! 9 or 4 1 9 (refer to Figure 10 and Figure 1 丨) is based on page 10 of the harder but lighter paper. The paper size is in accordance with China National Standard (CNS) A4 (210 X 297 mm) 4 5 5 7 0 2 A7
經濟部智慧財產局員工消費合作社印製 五、發明說明() 連結1 7而連接於調諧元件1 5。連結5 7最好係由重量輕及 堅硬的材料所製成。 再次地’法布里-轴羅空腔2的輸出波長將由穿遇法 布里·珀羅空腔2之溝槽1 1中的調諧元件1 5的位寒來決 定。當調?皆元件1 5位於光學路徑中的波導器7及9之間 時,法布里-珀羅空腔2將具有一種輸出波長,而當調諧 元件1 5位於4光學路徑之外且不在波導器7及9之間時’ 法布里-拍羅空腔2將具有另一種輸出波長。此種配置方 式可提供具有兩種狀態的法布里-珀羅遽波器;其中,输 出光學訊號的波長可為兩種不同波長值的其中之一。Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention () Link 17 and connect to the tuning element 15. The connection 5 7 is preferably made of a lightweight and hard material. Once again, the output wavelength of the Fabry-Perot cavity 2 will be determined by the bit temperature of the tuning element 15 in the trench 11 of the Fabry-Perot cavity 2. When tuned? When both elements 15 are between the waveguides 7 and 9 in the optical path, the Fabry-Perot cavity 2 will have an output wavelength, and when the tuning element 15 is outside the 4 optical path and not in the waveguide 7 And between 9 'Fabry-Perot cavity 2 will have another output wavelength. This configuration can provide a Fabry-Perot wave filter with two states; wherein the wavelength of the output optical signal can be one of two different wavelength values.
本發明之另一實施例係描續·於第2圖的法布里-珀羅 濾波器201。此法布里-珀羅濾波器與上述的法布里·珀羅 濾波器1的不同之處係在於兩調諧器2 〇 3及2 0 3,,其係以 相似的架構加以描繪,並沿著光學路徑串接。在法布里-ί白羅渡波益2 0 1中’光束係經由輸入波導器7而進入該濾 波器且通過法布里-珀羅空腔2,而後離開空腔而進入橋接 波導器6,而後再離開橋接波導器6而進入另一法布里-珀羅空腔2 ’,最後離開該空腔而通過輸出波導器9。應予 以體察的是,法布里-珀羅空腔2及2,的個數僅為例示而 非限定;任意個數接連的濾波器皆可使用,或者濾波器2〇3 為固定濾波器,而濾波器2 0 3 ’為可變濾波器,反之易然D 以接連的方式來配置法布里-拍羅空腔2及2 ’係較佳 的方式’因為每一接連的法布里-珀羅空腔2及2,皆可被 調整為不同的波長。在此情況下,法布里-珀羅濾波器2〇 1 第11頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) !|'1-------^----訂-------- C請先閲讀背面之注意事項再瑱寫本頁) A7 4557 0 2 五、發明說明( 將可遽除-段不同波長範圍的光。此外1法布里泊羅 空腔2及2’被調整用以過滤不同波長的光,則可針對輸入 光學訊號進行光譜重塑。 本發明特别適料建構Μ合平面以基材上的波 導器。一般而言,整合平面光學甚 疋子暴村係和一種較為平坦的 構件’其具有一支撐基材及苦千报出士人甘l 竹及右干形成於其上的不同材料 層。基材與各種不同的材料具有特定的光學性質,使得在 光學應用上有實用價值的結肖,如波導器,能夠藉由適當 的塑造或其它製程(例如活性離子蚀刻或其它適當的半導 體蝕刻製程)而形成於支撐基材之上。 繼績參照第3圖,並同時參照第i 2圖,波導器7及9 皆具有埋入的核心25,其厚度約3至丨5微米,並以~來 表示,而其高度約3至1 〇微米,並以心來表示。以較佳 的情況而言,核心的厚度約6至14微米,而核心的高度 約ό至8微米。核心2 5的形狀最好為正方形。 上包覆層2 1及下包覆層23係鄰接於核心25 >且包覆 層的厚度約為3至18微米’並以約15微米較佳。 雖然有許多種材料可用於製造核心及包覆層,但目前 以氧化矽較佳。 調諧元件1 5最好為矩形,其厚度約1至8微米,高 度約1 〇至1 00微米,而長度約1 0至1 00微米。調諧元件 1 5可由任何足夠硬且輕的材料來製造。以較佳的情況而 言’調諧元件的厚度約2微米,高度約30至40微米,而 長度約30至40微米,並由矽所製成。舉例而言,但非用 第12頁 公釐) -------------裝-----r---訂--------,.線_1 {請先閱讀背面之注咅?事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 455702Another embodiment of the present invention is a Fabry-Perot filter 201 described in FIG. The difference between this Fabry-Perot filter and the above-mentioned Fabry-Perot filter 1 lies in the two tuners 203 and 203, which are depicted in a similar architecture and follow The optical path is connected in series. In Fabry-Berodupoi 2 01, the light beam enters the filter through the input waveguide 7 and passes through the Fabry-Perot cavity 2 and then leaves the cavity and enters the bridge waveguide 6, Then it leaves the bridge waveguide 6 and enters another Fabry-Perot cavity 2 ′, and finally leaves the cavity and passes through the output waveguide 9. It should be noticed that the number of Fabry-Perot cavities 2 and 2 is for illustration only and is not limited; any number of consecutive filters can be used, or filter 203 is a fixed filter. The filter 2 0 3 ′ is a variable filter, otherwise, D is used to configure the Fabry-Perot cavities 2 and 2 'the better way' because each successive Fabry- Both Perot cavities 2 and 2 can be adjusted to different wavelengths. In this case, the Fabry-Perot filter 001 page 11 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm)! | '1 ------- ^ ---- Order -------- C Please read the notes on the back before writing this page) A7 4557 0 2 V. Description of the invention (can eliminate-a range of light in different wavelength ranges. In addition 1 The Fabry-Perot cavities 2 and 2 'are adjusted to filter light of different wavelengths, and can be spectrally reshaped for the input optical signal. The invention is particularly suitable for constructing waveguides on the M-plane and substrate. In other words, the integration of planar optics and the Xunzi storm village system and a relatively flat member 'has a supporting substrate and different material layers formed on it and the right stem. A variety of materials have specific optical properties, so that practical results in optical applications, such as waveguides, can be formed by appropriate molding or other processes (such as reactive ion etching or other appropriate semiconductor etching processes). On the supporting substrate. Following the performance, refer to Figure 3, while referring to Figure 2 at the same time. The guides 7 and 9 each have an embedded core 25 having a thickness of about 3 to 5 micrometers and expressed as ~, and a height of about 3 to 10 micrometers and expressed as a heart. In a better case, In other words, the thickness of the core is about 6 to 14 microns, and the height of the core is about 6 to 8 microns. The shape of the core 25 is preferably square. The upper cladding layer 21 and the lower cladding layer 23 are adjacent to the core 25 > And the thickness of the cladding layer is about 3 to 18 microns' and preferably about 15 microns. Although there are many materials that can be used to make the core and the cladding layer, silicon oxide is currently preferred. The tuning element 15 is preferably Rectangular, having a thickness of about 1 to 8 microns, a height of about 10 to 100 microns, and a length of about 10 to 100 microns. The tuning element 15 can be made of any sufficiently hard and light material. In the preferred case, The tuning element has a thickness of about 2 microns, a height of about 30 to 40 microns, and a length of about 30 to 40 microns, and is made of silicon. For example, but not using page 12 mm) ----- -------- install ----- r --- order -------- ,. line_1 {Please read the note on the back first? Please fill in this page for further information) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 455702
五、 發明說明 經濟部智慧財產局員工消费合作社印製 艮定,亦可使用諸如聚合物或介電質膜層等材料。 本發明可應用於強局限波導器及弱局限波導器。目前 •’以應用於弱波導器較佳。 料,波導器7、9可利用選自符合所需光學性質的各種材 二,製坆。雖然以氧化矽為主的材料較佳,但亦可使用其 :可提供所需光學性質的半導體材料。例如,核心25可 含捧雜氧化緒的氧化砂,並沉積於氧化碎或石英基材2 7 白勺 一 l·" 今由 _> 上包覆層21及下包覆層23可包含摻雜鱗化硼 ’破璃其匕亦可用於做為核心的材料包括磷化銦及坤 表但不以此為限;其它可用於做為包覆層21 ' 23的 材料包括鱗化鋼、碎化鎵、氧化铭、氮化矽或聚合物,或 以上之组合。 繼續參照第1A圖,溝槽n將充填一種介質(未圖 不)’該介質的折射率大致不同於波導器7、9及調諧元件 5的折射率(調諧元件1 5的折射率亦不同於波導器7、9 -折射率,而其大致為相同)。舉例而言,但不以此為限, 邊介質可包含空氣或真空,而不需要符合該介質及波導器 7、9的折射率。 在核心25當中傳遞且由輸入波導器7之核心所導引 的光學訊號會經由輸出面29離開波導器,並且通過溝槽 而後通過輸入面31而進入輸出波導器若調諧元件 1 5位於光學路徑X,則光學訊號將會通過調諧元件1 5, 而該元件將會改變波導器7、9之間的路徑的光學長度。 該路徑之光學長度的變化量係預先被決定,並取決於調諧 第13頁 私紙張尺度適用_國國家標準(CNS)A4規格(21〇 X 297公釐) ------------^ —裝---------訂··--- I '線 (請先閱讀背面之注意事項再填寫本頁) A7 B7 45 57 0 2 五、發明說明( 元件1 5的厚度ί以及調諧元件丨5建構於其上之材料,而 此材料係決定調諧元件的折射率。若調諧元件1 5並非位 於光學路徑X,則波導器7、9的光學長度將不會改變。 吾人可能需要縮短波導器7及9之間的間隔,以便減 少光學訊號通過波導器7及9之間時產生繞射(散光)的可 能性(參照如第1 3 Α圖及第1 3Β圖)。在某種程度上而言, 此需求可藉由提供其寬度稍大於調諧元件丨5之厚度,的溝 槽11而得以滿足。 另一種用以減少系統之光學散失的方式係將抗反射 塗層(未圖示)塗敷於波導器面2 9、3 1。 第1 A圖所描繪的調諧元件丨5為固定調諧元件,此因 其具有較為固定的厚度…因而能夠以固定量來改變波導 器7、9之間的法布里,羅空腔的光學長度,&不論光學 訊號在調諧元件15上進入及離開該元件的點為何。一般 而言,調諧元件為一種透明且具有特定光學性質的材料: 特別是,調諧元件的折射率不同於其周固的介質,並且不 同於波導器7、9的折射率。當光遇到不同的折射率時(亦 即通過不同的光學材料或光學元件(波導器、波導器/諧振 器等)之間)’該光將會改變其速率並經歷相對於未通過該 等材料或元件之間的相位偏移變化^調諧元件1 $最好係 大致為矩形且具有輸入面2及輸出面4的稜鏡(參照如第; 圖)’而輪入面2及輸出面4大致相互平行。如第Μ圖所 不’調諧元件1 5的厚度為;,此厚度係選擇用以在輸入及 輸出波導器7、9之間的法布里羅空腔2之光學長产上 第Η頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公楚) — — -----r 丨 11 ---1 *5^ —1 <請先間讀背面之注意事項再填寫本頁) 經 濟 部 智 慧 財 產 局 消 費 合 作 社 印 製 經濟部智慧財產局員工消費合作社印製 4 5 5 7 0 2 A7 —--^_B7_________ 五、發明說明() 提供所想要的固定變化。調諧元件丨5延伸至光學路徑的 程度僅需要讓從波導器7通過波導器9的光學訊號能夠完 全通過調1皆元件1 5即可。調諧元件1 5的高度可為h。調 讀元件1 5的長度並不會影響其改變光學長度的特性,而 其尺寸最好能夠縮小使調諧元件1 5移入及移出光學路徑 X所需的移動量。除了引發輸入及輸出波導器7、9之間 的法布里-泊羅空腔產生光學長度的改變之外’用於建構 調错元件1 5的材料並不會顯著改變(如吸收)通過其間之 光學訊號的特性。 如第1 A圖所示,調諧元件1 5係藉由竪硬且重量輕的 連結17而與致動器19連接,且其尺寸及形狀適於在溝槽 Π中沿著箭號Z所指的方向進行交互移動而不會受到干 擾°致動器19可用於在第一位置及第二位置之間移動調 諧元件1 5 ;在第一位置時,調諧元件1 5係位於光學路徑 X(如第1A圖及第3圖所描繪者),而在第二位置時’調諧 元件1 5係位於光學路徑X之外(未圖示)。因此’法布里-珀羅空腔2的光學長度只有當調諧元件1 5位於第一位置 時才會改變,而當調諧元件1 5位於第二位置時’法布里_ 珀羅空腔2的光學長度不會改變。 致動器1 9係將調諧元件1 5移入及移出光學路徑。雖 然任何適當的致動器皆可用於實施本發明,但目前以熱電 或機電型式的致動器較佳。 熱電致動器為習知技術領域的元件,所以在此未加詳 細描述。以本發明之目的而言,當可了解的是,任何熱電 第15頁 本紙張尺度適用令國國家標準(CNS)A4規格(21〇 x 297公釐) !!1111! - ! I l·------------ (請先間讀背面之注意事項再填寫本頁) 455702 A7 B7 五、發明說明( 致動器皆可使用’其可足以回應所加入的熱能而改變尺寸 大小,以致使調諧元件1 5能夠在第—與第二位置之間進 行所需的移動。使用熱電致動器的優點之一係在於此種致 動器可為閂鎖類型的裝置,因而能夠保持其位置且不需持 續加入熱能。因此,閂鎖類型的裝置將保持在兩個位置當 中的一個位置’直到被切換離開該位置為止。 第9圖係描繪一種可用於本發明之熱電閂鎖型致動器 219。致動器219包含一可彎曲構件45’其可緊密地固定 在由致動器外罩51所界定之空腔54的内壁端點49、49,。 2腔5 4的大小及形狀可容許可彎曲構件4 5移動,其足以 致使調諧元件1 5能夠在第一及第二位置之間移動。此外 亦提供一加熱器4 7 ’該加熱器係位於較接近構件4 5的位 置。當加熱器4 7被驅動時(即進行加熱),構件4 5會被加 溫而擴張。由於構件的兩端被固定在端點4 9及4 9,,因此 構件4 5不僅會擴張而使端點4 9及4 9,向外偏移,同時整 縮的應力將會沿著構件而產生。此等應力會持續增加,直 到達到足以使構件45能夠改變其位置為止。如第9圖所 不’構件4 5的位置係從參考標號A所指的位置改變到參 考標號B所指的位置,亦即由第一位置移至第二位置(或 由第二位置移至第一位置)。在另一種情況下,構件45本 身可為加熱器。 在另一實施例中,並參照第1 0圖,靜電致動器3 1 9 可用於選擇性地移動調諧元件]5。使用靜電致動器的優點 包括鬲操作速率、低能量消耗、以及少量的系統升溫。第 第16頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) II - I - I — — — — — —— - I * * (請先閱讀背面之注意事項再填寫本頁) 訂· 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 45 5702 Α7 ___ Β7 五、發明說明() 1 0圖係描繪一種可搭配本發明的靜電致動器3丨9。靜電致 動器319包含電極55及55,,該等電極係位於壓電元件53 的相反兩邊’該壓電元件係由可在施加電場於電極5 5及 5 5 ’時,至少有一邊(即寬或長)會擴張及壓縮的材料所製 成-因此,壓電元件53可在箭號z所指的方向上擴張及 壓縮,以致使調諧元件1 5移動。 僅使用單一致動器可能不足以讓調諧元件I 5達到所 需的移動量。如第11圖所示,此情況可透過提供具有若 干交錯指狀物5 9的壓電致動器4 1 9而得以調整。此等指 狀物5 9係連接於致動器4 1 9當中的支撐部5 7,該支撑部 係用於固定指狀物59的基部。當電子訊號作用於電極時 (未圖示)’端點60在箭號Ζ方向的總位移將會反映出所有 指狀物5 9所累積的位移《由於端點6 0的位移為各個指狀 物之位移的總和’因此調諧元件1 5可達到可觀的移動量0 此種靜電致動器4 1 9可能需要約1 〇〇伏特的大量電签,以 使調諧元件1 5達到所需的移動量。儘管此電壓很大,但 所需的功率卻很小,因為流過靜電致動器4 1 9的電流可被 忽略。 應了解的是,調諧元件1 5的移動方向並不限於沿著 溝槽1 1的方向。調諧元件1 5可沿著其它方向移動,同時 將通過波導器7及9之間的光導引進入及離開光學路後, 而只要調諧元件1 5能夠移入及移出在此所定義的第一及 第二位置即可。如第4圖所示,調错元件1 5可大致向上(即 沿著箭號Υ所指的方向)移動,並沿著波導器7、9所在之 第17頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公t ) -----------^--裝-----r---訂--------'線 {請先閱讀背面之注咅?事項再填寫本頁) 經濟部智慧財產局員工消費合作杜印製 45 57 0 2 A7 B7 五、發明說明() 平面的法線方向移動’或以相似的方式沿著與該平面相交 的對角線方向移動。 介於輸入波導器7與輸出波導器9之間的溝槽u的 寬度最好能夠縮小,以減少繞射效應的產生,因為當光在 未受局限的情況下通過時,將會產生吾人不希望見到的光 擴散現象。每當光學訊號(即光束)通過波導器7、9之間 時,即可能產生繞射現象。由於繞射的緣故,最終由調错 器3、103輸出的光束可能會在面積上稍大於起初進入法 布里-珀羅濾波器1的原始入射光束。 繞射現象可能需要補償,也可能不需要,而必須視安 裝的詳細情況而定,並且有許多不同的方式來進行。 第1 3 A圖及第1 3 B圖係圖示溝槽寬度對於繞射散失的 影響。從圖式中可觀察到,當溝槽寬度增加時,光的繞射 亦同時增加。由於光的擴散程度會隨著溝槽寬度的增加而 提高,因此將有較少來自於波導器7的原始訊號會進入波 導器9。故此,最好儘可能地縮短波導器7、9之端點的相 隔距離,亦即縮小溝槽的寬度。 有許多種方式可用於控制通過溝槽1 1的光繞射。繞 射現象可藉由將波導器7、9之輸出及輸入面29、31的相 隔距離控制在梢大於調諧元件1 5上的最寬點而得到控 制。參照第1A圖及第3圖,波導器7、9係被溝槽11隔 開’且配置於溝槽1 1的周圍,並且最好以同軸的方式相 對於由其各自的核心25所界定的同一光學路徑加以配 置。如此一來’波導器7、9的相隔距離將不會影響從波 第13頁 冬紙張尺度適用中國國豕標準<CNS)A4規格(210 X 297公釐) 1111 — — — — — —--I -----r--— ^ I-------11 (請先閱讀背面之注意事項再填寫本頁) Α7 4 5 5 7 〇 2 五、發明說明( 導器7通過溝槽丨丨而到達波導器9之光學訊號的傳輸特 性。溝槽1 1應儘可能地窄小,以減少溝槽1丨當中的光繞 射損耗。以目前而言,溝槽丨丨的寬度最好在1〇至35微 米。 在此同時’存在其它因素會限制溝槽Π之寬度的縮 小权度。窄的溝槽!丨可能會使波導器7、9的調準過程複 雜化而且可能热法容納調諧元件’使其寬度足以利用法 布里-辑羅空腔2之光學長度的最大改變而用於調整吾人 所需的範圍。 如第1 4圖所示’在較寬溝槽中的繞射散失可經由使 用錐形物7 1、73來增加波導器的寬度而得以減少。錐形 物71 73可為波導器7、9之整體的一部分,或為分離而 附於其上的元件3 可依照需求而僅在輪出波導器9上使用一錐形物。在 此種配置下(未圖示),光將會行進通過輸入波導器7並經 過輸出面29而進入溝槽1丨,而後從溝槽n進入錐形物 73 ’再從錐形物73進入輸出波導器9 ^ 參照第丨5圖,輸入波導器7可備有透鏡75,且面向 溝槽1 1。透鏡7S可針對經過波導器7且在通過溝槽i i 之前的光加以塑造。雖然此種透鏡可以多種方式來形成, 但目前以使用蝕刻玻璃較佳。V. Description of the invention Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Materials such as polymers or dielectric films can also be used. The invention can be applied to a strong confined waveguide and a weak confined waveguide. Currently, it is better to apply it to weak waveguides. The waveguides 7 and 9 can be made of various materials selected from various materials that meet the required optical properties. Although silicon oxide-based materials are preferred, they can also be used: semiconductor materials that provide the required optical properties. For example, the core 25 may contain oxidized sand with mixed oxides, and is deposited on the oxidized crushed or quartz substrate 2 " 今 由 _ > The upper cladding layer 21 and the lower cladding layer 23 may include Doped scaled boron 'glass can also be used as the core material including indium phosphide and Kun surface but not limited to this; other materials that can be used as the coating 21'23 include scaled steel, Broken gallium, oxide, silicon nitride or polymer, or a combination of the above. Continuing to refer to FIG. 1A, the trench n will be filled with a medium (not shown). The refractive index of the medium is substantially different from that of the waveguides 7, 9 and the tuning element 5 (the refractive index of the tuning element 15 is also different Waveguides 7, 9-refractive index, which are approximately the same). For example, but not limited to this, the edge medium may include air or vacuum, and does not need to conform to the refractive index of the medium and the waveguides 7 and 9. The optical signal transmitted in the core 25 and guided by the core of the input waveguide 7 will leave the waveguide through the output surface 29 and enter the output waveguide through the groove and then through the input surface 31. If the tuning element 15 is located in the optical path X, the optical signal will pass through the tuning element 15 and this element will change the optical length of the path between the waveguides 7,9. The amount of change in the optical length of this path is determined in advance and depends on the tuning of the private paper on page 13. Applicable to China National Standard (CNS) A4 (21〇X 297 mm) --------- --- ^ —Installation --------- Order ·· --- I 'line (Please read the precautions on the back before filling this page) A7 B7 45 57 0 2 V. Description of the invention (Element 1 The thickness of 5 and the material on which the tuning element 5 is built, and this material determines the refractive index of the tuning element. If the tuning element 15 is not located in the optical path X, the optical length of the waveguides 7 and 9 will not be I may need to shorten the gap between the waveguides 7 and 9 in order to reduce the possibility of diffraction (astigmatism) when the optical signal passes between the waveguides 7 and 9 (refer to Figures 1A and 1B Figure). To a certain extent, this demand can be met by providing a groove 11 whose width is slightly larger than the thickness of the tuning element 5. Another way to reduce the optical loss of the system is to resist A reflective coating (not shown) is applied to the waveguide surfaces 2 9, 3 1. The tuning element depicted in Fig. 1A is solid. Tuning element, because it has a relatively fixed thickness ... Therefore, it is possible to change the optical length of the Fabry-Perot cavity between the waveguides 7, 9 by a fixed amount, regardless of whether the optical signal enters the tuning element 15 and What is the point away from the element. Generally speaking, the tuning element is a transparent and material with specific optical properties: In particular, the refractive index of the tuning element is different from its surrounding medium and the refractive index of the waveguides 7, 9 When light encounters different refractive indices (ie, between different optical materials or optical elements (waveguides, waveguides / resonators, etc.)), the light will change its rate and experience relative Change in phase shift between these materials or components ^ Tuning element 1 $ is preferably 矩形 (refer to Figure; Figure 2) which is approximately rectangular and has input surface 2 and output surface 4 'and wheel-in surface 2 and output The faces 4 are approximately parallel to each other. As shown in the figure M, the thickness of the tuning element 15 is: This thickness is selected to be the optical length of the Fabryro cavity 2 between the input and output waveguides 7, 9 The first page of the paper Standards are applicable to China National Standard (CNS) A4 specifications (210 X 297 cm) — — ----- r 丨 11 --- 1 * 5 ^ —1 < Please read the precautions on the back before filling this page ) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 4 5 5 7 0 2 A7 —- ^ _ B7_________ V. Description of Invention () Provide the desired fixed changes. The degree to which the tuning element 5 extends to the optical path only needs to allow the optical signal from the waveguide 7 through the waveguide 9 to pass through the tuning element 1 15 completely. The height of the tuning element 15 may be h. The length of the read element 15 does not affect its characteristic of changing the optical length, and its size is preferably small enough to reduce the amount of movement required for the tuning element 15 to move in and out of the optical path X. Except that the optical length of the Fabry-Perot cavity between the input and output waveguides 7 and 9 is changed, the material used to construct the error adjusting element 15 does not change significantly (such as absorption) through it. Optical signal characteristics. As shown in FIG. 1A, the tuning element 15 is connected to the actuator 19 through a vertical and rigid connection 17 and has a size and shape suitable for being pointed in the groove Π along the arrow Z The actuator 19 can be used to move the direction interactively without interference. The actuator 19 can be used to move the tuning element 15 between the first position and the second position; in the first position, the tuning element 15 is located on the optical path X (such as 1A and 3), and in the second position, the 'tuning element 15' is located outside the optical path X (not shown). So 'The optical length of Fabry-Perot cavity 2 will only change when the tuning element 15 is in the first position, and when the tuning element 15 is in the second position' Fabry_Perot cavity 2 The optical length does not change. The actuator 19 moves the tuning element 15 into and out of the optical path. Although any suitable actuator can be used to implement the invention, actuators of the thermoelectric or electromechanical type are currently preferred. Thermoelectric actuators are components in the conventional art, so they are not described in detail here. For the purposes of the present invention, when it is understood that any thermoelectricity page 15 of this paper size applies the National Standard (CNS) A4 specification (21〇x 297 mm) !! 1111!-! I l ·- ----------- (Please read the precautions on the back before filling out this page) 455702 A7 B7 V. Description of the invention (The actuators can be used, which can be changed in response to the added thermal energy. Dimensions such that the tuning element 15 can be moved between the first and second positions. One of the advantages of using a thermoelectric actuator is that it can be a latch-type device, so Can maintain its position without the need to continuously add thermal energy. Therefore, a latch-type device will remain in one of two positions' until it is switched out of that position. Figure 9 depicts a thermoelectric latch that can be used with the present invention Lock-type actuator 219. The actuator 219 includes a flexible member 45 'which can be tightly fixed to the inner wall end points 49, 49 of the cavity 54 defined by the actuator housing 51. The size and shape may allow the flexible member 45 to move, which is sufficient to cause the tuning element The pieces 15 can be moved between the first and second positions. In addition, a heater 4 7 ′ is provided. The heater is located closer to the member 4 5. When the heater 4 7 is driven (ie, heating is performed) The component 4 5 will be heated to expand. Because the two ends of the component are fixed at the endpoints 4 9 and 4 9, the component 4 5 will not only expand but cause the endpoints 4 9 and 4 9 to shift outward. At the same time, the stress of shrinkage will be generated along the member. These stresses will continue to increase until it is sufficient to enable the member 45 to change its position. As shown in Figure 9, the position of the member 4 5 is indicated by the reference A The position of the finger changes to the position indicated by reference numeral B, that is, from the first position to the second position (or from the second position to the first position). In another case, the member 45 itself may be a heater In another embodiment, and referring to FIG. 10, an electrostatic actuator 3 1 9 can be used to selectively move the tuning element] 5. The advantages of using an electrostatic actuator include: 鬲 operating rate, low energy consumption, and A small amount of system warming up. Page 16 This paper is for China Home Standard (CNS) A4 Specification (210 X 297 mm) II-I-I — — — — — — — I * * (Please read the notes on the back before filling this page) Order · Intellectual Property Bureau, Ministry of Economic Affairs Printed by an employee consumer cooperative. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs. Printed by an employee consumer cooperative. 45 5702 Α7 ___ Β7 V. Description of the invention () 1 0 The picture depicts an electrostatic actuator 3 丨 9 that can be used with the invention. Contains electrodes 55 and 55. These electrode systems are located on opposite sides of the piezoelectric element 53. The piezoelectric element system consists of at least one side (that is, wide or long) when an electric field is applied to the electrodes 5 5 and 5 5. Made of expanded and compressed material-therefore, the piezoelectric element 53 can be expanded and compressed in the direction indicated by the arrow z, so that the tuning element 15 is moved. The use of a single actuator alone may not be sufficient to achieve the required amount of movement of the tuning element I5. As shown in Fig. 11, this situation can be adjusted by providing a piezoelectric actuator 4 1 9 having several interlaced fingers 5 9. These fingers 5 9 are connected to a support portion 5 7 among the actuators 4 1 9 which are used to fix the bases of the fingers 59. When an electronic signal is applied to the electrode (not shown), the total displacement of the endpoint 60 in the direction of the arrow Z will reflect the cumulative displacement of all fingers 5 9 "Because the displacement of endpoint 60 is for each finger The sum of the displacements of the object 'so that the tuning element 15 can reach a considerable amount of movement 0 Such an electrostatic actuator 4 1 9 may require a large number of electrical signs of about 1000 volts to achieve the required movement of the tuning element 15 the amount. Although this voltage is large, the power required is very small because the current flowing through the electrostatic actuator 4 1 9 can be ignored. It should be understood that the moving direction of the tuning element 15 is not limited to the direction along the groove 11. The tuning element 15 can be moved in other directions, and at the same time, the light passing through the waveguides 7 and 9 is guided into and out of the optical path, and as long as the tuning element 15 can move in and out of the first and The second position is sufficient. As shown in Figure 4, the error adjusting element 15 can be moved generally upward (ie, in the direction indicated by the arrow Υ), and along the page 17 where the waveguides 7 and 9 are located. CNS) A4 specification (210 X 297 male t) ----------- ^-installation ----- r --- order -------- 'line {Please read first Note on the back? Please fill in this page again) Consumption Cooperation by Employees of Intellectual Property Bureau of the Ministry of Economic Affairs 45 57 0 2 A7 B7 V. Description of the invention () Move in the direction of the normal of the plane 'or in a similar way along the diagonal that intersects the plane Move in the direction of the line. The width of the trench u between the input waveguide 7 and the output waveguide 9 can preferably be reduced to reduce the generation of diffraction effects, because when light passes through without being restricted, it will cause our own Hope to see the phenomenon of light diffusion. Whenever an optical signal (ie, a light beam) passes between the waveguides 7, 9, a diffraction phenomenon may occur. Due to the diffraction, the light beam finally output by the debuggers 3, 103 may be slightly larger in area than the original incident light beam that initially entered the Fabry-Perot filter 1. Diffraction may or may not be compensated, but it depends on the details of the installation and there are many different ways to do it. Figures 1 A and 1 B show the effect of the groove width on the diffraction loss. It can be observed from the figure that as the groove width increases, the diffraction of light also increases. Since the degree of light diffusion will increase as the trench width increases, fewer original signals from the waveguide 7 will enter the waveguide 9. Therefore, it is better to shorten the distance between the ends of the waveguides 7, 9 as much as possible, that is, to reduce the width of the trench. There are many ways to control the diffraction of light through the trench 11. The diffraction phenomenon can be controlled by controlling the separation distance between the output and input surfaces 29, 31 of the waveguides 7, 9 at the widest point where the tip is larger than the tuning element 15. Referring to FIGS. 1A and 3, the waveguides 7 and 9 are separated by the trench 11 and are arranged around the trench 11, and are preferably coaxial with respect to those defined by their respective cores 25. Configured on the same optical path. In this way, the separation distance of the waveguides 7 and 9 will not affect the application of the China National Standard < CNS) A4 specification (210 X 297 mm) from the wave paper on page 13 of winter paper 1111 — — — — — —- -I ----- r --- ^ I ------- 11 (Please read the precautions on the back before filling in this page) Α7 4 5 5 7 〇2. Description of the invention (guide 7 passed Trench 丨 丨 and the transmission characteristics of the optical signal reaching the waveguide 9. The trench 11 should be as narrow as possible to reduce the light diffraction loss in the trench 1. At present, the trench 丨 丨The width is preferably 10 to 35 microns. At the same time, 'there are other factors that will limit the reduction of the width of the groove Π. Narrow grooves! 丨 May complicate the alignment process of the waveguides 7, 9 and It is possible to accommodate the tuning element thermally 'to make it wide enough to take advantage of the maximum change in the optical length of the Fabry-Perot cavity 2 for adjusting our desired range. As shown in Figure 14' Diffraction loss can be reduced by using cones 7 1, 73 to increase the width of the waveguide. The cones 71 73 can be waveguides 7, 9 A part of the whole, or the element 3 attached to it for separation, can be used with only a cone on the wheel-out waveguide 9 as required. In this configuration (not shown), light will travel through the input The waveguide 7 passes through the output surface 29 and enters the groove 1 丨, and then enters the cone 73 from the groove n ′ and then enters the output waveguide 9 from the cone 73 ^ Referring to FIG. 5, the input waveguide 7 can be prepared There is a lens 75 and faces the groove 11. The lens 7S can be shaped for light that passes through the waveguide 7 and before it passes through the groove ii. Although this lens can be formed in a variety of ways, it is currently preferred to use etched glass.
吾人希望溝槽1 1係相對於波遂盟7 Q 收等器7、9的排列軸(未 圖示)而傾斜。以較佳的情況而言,溝槽u相斜於該軸的 傾斜角度係介於4°至8。之間’且以5。至7。更佳,而 第19頁 本紙張尺度適用令國國家標準(CNS)A4規格(210 X 297公釐) ^--· I--I — I 訂-------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消貲合作社印製 A7 455702 _____ B7__ 五、發明說明() 以6°為最佳。此種幾何配置可避免反射離開調譜元件3 的光束重新回到輸入波導器7。 除了上述實施例中的固定調諧元件3之外,如以上參 照第1A圖所作的詳細說明,本發明亦針對—種使用調講 器1 03的法布里-珀羅濾波器1 (H,其中調諧器】〇3具有可 變調諧元件1 1 5,即如第1 B圖及第5 B圖所描績者,以下 將詳細說明。由於法布里-珀羅空腔2的整體折射率係由 配置於波導器7及9之間的調諧元件11 5的寬度來決定, 因此厚度可變的元件1 1 5可用於選擇性地改變法布里-泊 羅空腔2的輸出波長。可變調諧器1 〇 3不同於固定調靖器 的所在’主要係關於調諧元件1 1 5的形狀;大致為錐形與 大致為矩形的差異。 如第1 B圖及第5 B圖所示,錐形調諧元件1丨5大致為 錐形或楔形。此等形狀可提供一段包含不同相移的範園; 因此’在頂端3 3之相反的末端3 4處的調諧元件1丨5的最 寬部分,或在此部份之前,可得到從約零至某一最大值的 光程(optical path length),並取決於元件1 1 5相對於波導 器7、9的位置而定。另一方面,調f皆元件的朝向可以倒 轉過來(未圖示),以使調諧元件的頂端3 3能夠藉由連結 1 7而連接於致動器1 9。在此實施例中,頂端3 3 '連結1 7 及致動器3 4所經歷的應力必須加以考慮。 得以了解的是,可變調諧器1 03可用於取代使用於第 2圖所描繪之法布里-珀羅濾波器201的固定調諧器203及 2 0 3 ’之一或兩者。此外,固定調错器及可變調諧器可以任We hope that the groove 11 is inclined with respect to the alignment axis (not shown) of the 7 Q receivers 7 and 9 of the Posui League. In a better case, the inclination angle of the groove u-phase to the axis is between 4 ° and 8 °. Between ’and to 5. To 7. Better, and the paper size on page 19 applies the national standard (CNS) A4 specification (210 X 297 mm) ^-· I--I — I order -------- (Please read first Note on the back, please fill in this page again) Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 455702 _____ B7__ V. Description of the invention () 6 ° is the best. This geometric configuration prevents the light beam reflected off the tuned element 3 from returning to the input waveguide 7 again. In addition to the fixed tuning element 3 in the above embodiment, as described in detail above with reference to FIG. 1A, the present invention also aims at a Fabry-Perot filter 1 (H, where Tuner] 〇3 has a variable tuning element 1 1 5, that is, as described in FIG. 1 B and FIG. 5 B, which will be described in detail below. Because of the overall refractive index system of the Fabry-Perot cavity 2 It is determined by the width of the tuning element 115 arranged between the waveguides 7 and 9, so the variable thickness element 1 15 can be used to selectively change the output wavelength of the Fabry-Perot cavity 2. Variable The difference between the tuner 1 〇3 and the fixed tuner is mainly about the shape of the tuning element 1 15; the difference between a roughly conical shape and a substantially rectangular shape. As shown in Figures 1B and 5B, the cone The shape of the tuning element 1 丨 5 is generally conical or wedge-shaped. These shapes can provide a range of fields containing different phase shifts; , Or before this part, you can get the optical path length from about zero to a certain maximum (optical path length) It depends on the position of the components 1 1 5 relative to the waveguides 7 and 9. On the other hand, the orientation of the components f can be reversed (not shown), so that the top 3 3 of the tuning component can be connected by 17 is connected to the actuator 19. In this embodiment, the stress experienced by the tip 3 3 'connection 1 7 and the actuator 3 4 must be considered. It is understood that a variable tuner 103 is available In place of one or both of the fixed tuners 203 and 203 'used in the Fabry-Perot filter 201 depicted in Figure 2. In addition, the fixed debugger and the variable tuner can be used either
第20T >·紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ' ~ -1-----------------r---I------11 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 45 57 0 2 at ______B7___ 五、發明說明() 何次序(未圖示)混合使用於法布里-珀羅濾波器。 可變調諧器1 03可能比固定調諧器3更需要精確的致 動器1 9。使用於固定調諧器的致動器]9僅需要在兩位置 之間移動調諧元件1 5 (移入或移出波導器7及9之間的位 置)。只要元件1 5被定位在光學路徑上’法布里-珀羅空腔 2的光學長度即可被改變。對於可變調諧器1 〇 1而言,致 動器1 9必須將調諧元件1 1 5從光學路徑的外部移入該光 學路徑中一特定且較精確的位置’以使得具有一特定厚度 的調諧元件1 1 5能夠置於光學訊號之路徑上的法布里.珀 羅空腔2内,因而將法布里-珀羅空腔2的光學長度改變 成吾人所需的值,並將法布里-珀羅空腔2調整成為吾人 所需的波長。 一種用於替代較精確之致動器1 1 9的方式係使用傾斜 較緩的調諧元件1 1 5。舉例而言,若調諧元件的錐形物被 減半,則為了使法布里-珀羅空腔2的光學長度產生相同 的變化量,調諧元件1 1 5必須被移動的距離將會加倍。 調諧元件的錐形側邊3 5、3 7可能會致使光學訊號在 光學訊號光束1 5 2 (參照如第5 B圖及第8圖)的寬度部分經 歷不均勻的相位偏移°由於引入光學訊號中的相位偏移量 至少部分係取決於調諧元件Π 5的厚度:因此,該光束將 會遭遇到厚度的變化’因為該光束的寬度為有限的。因 此’在光束1 52中’遇到調諧元件1 1 5之較寬部分的部分 8 3與遇到調諧元件1 1 5之較窄部分的部分81相較之下, 前者將經歷較大的相位偏移。若光束1 5 2的寬度比調諧元 _ 第21頁 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ 297公爱) '' — — — — — —------I -----r---^ --------I (請先閱讀背面之注意事項再填寫本頁) A7 B7 4557 0 2 五、發明說明() 件11 5的長度小,則在光束丨52之外部邊緣所經歷到相位 差值將會很小,而不致於對光學訊號的進一步傳遞有不利 的影響’因此’不需要加以修正/補償 '然而,若想要進行 修正/補償’則其中-㈣於縮小相位差值的方式係使用非 常平緩的錐形調諧元件115,以使得光束152在寬度上所 經歷之元件1 15的厚度差異可被忽略,因而光東ι52可提 供更均向之相位偏移的光學訊號。同時,元件1 15亦可在 更均向的情況下改變法布里_珀羅空腔2的光程。調諧元 件115能夠在法布里_轴羅空腔2的光學長度上造成寬廣 的變化範圍,因而能夠使該空腔具有如同較尖銳之錐形調 諧元件所能得到的寬廣輸出頻率的範圍;然而,此時可能 需要針對調諧元件Π 5移動較大的量。 錐形調諧元件的寬度係從位於頂端之次微米的尺度 而至位於最寬部分的100微米,而其高度約至微 米。錐形調諧元件可由足夠硬且重量輕的材料所製成。以 較佳的情況而言’錐形調諧元件的形狀為三角形,其頂端 的寬度約在次微米的尺度’最大寬度約3〇至4〇微米,而 其高度約30至40微米= 舉例而言’但不以此為限,上述之調諧元件可由矽、 聚合物、金屬或介電質材料所製成。 本發明之另一技術態樣係涉及可變調譜器2丨5的另一 種結構,其可減少上述輸出光束的非線性現象。在此實施 例中’如第6A圖及第6B圖所示1錐形調諧元件u 5被梯 狀調諧元件2 1 5所取代。梯狀調諧元件2丨5係由兩個以上 第22頁 本紙張尺度適用中國國家標準(CNS)A4規格χ 297公釐) ------------裝-----r---訂---------線 {請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 A7 4557 02 五、發明說明( 的不同矩形偏移區域43、43,及43,,所組成,其分別具有不 同的厚度’ ’及’。由於通過各個偏移區域43、43,及43” 之光學訊號的光程改變量係為該等偏移區域之厚度的函 數’因此’ ί于以了解的是,在較厚之偏移區域所引發的光 程改變量將大於較薄之偏移區域所引發的光程改變量。此 種配置方式係為法布里·珀羅空# 2 &光學長度提供不連 續個數的偏移,而不是—連續的變化範圍。 可此使用梯狀調請元件2丨5(如第圖及第6B圖所 示者)的法布里-珀羅空腔2,其光學長度的偏移個數係對 應偏移區域43 ' 43,及43”的個數。例如,六階的調諧元件 可提供的偏移約等於Xl、h、Χ3、χ4、&及χ〆吾人認為 不需要超過十階)。當以第6Α圖所描續的方式加以配置, 或以最小厚度置於連結1 7的附近時,梯狀調諧元件2 1 5 可提供法布里-珀羅空腔2之光學長度的單調偏移。另一 方面’亦可提供非單調的偏移,並取決於設計上的需求。 如第6Β圖所示,當從—端觀察時,梯狀調諧元件2 ! 5 可被觀察到具有若干偏移區域4 3、4 3,及4 3 ”,且所有偏移 區域係以由元件2 1 5所界定的共同中心平面44而呈現對 稱排列。另一方面,如第6 C圖所示,梯狀調諳元件3 15 具有梯狀側邊4 8及平面側邊46。平面側邊46可面對波導 器7或波導器9。 梯狀調諧元件2 1 5及3 1 5的各個偏移區域43、43 ’及 43”不一定要以對稱的方式,或以共同邊緣平面的方式來 排列。舉例而言,關於偏移區域4 3、4 3 ’及4 3,’的排列,可 第23頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) ----------->|——裝-----r---訂---------線 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 455702 A7 經濟郤智慧財產局員工消費合作社印製 B7 五、發明說明() 使最常用之偏移區域彼此相鄰的方式加以排列(未圖示)。 此種排列方式將可縮短為了將該等最常使用的偏移區域 置於光學路徑X上而必須移動調諧元件215、315的距離。 由於調諧元件215、315的移動距離已縮短,因而調错器 的回應時間即可得到提昇。 梯狀調諸元件2 1 5、3 1 5 ® i丄. T 313可製造成為單獨的整合件, 或以黏合或接合的方式將多個經過適當調準的單件組合 在-起而成為一組件。製造成為單獨整合件較佳,因為如 此即不需要進行精確地調準組合的單件,同時可避免因黏 合或接合多個單件而造成光學材料的形變。 使用梯狀調諧元件215、315的另一優點係在於,僅 需利用較不精確的致動器即可,此因調諧元件215、315 的最短偏移距離約等於兩相鄰偏移區域之間的距離。假設 偏移區域43、43,及43”本身的寬度略大於光束152的寬 度,則致動器1 9需要移動調错元件2 1 5、3 1 5的最小量將 略大於光束152的寬度^ 為了確保光束1 5 2不會同時遇到兩個不同而相鄰的偏 移區域43、43’及43”,各個區域的長度最好大於波導器7 及9的寬度。 如第8圖及第16圖所示,若調諧器1 〇 1使用錐形調 諧元件Π 5,則沿著輪入波導器7傳遞的光將會在通過調 諧元件Π 5之後改變其行進方向。舉例而言,第1 6阖係 描繪一種方式’其中輸出波導器9可被重新定位,以補償 光在方向上的變化。得以了解的是,波導器7、9及調讀 第24頁 本紙張尺度適用中國國豕標準(CNS)A4現格(210 X 297公釐) -----------叫--裝-----.1---訂·-------*線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 455702 五、發明說明( 元件⑴的相對位置可根據調諧元 本發明之光學調謂器H〇1可整體:=改變。 晶片(岭〜)製造技術-以组合,後者概括4:用第,f 圖及第17B圖。在反裝晶片製造技術中,波導會器7 17A 溝槽Π係利用習知的半導體製程技術 益7、9及 而雙體形成於第-晶片65上 '钱刻等) 仕戊蒗 < 则,兩晶 此面對並加以調準’以使得料晶片的對應部調 元件15與溝槽H)彼此相對。當晶片W及晶片67^人^苑 間隙壁69將調整兩者之間的距離,同時防止兩晶^於 靠近。間隙壁亦可用於確保晶片適當地 ^ ^ ° 而後,該等 晶片以習知的方式接合在一起。 應了解的是,本發明不應被限定於在此所描述的角 度、材料、形狀或大小,而角度、材料、形* 4犮小應以 申請專利範圍所陳述者為限。 因此’雖然本發明已藉由其較佳實施例而加以例示及 詳細說明其新穎技術特徵’當可了解的是,熟習此巧技術 者可針對本發明進行形式或内容上的刪除、替換及修改, 而不脫離本發明之精神。因此,本發明之範圍僅由所附之 申請專利範圍所界定。 此外,應了解的是,下列申請專利範圍意指包各在此 所福述之本發明的所有通用及特定的特徵,且本發明之p 圍取決於語言的所有陳述可視為在該範圍之内。特別是, 本發明不應受限於在此所揭露的尺寸大小、比例或排列方 式。 第25頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) -----------U--illl·-----------I t - {請先閱讀背面之注意事項再填寫本頁)20T > · The paper size is in accordance with China National Standard (CNS) A4 (210 X 297 mm) '~ -1 ----------------- r --- I- ----- 11 (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Employee Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 45 57 0 2 at ______B7___ V. Description of the Invention ( ) What order (not shown) is used in combination with Fabry-Perot filters. Variable tuner 103 may require more precise actuators 19 than fixed tuner 3. Actuator for fixed tuner] 9 only needs to move the tuning element 15 between two positions (to move in or out of the position between the waveguides 7 and 9). As long as the element 15 is positioned on the optical path, the optical length of the 'Fabry-Perot cavity 2 can be changed. For the variable tuner 101, the actuator 19 must move the tuning element 1 15 from the outside of the optical path into a specific and more precise position in the optical path 'so that the tuning element has a specific thickness 1 1 5 can be placed in the Fabry-Perot cavity 2 on the path of the optical signal, so the optical length of the Fabry-Perot cavity 2 is changed to the value we need, and Fabry-Perot -Perot cavity 2 is adjusted to the wavelength we need. One way to replace the more precise actuator 1 1 9 is to use a more inclined tuning element 1 1 5. For example, if the cone of the tuning element is halved, the distance that the tuning element 1 1 5 must be moved will be doubled in order to produce the same change in the optical length of the Fabry-Perot cavity 2. The tapered side of the tuning element 3 5, 3 7 may cause the optical signal to experience an uneven phase shift in the width portion of the optical signal beam 1 5 2 (see Figures 5B and 8). The amount of phase shift in the signal depends at least in part on the thickness of the tuning element Π 5: therefore, the beam will experience a change in thickness' because the width of the beam is limited. Therefore, in the 'beam 1 52', the part 8 3 which encounters the wider part of the tuning element 1 1 5 and the part 81 which encounters the narrower part of the tuning element 1 1 5 will experience a larger phase Offset. If the width of the beam 1 5 2 is more than the tuning element _ page 21 This paper size applies the Chinese National Standard (CNS) A4 specification (21〇χ 297 public love) '' — — — — — —------ I- ---- r --- ^ -------- I (Please read the notes on the back before filling this page) A7 B7 4557 0 2 V. Description of the invention () The length of piece 11 5 is small, then The phase difference value experienced at the outer edge of the beam 52 will be small without adversely affecting the further transmission of the optical signal 'so' no correction / compensation is needed '. However, if correction / compensation is desired 'Then-the way to reduce the phase difference value is to use a very gentle tapered tuning element 115, so that the thickness difference of the element 1 15 experienced by the beam 152 in width can be ignored, so the light beam 52 can provide more Optical signals that are phase-shifted to all directions. At the same time, the element 115 can also change the optical path of the Fabry-Perot cavity 2 with a more uniform orientation. The tuning element 115 can cause a wide range of variation in the optical length of the Fabry-Perot cavity 2, so that the cavity can have a wide output frequency range as can be obtained by a sharper tapered tuning element; however At this time, it may be necessary to move a larger amount for the tuning element Π 5. The width of the cone-shaped tuning element ranges from the sub-micron dimension at the top to 100 micrometers at the widest part, and its height is about to micrometers. The conical tuning element may be made of a sufficiently hard and lightweight material. In a better case, the shape of the cone-shaped tuning element is triangular, and the width of the top end is about the sub-micron dimension. The maximum width is about 30 to 40 microns, and its height is about 30 to 40 microns. 'But not limited to this, the above-mentioned tuning element may be made of silicon, polymer, metal or dielectric material. Another aspect of the present invention relates to another structure of the variable spectrum modulator 2 5, which can reduce the above-mentioned non-linear phenomenon of the output beam. In this embodiment, 'as shown in Figs. 6A and 6B, a tapered tuning element u 5 is replaced by a ladder-shaped tuning element 2 1 5. The ladder-shaped tuning element 2 丨 5 is composed of two or more pages. Page 22 This paper applies the Chinese National Standard (CNS) A4 specification χ 297 mm. ------------ Installation ----- r --- Order --------- line {Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 4557 02 V. Description of the invention The shifting regions 43, 43, and 43, are composed of different thicknesses' 'and'. Since the optical path changes of the optical signals passing through the respective shifting regions 43, 43, and 43 "are the deviations As a function of the thickness of the shifted region 'so', it is understood that the amount of optical path change caused by the thicker offset region will be greater than the amount of optical path change caused by the thinner offset region. This configuration method Fabry-Perot # 2 & optical length provides discontinuous number of offsets, rather than-a continuous range of variation. You can use ladder-like adjustment elements 2 丨 5 (as shown in Figures and 6B Fabry-Perot cavity 2 of the figure), the number of shifts in its optical length corresponds to the number of shift regions 43 '43, and 43 ". For example Sixth-order offset tuning elements may provide approximately equal Xl, h, Χ3, χ4, & I think χ〆 and need not exceed ten bands). When configured in the manner described in Figure 6A, or placed in the vicinity of the connection 17 with the minimum thickness, the ladder-shaped tuning element 2 1 5 can provide a monotonic deviation of the optical length of the Fabry-Perot cavity 2 shift. On the other hand, it can also provide non-monotonic offsets, depending on the design requirements. As shown in FIG. 6B, when viewed from the − end, the ladder-shaped tuning element 2! 5 can be observed to have a number of offset regions 4 3, 4 3, and 4 3 ”, and all the offset regions are determined by the element. The common central plane 44 defined by 2 1 5 is symmetrically arranged. On the other hand, as shown in FIG. 6C, the ladder-shaped regulating element 3 15 has a ladder-shaped side 48 and a planar side 46. The planar side 46 may face the waveguide 7 or the waveguide 9. The respective offset regions 43, 43 ', and 43 "of the ladder-shaped tuning elements 2 1 5 and 3 1 5 do not have to be symmetrical or in a common edge plane manner To arrange. For example, regarding the arrangement of the offset regions 4 3, 4 3 'and 4 3,', the Chinese paper standard (CNS) A4 (210 X 297 public love) can be applied to this paper size on page 23 ----- ------ > | ——install ----- r --- order --------- line (please read the precautions on the back before filling this page) Intellectual Property Bureau of the Ministry of Economic Affairs Printed by Employee Consumption Cooperative 455702 A7 Economic and Intellectual Property Bureau Printed by Employee Consumption Cooperative B7 V. Description of Invention () The most commonly used offset areas are arranged next to each other (not shown). This arrangement shortens the distance that the tuning elements 215, 315 must be moved in order to place these most commonly used offset regions on the optical path X. Since the moving distance of the tuning elements 215 and 315 has been shortened, the response time of the debugger can be improved. Ladder-like adjustment elements 2 1 5, 3 1 5 ® i 丄. T 313 can be manufactured as a single integrated piece, or a plurality of appropriately adjusted single pieces can be combined together into a single unit by gluing or bonding. Components. It is better to manufacture it as a single integrated piece, because it does not need to precisely align the combined single pieces, and at the same time avoids deformation of the optical material caused by bonding or joining multiple single pieces. Another advantage of using ladder-shaped tuning elements 215, 315 is that only less precise actuators need to be used, because the shortest offset distance of tuning elements 215, 315 is approximately equal to between two adjacent offset regions distance. Assuming that the widths of the offset regions 43, 43, and 43 "are slightly larger than the width of the beam 152, the minimum amount of the actuator 19 that needs to move the adjustment element 2 1 5, 3 3 5 will be slightly larger than the width of the beam 152 ^ In order to ensure that the beam 1 2 does not encounter two different and adjacent offset regions 43, 43 ′, and 43 ″ at the same time, the length of each region is preferably greater than the width of the waveguides 7 and 9. As shown in Figs. 8 and 16, if the tuner 101 uses a cone-shaped tuning element Π 5, the light transmitted along the wheel-in waveguide 7 will change its traveling direction after passing through the tuning element Π 5. For example, the 16th series depicts a way 'in which the output waveguide 9 can be repositioned to compensate for changes in light direction. It can be understood that the waveguides 7, 9 and reading on page 24 are applicable to China National Standard (CNS) A4 (210 X 297 mm). -Install -----. 1 --- Order · ------- * line (Please read the notes on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 455702 V. Invention Explanation (The relative position of the element ⑴ can be changed as a whole according to the optical predicator H〇1 of the present invention: =. Wafer (ridge ~) manufacturing technology-in combination, the latter is summarized 4: using the f, f and 17B Figure. In the flip chip manufacturing technology, the waveguide 7 17A trench Π is formed using the conventional semiconductor process technology 7 and 9 and the dual body is formed on the first wafer 65 ("money carving", etc.). Then, the two crystals face each other and are aligned 'so that the corresponding adjustment element 15 and the groove PD of the corresponding portion of the wafer are opposed to each other. When the wafer W and the wafer 67, the spacer 69 will adjust the distance between the two, while preventing the two crystals from approaching. The partition wall can also be used to ensure that the wafers are properly ^ ^ ° and then the wafers are bonded together in a conventional manner. It should be understood that the present invention should not be limited to the angle, material, shape or size described herein, and the angle, material, shape * 4 should be limited to those stated in the scope of patent application. Therefore, 'Although the present invention has been exemplified and its novel technical features are described in detail through its preferred embodiments', it will be understood that those skilled in the art can delete, replace and modify the form or content of the present invention. Without departing from the spirit of the invention. Therefore, the scope of the present invention is only defined by the scope of the attached patent application. In addition, it should be understood that the following patent application scopes are intended to cover all common and specific features of the invention described herein, and all statements of the invention that depend on language may be considered to be within the scope . In particular, the present invention should not be limited to the size, ratio, or arrangement disclosed herein. Page 25 This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) ----------- U--illl · ----------- I t-(Please read the notes on the back before filling this page)