TW447004B - Process for preparing a hydrogen sensor - Google Patents

Process for preparing a hydrogen sensor Download PDF

Info

Publication number
TW447004B
TW447004B TW89117794A TW89117794A TW447004B TW 447004 B TW447004 B TW 447004B TW 89117794 A TW89117794 A TW 89117794A TW 89117794 A TW89117794 A TW 89117794A TW 447004 B TW447004 B TW 447004B
Authority
TW
Taiwan
Prior art keywords
metal electrode
patent application
item
metal
scope
Prior art date
Application number
TW89117794A
Other languages
Chinese (zh)
Inventor
Huey-Ing Chen
Wen-Chau Liu
Yen-I Chou
Chin-Yi Chu
Hsi-Jen Pan
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW89117794A priority Critical patent/TW447004B/en
Priority to US09/729,883 priority patent/US20010049184A1/en
Application granted granted Critical
Publication of TW447004B publication Critical patent/TW447004B/en

Links

Abstract

This invention provides a preparation method for a hydrogen sensor, which includes: (a) n-type or p-type semiconductor film is formed on a semiconductor substrate, (b) a patterned first metal electrode is formed on the film and thus an ohmic contact is formed between the first metal electrode and the film, and (c) on the semiconductor film, a second metal electrode is formed and is separated from the first metal electrode. A Schottky contact is formed between the second metal electrode and the film. The material and thickness of the second metal electrode allow the decrease of the Schottky barrier of the Schottky contact when hydrogen is in contact with the second metal electrode. The second metal electrode can be formed from the application of physical vapor deposition or electroless plating.

Description

447004 進步, 途,而 與空氣 的危險 氫氣感 確測知 體積大 附加設 慧化的 氫氣感 於矽半 (me t a 器之研 在於把 吸附於 擴散穿 經極化 度改變 要求,因 測器已是 導體技術 1 -ox i de-究引起了 具有良好 表面的氫 過纪金屬 後,會造 ,也因此 於一種金屬-半導體式氫氣感測器的製備 有關於一種使用無電鍍法來製備金屬—半 器之金屬電極的氫氣感測器的製備方法6 現代工業與醫療業大量使用氫氣作 氫氣為一種可燃且具有爆炸性的氣 混合的濃度範圍到達4. 65 vol %以 。所以,基於工業安全的考量與環 測器已廣泛地使用於工廠、實驗室 外漏氫氣的含量’然而,目前傳統 、價格高外’大部分屬於被動式元 備或轉換電路才能進行分析或放 五、發明說明(1) 發明領域 、本發明是關 方法’且特刿是 導體式氫氣钱測 發明背景 由於科技的 為原料或其他用 體,當外洩氣氣 上時,即有爆炸 保意識的重;^ 及醫院中,以準 氫氣感測器除了 件,尚須其他的 大,無法達到智 智慧型主動元S 近年來,由 層—矽半導體M0S 半導體氫氣感測 用鈀金屬之原因 的環境中,能將 分的氫原子將會 面’這些氫原子 的蕭特基能障高 此,發展一新式且有效的 當今一項重要課題。 的進步’以鈀金屬-氧化 semiconductor)結構作為 許多人的興趣。其結構採 的觸媒活性,在含有氫氣 分子解離為氫原子,而部 並吸附於金屬與氧化層界 成氧化層與矽半導體界面 改變了元件的電性。在早447004 progress, and the danger of hydrogen sensing with the air confirms that the volume is large. The additional hydrogenation is set to the silicon half (the research of the metameter is to change the polarization of adsorption and diffusion through the requirements. Is the conductor technology 1-ox i de-causes a metal with a good surface after the generation of hydrogen, it will be made, and therefore in the preparation of a metal-semiconductor hydrogen sensor. A method for preparing metal using electroless plating— Preparation method of hydrogen sensor for metal electrode of half device 6 Modern industry and medical industry use hydrogen as a large amount of hydrogen as a flammable and explosive gas mixture. The concentration range reaches 4. 65 vol%. Therefore, based on industrial safety Considerations and environmental testers have been widely used in factories and laboratories for leaking hydrogen. 'However, at present, traditional and expensive,' most of them are passive components or conversion circuits for analysis or release. 5. Description of the invention (1) FIELD OF THE INVENTION The present invention is a method 'and is particularly a conductive hydrogen gas meter. BACKGROUND OF THE INVENTION When the air is on, it is important to have an explosion awareness; ^ In the hospital, in addition to the quasi-hydrogen sensor, other components must be large, unable to reach the intelligent intelligent active element S. In recent years, the layer-silicon semiconductor M0S In the environment of palladium metal for semiconductor hydrogen sensing, the hydrogen atoms that can be separated will face the 'Schottky barrier of these hydrogen atoms, and develop a new and effective important issue today. Progress' The palladium metal-oxidized semiconductor) structure is of interest to many people. The catalyst activity of its structure dissociates into hydrogen atoms in the molecules containing hydrogen, and is partially adsorbed on the boundary between the metal and the oxide layer to form the interface between the oxide layer and the silicon semiconductor, which changes the electrical properties of the device. Early

1^· \\Chenlin\19991103\P!]]〇0\NSC11110.ptd 第5頁 4470 04 五、發明說明(2) 期I. Lundstrom提出鈀閘極之鈀/二氧化矽/梦場效電晶體 (Pd/Si02/Si MOS field effect transistor) [Lundstrom, M. S. Shivaraman, and C. Svensson, J. Appl_ Phys·,46, 3876 ( 1 975 )],利用鈀閘極吸附氫氣 後,臨限電壓(threshold voltage)與兩端電容值的改 變,作為檢測氫氣的兩種依據。但以三端元件實現兩端元 件之功能*不僅不合乎成本,並且製程困難度提高,此 外,氧化層品質亦關係著對氫氣感測能力的好壞,除了可 靠度問題外’當氧化層成長受到離子污染或缺陷增加而導 致品質不穩定時’矽半導體的費米能階會有表面態位釘住 效應(surface state pinning of Fermi-level),此時, 蕭特基能障高度較不受極化氫原子的影響,所以對氫氣之 靈敏度也較差。許多研究針對此一問題進行改良,例如A, Dutta 專人以氧化辞(ZnO)[A. Dutta, T. K. Chaudhuri, and S. Basu, Materials Science Engineering, B14, 31 (1992)]和L. Yadava 等人[L. Yadava, R. Dwivedi, and S. K. Srivastava, Solid-St. Electron., 33, 1 229 ( 1 990 )]以二氧化鈦(Ti〇2)來取代二氧化矽氧化層。 另一方面,若以兩端式的蕭特基能障二極體(Schott ky barrier diode)來實現,似乎是更直接的作法,少了氧化 層的不穩定因素,對氫氣之靈敏度有明顯的改善。Steele 等人提出鈀/硫化鎘(Pd/CdS)結構[Μ· C. Steele and B. A‘ Maciver, Appl· Phys. Lett., 28, 687 (1976)]及 Ito等人提出鈀/氧化辞(Pd/ZnO)結構[K. Ito,Surface1 ^ · \\ Chenlin \ 19991103 \ P!]] 〇0 \ NSC11110.ptd Page 5 4470 04 V. Description of the invention (2) Phase I. Lundstrom proposed palladium gate / silicon dioxide / dream field effect electricity Crystals (Pd / Si02 / Si MOS field effect transistor) [Lundstrom, MS Shivaraman, and C. Svensson, J. Appl_ Phys ·, 46, 3876 (1 975)], after using a palladium gate to adsorb hydrogen, the threshold voltage ( Threshold voltage) and changes in capacitance at both ends are used as two basis for detecting hydrogen. However, the use of three-terminal components to achieve the functions of two-terminal components is not only not cost-effective, but also increases the difficulty of the process. In addition, the quality of the oxide layer is also related to the quality of the hydrogen sensing ability. In addition to the reliability problem, when the oxide layer grows When the quality is unstable due to ionic contamination or increased defects, the Fermi level of silicon semiconductors has a surface state pinning of Fermi-level. At this time, the Schottky barrier height is less affected. The influence of polarized hydrogen atoms, so the sensitivity to hydrogen is also poor. Many studies have improved on this issue, such as A, Dutta's oxidizer (ZnO) [A. Dutta, TK Chaudhuri, and S. Basu, Materials Science Engineering, B14, 31 (1992)] and L. Yadava et al. [L. Yadava, R. Dwivedi, and SK Srivastava, Solid-St. Electron., 33, 1 229 (1 990)] Replaced the silicon dioxide oxide layer with titanium dioxide (Ti02). On the other hand, if it is implemented with a Schottky barrier diode at both ends, it seems to be a more direct approach. It reduces the instability of the oxide layer and has obvious sensitivity to hydrogen. improve. Steele et al. Proposed a palladium / cadmium sulfide (Pd / CdS) structure [Μ · C. Steele and B. A 'Maciver, Appl. Phys. Lett., 28, 687 (1976)] and Ito et al. Proposed a palladium / oxide (Pd / ZnO) structure [K. Ito, Surface

\\Chen]in\1999U03\P11!00\NSC11110.ptd 第6頁\\ Chen] in \ 1999U03 \ P11! 00 \ NSC11110.ptd Page 6

Mi Θ (94 五、發明說明(3)Mi Θ (94 V. Description of the invention (3)

Sc i·’ 86,345 (1982)] ’將半導體基材改為n-VI族化合 物’但其對氫氣感測之靈敏度差。1991年1^吮11料等人以 ΠΙ - V族化合物作為基材’以真空蒸鍍技術將鉑金屬沈積 在石申化鎵基板上製作以蕭特基為感測原理之氫氣感測器 [L. Μ. Lechuga, A. Calle, D. Golmayo, P. Tejedor and F. Briones, J. E1 ectrochem. Soc., 138, 159 (1991)]。他們發現’當以高能量方式鐘膜時,會造成半 導體之費米邊階有表面態位釘住效應(surface state pinning of Fermi-level) ’此時蕭特基能障高度較不易 受極化氫原子之影響。1986年Hasegawa等人所提出的DIGS 模式理論可用來解釋此現象[Η. Hasegawa and H.Ohno, J. Vac_ Sci_ Technol., B5, 1130 (1986)]。 過去’由於濕式法(或稱溶液法)常因鍍浴液成份種 類繁多且牽涉之化學反應複雜,因此在半導體程序中,較 少被合併採用來製造工作元件。目前,電鍍技術在半導體 加工業已漸漸嶄露其優越性,尤其在後段製程時,因電鍍 技術可符合多重内接線製程(mui t i - level interconnects)所需之平整性、覆蓋率、via填充能力等 要求’而頗受重視。尤其是無電鍍法鍍膜之製程簡單、操 作容易、成本低廉、節約能源,適合工業上連續式量產 化。本案發明人發現若適當控制電鍍法之鍍浴配方可以獲 得特性甚佳之元件,且無電鍍法與半導體製程相容性甚 大’遂經長時間的研究而成功開發出本發明之應用無電鍍 法的氫氣感測器製備方法。Sc i. '86, 345 (1982)]' The semiconductor substrate was changed to a n-VI group compound 'but its sensitivity to hydrogen sensing was poor. In 1991, ^ 1111, et al. Used a III-V group compound as a substrate 'and deposited platinum metal on Shishenhua gallium substrate by vacuum evaporation technology to produce a hydrogen sensor based on Schottky ’s sensing principle [ L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor and F. Briones, J. Electrochem. Soc., 138, 159 (1991)]. They found that 'when the bell film is energized in a high energy manner, it will cause a surface state pinning of Fermi-level in the Fermi step of the semiconductor.' At this time, the Schottky barrier is less susceptible to polarization. Influence of hydrogen atom. The DIGS model theory proposed by Hasegawa et al. In 1986 can be used to explain this phenomenon [Η. Hasegawa and H. Ohno, J. Vac_Sci_ Technol., B5, 1130 (1986)]. In the past, because the wet method (also called the solution method) was often due to the variety of plating bath components and the complicated chemical reactions involved, it was rarely used in semiconductor processes to manufacture working elements. At present, electroplating technology has gradually revealed its superiority in the semiconductor processing industry, especially in the latter stage, because the electroplating technology can meet the flatness, coverage, via filling capacity, etc. required for multiple interconnect interconnection processes (mui ti-level interconnects). Demand 'while being taken seriously. In particular, the electroless plating method has a simple process, easy operation, low cost, and energy saving, and is suitable for continuous mass production in industry. The inventor of the present case found that if the plating bath formulation of the electroplating method is properly controlled, components with very good characteristics can be obtained, and the electroless plating method is very compatible with the semiconductor process. Preparation method of hydrogen sensor.

\\Chenlin\l9991103\Pni00\SSC11110.ptd 第7頁 4470 04 五、發明說明(4) 本發明的主要目的在提供〆種金屬-半導體式氫氣感 測器的製備方法。 本發明的另一目的在提供〆種金屬-半導體式氫氣感 測器的製備方法,其使用無電鍍法來製備金屬—半導體式 氫氣感測器之金屬電極。 發明要旨 本發明提供一種具下列構造之氫氣感測器的製備方 法,該氫氣感測器包含: 一半導體基板; 一形成於該半導體基板 形成於該半導體薄膜的一相 極與一陰極,其中作為陽極 形成一蕭特基接觸,及作為 薄膜形成歐姆接觸,其中該 當氫氣接觸該第一金屬曝露 基能障高度降低。 上的η型或p型半導體薄膜;及 同表面上但彼此間隔開的一陽 的一第一金屬與該半導體薄膜 陰極的一第二金屬與該半導體 第一金屬的材質與厚度可使得 表面時’該蕭特基接觸的蕭特 於本發明的氫氣感測器中,#氫氣接觸該第一金屬的 =表面$,該氫氣被解離為氫原子,並且該氫原子穿透 屬,ϋ由該第-金屬與該半導體薄膜介面具有吸 a ! D亥肅特基能障高度,而得到明 =肅時基二極體電性的變化,據以檢測低濃度之氮氣含 量。 本發明之氫氣感測器的\\ Chenlin \ l9991103 \ Pni00 \ SSC11110.ptd Page 7 4470 04 V. Description of the invention (4) The main purpose of the present invention is to provide a method for preparing a metal-semiconductor hydrogen sensor. Another object of the present invention is to provide a method for preparing a metal-semiconductor hydrogen sensor, which uses an electroless plating method to prepare a metal electrode of the metal-semiconductor hydrogen sensor. SUMMARY OF THE INVENTION The present invention provides a method for preparing a hydrogen sensor having the following structure. The hydrogen sensor includes: a semiconductor substrate; a phase electrode and a cathode formed on the semiconductor substrate and formed on the semiconductor thin film, wherein The anode forms a Schottky contact and forms an ohmic contact as a thin film, wherein the height of the energy barrier based on the exposure of the first metal when the hydrogen is contacted is reduced. N-type or p-type semiconductor thin film on the surface; and a first metal on the same surface but spaced from each other and a second metal of the semiconductor thin film cathode and the material and thickness of the semiconductor first metal can make the surface ' In the hydrogen sensor of the present invention, the Schottky contact is #hydrogen contacting the surface of the first metal = surface $, the hydrogen is dissociated into a hydrogen atom, and the hydrogen atom penetrates the genus. -The interface between the metal and the semiconductor thin film has a high absorption energy barrier, and the change in electrical properties of the light-emitting diode is obtained, so that the nitrogen content at a low concentration can be detected. The hydrogen sensor of the present invention

製備方法,包含下列步驟:The preparation method comprises the following steps:

五、發明說明(5) - a)於半導體基板上形成η型或p型半導體薄臈. I)一於:丄導體薄膜上形成一圖樣化的第-金屬電極,該 第金屬電極與該半導體薄膜形成一歐姆接觸. 於全該Λ導广薄膜上形成一與該第一金屬電極間隔開的 該第二金屬電極與該半導體薄膜形成-蕭 氣二兮第、’ίί第一金屬電極的材質與厚度可使得當氫 度降低:第一屬電極時,該蕭特基接觸的蕭特基能障高 較佳地,本發明的方法進一步包含於步驟b)的第一金 屬電極被形成之後’熱回火該第—金屬電極以增進該歐姆 接觸的特性。更佳地,其中的熱回火之溫度係介於3〇〇 t 至50 0 °C之間,而時間介於20秒至5分鐘之間。 較佳地,本發明方法的步驟b)包含: I · 於該半導體薄膜上塗佈一光阻層; II * 藉由一光罩圖樣化曝光該光阻層; III·顯影忒被圖樣化曝光的光阻層,而將該光罩的圖樣 轉移到泫光阻層,於是形成一圖樣化光阻 體薄膜的一部分被曝露出; f IV. 以該圖樣化光阻層作為一罩幕於該半導體薄膜的被 曝露部分沈積一第一金屬層;及 V. 剝離該圖樣化光阻層,而於該半導體薄膜上形成該圖 樣化的第一金屬電極。 較佳地’本發明方法的步驟c)包含: I.於含該第一金屬電極的半導體薄膜的整體表面上塗佈V. Description of the invention (5)-a) Forming an n-type or p-type semiconductor thin film on a semiconductor substrate. I) One: forming a patterned first metal electrode on a semiconductor film, the second metal electrode and the semiconductor The thin film forms an ohmic contact. A second metal electrode spaced from the first metal electrode is formed on the Λ conductive thin film to form a semiconductor thin film with the semiconductor thin film. The thickness can be such that when the hydrogen degree decreases: the first metal electrode, the Schottky energy barrier of the Schottky contact is preferably high. The method of the present invention further includes after the first metal electrode of step b) is formed. Thermally tempering the first metal electrode to improve the characteristics of the ohmic contact. More preferably, the temperature of the thermal tempering is between 300 t and 50 ° C, and the time is between 20 seconds and 5 minutes. Preferably, step b) of the method of the present invention comprises: I. coating a photoresist layer on the semiconductor film; II * exposing the photoresist layer by patterning a photomask; III. Exposing the photoconductor by patterning The photoresist layer of the photoresist layer is transferred to the photoresist layer, so a part of the patterned photoresist film is exposed; f IV. The patterned photoresist layer is used as a mask on the semiconductor. Depositing a first metal layer on the exposed portion of the film; and V. peeling the patterned photoresist layer, and forming the patterned first metal electrode on the semiconductor film. Preferably, step c) of the method of the present invention includes: I. coating on the entire surface of the semiconductor thin film containing the first metal electrode

\\Chenlin\19991103\PlI100\XSCl:!10.ptd\\ Chenlin \ 19991103 \ PlI100 \ XSCl:! 10.ptd

447/Q 五、發明說明(6) 一光阻層; Π _藉由一光罩圖樣化曝光該光阻層; 顯'影該被圖樣化曝光的光阻層,而 轉移到該光阻層,於是形成一圖樣化光阻,的? 體薄膜的一部分被曝露出; 吏仔該+導 T二=樣Ϊ光阻】作為一罩幕於該半導體薄膜的被曝 硌邻刀沈積一第二金屬層;及 V.剝離該圖樣化光阻層,而於該半導體薄膜上成該圖樣 化的第二金屬電極。 較佳地’本發明方法的步驟卜贝)的第—金屬層沈積 係藉由物理氣相沈積,例如真空蒸鍍,而被進行。該物理 氣相沈積為。 較佳地’本發明方法的第二金屬層為鈀 '鈀系合金或 鉑。更佳地’該第二金屬層為鈀。 較佳地,本發明方法的步驟c _ jy )的第二金屬層沈積 係藉由無電錄法鍵膜而被進行。較佳地,該無電鍍法鍍膜 包含使該半導體薄膜的被曝露部分與一無電鍍鍍液接觸一 段時間’該無電鍍鍍液為包含該第二金屬層的金屬離子 (例如鈀離子)、錯合劑、還原劑、一 pH緩衝劑及安定劑之 水溶液。該鈀離子較佳地係藉由溶解一鈀處化物或鈀鹽於 水中而被提供。該錯合劑較佳地係選自乙二胺 (ethylenediamine)、四甲基乙二胺 (tetramethylethylenediamine) ' 及乙二胺四乙酸 (ethylenediamine tetraacetic acid, EDTA)所組成的等447 / Q V. Description of the invention (6) A photoresist layer; Π _ exposure of the photoresist layer by patterning a photomask; displaying the photoresist layer exposed by the pattern, and transferring to the photoresist layer , So a patterned photoresist is formed? A part of the bulk film is exposed; the second photoconductive film is used as a mask to deposit a second metal layer on the exposed adjacent knife of the semiconductor film; and V. the patterned photoresist layer is peeled off And forming the patterned second metal electrode on the semiconductor thin film. Preferably, the first metal layer deposition of the step of the method of the present invention is performed by physical vapor deposition, such as vacuum evaporation. The physical vapor deposition is. Preferably, the second metal layer of the method of the present invention is palladium'palladium alloy or platinum. More preferably, the second metal layer is palladium. Preferably, the second metal layer deposition in step c_jy) of the method of the present invention is performed by an electroless recording key film. Preferably, the electroless plating method includes contacting the exposed portion of the semiconductor thin film with an electroless plating solution for a period of time. The electroless plating solution is a metal ion (such as palladium ion) containing the second metal layer, An aqueous solution of a mixture, a reducing agent, a pH buffering agent and a stabilizer. The palladium ion is preferably provided by dissolving a palladium complex or a palladium salt in water. The complexing agent is preferably selected from the group consisting of ethylenediamine, tetramethylethylenediamine 'and ethylenediamine tetraacetic acid (EDTA).

WChenl in\ 19991103\Pin〇0\NSC]l 110. pid 第10頁 4470 〇4 五、發明說明(7) 族群β邊還原劑較佳地係選自聯胺(hydrazine)、次碟酸 鹽(hypophosphite)、硼氫化物(borohydride)及甲醛 Cformaldehyde)所組成的族群。該PH緩衝劑較佳地為硼酸 或氫乳化銨(ΝΗ40Η)等物質。較佳地,該無電鍍鍍液的ρίϊ 值被維持於9 -1 2。較佳地,該無電鍍法鍍膜包含使該半導 體薄膜的被曝露部分與該無電鍍鍍液接觸一介於1分鐘至1 小時之間的一段時間,及該無電鍍鍍液被維持於一介於2〇 它至70°(:之間的一溫度。 較佳地,該無電鍍法鍍膜進一步包含於該半導體薄膜 的被曝露部分與該無電鍍鍍液接觸之前,先與一酸性含亞 錫離子之敏化溶液接觸一段時間(例如5分鐘至丨〇分鐘之 間)來進行一敏化處理,及將經敏化處理的該半導體薄膜 的被曝露部分與一酸性含鈀離子之活化液接觸一段時間 (例如5分鐘至1〇分鐘之間)來進行一活化處理。 較佳地,本發明方法的步驟a)的半導體基板係由半絕 緣型磷化銦(InP)或砷化鎵(GaAs)材料形成。 ’ 較佳地,本發明方法的步驟a)之半導體薄膜為η型 πι-ν族化合物。較佳地,該nsHI_v族化合物之摻雜 度介於5x1015至lxl〇18 cm-3之間。較佳地,該^型⑴巧族化 合物之厚度介於0.050微米至10微米之間。該nsIINv族 合物可以為η型InP或GaAs,較佳地為^型111?。 、 較佳地’本發明方法的步驟a)係利用有機金屬 相沈積法或分子束磊晶成長法形成該半導體薄膜。 亂 較佳地’本發明的氫氣感測器之第—金屬電極為金錯WChenl in \ 19991103 \ Pin〇0 \ NSC] l 110. pid page 10 4470 〇4. Description of the invention (7) The β-reducing agent of the group is preferably selected from hydrazine, hypodiacetate ( hypophosphite), borohydride and Cformaldehyde). The pH buffer is preferably a substance such as boric acid or hydrogen emulsified ammonium (N (40Η). Preferably, the pH value of the electroless plating solution is maintained at 9 -1 2. Preferably, the electroless plating film includes contacting the exposed portion of the semiconductor film with the electroless plating solution for a period of time between 1 minute and 1 hour, and the electroless plating solution is maintained at a range of 2 〇 It is a temperature between 70 ° (:). Preferably, the electroless plating film further comprises an acidic stannous ion-containing film before the exposed portion of the semiconductor film contacts the electroless plating solution. The sensitizing solution is contacted for a period of time (for example, between 5 minutes and 10 minutes) to perform a sensitization treatment, and the exposed portion of the sensitized semiconductor film is contacted with an acidic palladium ion-containing activating solution for a period of time. (For example, between 5 minutes and 10 minutes) to perform an activation treatment. Preferably, the semiconductor substrate in step a) of the method of the present invention is made of semi-insulating indium phosphide (InP) or gallium arsenide (GaAs) material. form. ′ Preferably, the semiconductor film in step a) of the method of the present invention is an n-type π-ν group compound. Preferably, the doping degree of the nsHI_v group compound is between 5x1015 and 1x1018 cm-3. Preferably, the thickness of the C-type compound is between 0.050 microns and 10 microns. The nsIINv family may be n-type InP or GaAs, preferably ^ -type 111 ?. Preferably, step a) of the method of the present invention is to form the semiconductor thin film by an organic metal phase deposition method or a molecular beam epitaxial growth method. It is preferable that the first metal electrode of the hydrogen sensor of the present invention is a gold fault.

^Λ1 Ο 〇4 五、發明說明(8) 合金(AuGe)或金鍺鎳合金(AuGeNi)。較佳地,該第一金屬 電極為金錯合金(AUGe)。較佳地’該第一金屬電極之厚度 係介於0. 30微米至5微米之間。 較佳地,本發明的氫氣感測器之第二金屬電極之厚度 係介於0 . 3 0微米至5微米之間。 較佳地*本發明的氫氣感測器之第二金屬電極具有一 C形或類似C形的形狀,該第一金屬電極具有—對應於該第 二金屬電極的形狀而使得該第一金屬電極為該第二金屬電 極所包圍。 選擇佳地’本發明的氫氣感測器之第一金屬電極具有 —C形或類似C形的形狀,該第二金屬電極具有一對應於該 第一金屬電極的形狀而使得該第二金屬電極為該第一金 電極所包圍。 ’ 為使本發明之目的、特徵及優點更明顯易懂,下文特 舉一較佳實施例,並配合有關本發明之附圖,作詳細說 明β 較佳具體實施例的詳細說明 根據本發明的一較佳具體實施例所完成的一種高 度之鈀/磷化銦氫氣感測器丨0被示於第一圖,包括 絕緣型磷化銦基板1 2 ; — η型磷化銦薄膜1 4,位於誃“ 緣型磷化銦基板12上;一金鍺合金之歐姆接觸金^邑 一鈀金屬之蕭特基接觸金屬層18,彼此鄰近但 6和 於磷化銦薄膜1 4上。 、吧’且位^ Λ1 〇 〇5. Description of the invention (8) Alloy (AuGe) or gold germanium nickel alloy (AuGeNi). Preferably, the first metal electrode is AUGe. Preferably, the thickness of the first metal electrode is between 0.30 micrometers and 5 micrometers. Preferably, the thickness of the second metal electrode of the hydrogen sensor of the present invention is between 0.30 micrometers and 5 micrometers. Preferably, the second metal electrode of the hydrogen sensor of the present invention has a C-shape or a C-like shape, and the first metal electrode has—corresponding to the shape of the second metal electrode such that the first metal electrode Surrounded by the second metal electrode. The first metal electrode of the hydrogen sensor of the present invention is selected to have a C-shape or a C-like shape, and the second metal electrode has a shape corresponding to the first metal electrode so that the second metal electrode Surrounded by the first gold electrode. '' In order to make the purpose, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below, and a detailed description of the preferred embodiment according to the present invention will be given in detail with reference to the accompanying drawings of the present invention. A high-level palladium / indium phosphide hydrogen sensor completed in a preferred embodiment is shown in the first figure and includes an insulative indium phosphide substrate 1 2; an n-type indium phosphide film 1 4, It is located on the edge of indium phosphide substrate 12; an ohmic contact of gold-germanium alloy and a Schottky contact metal layer 18 of palladium metal are adjacent to each other but 6 and on the indium phosphide film 14. '和 位

447004 五、發明說明(9) 在s亥向靈敏度鈀/磷化銦氫氣感測器1 〇中,〇型磷化銦 薄膜14係利用有機金屬氣相沉積法(M〇CVD)或分子束磊晶 成長法(MBE)成長在該半絕緣型磷化銦基板12上的一層高 品質的η型磷化銦薄膜,因此其具有甚低之表面態位密 度。金屬-半導體間的蕭特基能障高度與極化氫原子的數 ,即與表面態位密度有密切關係。此外,磷化銦材料的氫 氣覆蓋率(hydrogen coverage)高,空氣中相當低的氫氣 含量也能使蕭特基能障高度明顯改變,此特性正適合作為 百分之一以下低濃度的檢測。在溫度特性方面,磷化銦材 料的能隙(bandgap)約為1. 35eV ’較矽為大,亦有不錯的 耐溫表現。除此之外,磷化銦材料成長與製程技術已發展 成熟,無論是光電或微波積體電路皆已應用於業界,本發 明之氫虱感測器的製備方法可與光電元件的製備方法整 合,成為一種可同時檢測光電與氫氣的多功能智慧型感測 器的製備方法’在商業化應用上將極具潛力。 於本發明另一較佳具體實施例中提供一種將無電鍍鍍 膜結合於半導體製程的低溫省能源之製備方法,其中該把 金屬之蕭特基接觸金屬層18係以無電鍍法鍍膜在^型磷化 銦薄膜1 4基材上。 無電鍵錄膜原理為一種自催化性(autocatalytic) 之氧化還原反應。於該較佳具體實施例中本發明所採用之 反應為: 2Pd2+ (aq) + N3H4 (aq)+ 40H-(aq)-> 2PdCs) + N2(g) +4447004 V. Description of the invention (9) In the helium-sensitivity palladium / indium phosphide hydrogen sensor 10, type 0 indium phosphide thin film 14 is made of organic metal vapor deposition (MOCVD) or molecular beam lei. The crystal growth method (MBE) grows a layer of high-quality n-type indium phosphide film on the semi-insulating indium phosphide substrate 12, so it has a very low surface state potential density. The Schottky barrier height between metal and semiconductor is closely related to the number of polarized hydrogen atoms, that is, the surface state potential density. In addition, the indium phosphide material has a high hydrogen coverage, and the relatively low hydrogen content in the air can significantly change the height of the Schottky barrier. This characteristic is suitable for low concentration detection of less than one percent. In terms of temperature characteristics, the bandgap of the indium phosphide material is about 1.35eV ', which is larger than that of silicon, and also has good temperature resistance performance. In addition, the indium phosphide material growth and process technology has matured, both photoelectric and microwave integrated circuits have been used in the industry. The method for preparing the hydrogen lice sensor of the present invention can be integrated with the method for preparing photovoltaic elements. The preparation method of a multi-functional intelligent sensor that can simultaneously detect photoelectricity and hydrogen will have great potential in commercial applications. In another preferred embodiment of the present invention, a method for preparing a low-temperature and energy-saving method that combines an electroless plating film with a semiconductor process is provided, wherein the Schottky contact metal layer 18 of the metal is electrolessly plated in a ^ type. Indium phosphide film 14 on a substrate. The principle of non-electric key recording film is an autocatalytic redox reaction. In the preferred embodiment, the reaction used in the present invention is: 2Pd2 + (aq) + N3H4 (aq) + 40H- (aq)-> 2PdCs) + N2 (g) +4

\\Chenlin\1999]103、'Plll〇〇WSC]1110.ptd 第13頁 :,4470 04 五、發明說明(ίο) 鍍浴之鍍液成份’除了鈀金屬前驅鹽-氣化鈀(PdCl2 )與聯胺(N2H4 )還原劑外,另根據實際上之需要,適當 添加一些其他成分,茲說明如下: a .錯合劑:目的在於控制鍍液中可供反應之鈀離子濃 度’以免链浴產生分解(decompos i t i on ),而可使反應 僅在具有催化性之基材表面發生。在無電鍍鍍膜過程中, is錯合離子會因錯合平衡之需要而釋出適量之飽離子。錯 合劑之添加量,對於金屬鍍層之鍍膜速率與微結構均有顯 著之影響,進而影響其蕭特基電性與感測特性。因此,必 須選擇適當之錯合劑種類與添加濃度。 b ·促進劑:由於錯合劑之添加’往往會降低無電鍵反應 之速率。因此為了工業生產上之實際需要,可以在鐘液中 加入少量之有機添加劑,以提高無電鍍鍍獏反應之速率與 增加金屬膜之延展性。 c .安定劑:目的在於降低鍍浴自發性之分解,而使錄浴 更加安定。一般而言’安定劑不具備催化活性,甚至會抑 制還原劑之反應’故其添加量通常报微量。 d .缓衝劑:無電鍍鍍膜反應進行中,由於反應消耗氮氧 根離子,造成鍍液酸鹼值之改變。為了維持鋪、、,、 ^ ^ ^之穩疋’ 並避免無電鍍鍍膜速率變化,必須使用緩振如+ „ 又衡劑來控制鍍液\\ Chenlin \ 1999] 103, 'Plll〇〇WSC] 1110.ptd Page 13 :, 4470 04 V. Description of the invention (ίο) Plating bath composition' except for palladium metal precursor salt-vaporized palladium (PdCl2) In addition to hydrazine (N2H4) reducing agent, according to actual needs, some other ingredients are appropriately added, which are described as follows: a. Complexing agent: The purpose is to control the concentration of palladium ions available in the plating solution for reaction to avoid chain bath production. Decomposition (decompos iti on), so that the reaction can only occur on the surface of the substrate with catalytic properties. In the electroless plating process, the is-mismatched ions will release an appropriate amount of saturated ions due to the need for mismatch balance. The addition amount of the complexing agent has a significant effect on the coating rate and microstructure of the metal plating layer, which in turn affects its Schottky electrical properties and sensing characteristics. Therefore, it is necessary to select the appropriate type and concentration of the complexing agent. b. Accelerator: The addition of the complexing agent tends to reduce the rate of non-electric bond reaction. Therefore, for practical needs in industrial production, a small amount of organic additives can be added to the bell solution to increase the rate of the electroless plating reaction and increase the ductility of the metal film. c. Stabilizer: The purpose is to reduce the spontaneous decomposition of the plating bath and make the recording bath more stable. Generally speaking, the 'stabilizer does not have catalytic activity, and even inhibits the reaction of the reducing agent', so its addition amount is usually reported in a trace amount. d. Buffer: During the electroless plating reaction, the pH of the plating solution changes due to the consumption of nitrogen ions by the reaction. In order to maintain the stability of 疋 ,,,, ^ ^ ^ and avoid the change of electroless plating rate, it is necessary to use a damping agent such as + „and a balance agent to control the plating solution.

4470 04 五、發明說明(11) 實施例1 (真空蒸鍍) 如第一圖所不的一種高靈敏度鈀/磷化銦氫氣感測器 1 0被製備。邊製備方法包含首先準備一半絕緣型磷化銦基 板1 2。其次,利用有機金屬化學氣相沈積法或分子束磊晶 成長法的技術在該半絕緣型磷化銦基板丨2上成長一品質良 好之η型鱗化姻薄獏14,其濃度及厚度分別為lxl〇1?cm_3及 3 0 0 0埃。接著,再利用傳統光罩微影及真空蒸鍍的技術, 先後於η型鱗化銦薄膜表面上蒸鍍金鍺合金之歐姆性接 觸金屬層16與纪金屬之蕭特基接觸金屬層18,分別作為感 測器之陰極與陽極。於該金鍺合金之歐姆性接觸金屬層i 6 被形成後,於4 0 0 °C的溫度,進行約1分鐘之時間的熱回 火。 本實施例的感測器於(a)未感測到氫氣及(b)感測到氫 氣時之電荷密度分佈及刳示能帶圖被示於第二圖。在未引 入氫氣前,該感測器的鈀金屬18與11钽磷化銦薄膜14之界 面的電荷分佈呈平衡狀態,並形成一金屬-半導體蕭特基 能障’如第二圖(a)所示。在引入氫氣後,由於鈀金屬18 對氫氣具有觸媒作用,當氫分子被吸附於鈀金屬表面時會 被解離為氫原子,而大部分氫原子將會擴散穿透鈀金屬 18 ’並於鈀金屬18與n型磷化銦薄膜14界面間形成偶極矩 層’此一偶極矩層將改變原有電荷分佈之平衡狀態,而達 到一新的平衡狀態,此一新的平衡狀態減少了 η型磷化銦 半導體的空乏區寬度,進而降低了蕭特基能障高度,如第 二圖(b)所示。4470 04 V. Description of the invention (11) Example 1 (Vacuum evaporation) A high-sensitivity palladium / indium phosphide hydrogen sensor 10 as shown in the first figure was prepared. The edge preparation method includes first preparing a half-insulating indium phosphide substrate 12. Secondly, using a technique of organometallic chemical vapor deposition method or molecular beam epitaxial growth method to grow a good quality n-type scaled thin film 貘 14 on the semi-insulating indium phosphide substrate 丨 2, its concentration and thickness are respectively For lxl0l? Cm_3 and 3 0 0 0 angstroms. Then, using traditional photolithography and vacuum evaporation techniques, the ohmic contact metal layer 16 of gold-germanium alloy and the Schottky contact metal layer 18 of Kie metal were vapor-deposited on the surface of the η-type scaled indium thin film, respectively. As the cathode and anode of the sensor. After the ohmic contact metal layer i 6 of the gold-germanium alloy is formed, thermal annealing is performed at a temperature of 400 ° C for about 1 minute. The charge density distribution and the energy band diagram of the sensor of this embodiment when (a) no hydrogen is sensed and (b) hydrogen is sensed are shown in the second figure. Before the introduction of hydrogen, the charge distribution at the interface of the sensor's palladium metal 18 and 11 tantalum indium phosphide film 14 is in equilibrium, and a metal-semiconductor Schottky barrier is formed, as shown in the second figure (a) As shown. After the introduction of hydrogen, palladium metal 18 has a catalytic effect on hydrogen. When hydrogen molecules are adsorbed on the surface of palladium metal, they will be dissociated into hydrogen atoms, and most of the hydrogen atoms will diffuse through palladium metal 18 'and pass through A dipole moment layer is formed between the interface between the metal 18 and the n-type indium phosphide film 14. This moment moment will change the equilibrium state of the original charge distribution and reach a new equilibrium state. This new equilibrium state is reduced. The width of the empty region of the n-type indium phosphide semiconductor further reduces the height of the Schottky barrier, as shown in the second figure (b).

^Chenhn\ 19991 ]〇3\Ρΐη〇〇\^]1π〇ιρΐ£3 第15頁 447004^ Chenhn \ 19991] 〇3 \ Ρΐη〇〇 \ ^] 1π〇ιρΐ £ 3 p. 15 447004

第二圖為本實施例的之感測器於空氣及空氣中含不同 氫氣含量( 200ppm、500ppin、i〇〇〇ppm、5〇〇〇ppm、 ° lOOOOppm)的環境測量之電流-電壓特性曲線圖。此圖中的 順向偏壓被定義為該蕭特基接觸相對於該歐姆接觸為外加 正電壓,相反地,反向偏壓則為外加負電壓。由於氫氣^ 量愈大’蕭特基位障高度愈小,故電流相對愈大。由圖可 知’無論是順向偏壓之電流或反向偏壓之電流,兩者皆隨 著空氣中氫氣含量的增加而增加’其中更可明顯看出反向 電"IL之增加趨勢是隨氫氣含量成正比之線性增加d 第四圖顯示本實施例的感測器的蕭特基能障高度對空 氣中氫氣含量關係。在空氣中的能障高度約為5 〇 〇meV,隨 著氫氣含量的增加,能障高度逐漸減小,當氫氣含量大於 〇. 5 %時,能障高度幾乎達到最低值,此時,順向電流傳導 已非常近似於歐姆特性。 第五圖為本實施例的感測器在溫度為1 2 5 t時測量之 暫態響應圖。當氫氣引入時,代表2〇〇ppm氫氣含量的空氣 以5 0 0 m 1 / m i η的速率流入測試腔中,測試條件為在鈀金屬 之簫特基接觸金屬層18與歐姆性接觸金屬層16兩電極間維 持一固定反向電流8mA,由於解離之氫原子形成偶極矩層 緣故’通過蕭特基接觸的反向電流增加,因此造成兩電極 間的電壓相對減少約1. 2V,另一方面,當氫氣關閉時,感 測器直接暴露於空氣中,氫原子結合為氫分子或與氧結合 為水分子而脫附鈀金屬表面,因而又造成兩電極間的電壓 的回復。若定義反應時間與回復時間為達到個別穩定值The second figure is the current-voltage characteristic curve of the sensor of this embodiment in the air and air containing different hydrogen contents (200ppm, 500ppin, 1000ppm, 5000ppm, ° 1000ppm) in environmental measurement. Illustration. The forward bias in this figure is defined as the positive voltage applied to the Schottky contact relative to the ohmic contact. Conversely, the reverse bias is applied to a negative voltage. Since the larger the amount of hydrogen ^, the smaller the Schottky barrier height is, the larger the current is. It can be seen from the figure that 'whether it is a forward biased current or a reverse biased current, both of them increase with the increase of the hydrogen content in the air'. It is more obvious that the increasing trend of the reverse current " IL is The linear increase is proportional to the hydrogen content. The fourth graph shows the relationship between the Schottky barrier height of the sensor of this embodiment and the hydrogen content in the air. The height of the energy barrier in the air is about 500 meV. With the increase of the hydrogen content, the height of the energy barrier gradually decreases. When the hydrogen content is greater than 0.5%, the height of the energy barrier reaches almost the lowest value. Conduction to current has been very similar to ohmic characteristics. The fifth graph is a transient response graph measured by the sensor of this embodiment when the temperature is 12 5 t. When hydrogen gas is introduced, air representing a hydrogen content of 200 ppm flows into the test chamber at a rate of 5000 m 1 / mi η. The test conditions are that the palladium contact metal layer 18 and the ohmic contact metal layer 16 A constant reverse current of 8 mA is maintained between the two electrodes, because the dissociated hydrogen atoms form a dipole moment layer, the reverse current through the Schottky contact increases, so the voltage between the two electrodes is relatively reduced by about 1.2V, another On the one hand, when the hydrogen gas is turned off, the sensor is directly exposed to the air, and the hydrogen atoms combine to form hydrogen molecules or oxygen to form water molecules to desorb the surface of the palladium metal, thereby causing the voltage recovery between the two electrodes. If the reaction time and recovery time are defined to reach individual stable values

4470 04 五、發明說明(13) 9 0 %所需之時間,則由圖可知,感測器之反應時間約為5 秒,而回復時間約為1 2秒。此外,重覆第一週期的測量方 式得到第二週期,由兩者發現其展示了相當高的重現性。 第六圖為本實施例的本發明感測器之飽和靈敏度對空 氣中氫氣含量關係圖。飽和靈敏度S定義為在一固定的反 向電壓下,流經兩電極間電流變化量對基準電流之比值 nH2-Iair)/Iair ,由圖明顯地看出,該靈敏度隨氫氣含量增 加而增加。在〇. 5 V反向偏壓下,1 %氫氣含量的空氣中測量 之飽和靈敏度可高達130,即使在相當低之200ppm氫氣含 量空氣中測量之飽和靈敏度亦可達到2。 實施例2 (無電鍍鍍膜) 以類似於實施例1的步驟製備如第一圖所示的一種高 泣敏度1巴/磷化銦氫氣感測器1〇 ’但其中的紀金屬之蕭特 基接觸金屬層18係以無電鍍鍍膜方式形成。在該歐姆性接 觸金屬層16被真空蒸鍍及熱回火後,於η型磷化銦薄膜14 (濃度為5 X 1 〇i7cnr3)上(含該歐姆性接觸金屬層1 6)塗佈一 ,阻層’藉由一光罩圖樣化曝光(imagewise exposing)該 光阻層,顯影該被圖樣化曝光的光阻層,而將該光罩的圖 樣轉移到該光阻層’於是形成一圖樣化光阻層,使得該η 型磷化銦薄膜14的一部分被曝露出,以該圖樣化光阻層作 為一罩幕將該半導體基板浸於一30 t的無電鍍鍍膜鍍浴1〇 刀知時間,而於該η型磷化銦薄膜1 4的被曝露部分沈積鈀 金屬金屬層18。該無電鍍鍍膜鍍浴為一具有下列組成的水4470 04 V. Description of the invention (13) The time required for 90% is shown in the figure. The response time of the sensor is about 5 seconds and the recovery time is about 12 seconds. In addition, repeating the measurement method of the first cycle yielded the second cycle, which was found to exhibit fairly high reproducibility. The sixth figure is a graph of the relationship between the saturation sensitivity and the hydrogen content in the air of the sensor of the present invention. The saturation sensitivity S is defined as the ratio of the change in current flowing between the two electrodes to the reference current under a fixed reverse voltage, nH2-Iair) / Iair. It is obvious from the figure that the sensitivity increases with the increase of the hydrogen content. With 0.5 V reverse bias, saturation sensitivity measured in air with 1% hydrogen content can reach 130, and saturation sensitivity measured in air with relatively low 200ppm hydrogen content can reach 2. Example 2 (Electroless plating) A high cryogenic sensitivity 1 bar / indium phosphide hydrogen sensor 10 ′ as shown in the first figure was prepared by a procedure similar to that of Example 1. The base contact metal layer 18 is formed by electroless plating. After the ohmic contact metal layer 16 is vacuum-evaporated and thermally tempered, an η-type indium phosphide film 14 (concentration: 5 × 10i7cnr3) (containing the ohmic contact metal layer 16) is coated with The resist layer 'imagewise exposing the photoresist layer through a photomask, developing the patterned exposed photoresist layer, and transferring the pattern of the photomask to the photoresist layer', thus forming a pattern The photoresist layer was exposed so that a part of the n-type indium phosphide film 14 was exposed. The patterned photoresist layer was used as a mask to immerse the semiconductor substrate in a 30-ton electroless plating bath for 10 seconds. A palladium metal layer 18 is deposited on the exposed portion of the n-type indium phosphide film 14. The electroless plating bath is a water having the following composition

4 47 0 〇4 五、發明說明(14) 溶液: PdCl2 2. 7 g/L NH40H (28%) 195 ml/L Na2EDTA 3 5 g/L N2H4 (lM) 100 ml/L 硫脲(T h i o u r e a) 0. 0006 g/L 從該無電 鍍 鍍 膜 鍍 浴 取 出 該 半導體基板 ,並於 水 洗後 剝離(lift-off) 該 圖 樣 化 光 阻 層 1而於該n型磷化銦薄膜 1 4上形成該圖 樣 化 的 鈀 金 屬 之 蕭 特基接觸金 屬層18 □ 第七圖為 本 實 施 例 的 之 感 測 器於空氣及 空氣中 含 不同 氫氣含量(200ppm 5 0 0 ppm lOOOppm ' SOOOppm 、 1 0000ppm)的環境下所測量之電流-電壓特性 曲線圖 〇 由於 氫氣含量愈大 蕭 特 基 能 障 度 愈小,故電 流相對 愈 大。 由圖可知,無 論 是 順 向 偏 壓 之 電 流或反向偏 壓之電 流 ,兩 者皆隨著空氣 中 氫 氣 含 量 的 增 加 而增加,其 中更可 明 顯看 出反向電流之 增 加 趨 勢 是 隨 氫 氣 含量成正比 之線性 增 加。 第八圖顯 示 本 實 施 例 的 感 測 器的蕭特基 能障高 度 對空 氣中氫氣含量 關 係 〇 在 空 氣 中 的 月包障南度約 為686meV ,隨 著氫氣含量的 增 加 能 障 南 度 逐 漸減小,當 氫氣含 量 大於 0. 5%時,能障 南 度 幾 乎 達 到 最 低 值’此時, 順向電 流 傳導 已非常近似於 歐 姆 特 性 0 第九圖為 本 實 施 例 的 感 測 器 在溫度為1 2 5 t時測量之4 47 0 〇4 V. Description of the invention (14) Solution: PdCl2 2.7 g / L NH40H (28%) 195 ml / L Na2EDTA 3 5 g / L N2H4 (lM) 100 ml / L thiourea (T hiourea) 0. 0006 g / L Take out the semiconductor substrate from the electroless plating bath, lift-off the patterned photoresist layer 1 after washing, and form the pattern on the n-type indium phosphide film 14 Schottky contact metal layer of palladium metal 18 □ The seventh picture shows the sensor of this embodiment in an environment with different hydrogen content in the air and air (200ppm 50 0 ppm 100ppm 'SOOOppm, 10,000ppm) A graph of the measured current-voltage characteristics. As the content of hydrogen is larger, the Schottky barrier is smaller, so the current is relatively larger. It can be seen from the figure that both the forward biased current and the reverse biased current increase with the increase of the hydrogen content in the air, and it is more obvious that the increase trend of the reverse current is with the hydrogen content. Proportionally increases linearly. The eighth figure shows the relationship between the Schottky barrier height of the sensor of this embodiment and the hydrogen content in the air. The south degree of the monthly envelope barrier in the air is about 686 meV. As the hydrogen content increases, the south degree of the barrier gradually decreases. Small, when the hydrogen content is greater than 0.5%, the south degree of the energy barrier almost reaches the lowest value. At this time, the forward current conduction is very close to the ohmic characteristic 0. The ninth figure is the sensor of this embodiment at a temperature of 1 Measured at 2 5 t

WChenl in\ 19991103\P11100\NSC11110.p;d 第 18 頁 、4470 04 五、發明說明( 15) 暫態響 應 圖。 當 氫 氣引 入 時 ,代 表200ppm氫氣含量的空氣 以50Om 1 /miη的速率流入測試腔中,測試條件為在鈀金屬 之蕭特 基接觸 金 屬 層18 與 歐 姆性 接觸金屬層1 6兩電極間維 持一固 定 反向 電 流7 m A ,由於解離之氫原子形成偶極矩層 緣故, 通 過蕭 特 基 接觸 的 反 向電 流增加,因此造成兩電極 間的電 壓 相對 減 少 約0. 15V ,另- -方面,當氫氣關閉時, 感測器 直 接暴 露 於 空氣 中 * 氫原 子結合為氫分子或與氧結 合為水 分 子而 脫 附 鈀金 屬 表 面, 因而又造成兩電極間的電 壓的回 復 。由 圖 可 知, 感 測 器之 反應時間約為5秒,而回 復時間 約 為20 秒 〇 第 十 圖為 本 實 施例 的 本 發明 感測器之飽和靈敏度對空 氣中氫 氣 含量 關 係 圖。 由 圖 明顯 地看出,該靈敏度隨氫氣 含量增 加 而增 加 〇 在0. 5V 反 向偏 壓下,1 %氫氣含量的空氣 中測量 之 飽和 靈 敏 度可 達1 835%,即使在相當低之 2 0 0 ppm 氫 氣含 量 空 氣中 測 量 之飽 和靈敏度亦可達到4. 3%。 第 十 一圖 係 本 實施 例 以 無電 鍍鍍膜技術製造之高靈敏 度鈀/磷化銦氫氣感測器與以真空蒸鍍技術所製造之同結 構者之 蕭 特基 電 性 特性 之 比 較圖 。圖t發現無電鍍製程之 元件其 蕭 特基 電 性 表現 較 真 空蒸 鍍製程所得之元件更為優 越。此 結 果印 證Hasegawa 等 人所 提出之DIGS理論模式[H. Hasegawa and Η Ohno, J Vac. Sci. Technol., B5, 1130 (1986)] ο 由 於真 空 蒸 鍍製 程中,金屬蒸氣凝結所釋 放出之 潛 熱易 破 壞 半導 體 基 材表 面,造成半導體費米能階 有釘住 效 應而 使 得 蕭特 基 能 障高 度不受金屬種類影響之現WChenl in \ 19991103 \ P11100 \ NSC11110.p; d page 18, 4470 04 V. Description of the invention (15) Transient response diagram. When hydrogen gas is introduced, air representing 200 ppm hydrogen content flows into the test chamber at a rate of 50 Om 1 / miη, and the test conditions are maintained between the two electrodes of Schottky contact metal layer 18 and ohmic contact metal layer 16 of palladium metal. A fixed reverse current of 7 m A, because the dissociated hydrogen atoms form a dipole moment layer, the reverse current through the Schottky contact increases, thus causing the relative voltage between the two electrodes to decrease by about 0.15V, in addition,-- When the hydrogen gas is turned off, the sensor is directly exposed to the air. * The hydrogen atoms combine to form hydrogen molecules or combine with oxygen to form water molecules to desorb the surface of the palladium metal, thus causing the voltage recovery between the two electrodes. It can be seen from the figure that the response time of the sensor is about 5 seconds, and the recovery time is about 20 seconds. The tenth figure is a relationship diagram of the saturation sensitivity of the sensor of the present invention with respect to the hydrogen gas content in the air. It is clear from the figure that the sensitivity increases with increasing hydrogen content. Under a 0.5V reverse bias, the saturation sensitivity measured in air with 1% hydrogen content can reach 1 835%, even at a relatively low value of 2 0. 3%。 Saturation sensitivity of 0 ppm hydrogen content measured in the air can also reach 4.3%. The eleventh figure is a comparison chart of the electrical characteristics of the high sensitivity palladium / indium phosphide hydrogen sensor manufactured by the electroless plating technology of this embodiment and the Schottky of the same structure manufactured by the vacuum evaporation technology. Figure t shows that the components of the electroless plating process have better Schottky electrical performance than the components obtained by the vacuum evaporation process. This result confirms the theoretical model of DIGS proposed by Hasegawa et al. [H. Hasegawa and Η Ohno, J Vac. Sci. Technol., B5, 1130 (1986)] ο due to the metal vapor condensation released during the vacuum evaporation process Latent heat easily damages the surface of semiconductor substrates, causing pinning effects on the semiconductor Fermi level and making Schottky barriers highly independent of metal species.

WChenI in\ 19991103\Pl 1100\NSC111 lO.pid 第19頁 4470 〇4WChenI in \ 19991103 \ Pl 1100 \ NSC111 lO.pid Page 19 4470 〇4

象°相較之下,無電錢製程溫度較低,故可製得特性良好 之蕭特基接觸層。 本實施例以無電鍍鍍膜技術所沈積之鈀金屬之蕭特基 接觸金屬層18由一剖面電子顯微鏡圊觀察得知其厚度約為 6000埃’並且鈀金屬膜層的結構緻密。 由以上可知,本發明之方法簡易、節省能源且可與微 機,系統整合,具有商業化的潛力。本發明方法所製備的 氫氣感測器,經由實驗結果顯示,具高線性度、高反應速 高重現性、高靈敏度等特性,優於一般傳統氮氣感測 V0 露於上,然其並非用以 在不脫離本發明之精神 飾’因此本發明之保護 定者為準。 雖然本發明已以較佳實施例揭 限定本發明’任何熟習此技藝者, 和範圍内’當可做各種之更動與潤 範圍當視後附之申請專利範圍所界Compared with °, the process temperature of the non-money money is relatively low, so a Schottky contact layer with good characteristics can be obtained. The Schottky contact metal layer 18 of the palladium metal deposited by the electroless plating technique in this embodiment is observed by a cross-section electron microscope and the thickness of the palladium metal film layer is about 6000 angstroms and the structure of the palladium metal film layer is dense. It can be known from the above that the method of the present invention is simple, energy-saving, and can be integrated with a computer and a system, and has the potential for commercialization. The hydrogen sensor prepared by the method of the present invention shows, through experimental results, that it has characteristics such as high linearity, high response speed, high reproducibility, and high sensitivity, which are better than the conventional traditional nitrogen sensing V0, but it is not used. Without departing from the spirit of the present invention, the protection of the present invention shall prevail. Although the present invention has been limited to the preferred embodiment of the present invention, ‘anyone skilled in the art, and within the scope’ shall be subject to various changes and modifications. The scope shall be determined by the scope of the attached patent application.

\\Chenlin\19991103\P3]]〇0\NSC]l110.pid\\ Chenlin \ 19991103 \ P3]] 〇0 \ NSC] l110.pid

4470 04 圖式簡單說明 ----- 第一圖係依本發明的一第一較佳具體實施例所完成的 叙/磷化銦氫氣感測器的示意圖。 第二圖係依本發明的第一較佳具體實施例所完成之鈀 /磷化銦氫氣感測器於(a)未感測到氫氣及(b)感測到氫氣 時之電荷密度分佈及剖示能帶圖。 第三圖係依本發明的第一較佳具體實施例所完成之鈀 /磷化銦氫氣感測器於空氣及空氣中含不同氫氣含量 (20 0ppm、5 0 0ppm、l〇〇〇ppm、50〇〇ppm、1()〇〇〇ρρπι)之環境 所測量之電流-電壓特性曲線圖。 第四圖係依本發明的第一較佳具體實施例所完成之鈀 /磷化銦氫氣感測器之蕭特基能障高度對氫氣濃度關係 圖。 第五圖係依本發明的第一較佳具體實施例所完成之鈀 /麟化銦氫氣感測器在溫度為1 2 5 °C時測量之暫態響應圖。 第六圖係依本發明的第一較佳具體實施例所完成之鈀 /磷化銦氫氣感測器之飽和靈敏度對氫氣含量關係圖。 第七圖係依本發明的一第二較佳具體實施例所完成之 鈀/磷化銦氫氣感測器於空氣及空氣中含不同氫氣含量 (200ppm、500ppm、l〇〇〇ppni、5000ppm、1000〇ppm)之環境 所測量之電流-電壓特性曲線圖。 第八圖係依本發明的第二較佳具體實施例所完成之鈀 /磷化銦氫氣感測器之簫特基能障高度對氫氣濃度關係 圖。 第九圖係依本發明的第二較佳具體實施例所完成之鈀4470 04 Brief description of the diagram ----- The first diagram is a schematic diagram of a Syria / Indium Phosphide Hydrogen Sensor completed according to a first preferred embodiment of the present invention. The second figure is the charge density distribution of the palladium / indium phosphide hydrogen sensor completed according to the first preferred embodiment of the present invention when (a) no hydrogen is sensed and (b) hydrogen is sensed, and Sectional energy band diagram. The third figure shows that the palladium / indium phosphide hydrogen sensor completed according to the first preferred embodiment of the present invention contains different hydrogen contents in the air and air (200ppm, 5000ppm, 1000ppm, A current-voltage characteristic curve measured in an environment of 50,000 ppm, 1 (0.0000 ρρπι). The fourth figure is a graph showing the relationship between the Schottky barrier height and the hydrogen concentration of the palladium / indium phosphide hydrogen sensor completed according to the first preferred embodiment of the present invention. The fifth diagram is a transient response diagram of the palladium / lindene hydrogen sensor completed according to the first preferred embodiment of the present invention when the temperature is 125 ° C. The sixth figure is a graph of the relationship between the saturation sensitivity and the hydrogen content of the palladium / indium phosphide hydrogen sensor completed according to the first preferred embodiment of the present invention. The seventh diagram is a palladium / indium phosphide hydrogen sensor completed according to a second preferred embodiment of the present invention, which contains different hydrogen contents in the air and air (200ppm, 500ppm, 1000ppni, 5000ppm, 1000ppm) environment measured current-voltage characteristic curve. The eighth diagram is a graph showing the relationship between the height of the barrier energy and the hydrogen concentration of the palladium / indium phosphide hydrogen sensor according to the second preferred embodiment of the present invention. The ninth figure is the palladium completed according to the second preferred embodiment of the present invention

\\Chenlin\1999n03\P11100\NSCllil0.ptd 第21頁 4470 04 圖式簡單說明 ’鱗化鋼氫氣感測器在溫度為1 2 5 °c時測量之暫態響應圖。 第十圖係依本發明的第二較佳具體實施例所完成之鈀 /磷化銦氫氣感測器之飽和靈敏度對氫氣含量關係圖。 第十一圖係依本發明的第二較佳具體實施例以I電鍍 鍍臈技術所製造之高靈敏度鈀/磷化銦氫氣 盥”以/ =錢技術所製造之同結構者之蕭特基電性特;二= 圖示中之標號說明: 1 0 :氫氣感測器 1 2 :半絕緣型磷化銦基板 1 4 : η型磷化銦薄膜 16 :金鍺合金之歐姆接觸金屬層 18 :纪金屬之蕭特基接觸金屬層\\ Chenlin \ 1999n03 \ P11100 \ NSCllil0.ptd Page 21 4470 04 Brief description of the diagram ’The transient response diagram of the scaled steel hydrogen sensor when the temperature is 1 2 5 ° c. The tenth figure is a relationship diagram between the saturation sensitivity and the hydrogen content of the palladium / indium phosphide hydrogen sensor completed according to the second preferred embodiment of the present invention. The eleventh figure is a high-sensitivity palladium / indium phosphide-hydrogen bath manufactured by the I electroplating technology according to the second preferred embodiment of the present invention. Electrical characteristics; 2 = Symbols in the illustration: 1 0: Hydrogen sensor 1 2: Semi-insulating indium phosphide substrate 1 4: η-type indium phosphide film 16: Ohmic contact metal layer 18 of gold-germanium alloy 18 : Schottky contact metal layer of Yuki Metal

\\Chenlin\19991103\pmOO\NSC11110.ptd ^ 22 頁 """ '\\ Chenlin \ 19991103 \ pmOO \ NSC11110.ptd ^ 22 pages " " " '

Claims (1)

ΔΑΙΟΟ^τΔΑΙΟΟ ^ τ 1 ’ 種,軋感測器之製備方法,包含下列步碑: a) 於一半導體基板上形成n型或p型半導體薄膜; b) 於玄半導體薄膜上形成一圖樣化的第一金屬電 極,該第一金屬電極與該半導體薄膜形成一歐姆接觸;及 c) _於該半導體薄膜上形成一與該第一金屬電極間隔 開的第-金屬電極,該第二金屬電極與該半導體薄膜形成 一蕭特基接觸,並且该第二金屬電極的材質與厚度可使得 當氫氣接觸該第二金屬電極時’㈣特基接觸的f特基能 2. 如申請專利範圍第丨項的方法,進一步包含於步驟 b)的第-金屬電極被形成之後,細火該第一金屬電極以 增進該歐姆接觸的特性。 3. 如申請專利範圍第1項的方法,其十步驟b)包含: I. 於該半導體薄膜上塗佈一光阻層; II. 藉由一光罩圖樣化曝光該光阻層; I I I.顯影該被圖樣化曝光的光阻層,而將該光罩的圖 樣轉移到該光阻層,於是形成一圖樣化光阻層,使得該半 導體薄膜的一部分被曝露出; IV.以邊圖樣化光阻層作為一罩幕於該半導體薄膜 的被曝露部分沈積一第一金屬層;及 、 V·剝離該圖樣化光阻層’而於該半導體薄膜上形成 該圖樣化的第一金屬電極。 '1 ′, a method for preparing a rolling sensor, including the following steps: a) forming an n-type or p-type semiconductor thin film on a semiconductor substrate; b) forming a patterned first metal electrode on a black semiconductor film, The first metal electrode forms an ohmic contact with the semiconductor thin film; and c) forming a first metal electrode spaced from the first metal electrode on the semiconductor thin film, the second metal electrode and the semiconductor thin film form a Schottky contact, and the material and thickness of the second metal electrode may be such that when hydrogen contacts the second metal electrode, the 特 tky contact is made of the ftkis energy. 2. The method according to item 丨 of the patent application, further comprising After the first metal electrode of step b) is formed, the first metal electrode is fired to improve the characteristics of the ohmic contact. 3. The method according to item 1 of the patent application scope, wherein the ten steps b) include: I. coating a photoresist layer on the semiconductor film; II. Exposing the photoresist layer by patterning a photomask; II I Develop the patterned photoresist layer, and transfer the pattern of the photomask to the photoresist layer, thereby forming a patterned photoresist layer, so that a part of the semiconductor thin film is exposed; IV. Patterning with edges The photoresist layer serves as a mask to deposit a first metal layer on the exposed portion of the semiconductor film; and, V. peel the patterned photoresist layer 'to form the patterned first metal electrode on the semiconductor film. ' 〇4〇4 、申凊專利 範圍Scope of patent application •如申請專利範圍第Μ的方法,其中步 冬 .於含該第一金屬電極的半導μ 含, 金饰〜光阻層; m寻膜的整體表面上 ii,藉由一光罩圖樣化曝光該光阻層; 闻 111.顯影該被圖樣化曝光的光阻層,而將該光罩的 18)樣絲 半’釋移到該光阻層’於是形成—圖樣化光阻層’使得該 $艘薄臈的一部分被曝露出; Ιν·以該圖樣化光阻層作為一罩幕於該半導體薄膜的 ^緣露部分沈積一第二金屬層;及 ν.剝離該圖樣化光阻層,而於該半導體薄膜上成該 圖樣化的第二金屬電極。 5.如申請專利範圍第3項的方法,其中步驟IV的沈積 係藉由物理氣相沈積而被進行。 6 ·如申請專利範圍第5項的方法,其中該物理氣相沈 積為真空蒸鍍。 7.如申請專利範圍第4項的方法,其中步驟IV的沈積 係藉由物理氣相沈積而被進行。 8 -如申請專利範圍弟7項的方法,其中該物理氣相沈 積為真空蒸鍍。• The method according to the scope of application for patent M, wherein Bu Dong. The semiconducting μ containing the first metal electrode contains, gold decoration ~ photoresist layer; m on the entire surface of the film ii, patterned by a photomask Expose the photoresist layer; see 111. Develop the patterned exposed photoresist layer, and half-release the 18) swatches of the photomask to the photoresist layer, and then form a patterned photoresist layer so that A part of the thin film is exposed; Ιν · depositing a second metal layer on the exposed portion of the semiconductor film using the patterned photoresist layer as a mask; and The patterned second metal electrode is formed on the semiconductor thin film. 5. The method of claim 3, wherein the deposition in step IV is performed by physical vapor deposition. 6. The method according to item 5 of the patent application, wherein the physical vapor deposition is vacuum evaporation. 7. The method according to item 4 of the patent application, wherein the deposition in step IV is performed by physical vapor deposition. 8-The method according to item 7 of the patent application, wherein the physical vapor deposition is vacuum evaporation. 4470 044470 04 六、申請專利範圍 9·如申請專利範圍第4項的大^ 係藉由無電鍍法鍍臈而被進行。、,其中步驟IV的沈積 10.如申請專利範圍第7項的f、、t 咕 層為鈀、鈀系合金或鉑。 、法’其中該第二金屬 層為纪 1 1 ‘如申請專利範圍第1 〇 項的方法,其中該第二金屬 12.如申請專利範圍第9 層為鈀、鈀系合金或鉑。 項的方法,其中該第二金屬 1 3 ‘如申a專利範圍第1 2項的方法,其中該第二金屬 層為。 14. 如申请專利範圍苐1 2項的方法,其中該無電鍍法 錢膜包含使戎半導體薄膜的被曝露部分與一無電鑛錢液接 觸一段時間’該無電鍍鍍液為包含該第二金屬層的金屬離 子、錯合劑、還原劑、一 p Η緩衝劑及安定劑之水溶液。 15. 如申請專利範圍第丨3項的方法,其中該無電鍍法 鑛膜包含使該半導體薄膜的被曝露部分與一無電錄鍍液接 觸一段時間,該無電鍍鍍液為包含鈀離子、錯合劑、還原6. Scope of Patent Application 9. The large-scale application of item 4 in the scope of patent application is carried out by electroless plating of rhenium. , Wherein step IV is deposited 10. For example, the f, and t layer in item 7 of the scope of the patent application is palladium, a palladium alloy, or platinum. "Method" wherein the second metal layer is a method of Ji 1 1 ‘as in the method of the patent application No. 10, wherein the second metal 12. The method of the patent application No. 9 layer is palladium, a palladium alloy or platinum. The method of item 2, wherein the second metal 1 3 ′ is the method of item 12 of the patent scope, wherein the second metal layer is. 14. The method according to the scope of patent application No. 12, wherein the electroless plating film includes contacting the exposed portion of the semiconductor thin film with an electroless mineral liquid for a period of time. The electroless plating solution includes the second metal. A layer of an aqueous solution of metal ions, complexing agents, reducing agents, a p Η buffer and stabilizers. 15. The method of claim 3, wherein the electroless plating method includes contacting the exposed portion of the semiconductor film with an electroless plating solution for a period of time. The electroless plating solution contains palladium ions, Mixture, reduction \\Chenlin\19991103\P11100\NSG1110.ptd 第25頁 4470 04 六、申請專利範圍 劑、一 p Η緩衝劑及一安定劑之水溶液。 16. 如申請專利範圍第1 5項的方法,其中該鈀離子係 藉由溶解一把il化物或鈀鹽於水中而被提供,該錯合劑係 選自乙二胺(ethylenediamine)、四甲基乙二胺 (tetramethylethylenediamine)、及乙二胺四乙酸 (ethylenediamine tetraacetic acid, EDTA)所組成的等 族群’及泫還原劑係選自聯胺(h y d r a z i n e )、次碌酸鹽 (hypophosphite)、观氫化物(borohydride)及甲酸· (formaldehyde)所組成的族群。 17. 如申請專利範圍第1 5項的方法,其中該無電錢錢 液的pH值被維持於9至1 2的範圍之間。 又 18·如申請專利範圍第1 5項的方法,其中該pH緩銜劑 為硼酸或氫氧化銨(ΝΗ40Η)等物質。 19.如申請專利範圍第1 5項的方法,其中該半導體薄 膜的被曝露部分與該無電鍍鍵液接觸之前,先與一酸性含 亞錫離子之敏化溶液接觸一段時間來進行一敏化處理,及 將經敏化處理的該半導體薄膜的被曝露部分與一酸性含紅 離子之活化液接觸一段時間來進行一活化處理。 2 0.如申請專利範圍第1 5項的方法,其中該無電鍍法\\ Chenlin \ 19991103 \ P11100 \ NSG1110.ptd Page 25 4470 04 6. Scope of patent application, an aqueous solution of p buffer and a stabilizer. 16. The method according to item 15 of the patent application range, wherein the palladium ion is provided by dissolving a ilium compound or a palladium salt in water, and the complexing agent is selected from ethylenediamine, tetramethyl Ethylene diamine (tetramethylethylenediamine), and ethylenediamine tetraacetic acid (EDTA) and other groups' and tritium reducing agents are selected from hydrazine, hypophosphite, hydride (Borohydride) and formic acid (formaldehyde). 17. The method according to item 15 of the patent application range, wherein the pH value of the non-money money liquid is maintained in the range of 9 to 12. 18. 18. The method according to item 15 of the scope of patent application, wherein the pH retarder is a substance such as boric acid or ammonium hydroxide (NΗ40Η). 19. The method according to item 15 of the scope of patent application, wherein the exposed portion of the semiconductor film is contacted with an acidic stannous ion-containing sensitization solution for a period of time before contacting the exposed portion of the semiconductor film with the electroless plating solution. Treatment, and contacting the exposed portion of the sensitized semiconductor film with an acidic red ion-containing activating solution for a period of time to perform an activation treatment. 2 0. The method of claim 15 in the scope of patent application, wherein the electroless plating method 4470 〇4 夂、申請專利範圍 鍍膜包含使該半導體薄膜的被曝露部分與一無電鍍鍍液接 觸一介於1分鐘至1小時之間的一段時間,及該無電鍍鍍液 被維持於一介於20 °C至70 °C之間的一溫度。 21. 如申請專利範圍第1 9項的方法,其中該半導體薄 膜的被曝露部分與該無電鍍鍍液接觸之前,先與一酸性含 亞錫離子之敏化溶液接觸一介於5分鐘至1 0分鐘之間的一 段時間來進行一敏化處理,及將經敏化處理的該半導體薄 膜的被曝露部分與一酸性含鈀離子之活化液接觸一介於5 分鐘至I 0分鐘之間的一段時間來進行一活化處理。 22. 如申請專利範圍第2項的方法,其中的熱回火之 溫度係介於300。〇至50(TC之間,而時間介於20秒至5分鐘 之間。 2 3.如申請專利範圍第1項的方法,其中該半導體基 板係由半絕緣型磷化銦(丨nP)或砷化鎵(GaAs)材料形成。 24. 如申請專利範圍第1項的方法,其中該半導體薄 膜為η型III-V族化合物。 25. 如申請專利範圍第24項的方法,其中該η型Ιπ_ν 族化合物之摻雜濃度介於5χ1〇]5至lxl〇1S cm-3之間。4470 〇4. The scope of the patent application coating includes contacting the exposed portion of the semiconductor film with an electroless plating solution for a period of time between 1 minute and 1 hour, and the electroless plating solution is maintained at a range of 20 A temperature between ° C and 70 ° C. 21. The method of claim 19, wherein before the exposed portion of the semiconductor film is in contact with the electroless plating solution, it is contacted with an acidic solution containing stannous ions for between 5 minutes and 10 A period of time between minutes to perform a sensitization treatment, and contacting the exposed portion of the sensitized semiconductor film with an acidic palladium ion-containing activating solution for a period of time between 5 minutes and 100 minutes To perform an activation process. 22. The method of claim 2 in which the thermal tempering temperature is between 300 ° C. 〇 to 50 (TC, and the time is between 20 seconds to 5 minutes. 2 3. The method according to item 1 of the patent application range, wherein the semiconductor substrate is made of semi-insulating indium phosphide (丨 nP) or Formed with gallium arsenide (GaAs) material. 24. The method according to item 1 of the patent application, wherein the semiconductor thin film is an n-type III-V compound. 25. The method according to item 24 of the patent application, wherein the n-type The doping concentration of the Iπ_ν group compound is between 5 × 10 and 5 × l × 10S cm-3. \\aienlin\19991103\PniOO\NSCllii〇.ptd 第27頁 447 0 〇4 六、申請專利範圍 26·如申請專利範圍第24項的方法,其中該η型III-V 族化合物之厚度介於〇. 〇 5 〇微米至丨〇微米之間。 27.如申請專利範圍第24項的方法,其中該η型III-V 族合物為η型Ιηρ或以杬。 28·如申請專利範圍第27項的方法,其中該η型III-V 族合物為η型I ηρ ^ 2 9.如申請專利範圍第1項的方法,其中該半導體薄 膜係藉由有機金屬化學氣相沈積法或分子束磊晶成長法形 成。 3 0.如申請專利範圍第1項的方法,其中該第一金屬 電極為金鍺合金(AuGe)或金錯錄合金(AuGeNi)。 31.如申請專利範圍第3 0項的方法,其中該第一金屬 電極為金鍺合金(AuGe)。 32,如申請專利範圍第1項的方法,其中該第—金屑 電極之厚度係介於〇. 30微米至5微米之間。 3 3.如申請專利範圍第3 2項的方法,其中該第—金屬 電極之厚度係介於〇· 30微来至5微米之間。\\ aienlin \ 19991103 \ PniOO \ NSCllii〇.ptd Page 27 447 0 〇4. Patent application scope 26. For example, the method of patent application scope item 24, wherein the thickness of the n-type III-V group compound is between 〇 .50 micron to 10 micron. 27. The method as claimed in claim 24, wherein the n-type III-V group compound is n-type Ιηρ or 杬. 28. The method according to item 27 of the patent application, wherein the η-type III-V group compound is η-type I ηρ ^ 2 9. The method according to item 1 of the patent application, wherein the semiconductor thin film is made of an organic metal Formed by chemical vapor deposition or molecular beam epitaxial growth. 30. The method of claim 1, wherein the first metal electrode is a gold germanium alloy (AuGe) or a gold staggered alloy (AuGeNi). 31. The method of claim 30, wherein the first metal electrode is gold-germanium alloy (AuGe). 32. The method according to item 1 of the application, wherein the thickness of the first gold chip electrode is between 0.30 micrometers and 5 micrometers. 3 3. The method according to item 32 of the scope of patent application, wherein the thickness of the first metal electrode is between 0.30 micrometers and 5 micrometers. \ \Chen 1 i n\ ] 9991103\P11 ] 00\N'SC111 ] Ο. ptd 第28頁 4470 04 六、申請專利範圍 34. 如申請專利範圍第1項的方法,其中該第二金屬 電極之厚度係介於0· 30微米至5微米之間。 35. 如申請專利範圍第34項的方法,其中該第二金屬 電極係由把製成。 3 6.如申請專利範圍第1項的方法,其中該第二金屬 電極具有一 C形或類似C形的形狀,該第一金屬電極具有一 對應於該第二金屬電極的形狀而使得該第一金屬電極為該 第二金屬電極所包圍。 37.如申請專利範圍第1項的方法,其中該第一金屬 電極具有一C形或類似C形的形狀,該第二金屬電極具有一 對應於該第一金屬電極的形狀而使得該第二金屬電極為該 第一金屬電極所包圍。\ \ Chen 1 in \] 9991103 \ P11] 00 \ N'SC111] 〇. Ptd page 28 4470 04 VI. Scope of patent application 34. For the method of the first scope of patent application, wherein the thickness of the second metal electrode It is between 0. 30 microns and 5 microns. 35. The method of claim 34, wherein the second metal electrode is made of a handle. 3 6. The method according to item 1 of the patent application, wherein the second metal electrode has a C-shape or a C-like shape, and the first metal electrode has a shape corresponding to the second metal electrode such that the first A metal electrode is surrounded by the second metal electrode. 37. The method of claim 1, wherein the first metal electrode has a C-shape or a C-like shape, and the second metal electrode has a shape corresponding to the first metal electrode such that the second The metal electrode is surrounded by the first metal electrode. UChenlin\1999U03\Pl]100\NSC]l]]〇.pid 第29頁UChenlin \ 1999U03 \ Pl] 100 \ NSC] l]] 〇.pid Page 29
TW89117794A 2000-05-04 2000-08-31 Process for preparing a hydrogen sensor TW447004B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW89117794A TW447004B (en) 2000-08-31 2000-08-31 Process for preparing a hydrogen sensor
US09/729,883 US20010049184A1 (en) 2000-05-04 2000-12-05 Process for preparing a hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89117794A TW447004B (en) 2000-08-31 2000-08-31 Process for preparing a hydrogen sensor

Publications (1)

Publication Number Publication Date
TW447004B true TW447004B (en) 2001-07-21

Family

ID=21660994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89117794A TW447004B (en) 2000-05-04 2000-08-31 Process for preparing a hydrogen sensor

Country Status (1)

Country Link
TW (1) TW447004B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753917B2 (en) 2017-05-12 2020-08-25 National Chiao Tung University Hydrogen sensing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753917B2 (en) 2017-05-12 2020-08-25 National Chiao Tung University Hydrogen sensing device

Similar Documents

Publication Publication Date Title
Chan et al. Highly sensitive gas sensor by the LaAlO3/SrTiO3 heterostructure with Pd nanoparticle surface modulation
Chen et al. A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating
Zhou et al. Transparent metal-oxide nanowires and their applications in harsh electronics
Salehi et al. Pd/porous-GaAs Schottky contact for hydrogen sensing application
Karabulut et al. Influence of Al2O3 barrier on the interfacial electronic structure of Au/Ti/n-GaAs structures
CN109580725A (en) Two-dimentional transient metal sulfide gas sensor and preparation based on antenna structure
JP2004508535A (en) MIS hydrogen sensor
CN105866215A (en) Organic thin-film transistor gas sensor and preparation method thereof
Ahmed et al. H2 sensing properties of modified silicon nanowires
Du et al. Hydrogen gas sensing properties of Pd/aC: Pd/SiO2/Si structure at room temperature
US6293137B1 (en) Hydrogen sensor
Zhu et al. High‐performance NO2 sensors based on ultrathin heterogeneous interface layers
US6800499B2 (en) Process for preparing a hydrogen sensor
Zhong et al. Tailoring the H2 gas detection range of the AlGaN/GaN high electron mobility transistor by tuning the Pt gate thickness
US20090181486A1 (en) method for producing a transistor-type hydrogen sensor
TW447004B (en) Process for preparing a hydrogen sensor
Domanský et al. Selective doping of chemically sensitive layers on a multisensing chip
Liu et al. Ammonia sensing performance of a GaN-based semiconductor diode with a solution-processed Pt/GaO x Schottky contact
TW573120B (en) Hydrogen sensor suitable for high temperature operation and method for producing the same
TW201143101A (en) Transistor device and manufacturing method thereof
Chen et al. A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes
EP2426483A1 (en) Hydrogen Sensors
Huang et al. Characteristics of a Pd/AlGaN/GaN transistor processed using the sensitization, activation, and electroless plating (EP) approaches
TW586007B (en) Hydrogen sensor and fabrication method thereof
US20010049184A1 (en) Process for preparing a hydrogen sensor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees