TW444129B - Full fusion positioning method for vehicle - Google Patents

Full fusion positioning method for vehicle Download PDF

Info

Publication number
TW444129B
TW444129B TW88105744A TW88105744A TW444129B TW 444129 B TW444129 B TW 444129B TW 88105744 A TW88105744 A TW 88105744A TW 88105744 A TW88105744 A TW 88105744A TW 444129 B TW444129 B TW 444129B
Authority
TW
Taiwan
Prior art keywords
module
pseudorange
navigation
rate
error
Prior art date
Application number
TW88105744A
Other languages
Chinese (zh)
Inventor
Ching-Fang Lin
Original Assignee
Lin Ching Fang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/256,509 external-priority patent/US6240367B1/en
Application filed by Lin Ching Fang filed Critical Lin Ching Fang
Application granted granted Critical
Publication of TW444129B publication Critical patent/TW444129B/en

Links

Abstract

A full fusion positioning method, which can be implemented in the existing hardware, but is more amenable to the emerging wafer-scale integration hardware, comprises the steps of injecting a global positioning system signal received by a global positioning system antenna and a predicted pseudorange and delta range from a data fusion, and converting and tracking said global positioning system signal to obtain pseudorange and delta range measurement and errors of said pseudorange and delta range measurement, which are passed to said data fusion; receiving a vehicle angular rate and an acceleration signal/data from an inertial measurement unit and solving inertial navigation equations for obtaining a referencing navigation solution, including position, velocity, and attitude, which are passed to a data fusion; and fusing siad pseudorange and delta range measurement and said errors of said pseudorange and delta range measurement of said global positioning system and said referencing navigation solution to obtain predicted pseudorange and delta range, optimal estimates of said referencing navigation solution errors and inertial sensor errors, and optimal position information.

Description

444129 經濟部中央標準局負工消費合作社印製 A7 B7 五、發明説明(1 )444129 Printed by the Consumer Standards Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7 V. Description of Invention (1)

'本發明係與運載體之定位方法有關,特別是指一種運 載體之全融合定位方法(FuU Fusi〇n p〇siti〇ning Meth〇d fOT'The present invention relates to the positioning method of a carrier, and in particular refers to a full fusion positioning method of a carrier (FuU Fusi〇n p〇siti〇ning Meth〇d fOT

Vehicle),其中來自全球定位系統、慣性角速率感應器, 及慣性加速度計的信息,被完全融合處理,以便獲得高性 5能的定位數據,滿足一些對定位性能要求較高的應用場合 ,如長期的高精度、高抗干擾和高動態性能。 儘管只是在最近幾十年,運载體之定位系統才廣泛地 被人們所熟悉,但它可追溯到很早以前;世界上第一個運 載體定位系統是指南車,它是公元2〇〇_3〇〇年(據傳説可能 10更早)由中國發明的一種自動穩定方向系統,它要比磁羅盤 問世早一千年,它的操作原理是基於一個基本的現象,當 車輪改變方向時,外車輪走過的距離要比內萆輪多,這是 肮向變化值的簡單數學函數;當航向變化時,由外車輪驅 動的齒輪,轉動一個水平轉台,以便精確地抵消航向的變 15化,如此,無論指南車的航向如何變化,安裝在這個水平 轉台上的假人的伸開的手臂,就像羅盤的指針總是保持在 同樣的方向上;隨著定位系統和其它相關领域的技術的不 斷進步,現已有不同種類的定位系統。 隨著定位系統技術的不斷進步,這種低成本、體積小 20 '高精度的定位系統,將會出現具有廣泛的商業應用價值 ;運載體定位系統的應用範圍就像野火一般的散開,如用 於汽車、計程車、公共汽車、火車、機器人、探礦、建築 ,以及像行動電話的911緊急呼叫的個人通信市場編碼和 敷據傳送。 (請先閎讀背面之注$項再填寫本頁) .裝. 訂' 83. 3.1〇>〇〇0 it 14412 9 A7 B7 X、發明説明(2 ) 10 15 經濟部中央標準局員工消費合作社印製 對於先進的商業車輔追蹤系統來説,汽車導航和路徑 導引系統’以及智慧車輔高速公路系統來説,要求具有車 輛定位能力,是這些系統的基本要求。 智慧車輛高速公路系統正被世界性地發展著,並藉由 資訊的應用、通信、定位、控制等技術,以有效、安全及 在環境方面能改善道路交通。 一般來説,傳統運載體定位的方法和系統有航程推算 系統(DEAD REELONING SYSTEM),無線電定位系統 ,以及混合系統(HYBRID SYSTEM);本發明是一種混合 的,來決定運載體之位置及狀態的全融合定位方法。 航程推算系統是基於慣性角速率和慣性角加速度計測 量,來提供運载體之位置及狀態等訊息;該航程推算系統 包含有一慣性測量組件(inertial measurement UNIT)及處理器;該慣性測量组件包括用來當作加速度感 應器以測量载體的加速度之三個正交安裝和多個歪斜的加 速度計,及用來測量運载體的角速率以測量載體的角加速 度之三個JE交安裝和多個配置_機,以及其他相 關的硬體;這些零件紐了必類資訊絲定—導航參考 座標系,以達成與载體的旋轉運動相隔離之目的,在平台 式慣性系統巾,這個_絲系是通趣録實現的,在 捷聯慣性綠巾,魏麵座;t:m麵析平台;導航 處理機處理用來自慣性測量組件的載體加速度和角率信息 ;在給定娜位置和完肋始鮮餅後,紐可以連續 输出位置、速度、姿態等數據。 Λ ---------裝------打------ (請先閎讀背面之注意事項再填寫本頁) -4- 私紙張( CNS ) A4g ( 83.3-1〇,〇〇0 經濟部中央標準局貝工消費合作社印製Vehicle), in which the information from the global positioning system, inertial angular rate sensor, and inertial accelerometer are fully integrated to obtain high-performance 5 performance positioning data to meet some applications with high positioning performance requirements, such as Long-term high accuracy, high anti-interference and high dynamic performance. Although the carrier positioning system has been widely known only in recent decades, it can be traced back to a long time ago; the world's first carrier positioning system was a guide car, which was 200 AD. _300 (according to the legend may be 10 earlier) an automatic direction-stabilizing system invented by China. It was a thousand years before the advent of the magnetic compass. Its operating principle is based on a basic phenomenon. When the wheel changes direction The outer wheel travels more distance than the inner wheel. This is a simple mathematical function of the change in direction. When the heading changes, the gear driven by the outer wheel rotates a horizontal turntable to accurately offset the change in heading. In this way, no matter how the guidance car ’s heading changes, the extended arm of the dummy on this horizontal turntable is like the compass's pointer always kept in the same direction; along with the positioning system and other related fields, With the continuous advancement of technology, there are now different types of positioning systems. With the continuous advancement of positioning system technology, this low-cost, small 20 'high-precision positioning system will have a wide range of commercial application values; the application range of carrier positioning systems is like the spread of wildfire, such as Personal communication market codes and data transmission for cars, taxis, buses, trains, robots, prospecting, construction, and 911 emergency calls like mobile phones. (Please read the note on the back before filling in this page). Assemble. Order '83. 3.1〇 > 〇〇0 it 14412 9 A7 B7 X, Invention Description (2) 10 15 Employees of Central Bureau of Standards, Ministry of Economic Affairs Cooperative printing For advanced commercial vehicle auxiliary tracking systems, car navigation and path guidance systems, and smart vehicle auxiliary highway systems, the requirement for vehicle positioning capabilities is a basic requirement of these systems. The intelligent vehicle highway system is being developed worldwide, and the use of information, communication, positioning, and control technologies can improve road traffic effectively, safely, and environmentally. Generally speaking, traditional carrier positioning methods and systems include a range estimation system (DEAD REELONING SYSTEM), a radio positioning system, and a hybrid system (HYBRID SYSTEM); the present invention is a hybrid to determine the position and status of the carrier Full fusion positioning method. The range estimation system is based on inertial angular rate and inertial angular accelerometer measurements to provide information such as the position and status of the carrier. The range estimation system includes an inertial measurement unit and an processor. The inertial measurement unit includes Three orthogonal installations and multiple skewed accelerometers used as acceleration sensors to measure the acceleration of the carrier, and three JE cross-installed and used to measure the angular velocity of the carrier to measure the angular acceleration of the carrier Multiple configurations _machines and other related hardware; these parts are bound to the necessary information-navigation reference coordinate system, in order to achieve the purpose of isolation from the carrier's rotary motion, in the platform-type inertial system towel, this _ The wire system is realized by Tongqulu, in the strapdown inertial green scarf, Wei surface seat; t: m surface analysis platform; the navigation processor processes the acceleration and angular rate information of the carrier from the inertial measurement component; at the given position and After the ribs are finished, the button can continuously output position, speed, and attitude data. Λ --------- install ------ print ------ (Please read the precautions on the back before filling this page) -4- Private paper (CNS) A4g (83.3- 10.0% Printed by the Shellfish Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs

444129 A7 B7 五、發明説明(3 ) ' -- '以慣性角速率感應器及慣性加速度感應器為基礎的航 程推算紐’通常娜為紐導鮮統祕性錄系統或 慣性參考錄;额其他定位紐概,最大_點是其 完全的自主操作特性和提供較寬的頻帶e ^ 5 然而慣性定位系統成本昂貴且其誤差隨時間增加,這 主要是由於其感應器誤差,如陀螺儀漂移、加速度計偏置 及刻度係數誤差引起的。 通常,提高慣性定位系統精度的方法,是探用高精度 的i貝性感應器及探用外部感應器來猶助慣性定位系統。 10 全球定位系統、(Global Positioning System, GPS)是一個 基於衛星的、全球性、全天候的無線電定位和授時系統; 該系統原來是設計在全球公用網路系統中,提供無數裝有 接收設備的用户精確位置'速度及時間資訊等服務。 用户須有特定的接收機方可獲得全球定位系統的服務 15 ; 一個傳統的單天線GPS接收機,藉由處理它的碼跟蹤環 路和載波跟蹤環路的偽距(pseud〇 Range)和偽距率(Delta Range)測量,提供用户精度的三維位置、速度和時間信息 ,然而沒有姿態信息;在正常的情況下,GPS信號的傳播 誤差和衛星誤差,包括選擇可用性(SelectiveAvailabiUty广 20限制了GPS的誤差範圍;然而GPS信號易於受到有意和無 意的干擾和欺骗’而在載體姿態機動時GPS信號易被遮擋 ,另外,當GPS信號噪聲比較低或载體在作高動態的機動 時^ GPS信號易丟失從而導致性能降低》 隨著高性能GPS接收機的成本和體積的不斷減少,多 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公茇) ---------------IT------J (請先閲讀背面之注意事項再填寫本頁) 83.3.10,000 經濟部中央標隼局員工消费合作社印製 ί' 444129 Α7 ______Β7 五、發明説明(4 ) 天線GPS接收機’探用干涉相位技術,可 同時提供位置和姿態信息;這種技術係利用(}]?;3載波相位 在GPS多天線上的差分測量,以獲得高精度的相對位置測 差,然後將之轉換為姿態結果;這種技術的優點是姿態精 5度可保持長期的穩定性,且成本較低,但仍有帶寬較窄和 易被遮擋及干擾的特性,而且要獲得三軸的载體姿態测量 ,則須至少配置3個天線,並要求GPS天線之間僅可能分離 ,以便有足夠的姿態分辨率。 由於單獨的慣性定位系統和單獨的GPS接收機的這些 10內在缺點上,一個單獨的慣性定位系統或一個單獨的Qps 就無法在如低成本、長期高精度連續的输出等場合出現。 由於GPS接收機和惯性定位系統具有互補的特性,因 此很多應用場合,組合GPS/慣性定位系統可以利用兩個系 統的各自優點,能提供連續的導航输出,且具有兩個獨立 15系統所不能達到的高性能;自從GPS的概念在1973年提出 以來,已有很多有關於GPS/慣性定位系統方面的文獻,而 且組合GPS/慣性定位系統已投入了實際的應用。 組合GPS/慣性定位系統的優點可概括如下: (1 )可以使用惯性定位數據辅助GPS信號跟蹤環路, 20從而提高了其在噪聲和動態環境下的追蹤能力。 . (2) 當GPS信號暫時消失後,慣性定位系統不但可提 供定位訊息,而且可以降低重新捕獲Gps信號所需的搜 時間。 " (3) 當GPSjg號可以獲得時f慣性定位系統的誤差和 ---------裝------訂------ (請先閲請背面之注意事項再壤窝本頁} 本紙張尺度適用中國國家榡準(CNS ) A4規格( 83. 3, *〇,〇〇〇 4441 2 9 Α7 Β7 經濟部中央操準局貝工消費合作社印製 五、發明説明(5 ) 慣性感應器的誤差可以被校正,因此Gps信號消失後,慣 性定位系統可提供更精確的位置訊息。 (4)借助於載體機動,GPS可以對惯性定位系統進行 動基座對準,從而可取消慣性定位系統在進入正常操作之 5前所需的靜基座對準》 但是上述的性能優點,並非是任何標準的組合Gps/慣 性定位系統都可達到的。現有以下幾種由各種硬體及軟體 標準所組合GPS/慣性定位系統: (1) 第一種方法,也是最簡單的一種組合方式,那 10就是使用GPS的位置和速度,.來重調慣性定位系統。.. (2) 第—種方法被稱為串聯式(Cascaded 丨 組合GPS/'h性疋位系統;在适種組合方式中,組合Gps/慣 性定位系統的卡爾曼濾波器(Kalman Filter),使用GPS接收 機内部的卡爾慮波器的輸出,作為它的量刺,這種方法 15具有濾波路驅動濾波器的結構特點。 (3 )桌二種方法稱為緊賴合) gps/慣 性定位系統;在這種組合方式中,組合卡爾曼濾波器直接 處理GPS接收機的原始測量值(偽距和偽距率獲得慣性 定位系統誤差、慣性感應器誤差、GPS接收機時鐘誤差的 20最佳估計;惯性定位系統係用來辅助GPS接收機的信號跟 環路,用以提高GPS接收機在噪聲和高動態環境下的信號 跟蹤性能。 ° Λ 緊耦合GPS/慣性定位系統是努力實現上述組合Gps/慣 性定位系統潛在優點的結果。 " (请先閲讀背面之注意事項再填寫本Κ ) -裝. -訂 本紙張尺度適用中國囤家檁準(CNS ) Α4規格(210Χ297公釐) 83.3.10,000 經濟部中央樣準局®C工消f合作社印製· / 444129 A7 "------ B7 五、發明説明(6 ) 一' —〜' 僅管緊耦合GPS/慣性定位系統已得到了實際應用,但 是對於實現GPS/慣性定位系統的最優組合來説,傳統的緊 耦合GPS/慣性定位系統仍然有許多不足之外,這主要是由 於兩系統之間數據交換的不足所造成的潛在的不穩定。 5 給健㈣合⑽/雜定位賊娜職不穩定的原 因在於: (1) 慣性輔助的GPS信號跟蹤環路具有窄的帶寬,其 時間常數還大於GPS/慣性組合的卡爾曼職器的更新周期 ,慣性輔助誤差被緩慢地濾掉;GPS信號追蹤誤差不但是 10與時間有關,而且與組合卡爾曼據波器中建立的慣性定位 系統的誤差是細的H受哪信舰職差擾賴 GPS偽距、偽距率量測的統計特性,與組合卡爾曼遽波對 量測的要求是不相容的。 、 (2) 在傳統的緊耦合GPS/慣性定位系統中,存在一 I5個JE反||回路:慣性定位數據下降會增大Gps接數器的追 ,誤差’·囡為GPS量測的精度會嚴重影嚮為低精度慣性定 2系統的卡爾曼㈣器的健,這樣,誤差在增大的GPs 量測被饋入組合卡爾曼濾波器處理,進一步會導致慣性輔 助誤差的增大。 20 除了上述的不穩定性問題,傳統的緊耦合GPS/慣性定 位系統方法不便於撿測和隔離發現故障^^^衛星的信號, 這是由於組合卡爾曼濾波器以集中的方式處理所有^ 訊息。 本發明之主要目的在提供一種全融合導航定位方法, 本紙張肅用―石 83. 3. 10,000 ---------rvt.------IT------.}級 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央樣準局員工消費合作社印製 444129 A7 B7 五、發明説明(7 ) '— 其中,來自GPS、憤性角速率感應器、慣性加速度感應器 的信息’用全融合的方式進行處理來提高其性能,以滿足 -些性能要求__用場合,如長期的高精度、高動態 能力及抗干擾釓力;本發明不但可用現有的硬體實現,而 5且更適合臟在出現的圖片級集成㈣㈣ 的硬體實現者。 本發明之又一目的在提供一種全融合導航定位方法, 其中,探用了全數位、多層信號/數據處理流程者。 本發明之再一目的在提供一種全融合導航定位方法, 10其中,傳統的基於鎖相環路的GPS信號追蹤方法,被一種 在整個系統中實現GPS信號追縱方法取代;Gps信號的追 蹤處理方法在整個GPS/慣性定位系統中被實現,以便克服 傳統緊耦個GPS/慣性系統的潛在不穩定性,增強〇]?3在高 動態和強干擾環境中的信號追蹤能力者。 15 本發明之另一目的在提供一全融合導航定位方法,其 中,一個最大依然估計器提供GPS偽距和偽距率的追蹤誤 差,以便補償GPS的偽距和偽距率測量中的相關噪聲,同 時融合之後的最佳導航參數用來計算預测的Gps的偽距和 偽距率,來包含GPS信號的追蹤環路者。 20 本發明之另一目的在提供一全融合導肮定位方法,其 中’具有雙重功能的融合濾波器不但用來融合GPS和慣性 感應器的數據,而且具有GPS信號追蹤環路的環路濾波功 能者。 本發明之另一目的在提供一全融合導航定位方法,其 ---------){^------1T----- (請先聞讀背面之注意事項再填寫本頁) 本紙張纽適i中 ( CNS ) Α4· ( 21(};)<297公资) 83. 3. 10,000 444129 Α7 Β7 五、發明説明(8 ) 中,具有雙重功能的融合濾波器運用了平行、分散的卡爾 曼過遽器,以便於當GPS衛星出現故障時,據波器能重新 配置者。 本發明之另一目的提供一全融合導航定位方法,其中 5 ,探用多層的容錯設計以便增進該全融合定位結果的可靠 性者》 本發明之另一目的在提供一全融合導航定位方法,其 中’採用了多if的容錯設計,以便於實現GPS的全程監控 者。 10 為實現上逑目標,本發明提供的全融合導.航定位方法 包括以下步驟: (a) 績入來自GPS天線的GPS信號,及來自數據融合 的預測的偽距和偽距率變換和追蹤Gps信號,以便獲得偽 距和偽距率測量及其追蹤誤差,將之饋入上述的數據融合 15模塊。 (b) 接收來自慣性測量組件的運載體之角速率和加 速度信號,求解慣性導航方程式以獲得參考的導航方法, 並將位置、速度、姿態饋入上述的數據融合模塊。 (c) 融合上述的偽距和偽距率測量及其追蹤誤差, 經濟部中央榇準局貝工消費合作社印製 ---------o-^— (請先閱積背面之注意事項再填寫本頁) 訂 20以及參考的導航數據,獲得預測的偽距和偽距率,參考導 航參數和慣性感應器的誤差,以及最佳的導航參數。 圖示説明: 第一圖:係全融合導航定位方法的方塊圖。 第二圖:係GPS信號的預處理方塊圖。 -10,444129 A7 B7 V. Explanation of the invention (3) '-' Range estimation based on the inertial angular rate sensor and inertial acceleration sensor 'is usually used as the secret record system or inertial reference record of the New Zealand guide system; The most important point for positioning is its completely autonomous operating characteristics and providing a wide frequency band e ^ 5. However, the inertial positioning system is expensive and its error increases with time. This is mainly due to its sensor errors, such as gyroscope drift, Accelerometer bias and scale factor errors. Generally, the method to improve the accuracy of the inertial positioning system is to use a high-precision i-beam sensor and an external sensor to help the inertial positioning system. 10 Global Positioning System (GPS) is a satellite-based, global, all-weather radio positioning and timing system; the system was originally designed in a global public network system, providing countless users with receiving equipment Precise location 'speed and time information services. The user must have a specific receiver to obtain Global Positioning System services. 15 A traditional single-antenna GPS receiver handles the pseudorange and pseudorange of its code tracking loop and carrier tracking loop. Distance measurement (Delta Range) measurement provides user-accurate three-dimensional position, velocity, and time information, but no attitude information; under normal circumstances, GPS signal propagation errors and satellite errors, including selective availability (SelectiveAvailabiUty wide 20 GPS limitation However, the GPS signal is susceptible to intentional and unintentional interference and deception, and the GPS signal is easily blocked when the carrier is maneuvering. In addition, when the GPS signal noise is low or the carrier is performing high dynamic maneuver ^ GPS signal Easy to lose resulting in reduced performance "With the continuous reduction of the cost and volume of high-performance GPS receivers, many paper sizes apply the Chinese National Standard (CNS) A4 specification (210X297 cm) ---------- ----- IT ------ J (Please read the precautions on the back before filling out this page) 83.3.10,000 Printed by the Staff Consumer Cooperative of the Central Bureau of Standards, Ministry of Economic Affairs ί '444129 Α7 ______ Β7 V. Description of the invention (4) Antenna GPS receiver 'Probing interference phase technology can provide position and attitude information at the same time; this technology uses (}] ?; 3 carrier phase differential measurement on GPS multiple antennas, Obtain high-precision relative position measurement, and then convert it into attitude results; the advantage of this technique is that attitude precision of 5 degrees can maintain long-term stability and lower cost, but it still has a narrow bandwidth and is easy to be blocked. Interference characteristics, and to obtain three-axis carrier attitude measurement, at least three antennas must be configured, and the GPS antennas must only be separated from each other in order to have sufficient attitude resolution. Because of the separate inertial positioning system and separate With regard to these 10 inherent shortcomings of GPS receivers, a single inertial positioning system or a single Qps cannot appear in situations such as low cost and long-term high-precision continuous output. Because GPS receivers and inertial positioning systems have complementary characteristics Therefore, in many applications, the combined GPS / inertial positioning system can take advantage of the respective advantages of the two systems, can provide continuous navigation output, and has There are two independent 15 systems with high performance that cannot be achieved; since the concept of GPS was introduced in 1973, there have been many literatures on GPS / inertial positioning systems, and combined GPS / inertial positioning systems have been put into practical use. The advantages of the combined GPS / inertial positioning system can be summarized as follows: (1) Inertial positioning data can be used to assist the GPS signal tracking loop, thereby improving its tracking ability in noise and dynamic environments. (2) When the GPS signal After temporarily disappearing, the inertial positioning system can not only provide positioning information, but also reduce the search time required to recapture the Gps signal. " (3) When the GPS jg number is available, the error of the inertial positioning system and ----------------------------- (Please read the precautions on the back first Zailongwo Homepage} This paper size is applicable to China National Standards (CNS) A4 specifications (83. 3, * 〇, 〇〇〇〇4441 2 9 Α7 Β7 Printed by Shellfish Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs Explanation (5) The error of the inertial sensor can be corrected, so after the Gps signal disappears, the inertial positioning system can provide more accurate position information. (4) With the help of the carrier maneuver, GPS can perform the moving base alignment of the inertial positioning system. Therefore, the static base alignment required by the inertial positioning system before entering normal operation 5 can be canceled. However, the above-mentioned performance advantages are not achievable by any standard combined GPS / inertial positioning system. The following several existing Various hardware and software standards combined GPS / inertial positioning system: (1) The first method is also the simplest combination method, then 10 is to use GPS position and speed to readjust the inertial positioning system .. (2) The first method is called Cascaded GPS / 'h positioning system; In a suitable combination method, the Kalman filter of the GPS / inertial positioning system is combined, and the output of the Kalman filter in the GPS receiver is used as its measurement This method 15 has the structural characteristics of a filter-driven filter. (3) The two methods of the table are called tightly coupled) GPS / inertial positioning system; in this combination, the combined Kalman filter directly processes GPS reception. The machine ’s original measurement values (pseudo-range and pseudo-range rate obtain 20 best estimates of inertial positioning system error, inertial sensor error, and GPS receiver clock error; the inertial positioning system is used to assist the GPS receiver's signal and loop, It is used to improve the signal tracking performance of GPS receivers in noise and high dynamic environments. ° Λ Tightly coupled GPS / inertial positioning system is the result of efforts to realize the potential advantages of the combined GPS / inertial positioning system described above. (Please read the back Note for refilling this K)-Packing.-The paper size of the book is applicable to China Standards (CNS) Α4 size (210 × 297 mm) 83.3.10,000 Central Bureau of Standards of the Ministry of Economic Affairs® C Industrial Consumers Cooperative / 444129 A7 " ------ B7 V. Description of the invention (6) A '— ~' Only the tightly coupled GPS / inertial positioning system has been applied in practice, but for the realization of GPS / inertial positioning system In terms of the optimal combination, the traditional tightly coupled GPS / inertial positioning system still has many shortcomings, which is mainly due to the potential instability caused by the lack of data exchange between the two systems. The reasons for the instability in positioning are as follows: (1) The inertial-assisted GPS signal tracking loop has a narrow bandwidth and its time constant is greater than the update period of the Kalman server of the GPS / inertial combination. The inertial assistance error is slowly Filtered out; GPS signal tracking error is not only related to time, but also the error with the inertial positioning system built in the combined Kalman wave receiver is small. The interference caused by GPS is dependent on the GPS pseudorange and pseudorange rate. The statistical characteristics of the measurement are incompatible with the measurement requirements of the combined Kalman chirp. (2) In the traditional tightly coupled GPS / inertial positioning system, there is an I5 JE inverse || loop: the fall of the inertial positioning data will increase the tracking of the Gps connector, and the error '· 囡 is the accuracy of GPS measurement It will seriously affect the health of the Kalman filter of the low-precision inertial fixed system. In this way, the GPs measurement with increasing errors is fed into the combined Kalman filter for processing, which will further increase the inertial assistance error. In addition to the instability problems mentioned above, the traditional method of tightly coupled GPS / inertial positioning system is not convenient to detect and isolate faults ^^^ The signal of the satellite is due to the combined Kalman filter processing all the messages in a centralized manner . The main object of the present invention is to provide a fully integrated navigation and positioning method. This paper uses ―83. 3. 10,000 --------- rvt .------ IT ------. } Level (please read the notes on the back before filling this page) Printed by the Consumer Cooperatives of the Central Procurement Bureau of the Ministry of Economic Affairs 444129 A7 B7 V. Description of Invention (7) '— Among them are GPS, angry angular rate sensor, The information of the inertial acceleration sensor is processed in a fully integrated manner to improve its performance to meet some performance requirements. Applications such as long-term high accuracy, high dynamic capability, and anti-jamming force; the present invention can not only use existing Hardware implementation, and 5 is more suitable for hardware implementers who have dirty picture-level integration. Another object of the present invention is to provide a fully integrated navigation and positioning method, in which all digital, multi-layer signal / data processing processes are used. It is another object of the present invention to provide a fully integrated navigation and positioning method.10 Among them, the traditional GPS signal tracking method based on phase-locked loop is replaced by a GPS signal tracking method in the entire system; Gps signal tracking processing The method is implemented in the entire GPS / inertial positioning system in order to overcome the potential instability of traditional tightly coupled GPS / inertial systems and enhance the signal tracking ability in high dynamic and strong interference environments. 15 Another object of the present invention is to provide a fully integrated navigation and positioning method, in which a maximum estimator provides tracking error of GPS pseudorange and pseudorange rate in order to compensate for GPS pseudorange and related noise in pseudorange rate measurement. At the same time, the best navigation parameters after fusion are used to calculate the predicted pseudo-range and pseudo-range rate of the GPS to include the tracking loop of the GPS signal. 20 Another object of the present invention is to provide a fully-fusion-guided positioning method, in which a fusion filter with dual functions is used not only to fuse GPS and inertial sensor data, but also to have a loop filtering function of the GPS signal tracking loop. By. Another object of the present invention is to provide a fully integrated navigation and positioning method, which ---------) {^ ------ 1T ----- (Please read the precautions on the back before reading (Fill in this page) This paper New Zealand i (CNS) Α4 · (21 (};) < 297 public funds) 83. 3. 10,000 444129 Α7 Β7 5. In the description of the invention (8), a fusion filter with dual functions The device uses parallel, decentralized Kalman filters, so that when the GPS satellite fails, the data receiver can be reconfigured. Another object of the present invention is to provide a fully integrated navigation and positioning method. Among them, 5 is a multi-layer fault-tolerant design to improve the reliability of the fully integrated positioning result. Another object of the present invention is to provide a fully integrated navigation and positioning method. Among them, a multi-if fault-tolerant design is adopted to facilitate the realization of GPS's full monitor. 10 In order to achieve the upper target, the fully integrated navigation and navigation positioning method provided by the present invention includes the following steps: (a) GPS signals from GPS antennas, and predicted pseudorange and pseudorange rate conversion and tracking from data fusion Gps signals in order to obtain pseudorange and pseudorange rate measurements and their tracking errors, and feed them into the above-mentioned data fusion 15 module. (b) Receive the angular velocity and acceleration signals of the carrier from the inertial measurement component, solve the inertial navigation equation to obtain a reference navigation method, and feed the position, velocity, and attitude into the above-mentioned data fusion module. (c) Integrating the above-mentioned pseudorange and pseudorange rate measurements and their tracking errors, printed by the Shellfish Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs --------- o-^ — (Please read the Please fill in this page again before ordering) Order 20 and the reference navigation data to get the predicted pseudorange and pseudorange rate, the reference navigation parameter and the error of the inertial sensor, and the best navigation parameter. Graphic description: The first figure: a block diagram of the full fusion navigation positioning method. Figure 2: Block diagram of GPS signal preprocessing. -10,

444 12 9 A7 B7 五、發明説明(9 ) 第三圖:係GPS信號預處理之數位信號處理模塊方塊 圖 第四圖:係慣性測量組件的信號的預處理方塊圖。 第五圖:係數據融合模塊方法之一。 第六圖:係數據融合模塊方法之二。 圖號説明: 10 5-天線 20-GPS信號預處理模塊 22-IF/基帶轉換器 24-數控震盪器 26-混頻器 28-最大似然估計模塊 30-碼產生器 10-慣性測量組件 21-RF/EF轉换器 23-A/D轉換器 25-數字信號處理模塊 27-相關器 29-Sine-Cosine信號產生器 31-碼震盪器 (請先Μ讀背面之注意事項再填寫本頁) 15 20 經濟部中央標準局員工消費合作社印製 50-慣性測量組件預處理模塊51、84、89-FDIR 5 2 -誤差補償模塊 5 3 -姿態矩陣計算模塊 54- 座標變換模塊 56-參考導肮參數計算模 塊 55- 地球和載體角速率計算模塊 80-數據融合模塊 81-集中處理濾波器模塊 82、 87-減法器 85-本地濾波器模塊 83、 88-預测的偽距和偽距率計算模塊 56- 主濾波器模塊 90、91-開關 本發明係GPS信號和慣性感應器信號之全融合導航定 位方法,以便提供運载體之連續的位置信息;請參閲第一 -11- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 83. 3.10,000 ^ . 4 4 -4 1 2 9 A7 五、發明説明(10 ) 一- $第六圖所示,本發明之全融合導航定位方法包含下列 1‘饋入來自GPS天線5之GPS信號,對之進行轉換和預 處理、’以便獲得GPS的測量數據,包括偽距' 偽距率,並 5將之送入數據融合模塊8〇 ; 接收來自慣性測量組件10的運載體之角速率和加速 度信號徵據’求解慣性導航方程式以獲得參考的導航數據 ,如位置、速度及姿態等,並將之送人數據融合模塊. 3.融合上逑GPS的测量數據和參考慣性導航參數,以 10便獲得最佳旳定位信息; 為了提咼系統性能,在第一步驟中,GPS信號的追蹤 處理探用開環方式,且完整的GPS信號追蹤環路在數據融 合模塊80中閉合’以便提高對干擾和載體高動態的容限。 為了提高系統的性能,在第二步驟中,來自數據融合 15模塊80的參考導航數據誤差的最佳估計值用來補償參考導 航數據中的誤差。 如第二圖所示,第一步驟進一步包含以下步驟: 經濟部中央標準局員工消費合作社印製 (1-1)由GPS天線5接收的L段GPS RJF(Radio Frequency) 信號’被傳入一RF/IF (Intermediate Frequency )轉換器21, 20输入的妳信號和來自本地數控震盪器24的信號進行混頻, 混頻之後的信號,經低通濾波被轉換為中頻(IF)信號,並 被輸出給一IF/基帶轉換器22。 GPS衛星發射L1波段的GPS RF粗捕獲(Coarse Acquisition,C/A)碼和精確碼(Precision Code,P碼)信號,其 -12- 83. 3.10,000 II mu " i i'},)裝— —--- H ^ • '' (請先閲讀背面之注意事項再填寫本頁) 本紙珉尺度適用中國國家操準(CNS)A4规格(21〇幻97公麓) 444129 A7 B7 五、發明説明(11 ) 第i顆GPS衛星發射的L1波段信號是 - (0 = ο〇5(ω,( + φ) + -j2P^P(t)iD(t)i ύη(ωχ( + φ) 其中:ω, : L1載波角頻率。 0:小的相位噪聲和震盪器漂移部份。 Pc : C/A碼信號的功率。 Ρρ : Ρ碼信號的功率。 10 CA(t) : C/A 碼; P(t) : P碼; D(t) ··導航數據; GPS衛星也發射L2波段的RF及P碼信號·,第瀬GPS衛 15 星發射的L2信號可表示為: S 尸(ί) = 乃⑺,.cos(iiV + A), (請先閲讀背面之注意事項再填寫本頁) 裝· 訂 經濟部中央標準局員工消費合作社印製 20 其中::是L2載波角頻率; Pj L2-P碼信號的功率; 01 :小的相位噪聲和震盪器漂移部份; Ρ⑴·· Ρ碼; D(t):導航數據。. -13- 本紙張尺度適用中國國家標準{ CNS ) Μ規格(210X297公釐) 83.3. 10,000 444 1 2 A.7 B7 五、發明説明(12 ) 這些信號以光速傳播,並被GPS天線5接收到的GPS信 號可表示為: 5 L1 : S·1 (0 = (1 - η )Di (〇 cos[(^! + ωίά )t + φ)} + ^lFpPt{t)D-Xt)sm^^ +ωιά)ί + φ)'\ 10 L2 = t (’)= (/ - Γ )D: (t)cos[(w2 + ωιά )t + )], (請先閲绩背面之注意事項再填寫本頁) 經濟部争央標準局員工消費合作社印製 15 其中,r :是碼延時。 〇(^;是多普勒角頻率 . i :表示第i顆GPS衛星 GPS天線5接收到的GPS信號被饋入GPS信號預處理模 20 塊20的RMF轉換器21。 (I-2)來自該RF/IF轉換器21的GPSEF信號被該正/基帶 轉换器22接收,該IF信號與來自該數控震盪器24的信號進 行混頻,然後該混頻過之信號被放大、低通濾波、及轉換 為基帶信號;對C/A碼頻道進行濾波的低通(LP)濾波器的 -14- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 81 3. 10,000 444129 A7 B7 五、發明説明(13 ) 帶寬是1.023MHz,對p碼頻道進行低通爐波的谏波器的帶 寬是10,23MHz ;該基帶信號被送入A/D轉換器23。 (1-3)來自Π7基帶轉换器22的基帶信號是模擬信號,它 被A/D轉換器23接收,該模擬基帶信號被採樣,並形成數 5位信號’其探樣頻率是偽隨機信號頻率的2倍((:/八碼信號 的頻率是2.1518MHz,p碼信號的頻率是21.518MHz.);输 出的數位信號被饋入數字信號處理模塊25 ; _轉換器23 輸出的第i個衛星的數位LI C/A數位信號可表示為: ίο 咖)=4C4[(1+c>7⑽队切 id 吨) 經濟部争夬襟準局員工消费合作杜印製 其中: A:信號幅度》 CA[·]:碼速率為R_,τ = $Τρ與GPS時間相比(Τρ τε碼片寬度),延時為ml的PRN信號,其碼速率等 於(1+e ) R〇,其中 t=fd/fL,且FL是RJF頻率,R() 是沒有經過多普勒頻移(Doppler shift)的碼速率; Ts :是探樣周期》 : 2;riVrs是基帶頻率fb的數位角頻率》 ω & : 2 ττ fdTs是多普勒頻移%的數位角頻率》 0〇 :是n=o時的初始载波相位。 N⑻:是基帶頻率的等效高斯(Gaussian)噪聲。 (1-4)請參閲第二圖及第三圖所示,來自A/D轉換器23 -15- 本紙張尺度適用中囷國家樣隼(CNS >八4说格(21〇乂2刃公釐) 83- 3. !0,〇〇〇 ---------)¾.------1T------ύ ·. 、 (请先閎請背面之注意事項再填寫本頁) 444129 五、發明説明(14 )444 12 9 A7 B7 V. Description of the invention (9) Figure 3: Block diagram of digital signal processing module for GPS signal preprocessing Figure 4: Block diagram for signal preprocessing of inertial measurement component. Figure 5: One of the methods of data fusion module. Figure 6: The second method of data fusion module. Description of drawing number: 10 5-antenna 20-GPS signal pre-processing module 22-IF / baseband converter 24- numerically controlled oscillator 26-mixer 28-maximum likelihood estimation module 30-code generator 10-inertial measurement component 21 -RF / EF converter 23-A / D converter 25-digital signal processing module 27-correlator 29-Sine-Cosine signal generator 31-code oscillator (please read the precautions on the back before filling this page) 15 20 Printed by the Central Consumers Bureau of the Ministry of Economic Affairs, Consumer Cooperatives 50-Inertial measurement component pre-processing modules 51, 84, 89-FDIR 5 2-Error compensation module 5 3-Attitude matrix calculation module 54-Coordinate transformation module 56-Reference guide Parameter calculation module 55-Earth and carrier angular rate calculation module 80-Data fusion module 81-Central processing filter module 82, 87-Subtractor 85-Local filter module 83, 88-Predicted pseudorange and pseudorange rate calculation Module 56- Main filter module 90, 91- switch The present invention is a fully integrated navigation and positioning method of GPS signals and inertial sensor signals in order to provide continuous position information of the carrier; please refer to the first 11- this paper Standards apply to Chinese National Standard (CNS) Α4 regulations (210X297 mm) 83. 3.10,000 ^. 4 4 -4 1 2 9 A7 V. Description of the invention (10) I-$ As shown in the sixth figure, the full fusion navigation positioning method of the present invention includes the following 1 'feed The GPS signal from the GPS antenna 5 is converted and pre-processed, in order to obtain GPS measurement data, including pseudorange, and the pseudorange rate, and 5 is sent to the data fusion module 8; receives the inertial measurement component 10 The angular velocity and acceleration signal evidence of the carrier 'solve the inertial navigation equation to obtain reference navigation data, such as position, velocity, and attitude, etc., and send it to the data fusion module. 3. Fusion of the GPS measurement data and With reference to the inertial navigation parameters, the best positioning information is obtained at 10. In order to improve the system performance, in the first step, the tracking processing of the GPS signal uses an open-loop method, and the complete GPS signal tracking loop is in the data fusion module. Closed in 80 'in order to increase the tolerance to interference and high dynamics of the carrier. In order to improve the performance of the system, in the second step, the best estimate of the reference navigation data error from the data fusion 15 module 80 is used to compensate for the error in the reference navigation data. As shown in the second figure, the first step further includes the following steps: Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (1-1) The L-band GPS RJF (Radio Frequency) signal 'received by GPS antenna 5' is transmitted to a The RF / IF (Intermediate Frequency) converters 21 and 20 input your signals and the signals from the local numerically controlled oscillator 24 to mix them. The mixed signals are converted into intermediate frequency (IF) signals by low-pass filtering, and It is output to an IF / baseband converter 22. GPS satellites transmit GPS Coarse Acquisition (C / A) code and Precision Code (P code) signals in the L1 band, which are -12- 83. 3.10,000 II mu " i i '},) Packing — — --- H ^ • '' (Please read the precautions on the back before filling this page) This paper's standard is applicable to China National Standards (CNS) A4 (21Magic 97). 444129 A7 B7 V. (11) The L1 band signal transmitted by the i-th GPS satellite is-(0 = ο〇5 (ω, (+ φ) + -j2P ^ P (t) iD (t) i ύη (ωχ (+ φ) Among them: ω,: L1 carrier angular frequency. 0: Small phase noise and oscillator drift part. Pc: Power of C / A code signal. Ρρ: Power of P code signal. 10 CA (t): C / A Code; P (t): P code; D (t) · · navigation data; GPS satellites also transmit RF and P code signals in the L2 band ·, the L2 signal transmitted by the 15th GPS satellite can be expressed as: ί) = Nai, .cos (iiV + A), (Please read the precautions on the back before filling out this page) Binding and printing Printed by the Central Consumers Bureau of the Ministry of Economic Affairs Consumer Cooperatives 20 where:: is the L2 carrier angular frequency; Power of Pj L2-P code signal; 01: small phase noise and Drift part of the oscillator; PG code; D (t): navigation data. -13- This paper size applies to the Chinese National Standard {CNS) M specification (210X297 mm) 83.3. 10,000 444 1 2 A.7 B7 V. Description of the invention (12) The GPS signals that are transmitted at the speed of light and received by the GPS antenna 5 can be expressed as: 5 L1: S · 1 (0 = (1-η) Di (〇cos [(^! + ωίά) t + φ)} + ^ lFpPt (t) D-Xt) sm ^^ + ωιά) ί + φ) '\ 10 L2 = t (') = (/-Γ) D: (t) cos [ (w2 + ωιά) t +)], (Please read the notes on the back of the results before filling out this page) Printed by the Consumer Cooperatives of the Bureau of Conflict and Standards of the Ministry of Economic Affairs 15 where r: is a code delay. 〇 (^; is the Doppler angle frequency. I: indicates that the GPS signal received by the i-th GPS satellite GPS antenna 5 is fed into the GPS signal pre-processing module 20 RMF converter 21 of block 20. (I-2) comes from The GPSEF signal of the RF / IF converter 21 is received by the forward / baseband converter 22, the IF signal is mixed with the signal from the numerically controlled oscillator 24, and then the mixed signal is amplified, low-pass filtered, And converted to baseband signals; low-pass (LP) filters for filtering C / A code channels. -14- This paper size applies to China National Standard (CNS) A4 specifications (210X297 mm) 81 3. 10,000 444129 A7 B7 V. Description of the invention (13) The bandwidth is 1.023MHz, and the bandwidth of the low-pass furnace wave wave filter for the p-code channel is 10,23MHz; the baseband signal is sent to the A / D converter 23. (1-3) The baseband signal from the Π7 baseband converter 22 is an analog signal, which is received by the A / D converter 23. The analog baseband signal is sampled and formed into a digital 5-bit signal. (: The frequency of the / eight-code signal is 2.1518MHz, and the frequency of the p-code signal is 21.518MHz.); The output digital signal is fed into the digital The signal processing module 25; _ The digital LI C / A digital signal of the i-th satellite output by the converter 23 can be expressed as: ίο =) = 4C4 [(1 + c > 7⑽team cut id ton) Printed by the Bureau ’s consumer cooperation. Among them: A: Signal amplitude》 CA [·]: The code rate is R_, τ = $ Τρ compared with GPS time (Tρ τε chip width), the delay is ml PRN signal, its code The rate is equal to (1 + e) R0, where t = fd / fL, and FL is the RJF frequency, and R () is the code rate without Doppler shift; Ts: is the sampling period. 2; riVrs is the digital angular frequency of the baseband frequency fb "ω &: 2 ττ fdTs is the digital angular frequency of the Doppler shift%" 0: is the initial carrier phase when n = o. N⑻: is the baseband frequency Equivalent Gaussian noise. (1-4) Please refer to the second and third figures, from the A / D converter 23 -15- This paper standard is applicable to the Chinese national sample (CNS > 4 Grid (21〇 乂 2 blade mm) 83- 3.! 0, 〇〇〇 ---------) ¾ .------ 1T ------ ύ ·. (Please fill in this page with the precautions on the back) 444129 V. Description of the invention (14 )

10 15 經濟部中央操準局員工消费合作社印製 的數位基帶信號和來自該數據融合模塊8〇的預 和载波多《齡,均_財信號處讎肋接收1延= f算出偽距和偽距_量j從每個追蹤衛星輪= 據融合模塊80之偽距及偽距率的追蹤誤差。 由數控震盪器24產生的本地參考信號被輸入到即 換器=、Π7基帶轉換器22、以及數字信號處理模塊^。 請參閱第三醜示,來自A/D轉換器23的數位信號與 來自Sme-Cosine信號產生器的本地同相(In_phase ,交 (Quadraphase , Q)信號在混頻器26中進行混頻,混頻之後 的本地同相(I)和正交(Q)信號被送入相關器27。 來自混頻器26之經過混頻的同相和正交信號及來自碼 產生器30的本地碼,被該相關器2?接收並進行相關處理: 而相關處理的結果被送入最大似然估計模塊 Likelihood Estimator)28。 來自該相關器27的N個樣本相關計算結果,被最大似 然估5十彳吴塊28進行探集,假定在一小段的時間内,碼延時 和載波多普勒頻移是常值,最大似然估計模塊烈可做出碼 延時和載波多普勒頻移的追蹤誤差的最大似然估計,並將 之轉換為偽距和偽距率的追蹤誤差,並將之輸出給數據融 合模塊80。 來自該數據融合模塊80之預測多普勒頻移被饋入該瑪 震燙器31中,用以計算碼速率,產生的一定碼速率 PRN(Pseudo-random Noise)碼被馈入該碼產生器3〇 » 來自該碼震盪器31的一定碼速率之PRN碼,和來自該 ^-- (請先聞請背面之注意事項再填寫本I) 訂- -16- 本紙張尺度適用中國國家標準(CNS > A4規格(210X297公釐) 83.3.10,000 經濟部中央標準局員工消費合作社印製 A7 ^ ^-------B7 五、發明説明(15,) 數據融合模塊80的預測碼延時被饋入該碼產生器3〇,並用 來產生本地准時碼以及計算偽距、偽距率測量;產生的本 地准時碼被送入該相關器27,並用解調衛星星曆數據,解 調出的衛星星曆被送入數據融合模塊80 ,且得出的偽距和 5偽距率測量被送入數據融合模塊80。 來自該數據融合模塊80的預测载波多普勒頻移被馈入 S^ie-Cosine信號產生器29中,用以產生本地的同相和正交 Ϊ5號以及计算偽距率测量,產生的同相和正交信號被送入 該混頻器26,得出的偽距率測量被送入數據融合模塊8〇。 10 請參閲第四圖所示,第二步驟有兩種操作模式: ⑴反饋補償(Feedback Compensation); (2)刖饋補償(Feedforward Compensation)。 運載體之角速率和加速度信息,可由下列兩種慣性潮 量組件提供: 15 丨)包含三個正交安裝的陀螺儀和三個正交安裝的加速 度計的慣性測量組件,以輸出三_軸角速率和加速度數據 〇 2)包含三個以上斜置安裝的陀螺儀和三個以上斜置安 裝的加速度計,輸出餘度的角速率和加速度數據。 20. 因而,第二步驟進步包含: 2(A)慣性測量組件預處理模塊5〇是採用反饋補償方式 ,該慣性测量組件,包含三個正交安裝的陀螺儀和三個正 交安裝的加速度計,該慣性測量組件預處理摸塊5〇其輸出 的三軸角速率和加速度數據,以及來自該數據融合模塊8〇 -17- 本紙張尺度通用中國國家標準(CNS ) A4規格(2i〇X297公釐) 83. 3. !〇,〇〇〇 (請先聞讀背面之注意事項再填寫本頁) -装· 訂 經濟部中央標準局男工消費合作社印箪 444129 —^__二 . X - · - 五、發明説明(16 ) 的慣性感應器誤差的最佳估計,被输入該慣性測量組件預 處理糢塊50的信號預處理部份之誤差補償模塊52。 用慣性感應器誤差的最佳估計來補償三軸角速率和加 速度中的誤差,經誤差補償之三軸角速率被输出給姿態矩 5陣計算模塊53,經誤差補償之後的加速度被输出給座標變 换模塊54。 ' 來自該誤差補償模塊52的運载體角速率數據、來自地 球和载體角速率計算模塊55的從當地導航座榡系(11系)到慣 性座標系(i系)的旋轉向量、以及來自數據融合模塊8〇的參 W考導航結果誤差的取佳估計,被输入姿態矩陣計算模塊53 内1用來更新從機體座標系(b系)到導航座標系扣系)的姿態 矩陣,同時去除姿態矩陣的誤差;得出的姿態矩陣被輸出~ 給該座標變換模塊54和參考導航參數計算模塊56。 更新姿態矩陣的方法為尤拉(Euler)法,方向餘弦' 15 (Pkect丨〇nCosine)法,四元數(qUatemfon)& s 來自誤差補償模塊52的補償加速度數據是表達在機體 座才示系內的,匕和來自該姿態矩陣計算模塊53之姿態矩陣 均被該座標變換模塊54接收,並將表達在機體座標系内的 加速度轉換為表達在導航座標系內的加速度,且輸出給參 20 考導航參數計算模塊56 〇 ~ # 來自該座標變換摸塊54之表達在導航座標系内的加速 度、來自該姿態矩陣計算模塊53之姿態矩陣,以及來自該 數據融合模塊80之參考導航誤差的最佳估計,均被該參考 導航參數計算模塊56接收,用來計算參考的位置、速度、 -18- 本紙張尺度逍用中國國家襟準(0犯).八4規格(21〇><297公楚) --------:)壤------tr------,J (请先閲讀背面之注意事項再填寫本頁) 83.3. 10,000 9 、發明説明(17) A7 B7 10 15 20 經濟部中夬檫準局員工消費合作社印製 態數據,並移除位置、速度數據結果的誤差;得出的參 導,結果’如位置、速度、姿態再輸出給地球和載體角 速率計算模塊S5和該數據融合模塊80 β ,,來自該參考導航參數計算模塊56之參考導航參數,被 =地球和載體角速率計算模塊55接收,並用來計算當地導 ‘座標系到慣健標系的旋轉角速率,且將之输出至該姿 態矩陣計算模塊53。 、2㊉)該慣性测量組件預處理模塊(50)探用前馈補價方 =I該慣性潮量組件包含三個正交安裝的陀螺儀和三個正 又安裝的加速度計,其輸出的三軸角速率和加速度數據被 饋入該慣性測量組件預處理模塊50内;三軸角速率數據被 饋入該姿態矩陣計算模塊53 ,而三軸加速度則被饋入該座 標變換模塊54。 來自該惯性測量組件10之運載體角速率數據、來自該 1球和載體角速率計算模塊%之從當地導航座標系②系)到 f貝性座榡系(i系)的旋轉向量,被输入該姿態矩陣計算模塊 53,並用來更新機體座標系⑴系)到導航座標系(11系)的姿態 矩陣;得出的姿態矩障被输出給該座標變換模塊54和參考 導航參數計算模塊56。 更新姿態矩陣的方法有尤拉法、方向餘弦法、四元數 法》 ㈤來自該惯性测量組件10的加速度數據是表達在機體座 標系內的,它和來自該姿態矩陣計算模塊53的姿態矩陣被 該座標變換糢塊54接收,並將表達在機體座標系內的加速 -19- ί-—--J tut tl I- - 1 n^l ^mfe /L (资先閲请背面之注意事項朞填窝本頁) 訂 83‘3- ΐ"ί〇ο〇 444129 A7 B7 五 座標系内的加速度.細給參考導 來f該座標難難54之表達在該鋪系内的加 10 if i及來自該姿態矩陣計算模塊53的姿態矩被該參 速 出給該地球和载體角速率計算模;:該=融: 來自鮮轉航錄計算魏财鳄_參數 孩地球和《H速率計算魏55純,並縣計算當地 ,座標系·健《的旋轉角神,讀之输出至該姿 讀計算模塊56純,並縣計算參_位置 又姿態數據;得出的參考導航參數,如位置、速度、 導 15 經濟部中央標準局員Η消费合作衽印製 20 態矩陣計算模塊53 a、2(c)該惯性测量組件預處理模塊5〇探用反饋補償方式 、;該慣性測量組件包含三個以上斜置安裝的陀螺儀和三個 以上斜置安裝的加速度計,其輸出的餘度角速率和加速度 數據以及來自該數據融合模塊80的慣性感應器誤差之最佳 估計被饋入該慣性測量組件預處理模塊犯之^:)!^ 5丨內, 用來執行輸入之餘度角速率和加速度數據的故障檢測、隔 離、及恢復,以獲得可信賴的三軸角速率和加速度數據; 該得到之三軸角速率和加速度數據則被输入至該誤差補償 模機S2内《 從該FDIR 51得到之三軸角速率及加速度敷據,以及 .來自該數據融合模塊80之慣性感應器誤差的最佳估計,均 被輪入該誤差補償模塊54內;並用慣性感應器誤差的最佳 - 20- 本紙)A4規格(210X297公釐) 83.3. !0,〇〇〇 Q.裝------ΤΓ------,J (請先聞讀背面之注意事項再填寫本頁) 444129 經濟部中夬標準局員工消費合作社印製 A7 B7 五、發明説明(19) 估計來補償三軸_率和加速度中的誤差;漏償三軸角 速率被输人觀態贿計龍塊洲,雌三轴加速 度則被输入至該座標變換模塊54内β 來自該誤差補償模塊52的運載體角速率數據、來自該 5地球和載體角速率計算模塊55之從當地導航座標系(11系)到 ^ ϋ座標系(i系)的旋轉向量’以及來自該數據融合模塊80 之參考導航參數誤差的最佳估計,均被输入該姿態矩陣計 算模塊53,用來更新從機體座標系(b系)到導航座標系的姿 態矩陣’同時去除該姿態矩陣的誤差;得出的姿態矩陣被 10輸出給該座標變換模塊54和參考導航參數計算模塊56。 更新該姿態矩陣的方法有尤拉法、方向餘弦法、或四 元數法。 來自該誤差補償模塊52的補償加速度數據是表達在機 體座標系內的,它和來自該姿態矩陣計算模塊53的姿態矩 15陣被該座標變換糢塊54接收,並將表達在機體座標系内的 加速度轉換為表達在導航座標系內的加速度,且輸出給該 參考導航參數計算模塊56 » 來自該座標變换模塊54的表達在導航座標系内的加速 度、來自該姿態矩陣計算模塊53的姿態矩陣、以及來自該 2〇數據融合模塊80的參考導航參數誤差的最佳估計,被該參 考導航參數計算模塊56接收,用來計算參考的位置、速度 、姿態數據,並去除位置及速度數據的誤差;得出的參考 導航參數如位置、速度、姿態,再輸出給該數據融合模塊 80和該地球和載體角速率計算模塊55。 -21- ---------裝------訂------ (请先閲读背面之注意事項再填寫本頁) 本紙張 (2i0x297公幻 83. 3. 10,000 五、 發明説明(2〇) A7 B7 經濟部中央標準局負工消費合作社印製 來自該參考導航參數計算模塊56的參考導航參數,被 該地球和載體角速率計算模塊55接收,並用來計算由當地 導航座標系(rx系)到慣性座標系(i系)的旋轉角速率,並將之 輸出至該姿態矩陣計算模塊53。 5 2(d)該慣性測量組件預處理模塊5〇採用前饋補償方式 ’該慣性测量組件包含至少三個以斜置安裝的陀螺儀和三 個以上斜置安裝的加速度計,其輸出的餘度的角速率和加 速度數據被饋入該慣性測量組件預處理模塊兄之阳汉51 ,並用來執行感應器故障檢測、隔離、重構,輸出可靠三 10軸角速率和加速度數據;三軸角速率數據被饋入該姿態矩 陣計算模塊S3,三軸加速度被饋入該座標變換模塊54 ^ 來自FDIR的输入運载體角建率數據,及來自該地球和 載體角速率計算模塊55的從當地導航座標系(11系)到慣性座 標系(i系)的旋轉向量,被該姿態矩陣計算模塊53接收,用 15來更新機體座標系(b系)到導航座標系(n系)的姿態矩陣;得 出的姿態矩陣被输出給該座標變換模塊54和該參考導航參 數計算模塊56。 更新姿態矩陣的方法有尤拉法、方向餘弦法、及四元 數法。 20 來自fDIR 51的輸入加速度數據,是表達在機體座標 系內的,它和來自該姿態矩陣計算模塊53的姿態矩陣,均 被該座標變換模塊54接收,並將表達在機體座標系內的加 速度轉換為表達在導航座標系內的加速度,並輸出給該參 考導航參數計算模塊56。 -22- 本紙張尺度適用中國國家標準(CNS ) A4規格(2!0X297公釐) 83, 3. 10,000 --------Λ)1^------IT------J (請先閲讀背面之注意事項再填寫本頁}10 15 The digital baseband signal printed by the Consumer Cooperatives of the Central Operation Bureau of the Ministry of Economic Affairs and the pre-carrier carrier from the data fusion module 80. The age, average, and financial signal receive a delay of 1 = f to calculate the pseudorange and pseudo The distance_quantity j from each tracking satellite wheel = the tracking error of the pseudo-range and pseudo-range rate according to the fusion module 80. The local reference signal generated by the numerically controlled oscillator 24 is input to the converter =, the baseband converter 22, and the digital signal processing module ^. Please refer to the third scandal. The digital signal from the A / D converter 23 and the local in-phase (Quadraphase, Q) signal from the Sme-Cosine signal generator are mixed and mixed in the mixer 26. The subsequent local in-phase (I) and quadrature (Q) signals are sent to the correlator 27. The mixed in-phase and quadrature signals from the mixer 26 and the local code from the code generator 30 are received by the correlator. 2? Receive and perform related processing: The result of the related processing is sent to the maximum likelihood estimation module Likelihood Estimator) 28. The correlation results of the N samples from this correlator 27 are estimated by the maximum likelihood estimate 50. Block 28 is used for exploration. It is assumed that the code delay and carrier Doppler shift are constant values within a short period of time. The likelihood estimation module can make a maximum likelihood estimation of the tracking error of the code delay and the carrier Doppler frequency shift, and convert it into the tracking error of the pseudorange and pseudorange rate, and output it to the data fusion module 80 . The predicted Doppler frequency shift from the data fusion module 80 is fed into the Ma Zhen iron 31 to calculate the code rate, and a certain code rate PRN (Pseudo-random Noise) code generated is fed into the code generator 3〇 »A PRN code of a certain code rate from the code oscillator 31, and from this ^-(Please read the notes on the back before filling in this I) Order--16- This paper size applies to Chinese national standards ( CNS > A4 specification (210X297 mm) 83.3.10,000 A7 printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs ^ ^ ------- B7 V. Description of the invention (15,) Prediction code delay of the data fusion module 80 It is fed into the code generator 30 and used to generate local punctual codes and calculate pseudorange and pseudorange rate measurements; the generated local punctual codes are sent to the correlator 27, and the demodulated satellite ephemeris data is used to solve the problem. The retrieved satellite ephemeris is sent to the data fusion module 80, and the resulting pseudorange and 5-pseudorange rate measurements are sent to the data fusion module 80. The predicted carrier Doppler frequency shift from the data fusion module 80 is Feed into the S ^ ie-Cosine signal generator 29 to generate local in-phase and quadrature Ϊ No. 5 and the calculation of the pseudo-range rate measurement, the in-phase and quadrature signals generated are sent to the mixer 26, and the resulting pseudo-range rate measurement is sent to the data fusion module 80. 10 Please refer to the fourth figure The second step has two modes of operation: ⑴Feedback Compensation; (2) Feedforward Compensation. The angular velocity and acceleration information of the carrier can be provided by the following two types of inertial tide components: 15 丨) Inertial measurement assembly containing three orthogonally mounted gyroscopes and three orthogonally mounted accelerometers to output three-axis angular rate and acceleration data. 2) Including three or more obliquely mounted gyroscopes and three The accelerometer installed obliquely above outputs the angular rate and acceleration data of the margin. 20. Therefore, the second step progress includes: 2 (A) Inertial measurement component pre-processing module 50 is a feedback compensation method. The inertial measurement component includes three orthogonally mounted gyroscopes and three orthogonally mounted accelerations. Meter, the inertial measurement module pre-processes the three-axis angular rate and acceleration data of the output block 50, and the data fusion module 80--17- This paper standard is generally Chinese National Standard (CNS) A4 specification (2i〇297 (Mm) 83. 3.! 〇, 〇〇〇 (please read the notes on the back before filling out this page)-Binding and ordering the male labor consumer cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs, seal 444129 — ^ __ 二. X -·-5. The best estimate of the inertial sensor error of the invention description (16) is input to the error compensation module 52 of the signal preprocessing part of the preprocessing module 50 of the inertial measurement module. The best estimation of the inertial sensor error is used to compensate the errors in the three-axis angular rate and acceleration. The three-axis angular rate after error compensation is output to the attitude moment 5-array calculation module 53, and the acceleration after error compensation is output to the coordinates. Transformation module 54. '' Carrier angular rate data from the error compensation module 52, rotation vectors from the local navigation coordinate system (11 series) to the inertial coordinate system (i system) from Earth and carrier angular rate calculation module 55, and from The best estimate of the reference navigation error of the data fusion module 80 is input into the attitude matrix calculation module 53 to update the attitude matrix from the body coordinate system (b system) to the navigation coordinate system buckle system, while removing Error of the attitude matrix; the obtained attitude matrix is output to the coordinate transformation module 54 and the reference navigation parameter calculation module 56. The method of updating the attitude matrix is Euler's method, the direction cosine '15 (Pkect 丨 OnCosine) method, quaternion (qUatemfon) & s The compensation acceleration data from the error compensation module 52 is shown in the body base. In the system, both the dagger and the attitude matrix from the attitude matrix calculation module 53 are received by the coordinate transformation module 54 and the acceleration expressed in the body coordinate system is converted into the acceleration expressed in the navigation coordinate system, and output to the parameter 20 Test navigation parameter calculation module 56 〇 ~ # The acceleration in the navigation coordinate system expressed by the coordinate transformation module 54, the attitude matrix from the attitude matrix calculation module 53, and the reference navigation error from the data fusion module 80. The best estimates are received by the reference navigation parameter calculation module 56 and are used to calculate the reference position, speed, and standard of the paper. The national standard of China (0 offenses). 8 4 specifications (21〇 > < 297 Gongchu) -------- :) Soil ------ tr ------, J (Please read the notes on the back before filling this page) 83.3. 10,000 9 、 Invention Explanation (17) A7 B7 10 15 20 Ministry of Economic Affairs Bureau employee consumer cooperatives print state data, and remove errors in position and speed data results; the resulting guidance, such as position, speed, and attitude, is then output to the Earth and carrier angular rate calculation module S5 and the data fusion module 80 β, the reference navigation parameter from the reference navigation parameter calculation module 56 is received by the = earth and carrier angular rate calculation module 55 and is used to calculate the rotation angular rate of the local guide 'coordinate system to the inertial standard system, and Output to this attitude matrix calculation module 53. , 2㊉) The preprocessing module (50) of the inertial measurement component explores the feed-forward premium square = I. The inertial tide component contains three orthogonally mounted gyroscopes and three positively mounted accelerometers. The axial angular rate and acceleration data are fed into the inertial measurement component pre-processing module 50; the triaxial angular rate data is fed into the attitude matrix calculation module 53, and the triaxial acceleration is fed into the coordinate transformation module 54. The carrier angular rate data from the inertial measurement module 10, and the rotation vector from the local ball coordinate system (② system) to the f-shell coordinate system (i system) from the 1 ball and the carrier angular rate calculation module% are input. The attitude matrix calculation module 53 is used to update the attitude matrix of the body coordinate system (the coordinate system) to the navigation coordinate system (the 11 system); the obtained attitude moment barrier is output to the coordinate transformation module 54 and the reference navigation parameter calculation module 56. Methods for updating the attitude matrix include the Euler method, the direction cosine method, and the quaternion method. ㈤The acceleration data from the inertial measurement component 10 is expressed in the body coordinate system, and it is combined with the attitude matrix from the attitude matrix calculation module 53. Received by the coordinate transformation module 54 and will express the acceleration in the body's coordinate system -19- ί --- J tut tl I--1 n ^ l ^ mfe / L (Filling page on this page) Order 83'3-ΐ " ί〇ο〇444129 A7 B7 acceleration in the five-coordinate system. Give the reference guide f the coordinates of the difficult 54 expression in the shop system plus 10 if i And the attitude moment from the attitude matrix calculation module 53 is given to the earth and the carrier angular rate calculation module by the reference speed ;: the = fused: from the fresh transfer record calculation Wei Caiying_Parameter Earth and "H rate calculation Wei 55 is pure, and the county calculates the rotation angle of the local coordinate system Jian. The reading is output to the posture reading calculation module 56, and the county calculates the reference position and attitude data. The derived reference navigation parameters, such as position , Speed, guidance 15 members of the Central Standards Bureau of the Ministry of Economic Affairs, consumer cooperation, printing 20 moments Array calculation module 53 a, 2 (c) the inertial measurement component pre-processing module 50 for the feedback compensation method; the inertial measurement component includes three or more obliquely mounted gyroscopes and three or more obliquely mounted accelerometers , The output angular velocity and acceleration data and the best estimate of the inertial sensor error from the data fusion module 80 are fed into the inertial measurement component preprocessing module ^:)! ^ 5 丨, used to Perform fault detection, isolation, and recovery of the input angular velocity and acceleration data to obtain reliable triaxial angular rate and acceleration data; the obtained triaxial angular velocity and acceleration data are input to the error compensation mode In the machine S2, the three-axis angular rate and acceleration data obtained from the FDIR 51, and the best estimate of the inertial sensor error from the data fusion module 80 are turned into the error compensation module 54; and the inertia is used The best sensor error-20- this paper) A4 size (210X297 mm) 83.3.! 0, 〇〇〇Q. Installed ------ ΤΓ ------, J (please read the back first (Notes on this page, please fill out this page) Printed by A7 B7, Consumer Cooperatives of Ministry of Standards and Standards of the People's Republic of China. 5. Description of the invention (19) Estimate to compensate for errors in triaxial _ rate and acceleration; The three-axis acceleration is input into the coordinate transformation module 54. The carrier angular rate data from the error compensation module 52, and the local earth coordinate system (11 series) from the 5 Earth and carrier angular rate calculation module 55. The rotation vector 'of the ϋ coordinate system (i system) and the best estimate of the reference navigation parameter error from the data fusion module 80 are input to the attitude matrix calculation module 53 to update the body coordinate system (b system) to The attitude matrix 'of the navigation coordinate system removes the error of the attitude matrix at the same time; the obtained attitude matrix is output to the coordinate transformation module 54 and the reference navigation parameter calculation module 56 by 10. Methods for updating the attitude matrix include the Euler method, the direction cosine method, or the quaternion method. The compensated acceleration data from the error compensation module 52 is expressed in the body coordinate system, and it is received by the coordinate transformation module 54 with the attitude moment 15 matrix from the attitude matrix calculation module 53 and expressed in the body coordinate system. Acceleration is converted into the acceleration expressed in the navigation coordinate system and output to the reference navigation parameter calculation module 56 »The acceleration expressed in the navigation coordinate system from the coordinate transformation module 54 and the attitude from the attitude matrix calculation module 53 The matrix and the best estimate of the reference navigation parameter error from the 20 data fusion module 80 are received by the reference navigation parameter calculation module 56 to calculate the reference position, speed, and attitude data, and remove the position and speed data. Error; the obtained reference navigation parameters such as position, speed, and attitude are output to the data fusion module 80 and the earth and carrier angular rate calculation module 55. -21- --------- Install ------ Order ------ (Please read the precautions on the back before filling this page) This paper (2i0x297 Ghost 83. 3. 10,000 V. Description of the invention (20) A7 B7 The reference navigation parameter from the reference navigation parameter calculation module 56 is printed by the Central Standards Bureau of the Ministry of Economic Affairs and Consumer Cooperatives, which is received by the earth and carrier angular rate calculation module 55 and used to calculate The rotation angular rate from the local navigation coordinate system (rx system) to the inertial coordinate system (i system) is output to the attitude matrix calculation module 53. 5 2 (d) The inertial measurement component pre-processing module 50 Feed-back compensation method: The inertial measurement component includes at least three gyroscopes installed obliquely and more than three accelerometers installed obliquely. The angular rate and acceleration data of the excess degrees output by the inertial measurement components are fed into the inertial measurement component for preprocessing. The module Yangyang 51 is used to perform sensor fault detection, isolation, reconstruction, and output reliable three 10-axis angular rate and acceleration data; the three-axis angular rate data is fed into the attitude matrix calculation module S3, and the three-axis acceleration is Feed in the coordinate transformation module 54 ^ from FDI The input carrier angular rate data of R and the rotation vector from the earth and carrier angular rate calculation module 55 from the local navigation coordinate system (11 series) to the inertial coordinate system (i system) are used by the attitude matrix calculation module. 53 receives, and updates the attitude matrix of the body coordinate system (b system) to the navigation coordinate system (n system) by 15; the obtained attitude matrix is output to the coordinate transformation module 54 and the reference navigation parameter calculation module 56. Update attitude The methods of the matrix include the Euler method, the direction cosine method, and the quaternion method. 20 The input acceleration data from fDIR 51 is expressed in the body coordinate system, which is the same as the attitude matrix from the attitude matrix calculation module 53. Received by the coordinate conversion module 54, and converts the acceleration expressed in the body coordinate system into the acceleration expressed in the navigation coordinate system, and outputs it to the reference navigation parameter calculation module 56. -22- This paper standard applies to Chinese national standards (CNS) A4 specification (2! 0X297 mm) 83, 3. 10,000 -------- Λ) 1 ^ ------ IT ------ J (Please read the note on the back first Matters refill this page}

、發明説明(21 A7 B7 經濟部中央標準局員工消费合作社印製 來自該座標變换模塊54之表達在導航座標系內的加速 ,,及來自該姿態矩陣計算模塊53的更|^姿態矩陣,均被 該參考導航參數計算模塊56接收,並用來計算參考的位置 '速度、姿態數據,得出的參考導航參數如位置、速度、 5姿態等馳峰誠球和紐角料計算模妨和該數據 融合模塊80 » 來自該參考導航參數計算模塊S6的參考導航參數,被 該地球和·_率計算魏55接收,計算當地導航 座榡系(η系)到慣性座標系(i系)旋轉角速率,並將之输出给 1〇該姿態矩陣計算模塊53。 ^ 如第五圖和第六圖所示,第三步驟可用下列兩個方案 來實現。 3 (Α)集中式卡爾曼遽波器(centraiizecj Kalman Filter)方 案; 15 3⑼分散式卡爾曼濾波器(Decentralized Kalman Filter) 方案’如聯合卡爾曼濾波(Federated Kalman Filter)。 請續參閲第五圖及第六圖所示,第3(a)步驟進一步包含: 3(a)-l如第五圖所示,如果該慣性測量組件預處理模 塊50以反饋補償方式實現,則該開關9〇會與該慣性測量組 20件預處理模塊50閉合;從該慣性測量組件預處理模塊50之 參考導航參數,已被來自集中處理濾波器模塊81的參考導 航參數之誤差反饋最佳估計進行誤差補償,並被減法器82 接收,然後被饋入預測的偽距和偽距率計算模塊83,並作 為整個系統全融合的定位數據输出。 -23- 本紙張尺度適用中國國家標李(CNS ) A4規格(210X297公釐) 83.3.10,000 ---------^>裝------ir (請先閲读背西之注意事項异填窝本莢) 444129 五 、發明説明(22) A7 B7 10 15 20 經濟部中央標準局員工消費合作社印裝 式慣2量組件預處理模塊5⑽誤差前饋補償方 式Fi見’則涵開關9〇與該減法器82閉合 鱗預處理模塊50_考導航參數和來自該 器k塊關參考導航錄誤差婦佳估計,均被該減^器 82接收,並醜自該射處麵波難伽之參考導航參 數誤差的最佳估計來補償參考導航參數的誤差;被補償^ 之參考導航參數被ir出給預刺的偽距和偽距率計算模塊別 ,並作為整個系統的全融合的定位數據输出。 來自每一個GPS衛星的追蹤頻道之該數字信號處理模 塊25的衛星星曆、來自減法器82的參考導航數據、以及來 自GPS的接收器時鐘偏置和時鐘偏置率的最佳估計,均被 饋入該預測的偽距和偽距率計算模塊83。 每個追縱衛星頻道之預測的偽距和偽距率可用下列參 數計算得出:GPS衛星的位置和速度 '慣性測量組件的位 置和速度、卡爾曼(Kalman)估計的接收器時鐘偏置和偏置 率,確定性的GPS衛星時鐘校正,及計算信號的大氣延遲 0 每個被追縱的衛星頻道之預測的偽距和偽距率,均被 输給該集中處理濾波器模塊81,並被轉換為GPS信號的預 測碼延遲和載波多普勒頻移’及輸出給每個追縱衛星頻道 的該數字信號處理模塊25,用以閉合每個GPS接數器之信 號追蹤迴路。 3(a)-2參考導航參數誤差包括:三個位置誤差、三個 速度誤差、三個姿態誤差、以及慣性感應器誤差如加速度 -24- 本紙張尺度適用中國國家標準(CMS ) A4規格(21〇X297公酱) 83. 3.10,000 --------,1家------訂-----;線 (請先閱讀背面之注意事項再填寫本頁) 444129 A7 ______B7 五、發明説明(23) 計誤差、陀螺儀誤差、及接收器時鐘誤差; 並在集中處理顏器巾離,其齡方程可表示為: X(t)=F(t)X (t)+G(t) W(t) 來自全部追縱衛星頻道之該數字信號處理模塊25 量之偽距和偽距率的追蹤誤差、來自全部追縱衛星頻道之 預測的偽距和偽距率計算模塊,和來自該預漏偽距 距率計算模塊83之衛星星曆、及參考的慣性導航參數,, 1〇起被該集中處理滴波器模_接收,並用來敎行下列處理 步驟:Description of the invention (21 A7 B7 The acceleration of the expressions from the coordinate transformation module 54 in the navigation coordinate system printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs, and the updated attitude matrix from the attitude matrix calculation module 53, All are received by the reference navigation parameter calculation module 56 and used to calculate the reference position's velocity and attitude data, and the derived reference navigation parameters such as position, speed, and 5 attitude are calculated from the peak-to-peak ball and button scrap calculation model and the Data fusion module 80 »The reference navigation parameters from the reference navigation parameter calculation module S6 are received by the earth and the _rate calculation Wei 55 to calculate the rotation angle of the local navigation coordinate system (η system) to the inertial coordinate system (i system) And output it to the attitude matrix calculation module 53. ^ As shown in the fifth and sixth figures, the third step can be implemented by the following two schemes. 3 (A) Centralized Kalman Wavelet (centraiizecj Kalman Filter) scheme; 15 3⑼Decentralized Kalman Filter scheme 'such as Federated Kalman Filter. Please refer to the fifth figure and As shown in the sixth figure, step 3 (a) further includes: 3 (a) -l As shown in the fifth figure, if the preprocessing module 50 of the inertial measurement component is implemented in a feedback compensation manner, the switch 90 will communicate with the The 20 pre-processing modules 50 of the inertial measurement group are closed; the reference navigation parameters from the inertial measurement component pre-processing module 50 have been compensated by the best estimate of the error feedback of the reference navigation parameters from the centralized processing filter module 81, and are compensated by Received by the subtractor 82, and then fed into the predicted pseudorange and pseudorange rate calculation module 83, and output as the fully integrated positioning data of the entire system. -23- This paper size applies to China National Standard Li (CNS) A4 specification (210X297 Mm) 83.3.10,000 --------- ^ > Packing ------ ir (please read the precautions of the West first to fill the nest pods) 444129 V. Description of the invention (22) A7 B7 10 15 20 Printed inertia 2 component pre-processing module for employees 'cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5⑽ Error feedforward compensation method Fi See' Zehan switch 90 and the subtractor 82 closed scale pre-processing module 50_ 考Navigation parameter and reference navigation record error from the block k of this device The best estimate is received by the subtractor 82, and the best estimate of the reference navigation parameter error of the surface wave Nakama is used to compensate the reference navigation parameter error; the compensated reference navigation parameter is given by ir The pre-punctured pseudo-range and pseudo-range rate calculation module types are output as fully integrated positioning data of the entire system. The satellite ephemeris of the digital signal processing module 25 from the tracking channel of each GPS satellite, the satellite ephemeris from the subtractor 82 The reference navigation data and the best estimate of the receiver clock offset and clock offset rate from the GPS are fed into the predicted pseudorange and pseudorange rate calculation module 83. The predicted pseudorange and pseudorange rate for each tracking satellite channel can be calculated using the following parameters: the position and velocity of the GPS satellite, the position and velocity of the inertial measurement component, the receiver clock offset estimated by Kalman, and Offset rate, deterministic GPS satellite clock correction, and calculated atmospheric delay of the signal. 0 The predicted pseudorange and pseudorange rate of each tracked satellite channel are input to the centralized processing filter module 81, and The predicted signal delay and carrier Doppler frequency shift that are converted into GPS signals and output to each digital signal processing module 25 tracking satellite channels are used to close the signal tracking loop of each GPS connector. 3 (a) -2 The reference navigation parameter errors include: three position errors, three speed errors, three attitude errors, and inertial sensor errors such as acceleration. -24- This paper size applies to China National Standard (CMS) A4 specifications ( 21〇X297 male sauce) 83. 3.10,000 --------, 1 -------- Order -----; line (please read the precautions on the back before filling this page) 444129 A7 ______B7 V. Description of the invention (23) Metering error, gyroscope error, and receiver clock error; and intensively processing the facial separation, the age equation can be expressed as: X (t) = F (t) X (t ) + G (t) W (t) The tracking error of the pseudorange and pseudorange rate from the digital signal processing module of all tracking satellite channels, the predicted pseudorange and pseudorange rate from all tracking satellite channels The calculation module, and the satellite ephemeris and the reference inertial navigation parameters from the pre-missing pseudorange rate calculation module 83 are received by the centralized processing dropper mode_ from 10 and used to perform the following processing steps:

------丨- (請先閲讀背命之項再填寫本頁W 15 經濟部中央標準局貞工消费合作社印製 更新系統和量測方程式的參數; 計算系統方程式的離散模型參數: 計算量测方程式的線性模型參數; e十算狀態估計及其方差陣的時間傳播; 將測里的偽距和偽距率與預測的偽距和 _和偽距率的追縱誤差來進拥價’並用 濾波器模塊81的量测。 集中處理 -25- 訂 210X297公釐) 本紙張从適财1} ) Α4ί^Γ[ 83. 3. !〇,〇〇〇 444129 A7 B7 五、發明説明(24) 計算量測殘差; 更新狀態估計及其方差陣; 10 15 20 經濟部中央標準局員工消費合作杜印製 更新後的狀態估計被输出給該減法器82和該慣性測量 組件預處理模塊50。 3(a)-3來自集中處理濾波器模塊81的量测殘差被输入 FDER(Failure Detection Isolationand Recovery)84 ,用來執行 量測殘差的統計檢驗,以便撿測隔離由KGPS衛星的故障 導致的输入偽距和偽距率的故障;如果監測出故障,故障 衛星的標誌藉由該FDIR輸&雜射處麵麵模塊81, 以便隔離故障GPS衛星或更新該集中處理濾波器模塊81。 3(b)-l請參閲第六圖所示,如果該慣性測量組件預處 理模塊5〇以反馈補償方式實現,則該開關9〇與該慣性測量 組件預處理模塊5〇閉合;從該慣性测量組件預處理模塊5〇 輸出的參考導航參數,並與被來自該主濾波器模塊86之參 考導航參數的最佳前饋估算進行誤差補償,並被該減法器 82接收^後被饋入該預)則的偽距和偽距率計算模塊, 並作為整個系統全融合的定位數據輸出^ 如果該慣性測量組件預處理模塊50以誤差前饋補償方 式實現^觸關91與减法器87閉合;來自該慣性鮮組件 ,處理模塊5〇_考魏錄和來嫌主濾模塊86之 二考導航參數誤差的最錄計,被誠法器π接收,並用 遇王遽波器模塊86之參考導肮參數誤差的最佳估計來補償 -26- . 裝------訂-----.—)y^. (請先閎讀背面之注意事項再填寫本頁) 本纸張請適用中國 们公釐) 83. 3. !〇,〇〇〇 4 44 12 g - A7 ____B7 五、發明説明(25) 參考導航參數的誤差;被補償後之導航參數被輸出給該預 測的偽距和偽距率計算模塊88,並作為整個系統的全融合 的定位數據輸出β 來自每個GPS衛星的追蹤頻道之該數字信號處理模塊 5 25的衛星星曆、來自該減法器87之參考導航參數計算模塊 56的參考導航數據、和來自該主濾波器模塊86之〇1>3接數 器時鐘偏置和時鐘偏置率的最佳估計,均被饋入該預測的 偽距和偽距率計算模塊88。 每個被追縱的衛星頻道之預測的偽距和偽距率可用下 10列參數計算得出:GPS衛星的位置和速度、慣性測量組件 的位置和速度、卡爾曼估計的接收器時鐘偏置和時鐘偏置 率、確定性的GPS衛星接收器之時鐘校正,及計算的信號 的大氣延遲。 每一個GPS衛星追蹤頻道之預测的偽距和偽距率,被------ 丨-(Please read the fateful item before filling out this page. W 15 Print and update the parameters of the system and measurement equations by the Zhengong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs; Calculate the discrete model parameters of the system equations: Calculate the linear model parameters of the measurement equation; e-time state estimation and time spread of its variance matrix; integrate the measured pseudorange and pseudorange rate with the predicted pseudorange and the tracking error of pseudorange rate Measured by the filter module 81. Centralized processing -25- Order 210X297 mm) This paper from Shicai 1}) Α4ί ^ Γ [83. 3.! 〇, 〇〇〇〇444129 A7 B7 V. Description of the invention (24) Calculate the measurement residuals; update the state estimates and their variance matrices; 10 15 20 The consumer status cooperation printed by the Central Bureau of Standards of the Ministry of Economic Affairs and the updated state estimates are output to the subtractor 82 and the inertial measurement component preprocessing Module 50. 3 (a) -3 The measurement residual from the centralized processing filter module 81 is input to FDER (Failure Detection Isolation and Recovery) 84, which is used to perform statistical inspection of the measurement residual in order to detect and isolate caused by the failure of the KGPS satellite The fault of the input pseudorange and pseudorange rate; if a fault is detected, the flag of the faulty satellite is inputted through the FIR & stray surface module 81 in order to isolate the faulty GPS satellite or update the centralized processing filter module 81. 3 (b) -l Please refer to the sixth figure. If the inertial measurement component pre-processing module 50 is implemented in a feedback compensation manner, the switch 90 and the inertial measurement component pre-processing module 50 are closed; The reference navigation parameters output by the inertial measurement component preprocessing module 50 are subjected to error compensation with the best feedforward estimation of the reference navigation parameters from the main filter module 86, and are received by the subtractor 82 and fed in The pre-distance pseudo-range and pseudo-range rate calculation module, and output as the fully integrated positioning data of the entire system ^ If the inertial measurement component pre-processing module 50 is implemented in an error feed-forward compensation manner ^ Touch 91 and subtractor 87 are closed ; From this inertia fresh component, the processing module 50_ test Weilu and Lai Sui main filter module 86 bis test navigation parameter error of the most recorded, was received by Cheng Fa π, and used the reference of Wang Wang wave filter module 86 The best estimate of the guideline parameter error is to compensate -26-. -------- Order -----.--) y ^. (Please read the precautions on the back before filling this page) This paper Please apply to Chinese millimeters) 83. 3.! 〇, 〇〇〇4 44 12 g-A7 ____B7 5 Description of the invention (25) The error of the reference navigation parameters; the compensated navigation parameters are output to the predicted pseudorange and pseudorange rate calculation module 88, and are output as fully integrated positioning data of the entire system β from each GPS satellite Satellite ephemeris of the digital signal processing module 525 of the tracking channel, reference navigation data from the reference navigation parameter calculation module 56 of the subtractor 87, and the clock of the receiver 3 from the main filter module 86-1 The best estimates of the bias and the clock bias rate are fed into the predicted pseudorange and pseudorange rate calculation module 88. The predicted pseudorange and pseudorange rate of each tracked satellite channel can be calculated using the following 10 parameters: the position and velocity of the GPS satellite, the position and velocity of the inertial measurement component, and the receiver clock offset estimated by Kalman And clock bias rate, clock correction for deterministic GPS satellite receivers, and atmospheric delay of the calculated signal. The predicted pseudorange and pseudorange rate of each GPS satellite tracking channel are

15 输給概通道的本地濾波器模塊85,並被轉換為預測的GPS 信號的碼延時和载波多普勒頻移,输出給每個追縱衛星頻 道的數字信號處理模塊25,用以閉合GPS信號的追蹤回路 〇 3(b)-2參考導航參數誤差包括:三個位置誤差、三個 2〇速度誤差、三個姿態誤差、以及慣性感應器誤差和GPS接 數器誤差,陀螺儀誤差、及接收器時鐘誤差;並在每個該 本地濾波器模塊85中建模,其微分方程可表示為: X(t)=F(t)X (t)+G(t) W(t) -27- - _ . . 本紙張尺度適用中國國家標隼(CNS ) A4规格(210X297公釐) 83. 3.10,000 (請先閲讀背面之注意事項再填窝本頁) 裝· 訂 經濟部中央榇準局員工消費合作社印製 444129 五、發明説明(26) Α7 Β7 10 15 來自Sif字信號處理模塊25之潮量的属距和偽距率、 細雜矩和距和偽距率計算模塊88 夕肺心及獅的_和偽醉計算模塊抑 減波器_=及參考的慣性導航參數,均—起被該本地 器她85接收,並用來執行下列處理麵: 更新系統和量测方程式的參數; 計算系統方程式的離散模型參數; 計算量測方程式的線性模型參數; 計算狀態估計及其方差陴的時間傳播; ,每顧縱謎織之淑的胁傾料與預 二、口偽距率減’並職距和偽轉的追縱誤差插 ^以作為侧追縱衛星頻道之該本地遽波器模塊^量 (请先閱讀背面之注意事項再填寫本頁) .裝.15 The local filter module 85 input to the approximate channel is converted into the predicted code delay and carrier Doppler frequency shift of the GPS signal and output to each digital signal processing module 25 tracking the satellite channel to close the GPS. Signal tracking loops 〇3 (b) -2 Reference navigation parameter errors include: three position errors, three 20 speed errors, three attitude errors, inertial sensor errors and GPS receiver errors, gyroscope errors, And receiver clock error; and modeled in each of the local filter modules 85, the differential equation can be expressed as: X (t) = F (t) X (t) + G (t) W (t)- 27--_.. This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) 83. 3.10,000 (Please read the precautions on the back before filling in this page) Printed by the quasi-station employee consumer cooperative 444129 V. Description of the invention (26) Α7 Β7 10 15 The tidal range and pseudorange rate, fine noise moment and range and pseudorange rate calculation module 88 from the Sif signal processing module 25 Pulmonary heart and lion _ and pseudo drunk calculation module damper _ = and reference inertial navigation parameters, both It is received by the local device she 85 and used to perform the following processing: update the parameters of the system and measurement equations; calculate the discrete model parameters of the system equations; calculate the linear model parameters of the measurement equations; calculate the state estimates and their variances Time transmission; every time Gu Zhizhi's threats and predictions are reduced, the pseudo-distance ratio is reduced, and the tracking error of the pitch and pseudo-turn is inserted as the local wave receiver for the side tracking satellite channel. Module ^ amount (please read the precautions on the back before filling this page).

'1T 娌濟部中央榇準局貞工消費合作社印製 計算量測殘差; 更新狀態估計及其方差矩陣; 更新後的狀態倾及方差矩_輸出給社職器模塊% -28- 紙張:適用中固國家標準—(CNS )( 2】〇χ297公费).- 83.丄 1〇,0〇〇 經濟部中央標準局CKX消費合作衽印製 44 129 A7 ..- ____ B7_ 五、發明説明(27) 和FDIR 89 » 3(b)-3來自每一個該本地濾波器模塊85的本地狀態估 計及方差陣均被输出給該主濾波器模塊86,用於執行融合 計算以得出全局最佳的狀態估計,並將之輸出給該^^汉 5 89和該開關91。 全局最佳的狀態估計包括有慣性導航參數誤差、GPS 接收器誤差、慣性感應器誤差、及由該主濾波器模塊86得 到之方差矩陣的最佳估計,用來被反饋回每—個本地濾波 器模塊85 ’以便重新設定該本地濾波器模塊85,並拿來執 1〇行該主濾波器模塊86和每個該本地濾波器模塊85之間的信 息分享。 該主濾波器模塊86和每個本地濾波器模塊85之間的通 信’及用在該主濾波器模塊86和每個本地濾波器模塊之估 計方法,可以用不同的方式,以便獲得不同的系統性能表 15現。 , 3(b)_4來自每個該本地濾波器模塊的局部狀態估計.及 其方差矩陴,和來自該主濾波器模塊S6的全局最佳狀態估 計及其方差矩障,,被該FDIR 89接收,並用來執行相容性 檢驗,以便能撿測並隔離出由故障GPS衛星所造成之有故 20障的偽距及偽距率量測;如果撿測出故障,有故障GPS衛 星的標誌會被FDIR 89输出給該主濾波器模塊86,以便重 構該主濾波器模塊86,來隔離有故障的衛星。 對GPS完善性(Integrity)監测來説,第3 (b)的FDIR 89 的性能要優於第3⑻方法的FDIR 84性能,因為第3⑻方案 -29-'1T Printed and calculated residuals by the Zhengong Consumer Cooperative of the Central Ministry of Health, the Ministry of Economic Affairs; updated state estimates and their variance matrices; updated state tilts and moments of variance_output to the social server module% -28- paper: Applicable to China National Standards (CNS) (2) 0 × 297 public funds.-83. 丄 10.0, CKX Consumer Cooperation of Central Standards Bureau of the Ministry of Economic Affairs 44 129 A7 ..- __ B7_ V. Description of the invention (27) and FDIR 89 »3 (b) -3 The local state estimates and variance matrices from each of the local filter modules 85 are output to the main filter module 86 for performing fusion calculations to obtain the global optimum. The best state is estimated and output to the ^^ han 5 89 and the switch 91. The global best state estimation includes the inertial navigation parameter error, GPS receiver error, inertial sensor error, and the best estimate of the variance matrix obtained by the main filter module 86, which is used to feed back each local filter. The filter module 85 ′ resets the local filter module 85 and performs information sharing between the main filter module 86 and each of the local filter modules 85. The communication between the main filter module 86 and each local filter module 85, and the estimation method used in the main filter module 86 and each local filter module, can be used in different ways in order to obtain different systems Performance table 15 is shown. , 3 (b) _4 The local state estimates from each of the local filter modules. And their variance moments 陴, and the global best state estimates and their variance moment barriers from the main filter module S6 are taken by the FDIR 89 Received and used to perform compatibility check, so as to be able to detect and isolate false range and false range rate measurements caused by faulty GPS satellites; if faults are detected, there are signs of faulty GPS satellites It will be output to the main filter module 86 by FDIR 89 so as to reconstruct the main filter module 86 to isolate the faulty satellite. For GPS Integrity monitoring, the performance of FDIR 89 of 3 (b) is better than the performance of FDIR 84 of method 3), because the method of 3 -29-

- I I 本紙張从適用中關家標芈(CNS)八4祕(21GX297公 {請先聞讀背面之注#項δ寫本頁) 裝· -訂 83. 3. 10,000 } ! 444129 j A7 __________ B7 五、發明説明---- 是有並行濾波的結構。 完善性是彳旨紐梳力咖户提綱賴警告信號來 終止操作;人們關心的是有故障的GPS衛星有可能向用户 發出錯誤的導航#息;當GPS的導航精度超出規定的警告 5.範圍時’要求的警告時間在丨〇秒之內;但不幸的是的 控制部份不能反應這個時間限制範圍内的故障;通常GPS 控制部份要花費I5分鐘到2個小時的時間來發覺GPS的故障 、辫別出故障、確定校正方案並作出反應。 f i裝 訂 (請先閎讀背面之注意事頃再填寫本頁) 衄濟部中央標率局員工消費合作社印製 0- -3 本紙張尺度適用中國國家標參(CMS ) Α4規格U10Χ297公釐〉 83. 3.10,000-II This paper is applicable from the 8th Secret of the Zhongguan Family Standard (CNS) (21GX297) {Please read the note on the back #item δ to write this page) Binding · -Order 83. 3. 10,000}! 444129 j A7 __________ B7 Five 2. Description of the invention ---- It is a structure with parallel filtering. The perfection is the purpose of the warning signal to terminate the operation; people are concerned that a faulty GPS satellite may send the wrong navigation information to the user; when the GPS navigation accuracy exceeds the specified warning range 5. The required warning time is within 0 seconds; but unfortunately the control part cannot reflect the fault within this time limit; usually the GPS control part takes 15 minutes to 2 hours to detect the GPS. Failures, pinpoint failures, determine corrective actions, and respond. fi binding (please read the notes on the reverse side before filling out this page) Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 0- -3 This paper size applies to Chinese National Standards (CMS) Α4 size U10 × 297 mm> 83. 3.10,000

Claims (1)

444129 經濟部中央標準局員工消費合作社印製 AS B8 CS D8 申請尋利範圍 1. —種全融合導航定位方法,包含下列步驟: ⑻饋入一由GPS天線收到的GPS信號和來自數據融合 模塊之預测的偽距和偽距率,進而加以轉換及追蹤該GPS 信號’以獲得GPS的偽距和偽距率測量及該偽距和偽距率 5測量的追蹤誤差,並將之輸出給該數據融合模塊; (b) 接收來自一慣性涸量組件的運載體角速率和加速度 信號/數據,求解慣性導航方程以獲得參考的導航參數,包 括位置、速度、姿態,並將之輸出給該數據融合模塊; (c) 融合該偽距和偽距率量測,偽距和偽距率的誤差以 10及該參考的導航參數來得到該預測的偽距、偽距率、該參 考導航參數誤差和慣性感應器誤差的最佳估計、以及最佳 的定位數據者。 2. 如申請專利範圍第1項所述之「全融合導航定位方法」, 其中,該第(a)步驟進一步包含以下步驟: 15 (a_1)輸入來自該GPS天線接收到的GPS信號給一 RMF 4換器,該GPS]g號是Rp信號,並與—來自本地數控震盪 器的本地信號混頻;且對混頻後之信號進行帶通濾波,以 形成中頻信號;將該中頻信號輸出給一!p/基帶轉換器; (a-2)接收來自一rf/tf轉換器之正信號與自該本地數控 20震盪器之本地信號進行混頻,混頻後的信號被放大、低通 濾波、並形成基帶信號,將該基帶信號輸出給一_轉換 器; (a-3)接收來自該Π7基帶轉換器之基帶信號,該基帶信 號是類比信號;由該A/D轉換器對該基帶信號進行探樣,° -31- 本紙張尺度適用中國國家標準(CNS ) A4^_ ( 21GX297讀)444129 The ASB8 CS D8 printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs applies for a profit-seeking area The predicted pseudorange and pseudorange rate, and then convert and track the GPS signal to obtain GPS pseudorange and pseudorange rate measurements and the tracking error of the pseudorange and pseudorange rate 5 measurements, and output them to The data fusion module; (b) receiving the carrier angular rate and acceleration signals / data from an inertial mass component, solving the inertial navigation equation to obtain reference navigation parameters, including position, velocity, and attitude, and outputting it to the Data fusion module; (c) Fusion the pseudorange and pseudorange rate measurements. The error of the pseudorange and pseudorange rate is 10 and the reference navigation parameter to obtain the predicted pseudorange, pseudorange rate, and the reference navigation parameter. The best estimation of errors and inertial sensor errors, and the best positioning data. 2. The "full fusion navigation and positioning method" as described in item 1 of the scope of patent application, wherein step (a) further includes the following steps: 15 (a_1) input the GPS signal received from the GPS antenna to an RMF 4 converter, the GPS] g number is an Rp signal, and is mixed with a local signal from a local numerically controlled oscillator; and a band-pass filter is performed on the mixed signal to form an intermediate frequency signal; the intermediate frequency signal is Output to a! P / baseband converter; (a-2) Receive the positive signal from an rf / tf converter and mix it with the local signal from the local CNC 20 oscillator. The mixed signal is amplified and lowered. Pass-filtering and forming a baseband signal, and outputting the baseband signal to a converter; (a-3) receiving a baseband signal from the Π7 baseband converter, the baseband signal is an analog signal; the A / D converter pair The baseband signal is sampled, ° -31- This paper size is applicable to Chinese National Standard (CNS) A4 ^ _ (21GX297 read) ABCD 444 12 9 六、申請專利範圍 以形成數位信號,並输出給一數字信號處理模塊; (a-4)來自該A/D轉换器的數字信號和來自數據融合模 塊的預測的碼延時和载波多普勒頻移,被該數位信號處理 模塊接收,得出每一個追蹤衛星的偽距、偽距率测量、以 5及該偽距、偽距率測量的追蹤誤差,並输出給該數據融合 模塊者。 3,如申請專利範圍第2項所述之「全融合導航定位方法」, 其中,該第(a-4)步驟進一步包含: 接收上述來自該A/D轉換器的數字信號,將之與來自 10 一Sine—Cosine信號產生器的本地同相(in-phase,I)和正交 (Quadraphase,Q)信號在混頻器中進行混頻,混頻之後的 本地同相(I)和正交(Q)信號再被送入相關器; 來自混頻器之經過混頻的同相和正交信號及來自碼產 生器的本地碼,被該相關器接收並進行相關處理;而相關 15處理的結果被送入最大似然估計模塊; 該最大似然估計器收集該相關模塊輸出的N個採樣值 ’做出碼延時和載波多普勒頻移的追蹤誤差之最大似然估 計,並將之轉換為偽距 '偽距率的追蹤誤差,輸出給該數 據融合模塊; 經濟部中央標隼局負工消费合作社印I 20 由—碼震盪器接收來自該數據融合模塊的預測的載波 多普勒頻移,用來計算碼速率,並將該碼送入一碼產生器 ί 由該碼產生器接收來自該碼產生器的給定速率的鳴> 以便產生本地准時碼,並將之輸出給相關模塊;計算偽矩 -32- ( CNsTT"4腳μ ( 210X297公釐) /444 丨 29 A8 B8 C8 D8 經濟部t央揉率局®:工消f合作社印装 申請專利範園 測量,將之輸出給該數據融合模塊;執行衛星星曆的解調 ,並將該衛星星曆輸出給該數據融合模塊; 、由厂Sine—Cosine信號產生器接收來自該數據融合模 塊之預測的載波多普勒頻移,以產生該I和Q信號,將之輸 5出給該混頻器;計算偽距率量溯,並將之輸出給數據融八 模塊者^ Ρ 4.一種「全融合導航定位方法」,包含以下步驟: (a) 饋入一GPS天線收到的GPS信號,和來自該數據融 合換塊之預测的偽距和偽距率.,並進行轉換及追蹤該Gps 10 #號,以獲得GPS的偽距偽距率測量和該偽距和偽距率測 量的誤差’及將之輸出給該數據融合模塊; (b) 接收來自一慣性測量組件的運载體角速率和加速度 信號/數據,及來自該數據融合模塊之參考導航參數誤差和 ft性感應器誤差的最佳估計,解決惯性導航方程式,以得 15出該參考導航參數,如位置、速度、姿態,並去除該參考 導航參數誤差中的錯誤,再送入該數據融合糢塊; 0)融合該偽距和偽距率量測、GPS偽距和偽距率的誤 差'以及該參考的導航參數,來得出該最佳預測的偽距及 偽距率、最佳的參考導航參數估算誤差、和最佳的定位數 20 據者。 5·如申請專利範圍第4項所述之「全融合導航定位方法」, 其中,該第(a)步驟進一步包含: (W)輸出來自該GPS天線接收到的GPS信號給一RF/IF 轉換器,該GPS信號是RF信號,與來自一本地數控震盪器 -33- (許先閱讀背面之注意事項再缜寫本頁) -訂. -1/.. 444129 A8 B8 C8 D8 經濟部t央標隼局員工消費合作社印策 六、申請專利範圍 的本地RF信號進行混頻,並對混頻後的信號進行帶通濾波 以形成中頻信號,且將該中頻信號輪出給一基帶轉換器 (心2)藉由該EF/基帶轉換器接收來自Rjp/πρ轉换器之if信 5號’並與該本地數控震盪器之本地信號混頻,而混頻後的 信號再經過放大、低通濾波、及轉換成基帶信號,並將該 基帶化號輸出給一A/D轉换器; (a-3)接收來自該if/基帶轉換器的基帶信號,該基帶信 號是類比信號;由該A/D轉換器對該基帶信號進行探樣以 10形成數字信號,並输出給一數字信號處理模塊; (a-4)來自該A/D轉換器的數字信號、來自該數據融合 模塊之預測的碼延時和载波多普勒頻移,被該數字信號處 理模塊接收,以得出每一個追蹤衛星的偽距和偽距率測量 、以及該偽距和偽距率測量的追蹤誤差,並输出給該數據 15 融合糢塊。 6.如申請專利範圍第5項所述之「全融合導航定位方法」, 其中第(a-4)步驟進一步包含: 接收上述來自該A7D轉換器的數字信號,將之與來自 一Sine—Cosine信號產生器的本地同相(In-phase,I)和正交 20 (Quadraphase,Q)信號在混頻器中進行混頻,混頻之後的 本地同相(I)和正交(Q)信號再被送入相關器; 由該相關器接收該混頻之後的同相和正交信號以及來 自一碼產生器的本地碼,進行相關計算’並將相關計算的 結果送入一最大似然估計模塊; —34- Ϊ紙^^適用+國國家標準(CNS ) A4_ ( 2_l〇X297公釐) '~~~~ (諳先聞讀背面之注$項再填寫本頁)ABCD 444 12 9 6. Apply for a patent to form a digital signal and output it to a digital signal processing module; (a-4) Digital signal from the A / D converter and predicted code delay and carrier from the data fusion module The Doppler frequency shift is received by the digital signal processing module, and the pseudo-range and pseudo-range rate measurements of each tracking satellite are obtained, and the tracking error measured by 5 and the pseudo-range and pseudo-range rate is measured and output to the data fusion. Module person. 3. The "full fusion navigation and positioning method" as described in item 2 of the scope of the patent application, wherein the step (a-4) further includes: receiving the above digital signal from the A / D converter, 10 Local in-phase (I) and quadrature (Q) signals of a Sine-Cosine signal generator are mixed in a mixer, and the local in-phase (I) and quadrature (Q) after mixing ) The signal is then sent to the correlator; the in-phase and quadrature signals after mixing from the mixer and the local code from the code generator are received and correlated by the correlator; and the result of the correlation 15 processing is sent Into the maximum likelihood estimation module; the maximum likelihood estimator collects the N sample values output by the correlation module to make a maximum likelihood estimation of the tracking error of the code delay and the carrier Doppler shift, and converts it into a pseudo The tracking error of the pseudo-range rate is output to the data fusion module; the Central Laboratories of the Ministry of Economic Affairs, the Consumer Cooperatives Cooperative I-20, receives a predicted carrier Doppler frequency shift from the data fusion module, Used to calculate the code rate, The code is sent to a code generator. The code generator receives a beep at a given rate from the code generator to generate a local on-time code and outputs it to the relevant module. Calculates the pseudo-moment -32- (CNsTT " 4-pin μ (210X297 mm) / 444 丨 29 A8 B8 C8 D8 Ministry of Economic Affairs t Central Kneading Bureau ®: Industrial Consumers F Cooperative Co., Ltd. applies for patent fan garden measurement and outputs it to the data fusion module; execute Demodulate the satellite ephemeris and output the satellite ephemeris to the data fusion module; a factory Sine-Cosine signal generator receives the predicted carrier Doppler frequency shift from the data fusion module to generate the I and Q signal, output 5 to the mixer; calculate the pseudo-range rate traceback, and output it to the data fusion module ^ P 4. A "full fusion navigation and positioning method", including the following steps: (a ) Feed in the GPS signal received by a GPS antenna, and merge the predicted pseudorange and pseudorange rate from the data, and convert and track the Gps 10 # number to obtain the GPS pseudorange pseudorange Rate measurement and the error of the pseudorange and pseudorange rate measurement 'and Output to the data fusion module; (b) receive the carrier angular rate and acceleration signals / data from an inertial measurement component, and the best estimate of the reference navigation parameter error and ft-sensor error from the data fusion module , Solve the inertial navigation equation to obtain 15 reference navigation parameters, such as position, speed, and attitude, and remove errors in the reference navigation parameter error, and then send it to the data fusion module; 0) Fusion the pseudo-range and pseudo-range Rate measurement, GPS pseudorange and pseudorange rate errors' and the reference navigation parameters to obtain the best predicted pseudorange and pseudorange rate, the best reference navigation parameter estimation error, and the best number of positions 20 according to. 5. The "full fusion navigation and positioning method" as described in item 4 of the scope of patent application, wherein the step (a) further includes: (W) outputting a GPS signal received from the GPS antenna to an RF / IF conversion Device, the GPS signal is an RF signal, and comes from a local numerical control oscillator -33- (Xu first read the precautions on the back before writing this page) -Order. -1 / .. 444129 A8 B8 C8 D8 Ministry of Economy Standards Bureau employee consumer cooperatives India policy VI. Patent-applied local RF signals are mixed, and the mixed signals are band-pass filtered to form an intermediate frequency signal, and the intermediate frequency signal is rotated out to a baseband conversion. The device (heart 2) receives the if signal No. 5 'from the Rjp / πρ converter through the EF / baseband converter and mixes it with the local signal of the local numerically controlled oscillator, and the mixed signal is amplified and lowered. Pass filtering and conversion into a baseband signal, and output the baseband number to an A / D converter; (a-3) receiving the baseband signal from the if / baseband converter, the baseband signal is an analog signal; The A / D converter samples the baseband signal to form a digital signal at 10. And output to a digital signal processing module; (a-4) the digital signal from the A / D converter, the predicted code delay from the data fusion module, and the carrier Doppler shift are used by the digital signal processing module Received to obtain the pseudorange and pseudorange rate measurements of each tracking satellite and the tracking error of the pseudorange and pseudorange rate measurements, and output to the data 15 fusion module. 6. The "full fusion navigation and positioning method" as described in item 5 of the scope of patent application, wherein step (a-4) further includes: receiving the above digital signal from the A7D converter and combining it with a signal from a Sine-Cosine The local in-phase (I) and quadrature (Q) signals of the signal generator are mixed in the mixer, and the local in-phase (I) and quadrature (Q) signals after mixing are mixed again. Sent to the correlator; the correlator receives the in-phase and quadrature signals after mixing and the local code from a code generator, performs correlation calculations, and sends the results of the correlation calculation to a maximum likelihood estimation module; 34- Ϊ Paper ^^ Applicable + National Standards (CNS) A4_ (2_l〇X297mm) '~~~~ (谙 First read the note on the back and fill in this page) 444129 AS B8 C8 D8 申請專利範圍 經濟部中央標準局員工消費合作杜印製 ,做===計器收集該相關模塊輸出的糊探樣值 " p載波多普勒頻移的追蹤誤差之最大似妖估 計,;將之轉換為偽距、傷距率:估 給該數據融合模塊1; 震!器接收來自該數據融合模塊之預測的载波多普 勒頻^,、用來計算碼速率,I將該瑪送入一碼產生器; 、該難生器触來自麵赶器祕定速率的碼, 產生本地准時碼,並將之輸出給相關模塊;計算偽距 ;、將之輸出給該數據融合模塊;執行衛星星曆的解調 ’並將該健絲難給練舰合模塊; 、由一Sine—Cosine信號產生器接收來自該數據融合模 塊之預测的載波多普勒頻移,以產生該㈣信號,將之输 出給該混频器;計算偽距率量測,並將之输出給數據融合 糢塊者。 7·如申請專利範圍第4項所述之r全融合導航定位方法」, 其中’該第(b)步驟包含: 0>1)输入來自該慣性測量組件的三軸角速率和三軸加 速度,以及來自該數據融合模塊的慣性感應器誤差的最佳 估計,給一誤差補償模塊,該慣性测量組件有三個正交安 20裝的陀螺儀和三個正交安裝的加速度計; (b-2)用該慣性感應器誤差的最佳估·H補儐該输入的三 軸角速率和三軸加速度,補償後的三軸角速率被送入一姿 態矩陣計算模塊; (b-3)由該姿態矩陣計算模塊接收來自該誤差補償模塊 10 15 -35- 本紙張从適财目目( CNS ) \^Μ- ( 210X297ST (請光聞该背面之注意攀項鼻球寫本頁) :裝- ir 444 1 29 ^--------- 申請專利範圍 A8 B8 C8 D8 經濟部中央操率局員工消費合作社印裝 $軸角速率、來自地球補體錢率計算模塊的從當地 座標系(n_慣性座標系(i系)的旋轉向量、來自該數 f融合摸獅該參考導航參麟賴最錄計,用來更新 —從機體座標系(b系)到該導航座標系(η系)的姿態矩陣,並 5,態矩陣中的誤差,該姿態矩陣被)送入 = 變換並 模塊和一參考導航參數計算模塊; 、如)_絲難,純來自驗差補償模塊之 表達在機體座標系中的加速度,以及來自該姿態矩陣矸算 模塊的姿態矩陣,將輸入之表達在機體座標系中的加^度 轉換為表達在導航座標系的加速度計數據,並輸出至該參 考導航參數計算模塊; " (b-5)由該參考導航參數計算模塊,接收座榡變換模塊 之表達在導航座標系的加速度'來自該姿態矩陣計算模塊 的姿態矩陣、來自該數據融合模塊的參考導航誤差的最佳 15估計,均被用來計算參考之位置、速度、及姿態,並除去 該位置和速度的誤差,並將該參考導航參數,如位置、速 度 '及姿您’输出給該地球和載體角速率計算模塊和該數 據融合模塊; (b-6)由該地球和載體角速率計算模塊接收來自該參考 20導航參數計算模塊的參考導航參數,用來計算從當地導航 座標系(η系)相對於慣性座標系(i系)的旋轉角速率向量,並 將之输出給該姿態矩陣計算模塊者。 ^ 8.如申請專利範圍第5項所述之「全融合導航定位方法」, 其中,該第(b)步驟包含: 」 (請先聞讀背面之注意事項再填寫本頁) •訂 36- 本紙張;A4ii^{ 210X297^) 贵 4 44 1 2 9444129 AS B8 C8 D8 Patent Application Scope Printed by the Consumer Co-operation of the Central Bureau of Standards of the Ministry of Economic Affairs, making === a counter to collect the sampled values of the output of the relevant module " p carrier Doppler shift tracking error is the largest Demon estimate ,; convert it to pseudo-range, injury-range rate: estimate to the data fusion module 1; shock! The device receives the predicted carrier Doppler frequency ^ from the data fusion module, used to calculate the code rate, I The code is sent to a code generator; The code generator touches the code from the face-catcher to generate a local punctual code, and outputs it to the relevant module; calculates the pseudo-range; and outputs it to the A data fusion module; performing demodulation of the satellite ephemeris and making it difficult to train the training module; and a Sine-Cosine signal generator receives the predicted carrier Doppler frequency shift from the data fusion module, To generate the chirp signal, output it to the mixer; calculate the pseudorange rate measurement, and output it to the data fusion module. 7. The full fusion navigation and positioning method as described in item 4 of the scope of patent application ", wherein 'the (b) step includes: 0 > 1) inputting the three-axis angular rate and three-axis acceleration from the inertial measurement component, And the best estimate of the inertial sensor error from the data fusion module, given an error compensation module, the inertial measurement component has three orthogonally mounted 20 gyroscopes and three orthogonally mounted accelerometers; (b-2 ) Use the best estimate of the inertial sensor error H to compensate the input three-axis angular rate and three-axis acceleration, and the compensated three-axis angular rate is sent to an attitude matrix calculation module; (b-3) From this The attitude matrix calculation module receives from this error compensation module 10 15 -35- This paper from the appropriate financial account (CNS) \ ^ Μ- (210X297ST (please read the note on the back, please write the item on the noseball): Install- ir 444 1 29 ^ --------- Scope of patent application A8 B8 C8 D8 The central government bureau of the Ministry of Economic Affairs employee consumer cooperatives printed the $ axis angular rate, from the local coordinate system (from the Earth Complement Money Rate Calculation Module) The rotation vector of the n_ inertial coordinate system (i system), from the number f fusion Touch the lion, the reference navigation reference, and use it to update-the attitude matrix from the body coordinate system (b system) to the navigation coordinate system (n system), and 5, the error in the state matrix, the attitude matrix is ) Input = transformation and module and a reference navigation parameter calculation module;, such as) _Sinan, purely the acceleration in the body coordinate system expressed from the error compensation module, and the attitude matrix from the attitude matrix calculation module, Convert the input expression expressed in the body coordinate system into accelerometer data expressed in the navigation coordinate system, and output it to the reference navigation parameter calculation module; " (b-5) by the reference navigation parameter calculation module, Receiving the acceleration of the coordinate transformation module expression in the navigation coordinate system 'The attitude matrix from the attitude matrix calculation module and the best 15 estimates of the reference navigation error from the data fusion module are used to calculate the reference position, velocity, And attitude, and remove the position and speed errors, and output the reference navigation parameters, such as position, speed 'and attitude you', to the earth and carrier angular rate calculation module and the Data fusion module; (b-6) The earth and carrier angular rate calculation module receives the reference navigation parameters from the reference 20 navigation parameter calculation module for calculating the local navigation coordinate system (η system) relative to the inertial coordinate system ( i)), and output it to the attitude matrix calculation module. ^ 8. The "full fusion navigation and positioning method" as described in item 5 of the scope of patent application, wherein step (b) includes: "(Please read the precautions on the back before filling this page) • Order 36- This paper; A4ii ^ (210X297 ^) Expensive 4 44 1 2 9 10 15 經濟部中央榡準局貝工消費合作社印製 20 、(b 1)輸入來自該慣性測量組件的三軸角速率和三軸加 速f ’以及來自該數據融合模塊的慣性感應器誤差的最佳 估计’、給一誤差補償模塊,該慣性測量組件有三個正交安 裝的陀螺儀和三個正交安裝的加速度計; (b-2)用該慣性感應器誤差的最佳估計補償該输入的三 軸角速率和三軸加速度,補償後的三軸角速率被送入一姿 態矩陣計算模塊; —0>3)由該姿態矩陣計算模塊接收來自該誤差補償模塊 的三軸角速率、來自地球和载體角速率計算模塊的從當地 導航座標系加系)到慣性座標系(i系)的旋轉向量、來自該數 據融合模塊的該參考導航參數誤差的最佳估計,用來更新 一從機體座標系(b系)到該導航座標系(η系)的姿態矩陣,並 除去該姿態矩陣中的誤差,該姿態矩陣被送入該座標變換 模塊和一參考導肮參數計算模塊; 0-4)由該座標變換模塊,接收來自該誤差補償模塊之 表達在機體座標系中的加速度,以及來自該姿態矩陣計算 模塊的姿態矩陣,將输入之表達在機體座標系中的加速度 轉換為表達在導航座標系的加速度計數據,並輸出至該參 考導航參數計算模塊; (b-5)由該參考導航參數計算模塊,接收座標變換模塊 之表達在導航座標系的加速度、來自該姿態矩陣計算模塊 的姿態矩陣、來自該數據融合模塊的參考導航誤差的最佳 估計,均被用來計算參考之位置、速度、及姿態,並除去 該位置和速度的誤差,並將該參考導航參數,如位置、速 -37- (請先K5T»背面之注ί項再填寫本頁) 訂 I 本紙張尺度適用中囷國家標準(CNS ) Α4規格(210X297公釐) 度、及姿態,輸出給該地球和載體角速率計算模塊和該數 據融合模塊; (b-6)由該地球和載體角速率計算摸塊接收來自該參考 導航參數計算模塊的參考導航參數,用來計算從當地^航 5座標系(η系)相對於慣性座標系(i系)的旋轉角速率向量,並 將之輸出給該姿態矩陣計算模塊者。 9.如申請專利範圍第6項所述之「全融合導航定位方法」, 其中,該第(b)步驟包含: 0-1)翰入來自該慣性測量組件的三軸角速率和三軸加 10速度,以及來自該數據融合模塊的慣性感應器誤差的最佳 估計,給一誤差補償模塊,該慣性測量組件有三個正交安 裝的陀螺儀和三個正交安裝的加速度計; 0>2)用該慣性感應器誤差的最佳估計補償該輸入的三 軸角速率和三軸加速度,補償後的三軸角速率被送入一 15態矩障計算模塊; 一 (b-3)由該姿態矩陣計算模塊接收來自該誤差補償模塊 的三軸角速率、來自地球和載體角速率計算模塊的從當地 導航座標系(η系)到慣性座標系(丨系)的旋轉向量、來自該數 據融合模塊的該參考導航參數誤差的最佳估計,用來更新 20 一從機體座榡系(b系)到該導航座榡系(n系)的姿態矩陣,並 除去該姿態矩陣中的誤差,該姿態矩陣被送入該座標變換 模塊和一參考導航參數計算模塊; 0*4)由該座標變換模塊,接收來自該誤差補償模塊之 表達在機體座標系中的加速度,以及來自該姿態矩陣計算 144129 AS B8 C8 D8 經濟部ΐ標準局男工消費合作衽印製 申請專利範園 模塊的姿態矩陣’將输入之表達在機體座標系中的加速度 轉換為表達在導航座標系的加速度計數據,並输出至該參 考導航參數計算模塊; . (b-5)由該參考導航參數計算模塊,接收座標變换模塊 5之表達在導航座標系的加速度、來自該姿態矩陣計算模塊 的姿態矩陣、來自該數據融合模塊的參考導航誤差的最佳 估計,均被用來計算參考之位置、速度、及姿態,並除去 該位置和速度的誤差’並將該參考導航參數,如位置、速 度'及姿態,輸出給該地球和載體角速率計算模塊和該數 10 據融合模塊; (b-6)由該地球和載體角速率計算模塊接收來自該參考 導航參數計算模塊的參考導航參數,用來計算從當地導航 座標系(η系)相對於惯性座標系(i系)的旋轉角速率向量,並 將之輸出給該姿態矩陣計算模塊者。 10.如申請專利範圍第7項所述之r全融合導航定位方法」 ’其中,該第(c)步驟包含: (〇1)將該參考導航參數输出給預測的偽距和偽距率計 算模塊,並作為全融合的定位數據輸出; (〇2)由預測的偽距和偽距率計算模塊,接收來自每個 追縱衛星頻道的數字信號處理模塊之衛星星曆,及上述的 參考導航參數以及GPS接收器時鐘偏置和偏置率的最佳估 計; (CGPS衛星的健_度、上述參考導航參數的 位置和速度、估計的GPS接收器的時鐘偏置和偏置率、確 15 20 -39- (請先聞讀背面之注意事項再填寫本頁) -裝. 訂 本紙 A4規格(210X297公釐) 經濟部中央揉隼局男工消费合作社印裝 444129 ' 歆 C8 I---------D8 六、申請專利範圍 定的GPS衛星時鐘校正量、計算的GPS信號的大氣延遲, 來計算該預測的偽距和偽距率; (c-4)输出該預劍的傷距和偽距率給一集中處理遽波器 ,並將該預測的偽距和偽距率轉換成上述預測的碼延時和 5載波多普勒頻移,並將之输出給該每個追縱衛星頻道的數 字號處理模塊,用來閉個該GPS接收器之信號追蹤回路 i (C-5)由該集中處理濾波器對參考導航參數誤差包括三 個位置誤差、三個速度誤差、三個姿態誤差、及包含加速 10度升誤差、陀螺儀誤差及接收器時鐘誤差之慣性感應器誤 差建模,該接收器時鐘誤差包括接收器時鐘偏置和偏置率 來自全部追縱衛星頻道之該數字信號處理模塊的測量 之偽距和偽距率的追蹤誤差'來自全部追縱衛星頻道之預 15測的偽距和偽距率計算模塊,和來自該預測的偽距和偽距 率计算模塊之衛星星曆、及參考的慣性導航參數,一起被 該集中處理濾波器模塊接收,並用來執行下列處理步驟: 更新系統和量測方程式的參數; 計算系統方程式的離散模型參數; 20 計算量測方程式的線性模型參數; 計算狀態估計及其方差陣的時間傳播; 將測量的偽距和偽距率與預測的偽距和偽距率相減,並用 偽距和偽距率的追縱誤差來進行補償,以作為該集中處理 濾波器模塊81的量測; -40- 本紙張纽it财闕家CNS)A4胁( 210X297公釐) -----〔丫裝-- (請先聞讀背面之注$項再填寫本頁) 訂- ABCD 444 彳 2 9 六、申請專利乾圍 計算量測殘差;及 更新上述狀態估計及其方差陣,獲得上述參考導航參 數誤差、慣性感應器誤差、GPS接數器誤差的最佳估計者 〇 5 11.如申請專利範圍第8項所述之「全融合導航定位方法」 ,其中,該第(c)步騍包含: (c-1)將該參考導航參數输出給預測的偽距和偽距率計 算模塊,並作為全融合的定位數據输出; (c-2)由預測的偽距和偽距率計算模塊,接收來自每個 .10追縱衛星频道的數字信號處理模塊之衛星星曆,及上述的 參考導航參數以及GPS接收器時鐘偏置和偏置率的最佳估 計; (c-3)由GPS衛星的位置和速度、上述參考導肮參數的 位置和速度、估計的GPS接收器的時鐘偏置和偏置率 '確 15定的GPS衛星時鐘校正量、計算的GPS信號的大氣延遲, 來計算該預溯的偽距和偽距率; (c-4)輸出該預測的偽距和偽距率給一集中處理濾波器 ,並將該預測的偽距和偽距率轉换成上述預測的碼延時和 载波多普勒頻移,並將之輸出給該每個追縱衛星頻道的數 20字信號處理模塊,用來閉個該GPS接收器之信號追蹤回路 > (c-5)由該集中處理濾波器對參考導航參數誤差包括三 個位置誤差、三個速度誤差、三個姿態誤差、及包含加速 度計誤差、陀螺儀誤差及接收器時鐘誤差之慣性感應器誤 -41- 本紙張尺度逋用中國國家標準(CNS ) Μ规格(210X297公嫠) (請先閲讀背面之注$項再填寫本頁) -裝· 訂 經濟部中央標準局貝工消費合作社印製 444129 經濟部中央標準工消費合作社印裝 A8 B8 C8 D8 六、申請專利範圍 差建模,該接收器時鐘誤差包括接收器時鐘偏置和偏置率 、來自全部追縱衛星頻道之該數字信號處理模塊的測量 之偽距和偽距率的追蹤誤差、來自全部追縱衛星頻道之預 5测的偽距和偽距率計算模塊,和來自該預測的偽距和偽距 率計算模塊之衛星星曆、及參考的慣性導航參數,一起被 該集中處理濾波器模塊接收,並用來執行下列處理步驟: 更新系統和量測方程式的參數; 計算系統方程式的離散模型參數; 10 計算量測方程式的線性模型參數; 計算狀態估計及其方差陣的時間傳播; 將測量的偽距和偽距率與預測的偽距和偽距率相減,並用 偽距和偽距率的追縱誤差來進行補償,以作為該集中處理 濾波器模塊81的量測; 15 . 計算量測殘差;及 更新上述狀態估計及其方差陣,獲得上逑參考導航參 數誤差、慣性感應器誤差' GPS接數器誤差的最佳估計者 0 12.如申請專利範圍第9項所逑之「全融合導航定位方法」 20 ’其中,該第(c)步驟包含·· (c-1)將該參考導航參數輸出給預測的偽距和偽距率計 算模塊,並作為全融合的定位數據输出; (c-2)由預測的偽距和偽距率計算模塊,接收來自每個 追縱衛星頻道的數字信 -42- 本紙張尺度逍用中國國系摞準(CNS ) M規满· ( 210)<297公兼) ------ --------〇裝------訂 (請先閲讀背面之注意事項再填寫本頁) 444129 A8 B8 C8 D8 六、申請專利範圍 ^ ^ 號處理模塊之衛星星曆,及上逑的參考導航參數以及GPS 接收器時鐘偏置和偏置率的最佳估計; (請先閎讀背面之注意事項再填寫本頁) (c-3)由GPS衛星的位置和速度、上述參考導航參數的 位置和速度、估計的GPS接收器的時鐘偏置和偏置率,確 5定的GPS衛星時鐘校正量、計算的gps信號的大氣延遲, 來計算該預测的偽距和偽距率; (c-4)輸出該預測的偽距和偽距率給一集中處理濾波器 ’並將該預测的偽距和偽距率轉換成上述預測的碼延時和 載波多普勒頻移,並將之输出給該每個追縱衛星頻道的數 10字信號處理模塊,用來閉個該GPS接收器之信號追蹤回路 15 (c-5)由該集中處理濾波器對參考導航參數誤差包括三 個位置誤差'三個速度誤差、三個姿態誤差、及包含加速 度計誤差、陀螺儀誤差及接收器時鐘誤差之慣性感應器誤 差:建模,該接收器時鐘誤差包括接收器時鐘偏置和偏置率 經濟部4-夬襟準局爲工消費合作祍%裝 來自全部追縱衛星頻道之該數字信號處理模塊的测量 之偽距和偽距率的追蹤誤差、來自全部追縱衛星頻道之預 測的偽距和偽距率計算模塊,和來自該預測的偽距和偽距 2〇率計算模塊之衛星星曆、及參考的慣性導航參數,一起被 該集中處理濾波器模塊接收,並用來執行下列處理步驟: 更新系統和量測方程式的參數; 計算系統方程式的離散模型參數; 計算量測方程式的線性模型參數*· ' -43-10 15 Printed by the Central Laboratories of the Ministry of Economic Affairs, Shelley Consumer Cooperative 20, (b 1) Input the three-axis angular rate and three-axis acceleration f 'from the inertial measurement component and the maximum error of the inertial sensor error from the data fusion module. "Best estimate", give an error compensation module, the inertial measurement component has three orthogonally mounted gyroscopes and three orthogonally mounted accelerometers; (b-2) compensate the input with the best estimate of the inertial sensor error Three-axis angular rate and three-axis acceleration, the compensated three-axis angular rate is sent to an attitude matrix calculation module; -0 > 3) The attitude matrix calculation module receives the three-axis angular rate from the error compensation module, The rotation vector from the local navigation coordinate system to the inertial coordinate system (i system) of the earth and carrier angular rate calculation module, and the best estimate of the reference navigation parameter error from the data fusion module is used to update a The attitude matrix from the body coordinate system (b system) to the navigation coordinate system (n system), and the errors in the attitude matrix are removed. The attitude matrix is sent to the coordinate transformation module and a reference guide. 0-4) The coordinate transformation module receives the acceleration expressed by the error compensation module in the body coordinate system, and the attitude matrix from the attitude matrix calculation module, and inputs the input expression in the body coordinate system. The acceleration is converted into accelerometer data expressed in the navigation coordinate system and output to the reference navigation parameter calculation module; (b-5) The reference navigation parameter calculation module receives the acceleration expressed in the navigation coordinate system from the coordinate transformation module, The attitude matrix from the attitude matrix calculation module and the best estimate of the reference navigation error from the data fusion module are used to calculate the reference position, velocity, and attitude, and remove the position and velocity errors, and Refer to navigation parameters, such as position, speed -37- (please fill in this page before the note on K5T »). Order I This paper size applies the China National Standard (CNS) Α4 specification (210X297 mm) Degree and attitude , Output to the earth and carrier angular rate calculation module and the data fusion module; (b-6) from the earth and carrier angular rate calculation module The block receives the reference navigation parameters from the reference navigation parameter calculation module, and is used to calculate the rotation angular rate vector from the local ^ 5 coordinate system (η system) relative to the inertial coordinate system (i system) and output it to the attitude. Matrix calculation module. 9. The "full fusion navigation and positioning method" as described in item 6 of the scope of the patent application, wherein the step (b) includes: 0-1) three-axis angular velocity and three-axis acceleration from the inertial measurement component 10 speed, and the best estimate of the inertial sensor error from the data fusion module, given an error compensation module, the inertial measurement component has three orthogonally mounted gyroscopes and three orthogonally mounted accelerometers; 0 > 2 ) Compensate the input three-axis angular rate and three-axis acceleration with the best estimate of the inertial sensor error. The compensated three-axis angular rate is sent to a 15-state moment obstacle calculation module; one (b-3) is determined by the The attitude matrix calculation module receives the three-axis angular rate from the error compensation module, the rotation vector from the local navigation coordinate system (η system) to the inertial coordinate system (丨 system) from the earth and carrier angular rate calculation module, and from this data fusion The best estimate of the reference navigation parameter error of the module is used to update a 20 attitude matrix from the airframe system (b system) to the navigation system (n system) and remove the error in the attitude matrix. Attitude matrix Enter the coordinate transformation module and a reference navigation parameter calculation module; 0 * 4) The coordinate transformation module receives the acceleration expressed by the error compensation module in the body coordinate system, and calculates from the attitude matrix 144129 AS B8 C8 D8 Ministry of Economic Affairs, Bureau of Standards, Men ’s Workers ’Consumer Cooperation, printed the attitude matrix of the patent application Fanyuan module to convert the input acceleration expressed in the body coordinate system into accelerometer data expressed in the navigation coordinate system, and output it to the reference navigation Parameter calculation module; (b-5) The reference navigation parameter calculation module receives the acceleration expressed by the coordinate transformation module 5 in the navigation coordinate system, the attitude matrix from the attitude matrix calculation module, and the reference from the data fusion module. The best estimates of navigation errors are used to calculate the reference position, speed, and attitude, and remove the position and speed errors', and output the reference navigation parameters such as position, speed, and attitude to the earth and Carrier angular rate calculation module and the data fusion module; (b-6) Calculation by the earth and carrier angular rate The block receives the reference navigation parameters from the reference navigation parameter calculation module, and calculates the rotation angular rate vector from the local navigation coordinate system (η system) relative to the inertial coordinate system (i system), and outputs it to the attitude matrix calculation. Module person. 10. The r-full fusion navigation and positioning method as described in item 7 of the scope of patent application ", wherein the step (c) includes: (〇1) outputting the reference navigation parameter to the predicted pseudorange and pseudorange rate calculation Module and output as fully integrated positioning data; (〇2) The predicted pseudorange and pseudorange rate calculation module receives the satellite ephemeris from the digital signal processing module of each tracking satellite channel, and the above reference navigation Parameters and the best estimate of the GPS receiver clock offset and offset rate; (the health of the CGPS satellite, the position and speed of the above reference navigation parameters, the estimated clock offset and offset rate of the GPS receiver, 20 -39- (Please read the precautions on the back before filling out this page)-Binding. Binding paper A4 size (210X297 mm) Printed by the Male Workers Consumer Cooperative of the Central Government Bureau of the Ministry of Economic Affairs 444129 '歆 C8 I --- ------ D8 6. The GPS satellite clock correction amount determined by the scope of the patent application and the calculated atmospheric delay of the GPS signal to calculate the predicted pseudorange and pseudorange rate; (c-4) Output of the pre-sword Injury distance and pseudo-range rate give a centralized processing wave filter, and The predicted pseudorange and pseudorange rate are converted into the predicted code delay and 5-carrier Doppler frequency shift described above, and output to the digital number processing module of each tracking satellite channel for closing the GPS. The receiver's signal tracking loop i (C-5) uses the centralized processing filter to reference the navigation parameter errors including three position errors, three speed errors, three attitude errors, and accelerations including 10-degree acceleration errors and gyroscope errors. And the inertial sensor error modeling of the receiver clock error, the receiver clock error includes the receiver clock offset and the offset rate from the measured pseudorange and pseudorange rate of the digital signal processing module tracking all satellite channels The “tracking error” comes from the pre-measured pseudorange and pseudorange rate calculation modules of all tracking satellite channels, and the satellite ephemeris and reference inertial navigation parameters from the predicted pseudorange and pseudorange rate calculation modules. The centralized processing filter module receives and is used to perform the following processing steps: update the parameters of the system and measurement equations; calculate the discrete model parameters of the system equations; 20 calculations The linear model parameters of the equation; calculate the state estimation and the time spread of the variance matrix; subtract the measured pseudorange and pseudorange rate from the predicted pseudorange and pseudorange rate, and use the tracking error of the pseudorange and pseudorange rate to Compensation is used as the measurement of the centralized processing filter module 81; -40- this paper New Zealand iterate CNS) A4 (210X297 mm) ----- [丫 装-(Please read first Note the item on the back (please fill in this page before filling this page) Order-ABCD 444 、 2 9 6. Apply for patent calculation and calculate residual error; and update the above state estimation and its variance matrix to obtain the above reference navigation parameter error and inertial sensor error 5. The best estimator of GPS receiver error. 11. The "full fusion navigation and positioning method" as described in item 8 of the scope of patent application, wherein step (c) 骒 includes: (c-1) will This reference navigation parameter is output to the predicted pseudorange and pseudorange rate calculation module, and is output as fully integrated positioning data; (c-2) The predicted pseudorange and pseudorange rate calculation module receives the Satellite ephemeris of digital signal processing module of longitudinal satellite channel, The above-mentioned reference navigation parameters and the best estimate of the GPS receiver clock offset and offset rate; (c-3) the position and speed of the GPS satellite, the position and speed of the above-mentioned reference guide parameter, the estimated GPS receiver's The clock offset and offset rate are determined by the GPS satellite clock correction amount and the calculated atmospheric delay of the GPS signal to calculate the pre-traced pseudorange and pseudorange rate; (c-4) output the predicted pseudorange And pseudorange rate to a centralized processing filter, and convert the predicted pseudorange and pseudorange rate into the predicted code delay and carrier Doppler shift, and output it to each tracking satellite channel The number 20-word signal processing module is used to close the signal tracking loop of the GPS receiver. (C-5) The reference navigation parameter error by the centralized processing filter includes three position errors, three speed errors, three Attitude errors, and inertial sensor errors including accelerometer errors, gyroscope errors, and receiver clock errors -41- This paper uses China National Standard (CNS) Μ specifications (210X297mm) (Please read the Note $ item and fill in this )-Assembled and printed by the Central Standards Bureau of the Ministry of Economic Affairs, printed by the Shellfish Consumer Cooperative, printed 444129 Printed by the Central Standards of the Ministry of Economic Affairs, Consumer Cooperatives, printed A8 B8 C8 D8 6. Modeling the patent application gap, the receiver clock error includes the receiver clock offset And offset rate, the tracking error of the measured pseudorange and pseudorange rate from the digital signal processing module of all tracking satellite channels, the pseudorange and pseudorange rate calculation module from all 5 of the tracking satellite channels, The satellite ephemeris and the reference inertial navigation parameters from the predicted pseudorange and pseudorange rate calculation module are received by the centralized processing filter module and used to perform the following processing steps: Update the parameters of the system and measurement equations Calculate the discrete model parameters of the system equations; 10 Calculate the linear model parameters of the measurement equations; Calculate the time propagation of the state estimate and its variance matrix; Subtract the measured pseudorange and pseudorange rate from the predicted pseudorange and pseudorange rate And use the tracking error of the pseudorange and pseudorange rate to compensate as the measurement of the centralized processing filter module 81; 15. Calculate the measurement residuals; and update the above state estimates and their variance matrices to obtain the best estimator of the reference navigation parameter error, inertial sensor error, and GPS receiver error of the above reference. The "full fusion navigation and positioning method" described in item 20 'wherein the step (c) includes ... (c-1) outputting the reference navigation parameter to the predicted pseudorange and pseudorange rate calculation module, and using it as the full pseudorange and pseudorange rate calculation module. Output of fused positioning data; (c-2) Predicted pseudorange and pseudorange rate calculation module, receive digital letter from each tracking satellite channel -42- This paper standard uses China National Standards (CNS) M is full. (210) < 297 public and cumulative) ------ -------- 〇 installed ------ order (please read the precautions on the back before filling this page) 444129 A8 B8 C8 D8 VI. Patent application scope ^ ^ The satellite ephemeris of the processing module No. ^, and the reference navigation parameters of the upper part and the best estimate of the clock offset and offset rate of the GPS receiver; (Please read the note on the back first (Please fill in this page again for details) (c-3) The position and speed of the GPS satellite, the position and speed of the above reference navigation parameters 2. Estimate the clock offset and offset rate of the GPS receiver, determine the GPS satellite clock correction amount, and calculate the atmospheric delay of the GPS signal to calculate the predicted pseudorange and pseudorange rate; (c-4 ) Output the predicted pseudorange and pseudorange rate to a centralized processing filter 'and convert the predicted pseudorange and pseudorange rate into the predicted code delay and carrier Doppler frequency shift, and output it to The 10-word signal processing module for each tracking satellite channel is used to close the signal tracking loop 15 (c-5) of the GPS receiver. The centralized processing filter includes three position errors for the reference navigation parameter error. Three speed errors, three attitude errors, and inertial sensor errors including accelerometer errors, gyroscope errors, and receiver clock errors: Modeling, the receiver clock errors include receiver clock offset and offset rate The 4-Primary Standards Bureau is cooperating with industry and consumers to install the tracking error of the measured pseudorange and pseudorange rate from the digital signal processing module of all tracking satellite channels, and the predicted pseudorange and sum of the pseudorange from all tracking satellite channels. Pseudorange rate calculation module The block, along with the satellite ephemeris and the reference inertial navigation parameters from the predicted pseudorange and pseudorange 20 rate calculation module, are received by the centralized processing filter module and used to perform the following processing steps: Update system and quantity Parameters for measuring equations; Discrete model parameters for calculating system equations; Linear model parameters for measuring equations * · '-43- 固國家榡準(CNS ) A4規格(21〇乂297公嫠) 444129 AS B8 C8 D8 經濟部t央棣準局貝X消費合作社中裝 申請專利範圍 計算狀態估計及其方差陣的時間傳播; 將測里的偽距和偽距率與預測的偽距和傷距率相減,並用 偽距和偽距率的追縱誤差來進行補償,以作為該集中處理 濾波器模塊81的量測; 5 計算量測殘差;及 更新上述狀態估計及其方差陣,獲得上述參考導航參 數誤差、慣性感應器誤差、GPS接數器誤差的最佳估計者 〇 13.如申請專利範圍第7項所述之一「全融合導航定位方法 」,其中第〇>1)步驟包括以下步驟: ^ 01-1)從一慣性測量組件接收餘度角速率和加速度信 號’該慣性测量组件包含三個以上的斜置配置的陀螺儀和 加速度計; (b-1-2)執行故障撿測和隔離; 01-3)從餘度的角速率和加速度數據中,求解出三軸 角速率和加速度數據; ^ (b_l4)將三軸角速率和加速度數度及來自該數據融合_ k塊的慣彳生感應器誤差之最佳估算,送入一誤差補償模塊 H.如申請專利範圍第8項所述之「全融合導航定位方法」 ’其中’該第(b-1)步驟包括以下步騍: 〇 從—慣性測量組件接收餘度角速率和加速度信 號’該慣性測量組件包含三個以上的斜置配置的陀螺儀和 加速度計; 10 15 20 (請先聞讀背面之注意事項再填寫本耳) -44· 六、申請專利範圍 10 15 A8 B8 C8 D8 裡濟部中央襟準局貝工消費合作、社印裝 20 (b-1-2)執行故障檢測和隔離; (b-1-3)從餘度的角速率和加速度數據中,求解出三軸 角速率和加速度數據; (b-l_4)將三軸角速率和加速度數度及來自該數據融合 模塊的慣性感應器誤差之最佳估算,迭入一誤差補償模塊 者。 1S.如申請專利範圍第9項所逑之「全融合導航定位方法」 ,其中,該第(b-Ι)步驟包括以下步驟: (b-1-l)從一慣性測量組件接收餘度角速率和加速度信 號,該慣性測量組件包含三個以上的斜置配置的陀螺儀和 加速度計; (b-1-2)執行故障撿测和隔離; 0>1-3)從餘度的角速率和加速度數據中,求解出三軸 11速率和加速度數據; ^ 將三軸角速率和加速度數度及來自該數據融合 塊的慣韻應器誤差之最錄算,送人—黯補償模塊 者。 K如申請專繼圍第10項所述之「全融合導航定位方法, ’其中,該第〇>1)步驟包括以下步驟: 」 (b-1-ι)從-慣性測量組件接收餘度角速率和 ΐ速=㈣餘倾含三娜上_置__螺· (b-1-2)執行故障撿測和隔離; (b-Ι-3)從餘度的角速率和加速度數據中,求解出 -軸 f請先閲讀背面之注意事項再填寫本I) -裝------訂1 i— 氟 "45- 444129 經濟部中夬標隼局男工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 角速率和加速度數據; (b-1-4)將三軸角速率和加速度數度及來自該數據融合 模塊的慣性感應器誤差之最佳估算,送入一誤差補償模塊 者。 5 17.如申請專利範圍第11頃所述之「全融合導航定位方法J ’其中’該第(b-Ι)步騍包括以下步驟: (M-1)從一慣性测量組件接收餘度角速率和加速度信 號’該惯性測量組件包含三個以上的斜置配置的陀螺儀和 加速度計; 10 (b-1"2)執行故障檢測和隔離; (b-1-3)從餘度的角速率和加速度數據中,求解出三軸 角速率和加速度數據; 0>1-4)將三軸角速率和加速度數度及來自該數據融合 模塊的慣性感應器誤差之最佳估算,送入一誤差補償模塊 15者。 18.如申請專利範圍第〖2項所述之「全融合導航定位方法」 ’其中,該第(1>1)步驟包括以下步驟: (b-1-l)從一慣性測量組件接收餘度角速率和加速度信 號’該惯性測量組件包含三個以上的斜置配置的陀螺儀和 20 加速度計; (b-1-2)執行故障檢測和隔離; (b-1-3)從餘度的角速率和加速度數據中,求解出三軸 角速率和加速度數據; (b-1-4)將三軸角速率和加速度數度及來自該數據融合 -46- 本紙狀Ait财® ( CNS ) ( 210X297^ ) (請先閎讀背面之注意事項再填寫本頁) .裝· 訂. 經濟部中央揉準局員工消费合作社印裝 444129 A8- B8 CS -------- D8 六、申請專利範圍 模塊的慣性感應器誤差之最佳估算,送入一誤差補償模塊 者。 19, 如申請專利範圍第10項所述之「全融合導航定位方法」 ’其中’在第(c-6)步驟之後更進一步包含一附加步駿: 5 (c-7)輸入來自該集中處理濾波器模塊的量測殘差給一 故障撿測、隔離 '重構模塊(FDIR),用以執行該量測殘 差的統計撿驗,以便檢測和隔離由於GPS衛星故障所造成 的錯誤之輸入偽距和偽距率,當檢測到故障之後, 塊輸出一個故障衛星標誌給該集中處理濾波器姨塊,以便 10隔離該故障衛星或更新該集中處理濾波器模塊者。 20. 如申請專利範圍第丨9項所述之「全融合導航定位方法」 ,其中,在第(〇7)步驟之後更進一步包含一附加步驟: (c-8)來自上述每一個本地遽波器模塊的局部狀態估計 及其方差陣,以及來自主濾波器模塊的全局最佳估計及其 15方差陣,均被該FDIR接收,並用以執行相容性檢驗,以便 用來檢測和隔離由GPS衛星故障所造成錯誤的輸入偽距和 偽距率,當撿測到故障之後,FDIR模塊會發出一故障衛星 標誌給該主濾波器,以便隔離該故障衛星或更新該主濾波 器者。 20 21.如申請專利範圍第11項所述之「全融合導航定位方法」 ,其中,在第(c-6)步驟之後更進一步包含一附加步驟: (c-7)输入來自該集中處理濾波器模塊的量測殘差給一 故障撿測、隔離、重構模塊(FDIR),用以執行該量測殘 差的統計檢驗,以便檢測和隔離由於GPS衛星故障所造成 -47· 本紙珉尺度適用中國興家襟卒(CNS ) A4規格(210X297公釐) (請先聞讀背*之注意事項再填寫本頁) 裝. ABCD 444129 六、申請專利範園 '~ -- --------裝------訂 (請先閲讀背面之注意事項再填寫本頁) 的錯誤之輸人偽距和躲率,當撿__之後,扣 出-個故障衛星標誌給該集中處理德波器模塊 隔離該故障衛星或更新該集中處理濾波器模塊者。 22. 如申請專利範圍第21項所述之「全融合導 5,其中,在第㈣步驟之後更進-步包含—附加步 (c-8)來自上述每一個本地濾波器模塊的局部狀態估計 及其方差陣,以及來自主濾波器模塊的全局最佳估&及^ 方差陣,均被該FDIR接收,並用以執行相容性檢驗\以便 用來撿測和隔離由GPS衛星故障所造成錯誤的輸入偽距如 10偽距率,當撿測到故障之後,FDIR模塊會發出—故障衛星 標誌給該主濾波器,以便隔離該故障衛星或更新該主濾波 器者》 23. 如申請專利範圍第12項所述之「全融合導航定位方法! ,其中,在第(c-6)步驟之後更進一步包含一附加步驟: 15 (c-7)輸入來自該集中處理濾波器模塊的量測殘差給一 經濟部中央標準局貝工消費合作社印製 故障撿測、隔離、重構模塊(FDDR),用以執行該量測殘 差的統計撿驗,以便檢測和隔離由於GPS衛星故障所造成 的錯誤之輸入偽距和偽距率,當撿测到故障之後,FDIR模 塊輸出一個故障衛星標誌給該集中處理濾波器模塊,以便 20隔離該故障衛星或更新該集中處理濾波器模塊者。 24. 如申請專利範圍第23項所述之「全融合導航定位方法」 ,其中’在第(c-7)步驟之後更進一步包含一附加步驟: (c_8)來自上述每一個本地濾波器模塊的局部狀態估計 及其方差陣,以及來自主濾波器模塊的全局最佳估計及其 -48- 本紙張兩用中ϊ_國家揉準(;)八4祕( 經濟部中夬標準局負工消費合作社印製 ^ 1 2 9 AS B8 ^^一 ___D8 κ、申請專利範園 方差陣,均被該fdir接收’並用以執行相容性檢驗,以便 用來撿測和隔離由GPS衛星故障所造成錯誤的输入偽距和 偽距率,當撿測到故障之後,FDIR模塊會發出一故障衛星 標誌給該主濾波器,以便隔離該故障衛星或更新該主濾波 5 器者。 25. 如申請專利範圍第16項所述之「全融合導航定位方法」 ,其中,該第(c-6)步驟之後更進一步包含一附加步驟: (c-7)輸入來自該集中處理濾波器模塊的量測殘差給一 故障撿測、隔離、重構模塊(FDIR),用以執行該量測殘 10差的統計撿驗,以便撿測和隔離由於GPS衛星故障所造成 的錯誤之輸入偽距和偽距率,當檢測到故障之後, 塊輸出一個故障衛星標誌給該集中處理濾波器模塊,以便 隔離該故障衛星或更新該集中處理濾波器模塊者。 26. 如申請專利範圍第25項所述之「全融合導肮定位方法」 15 ,其中,在第(c-7)步驟之後更進一步包含一附加步驟: (c-8)來自上述每一個本地濾波器模塊的局部狀態估計 及其方差陣,以及來自主濾波器模塊的全局最佳估計及其 方差陣,均被該FDIR接收,並用以執行相容性檢驗,以便 闻來檢測和隔離由GPS衛星故障所造成錯誤的输入偽距和 20偽距率,當檢測到故障之後,:FDIR模塊會發出一故障衛星 標詰給該主濾波器,以便隔離該故障衛星或更新該主濾波 器者。 27. 如申請專利範圍第1?項所述之一「全融合導航定位方法 」’其中在第(c-6)步驟之後更進一步包含一附加步驟: 國“^Ts_rA 娜( (請先閲讀背面之注意事項再填寫本頁) -裝_ 訂 -49- A8 Βδ C8 D8 10 15 444 12 9 申請專利範圍 (c-7)输入來自該集中處理濾波器糢塊的量潮殘差給一 故障檢測、隔離、重構模塊(FDIR),用以執行該量測殘 差的統計檢驗’以便檢測和隔離由於GPS衛星故障所造成 的錯誤之输入偽距和偽距率,當檢測到故障之後,FDHl模 塊输出一個故障衛星標誌給該集中處理濾波器模塊,以便 隔離該故障衛星或更新該集中處理濾波器模塊者。 28. 如申請專利範圍第27項所述之「全融合導航定位方法」 ,其中,在第(c-7)步騍之後更進一步包含一附加步驟: (c - 8)來自上述每一個本地遽波器模塊的局部狀態估計 及其方差陣,以及來自主濾波器模塊的全局最佳估計及其 方差陣,均被該FDIR接收’並用以執行相容性檢驗,以便 用來檢測和隔離由GPS衛星故障所造成錯誤的输入偽距和 偽距率,當檢測到故障之後,FDIR模塊會發出一故障衛星 標誌給該主濾波器,以便隔離該故障衛星或更新該主濾波 器者。 29. 如申請發利範圍第18項所述之「全融合導航定位方法」 ,其中,在第(c-6)步驟之後更進一步包含一附加步驟: (c-7)輸入來自該集中處理濾波器模塊的量測殘差給一 故障撿测、隔離、重構模塊(FDIR) ’用以執行該量测殘 20差的統計檢驗,以便撿測和隔離由於GPS衛星故障所造成 的錯誤之输入偽距和偽距率,當檢測到故障之後,FDIR模 塊輸出一個故障衛星標誌給該集中處理媳波器模塊,以便 隔離該故障衛星或更新該集中處理濾波器模塊者3 3〇.如申請專利範圍第29項所述之「全融合導航定位方法」 -50- 本紙張尺1適用中CNS)八4祕() --------------iT------Q (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局貝工消費合作社印製 經濟部中央標準局貝工消費合作社印装 444129 -A8 Βδ ^___— D8 穴、申請專利範圍 ,其中,在第(〇7)步驟之後更進一步包含一附加步驟: (〇8)來自上述每一個本地濾波器模塊的局部狀態估計 及其方差陣,以及來自主濾波器模塊的全局最佳估計及其 方差陣’均被該FDIX接收,.並用以執行相容性檢驗,以便 5用來檢測和隔離由GPS衛星故障所造成錯誤的輸入偽距和 偽距率,當檢測到故障之後,FDIR模塊會發出一故障衛星 標誌給該主濾波器,以便隔離該故障衛星或更新該主濾波 器者。 31. 如申請專利範圍第8項所述之「全融合導航定位方法」 10 ,其中,在第(c-Ό步驟之後更進一步包含一附加步驟: 將來自該主濾波器模塊的全局最佳的狀態估計,包括 慣性導肮參數誤差、GPS接收器誤差和慣性感應器誤差的 最佳估計及其方差矩陣,反饋回每個本地濾波器模塊,以 便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 15 本地濾波器模塊之間的信息分享者。 32. 如申請專利範圍第21項所述之「全融合導航定位方法」 ’其中,在第(c-7)步驟之後更進一步包含一附加步驟: 將來自該主濾波器模塊的全局最隹的狀態估計,包括 慣性導航參數誤差' GPS接收器誤差和慣性感應器誤差的 20 最佳估計及其方差矩陣,反饋回每個本地濾波器模塊,以 便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 本地濾波器模塊之間的信息分享者。 33. 如申請專利範圍第23項所述之「全融合導航定位方法」 ,其中,在第(c-7)步驟之後更進一步包含一附加步騍: -51- 本紙乐尺度通用中囷國家標準(CNS ) Α4规格(210X297公釐) (請先聞讀背面之注意事項再填寫本頁} •裝. J . Μβ 444 彳 29 A8 B8 C8 D8 六 、申請專利範圍 10 15 娌濟部中央標準局貝工消費合作社印製 20 將來自該主濾波器模塊的全局最佳的狀態估計,包括 慣性導航參數誤差、GPS接收器誤差和慣性感應器誤差的 最隹估計及其方差矩陣,反饋回每個本地濾波器模塊,以 便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 本地濾波器模塊之間的信息分享者。 34. 如申請專利範圍第25項所述之「全融合導航定位方法」 ,其中,在第(c-7)步驟之後更進一步包含一附加步驟: 將來自該主濾波器模塊的全局最佳的狀態估計,包括 慣性導航參數誤差、GPS接收器誤差和慣性感應器誤差的 最佳估計及其方差矩陴,反饋回每個本地濾波器模塊,以 便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 本地濾波器糢塊之間的信息分享者。_ 35. 如申請專利範圍第27項所述之「全融合導航定位方法」 ,其中,在第(c-7)步驟之後更進一步包含一附加步驟: 將來自該主濾波器模塊的全局最佳的狀態估計,包括 慣性導航參數誤差、GPS接收器誤差和慣性感應器誤差的 最佳估計及其方差矩陣,反饋回每個本地濾波器模塊,以 便更新該本地濾波器模塊,執行在該主濾波器模塊和每偏 本地濾波器模塊之間的信息分享者。 36. 如申請專利範圍第29項所述之「全融合導航定位方法」 ,其中,在第(c-7)步驟之後更進一步包含一附加步驟: 將來自該主濾波器模塊的全局最佳的狀態估計,包括 慣性導航參數誤差、GPS接收器誤差和慣性感應器誤差的 最佳估計及其方差矩陣,反饋回每個本地濾波器模塊,以 -52-National Standards (CNS) A4 (21〇 乂 297) 444129 AS B8 C8 D8 Ministry of Economic Affairs, Central Bureau of Standards, quasi-station, X-cooperative cooperatives, patent application scope calculation, state estimation, and time spread of the variance matrix; The pseudorange and pseudorange rate in the measurement are subtracted from the predicted pseudorange and damage rate, and the tracking error of the pseudorange and pseudorange rate is used to compensate as the measurement of the centralized processing filter module 81; 5 Calculate the measurement residuals; and update the above state estimates and their variance matrices to obtain the best estimators of the above reference navigation parameter errors, inertial sensor errors, and GPS receiver errors. 13. As described in item 7 of the scope of patent applications One of the "full fusion navigation and positioning methods", wherein the 0th> 1) step includes the following steps: ^ 01-1) receiving the excess angular rate and acceleration signals from an inertial measurement component 'the inertial measurement component contains more than three Gyroscope and accelerometer arranged obliquely; (b-1-2) Perform fault detection and isolation; 01-3) Solve the triaxial angular rate and acceleration data from the angular rate and acceleration data of the latitude; ^ (b_l4) Triangular angular velocity And the acceleration number and the best estimate of the error of the inertial sensor from the data fusion_k block are sent to an error compensation module H. The "full fusion navigation and positioning method" as described in item 8 of the scope of patent application ' Wherein, the (b-1) step includes the following steps: 〇 receiving the excess angular rate and acceleration signals from the inertial measurement component; the inertial measurement component includes more than three obliquely configured gyroscopes and accelerometers; 10 15 20 (Please read the notes on the back before filling in this ear) -44 · VI. Application scope of patents 10 15 A8 B8 C8 D8 Central Government Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, Cooperative Printing 20 (b-1 -2) Perform fault detection and isolation; (b-1-3) Solve the triaxial angular rate and acceleration data from the angular rate and acceleration data of the margin; (b-l_4) Calculate the triaxial angular rate and acceleration number The best estimate of the degree and the error of the inertial sensor from the data fusion module is superimposed on an error compensation module. 1S. The "full fusion navigation and positioning method" as described in item 9 of the scope of patent application, wherein the (b-1) step includes the following steps: (b-1-l) receiving a latitude angle from an inertial measurement component Velocity and acceleration signals, the inertial measurement assembly contains more than three obliquely configured gyroscopes and accelerometers; (b-1-2) performs fault detection and isolation; 0 > 1-3) angular rate from the margin From the acceleration and acceleration data, the triaxial 11 rate and acceleration data are solved. ^ The triaxial angular rate and acceleration are calculated in degrees and the error of the inertial accelerometer from the data fusion block is calculated and given to the person—the dark compensation module. K As described in the application for the "full fusion navigation and positioning method" described in item 10, 'wherein the step 0> 1) step includes the following steps: "(b-1-ι) receiving the margin from the inertial measurement component Angular rate and velocity = ㈣Yu Qing with Sanna on_set__ snail · (b-1-2) Perform fault detection and isolation; (b-1-3) From the angular rate and acceleration data of the degree , Solve the -axis f, please read the notes on the back before filling in this I) -Installation ------ Order 1 i—Fluorine " 45- 444129 Printed by A8, Male Workers Consumer Cooperative, China Standards Bureau, Ministry of Economic Affairs B8 C8 D8 VI. Patent application scope Angular rate and acceleration data; (b-1-4) Send the best estimate of the triaxial angular rate and acceleration in degrees and the inertial sensor error from the data fusion module into an error Compensation module. 5 17. The "full fusion navigation and positioning method J" wherein the step (b-1) "includes the following steps as described in item 11 of the scope of the patent application: (M-1) receiving a latitude angle from an inertial measurement component Velocity and acceleration signals' The inertial measurement component contains more than three gyroscopes and accelerometers in an inclined configuration; 10 (b-1 " 2) performs fault detection and isolation; (b-1-3) from the angle of latitude From the velocity and acceleration data, solve the triaxial angular rate and acceleration data; 0 > 1-4) send the best estimates of the triaxial angular rate and acceleration in degrees and the inertial sensor error from the data fusion module into one Error compensation module 15. 18. The "full fusion navigation and positioning method" as described in item 2 of the scope of the patent application, wherein the (1 > 1) step includes the following steps: (b-1-l) Inertial measurement component receives excess angular rate and acceleration signals' The inertial measurement component contains more than three gyroscopes in an inclined configuration and 20 accelerometers; (b-1-2) performs fault detection and isolation; (b-1- 3) From the angular rate and acceleration data of the degree of redundancy, solve the three axes Velocity and acceleration data; (b-1-4) Integrate the triaxial angular rate and acceleration in degrees and from this data -46- Paper Ait Choi ® (CNS) (210X297 ^) (Please read the notes on the back first (Fill in this page again). Binding and ordering. Printed by the Consumer Cooperatives of the Central Government Bureau of the Ministry of Economic Affairs 444129 A8- B8 CS -------- D8 VI. The best estimate of the inertial sensor error of the patent application module , Who sent an error compensation module. 19. The "full fusion navigation and positioning method" as described in item 10 of the scope of the patent application, where "wherein" further includes an additional step after step (c-6): 5 (c-7) The input comes from the centralized processing The measurement residual of the filter module is given to a fault detection, isolation and reconstruction module (FDIR), which is used to perform the statistical inspection of the measurement residual to detect and isolate the wrong input caused by the GPS satellite failure. Pseudorange and pseudorange rate. When a fault is detected, the block outputs a fault satellite flag to the centralized processing filter block, so as to isolate the faulty satellite or update the centralized processing filter module. 20. The "full fusion navigation and positioning method" as described in item 9 of the scope of patent application, wherein, after step (〇7), an additional step is further included: (c-8) from each of the above-mentioned local waves The local state estimation of the filter module and its variance matrix, as well as the global best estimate from the main filter module and its 15 variance matrix, are all received by the FDIR and used to perform a compatibility check in order to detect and isolate GPS signals. The false input pseudorange and pseudorange rate caused by satellite failure. When a failure is detected, the FDIR module will send a failed satellite flag to the main filter in order to isolate the failed satellite or update the main filter. 20 21. The "full fusion navigation and positioning method" as described in item 11 of the scope of patent application, wherein, after step (c-6), an additional step is further included: (c-7) the input comes from the centralized processing filtering The measurement residual of the sensor module is given to a fault detection, isolation, and reconstruction module (FDIR) to perform a statistical inspection of the measurement residual in order to detect and isolate the GPS satellite failure-47 · Applicable to China Xingjiajin (CNS) A4 specification (210X297mm) (please read the precautions before reading this page before filling in this page). ABCD 444129 VI. Patent Application Park '~------ --- Equipment ------ Order (please read the precautions on the back before filling in this page) the wrong input false range and hiding rate, after picking __, deduct a faulty satellite mark to the The centralized processing German wave filter module isolates the faulty satellite or updates the centralized processing filter module. 22. As described in Item 21 of the scope of the patent application, "Fully Fusion Derivative 5", in which, after the second step, the step-contains-additional step (c-8) is a local state estimation from each of the local filter modules described above. And its variance matrix, as well as the global best estimate & and ^ variance matrix from the main filter module, are received by the FDIR and used to perform a compatibility check \ for testing and isolation caused by GPS satellite failures Incorrect input pseudorange, such as 10 pseudorange rate. When a fault is detected, the FDIR module will issue a fault satellite flag to the main filter, in order to isolate the faulty satellite or update the main filter. The "full fusion navigation and positioning method" described in item 12 of the scope, wherein, after step (c-6), an additional step is further included: 15 (c-7) Input the measurement from the centralized processing filter module Residuals printed a fault detection, isolation, and reconstruction module (FDDR) to a Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economics to perform a statistical check of the measurement residuals in order to detect and isolate due to GPS satellite faults Caused Wrong input pseudorange and pseudorange rate. When a fault is detected, the FDIR module outputs a faulty satellite flag to the centralized processing filter module, so as to isolate the faulty satellite or update the centralized processing filter module. 24. According to the "full fusion navigation and positioning method" described in item 23 of the scope of patent application, wherein 'after step (c-7) further includes an additional step: (c_8) the local state from each of the above-mentioned local filter modules Estimation and its variance matrix, and the global best estimate from the main filter module and its -48- This paper is dual-use System ^ 1 2 9 AS B8 ^^ _ _D8 κ, patent application Fan Yuan variance matrix, all received by the fdir 'and used to perform compatibility checks, in order to detect and isolate errors caused by GPS satellite failure Enter the pseudorange and pseudorange rate. When a fault is detected, the FDIR module will send a fault satellite flag to the main filter in order to isolate the faulty satellite or update the main filter. 25. If you apply The "full fusion navigation and positioning method" described in item 16 of the patent scope, wherein the step (c-6) further includes an additional step: (c-7) input the measurement from the centralized processing filter module The residual is given to a fault detection, isolation, and reconstruction module (FDIR) to perform a statistical check of the residual 10 errors of the measurement in order to detect and isolate the wrong input pseudorange and pseudo Distance, when a fault is detected, the block outputs a fault satellite flag to the centralized processing filter module, in order to isolate the faulty satellite or update the centralized processing filter module. 26. As described in item 25 of the scope of patent application "Full fusion guided positioning method" 15, wherein, after step (c-7), an additional step is further included: (c-8) the local state estimation and its variance matrix from each of the local filter modules described above, The global best estimate and its variance matrix from the main filter module are received by the FDIR and used to perform compatibility checks to detect and isolate erroneous inputs caused by GPS satellite failures. 20 pseudorange and pseudorange rate, when a fault is detected,: FDIR module generates a fault to the primary satellite interrogate standard filter, to isolate the fault or update the satellite's main filter. 27. As one of the "full fusion navigation and positioning methods" described in item 1 of the scope of patent application, which includes an additional step after step (c-6): Country "^ Ts_rA 娜 ((Please read the back first Please pay attention to this page and fill in this page again)-Binding _ Order-49- A8 Βδ C8 D8 10 15 444 12 9 Patent Application Scope (c-7) Input the tide residual from the centralized processing filter module for a fault detection , Isolation, Reconstruction Module (FDIR), used to perform the statistical test of the measurement residuals' in order to detect and isolate the false input pseudorange and pseudorange rate caused by GPS satellite failure. When a failure is detected, FDHl The module outputs a faulty satellite flag to the centralized processing filter module, so as to isolate the faulty satellite or update the centralized processing filter module. 28. The "full fusion navigation and positioning method" as described in item 27 of the scope of patent application, where , After step (c-7), further includes an additional step: (c-8) the local state estimation from each of the above-mentioned local wavelet modules and their variance matrices, and the global from the main filter module The best estimate and its variance matrix are both received by the FDIR and used to perform a compatibility check in order to detect and isolate false input pseudoranges and pseudorange rates caused by GPS satellite faults. When a fault is detected, The FDIR module will issue a faulty satellite mark to the main filter, in order to isolate the faulty satellite or update the main filter. 29. As described in the "full fusion navigation and positioning method" described in item 18 of the application scope, where, After step (c-6), an additional step is further included: (c-7) The measurement residuals from the centralized processing filter module are input to a fault detection, isolation, and reconstruction module (FDIR). In order to perform the statistical test of the measurement residual 20 errors, in order to detect and isolate the false input pseudorange and pseudorange rate caused by the GPS satellite fault. When the fault is detected, the FDIR module outputs a faulty satellite flag to the center. Process the wave filter module in order to isolate the faulty satellite or update the centralized processing filter module. 3 30. The "full fusion navigation and positioning method" as described in item 29 of the scope of patent application -50- Ruler 1 applicable CNS) 8 secrets () -------------- iT ------ Q (Please read the precautions on the back before filling this page) Central standard of the Ministry of Economic Affairs Bureau Shellfish Consumer Cooperative Co., Ltd. Printed by the Central Standards Bureau Shellfish Consumer Cooperative of the Ministry of Economic Affairs, printed 444129 -A8 Βδ ^ ___— D8, the scope of patent application, in which, after step (〇7), further includes an additional step: ( 〇8) The local state estimates and their variance matrices from each of the above-mentioned local filter modules, as well as the global best estimates and their variance matrices from the main filter module are all received by the FDIX and used to perform compatibility checks , So that 5 is used to detect and isolate the wrong input pseudorange and pseudorange rate caused by GPS satellite failure. When a fault is detected, the FDIR module will send a fault satellite flag to the main filter in order to isolate the faulty satellite or Update the main filter. 31. The "full fusion navigation and positioning method" 10 described in item 8 of the scope of the patent application, wherein after step (c-Ό), an additional step is further included: the global best from the main filter module State estimation, including the best estimates of inertial parameter errors, GPS receiver errors, inertial sensor errors, and their variance matrices, are fed back to each local filter module in order to update the local filter module and perform the main filtering The information sharer between the transmitter module and each of the 15 local filter modules. 32. The "full fusion navigation and positioning method" as described in item 21 of the scope of patent application, wherein, after step (c-7), go further Includes an additional step: the global best estimate of the state from the main filter module, including the inertial navigation parameter error, the 20 best estimates of the GPS receiver error and the inertial sensor error, and their variance matrices are fed back to each local A filter module to update the local filter module to perform information sharing between the main filter module and each local filter module. 33. For example, the "full fusion navigation and positioning method" described in item 23 of the scope of patent application, wherein, after step (c-7), an additional step is further included: -51- The Chinese Standard for Paper Music Standards (CNS) ) Α4 size (210X297mm) (Please read the precautions on the back before filling out this page} • Packing. J. Μβ 444 彳 29 A8 B8 C8 D8 VI. Application scope 10 15 Printed by the Consumer Cooperative 20 The global best state estimate from the main filter module, including the maximum estimate of the inertial navigation parameter error, GPS receiver error, and inertial sensor error, and its variance matrix are fed back to each local filter Module in order to update the local filter module and perform information sharing between the main filter module and each local filter module. 34. The "full fusion navigation and positioning method" as described in item 25 of the scope of patent application ", After step (c-7), it further includes an additional step: estimating the global best state from the main filter module, including the inertial navigation parameters The best estimate of the difference, GPS receiver error, and inertial sensor error, and their variance moments, are fed back to each local filter module in order to update the local filter module, and perform the main filter module and each local filter Sharers of information between transmitter modules. _ 35. The "full fusion navigation and positioning method" as described in item 27 of the scope of patent application, wherein after step (c-7) further includes an additional step: The global best state estimate from the main filter module, including the best estimates of inertial navigation parameter errors, GPS receiver errors, and inertial sensor errors, and their variance matrices, are fed back to each local filter module in order to update the A local filter module that performs information sharing between the main filter module and each biased local filter module. 36. The "full fusion navigation and positioning method" as described in item 29 of the scope of patent application, wherein, after step (c-7), an additional step is further included: the global best from the main filter module State estimation, including the best estimates of inertial navigation parameter errors, GPS receiver errors, and inertial sensor errors, and their variance matrices, are fed back to each local filter module, with -52- ( 210X297公釐) I - I I - —II - -- ----- 、訂 f請先w>請背面之注意事項再填寫本頁〕 經濟部中央標率局員工消費合作社印製 ^44129 A8 Bd _______ D8 六、申請專利範園 便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 本地濾波器模塊之間的信息分享者。 37.如申請專利範圍第20項所述之「全融合導航定位方法」 ,其中,在第(c-8)步驟之後更進一步包含一附加步驟: 5 將來自該主遽波器模塊的全局最佳的狀態估計,包括 慣性導航參數誤差、GPS接收器誤差和慣性感應器誤差的 最佳估計及其方差矩障,反饋回每個本地濾波器模塊,以 便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 本地濾波器模塊之間的信息分享者。 10 38.如申請專利範圍第22項所述之「全融合導航定位方法」 ’其中,在第(〇8)步驟之後更進一步包含一附加步驟: 將來自該主濾波器模塊的全局最佳的狀態估計,包括 慣性導航參數誤差、GPS接收器誤差和慣性感應器誤差的 最佳估計及其方差矩陣,反饋回每個本地濾波器模塊,以 丨5便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 本地濾波器模塊之間的信息分享者。 39_如申請專利範圍第24項所述之「全融合導航定位方法」 ’其中,在第(c-8)步驟之後更進一步包含一附加步驟: 將來自該主濾波器模塊的全局最佳的狀態估計,包括 2〇慣性導航參數誤差、GPS接收器誤差和慣性感應器誤差:的 最佳估計及其方差矩陣,反饋回每個本地濾波器模塊,以 便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 本地濾波器模塊之間的信息分享者。 40.如申請專利範圍第26項所述之「全融合導航定位方法」 -53- 本紙張尺度逋用中國®家標準(CNS〉厶4規格(210X297公釐) (請先聞讀背面之注$項再填寫本頁〕 •裝. .訂 444129 AS B8 C8 D8 六 申請專利範圍 ,其中,在第(c-8)步驟之後更進一步包含一附加步驟: 將來自該主濾波器模塊的全局最佳的狀態估計,包括 慣性導航參數誤差、GPS接收器誤差和慣性感應器誤差的 最佳估計及其方差矩陣,反饋回每個本地濾波器模塊^以 5.便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 .本地濾波器模塊之間的信息分享者。 41‘如申請專利範圍第28項所述之「全融合導航定位方法^ ’其中’在第(c-8)步驟之後更進一步包含一附加步驟: 將來自該主遽波器模塊的全局最佳的狀態估計,包括 10慣性導航參數誤差、GPS接收器誤差和慣性感應器誤差的 最佳估計及其方差矩陴,反饋回每個本地濾波器模塊.以 便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 本地濾波器模塊之間的信息分享者。 42.如申請專利範圍第30項所述之「全融合導航定位方法」 15 ,其中,在第(c-8)步驟之後更進一步包含一附加步驟: 將來自該主濾波器模塊的全局最佳的狀態估計,包括 慣性導航參數誤差、GPS接收器誤差和慣性感應器誤差的 最佳估計及其方差矩陣,反饋回每個本地濾波器模塊,以 便更新該本地濾波器模塊,執行在該主濾波器模塊和每個 20 本地濾波器模塊之間的信息分享者。 ---- 1111 —! 1111 訂 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央捸準f工消費合作社印装 -54- 本紙張尺度適用中國國家標隼(CNS ) A4洗格(21〇><297公瘦>(210X297mm) I-II-—II-------, please order f > please note on the back before filling out this page] Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs ^ 44129 A8 Bd _______ D8 6. The patent application park will update the local filter module and execute the information sharing between the main filter module and each local filter module. 37. The "full fusion navigation and positioning method" as described in item 20 of the scope of patent application, wherein after step (c-8), an additional step is further included: 5 The best state estimates, including the best estimates of inertial navigation parameter errors, GPS receiver errors, inertial sensor errors, and their variance moment barriers, are fed back to each local filter module in order to update the local filter module. Sharer of information between the main filter module and each local filter module. 10 38. The "full fusion navigation and positioning method" as described in item 22 of the scope of patent application, wherein, after step (〇8), an additional step is further included: the global best from the main filter module State estimation, including the best estimation of inertial navigation parameter error, GPS receiver error, inertial sensor error, and its variance matrix, are fed back to each local filter module, and the local filter module is updated with 5 and executed in the Sharer of information between the main filter module and each local filter module. 39_ The "full fusion navigation and positioning method" as described in item 24 of the scope of the patent application, wherein after step (c-8), an additional step is further included: the global best from the main filter module State estimation, including 20 inertial navigation parameter error, GPS receiver error, and inertial sensor error: the best estimate and its variance matrix are fed back to each local filter module in order to update the local filter module and execute the Sharer of information between the main filter module and each local filter module. 40. The "full fusion navigation and positioning method" as described in item 26 of the scope of patent application -53- This paper size uses the Chinese standard (CNS> 厶 4 size (210X297 mm) (please read the note on the back first) $ Item then fill out this page] • Installation ... Order 444129 AS B8 C8 D8 Six patent application scopes, in which, after step (c-8), it further includes an additional step: the global maximum from the main filter module The best state estimates, including the best estimates of inertial navigation parameter errors, GPS receiver errors, and inertial sensor errors, and their variance matrices are fed back to each local filter module ^ 5. Then update the local filter module and execute Sharer of information between the main filter module and each of the local filter modules. 41'The "full fusion navigation and positioning method as described in item 28 of the scope of patent application ^ 'wherein' in section (c-8) After the step, an additional step is further included: the global best state estimation from the main wave filter module, including the best estimation of the 10 inertial navigation parameter error, GPS receiver error, and inertial sensor error, and The difference is bad, and it is fed back to each local filter module. In order to update the local filter module, the information sharer between the main filter module and each local filter module is executed. The "full fusion navigation and positioning method" described in item 15 further includes an additional step after step (c-8): estimating the global best state from the main filter module, including inertial navigation parameters The best estimate of the error, GPS receiver error, and inertial sensor error and their variance matrices are fed back to each local filter module in order to update the local filter module, perform the filtering in the main filter module and each of the 20 local filters Sharers of information between device modules. ---- 1111 —! 1111 Order (Please read the precautions on the back before filling this page) Printed by the Central Ministry of Economy and Trade Unions Consumer Cooperatives -54- This paper size applies to China National Standard (CNS) A4 Washer (21〇 > < 297 Male Thin >)
TW88105744A 1999-02-22 1999-04-09 Full fusion positioning method for vehicle TW444129B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/256,509 US6240367B1 (en) 1998-11-27 1999-02-22 Full fusion positioning method for vehicle

Publications (1)

Publication Number Publication Date
TW444129B true TW444129B (en) 2001-07-01

Family

ID=22972499

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88105744A TW444129B (en) 1999-02-22 1999-04-09 Full fusion positioning method for vehicle

Country Status (1)

Country Link
TW (1) TW444129B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270457B2 (en) 2007-06-27 2012-09-18 Qualcomm Atheros, Inc. High sensitivity GPS receiver
CN106441287A (en) * 2015-08-10 2017-02-22 通用汽车环球科技运作有限责任公司 Reduced-order fail-safe IMU system for active safety application
CN109520495A (en) * 2017-09-18 2019-03-26 财团法人工业技术研究院 Navigation positioning device and navigation positioning method using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270457B2 (en) 2007-06-27 2012-09-18 Qualcomm Atheros, Inc. High sensitivity GPS receiver
US8509362B2 (en) 2007-06-27 2013-08-13 Qualcomm Incorporated High sensitivity GPS receiver
US8755472B2 (en) 2007-06-27 2014-06-17 Qualcomm Incorporated High sensitivity GPS receiver
CN106441287A (en) * 2015-08-10 2017-02-22 通用汽车环球科技运作有限责任公司 Reduced-order fail-safe IMU system for active safety application
CN106441287B (en) * 2015-08-10 2019-08-13 通用汽车环球科技运作有限责任公司 Depression of order fail safe IMU system for activity safety application
CN109520495A (en) * 2017-09-18 2019-03-26 财团法人工业技术研究院 Navigation positioning device and navigation positioning method using same
CN109520495B (en) * 2017-09-18 2022-05-13 财团法人工业技术研究院 Navigation positioning device and navigation positioning method using same

Similar Documents

Publication Publication Date Title
US6240367B1 (en) Full fusion positioning method for vehicle
Noureldin et al. Fundamentals of inertial navigation, satellite-based positioning and their integration
Alban et al. Performance analysis and architectures for INS-aided GPS tracking loops
US9488480B2 (en) Method and apparatus for improved navigation of a moving platform
CN110986879B (en) Power line tower inclination real-time monitoring method and system
TW502123B (en) Real-time integrated vehicle positioning method and system with differential GPS
Yang Tightly coupled MEMS INS/GPS integration with INS aided receiver tracking loops
CN104297773B (en) A kind of high accuracy Big Dipper three frequency SINS deep integrated navigation system
CN104316947B (en) GNSS/INS ultra-tight combination navigation apparatus and relative navigation system thereof
CN103868514B (en) A kind of at orbit aerocraft autonomous navigation system
CN107710017A (en) For the satellite navigation receiver and method switched between real time kinematics pattern and relative positioning mode
CN102508277A (en) Precise point positioning and inertia measurement tightly-coupled navigation system and data processing method thereof
JP2007524089A (en) Method and system for advanced navigation performance
Sun et al. Ultratight GPS/reduced-IMU integration for land vehicle navigation
Chen et al. Low-cost GNSS/INS integration for enhanced land vehicle performance
CN108344415A (en) A kind of integrated navigation information fusion method
CN107688191A (en) A kind of miniature location navigation time service terminal
CN115327588A (en) Network RTK-based high-precision positioning method for unmanned automatic operation special vehicle
CN107479069A (en) A kind of slow change slope failure completeness monitoring method
CN202305821U (en) Precise single-point positioning and inertial measurement tight integrated navigation system
Wang et al. Measurement quality control aided multi-sensor system for improved vehicle navigation in urban areas
TW444129B (en) Full fusion positioning method for vehicle
TW448304B (en) Fully-coupled positioning process and system
CN102621569A (en) Distributed filtering global positioning and strapdown inertial navigation system combined navigation method
Karaim Ultra-tight GPS/INS integrated system for land vehicle navigation in challenging environments

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees