TW440543B - Preparation of high purity lithium salts - Google Patents

Preparation of high purity lithium salts Download PDF

Info

Publication number
TW440543B
TW440543B TW088103201A TW88103201A TW440543B TW 440543 B TW440543 B TW 440543B TW 088103201 A TW088103201 A TW 088103201A TW 88103201 A TW88103201 A TW 88103201A TW 440543 B TW440543 B TW 440543B
Authority
TW
Taiwan
Prior art keywords
lithium
carbonate
item
precipitated
purity
Prior art date
Application number
TW088103201A
Other languages
Chinese (zh)
Inventor
Holger Friedrich
Joachim Pfeffinger
Bernd Leutner
Original Assignee
Basf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Ag filed Critical Basf Ag
Application granted granted Critical
Publication of TW440543B publication Critical patent/TW440543B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A process for preparing a high purity lithium salt from lithium carbonate comprises steps A to D as defined hereinbelow; (A) treating a mixture comprising lithium carbonatte and water by means of CO2 to obtain an aqueous mixture comprising lithium bicarbonate, (B) passing said aqueous mixture comprising lithium bicarbonate through an ion exchanger module, (C) precipitating lithium coarbonate from the ion exchange module treated lithium bicarbonate mixture obtained in step B, and (D) working up the precipitated lithium carbonate or converting the precipitated lithium carbonate into some other high purity lithium salt.

Description

^40543 五、發明說明α) 本發明係關於一種以碳酸鋰製備高純度鋰鹽的方法,其 係令含碳酸氬鋰水性混合物送入一種離子交換器模組為 之。 高純度鋰化合物隨著鋰二級電池的發展而曰形重要,因 為此種電池須利用如L i P Fs或L i PF4等導電鹽。這類或類似 之導電鹽通常由鋰鹽製得,例如氟化鋰(L i F )或氣化鋰 (LiCl),而其又係由碳酸鋰(Li2C03)而得。為了自上述鋰 鹽製得可用於前述目的之導電鹽,其前者必須已具相當高 純度。更具體而言,金屬異物離子含量要在低於1 ppm以 下方為理想。 因此,在文獻中已揭示多種製得高純度鋰鹽的方法,尤 其是以氟化鋰者。^ 40543 V. Description of the invention α) The present invention relates to a method for preparing a high-purity lithium salt from lithium carbonate by feeding an aqueous mixture containing lithium argon carbonate into an ion exchanger module. With the development of lithium secondary batteries, high-purity lithium compounds have become more important. For this type of battery, it is necessary to use conductive salts such as Li P Fs or Li PF4. Such or similar conductive salts are usually made from lithium salts, such as lithium fluoride (L i F) or lithium gasified (LiCl), which are in turn obtained from lithium carbonate (Li2C03). In order to obtain a conductive salt from the above-mentioned lithium salt which can be used for the aforementioned purpose, the former must already have a relatively high purity. More specifically, it is desirable that the content of metal foreign ions be less than 1 ppm. Therefore, various methods for preparing high-purity lithium salts have been disclosed in the literature, especially those using lithium fluoride.

Stockbarger化之製備高純度氟化裡方法中,是以區域 熔化方式製出單晶的L i F,此法揭示於1 9 6 0年Gm e 1 i η第8 版,代1!-¥€1'138 1^111}1€:[111第6冊,305-327 頁°但此種以 光學目的而獲得之氟化鋰為單晶型式,方法非常繁複價 昂,故不適於LiF的大量生產。 美國專利第3 83 9 546號說明一種利用鹼金屬醇鹽與氣 態鹵素如HC1或SiCl4反應,製備高純度鹼金屬鹵化物方 法。此法亦同樣繁複價昂,特別是須以元素形態鹼金屬作 為鹼金屬醇鹽之起始原料。 DE-A 1 9 5 4 1 558號專利說明一種純化氯化鋰溶液的方 法,其重點在於移除不要的氣化鈉成份。此法以特殊程序 蒸發,得到產率為2 99%之氣化鋰溶液,確可實質上不含Stockbarger's method for preparing high-purity fluorinated fluorinated silicon is to produce single crystal L i F by regional melting. This method was disclosed in Gm e 1 i η 8th edition in 1960, 1!-¥ € 1'138 1 ^ 111} 1 €: [111 Vol. 6, pages 305-327 ° However, this type of lithium fluoride obtained for optical purposes is a single crystal type, the method is very complicated and expensive, so it is not suitable for the large amount of LiF produce. U.S. Patent No. 3 83 9 546 describes a method for preparing a high-purity alkali metal halide by reacting an alkali metal alkoxide with a gaseous halogen such as HC1 or SiCl4. This method is also complicated and expensive, especially the elemental alkali metal must be used as the starting material of the alkali metal alkoxide. DE-A 1 9 5 4 1 558 describes a method for purifying a lithium chloride solution, the focus of which is to remove unwanted sodium vapor components. This method uses a special procedure to evaporate to obtain a lithium gas solution with a yield of 2 99%, which can be substantially free of

^40543 五、發明說明(2) 氣化鈉。報告上所載之所得氣化鋰溶液含氣化鈉成份低於 0. 3重量%。範例中的NaC 1含量為0, 2%。 藉一種離子交換器處理,以製備高純度鋰鹽之方法同樣 為一般所熟知。然而各例中均為處理氯化鋰溶液 (Hydro metal lurgy, 2 7 (1991), 317 - 325 頁,美國專利字 號第4 859 343 與第4 929 588 號)。 本發明之一目的在於提供一種製備高純度鋰鹽的簡單方 法,尤其是採用氟化鋰,碳酸鋰,與氣化鋰,可符合大的 工業規模生產。 吾人已發現此目的可藉自碳酸鋰製備高純度鋰之方法達 成,該方法包含如以下定義之A到D步驟: A :以C02處理包含碳酸鋰與水的混合物,得到含碳酸氫鋰 之水性混合物, B :令該含竣酸氫鋰之水性混合物通過一組離子交換模組, C :自步驟B所得經離子交換模組處理過之碳酸氫鋰混合物 中,沉澱出碳酸鋰,與 D :整理出該沉澱後碳酸鋰,亦即徹底將其分離出,可選擇 性以H20或一種含1120溶劑清洗與乾燥,或是轉化該沉澱後 碳酸鈉為某些其它高純度鋰鹽。 由以上明顯得知,本發明始自碳酸鋰,而其係懸浮水 中,或在一種與例如醇,酮,或醛的水性溶劑混合物中, 再以C02方法轉移成水溶性碳酸氫鋰°碳酸鋰/碳酸氫鋰在 各別水性混合物的濃度在由約0 . 5到約3 0重量%範圍,其更 佳在由約3到約2 0重量%範圍。^ 40543 V. Description of the invention (2) Sodium vaporization. 3 重量 %。 Lithium gaseous solution obtained on the report contained sodium gaseous component less than 0.3% by weight. The NaC 1 content in the example is 0, 2%. A method for preparing a high-purity lithium salt by an ion exchanger is also generally known. In each case, however, lithium chloride solutions were treated (Hydro metal lurgy, 27 (1991), pages 317-325, US Patent Nos. 4 859 343 and 4 929 588). An object of the present invention is to provide a simple method for preparing a high-purity lithium salt, especially using lithium fluoride, lithium carbonate, and lithium gasified, which can meet the production on a large industrial scale. I have found that this purpose can be achieved by a method of preparing high-purity lithium from lithium carbonate, which method comprises steps A to D as defined below: A: treating a mixture containing lithium carbonate and water with CO 2 to obtain an aqueous solution containing lithium bicarbonate Mixture, B: The aqueous lithium hydrogen carbonate-containing mixture is passed through a group of ion exchange modules, C: Lithium carbonate is precipitated from the lithium hydrogen carbonate mixture treated by the ion exchange module obtained in step B, and D: After the precipitated lithium carbonate is sorted out, that is, it is completely separated, it can be optionally washed and dried with H20 or a solvent containing 1120, or the precipitated sodium carbonate can be converted into some other high-purity lithium salt. It is clear from the above that the present invention originates from lithium carbonate, and it is suspended in water, or in an aqueous solvent mixture with, for example, alcohol, ketone, or aldehyde, and then transferred to water-soluble lithium bicarbonate by the CO2 method The concentration of lithium / bicarbonate in the respective aqueous mixture ranges from about 0.5 to about 30% by weight, and more preferably ranges from about 3 to about 20% by weight.

第6頁 ^40543 五、發明說明(3) ~ " 生成之水性碳酸氫链混合物’再被送往離子交換嚣模板 (步驟B)處理。根據本發明,此步驟β以在由約1〇到二7〇七 進行較佳,更佳由約2 0到約4 0 °C 。 步驟A與B以在大氣壓力以上之壓力操作較佳,如此可使 得到較高之uhco3濃度。 步驟B所用為一般商用離子交換樹脂。此種離子交換樹 脂中,較佳含有具如硫基或羥基等離子活性側鏈之有機聚 合物。 原則上’根據本發明可使用任何以聚合物為基之離子交 換器,亦即不僅弱酸陽離子交換器可用,強酸者 發明適用之離子交換器模組,包括上述陽:=:以: 粒。珠粒,顆粒等型式填充之裝置(例如管柱)。 此種離子交換器中特別適用之聚合物基物質,為一種苯 乙婦與二乙烯基苯之共聚物,尤其是具有胺基烯基磷酸基 或是亞胺二醋酸基之苯乙烯一二乙烯基苯共聚物。 特定範例為: 商標名稱為Lewatit⑤系列之樹脂,例如Lewat it⑥0C 1060 (AMP type), Lewatit^ TP 208 (IDA type), Lewatit® E 304/88, Lewatit®TP 207, Lewatit^S 100 ; 商標名稱為Amberlit e®系列之樹脂,例如A m b e r 1 i t e⑧ IR 120, Amberlite® IRA 743 ; 商標名稱為Do we者,如d〇wex HCR ; 商標名稱為Duolit遇者,如Duolite⑥C20, Duolite®Page 6 ^ 40543 V. Description of the invention (3) ~ "The generated aqueous bicarbonate chain mixture 'is then sent to the ion exchange template (step B) for processing. According to the present invention, this step β is preferably performed from about 10 to 2707, more preferably from about 20 to about 40 ° C. Steps A and B are preferably operated at a pressure above atmospheric pressure, so that a higher uhco3 concentration can be obtained. In step B, a general commercial ion exchange resin is used. Such an ion exchange resin preferably contains an organic polymer having an ionic active side chain such as a sulfur group or a hydroxyl group. In principle, according to the present invention, any polymer-based ion exchanger can be used, that is, not only a weak acid cation exchanger is available, but a strong acid can be applied to the ion exchanger module, including the above-mentioned positive: =: to: particles. Beads, granules, etc. (such as tubing). The polymer-based material particularly suitable for this type of ion exchanger is a copolymer of acetophenone and divinylbenzene, especially styrene-divinyl having an aminoalkenyl phosphate group or an iminodiacetic acid group. Benzene copolymer. Specific examples are: Lewatit ⑤ series resins, such as Lewat it⑥0C 1060 (AMP type), Lewatit ^ TP 208 (IDA type), Lewatit® E 304/88, Lewatit® TP 207, Lewatit ^ S 100; the brand name is Resins of the Amberlit e® series, such as A mber 1 it e⑧ IR 120, Amberlite® IRA 743; the trade name is Do we, such as dowex HCR; the trade name is Duolit, such as Duolite⑥C20, Duolite®

Φ4 05 4 3 五、發明說明(4) C467, Duol i te® Β346 ;與 商標名稱為imac@者’如Imac® TMR,其中又以itg) 系列者較為適用。 特別適用者為使用再生,故含相當低鈉離子之 交換樹脂’或其它種非常低鈉離子交換樹脂。 適用於本發明之離子交換樹脂相關詳細細節,載於 Ullmann' s Encycl. of Industr. Chem.,第5版14 冊的 393-459頁,其内容全部併入本文。 當碳酸鋰或碳酸氫鋰純度甚低,或是欲得到特別高純度 鋰化合物時’可以重覆操作步驟B 2到5次,較佳為2到3 次。 經過步驟B後,溶液送往步驟c,於此處將碳酸鋰再沉澱 出’作法可利用加溫到溶液沸點,與/或減低的分壓。 步驟C溫度通常在由約8 〇到約1 〇 〇 °c範圍。 經此純化之碳酸鋰,最後送往步驟]),在此處或經直接 整理出’亦即完全分離出’較佳是以過濾,選擇性以 或含0溶劑清洗,再乾燥與/或再結晶一次,在後者則再 操作步驟A到C ’或是以適當反應劑處理,例如水性氫氟酸 或鹽酸’以轉化其成為所需鹽種類。 由此得到的碳酸鋰通常異物金屬離子含量在1〇 ppm# 下’更佳低於5 ppm,特佳時低於1 ppm,而氣含量低於3〇 PPm,更佳低於1 〇 ppm,特佳時低於5 ppm。 舉例而言,為得到氟化鋰,沉澱出之碳酸鋰可懸浮於 水’再與水性氫氟酸反應’生成LiF。產出之LiF為固體型Φ4 05 4 3 V. Description of the invention (4) C467, Duolite® B346; and the brand name is imac @ 者 ’such as Imac® TMR, among which itg) series is more suitable. Particularly suitable for use are regeneration resins which contain relatively low sodium ions, or other very low sodium ion exchange resins. Details of the ion exchange resins suitable for use in the present invention are contained in Ullmann's Encycl. Of Industr. Chem., 5th edition, 14th volume, pages 393-459, the entire contents of which are incorporated herein. When the purity of lithium carbonate or lithium bicarbonate is very low, or it is desired to obtain a particularly high-purity lithium compound ', operation step B may be repeated 2 to 5 times, preferably 2 to 3 times. After step B, the solution is sent to step c, where the method of reprecipitating lithium carbonate out 'can be performed by heating to the boiling point of the solution and / or reducing the partial pressure. The step C temperature is usually in the range from about 80 to about 1000 ° C. The purified lithium carbonate is finally sent to the step]), which is here or directly sorted out, that is, completely separated, is preferably filtered, optionally washed with or containing 0 solvent, and then dried and / or re- Crystallize once, and then operate steps A to C 'or treat with a suitable reactant, such as aqueous hydrofluoric acid or hydrochloric acid' to convert it to the desired salt species. The lithium carbonate thus obtained usually has a foreign metal ion content of 10 ppm #, more preferably less than 5 ppm, particularly preferably less than 1 ppm, and a gas content of less than 30 ppm, and more preferably less than 10 ppm. Very good when less than 5 ppm. For example, to obtain lithium fluoride, the precipitated lithium carbonate can be suspended in water 'and then reacted with aqueous hydrofluoric acid' to form LiF. The output of LiF is solid

五、發明說明(5) 態,可由過濾與其後乾燥成純固體。C02以氣體散逸。 同樣方式可以製備 LiCl, UBr, Li2S04, LiN03, Li3P04, Li2C03 與其它鋰鹽,例如LiBF4, LiC104, LiAsF6, LiCF3S03 ,LiC(CF3S02)3, Li N(CF3S0.2)2, L i N ( C F3 CF2 S02 )2, LiN(S02F)2, UA1C14, LiSiF6, LiSiF6, LiSbF5。後者尤 其在導電鹽有極大用途,而其它在這方面者依序為LiPFs, LiPF4 與1^:8?4。 本發明方法之另一具體實例中,可以重覆操作步驟A的 與C 02溶解,以及步驟C的沉澱碳酸鋰,不需重覆步驟B的 效果,這是當僅有大量鈉與/或鉀需被移除時。 此外,下列步驟順序亦可為本發明之方法: 1. 步驟A-步驟B-步驟C-步驟A-步驟C -步驟D-;或 2. 步驟A-步驟B-步驟步驟C-步驟A-步驟C-步驟D ;或 3 .步驟A -步驟B -步驟C -步驟A -步驟B -步驟C -步驟D。 於本發明另一具體實例中,本發明方法係以下列操作: 步驟A:半連續式,亦即含水與Li2C03之懸浮液於開始時 加入,C02再通入; 步驟B :連續式; 步驟C與D :批式操作。 依據以上,本發明方法具有其特別優點,可以不僅使鹼 金屬陽離子,特別是鈉離子,同時其它多價陽離子,例如 鹼土金屬與過渡金屬離子,均能有效移除;經由本發明方 法,可以將L i2 C 03内鈉濃度減到4 0 0倍以上;而多價離子造 成之不純物,例如鈣,鎂,鐵,與/或鋁等,均實質上完V. Description of the invention (5) state, which can be filtered and dried to a pure solid. C02 escapes as a gas. LiCl, UBr, Li2S04, LiN03, Li3P04, Li2C03 and other lithium salts can be prepared in the same way, such as LiBF4, LiC104, LiAsF6, LiCF3S03, LiC (CF3S02) 3, Li N (CF3S0.2) 2, L i N (C F3 CF2 S02) 2, LiN (S02F) 2, UA1C14, LiSiF6, LiSiF6, LiSbF5. The latter is particularly useful for conductive salts, while others in this regard are LiPFs, LiPF4 and 1 ^: 8? 4 in this order. In another specific example of the method of the present invention, it is possible to repeatedly dissolve the carbon dioxide in step A and precipitate the lithium carbonate in step C without repeating the effect of step B. This is when only a large amount of sodium and / or potassium is used. When it needs to be removed. In addition, the following sequence of steps can also be the method of the present invention: 1. Step A-Step B-Step C-Step A-Step C-Step D-; or 2. Step A-Step B-Step Step C-Step A- Step C-Step D; or 3. Step A-Step B-Step C-Step A-Step B-Step C-Step D. In another embodiment of the present invention, the method of the present invention is performed as follows: Step A: semi-continuous, that is, a suspension of water and Li2C03 is added at the beginning, and C02 is re-introduced; Step B: continuous; Step C With D: batch operation. Based on the above, the method of the present invention has its special advantages. It can effectively remove not only alkali metal cations, especially sodium ions, but also other polyvalent cations, such as alkaline earth metals and transition metal ions. The concentration of sodium in L i2 C 03 is reduced to more than 400 times; and impurities such as calcium, magnesium, iron, and / or aluminum caused by polyvalent ions are substantially complete.

44〇543 五、發明說明(6) 全被如步驟β之離子交換器處理除去。此外,所得產物實 質上不含氣。 以下以範例對本發明之一具體實例作更特別說明。(範 例L i F的製備與純化) 首先取100 g Li2C03(實驗級)(1353㈣”與別㈣g蒸餾 水於21玻璃瓶稱重盛入。 於至溫下(21 °C)攪拌,並灌入⑶2 6小時,直到L 數溶解。 —3 取所得溶液過濾並加壓原送通過Lewatlt©Tp 207 (100ml)再生之離子交換器床,接著以丨㈣…水清洗。 通過該Lewati® TP 2〇7的劑量為400 ml/h。 通過該離子交換器床而得到之溶液以迴流方式加溫沸 騰’以使碳酸氫鋰(脫離c〇2)轉化為碳酸鋰並沉澱。 該洛液赵冷却過濾’濾出殘餘物以水清洗,於3 燥,留下69· 6 g乾燥碳酸鋰。 乾 =此量中的58·22 g ( 0.7 88 mol)作再一次與水(11〇 g)他5 攪拌與吸收C 02氣體溶解,再過遽一次。 营所得產率相當於69. 6%,這是以所用碳酸鋰量為基礎計 、遽' 出物與78.8 g 40重量%氫氟酸( 1.5 7 6 mol hf)〉見人 以排出C〇2沉澱出氟化鋰。以氨溶液調整pH值到7 . 5 該批料’濾出殘餘物以水清洗,於3 〇 〇 °c乾燥。 過遠 由此得到約3 9 g氟化鋰。以離子交換器處理後所 鋰I氐立i ^ 丨币碳酸 置為基叶舁,此相當於95. 5 %產率。44〇543 V. Description of the invention (6) All were removed by the ion exchanger treatment in step β. In addition, the resulting product is essentially gas-free. In the following, a specific example of the present invention will be described more specifically by way of example. (Preparation and Purification of Example Li F) First, take 100 g of Li2C03 (experimental grade) (1353㈣ "and other ㈣g of distilled water into a 21 glass bottle and weigh in. Stir at room temperature (21 ° C) and pour in ⑶2 6 Hours until the number of L is dissolved. —3 The resulting solution is filtered and sent under pressure to the ion exchanger bed regenerated through Lewatlt © Tp 207 (100ml), and then washed with water. This Lewati® TP 207 The dose was 400 ml / h. The solution obtained through the ion exchanger bed was heated and boiled under reflux to convert lithium bicarbonate (except CO 2) into lithium carbonate and precipitate. The residue was washed with water, dried at 3, leaving 69.6 g of dry lithium carbonate. Dry = 58.22 g (0.7 88 mol) of this amount was once again mixed with water (110 g) and 5 Absorb the C 02 gas and dissolve it again. The yield is equivalent to 69. 6%, which is based on the amount of lithium carbonate used, 遽 'output and 78.8 g of 40% by weight hydrofluoric acid (1.5 7 6 mol hf)> Seen to discharge CO2 to precipitate lithium fluoride. Adjust the pH to 7.5 with ammonia solution This batch 'filters out the residue It was washed with water and dried at 300 ° C. Too long, about 39 g of lithium fluoride was obtained. After treatment with the ion exchanger, the lithium I, Li, i, and ^ coin carbonic acid was set as the base leaf, which is equivalent to 95 . 5% yield.

第10頁 44〇543 五、發明說明(7) 因此,以所用L i 2 C03量為基礎計算,L i F最終產率為 6 6.4% a 相關於所得到L 12 C 03與L 1 F純度之結果列如下表。Page 10 44〇543 V. Description of the invention (7) Therefore, based on the amount of Li 2 C03 used, the final yield of Li F is 6 6.4% a. It is related to the purity of L 12 C 03 and L 1 F The results are listed in the following table.

Li2C03用量 [mg/kg] Li2C03 第一次 沉源[mg/kg] LiF [mg/kg] 第一次沉澱前/後每 莫耳Li之異物金屬 離子濃度比例 異物金屬離子 濃度 鋁 7 <1 <1 >7 鈣 60 <1 約1 >60 鐵 3 <1 <1 >3 鉀 40 <1 <1 >40 鎂 25 <1 <1 >25 鈉 480 約1 <1 480 氯 55 <5 <5 55Li2C03 dosage [mg / kg] Li2C03 First sinking source [mg / kg] LiF [mg / kg] Li foreign metal ion concentration ratio per mol of Li before / after first precipitation Al foreign metal ion concentration aluminum 7 < 1 < 1 > 7 calcium 60 < 1 about 1 > 60 iron 3 < 1 < 1 > 3 potassium 40 < 1 < 1 > 40 magnesium 25 < 1 < 1 > 25 sodium 480 about 1 < 1 480 chlorine 55 < 5 < 5 55

第11頁Page 11

Claims (1)

修正Amend 八—案號8糊201 六、申φ專利 1. 一種利用碳酸 定義之A到D步驟: A :以C02處理包含碳酸鋰與水之混合物,得到含碳酸 氫链之水性混合物, B :令該含碳酸氫鋰之水性混合物通過一組離子交換器 模組, C :自步驟B所得經離子交換器模組處理過之碳酸氫鋰 混合物中,沉澱出碳酸鋰,與 D :處理該沉澱碳酸鋰,或轉化該沉澱碳酸鋰成為某種 其它高純度鋰鹽。 2. 如申請專利範圍第1項之方法,其中該高純度鋰鹽為 氯化鋰,氟化鋰,溴化鋰,硫酸鋰,硝酸鋰,磷酸鋰或碳 酸鋰。 3. 如申請專利範圍第1項之方法,其中該高純度鋰鹽具 有之異物金屬離子含量低於1 ppm。 4. 如申請專利範圍第1項之方法,其中該步驟B係重覆操 作。 5. 如申請專利範圍第1項之方法,其係依下列1到3順序 中任一方式進行: 1. 步驟A-步驟B-步驟C-步驟A-步驟C-步驟D-;或. 2. 步驟A-步驟B-步驟B-步驟C-步驟A-步驟C-步驟D ; 或 3. 步驟A-步驟步驟C-步驟A-步驟B-步驟C-步驟D。 6. 如申請專利範圍第1至5項中任一項之方法,其中離子VIII—Case No. 8 Paste 201 VI. Applying for φ Patent 1. A to D steps defined by carbonic acid: A: treating a mixture containing lithium carbonate and water with C02 to obtain an aqueous mixture containing a hydrogen carbonate chain, B: let the The aqueous mixture containing lithium bicarbonate passes through a group of ion exchanger modules, C: Lithium carbonate is precipitated from the lithium bicarbonate mixture processed by the ion exchanger module obtained in step B, and D: the precipitated lithium carbonate is treated , Or transform the precipitated lithium carbonate into some other high-purity lithium salt. 2. The method according to item 1 of the patent application scope, wherein the high-purity lithium salt is lithium chloride, lithium fluoride, lithium bromide, lithium sulfate, lithium nitrate, lithium phosphate, or lithium carbonate. 3. The method according to item 1 of the patent application scope, wherein the high-purity lithium salt has a foreign metal ion content of less than 1 ppm. 4. The method of item 1 in the scope of patent application, wherein step B is repeated. 5. If the method of applying for the first item of the patent scope, it is performed in any of the following order from 1 to 3: 1. Step A-Step B-Step C-Step A-Step C-Step D-; or. 2 Step A-Step B-Step B-Step C-Step A-Step C-Step D; or 3. Step A-Step Step C-Step A-Step B-Step C-Step D. 6. The method according to any one of claims 1 to 5, wherein the ion O:\57\57352.ptc 第1頁 2000.07. 27.012 440543O: \ 57 \ 57352.ptc Page 1 2000.07. 27.012 440543 O:\57\57352.ptc 第2頁 2000.07. 27.013 修正O: \ 57 \ 57352.ptc Page 2 2000.07. 27.013 Correction 八—案號8糊201 六、申φ專利 1. 一種利用碳酸 定義之A到D步驟: A :以C02處理包含碳酸鋰與水之混合物,得到含碳酸 氫链之水性混合物, B :令該含碳酸氫鋰之水性混合物通過一組離子交換器 模組, C :自步驟B所得經離子交換器模組處理過之碳酸氫鋰 混合物中,沉澱出碳酸鋰,與 D :處理該沉澱碳酸鋰,或轉化該沉澱碳酸鋰成為某種 其它高純度鋰鹽。 2. 如申請專利範圍第1項之方法,其中該高純度鋰鹽為 氯化鋰,氟化鋰,溴化鋰,硫酸鋰,硝酸鋰,磷酸鋰或碳 酸鋰。 3. 如申請專利範圍第1項之方法,其中該高純度鋰鹽具 有之異物金屬離子含量低於1 ppm。 4. 如申請專利範圍第1項之方法,其中該步驟B係重覆操 作。 5. 如申請專利範圍第1項之方法,其係依下列1到3順序 中任一方式進行: 1. 步驟A-步驟B-步驟C-步驟A-步驟C-步驟D-;或. 2. 步驟A-步驟B-步驟B-步驟C-步驟A-步驟C-步驟D ; 或 3. 步驟A-步驟步驟C-步驟A-步驟B-步驟C-步驟D。 6. 如申請專利範圍第1至5項中任一項之方法,其中離子VIII—Case No. 8 Paste 201 VI. Applying for φ Patent 1. A to D steps defined by carbonic acid: A: treating a mixture containing lithium carbonate and water with C02 to obtain an aqueous mixture containing a hydrogen carbonate chain, B: let the The aqueous mixture containing lithium bicarbonate passes through a group of ion exchanger modules, C: Lithium carbonate is precipitated from the lithium bicarbonate mixture processed by the ion exchanger module obtained in step B, and D: the precipitated lithium carbonate is treated , Or transform the precipitated lithium carbonate into some other high-purity lithium salt. 2. The method according to item 1 of the patent application scope, wherein the high-purity lithium salt is lithium chloride, lithium fluoride, lithium bromide, lithium sulfate, lithium nitrate, lithium phosphate, or lithium carbonate. 3. The method according to item 1 of the patent application scope, wherein the high-purity lithium salt has a foreign metal ion content of less than 1 ppm. 4. The method of item 1 in the scope of patent application, wherein step B is repeated. 5. If the method of applying for the first item of the patent scope, it is performed in any of the following order from 1 to 3: 1. Step A-Step B-Step C-Step A-Step C-Step D-; or. 2 Step A-Step B-Step B-Step C-Step A-Step C-Step D; or 3. Step A-Step Step C-Step A-Step B-Step C-Step D. 6. The method according to any one of claims 1 to 5, wherein the ion O:\57\57352.ptc 第1頁 2000.07. 27.012O: \ 57 \ 57352.ptc Page 1 2000.07. 27.012
TW088103201A 1998-03-05 1999-03-03 Preparation of high purity lithium salts TW440543B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19809420A DE19809420A1 (en) 1998-03-05 1998-03-05 Process for the production of high-purity lithium salts

Publications (1)

Publication Number Publication Date
TW440543B true TW440543B (en) 2001-06-16

Family

ID=7859802

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088103201A TW440543B (en) 1998-03-05 1999-03-03 Preparation of high purity lithium salts

Country Status (6)

Country Link
US (1) US6592832B1 (en)
JP (1) JP2002505248A (en)
CA (1) CA2322544A1 (en)
DE (1) DE19809420A1 (en)
TW (1) TW440543B (en)
WO (1) WO1999044941A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157065B2 (en) * 1998-07-16 2007-01-02 Chemetall Foote Corporation Production of lithium compounds directly from lithium containing brines
US7390466B2 (en) * 1999-07-14 2008-06-24 Chemetall Foote Corporation Production of lithium compounds directly from lithium containing brines
EP1527362A1 (en) * 2002-08-07 2005-05-04 Corning Incorporated Scatter-free uv optical fluoride crystal elements for below 200 nm laser lithography and methods
JP5122809B2 (en) * 2006-12-26 2013-01-16 ステラケミファ株式会社 Method for producing lithium fluoride
FI121785B (en) 2009-03-11 2011-04-15 Outotec Oyj Process for the purification of lithium bicarbonate
US8741256B1 (en) 2009-04-24 2014-06-03 Simbol Inc. Preparation of lithium carbonate from lithium chloride containing brines
US10190030B2 (en) 2009-04-24 2019-01-29 Alger Alternative Energy, Llc Treated geothermal brine compositions with reduced concentrations of silica, iron and lithium
US8637428B1 (en) 2009-12-18 2014-01-28 Simbol Inc. Lithium extraction composition and method of preparation thereof
US9034294B1 (en) 2009-04-24 2015-05-19 Simbol, Inc. Preparation of lithium carbonate from lithium chloride containing brines
US9051827B1 (en) 2009-09-02 2015-06-09 Simbol Mining Corporation Selective removal of silica from silica containing brines
JP5431019B2 (en) * 2009-05-15 2014-03-05 日本化学工業株式会社 Method for producing high purity lithium carbonate
US10935006B2 (en) 2009-06-24 2021-03-02 Terralithium Llc Process for producing geothermal power, selective removal of silica and iron from brines, and improved injectivity of treated brines
CN101723414B (en) * 2009-12-11 2012-02-08 多氟多化工股份有限公司 Method for producing battery-grade lithium fluoride
WO2011082444A1 (en) * 2010-01-07 2011-07-14 Galaxy Resources Limited Process for the production of lithium carbonate
CN101928022B (en) * 2010-02-11 2013-04-03 多氟多化工股份有限公司 Method for preparing battery grade lithium fluoride
ES2750527T3 (en) * 2010-02-17 2020-03-26 All American Lithium LLC Preparation procedures for highly pure lithium carbonate and other highly pure lithium containing compounds
CN102031368B (en) * 2010-10-29 2013-01-02 西安蓝晓科技新材料股份有限公司 Continuous ion exchange device and method for extracting lithium from salt lake brine
JP5406822B2 (en) 2010-11-30 2014-02-05 日鉄鉱業株式会社 Method for producing lithium carbonate
CN102070162B (en) * 2011-01-30 2012-10-03 西安蓝晓科技新材料股份有限公司 Method for extracting lithium from salt lake brine
CN102351160B (en) * 2011-05-06 2013-10-30 江西赣锋锂业股份有限公司 Method for preparing battery grade lithium dihydrogen phosphate with high-purity lithium carbonate lithium depositing mother solution
CA3118987C (en) 2012-04-23 2023-09-19 Nemaska Lithium Inc. Process for preparing lithium sulphate
EP2855357B1 (en) 2012-05-25 2019-11-13 LANXESS Deutschland GmbH Production of high purity lithium fluoride
WO2013177680A1 (en) 2012-05-30 2013-12-05 Nemaska Lithium Inc. Processes for preparing lithium carbonate
CN103626208B (en) * 2012-08-27 2016-08-24 枣庄海帝新能源锂电科技有限公司 A kind of high purity lithium fluoride preparation method of lithium hexafluoro phosphate raw material
CA3014124A1 (en) 2013-03-15 2014-09-18 Nemaska Lithium Inc. Use of electrochemical cell for preparing lithium hydoxide
EP2789583A1 (en) * 2013-04-12 2014-10-15 LANXESS Deutschland GmbH Low chloride electrolyte
CA2996154C (en) 2013-10-23 2023-02-07 Nemaska Lithium Inc. Process for preparing lithium hydroxide via two electrochemical cells
CA3086843C (en) * 2014-02-24 2021-06-22 Nemaska Lithium Inc. Methods for treating lithium-containing materials
JP6198798B2 (en) 2015-10-26 2017-09-20 日鉄鉱業株式会社 Lithium carbonate production method
DE102015221759A1 (en) 2015-11-05 2017-05-11 Technische Universität Bergakademie Freiberg Process for the CO2 treatment of tempered lithium-containing materials for the production of lithium carbonate
DE102016208407B4 (en) 2016-05-17 2021-12-30 Technische Universität Bergakademie Freiberg Process for the extraction of lithium carbonate from lithium-containing accumulator residues by means of CO2 treatment
CA2940509A1 (en) 2016-08-26 2018-02-26 Nemaska Lithium Inc. Processes for treating aqueous compositions comprising lithium sulfate and sulfuric acid
US10604414B2 (en) 2017-06-15 2020-03-31 Energysource Minerals Llc System and process for recovery of lithium from a geothermal brine
AU2018373507B2 (en) 2017-11-22 2024-02-22 Nemaska Lithium Inc. Processes for preparing hydroxides and oxides of various metals and derivatives thereof
CN108840354B (en) * 2018-08-16 2020-12-15 湖北上和化学有限公司 Deep impurity removal method for battery-grade lithium chloride
WO2020126974A1 (en) 2018-12-20 2020-06-25 Lanxess Deutschland Gmbh Production of high purity lithium carbonate from brines
CN111559750A (en) * 2020-03-27 2020-08-21 白银中天化工有限责任公司 Efficient continuous electronic-grade lithium fluoride production process
CN111606336A (en) * 2020-05-19 2020-09-01 百杰瑞(荆门)新材料有限公司 Preparation method of lithium fluoride
CN113184824B (en) * 2021-05-12 2022-10-11 湖南法恩莱特新能源科技有限公司 Preparation method of lithium difluorophosphate
CN114057171B (en) * 2021-11-30 2023-02-21 太仓沪试试剂有限公司 Potassium phosphate salt purification process
JP2023092624A (en) * 2021-12-22 2023-07-04 住友金属鉱山株式会社 Method for producing lithium hydroxide
CN114538481A (en) * 2022-03-29 2022-05-27 江西飞宇新能源科技有限公司 Technical method for preparing lithium fluoride from industrial-grade lithium carbonate
WO2024038429A1 (en) 2022-08-14 2024-02-22 Bromine Compounds Ltd. Method for preparing lithium bromide

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857920A (en) * 1971-07-29 1974-12-31 Department Of Health Education Recovery of lithium carbonate
US3839546A (en) 1972-08-29 1974-10-01 Us Air Force Preparation of ultrahigh purity anhydrous alkali metal halide powders
JPS61251511A (en) * 1985-04-30 1986-11-08 Sumitomo Chem Co Ltd Production of lithium carbonate powder
JPS62161973A (en) * 1985-08-30 1987-07-17 Sumitomo Chem Co Ltd Production of high-purity lithium carbonate
GB8522528D0 (en) 1985-09-11 1985-10-16 Shell Int Research Diphenyl ether herbicides
JPS62252315A (en) * 1986-04-23 1987-11-04 Nippon Chem Ind Co Ltd:The High-purity lithium carbonate and production thereof
FR2599019B1 (en) * 1986-05-22 1992-01-03 Metaux Speciaux Sa PROCESS FOR BORON PURIFICATION OF LITHIUM CARBONATE.
JPH0742103B2 (en) * 1986-09-16 1995-05-10 日本電信電話株式会社 Method for producing alkali metal fluoride
US4803137A (en) * 1987-05-19 1989-02-07 Bridgestone Corporation Non-aqueous electrolyte secondary cell
US4939050A (en) * 1987-11-12 1990-07-03 Bridgestone Corporation Electric cells
US4929588A (en) 1987-12-02 1990-05-29 Lithium Corporation Of America Sodium removal, from brines
US4859343A (en) 1987-12-02 1989-08-22 Lithium Corporation Of America Sodium removal from brines
US5800795A (en) * 1993-03-12 1998-09-01 Imperial Chemical Industries Plc Hydrogen fluoride recovery process
DE4317032A1 (en) * 1993-05-21 1994-11-24 Varta Batterie Rechargeable galvanic lithium cell
US5387482A (en) * 1993-11-26 1995-02-07 Motorola, Inc. Multilayered electrolyte and electrochemical cells used same
DE69514711T2 (en) * 1994-05-12 2000-05-31 Ube Industries, Ltd. Porous multilayer film
US5558961A (en) * 1994-06-13 1996-09-24 Regents, University Of California Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material
DE19541558A1 (en) 1995-11-08 1997-05-15 Bayer Ag Preparation of sodium-deficient lithium chloride solutions
FR2743798B1 (en) 1996-01-18 1998-02-27 Air Liquide PROCESS FOR THE PURIFICATION OF A LITHIUM SALT SOLUTION CONTAMINATED BY METAL CATIONS AND USE OF THIS PROCESS IN THE MANUFACTURE OF LITHIUM-EXCHANGED ZEOLITES
DE69727285T2 (en) * 1996-06-14 2004-11-25 Hitachi Maxell, Ltd., Ibaraki SECONDARY LITHIUM BATTERY
US6048507A (en) * 1997-12-09 2000-04-11 Limtech Process for the purification of lithium carbonate
US6207126B1 (en) * 1998-07-16 2001-03-27 Chemetall Foote Corporation Recovery of lithium compounds from brines

Also Published As

Publication number Publication date
JP2002505248A (en) 2002-02-19
DE19809420A1 (en) 1999-09-09
WO1999044941A1 (en) 1999-09-10
US6592832B1 (en) 2003-07-15
CA2322544A1 (en) 1999-09-10

Similar Documents

Publication Publication Date Title
TW440543B (en) Preparation of high purity lithium salts
US6497850B1 (en) Recovery of lithium compounds from brines
US6921522B2 (en) Production of lithium compounds directly from lithium containing brines
US6017500A (en) High purity lithium salts and lithium salt solutions
US20110123427A1 (en) Production of lithium compounds directly from lithium containing brines
US20090214414A1 (en) Production of lithium compounds directly from lithium containing brines
CN102432045B (en) Preparation method of ultra-high purity lithium carbonate
JPH0214808A (en) Production of high purity silica and ammonium fluoride
US4261960A (en) Removal of boron from lithium chloride brine
CA2464642A1 (en) Recovery of sodium chloride and other salts from brine
JP4111404B2 (en) Method for separating NaCl from LiCl solution
CN116654954A (en) Preparation method of sodium fluoride
CN102167369B (en) Method for reducing content of NaCl in LiCl
CN113429282A (en) Preparation method of high-purity lithium salt
JP3021540B2 (en) Purification method of alkali metal chloride aqueous solution
KR100399509B1 (en) Process for purifying valine
JPS63170213A (en) Method of separating and collecting boron compound
KR900006611B1 (en) Process for the reduction of fluorides of silicon titanium zirconium or uranium
JPH01111712A (en) Method of removing aluminum from condensed alkali metal halide brine
CN110498431A (en) A kind of preparation method of high-purity spherical shape potassium chloride
US6608008B1 (en) Lithium hydroxide compositions
JPH0692247B2 (en) Method for producing magnesium silicofluoride
JP3915176B2 (en) Method for treating water containing fluorine and boron
JPH0640718A (en) Calcium carbonate hydrate and its production
JPH0218906B2 (en)

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees