TW450916B - A bicycle control system for assisting driving control of an elebike - Google Patents

A bicycle control system for assisting driving control of an elebike Download PDF

Info

Publication number
TW450916B
TW450916B TW88115256A TW88115256A TW450916B TW 450916 B TW450916 B TW 450916B TW 88115256 A TW88115256 A TW 88115256A TW 88115256 A TW88115256 A TW 88115256A TW 450916 B TW450916 B TW 450916B
Authority
TW
Taiwan
Prior art keywords
voltage
torque
output
fuzzy
signal
Prior art date
Application number
TW88115256A
Other languages
Chinese (zh)
Inventor
Ping-Ho Chen
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW88115256A priority Critical patent/TW450916B/en
Application granted granted Critical
Publication of TW450916B publication Critical patent/TW450916B/en

Links

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

Disclosed is a bicycle control system for assisting driving control of an elebike, for controlling the elebike according to the input of the rider. The bicycle control system includes a torque sensor for sensing the pedaling torque input by the rider and for generating a torque output; a rotational speed sensor for sensing the rotational speed of a wheel and for generating a rotational speed output; a control circuit using the ""fuzzy principle"" to process the torque output generated by the torque sensor and the rotational speed output generated by the rotational speed sensor to produce a control voltage output; and a voltage coupler, that is connected among a handgrip, the output end of the control circuit, and the control end of the servo-motor through an analog voltage, for coupling the handgrip voltage generated by the handgrip and the control voltage output generated by the control circuit in a pre-determined method so as to generate a coupling voltage output for controlling the power output of the servo-motor.

Description

45 091 6 五、發明說明(I) 一- 本發明係提供一種自行車控制系統,·尤指一種以「棋 糊法則j來輔助電動自行車之驅動控制的自行車控制系 統。 ,或 具入 工輸 通力 交人 的或 能入。 功輸車 間力行 休電自 與擇動 輸選電 運以該 具態制 兼狀控 種或以 一情入 為心輪 車其時 行據同 自依力 動以人 電可與 者力 騎電 請參閱® —’圖一為習知電動自行車1〇的示意圖。電 |動自行車10包含有一車架12,二車輪14、15以可轉動的方 i式安裝於車架12上,一齒輪傳動组16設於車架12上用來驅 i動車輪15’ 一腳踏機構設於車架丨2上用來產生一腳踏轉 丨矩以帶動歯輪傳動組16’ 一動力控制把手2〇設於車架12上 丨用來產生一把手電壓輸出,一伺服馬違22設於車架12上用 來依據把手電壓輸出以產生一電力轉矩,以及一相合裝置 2 4用來將電力轉矩耦合於齒輪傳動組16以驅動車輪15。 當騎者選擇人力與電力同時輸入以控制電動自行車IQ |時’腳踏機構18會k據騎者的人力輸入產生腳踏轉矩以驅 丨動齒輪傳動組16’同時動力控制把手2 0亦會依據騎者的電 |力輸入以產生把手電壓輸出,而伺服馬達22會依據把手電 |虔輸出以產生電力轉矩’並藉由耦合裝置24將電力轉矩麵 |合於齒輪傳動組1 6以驅動車輪1 5,最後以達到控制電動自 |行車之目的。45 091 6 V. Description of the Invention (I) A-The present invention provides a bicycle control system, especially a bicycle control system that assists the drive control of electric bicycles with "rule j". The power transmission workshop can perform power outages and elective power transmission and electoral transport using the state system and the state to control the species or use the same situation as the hearthwheel. For people who can ride the power, please refer to ® —'Figure 1 is a schematic diagram of a conventional electric bicycle 10. The electric bicycle 10 includes a frame 12, and two wheels 14, 15 are mounted on the frame in a rotatable manner. A gear transmission group 16 is provided on the frame 12 for driving the wheels 15 'on a frame 12. A foot mechanism is provided on the frame 丨 2 for generating a pedal rotation moment to drive the wheel transmission group 16'. A power control handle 20 is provided on the frame 12 to generate a handle voltage output, a servo motor 22 is provided on the frame 12 to generate an electric torque based on the handle voltage output, and a coupling device 2 4 For coupling electric torque to the gear train 16 for driving Wheel 15. When the rider selects the simultaneous input of manpower and power to control the electric bicycle IQ | 'Pedal mechanism 18 will generate pedal torque according to the rider's human input to drive the gear transmission group 16' and power control the handle 2 0 will also generate the handle voltage output according to the rider's electric force input, and the servo motor 22 will generate the electric torque according to the handle electric | output, and the electric torque surface will be coupled to the gear by the coupling device 24 Transmission group 16 drives wheels 15 and finally achieves the purpose of controlling electric self-driving.

9 1 6 五、發明說明(2) 習知電動自行車10的控制決策乃取決於騎者本身,騎 ,依據其心情與狀態於動力控制把手20產生一把手角度大 以決定把手電壓輸出,但由於習知電動自行車10的把手 度大小舆把手電壓輸出一般都被設計為成正比之關係, 因此電動自行車1〇的控制往往會出現加速暴衝、車速9 1 6 V. Description of the invention (2) The control decision of the conventional electric bicycle 10 depends on the rider himself, riding, and according to his mood and state. The power control handle 20 generates a large handle angle to determine the handle voltage output. It is known that the degree of handle of the electric bicycle 10 and the voltage output of the handle are generally designed to be proportional to each other. Therefore, the control of the electric bicycle 10 often results in accelerated surges and vehicle speeds.

川頁、姐4* ^ ' T 辉控不隨意的情形《再者,習知電動自行車1 0的電力 輔助並%一?,因此該電動自行車 10亦有輔助電力效率偏低的缺點。 ^ 因此本發明之主要目的在於提出一種用來輔助電動自 行車之驅動控制的自行車控制系統,以解決上述問題。 圖式之簡單說明 圈一為習知電動自行車的示意圖 圖二為本發明自行車控制系統之電動自行車的示意圖 圖二為本發明自行車控制系統之功能方塊圖 圖四為闺三所示前處理器的功能方塊圓 圈f為圖二所示模糊控制器的功能方塊囷 圖八為圖二所示後處理器的功能方塊圏 :七2囷三所示電壓舞合器的功能方塊圖 線、轉ί差所f另一實施例模糊控制器的轉速信號曲 1 ^信號(馬達控制電壓變數)曲線、轉速模糊輸 …操作電流變數)曲線以及轉矩模糊輸入變數曲Kawaha page, sister 4 * ^ 'T Hui-kong's involuntary situation "Furthermore, the electric power of electric bicycles is 10%, and is it one percent?" Therefore, the electric bicycle 10 also has the disadvantage of low auxiliary power efficiency. ^ Therefore, the main object of the present invention is to provide a bicycle control system for assisting drive control of electric bicycles to solve the above problems. Brief description of the drawings: Circle 1 is a schematic diagram of a conventional electric bicycle. Figure 2 is a schematic diagram of an electric bicycle of the bicycle control system of the present invention. Figure 2 is a functional block diagram of the bicycle control system of the present invention. Function block circle f is the function block of the fuzzy controller shown in Figure 2. Figure 8 is the function block of the post-processor shown in Figure 2. 圏: The functional block diagram of the voltage dance coupler shown in Figure 7 and Figure 2 According to another embodiment, the speed signal curve 1 of the fuzzy controller is a signal (motor control voltage variable) curve, the speed fuzzy input ... operating current variable) curve, and the torque fuzzy input variable curve.

第5頁 450916 五、發明說明(3) 線之對應不意圖 圖九為圖八所示模糊控制器之轉矩輸入歸屬函數的示 意圖 圖十為圖八所示模糊控制器之轉速輸入歸屬函數的示 意圖 圖十一為圖八所示模糊控制器之電壓輸出歸屬函數的 不意園 圖十二為圖八所示模糊控制器之電流輸出歸屬函數的 示意圖 〇 圖十三為圖五所示另一實施例模糊控制器的功能方塊 圖 圊十四為圖十三所示模糊控制器之模糊器的示意圖 圖十五為圖十三所示模糊控制器之推論器的示意圖 圖十六為圖十三所示模糊控制器之解模糊器的示意圊 表一為圖八所示模糊控制器的模糊法則表 表二為圖八所示模糊控制器之模糊變數與語言項的對 應表 〇 表三為圖十四所示模糊器的轉矩輸入歸屬函數表 表四為圖十四所示模糊器的轉速輸入歸屬函數表 表五為圖十五所示推論器的電壓輸出歸屬函數表 圖式之符號說明 30 自行車控制系統 轉矩感測器 48 32 50 50 電動自行車 轉速感測器 450916 五、發明說明(4) 51 電淹威測器 54 電壓耦合器 58' 59 模蝴控制器 61 差分器 52 控制電路 56 前處理器 60 後處理器 76 棋糊控制單元 請參閱圖二及圖三,圖二為本發明自行車控制系統30 之電動自行車32的示意圈,圖三為本發明自行車控制系統 30之功能方塊圈本發明係提供一種自行車控制系統3〇, Ο 用來依據一騎者(未顯示)之輸入來控制一電動自行車32«» 電動自行車32包含有一車架34,二車輪35、36,一傳動機 構38,一腳踏機構40,一伺服馬達42,一叙合裝置 (Coupling Device)44以及一動力控制把手46。二車輪 35、36以可轉動的方式安裝於車架34之上。傳動機構38設 於車架3 4上用來帶動車輪36’其包含有一第一齒輪3 7以及 一第二齒輪39。腳踏機構4 0設於車架3 4上,用來將騎者所 輸入之腳踏力轉換成一腳踏轉矩τ f並將其耦合至傳動機 構38以帶動車輪36»伺服馬達42設於車架34上並包含有一 控制端43,伺服馬達42可依據控制端43所輸入之一輸入電 壓來產生一相對應之動力輸出τ e>i »耦合裝置44設於車 架34之上,用來將伺服馬達42之動力輸出τ e<i耦合至傳 動機構38以帶動車輪36。動力控制把手46設於車架34上並 電連接於伺服馬達42之控制端43,用來依據騎者之輸入來 產生一把手電壓輸出VH藉以控制伺服馬達42之動力輸出Page 5 450916 V. Description of the invention (3) Correspondence of the line is not intended. Figure 9 is a schematic diagram of the torque input attribution function of the fuzzy controller shown in Figure 8. Schematic diagram Figure 11 is a schematic diagram of the voltage output attribution function of the fuzzy controller shown in Figure 8. Figure 12 is a schematic diagram of the current output attribution function of the fuzzy controller shown in Figure 8. Figure 13 is another implementation shown in Figure 5. Example functional block diagram of a fuzzy controller. Figure 14 is a schematic diagram of the fuzzy controller of the fuzzy controller shown in Figure 13. Figure 15 is a schematic diagram of the inference device of the fuzzy controller shown in Figure 13. Figure 16 is the diagram of Figure 13. The schematic diagram of the defuzzifier of the fuzzy controller is shown in Table 1. Table 1 is the fuzzy rule of the fuzzy controller shown in Figure 8. Table 2 is the correspondence table between the fuzzy variables and language terms of the fuzzy controller shown in Figure 8. Table 3 is shown in Figure 10. Table 4 shows the torque input attribution function of the fuzzer. Table 4 shows the speed input attribution function of the fuzzer shown in Figure 14. Table 5 is the symbol of the voltage output attribution function table of the inference device shown in Figure 15. Description 30 Bicycle control system torque sensor 48 32 50 50 Electric bicycle speed sensor 450916 V. Description of the invention (4) 51 Electric flood detector 54 Voltage coupler 58 '59 Modal controller 61 Differential device 52 Control Circuit 56 Pre-processor 60 Post-processor 76 Chess paste control unit Please refer to Figures 2 and 3. Figure 2 is a schematic circle of the electric bicycle 32 of the bicycle control system 30 of the present invention, and Figure 3 is the function of the bicycle control system 30 of the present invention. The present invention provides a bicycle control system 30, 0 for controlling an electric bicycle 32 according to the input of a rider (not shown). The electric bicycle 32 includes a frame 34, two wheels 35, 36, and a transmission. The mechanism 38, a foot mechanism 40, a servo motor 42, a coupling device 44 and a power control handle 46. Two wheels 35, 36 are mounted on the frame 34 in a rotatable manner. The transmission mechanism 38 is provided on the frame 34 for driving the wheels 36 ', and includes a first gear 37 and a second gear 39. The pedal mechanism 40 is provided on the frame 34, and is used to convert the pedaling force input by the rider into a pedal torque τf and couple it to the transmission mechanism 38 to drive the wheels 36. The servo motor 42 is provided on the The frame 34 also includes a control terminal 43. The servo motor 42 can generate a corresponding power output τ e > i according to one of the input voltages input from the control terminal 43. The coupling device 44 is provided on the frame 34. The power output τ e < i of the servo motor 42 is coupled to the transmission mechanism 38 to drive the wheels 36. The power control handle 46 is provided on the frame 34 and is electrically connected to the control terminal 43 of the servo motor 42 for generating a handle voltage output VH according to the rider's input to control the power output of the servo motor 42

45 091 6 _________ 一—— —— -—.....------------- --- ---— _______— 五,發明說明(5) 本發明自行車控制系統30包含有一轉矩感測器48,一 轉速感測器50’ 一電流感測器51,一控制電路52,以及一 電廢麵合器54。轉矩感測器48用來感測騎者所輸入之聊踏 轉矩r f並產生一轉矩輸出r p,i 。轉速感測器5〇用來感 測車輪3 6之轉速Ω並產生一轉速輸出Ω i 。電流感測器51 用來感測伺服馬達4 2之操作電流IB並產生一操作電流輸 出U,i 。控制電路52用來處理轉矩感測器48所產生之轉矩 輸出τ p,i’以及轉速感測器50所產生之轉速輸出Q i•並產 生一控制電壓輸出Vf,i。電壓耦合器54電連接於動力控制 把手4 6以及控制電路5 2之輸出端5 3以及伺服馬達4 2之控制 端43之間,用來依據動力控制把手46所產生之把手電壓輸 出VH以及控制電路5 2所產生之控制電壓輸出Vf.i#產生一 耦合電壓輸出V来控制伺服馬達4 2之動力輸出Γ e, i » 控制電路52包含有一前處理器(preprocessor)56,一 模糊控制器(Fuzzy logic controller)58,以及一後處理 器(?〇3七?]"〇〇633〇]")60«>前處理器56用來處理轉矩感測器 48所產生之轉矩輸出τ •以及轉速感測器50所產生之轉 速輸出Ω i並產生一轉矩模糊輸入變數(Fuzzy input variable)/^ 2τ Pii以及一轉速模糊輸入變數△ Ώ i。模 糊控制器58用來依據複數條模糊法則(Fuzzy rules)將轉 矩模糊輸入變數pi以及一轉速模糊輸入變數ΔΏ i 轉換為一馬達控制電壓變數△^呌及一馬達操作電流變數_________ a 450,916 - - --- ---- _______- --.....------------- V. invention is described in (5) the bicycle control system of the present invention 30 includes a torque sensor 48, a speed sensor 50 ', a current sensor 51, a control circuit 52, and an electrical waste combiner 54. The torque sensor 48 is used to sense the pedaling torque r f input by the rider and generate a torque output r p, i. The rotation speed sensor 50 is used to sense the rotation speed Ω of the wheel 36 and generate a rotation speed output Ω i. The current sensor 51 is used to sense the operating current IB of the servo motor 42 and generate an operating current output U, i. The control circuit 52 is used to process the torque output τ p, i 'generated by the torque sensor 48 and the speed output Q i • generated by the speed sensor 50 and generate a control voltage output Vf, i. The voltage coupler 54 is electrically connected between the power control handle 46 and the output terminal 53 of the control circuit 5 2 and the control terminal 43 of the servo motor 42, and is used to output the VH and control according to the handle voltage generated by the power control handle 46. The control voltage output Vf.i # generated by the circuit 5 2 generates a coupling voltage output V to control the power output of the servo motor 4 2 Γ e, i »The control circuit 52 includes a preprocessor 56 and a fuzzy controller (Fuzzy logic controller) 58, and a post-processor (? 〇37 七?) &Quot; 〇〇633〇] ") 60 «> The front processor 56 is used to process the rotation generated by the torque sensor 48. The moment output τ • and the speed output Ω i generated by the speed sensor 50 generate a torque fuzzy input variable / ^ 2τ Pii and a speed fuzzy input variable Δ Ώ i. The fuzzy controller 58 is used to convert a torque fuzzy input variable pi and a speed fuzzy input variable ΔΏ i into a motor control voltage variable Δ ^ 呌 and a motor operating current variable according to a plurality of fuzzy rules.

-----------Λ3 091 β_______ 五、發明說明(6) △ 。後處理器6 0用來將馬達控制電壓變數ZiVi以及一 馬達操作電流變數△ h轉換成一控制電壓輸出Vf.i。 請參閱圈四,圖四為圖三所示前處理器56的功能方塊 圖。前處理器56包含有一第一類比/數位轉換器62,一第 二類比/數位轉換器64,一第一轉矩信號廷遲器66,一第 二轉矩信號延遲器68,一第一轉速信號延遲器70,以及一 第二轉速信號延遲器72。第一類比/數位轉換器62用來將 轉矩感測器48所產生之轉矩輸出τ pi.轉換成一數位轉矩 信號r p i。第二類比/數位轉換器64用來將轉速感測器5〇 所產生之轉速輸出Ω 轉換成一數位轉速信號ω〗》第一 轉矩信號延遲器66電連接於第一類比/數位轉換器62,用 來將數位轉矩信號r pi做一單位時間之延遲並產生一第 一轉矩延遲信號7: ρ η ^第二轉矩信號延遲器68電連接於 第一,矩信號延遲器66,用來將第一轉矩延遲信號τ pii 做一單位時間之延遲並產生一第二轉矩延遲信號r pm。 第—轉速信號延遲器70電連接於第二類比/數位轉換器 64用來將數位轉速信號q i做一單位時間之延遲並產生 一第一轉速延遲信號Ω η。第二轉速信號延遲器72電連 |接於第一轉速信號延遲器70,用來將第一轉速延遲信號 Ω η做一單位時間之延遲並產生一第二轉速延遲信號 Ω卜2 〇 前處理器56另包含有一差分器61電連接於第一類比----------- Λ3 091 β _______ 5. Description of the invention (6) △. The post-processor 60 is used to convert the motor control voltage variable ZiVi and a motor operating current variable Δh into a control voltage output Vf.i. Please refer to circle 4, which is a functional block diagram of the pre-processor 56 shown in FIG. The pre-processor 56 includes a first analog / digital converter 62, a second analog / digital converter 64, a first torque signal delayer 66, a second torque signal delayer 68, and a first speed The signal delayer 70 and a second speed signal delayer 72. The first analog / digital converter 62 is used to convert the torque output τ pi. Generated by the torque sensor 48 into a digital torque signal r p i. The second analog / digital converter 64 is used to convert the speed output Ω generated by the speed sensor 50 into a digital speed signal ω. The first torque signal delayer 66 is electrically connected to the first analog / digital converter 62. For delaying the digital torque signal r pi by a unit time and generating a first torque delay signal 7: ρ η ^ The second torque signal delayer 68 is electrically connected to the first, moment signal delayer 66, It is used to delay the first torque delay signal τ pii by a unit time and generate a second torque delay signal r pm. The first-speed signal delayer 70 is electrically connected to the second analog / digital converter 64 for delaying the digital speed signal q i by a unit time and generating a first speed-delay signal Ω η. The second speed signal delayer 72 is electrically connected to the first speed signal delayer 70, and is used to delay the first speed delay signal Ω η by a unit time and generate a second speed delay signal Ω. The device 56 further includes a differential device 61 electrically connected to the first analog

第9頁 45 091 6Page 9 45 091 6

五、發明說明(7) 數位轉換器62、第二類比/數位轉換器64、-第一轉矩信號 延遲器66、第二轉矩信號延遲器68、第一轉速信號延遲器 7 0以及第二轉速信號延遲器72,用來產生轉矩模糊輸入變 數Δζ· P.i與轉速模糊輸入變數ΔΩ ^差分器61會由第一 轉矩延遲信號r p.i-i與數位轉矩信號τ p,;間之差值取得 一第一轉矩差分信號Δγ ρ.ί,其中 〇 △ τ p.i = τ -r ρ,η,由第二轉矩延遲信號Γ p i_2與 第一轉矩延遲信號τ ρ.η間之差值取得一第二轉矩差分信 號△ τ p,i-i ’其中△ r ρ,卜丨=τ ρ,η -τ ρ.Η,以及由第二 轉矩差分信號D. i-l與第一轉矩差分信號△!· p. i間之 差值取得轉矩模糊輸入變數其中 △ 2τ P,i = △ r ρ,〖-△ τ ρ,Μ。此外’差分器61亦會由第 一轉速延遲信號Ω η與數位轉速信號Ω 1間之差值取得一 第一轉速差分信號ΔΩ i ’其中i-Ω η,由 第二轉速延遲信號Ω w與第一轉速延遲信號ω η間之差 值取得一第二轉速差分信號ΛΩ η,其中 △ Ω μ = Ω卜丨-Ω卜2,以及由第二轉速差分信號△ Ω卜 與第一轉速差分信號ΔΩ i間之差值取得轉速模糊輪入變 數 ΔΏ i,其中 ΔΩ i-ΔΩ η。V. Description of the invention (7) Digital converter 62, second analog / digital converter 64,-first torque signal delayer 66, second torque signal delayer 68, first speed signal delayer 70, and Two speed signal delayers 72 are used to generate the torque fuzzy input variable Δζ · Pi and the speed fuzzy input variable ΔΩ ^ The difference 61 is composed of the first torque delay signal r pi-i and the digital torque signal τ p ,; The difference obtains a first torque differential signal Δγ ρ.ί, where △△ pi = τ -r ρ, η, from the second torque delay signal Γ p i_2 and the first torque delay signal τ ρ.η The difference between the two is to obtain a second torque difference signal Δ τ p, ii ′ where Δ r ρ, bu 丨 = τ ρ, η -τ ρ.Η, and the second torque difference signal D. il and the first The difference between the torque differential signals △! · P. I obtains the torque fuzzy input variables where △ 2τ P, i = △ r ρ, 〖-△ τ ρ, M. In addition, the 'differentiator 61 will also obtain a first speed difference signal ΔΩ i' from the difference between the first speed delay signal Ω η and the digital speed signal Ω 1, where i-Ω η is obtained by the second speed delay signal Ω w and The difference between the first rotation speed delay signal ω η obtains a second rotation speed difference signal ΔΩ η, where Δ Ω μ = Ωbu 丨 -Ωbu2, and the second rotation speed difference signal Δ Ωbu and the first rotation speed difference signal The difference between ΔΩ i obtains the speed blurring wheel-in variable ΔΏ i, where ΔΩ i-ΔΩ η.

I i 請參閱圖五,圈五為圖三所示模糊控制器58的功能方 I塊圖。模糊控制器58包含有一記憶體(Memory )74,~模糊 控制單元(Fuzzy control unit)76。記憶體74用來餘存複 |數條模糊法則。模糊控制單元7 6電連接於前處理器5 6,用I i Please refer to FIG. 5, circle 5 is a block diagram of the function I of the fuzzy controller 58 shown in FIG. The fuzzy controller 58 includes a memory 74, a fuzzy control unit 76. The memory 74 is used to store a plurality of fuzzy rules. The fuzzy control unit 7 6 is electrically connected to the front processor 5 6

第10頁 4Έ09 1 6 j I . ...I — - I五、發明說明(8) I來依據複數條模糊法則將轉矩棋糊輸入變奴pi舆轉 |速模糊輸入變數ΛΏ i轉換為馬達控制電壓變數△ Vi以 及馬達操作電流變數△ Ii,其中複數條模糊法則係由複 數條電壓模糊法則與複數條電流模糊法則所組成,每一條 電壓模糊法則係用來定義轉矩模糊輸入變數Δ2τ pi與轉 速模糊輸入變數ΔΏ i對應於馬達控制電壓變數△ 的 從屬關係,而每一條電流模掬法則係用來定義轉矩模糊輸 入變數Δ2γ μ與轉速模糊輸入變數i對應於馬達操 作電流變數△ I ,·的從屬關係》Page 10 4Έ09 1 6 j I... I —-I V. Description of the invention (8) I converts the torque chess input to the slave slave pi according to the plural fuzzy rules | speed fuzzy input variable ΛΏ i to The motor control voltage variable △ Vi and the motor operating current variable △ Ii. Among them, a plurality of fuzzy rules are composed of a plurality of voltage fuzzy rules and a plurality of current fuzzy rules. Each voltage fuzzy rule is used to define a torque fuzzy input variable Δ2τ. The relationship between pi and the speed fuzzy input variable ΔΏ i corresponds to the motor control voltage variable △, and each current mode rule is used to define the torque fuzzy input variable Δ2γ μ and the speed fuzzy input variable i correspond to the motor operating current variable △ I, affiliation

制器58另包 歸屬函數模 流輸出歸屬 記憶體74中 來將轉矩模 度β轉速輪 有一轉速輪 數△ Ώ i予 模組8 2儲存 β (Δ Vi)^ 予歸屬度。 其包含有-出變數△ I 此外,模糊控 78,一轉速輸入 組8 2 ’以及一電 數模組78儲存於 數# (△ 2r 用 歸類並賦予歸屬 體74中,其包含 轉速模糊輸入變 壓輸出歸屬函數 壓輸出歸屬函數 以大小歸類並賦 於記憶體74中, 來將電流模糊輸 組 模 i函 I函 μ 丨憶 將 電 丨電 予 !存 用 度 含有一轉矩輸入歸屬函數模 細80’ 一電壓輸出歸屬函數 函數模组84»轉矩輸入歸屬 ’其包含有一轉矩輸入歸屬 糊輸入變數△ 2r p,i予以大 入歸屬函數模組8 0儲存於記 入歸屬函數仁(△幻〇用來 以大小歸類並賦予歸屬度。 於記憶體74中,其包含有一 來將電壓模糊輸出變數△^ 電流輸出歸屬函數模組84儲 電流輪出歸屬函數V (△ I ·) i予以大小歸類並賦予歸屬The controller 58 separately includes the attribution function module and outputs the attribution memory 74 to set the torque mode β rotation wheel with a number of rotation wheels Δ Ώ i to the module 8 2 to store β (Δ Vi) ^ as the attribution degree. It contains -output variable △ I In addition, fuzzy control 78, a speed input group 8 2 ′, and an electrical number module 78 are stored in the number # (△ 2r is classified and assigned to the belonging body 74, which includes speed fuzzy input Variable voltage output attribution function The voltage output attribution function is categorized by size and assigned to the memory 74 to blur the current into a group module. I function μ 丨 Recall the power 丨 the power reserve contains a torque input attribution Function module 80 'A voltage output attribution function function module 84 »Torque input attribution' which contains a torque input attribution paste input variable △ 2r p, i is entered into the attribution function module 8 0 stored in the attribution function (△ Magic 0 is used to classify and assign attribution to the size. In the memory 74, it contains a voltage fuzzy output variable △ ^ The current output attribution function module 84 stores the current round out attribution function V (△ I · ) i is classified by size and assigned

5 09 1 5 五、發明說明(9) 請參閱圖六’圖六為圖三所示後處理器6〇的功能方塊 圖。後處理器60包含有一第三類比/數位轉換器86,一第 四類比/數位轉換器88, 一電壓信號延遲器9〇,一電流信 號延遲器92。第三類比/數位轉換器86用來將電壓耦合器 5 4所產生之耦合電壓輸出yc轉換成數位電壓信號Vu。第 四類比/數位轉換器8 8用來將電流感測器5 1所產生之操作 電流輸出I·:轉換成數位電流信號iei。電壓信號延遲器 9 0電連接於第三類比/數位轉換器86,用來將數位電壓信 號Vn,i做一單位時間之延遲並產生一電壓延遲信號veil 。電流信號延遲器92電連接於第四類比/數位轉換器88, |用來將數位電流信號Ini做一單位時間之延遲並產生一電 |流延遲信號I η, η »5 09 1 5 V. Description of the invention (9) Please refer to FIG. 6 ′ FIG. 6 is a functional block diagram of the post-processor 60 shown in FIG. 3. The post-processor 60 includes a third analog / digital converter 86, a fourth analog / digital converter 88, a voltage signal delay device 90, and a current signal delay device 92. The third analog / digital converter 86 is used to convert the coupled voltage output yc generated by the voltage coupler 54 into a digital voltage signal Vu. The fourth analog / digital converter 88 is used to convert the operation current output I · generated by the current sensor 51 to a digital current signal iei. The voltage signal delayer 90 is electrically connected to the third analog / digital converter 86, and is used to delay the digital voltage signals Vn, i by a unit time and generate a voltage delay signal veil. The current signal delayer 92 is electrically connected to the fourth analog / digital converter 88, and is used to delay the digital current signal Ini by a unit time and generate an electric current delay signal I η, η »

I iI i

I I 此外,後處理器6 0另包含有一第一加法器94,一第二 加法器96, 一第一乘法器98, 一第二乘法器100, 一第三 加法器102以及一第三乘法器1〇4。第一加法器94,用來依 據電壓延遲信號VB,M與模糊控制器58所產生之馬達控制 電塵變數AVi以產生一輸出電壓變數l。第二加法器96 用來依據電流延遲信號IΒ, η與模糊控制器5 8所產生之馬 達操作電流變數Ali以產生一輸出電流變數L。第一乘 法器98用來將第一加法器94所產生之輸出電壓變數Vi乘 以一預定之電壓校正值(Wv/V N)以產生一電壓校正值Cv ’ 其中C Y = W v( V〆V N),W V代表一電麼權值(VoltageII In addition, the post-processor 60 includes a first adder 94, a second adder 96, a first multiplier 98, a second multiplier 100, a third adder 102, and a third multiplier. 104. The first adder 94 is used to control the electric dust variable AVi according to the voltage delay signals VB, M and the motor generated by the fuzzy controller 58 to generate an output voltage variable l. The second adder 96 is used to generate an output current variable L based on the current delay signals IB, η and the motor operating current variable Ali generated by the fuzzy controller 58. The first multiplier 98 is used to multiply the output voltage variable Vi generated by the first adder 94 by a predetermined voltage correction value (Wv / VN) to generate a voltage correction value Cv ', where CY = W v (V〆VN ), WV represents a power (Voltage

第12頁 45 091 6 五、發明說明(ίο) weighting),VN 代表一正規電壓(Normalized voltage)»第二乘法器100用來將第二加法器9 6所產生之 輸出電流變數I i乘以一預定之電流校正值(flf〆IN)以產生 一電流校正值“-其中^:评丨㈠^^^代表一電流權 值(Current weighting),INR表一正規電流 (Normalized current)。第三加法器102用來將第一及第 二乘法器98、10 0所產生之電壓校正值Cv及電流校正值(:【 相加以產生一總校正值CT,其中 Ο (^=^(¥/卩„) + ?丨(1/11<)。第三乘法器1〇4用來將第三加 法器10 2所產生之總校正值CT乘以一領定之正規電壓VM以 產生控制電壓輸出Vf,i,其中 Vf,i = [Wv(Vi/VN) + W/Ii/UmN。 jPage 12 45 091 6 V. Weighting), VN stands for a normalized voltage »The second multiplier 100 is used to multiply the output current variable I i generated by the second adder 9 6 by A predetermined current correction value (flf〆IN) to generate a current correction value "-where ^: comment 丨 ㈠ ^^^ represents a current weighting, and INR indicates a normalized current. Third The adder 102 is used for adding the voltage correction value Cv and the current correction value (: added by the first and second multipliers 98 and 100 to generate a total correction value CT, where 〇 (^ = ^ (¥ / 卩„) +? 丨 (1/11 <). The third multiplier 104 is used to multiply the total correction value CT generated by the third adder 102 by a prescribed regular voltage VM to generate a control voltage output Vf, i, where Vf, i = [Wv (Vi / VN) + W / Ii / UmN. j

U I 請參閱圖七,圈七為圖三所示電壓耦合器5 4的功能方 ί塊圖。電壓耦合器54包含有一第四乘法器106,一第五乘 丨法器108,以及一第四加法器第四乘法器6用來將 j控制電路5 2所產生之控制電壓輸出vf,i乘以一預定之第一 控制參數SL以產生一第一控制電壓vl ’其中 乂匕=31^7。’〇$31^1。第五乘法器1〇8用來將動力 控制把手4 6所產生之把手電壓輸出vh乘以一預定之第二 控制參數ST以產生一第二控制電壓ντ ’其中 VT = ST X νΗ* STS 1,SL + ST=卜第四加法器 用來將第四及第五乘法器106、108所產生之第一控制電塵 vL及第二控制電壓vT相加以產生耦合電壓輸出vc ’其中U I Please refer to FIG. 7, circle 7 is a functional block diagram of the voltage coupler 5 4 shown in FIG. The voltage coupler 54 includes a fourth multiplier 106, a fifth multiplier 108, and a fourth adder. The fourth multiplier 6 is used to multiply the control voltage output vf, i generated by the j control circuit 52. A predetermined first control parameter SL is used to generate a first control voltage vl 'where 乂 = 31 ^ 7. '〇 $ 31 ^ 1. The fifth multiplier 108 is used to multiply the handle voltage output vh generated by the power control handle 4 6 by a predetermined second control parameter ST to generate a second control voltage ντ 'where VT = ST X νΗ * STS 1 SL + ST = The fourth adder is used to add the first control electric dust vL and the second control voltage vT generated by the fourth and fifth multipliers 106 and 108 to generate a coupled voltage output vc 'wherein

第13頁 45 0916 五、發明說明(11) ~~~~ ~ —Page 13 45 0916 V. Description of the invention (11) ~~~~ ~ —

Vc=SLx Vfii+STx VH- 另外,第一控制參數sL與第二控制參數sT之值可以 根據電動自行車32之模糊控制器58所處訓練(Training)或 學習(Learning)狀況所設計》當棋糊控制器58處於訓練狀 態時,第一控制參數SL可以被設計為〇,同時第二控制參 數$7可以被設計為1,因此耦合電壓輸出yc將完全由把手 電壓輸出VH所控制;當模糊控制器58訓練完成時,第一 控制參數S L可以被設計為1,同時第二控制參數S τ可以被 設計為0’因此耦合電壓輸出¥<:將完全由控制電壓輸出Vf, 所控制。另外,當模糊控制器58處於訓練狀態時,第一控 制參數SL與第二控制參數ST均為介於〇與1間之參數。 請參闓圖三,電動自行車3 2另包含有一脈寬調變器33 I電連接於電壓耦合器5 4之輸出端55,用來將耦合電壓輸出 之大小調變為某一載頻之脈宽並產生一脈寬輸出電壓 |vf,以及一放大器37電連接於脈寬調變器33之輸出端35 以及伺服馬達42之控制端43之間’用來將脈寬輸出電壓Vf 之脈寬玉比放大並產生一大功率平均電壓輸出Va以驅動 伺服馬達42並控制伺服馬達42的動力輸出r e,i。 當騎者選擇人力與電力同時輸入以控制電動自行車32 時,首先,腳踏機構4 0會依據騎者所輸入的腳踏力產生腳 踏轉矩r f以驅動傳動機構38’並帶動電動自行車32的車Vc = SLx Vfii + STx VH- In addition, the values of the first control parameter sL and the second control parameter sT can be designed according to the training or learning status of the fuzzy controller 58 of the electric bicycle 32. When the fuzzy controller 58 is in the training state, the first control parameter SL can be designed as 0, and the second control parameter $ 7 can be designed as 1, so the coupling voltage output yc will be completely controlled by the handle voltage output VH; when the fuzzy control When the training of the device 58 is completed, the first control parameter SL can be designed to be 1 and the second control parameter S τ can be designed to be 0 '. Therefore, the coupled voltage output ¥ <: will be completely controlled by the control voltage output Vf ,. In addition, when the fuzzy controller 58 is in a training state, both the first control parameter SL and the second control parameter ST are parameters between 0 and 1. Please refer to Figure 3. The electric bicycle 3 2 also includes a pulse width modulator 33 I which is electrically connected to the output terminal 55 of the voltage coupler 5 4 to adjust the magnitude of the coupled voltage output to a pulse of a certain carrier frequency. Wide and generate a pulse width output voltage | vf, and an amplifier 37 is electrically connected between the output terminal 35 of the pulse width modulator 33 and the control terminal 43 of the servo motor 42 to use the pulse width of the pulse width output voltage Vf Jade ratio amplifies and generates a large power average voltage output Va to drive the servo motor 42 and control the power output re, i of the servo motor 42. When the rider selects simultaneous input of human power and electric power to control the electric bicycle 32, first, the pedal mechanism 40 will generate a pedal torque rf according to the pedaling force input by the rider to drive the transmission mechanism 38 'and drive the electric bicycle 32. Car

45〇9ί 6 ' 五、發明說明(12) ~ ' 輪3 6以產生轉速Ω ’同時動力控制把手46亦會依據騎者的 電力輸入產生把手電壓輸出軀動伺服馬達42並產生驅 動伺服馬達42的操作電流’而本發明自行車控制系統3〇會 依據腳踏機構40的腳踏轉矩τ f、車輪3 6的轉速Ω、動力 控制把手2 0的把手電壓輸出Va與伺服馬達42的操作電流[b 以農生麵合電壓輪出Vc ’接著,藉由脈寬調變器33將耦 合電壓輸出V。之大小調變為某一載頻之脈宽並產生一脈 寬輸出電壓Vf,並藉由放大器3 7將脈宽輸出電壓^之脈 寬正比放大並產生一大功率平均電壓輸出Va以控制伺服 馬達42的動力輪出τ e,i ’最後’透過輕合機構44將飼服 馬達42的動力輸出r e i耦合至傳動機構38以帶動車輪 36,並達到控制電動自行車3 2的電力輔助之目的。 本發明自行車控制系統30之控制電路52係利用模糊控 i制法則以控制電動自行車32的電力輔助’以下乃針對控制 |電路52之另一實施例模糊控制器59的設計提出說明,其中 模糊控制器59的設計程序包含有模糊法則設計、歸屬函數 設計以及控制器設計等。 [模糊法則設計] 請參閱圖八,圈八為®五所示另一實施例模糊控制器 59的轉速信號Ω ;曲線、轉速差分信號ΔΩ i (馬達控制電 壓變數AVi )曲線 '轉速模糊輸入變數△幻^ (馬達操作45〇9ί 6 'V. Description of the invention (12) ~' Wheel 3 6 to generate rotation speed Ω 'At the same time, the power control handle 46 will also generate a handle voltage output according to the rider's power input. The servo motor 42 will be driven and the drive servo motor 42 will be generated. The operating current of the bicycle control system 30 according to the present invention will be based on the pedal torque τ f of the pedal mechanism 40, the rotational speed Ω of the wheel 36, the handle voltage output Va of the power control handle 20 and the operating current of the servo motor 42. [b. Vc 'is turned on by the agricultural voltage, and then the coupling voltage is output to V by the pulse width modulator 33. The amplitude is adjusted to the pulse width of a certain carrier frequency and a pulse width output voltage Vf is generated, and the pulse width of the pulse width output voltage ^ is proportionally amplified by the amplifier 37 to generate a large power average voltage output Va to control the servo. The power wheel output τ e, i of the motor 42 'finally' couples the power output rei of the feeding motor 42 to the transmission mechanism 38 through the light closing mechanism 44 to drive the wheels 36 and achieves the purpose of controlling the electric bicycle 32's electric assistance. The control circuit 52 of the bicycle control system 30 of the present invention uses the fuzzy control method to control the electric assistance of the electric bicycle 32. The following is a description of the design of the fuzzy controller 59 in another embodiment of the control | circuit 52, where the fuzzy control The design procedure of the controller 59 includes design of fuzzy rules, design of attribution functions, design of controllers, and the like. [Fuzzy Rule Design] Please refer to Fig. 8. Circle eight is the speed signal Ω of the fuzzy controller 59 shown in another embodiment of the five; curve, speed difference signal ΔΩ i (motor control voltage variable AVi) curve 'speed fuzzy input variable △ Magic ^ (Motor operation

'45091 6 ____—__ _____ _ 五、發明說明(13) Ο 電流變數△ Ii )曲線以及轉矩棋糊輸入變2τ P.i曲線 之對應示意圖。本發明自行車控制系統30之複數條棋糊法 則乃為模糊控制器59的控制核心,每一條模糊法則係根據 電動自行車3冰加速期間的物理特性所訂定,以下為有關 於模蝴控制器59的模糊法則設計之實施例,其乃採用拋物 線調和(Par abol ic blend)概念以近似電動自行車32於加 迷期間的轉速信號Ω i曲線,如圖八(a)所示,轉速信號Ω i I曲線可分為三個區域(Zone),第一區域(Zone 1)的轉速信 |號Ω【曲線取拋物線函數近似,第二區域(2one 2)的轉速 信號Ω i曲線取線性函數近似,第三區域(z〇ne 3)的轉速 信號Ω ^曲線取拋物線函數近似,其中第一區域的轉速信 i號Ω i曲線舆第三區域的轉速信號ω〖曲線以第二區域的轉 丨速化號Ω i曲線之中點A呈現反對稱(Anti-symmetry)的情 丨形。再者,電動自行車32於加速期間的轉速差分信號 Ω i曲線如圖八(b)所示’其中轉速差分信號土將分 |為四個分區’由大至小依序為正值大(Posi t ive_Big, PB) 區、正值中(Positive-Medium, PM)區、正值小區 (Positive-Small,PS)以及零值(zero,Z)區,而轉速差 Ο 丨分信號ΛΩ於物理意義上亦可代表馬達控制電壓變數 Vi。另外,電動自行車32於加速期間的轉速模糊輸入 |變數ΔΏ i曲線如圖八(c)所示,其中轉速模糊輸入變數 i將分為七個分區’由大至小依序為正值大(PB)區、 |正值中(PM)區、正值小區(PS)、零值(z)區、負值小區 |(Negative—Small, NS)、負值中(Negative_Medium’ NM)'45091 6 ____—__ _____ _ 5. Explanation of the invention (13) 〇 The current variable △ Ii) curve and the torque chess paste input 2τ P.i curve corresponding diagram. The plurality of chess rules of the bicycle control system 30 of the present invention are the control cores of the fuzzy controller 59. Each fuzzy rule is determined based on the physical characteristics of the electric bicycle during the ice acceleration period. An embodiment of the fuzzy law design, which uses the concept of parabolic blending to approximate the speed signal Ω i curve of the electric bicycle 32 during the fan period, as shown in Figure 8 (a), the speed signal Ω i I The curve can be divided into three zones. The speed signal | number Ω in the first zone (Zone 1) is approximated by a parabolic function, and the speed signal Ω i curve in the second zone (2one 2) is approximated by a linear function. The rotation speed signal Ω ^ curve of three regions (zone 3) is approximated by a parabolic function, wherein the rotation speed signal i of the first region Ω i curve and the rotation speed signal ω of the third region 〖speed is accelerated by the rotation of the second region 丨The point A in the curve of No. Ω i presents an anti-symmetry. In addition, the speed difference signal Ω i curve of the electric bicycle 32 during acceleration is shown in FIG. 8 (b), “where the speed difference signal will be divided into four partitions”, from large to small, and then positive (Posi t ive_Big, PB) zone, Positive-Medium (PM) zone, Positive-Small (PS) zone, and zero (Z) zone, and the speed difference is 0 丨 the signal ΛΩ is in physical meaning The above can also represent the motor control voltage variable Vi. In addition, the speed fuzzy input | variable ΔΏ i curve of the electric bicycle 32 during acceleration is shown in Fig. 8 (c), where the speed fuzzy input variable i will be divided into seven zones, from large to small, and then positive (large) PB) area, | Positive value (PM) area, positive value area (PS), zero value (z) area, negative value area | (Negative—Small, NS), negative value (Negative_Medium 'NM)

第16頁 45 091 6 五、發明說明(14) 區以及負值大(Negative-Big,NB)區,而轉速棋糊輸入變 數ΔΏ ί於物理意義上亦可代表馬達操作電流變數Ah 。最後,電動自行車32於加速期間的轉矩模糊輸入變數 △ 2r Pii曲線如圏八(d)所示,其中轉速模糊輸入變數 △ 2r Pii將分為七個分區,由大至小依序為正值大(pb) 區、正值中(PM)區' 正值小(PS)區、零值(Z)區、負值小 (NS)區、負值中(NM)區以及負值大(NB)區。 請參閱表一’表一為圖八所示棋糊控制器59的模糊法 則表,其中每一方格的右上方顯示馬達控制電壓變數 的分區示意,每一方格的左下方顯示馬達操作電流變數 △ Ii的分區示意,每一方格的右下方顧示模糊法則的號 碼示意。模糊控制器59的複數條模糊法則乃根據围八所示 於特定時間點上轉矩模糊輪入變數△ 2τ 與轉速模糊輪 入變數ΔΏ i對應於馬達控制電壓變數與馬達操作 電流變數△ Ii的一對一對應關係所訂定。舉例而言,根 據圖八之時間軸(橫轴)上以T/8為時間點所畫出之直線 L1,其中T為電動自行車的加速時間,當圖八((1)之轉矩模 糊輸入變數△ 2r ρ.ί落於pb區與圖八之轉速模糊輸入變 數△ Ώ i落於PM區時,即可於圖八(b)對應出馬達控制電 壓變數△ V〖將落於PM區,以及於圈八(幻對應出馬達操作 電流變數△ I i將落於PM區,因此上述從屬關係(H_then relationship)可以被歸納為若(if)A 2r卜為幻 為PM時,則(therOZi Vi4 ΡΜ,亦即表一之第二號電魔模1 4 5 091 6 五、發明說明(15) 糊法則R v2 ;若(I f )△ γ p」為pb與△ Ώ i為PM時,則 (then)A I i為PM,亦即表一之第二號電流模糊法則R |2。 根據上述模糊法則的產生方式,於圖八之時間轴(橫轴)上 分別以T/1 6為時間間隔點,便可依序--訂定出十五條電 壓模糊法則(Rvl〜 rv15)與十五條電流模糊法則(R〖l〜 Ril5),並歸納如表一所示,其中假設電動自行車32乃藉 由騎者的腳踏力啟動至時速3. 5Km/hr後,本發明自行車控 制系統30才予以電力輔助。 0 [歸屬函數設計] 請參閱表二’表二為圖八所示模糊控制器59之模糊變 數與語言項的對應表。本實施例自行車控制系統30之模糊 控制器59所採用的模糊變數包含有轉矩模糊輸入變數 △ ^ P,i、轉速模糊輸入變數△ 3Q i、馬達控制電壓變數 △ 乂^以及馬達操作電流變數ΔΙί ’其中轉矩模糊輸入變 數△ ~ P,i、轉速模糊輸入變數i以及馬達操作電流 變數△ I〖可以被設計為均包含有PB、PM、ps、z、Ns、 ϋ NM 等七個語言項(Linguistic terms),馬達控制電壓 變數AVi可以被設計為包含有pB、pM、ps、z等四個語言 項,如表二所示,而每一個語言項之歸屬函數係利用三角 形函數定義。 請參閱圖九至圖十二,圓九為圊八所示模糊控制器59Page 16 45 091 6 V. Description of the invention (14) zone and negative-big (NB) zone, and the speed chess input variable ΔΏ ί can also represent the motor operating current variable Ah in a physical sense. Finally, the torque fuzzy input variable △ 2r Pii curve of the electric bicycle 32 during acceleration is shown in Fig. 8 (d), in which the speed fuzzy input variable △ 2r Pii will be divided into seven sections, from positive to negative. Large value (pb) area, positive value (PM) area 'Positive small value (PS) area, zero value (Z) area, small negative value (NS) area, negative medium value (NM) area, and large negative value ( NB) area. Please refer to Table 1 '. Table 1 is a fuzzy rule table of the chess paste controller 59 shown in Fig. 8. In the upper right of each box, the schematic diagram of the motor control voltage variable is shown. In the lower left of each box, the motor operating current variable is shown. The division of Ii indicates that the number of the fuzzy rule is shown at the lower right of each square. The plurality of fuzzy rules of the fuzzy controller 59 are based on the torque fuzzy wheel-in variable Δ 2τ and the speed fuzzy wheel-in variable ΔΏ i at a specific time point shown in the round eight corresponding to the motor control voltage variable and the motor operating current variable Δ Ii. Defined by one-to-one correspondence. For example, according to the straight line L1 drawn on the time axis (horizontal axis) of Figure 8 with T / 8 as the time point, where T is the acceleration time of the electric bicycle, when the torque of Figure 8 ((1) is fuzzy input The variable △ 2r ρ.ί falls in the pb area and the speed fuzzy input variable △ Ώ i in Figure 8 can be corresponding to the motor control voltage variable △ V in Figure 8 (b), which will fall in the PM area. And in circle eight (magic corresponds to the motor operating current variable △ I i will fall in the PM area, so the above-mentioned subordinate relationship (H_then relationship) can be summarized as if (if) A 2r is phantom to PM, then (therOZi Vi4 PM, that is, the second electric magic model No. 1 in Table 1 1 4 5 091 6 V. Description of the invention (15) Paste rule R v2; if (I f) △ γ p ″ is pb and △ Ώ i is PM, then (then) AI i is PM, that is, the second current fuzzy rule R | 2 in Table 1. According to the above-mentioned method of generating fuzzy rules, the time axis (horizontal axis) in FIG. At the interval, you can sequentially order 15 rules for voltage fuzzy (Rvl ~ rv15) and 15 rules for current fuzzy (R 〖l ~ Ril5), and summarized as As shown in the figure, it is assumed that the electric bicycle 32 is activated by the pedal force of the rider to a speed of 3.5 Km / hr, and then the bicycle control system 30 of the present invention is electrically assisted. 0 [Attribution function design] Please refer to Table 2 ' Table 2 is a correspondence table between the fuzzy variables and the linguistic terms of the fuzzy controller 59 shown in Fig. 8. The fuzzy variables used by the fuzzy controller 59 of the bicycle control system 30 in this embodiment include a torque fuzzy input variable Δ ^ P, i , Speed fuzzy input variable △ 3Q i, motor control voltage variable △ 乂 ^ and motor operating current variable ΔΙί 'wherein torque fuzzy input variable △ ~ P, i, speed fuzzy input variable i and motor operating current variable △ I〗 Designed to include seven language terms (PB, PM, ps, z, Ns, ϋ NM, etc.), and the motor control voltage variable AVi can be designed to include four language terms: pB, pM, ps, z, etc. As shown in Table 2, the affiliation function of each language term is defined by a triangle function. Please refer to Figure 9 to Figure 12. Circle 9 is the fuzzy controller 59 shown in Figure 28.

45 091 6 _____________—--—^ ' 五、發明說明(16) 之轉矩輸入歸屬函數y p.i)的示意囷’圖十為®八所 示模糊控制器59之轉迷輸入歸屬函數仁(△ Ώ〗)的示意 圖,圖十一為圓八所示模糊控制器59之電壓輸出歸屬函數 "(△ V〖)的示意圖,围十二為圖八所示模糊控制器59之電 流輸出歸屬函數y (△ I i)的示意圖。本實施例模糊控制器 59的歸屬函數乃根據以下假設條件所設計,其中部分資料 來源取擷於中華民國自行車應用手冊(中華民國自行車製 造協會): 電動自行車32的最高車速V,V = 36km/hr = 10m/s 電動自行車32的移動阻力(風阻舆動摩擦力)Fr,45 091 6 _____________ --- ^ 'V. Schematic illustration of the torque input attribution function y pi) of the invention description (16) 囷' Figure 10 is the transfer input attribution function Ren (△ of the fuzzy controller 59 shown in Figure 8) Ώ〗). Figure 11 is a schematic diagram of the voltage output attribution function of the fuzzy controller 59 shown in circle 8. (△ V 〖), and 12 is a current output attribution function of the fuzzy controller 59 shown in FIG. Schematic diagram of y (ΔI i). The attribution function of the fuzzy controller 59 in this embodiment is designed based on the following assumptions, some of which are taken from the Republic of China Bicycle Application Manual (Republic of China Bicycle Manufacturing Association): The maximum speed V of the electric bicycle 32, V = 36km / hr = 10m / s moving resistance (wind friction and dynamic friction force) Fr of electric bicycle 32,

Fr=2.5kgf=4.5N 電動自行車32的質量M,M=35kg 車輪35、36的半徑R,R = 〇. 3m 傳動機構38之第一齿輪37的齒數N!,=44 傳動機構38之第二齿輪3 9的齒數1^,1^=19 電動自行車32達到最高車速v的加速時間τ,T = 5s 祠服馬達42的最大輸出電壓Vnax =24Volt 控制電路52的控制率(c〇ntrol rate)fc=4cps 根據上述假設條件 糊控制器5 9的歸屬函數 ,本實施例自行車控制系統30之模 可以設計如下: 電動自行車32到達最高車速v後所需功率pp r r x V = 24.5 x l〇 = 245 (W)Fr = 2.5kgf = 4.5N Mass M of electric bicycle 32, M = 35kg radius of wheels 35, 36 R, R = 0.3m The number of teeth N of the first gear 37 of the transmission mechanism 38 !, = 44th of the transmission mechanism 38 Number of teeth of the second gear 3 9 1 ^, 1 ^ = 19 Acceleration time τ for the electric bicycle 32 to reach the maximum speed v, T = 5s The maximum output voltage Vnax of the temple motor 42 Vnax = 24 Volt Control rate of the control circuit 52 ) fc = 4cps According to the assignment function of the paste controller 59 according to the above assumptions, the model of the bicycle control system 30 in this embodiment can be designed as follows: Power required after the electric bicycle 32 reaches the maximum speed v pp rrx V = 24.5 x l0 = 245 (W)

4 5 091 6 五、發明說明(π) 電動自行車3 2於加速期間所需慣性力下I,4 5 091 6 V. Description of the invention (π) Electric bicycle 3 2 Under the inertial force required during acceleration I,

Ft = Μ X (V/T)=35 x (10/5)=70(N) * 電動自行車32於加速期間所需功率PI,Ft = Μ X (V / T) = 35 x (10/5) = 70 (N) * Power PI of electric bicycle 32 during acceleration,

Pi = FlX (V/2)=70 x (10/2)=350(W) - 由於Pi > Pr, 因此伺服馬達42的最大輸出功率P„x選定為350ff, P.ax = Pi = 350(W) ’ 而伺服馬達42的最大輸出電流I Bax, * I nax = P max / V eax =350/24^ 14.6(A) o 另外,電動自行車32於加速期間(T)所需的最大轉矩 r p( taax) , r p(uax) _(N! / N〗)(P nax /Ω ) 其中Ω為電動自行車3 2於加速期間的平均轉速,而根 I據電動自行車32於加速期間(τ)中伺服馬達42的最大輸出 j功率Pnax發生於轉速信號〇 i曲線位於第二區域(Z2)之中 I點A,如圖八(a)所示,因此平均轉速Ω可以設定為 丨(V/2)/R,則 I ^ p(nax) - ( N 1 / ^ 2) ( P nax /(V/2)/R) =(44/19)(350/(10/2)/0.3)= 44.23(N* m) Ο 另外’利用拋物線調和之工程近似(Engineering Approximation)以求得最大轉矩r p(eaJ〇對於時間的微分 . 董 pCaax) ’ -Pi = FlX (V / 2) = 70 x (10/2) = 350 (W)-Due to Pi > Pr, the maximum output power P of the servo motor 42 is selected as 350ff, P.ax = Pi = 350 (W) 'And the maximum output current of the servo motor I Bax, * I nax = P max / Veax = 350/24 ^ 14.6 (A) o In addition, the maximum rotation required by the electric bicycle 32 during the acceleration period (T) Moments rp (taax), rp (uax) _ (N! / N〗) (P nax / Ω) where Ω is the average speed of the electric bicycle 32 during acceleration, and according to the electric bicycle 32 during acceleration (τ The maximum output power Pnax of the servo motor 42 occurs in the speed signal. The curve i is located at point A in the second zone (Z2), as shown in Figure 8 (a), so the average speed Ω can be set to 丨 (V / 2) / R, then I ^ p (nax)-(N 1 / ^ 2) (P nax / (V / 2) / R) = (44/19) (350 / (10/2) /0.3) = 44.23 (N * m) 〇 In addition, 'Engineering Approximation using Parabolic Harmony to obtain the maximum torque rp (eaJ〇 Differential with time. Dong pCaax)'-

第20頁 4 5 〇9 I g 五、發明說明(18)^ ~ ^ρ(«χ) = X pUax) /(T/2) =44.32/(5/2)^ 17.7(Ν· m/s) 亦可求得最大轉矩τ…a)〇對於時間的二次微分董Page 20 4 5 〇9 I g V. Description of the invention (18) ^ ~ ^ ρ («χ) = X pUax) / (T / 2) = 44.32 / (5/2) ^ 17.7 (N · m / s ) The maximum torque τ ... a) can also be obtained.

«V p(*ax)1 •署 p(aax) = ^p(eax) / ( T / 4 ) = 17* 7/(5/4)^ 14.2(N* m/s2) 最後可求得最大轉矩模糊輸入變數△ V PiiUax) △ T p,i(aax) 一 ^ p(*ax) /( fc X T/8) = 14. 2/(4χ 5/8)^ 5. 7 因此模糊控制器5 9之轉矩輸入歸屬函數# (△ 2r ρ, i)可 i 丨以被建立如圖九所示° 另外,電動自行車3 2於加速期間(T)的最大轉速 i 丨门(Bax), I Q = V/K^IO/O-S1^ 33.3Crsd/s) 而最大轉速Ω 對於時間的微分量^(Bax) ’ π = Ω (.ax) /T = 33.3/5^ 6.7(rad/s2) «* (max) 而最大轉速Ώ (1^幻對於時間的一次微女量^ (*ax} ’ Λ 〇(fflax) /(T/2) = 6. 7/(5/2)^ 2.7(radm/s3) ^ «1 (max)«V p (* ax) 1 • Sign p (aax) = ^ p (eax) / (T / 4) = 17 * 7 / (5/4) ^ 14.2 (N * m / s2) Torque fuzzy input variable △ V PiiUax) △ T p, i (aax) ^ p (* ax) / (fc XT / 8) = 14. 2 / (4χ 5/8) ^ 5. 7 Therefore the fuzzy controller The torque input assignment function # (△ 2r ρ, i) of 5 9 can be established as shown in Fig. 9 In addition, the maximum speed i of the electric bicycle 3 2 during acceleration (T) i 丨 door (Bax), IQ = V / K ^ IO / O-S1 ^ 33.3Crsd / s) and the maximum speed Ω is a derivative of time ^ (Bax) 'π = Ω (.ax) / T = 33.3 / 5 ^ 6.7 (rad / s2 ) `` * (Max) and the maximum speed Ώ (1 ^ magic time for a small amount of time ^ (* ax) 'Λ 〇 (fflax) / (T / 2) = 6. 7 / (5/2) ^ 2.7 (radm / s3) ^ «1 (max)

Ο 而最大轉速模糊輸入變數△幻Umax)〇 and the maximum speed fuzzy input variable △ magic Umax)

第21頁 45 091 6 五、發明說明〔19) Δ Ώ i(>ax) = Ω(Β3Χ) / (fc X T/4) =2. 7/(4χ 5/4)^ 0. 54 因此模糊控制器59之轉速輸入歸屬函數β (ΔΏ i)可 以被建立如圖十所示β 另外,腺寬調變器33的尖岭電壓(Peak voltage)選定 為± 12( Vo It),亦即脈寬調變器3 3的輸入電壓最大為 12(Volt)(正電壓), | 根據圖三所示,脈寬調變器33的輸入電壓即為耦合電 Ο |壓輸出vc,Page 21 45 091 6 V. Description of the invention [19] Δ Ώ i (> ax) = Ω (Β3χ) / (fc XT / 4) = 2. 7 / (4χ 5/4) ^ 0.54 The speed input attribution function β (ΔΏ i) of the controller 59 can be established as shown in Fig. 10. In addition, the peak voltage of the gland width modulator 33 is selected as ± 12 (Vo It), which is the pulse. The input voltage of the wide modulator 33 is up to 12 (Volt) (positive voltage). | According to Figure 3, the input voltage of the pulse width modulator 33 is the coupling voltage 0 |

| vc = SLx vf(i + STX vH 其中 OS SL ^ 1 > St ^ 1 ' SL + ST =1 i ; 當模糊控制器59處於學習完成時,亦即SL =1與ST =0 |時,則vc = SLx vf (i + STX vH where OS SL ^ 1 > St ^ 1 'SL + ST = 1 i; when the fuzzy controller 59 is at the completion of learning, that is, SL = 1 and ST = 0 |, then

Vc = vf(i = [ffv(Vi/V„)+ W.Cli/I^lV* 其中假設WV = 0.7,ffl = 0.3(可依狀況調整), VN -24/2=12(Volt)> IN=14.6/2=7.3(A) 則 Vc= 12[0.7(Vi/12)+ 0‘3(Ii/7_3)] οVc = vf (i = [ffv (Vi / V „) + W.Cli / I ^ lV * where WV = 0.7, ffl = 0.3 (adjustable according to the situation), VN -24 / 2 = 12 (Volt) > IN = 14.6 / 2 = 7.3 (A) then Vc = 12 [0.7 (Vi / 12) + 0'3 (Ii / 7_3)] ο

I ί i 另外,電動自行車3 2於加速期間(T)的最大馬達控制 電壓變數△ Vi(raax),I ί i In addition, the maximum motor control voltage variable △ Vi (raax) of the electric bicycle 3 2 during acceleration (T),

AVi(max)= VK /(fc T) = 12/(4x 5) = 0.6(Volt)AVi (max) = VK / (fc T) = 12 / (4x 5) = 0.6 (Volt)

45 091 6 —----—-----------------------—----- 五、發明說明(20) 因此模糊控制器59之電壓輸出歸屬函k仁(△ V 〇可以 被建立如圈Ί—所示。 另外,電動自行車3 2於加速期間(T )的最大馬達操作 電流變數△ Ii, A Ii(Bax) = In / (f〇 T) = 7.3/(4x 5)^ 0.36(A) 因此模糊控制器5 9之電流輸出歸屬函數仁(△ I !)可以 被建立如圈十二所示。 [控制器設計] 請參閱圖十三,圖十三為圖五所示另一實施例模糊控 制器59的功能方塊圖。本實施例模糊控制器59乃根據模糊 法則設計與歸屬函數設計的結果以硬體電路的方式所設 計,其包含有一模糊器(Fuzzification device)ll 2電連 接於前處理器56,用來進行模糊化程序以產生一轉矩歸屬 度(βχ)以及一轉速歸屬度(仁y)’ 一推論器 (Inference device)ll 4電連接於模糊器112,用來依據十 五條模糊法則以進行模糊推論程序並分別產生轉矩歸屬度 I f τ (# x)及轉速歸屬度f ω U y)與一電壓歸孱度f v( K)及一 電流歸屬度f乂知)之對應關係,其中xeS> yeh, weS7 , z eS4 , βΊ = {PB,PM, PS,Z,NS,NM,45 091 6 ———————————————- 5. Description of the invention (20) Therefore fuzzy controller 59 The voltage output attribution function k ren (△ V 〇 can be established as shown in circle Ί—. In addition, the maximum motor operating current variable △ Ii, A Ii (Bax) = In / (f〇T) = 7.3 / (4x 5) ^ 0.36 (A) Therefore, the current output attribution function Ren (△ I!) of the fuzzy controller 5 9 can be established as shown in circle 12. [Controller Design] Please Referring to FIG. 13, FIG. 13 is a functional block diagram of the fuzzy controller 59 shown in FIG. 5. In this embodiment, the fuzzy controller 59 is based on a fuzzy rule design and a result of the assignment function design in the form of a hardware circuit. It is designed to include a fuzzification device ll 2 which is electrically connected to the pre-processor 56 and is used to perform a fuzzing process to generate a torque attribution (βχ) and a speed attribution (ren y) 'an inference (Inference device) 111 is electrically connected to the fuzzer 112, and is used to perform fuzzy inference procedures and generate torque attribution I f τ (# x) and speed belonging degree f ω U y) and a voltage returning degree fv (K) and a current belonging degree f 乂), where xeS > yeh, weS7, z eS4, βΊ = {PB, PM , PS, Z, NS, NM,

第23頁 45 091 6 五、發明說明(21) S4 = iPS,PM,PS,Z},而 JI、為被轉矩模糊輸入變數 △ 2r p,〖與轉速模糊輸入變數ΑΏ i之共同歸屬度所截之 歸屬函數,以及一解模糊器(Defuzzification device)116電連接於推論器114,用來進行面心法之解模 糊程序以產生馬達控制電壓變數AVi以及馬達操作電流 變數△ Ii ’並將其輸出至後處理器60。 請參閱圖十四、表三以及表四,圈十四為圈十三所示 模糊控制益5 9之模糊器11 2的示意圖,表三為圖十四所示 模糊器11 2的轉矩輸入歸屬函數表,表四為困十四所示模 糊器11 2的轉速輸入歸屬函數表〃模糊器π 2電連接於前處 理器56’用來依據一轉矩輸入歸屬函數模組丨丨8將轉矩模 糊輸入變數Δ2τ Pii轉換為轉矩歸屬度f〆# χ),同時並依 據一轉速輸入歸屬函數模組12 0將轉速模糊輸入變數△幻i |轉換為轉速歸屬度fjjCjtiy)。轉矩輸入歸屬函數模組118 乃根據模糊控制器59的轉矩輸入歸屬函數A (△ v pi)所設 計’如圖九所示,其乃利用分別將轉矩模糊輸入變數 △ 2τ p.i之數值範圍(〇〜5. 7)[註:△ \ p丨之範圍為_5 7 i〜5.7’其中轉矩輸入歸屬函數a (Ay 係鏡面對稱]以 及轉矩輸入歸屬函數/z (△k p, i)之歸屬度數值範圍(〇〜1) 做6 4等分分割(Partitioning)後,將所得的各語言項 (PB、PM、PS、Z、NS、NM、NB)歸屬函數相對應歸屬度之 值以二進位的方式寫入(ffrite)容量為ikByte之可抹除且Page 23 45 091 6 V. Description of the invention (21) S4 = iPS, PM, PS, Z}, and JI is the torque fuzzy input variable △ 2r p, which is the common attribution with the speed fuzzy input variable ΑΏ i The intercepted attribution function and a Defuzzification device 116 are electrically connected to the inferrer 114, and are used to perform the face-centered fuzzing procedure to generate the motor control voltage variable AVi and the motor operating current variable Δ Ii 'and It is output to the post-processor 60. Please refer to Fig. 14, Table 3 and Table 4. Circle 14 is a schematic diagram of the fuzzer 11 2 of the fuzzy control benefit 5 9 shown in circle 13; Table 3 is the torque input of the fuzzer 11 2 shown in Fig. 14 Attribution function table. Table 4 is the speed input of the fuzzer 11 2 shown in Figure 14. The fuzzer π 2 is electrically connected to the pre-processor 56 ′ and is used to input the attribution function module according to a torque. The torque fuzzy input variable Δ2τ Pii is converted into torque belonging degree f〆 # χ), and the speed fuzzy input variable △ magic i | is converted into the speed belonging degree fjjCjtiy) according to a speed input belonging function module 12 0. The torque input attribution function module 118 is designed based on the torque input attribution function A (△ v pi) of the fuzzy controller 59 'as shown in FIG. 9, which uses the values of the torque fuzzy input variable △ 2τ pi respectively Range (〇 ~ 5.7) [Note: The range of △ \ p 丨 is _5 7 i ~ 5.7 ', where the torque input assignment function a (Ay is mirror-symmetric) and the torque input assignment function / z (△ kp, i) The value range of the degree of attribution (0 ~ 1) After doing 6 4 division (Partitioning), the corresponding degree of attribution of each language term (PB, PM, PS, Z, NS, NM, NB) The value is written in binary (ffrite). The capacity is erasable and

45 091 6 _ *~" · .. — ' 1 ™ 1 ^~_ ,~'~' ' ~ - · 11^^— 五、發明說明(22) 可程式唯讀記憶體(EPROM)中,如表三所未。轉速輪入歸 屬函數模組120乃根據模糊控制器59的轉速輸入歸屬函數 仁(△ Ώ D所設計,如圖十所示,其乃利用分別將轉速模 糊輸入變數△ Ώ i之數值範圍(0〜0.54)[註:△ Ώ i之範 圍為-0 54〜0. 54,其中轉速輸入歸屬函數从(△ Ώ D係統 面對稱]以及轉速輸入歸屬函數私(ΔΏ i)之歸屬度數值範 圍(0〜1)做64等分分割(Partitioning)後,將所得的各語 言項(PB、PM、PS、Z、NS、NM、NB)歸屬函數相對應歸屬 度之值以二進位的方式寫入(Write)容量為ikByte之可抹 除且可程式唯讀記憶體(EPROM) ’容表四所示。另外,圖 十四所示轉矩輸入歸屬函數模組Η 8與轉速輸入歸屬函數 模組1 2 0均只示意轉矩模糊輸入變數△ 1 2r p,i與轉速模糊輪 |入變數△ Ώ i的正值部分。45 091 6 _ * ~ " · .. — '1 ™ 1 ^ ~ _, ~' ~ '' ~-· 11 ^^ — V. Description of the invention (22) Programmable read-only memory (EPROM), As shown in Table 3. The speed wheel entry attribution function module 120 is designed according to the speed input of the fuzzy controller 59 to the attribution function Ren (△ Ώ D, as shown in Fig. 10, which uses the value range of the speed fuzzy input variable △ Ώ i (0 ~ 0.54) [Note: The range of △ Ώ i is -54 to 0.54, where the speed input attribution function is from (△ Ώ D system surface symmetry] and the speed input attribution function private (ΔΏ i) attribution range ( 0 ~ 1) After 64 divisions (Partitioning), write the values of the corresponding assignments of the assignment functions of each language term (PB, PM, PS, Z, NS, NM, NB) in binary format. (Write) The erasable and programmable read-only memory (EPROM) with a capacity of ikByte is shown in Table 4. In addition, the torque input attribution function module Η 8 and the speed input attribution function module shown in Figure 14 1 2 0 only indicates the positive part of the torque fuzzy input variable △ 1 2r p, i and the speed fuzzy wheel | input variable △ Ώ i.

1 請參閱圖十五及表五,圖十五為圖十三所示模糊控制 器5 9之推論器144的示意圊,表五為囷十五所示推論器144 的電壓輸出歸屬函數表。推論器11 4電連接於模糊器112, 用來依據十五條電壓模糊法則(Ryl〜 Rv15)以及一電壓輸出 歸屬函數模組122將轉矩歸眉度x)與轉速歸屬度 y)轉換為電壓歸屬度fv( ?7),同時並依據十五條電 流模_法則(R il〜5 )以及電流輸出歸屬函數模组(未顯 示)’將轉矩歸屬度fr(M J與轉速歸屬度ίΩ(/ζ y)轉換為 2 電流歸屬度f K S")(未顯示),其中基於說明上的考量, '45 091 6 五、發明說明(23) 本實施例推論器11 4乃針對第二號電壓模糊法則R v2之模糊 推論所設計,同時並假設轉矩模糊輸入變數△ 2τ w =5. 7 與轉速模糊輸入變數ΔΏ i=0 27e而電壓輸出歸屬函數 模組122係根據棋糊控制器59的電壓輸出歸屬函數 //(△ V所設計’如圖十一所示,其乃利用分別將馬達 控制電壓變數△ L之數值範圍(〇〜0.6)以及電壓輸出歸 屬函數仁(△ V 〇之歸屬度數值範圍(〇〜丨)做64等分分割 後’將所得的各語言項(PB、PM、PS、Z)歸屬函數相對應 歸屬度之值以二進位方式寫入(Write)容量為IkByte之可 |抹除且可程式唯讀記憶體(EPROM),如表五所示。 | | ! 請參閱圖十六’圖十六為圖十三所示模糊控制器59之 i解模糊器11 6的示意圖。解模糊器11 6電連接於推論器 丨11 4 ’用來將電壓歸屬度f v( A )以及電流歸屬度f〆^7) | (未顯示)分別轉換為馬達控制電壓變數AVi以及馬達操 i作電流變數△ li (未顯示),其中基於說明上的考量,本 |實施例解模糊器Π 4乃針對電壓歸屬度fv( 之解模糊程 I序所設計,最後解模糊器114將依據電壓歸屬度fv( 以 :進行解模糊程序後以產生馬達控制電壓變數△ Vi ^ 因此當控制電路5 2之前處理器5 6產生轉矩模糊輸入變 數△ 2r p, i以及轉速模糊輸入變數△ Ώ i時,本實施例模 糊控制器5 9將根據十五條電壓模糊法則(R vl〜R V1 5 )以及十1 Please refer to Fig. 15 and Table 5. Fig. 15 is a schematic diagram of the inference unit 144 of the fuzzy controller 59 shown in Fig. 13, and Table 5 is a table of the voltage output assignment function of the inference unit 144 shown in Fig. 15. The inferor 11 4 is electrically connected to the fuzzer 112, and is used to convert the torque attrition degree x) and the speed attribution degree y) into fifteen voltage fuzzy rules (Ryl ~ Rv15) and a voltage output attribution function module 122. Voltage attribution degree fv (? 7), and at the same time, according to fifteen current mode_laws (R il ~ 5) and current output attribution function module (not shown), the torque attribution degree fr (MJ and speed attribution degree ίΩ (/ ζ y) is converted to 2 current belonging degree f K S ") (not shown), based on the consideration of the description, '45 091 6 V. Description of the invention (23) The inference device 11 of this embodiment is directed to the second It is designed based on the fuzzy inference of the voltage fuzzy rule R v2, and also assumes that the torque fuzzy input variable △ 2τ w = 5.7 and the speed fuzzy input variable ΔΏ i = 0 27e, and the voltage output attribution function module 122 is controlled based on chess paste. The voltage output attribution function of the converter 59 (designed by ΔV 'is shown in Figure 11), which uses the numerical range of the motor control voltage variable ΔL (0 ~ 0.6) and the voltage output attribution function (ΔV The range of the degree of attribution of 〇 (〇 ~ 丨) is divided into 64 equal divisions After ', write the corresponding values of the corresponding attribution functions of each language term (PB, PM, PS, Z) into a binary format (Write) with a capacity of IkByte | erasable and programmable read-only memory ( EPROM), as shown in Table 5. | |! Please refer to FIG. 16 ′. FIG. 16 is a schematic diagram of the fuzzer 11 16 of the fuzzy controller 59 shown in FIG. 13. The fuzzer 11 6 is electrically connected to the inference.丨 11 4 'is used to convert the voltage attribution fv (A) and current attribution f〆 ^ 7) | (not shown) into the motor control voltage variable AVi and the motor operation current variable △ li (not shown) Based on the consideration of the description, the defuzzifier Π 4 of this embodiment is designed for the sequence of voltage affiliation fv (, and the defuzzifier 114 will finally perform defuzzification based on the voltage affiliation fv ( After the program, the motor control voltage variable △ Vi ^ is generated. Therefore, when the processor 5 6 before the control circuit 5 2 generates the torque fuzzy input variable △ 2r p, i and the speed fuzzy input variable △ Ώ i, the fuzzy controller 5 of this embodiment 9 will be based on fifteen voltage fuzzy rules (R vl ~ R V1 5) and

45 〇91 g ·· —‘—^ 一 —... __ 五、發明說明(24) — ' 五條電流模糊法則(R J〜R J 5 )將轉矩模糊輪入變數 p叫及轉速模糊輸入變數i轉換為馬達控制電 壓變數AVi以及馬達操作電流變數’並將其輸出至 後處理器60。 〇 相較於習知電動自行車10,本發明自行車控制系統3〇 乃利用電動自行車32於加速期間的物理特性以建立模糊控 制器58、59之複數條電壓模糊法則舆複數條電流棋糊法 則’同時並根據電動自行車3 2的操作特性以訂定模糊控制 器58、5 9之轉矩輸入歸屬函數"(△气pi)、轉速輸入歸屬 函數以(△ Ώ D、電壓輸出歸屬函數从v〖)以及電流輸 出歸屬函數V (ΛΙΟ-當騎者選擇人力與電力同時輸入以 控制電動自行車3 2時,本發明自行車控制系統3〇會依據模 |翔控制法則以規劃並產生耦合電壓輸出Vc,接著,藉由脈 |寬調變器3 3將輕合電壓輸出Vc之大小調變為某一載頻之 I脈寬並產生一脈寬輸出電壓’並藉由放大器3 7將脈寬 |輸出電壓Vf之脈寬正比放大並產生一大功率平均電塵輸45 〇91 g ·· —'— ^ 一 —... __ 5. Explanation of the invention (24) — 'Five current fuzzy rules (RJ ~ RJ 5) The torque fuzzy wheel input variable p is called and the speed fuzzy input variable i is called i It is converted into a motor control voltage variable AVi and a motor operating current variable 'and output it to the post-processor 60. 〇Compared with the conventional electric bicycle 10, the bicycle control system 3 of the present invention uses the physical characteristics of the electric bicycle 32 during acceleration to establish a plurality of voltage fuzzy rules of the fuzzy controllers 58 and 59 and a plurality of current chess rules. At the same time, according to the operating characteristics of the electric bicycle 32, the torque input assignment function of the fuzzy controllers 58 and 59 is determined (△ 气 pi), the speed input assignment function is (△ Ώ D, the voltage output assignment function is from v 〖) And the current output attribution function V (ΛΙΟ-when the rider selects the simultaneous input of human power and electric power to control the electric bicycle 32, the bicycle control system 30 of the present invention will plan and generate the coupled voltage output Vc according to the model control law Then, the width of the light-on voltage output Vc is adjusted to a pulse width of a certain carrier frequency by the pulse | width modulator 3 3 and a pulse width output voltage is generated ', and the pulse width is adjusted by the amplifier 3 7 | The pulse width of the output voltage Vf is proportionally amplified and generates a large power average electric dust output

出VaW控制伺服馬達42的動力輸出τ ei,最後,透過麵 合機構44將祠服馬達42的動力輸出τ e. i搞合至傳動機構 |38以帶動車輪36,並達到控制電動自行車32的電力輔助之 I 0 目的 以上所述僅為本發明之較佳實施例,凡本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明專利之涵蓋範The power output τ ei of the VaW control servo motor 42 is output. Finally, the power output τ e.i of the temple clothing motor 42 is coupled to the transmission mechanism | 38 through the surface-fitting mechanism 44 to drive the wheels 36 and to control the electric bicycle 32 I 0 Purpose of Electric Power Assistance The above description is only a preferred embodiment of the present invention. Any equal changes and modifications made in the scope of the patent application of the present invention shall be covered by the patent of the present invention.

第27頁 ;,45 Q9 1 6 五、發明說明(25) 圍。Page 27;, 45 Q9 1 6 V. Description of Invention (25).

第28頁 〇 〇 ^〇v^4§Q9i s . 圖式簡單說明 %年4“p丨食正苹 n ms 煩請委员明示〇—年千月i □所提之 #'Α本有無€更實質内容是否准予修JL···。 ο 第29頁Page 28 〇〇 ^ 〇v ^ 4§Q9i s. The diagram simply explains% year4 "p 丨 食 正 萍 n ms. Members are kindly requested to indicate 〇— 年 千 月 i □ The mention of # 'Α 本 有无 € is more substantial Whether the content is allowed to be revised JL ... · ο page 29

Claims (1)

45091 6 六、申請專利範圍 1* —種自行車控制系統,用來依據一騎者之輸入來控制 一電動自行車(Eteb ike),該電動自行車包含有: 一車架; 至少一車輪,以可轉動的方式安裝於該車架之上; 一傳動機構,設於該車架上,用來帶動該車輪; —腳踏機構,設於該車架上,用來將該騎者所輸入之 腳踏力轉換成腳踏轉矩並將其耦合至該傳動機構以帶動該 車輪; 一伺服馬達,.設於該車架上,其包含有一控制端,該 伺服馬達可依據其控制端所輸入之輪入電壓來產生一相對 應之動力輸出; 一耦合裝置(Coupling Device),設於該車架之上, 用來將該伺服馬達之動力輸出耦合至該傳動機構以帶動該 車輪;以及 一動力控制把手,設於該車架上並電連接於該伺服馬 達之控制端,用來依據該騎者之輸入來產生一把手電壓輸 出以控制該伺服馬達之動力輸出; 該自行車控制系統包含有: 一轉矩感測器,用來感測該騎者所輸入之腳踏轉矩並 產生一轉矩輸出; 一轉速感測器’用來感測該車輪之轉速並產生一轉速 輸出; 一控制電路,用來處理該轉矩感測器所產生之彝龙-輸 出以及該轉速感測器所產生之轉速輸出並產生一控制電壓45091 6 VI. Scope of Patent Application 1 * —A bicycle control system for controlling an electric bicycle (Eteb ike) according to a rider's input. The electric bicycle includes: a frame; at least one wheel, which can be rotated It is mounted on the frame; a transmission mechanism is provided on the frame for driving the wheel; a pedal mechanism is provided on the frame for the pedaling force input by the rider Converted into pedal torque and coupled to the transmission mechanism to drive the wheel; a servo motor, located on the frame, which includes a control end, the servo motor can be driven according to the wheel input by the control end A voltage to generate a corresponding power output; a coupling device (Coupling Device) provided on the frame for coupling the power output of the servo motor to the transmission mechanism to drive the wheel; and a power control handle Is located on the frame and is electrically connected to the control end of the servo motor for generating a handle voltage output according to the rider's input to control the power output of the servo motor; The driving control system includes: a torque sensor for sensing the pedal torque input by the rider and generating a torque output; a speed sensor 'for sensing the speed of the wheel and generating A speed output; a control circuit for processing the Yilong output generated by the torque sensor and the speed output generated by the speed sensor and generating a control voltage 第30頁 _ ——____ 六、申請專利範圍 輸出;以及 1壓耦合器、電連接於該把手以及該控制家路之輸 端以及該伺服馬達之控制端之間,用來將該把手所產生 士把* ^電壓輪出以及該控制電路所產生之控制電壓輪出以 預定方式相耦合以產生一耦合電壓輸出來控制該伺服馬 達之動力輸出。 •如申請專利範圍第1項之自行車控制系統,其中該控 制電路包含有: 一則處理器(Preprocessor),用來處理該轉矩感測器 $產生之轉矩輪出以及該轉速感測器所產生之轉速輸出並 生複數個模蜗輪入變數(Fuzzy input variables); ,糊控制器(Fuzzy logic controller),用來依據 複數條模糊法則(Fuzzy rules)將該複數個模糊輸入變數 轉換為複數個模糊輸出變數(Fuzzy output variables)之 歸屬函數;以及 一後處理器(postprocessor),用來將該複數個模糊 輪出變數之歸屬函數轉換成一控制電壓輸出。 3.如申請專利範圍第2項之自行車控制系統,其中該模 糊控制器所產生之模糊輸出變數包含有一馬達控制電壓變 數以及一馬達操作電流變數,而該後處理器則會以一預定 方式將該模糊控制器所輸出之馬達控制電壓變數以及馬達 操作電流變數轉換成該控制電壓輸出。Page 30 _ _____ VI. Patent application scope output; and 1-voltage coupler, electrically connected between the handle and the output end of the control circuit, and the control end of the servo motor, used to generate The * ^ voltage wheel out and the control voltage wheel out generated by the control circuit are coupled in a predetermined manner to generate a coupled voltage output to control the power output of the servo motor. • The bicycle control system according to item 1 of the patent application scope, wherein the control circuit includes: a processor (Preprocessor) for processing the torque wheel output generated by the torque sensor $ and the speed sensor The generated rotational speed output generates a plurality of modular worm gear input variables (Fuzzy input variables);, a fuzzy logic controller is used to convert the plurality of fuzzy input variables into a plurality of fuzzy input variables according to a plurality of fuzzy rules An attribution function of fuzzy output variables; and a postprocessor for converting the attribution functions of the plurality of fuzzy output variables into a control voltage output. 3. If the bicycle control system of item 2 of the patent application scope, wherein the fuzzy output variable generated by the fuzzy controller includes a motor control voltage variable and a motor operating current variable, and the post-processor will The motor control voltage variable and the motor operating current variable output by the fuzzy controller are converted into the control voltage output. 第31頁 今 45 091 6 六、申請專利範^ ^ -- ^·如申請專利範面第3項之自行車控制系統i其另包含 f —電流感測器’用來感測該伺服馬達之操作電流並產生 二操作電流輸出,而該後處理器則會將該模糊控制器所輸 2之馬達控制電壓變數與該電壓耦合器所產生之耦合電壓 輸出以一預定方式相組合以產生一電壓控制變數,以及將 該模糊控制器所輪出之馬達操作電流變數與該電流感測器 所產生之操作電流輸出以一預定方式相組合以產生一電流 控制變數’而後再將該電壓控制變數及電流控制變數以一 預定方式相組合以產生該控制電壓輸出。 5,如申請專利範圍第4項之自行車控制系統,其中該前 處理器包含有一第一類比/數位轉換器用來將該轉矩感測 器所產生之轉矩輸出轉換成數位轉矩信號,以及一第二類 比/數位轉換器用來將該轉速感測器所產生之轉速輸出轉 換成數位轉速信號,而該前處理器則係依據該數位轉矩信 號及轉速信號來產生一轉矩模糊輸入變數以及一轉速模糊 輸入變數。 6. 如申請專利範圍第5項之自行車控制系統’其中該前 處理器包含有: 一第一轉矩信號延遲器,電連接於該第一類比/數位 轉換器,用來將該數位轉矩信號做一單位時間之延遲並產 生一第一轉矩延遲仏戒,Page 31 to this day 45 091 6 VI. Patent Application ^ ^-^ · If the bicycle control system of item 3 of the patent application i, it also contains f-current sensor 'to sense the operation of the servo motor Current and generate two operating current outputs, and the post-processor will combine the motor control voltage variable input by the fuzzy controller with the coupling voltage output generated by the voltage coupler in a predetermined manner to generate a voltage control Variables, and the motor operating current variable rotated by the fuzzy controller and the operating current output generated by the current sensor are combined in a predetermined manner to generate a current control variable ', and then the voltage control variable and current The control variables are combined in a predetermined manner to generate the control voltage output. 5. The bicycle control system according to item 4 of the patent application, wherein the pre-processor includes a first analog / digital converter for converting the torque output generated by the torque sensor into a digital torque signal, and A second analog / digital converter is used to convert the speed output generated by the speed sensor into a digital speed signal, and the pre-processor generates a torque fuzzy input variable based on the digital torque signal and the speed signal. And a speed fuzzy input variable. 6. The bicycle control system according to item 5 of the patent application, wherein the preprocessor includes: a first torque signal delayer electrically connected to the first analog / digital converter for applying the digital torque The signal makes a unit time delay and generates a first torque delay. 气0、今 45 09] 6 、申”第利轉矩信號延遲器’電連接於該卜轉矩信碑延 遲器,用ί將該第一轉矩延遲信號做·單位時間之延遲並 產生一第二轉矩延遲信號; 一第二轉速信號延遲器,電連接於該第二類比/數位 轉換器,用來將該數位轉速信號做一單位時間之延遲並產 生一第一轉速延遲信號; 一第二轉速信號延遲器’電連接於該第一轉速信號延 遲器,用來將該第一轉速延遲信號做一單位時間之延遲並 產生一第二轉速延遲信號;以及 一差分器,電連接於該第一類比/數位轉換器、該第 二類比/數位轉換器、該第一轉矩信號延遲器、該第二轉 矩信衆延遲器、該第一轉速信號延遲器以及該第二轉速信 號延遲器,用來產生該轉矩模糊輸入變數與該轉速模糊輸 入變數; ^其中該差分器會由該第一轉矩延遲信號與該數位轉矩 信號間之差值取得一第一轉矩差分信號,由該第二轉矩延 ,^號與該第一轉矩延遲信號間之差值取得一第二轉矩差 ^=號’以及由該第二轉矩差分信號與該第一轉矩差分信 由註=差值取得—轉矩模糊輸入變數’此外該差分器亦會 第二厂轉速延遲信號與該數位轉速信號間之差值取得一 延遲作逮差分信號’由該第二轉速延遲信號與該第一轉速 ( 二轉號=之差值取得一第二轉速差分信號,以及由該第 速模糊5分信號與該第一轉速差分信號間之差值取得一轉 入變數,而該模糊控制器則會依據複數條模糊法Qi 0, Jin 45 09] 6, Shen "Dili torque signal delayer 'is electrically connected to the torque signal monument delayer, and the first torque delay signal is used to delay the unit time and generate a A second torque delay signal; a second speed signal delayer electrically connected to the second analog / digital converter for delaying the digital speed signal by a unit time and generating a first speed delay signal; A second speed signal delay device is electrically connected to the first speed signal delay device, and is configured to delay the first speed signal delay by a unit time and generate a second speed signal delay signal; and a differential device, which is electrically connected to The first analog / digital converter, the second analog / digital converter, the first torque signal delayer, the second torque believer delayer, the first speed signal delayer and the second speed signal A delayer for generating the torque fuzzy input variable and the speed fuzzy input variable; ^ wherein the differentiator obtains a first torque from the difference between the first torque delay signal and the digital torque signal The second signal is obtained from the second torque delay, the difference between the ^ sign and the first torque delay signal to obtain a second torque difference ^ = sign, and the second torque difference signal and the first revolution The moment difference signal is obtained from Note = Difference value acquisition—torque fuzzy input variable '. In addition, the difference device also obtains a delay for the difference between the second plant speed delay signal and the digital speed signal. A difference between the delay signal and the first rotation speed (the second rotation number = is used to obtain a second rotation speed difference signal, and a difference between the first speed fuzzy 5-minute signal and the first rotation speed difference signal is used to obtain a rotation variable, and The fuzzy controller is based on a plurality of fuzzy methods 第33頁 个、午 45 09] 6 六、申請專利範圍 I:: Π: ί ϊ,變數轉換為該馬達控制電壓變 丨數以及馬達操作電流變數β 丨糊控範圍第:項之自行車控制系統,其_該模 G Π i efflory),用來儲存該複數條模 |糊法則’一棋糊控射單兀(FUZZy c〇ntr〇i uni t),電連接 I於該前處理器,:用來依據該複數條模糊法則將該轉矩模糊 輸入變數與該轉速模糊輸入變數轉換為該馬達控制電壓變 |數以及馬達操作電流變數。 上 8.如申請專利範圍第7項之自行車控制系統,其中該複 |數條模糊法則係由複數條電壓模糊法則與複數條電流模糊 |法則所組成’每一條電壓模糊法則係用來定義該轉矩模糊 |輸入變數與該轉速模糊輸入變數對應於馬達控制電壓變數 的從屬關係,而每一條電流模糊法則係用來定義該轉矩模 |糊輸入變數與該轉速模糊輸入變數對應於該馬達操作電流 變數的從屬關係。 9 如申請專利範圍第7項之自行車控制系統,其中該模 |糊控制器另包含有一轉矩輸入歸屬函數模組儲存於該記憶 I體中’用來將該轉矩模糊輸入變數轉換為一轉矩歸屬度, —轉速輪入歸屬函數模組儲存於該記憶體中,用來將該轉 |速模糊輸入變數轉換為一轉速歸屬度,一電壓輸出歸屬函 數模組儲存於該記憶體中’用來將一電壓歸屬度轉換為該 第34頁 气0、今45 091 6 六、申請專利範圍 電壓模糊輪出變數’以及一電流輸出歸屬函數模組儲存於 該記憶體中,用來辟一電流歸屬度轉換為該電流模糊輸出 變數。 I 0.如申請專利範圍第4項之自行車控制系統,其中該後 處理器包含有一第三類比/數位轉換器用來將該電壓耦合 器所產生之耦合電壓輸出轉換成數位電塵信號,以及一第 四類比/數位轉換器用來將該電流感測器所產生之操作電 流輸出轉換成數位電流信號,而該後處理器則係依據該數 位電壓信號及電流信號來產生該控制電壓輸出。 II _如申請專利範圍第1 〇項之自行車控制系統,其中該後 處理器包含有: 一電壓信號延遲器,電連接於該第三類比/數位轉換 器,用來將該數位電壓信號做一單位時間之延遲並產生一 電壓延遲信號; 一電流信號延遲器,電連接於該第四類比/數位轉換 器’甩來將該數位電流信號做一單位時間之延遲並產生一 電流延遲信號; 一第一加法器,用來將該電壓延遲信號與該模糊控制 器所產生之馬達控制電壓變數以產生一輸出電壓變數; 一第二加法器,用來將該電流延遲信號與該模糊控制 器所產生之馬達操作電流變數以砉生一輸出電流變數; 一第一乘法器,用來將該第〆加法器所產生之輸出電Page 33, No. 45 09] 6 Sixth, the scope of patent application I :: Π: ί ϊ, the variable is converted into the motor control voltage variable and the motor operating current variable β 丨 the bicycle control system of the control range item: , Which _ the module G Π i efflory), is used to store the plurality of modules | the "rule of law" a chess and fire control unit (FUZZy c〇ntr〇i uni t), electrically connected to the pre-processor ,: It is used to convert the torque fuzzy input variable and the speed fuzzy input variable into the motor control voltage variable and the motor operating current variable according to the plurality of fuzzy rules.上 8. If the bicycle control system of item 7 of the scope of patent application, the complex | multiple fuzzy rules are composed of multiple voltage fuzzy rules and multiple current fuzzy | rules' Each voltage fuzzy rule is used to define the Torque fuzzy | The input variable and the speed fuzzy input variable correspond to the subordinate relationship of the motor control voltage variable, and each current fuzzy rule is used to define the torque mode | The input variable and the speed fuzzy input variable correspond to the motor Subordination of operating current variables. 9 The bicycle control system according to item 7 of the patent application scope, wherein the mold controller further includes a torque input attribution function module stored in the memory I 'for converting the torque fuzzy input variable into a Torque attribution, — The speed-in-round attribution function module is stored in the memory, which is used to convert the revolution | speed fuzzy input variable into a speed attribution, and a voltage output attribution function module is stored in the memory. 'Used to convert a voltage attribution into the page 34, 0, 45, 091 6 VI. Patent application scope voltage fuzzy round output variables' and a current output attribution function module is stored in the memory, used to develop A current belonging degree is converted into the current fuzzy output variable. I 0. The bicycle control system according to item 4 of the patent application, wherein the post-processor includes a third analog / digital converter for converting the coupled voltage output generated by the voltage coupler into a digital electric dust signal, and The fourth analog / digital converter is used to convert the operating current output generated by the current sensor into a digital current signal, and the post-processor generates the control voltage output according to the digital voltage signal and the current signal. II _ If the bicycle control system of item 10 of the patent application scope, wherein the post-processor includes: a voltage signal delayer, electrically connected to the third analog / digital converter, used to make the digital voltage signal a A unit time delay generates a voltage delay signal; a current signal delayer, which is electrically connected to the fourth analog / digital converter, to delay the digital current signal by a unit time and generate a current delay signal; A first adder is used to generate the output voltage variable by the voltage delay signal and the motor control voltage variable generated by the fuzzy controller; a second adder is used to connect the current delay signal to the fuzzy controller. The generated motor operating current variable is used to generate an output current variable; a first multiplier is used to output the output current generated by the first adder 第35頁 45 09 1 6 六'申請專利範圍 --. -· ..... 壓變數乘以“預文之電壓枝正值以產生一電壓授正教 一第二雀:燦:器::::,:用來,將該第二加.法器所產生之輸電 流變數乘以二#定(乏電流校正值以產生一電流校正後4 : 一第三加法器,用來將該第一及第二乘法器所產生之 電壓校正值及電就棱正值相加以產生一總校正值;以及 一第三乘法赛,用來辟該第三加法器所產生之總校JL 值乘以一預定之輕壓參數以產生該控制電壓輸出。 1 2.如申請專利範圍第1項之自行車控制系統,其中該電 壓耦合器包含有: 一第四乘法器,用來將該控制電路所產生之控制電壓 輸出乘以一預定之第一控制參數以產生一第一控制電壓; 一第五乘法器,用來將該把手所產生之把手電壓輸出 乘以一預定之第二控制參數以產生一第二控制電壓;以及 一第四加法器,用來將該第四及第五乘法器所產生之 第一及第二控制電壓相加以產生該耦合電壓輸出。 1 3.如申請專利範圍第1 2項之自行車控制系統,其中該第 一及第二控制參數之和為1。 1 4.如申請專利範圍第1項之自行車控制系統,其中該電 動自行車另包含有一脈寬調變器,電連接於該電壓耦合器 之輸出端,用來將該耦合電壓輸出之大小調變為某一載頻 之脈寬並產生一脈寬輸出電壓,以及一放大器,電連接於Page 35 45 09 1 6 Six 'scope of patent application-. -... ..... Multiply the voltage transformer by the positive value of the voltage branch to generate a voltage to teach orthodoxy to a second bird: Can :::: ::,: Used to multiply the output current variable generated by the second adder by two #definite (the current correction value of the lack of current to generate a current correction 4: a third adder, used to add the first The voltage correction values generated by the first and second multipliers and the positive edge values are added to generate a total correction value; and a third multiplication race is used to multiply the total school JL value generated by the third multiplier by A predetermined light voltage parameter is used to generate the control voltage output. 1 2. The bicycle control system according to item 1 of the patent application scope, wherein the voltage coupler includes: a fourth multiplier for generating the control circuit. The control voltage output is multiplied by a predetermined first control parameter to generate a first control voltage; a fifth multiplier is used to multiply the handle voltage output generated by the handle by a predetermined second control parameter to generate a A second control voltage; and a fourth adder for applying the fourth and The first and second control voltages generated by the multiplier are added to generate the coupled voltage output. 1 3. The bicycle control system according to item 12 of the patent application scope, wherein the sum of the first and second control parameters is 1. 14. The bicycle control system according to item 1 of the patent application scope, wherein the electric bicycle further includes a pulse width modulator, which is electrically connected to the output end of the voltage coupler to adjust the magnitude of the coupled voltage output. Is a pulse width of a certain carrier frequency and generates a pulse width output voltage, and an amplifier, which is electrically connected to 第36頁 今 45 091 6 六 '申請專利範圍. , V·..;: . 费 談脈寬調變器之餘资端以及該何服馬達之控如端之簡 大功率平均 來將該脈寬輸也電瘦之脈寬正比放大並產生 電壓輪出以驅動ά伺服馬達。Page 36 to date 45 091 6 six 'Applicable patent scope., V ...;:. Talk about the remaining end of the pulse width modulator and the simple and high power average of the control of the motor. Wide transmission is also proportional to the thin pulse width and generates a voltage wheel to drive the servo motor. 第37頁Page 37
TW88115256A 1999-09-03 1999-09-03 A bicycle control system for assisting driving control of an elebike TW450916B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88115256A TW450916B (en) 1999-09-03 1999-09-03 A bicycle control system for assisting driving control of an elebike

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88115256A TW450916B (en) 1999-09-03 1999-09-03 A bicycle control system for assisting driving control of an elebike

Publications (1)

Publication Number Publication Date
TW450916B true TW450916B (en) 2001-08-21

Family

ID=21642181

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88115256A TW450916B (en) 1999-09-03 1999-09-03 A bicycle control system for assisting driving control of an elebike

Country Status (1)

Country Link
TW (1) TW450916B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454394B (en) * 2012-03-29 2014-10-01 Univ Kun Shan Fuzzy acceleration control method for electric scooter
CN107983525A (en) * 2017-12-04 2018-05-04 徐工集团工程机械有限公司 Control method, dynamical system and the jaw crusher of dynamical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454394B (en) * 2012-03-29 2014-10-01 Univ Kun Shan Fuzzy acceleration control method for electric scooter
CN107983525A (en) * 2017-12-04 2018-05-04 徐工集团工程机械有限公司 Control method, dynamical system and the jaw crusher of dynamical system

Similar Documents

Publication Publication Date Title
WO2021073080A1 (en) Nash bargaining criterion-based man-car cooperative game control method
US11958365B2 (en) Method for dual-motor control on electric vehicle based on adaptive dynamic programming
CN103466033B (en) Motor drive control device
CN103010302B (en) Center based on the moment of torsion sense of electric power steering
Seki et al. Fuzzy control for electric power-assisted wheelchair driving on disturbance roads
CN106184199A (en) The integrated control method of distributed AC servo system electric automobile stability
CN101867339B (en) Motor control method of electronic mechanical braking system
CN106004855A (en) Vehicle speed limit apparatus
Lee et al. Enhanced fuzzy‐logic‐based power‐assisted control with user‐adaptive systems for human‐electric bikes
Delprat et al. High order sliding mode control for hybrid vehicle stability
CN101883705A (en) Electrical power assisted steering system
CN106788076A (en) A kind of balance car control method, apparatus and system
TW450916B (en) A bicycle control system for assisting driving control of an elebike
CN207029279U (en) A kind of optional formula power steering apparatus and vehicle
CN112277929B (en) Vehicle wheel slip rate control method and device, vehicle and storage medium
Nguyen et al. Torque distribution optimization for a dual-motor electric vehicle using adaptive network-based fuzzy inference system
CN106697048B (en) For compensating the electronic control unit and method of torque steering
CN107168288A (en) A kind of overall structure modeling method of wire-controlled steering system
CN207291690U (en) regenerative braking system and control device thereof
Chhlonh et al. Modeling and simulation of independent speed steering control for front in-wheel in EV using BLDC motor in MATLAB GUI
CN106515984A (en) Bicycle driving system and bicycle comprising same
TWI662981B (en) Tandem bicycles simulation system
Li et al. Hierarchical Control for Distributed Drive Electric Vehicles Considering Handling Stability and Energy Efficiency
CN110341591A (en) It is a kind of for pure electric vehicle or the acoustic management system of hybrid vehicle active safety
Yang et al. The simulation research on fuzzy PID control strategy of commercial vehicle EPS system

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent