TW439130B - Method of manufacturing a gate structure for a semiconductor memory device with improved breakdown voltage and leakage rate - Google Patents

Method of manufacturing a gate structure for a semiconductor memory device with improved breakdown voltage and leakage rate Download PDF

Info

Publication number
TW439130B
TW439130B TW89102269A TW89102269A TW439130B TW 439130 B TW439130 B TW 439130B TW 89102269 A TW89102269 A TW 89102269A TW 89102269 A TW89102269 A TW 89102269A TW 439130 B TW439130 B TW 439130B
Authority
TW
Taiwan
Prior art keywords
layer
sublayer
forming
silicon
silicon nitride
Prior art date
Application number
TW89102269A
Other languages
Chinese (zh)
Inventor
Zhong Dong
Keen Leong Hui
Anqing Zhang
Original Assignee
Chartered Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chartered Semiconductor Mfg filed Critical Chartered Semiconductor Mfg
Priority to TW89102269A priority Critical patent/TW439130B/en
Application granted granted Critical
Publication of TW439130B publication Critical patent/TW439130B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

The invention is a method of manufacturing a semiconductor memory device using a novel intergate dielectric stack. A key feature of the invention is the novel O/N/SiON/O structure, forming a silicon oxynitride layer on the silicon nitride layer. The method begins by forming a first insulating layer and a first conductive layer on a semiconductor substrate having one conductivity type. A second insulating layer is formed on the first conducting layer by sequentially stacking: a first silicon oxide layer; a silicon nitride layer; a silicon oxynitride layer; and a second silicon oxide layer. A second conductive layer is formed on the second insulating layer. The first insulating layer, the first conductive layer, the second insulating layer, and the second conductive layer are patterned to form a floating gate, an intergate dielectric, and a control gate. Finally, a source and drain are formed to complete the memory device.

Description

43 m C 五、發明" ' — 發明之背景: 1.發明之技術領域 本發明係有關於一種用於製造半導體記憶體裝置之閑 極結構的方法。更特別地是,本發明係有關於一種用於以 〇Ν〇閘極間介電質而改良電性的方法。 2 ·4目關技藝之說明 在傳統的半導體記憶體裝置中,一ΟΝΟ介電膜被使用 為間極間介電質,其具有由一層氧化矽膜/ 一層氮化破膜 / 一層氧化矽膜所組成的堆疊結構。該0Ν0結構以相當薄 的薄膜,提供極佳的耐電壓及留滞特性。 然而,半導體裝置製造商不斷地增加有效裝置密度, 而維持成本上的競爭性。由於該0Ν0介電質薄膜變得更薄 ’所以氮化物的針孔及不佳的電器品質特性將造成對於記 憶體裝置的可靠度有負面影響的低擊穿電壓及漏電流。 因此,可在薄膜厚度變薄時提供較高的耐電壓及留滯 特性之用於半導體記憶體裝置的閘極間介電膜係為所需。 在專利文獻中最密切且明顯地更為相關的技術發展可 由下列專利中被蒐集。43 m C V. Invention " — Background of the Invention: 1. Technical Field of the Invention The present invention relates to a method for manufacturing a leisure structure of a semiconductor memory device. More specifically, the present invention relates to a method for improving electrical properties with a dielectric between ONO gates. 2 · 4 Eyes Relevant Technology Description In a traditional semiconductor memory device, a 100N0 dielectric film is used as an inter-electrode dielectric, which has a silicon oxide film / a nitride breakdown film / a silicon oxide film Composed of stacked structures. The ON0 structure has a very thin film, which provides excellent withstand voltage and hysteresis characteristics. However, semiconductor device manufacturers continue to increase effective device density while maintaining cost competitiveness. Since the ONO dielectric film becomes thinner, the pinholes of the nitride and poor electrical quality characteristics will cause a low breakdown voltage and leakage current that negatively affect the reliability of the memory device. Therefore, an inter-gate dielectric film for a semiconductor memory device, which can provide higher withstand voltage and hysteresis characteristics when the film thickness becomes thinner, is required. The closest and obviously more relevant technological developments in the patent literature can be gleaned from the following patents.

美國專利第5,661,〇56號(Takeuchi)揭示形成於—NO 之氧化層上的氮氧化物,以及NON介電質堆疊。 美國專利第5, 597, 75 4號(Lou等人)、美國專利第5, 42 7, 96 7號(Sad j ad i)以及美國專利第 5, 665, 6 2 0號(Nguyen) 揭示用於形成ΟΝΟ堆疊的方法。 美國專利第5, 443, 998號(Meyer)揭示一種用於形成U.S. Patent No. 5,661,056 (Takeuchi) discloses nitrogen oxides formed on an oxide layer of -NO, and a NON dielectric stack. U.S. Patent No. 5,597,75 4 (Lou et al.), U.S. Patent No. 5,42 7,96 7 (Sad j ad i), and U.S. Patent No. 5,665,620 (Nguyen) for disclosure Method for forming ONO stack. US Patent No. 5,443,998 (Meyer) discloses a method for forming

第5頁 ο 五、發明說明(2) 經氣化的ΟΝΟ堆疊的方法。 美國專利第5, 407, 870號(Okada)揭示一種氮氧化物 /氡化物/氮氧化物堆疊。 發明之概要: 本發明之一目的係為提供超過傳統0M0堆疊閘極間介 電層之經改良的電性(特別是耐電壓及漏電流)。 本發明的另一個目的係為提供一種結構,以及一種用 於製造較相當厚度的傳統0 N 0堆疊閘極間介電層,具有更 高耐電!及更低漏電流之經改良的半導體記憶體裝置閘極 的方法。 本發明的另一個目的係為降低或消除形成於傳統〇N〇 堆疊介電層之氮化層中的針孔問題。 本發明的另一個目的係為降低結構應力(相 的0N0堆疊介電層)。 ' 為達成上述目 閘極,其包含有: 離,並具有與半導 與沒極區;在該源 化物;位於該通道 間介電質,其係由 、氮化矽、氮氧化 介電質上方的一控 此外,本發明 閘極的方法。該方 的,本 在一種 體基板 極與汲 氧化物 位在該 矽及氧 制閘極 提供一 導電類 相反導 極區間 上方的 浮置閘 化矽所 電極。 種用於 法首先形成一 型的半導體基板上彼此隔 電類型之導電類型的源極 之通道區上方的一通道氧 一浮置閘極電極;一閘極 極電極上方的連續氧化石夕 組成,以及位於該閘極間 製造一半導體記憶體裝置 第一絕緣層(1 2 )於具有_Page 5 ο 5. Description of the invention (2) Gasification of ΝΟΟ stacking method. U.S. Patent No. 5,407,870 (Okada) discloses a nitrogen oxide / halide / nitrogen oxide stack. SUMMARY OF THE INVENTION: An object of the present invention is to provide improved electrical properties (especially withstand voltage and leakage current) over conventional MOS stacked gate-to-gate dielectric layers. Another object of the present invention is to provide a structure and a conventional 0 N 0 stacked gate-to-gate dielectric layer with a relatively large thickness, which has a higher electric resistance! And lower leakage current of improved semiconductor memory device gate method. Another object of the present invention is to reduce or eliminate the problem of pinholes formed in a nitride layer of a conventional ONO stacked dielectric layer. Another object of the present invention is to reduce structural stress (phase 0N0 stacked dielectric layers). 'In order to achieve the above-mentioned gate, it includes: ion, and has a semiconducting and non-electrode region; the source compound; the dielectric located between the channels, which is composed of silicon nitride, oxynitride dielectric The upper one controls the gate method of the present invention. On this side, a floating gate silicon electrode is provided above a body substrate electrode and a drain oxide on the silicon and oxygen gates to provide a conductive type of opposite conductive region. A method for forming a type of semiconductor substrate on a type of semiconductor substrate that is electrically isolated from each other by a channel region above a channel region of oxygen-floating gate electrode; a continuous oxide stone above the gate electrode; and The first insulating layer (1 2) of a semiconductor memory device is manufactured between the gate electrodes and

第6頁 43 913 0 五、發明說明(3) 種導電類型的一半導體基板(10)上。一第一導電層(14)被 形成於該第一絕緣層(1 2 )上。一第二絕緣層被形成於該第 一導電層(1 4 )上’其堆疊順序為:一第一氧化矽層(1 6 ); 一層氮化矽層(18); —層氮氧化矽層(20);以及一第二氧 化矽層(22)。一第二導電層(24, 2 6及28)被形成於該第二 絕緣層(1 6,1 8,2 0及2 2 )上。該第一絕緣層(1 2 )被刻畫而形 成一通道氧化物。該第一導電層(1 4 )被刻畫而形成一浮置 閘極電極。該第二絕緣層(1 6,1 8,2 〇及2 2 )被刻晝而形成一 問極間介電質《該第二導電層(24, 26及28)被刻畫而形成 一控制閘極。雜質離子被植入與浮置閘極電極(丨4 )相鄰之 半導體基板(1 0 )的二側’而形成源極與汲極區(3 〇 )與(3 2 ) ’以使得其具有與半導體基板的導電類型相反的導電類型 。一壁面絕緣膜被形成於該浮置閘極電極(丨4)與該控制閘 極電極(24,2 6及28)的側面。 較佳實施例之說明: 為達成本發明之目的,該用於形成具有一經改良之閘 極間介電質的半導體記憶體裝置閘極的方法將被詳細地說 明。具有一經改良之閘極間介電質的半導體記憶體裝置閘 極的製造步驟的順序被表示於第i圖中。應注意地是,該 圖式係大幅地被簡化。該方法首先係提供一半導體基板工〇 ,如本技藝所熟知。該半導體基板偏好已進行部分加工, 諸如本技藝所熟知的隔離及井形成。 如第1圖所示’ 一第一絕緣層12被形成於一主動區域 上边第一絕緣層1 2偏好為一層氧化層(通道氧化物),Page 6 43 913 0 V. Description of the invention (3) A semiconductor substrate (10) of the conductivity type. A first conductive layer (14) is formed on the first insulating layer (1 2). A second insulating layer is formed on the first conductive layer (14). Its stacking sequence is: a first silicon oxide layer (16); a silicon nitride layer (18);-a silicon oxynitride layer (20); and a second silicon oxide layer (22). A second conductive layer (24, 26, and 28) is formed on the second insulating layer (16, 18, 20, and 2 2). The first insulating layer (12) is characterized to form a channel oxide. The first conductive layer (1 4) is depicted to form a floating gate electrode. The second insulating layer (16, 18, 20, and 22) is engraved to form an inter-electrode dielectric. The second conductive layer (24, 26, and 28) is scribed to form a control gate. pole. Impurity ions are implanted on both sides of the semiconductor substrate (1 0) adjacent to the floating gate electrode (丨 4) to form source and drain regions (30) and (3 2) 'so that it has The conductivity type is opposite to the conductivity type of the semiconductor substrate. A wall surface insulating film is formed on the sides of the floating gate electrode (4) and the control gate electrode (24, 26, and 28). Description of the preferred embodiment: To achieve the purpose of the present invention, the method for forming a gate of a semiconductor memory device having an improved inter-gate dielectric will be described in detail. The sequence of manufacturing steps of a semiconductor memory device gate having an improved inter-gate dielectric is shown in the i-th figure. It should be noted that the scheme is greatly simplified. This method first provides a semiconductor substrate process, as is well known in the art. The semiconductor substrate preference has been partially processed, such as isolation and well formation as is well known in the art. As shown in Figure 1, a first insulating layer 12 is formed on an active region. The first insulating layer 12 is preferably an oxide layer (channel oxide).

4 3 91 3 0 五、發明說明(4) 其可使用在水蒸氣氣氛中的一濕式製程或在氧氣氣氛中的 一乾式製程而被形成。偏好地,該第一絕緣層1 2係於8 5 0 °C至1 0 5 0°C間的溫度範圍,7 1 0托耳至8 1 0托耳間的壓力範 圍,在一乾式製程中進行1 0分鐘至6 0分鐘間的時間範圍, 而被成長至9 0埃至1 2 0埃間的厚度範圍。 亦如第1圖所示,一層第一導電層(諸如複晶梦)14 被形成於該第一絕緣層1 2上。使用在5 7 5°C至6 5 0°C的溫度 以及在2 5 Pa至1 3 0 Pa的壓力將矽烷熱解的化學氣相沈積製 程(CVD),該第一導電層14可被形成。其次,該第一導 電層14偏好將磷離子植入其中而被摻雜。 其次’如第1圖所示,一層第一二氧化矽層1 6被形成 於該第一導電層14上。該第一二氧化矽層16可使用一化學 氣相沈積製程而被形成,其係藉由在4 0 (TC至4 5 (TC的溫度 ’在大氣壓力或低壓下’將矽烷以氧氣進行氧化;藉由在 6 5 0°C至7 5 0°C的溫度’在低壓下,將正矽酸乙酯(TEOS) 分解;藉由在8 5 0°C至9 0 〇。(:的溫度,在低壓下,將二氯矽 烧與二氧化氮反應;或偏好藉由在8 5 ye至9 5 〇°c間的溫度 ,在大氣壓力下,將複晶矽以氧氣進行氧化。該第一層二 氧化石夕層偏好被形成為3 0埃至1〇〇埃間的厚度範圍。 其次’如第1圖所示,一層氮化矽層18被形成於該第 層一氧化矽層1 6上方。該氮化矽層】8可使用一化學氣相 沈積製程形成,其係藉由在大氣壓力下,以及7 〇扣至g 〇 〇 。。間的溫度範圍’將矽烷與氨氣進行反應;或偏好藉由在 25Pa至l〇〇pa間的減壓範圍以及在7〇(Γ(:至8〇(rc間的溫度 ΙΜΓΊΙΗ4 3 91 3 0 V. Description of the invention (4) It can be formed using a wet process in a water vapor atmosphere or a dry process in an oxygen atmosphere. Preferably, the first insulating layer 12 is in a temperature range between 8 50 ° C and 105 0 ° C, and a pressure range between 7 1 0 Torr and 8 1 0 Torr in a dry process. The time range is between 10 minutes and 60 minutes, and is grown to a thickness range between 90 angstroms and 120 angstroms. As also shown in FIG. 1, a first conductive layer (such as a polycrystalline dream) 14 is formed on the first insulating layer 12. The first conductive layer 14 can be formed using a chemical vapor deposition (CVD) process that pyrolyzes silanes at a temperature of 5 7 5 ° C to 650 ° C and a pressure of 2 5 Pa to 130 Pa. . Secondly, the first conductive layer 14 is preferably doped by implanting phosphorus ions therein. Secondly, as shown in FIG. 1, a first silicon dioxide layer 16 is formed on the first conductive layer 14. The first silicon dioxide layer 16 can be formed using a chemical vapor deposition process, which is performed by oxidizing silane with oxygen at a temperature of 40 (TC to 4 5 (TC at 'atmospheric pressure or low pressure'). ; Decompose TEOS at a low temperature at a temperature of 650 ° C to 750 ° C; at a temperature of 850 ° C to 900 °. (: Temperature At low pressure, silicon dichloride is reacted with nitrogen dioxide; or it is preferred to oxidize polycrystalline silicon with oxygen at a temperature between 8 5 ye and 95 0 ° C under atmospheric pressure. A layer of stone dioxide layer is preferably formed in a thickness range between 30 angstroms and 100 angstroms. Secondly, as shown in FIG. 1, a silicon nitride layer 18 is formed on the first silicon oxide layer 1 6 above. The silicon nitride layer] 8 can be formed using a chemical vapor deposition process, which is carried out under atmospheric pressure and in a temperature range between 70 ° and g °. Reaction; or preference by depressurization range between 25Pa to 100pa and temperature between 70 (Γ (: to 80 (rc) ΙΓΓΊΙΗ

五、發明說明(5) 範圍’將二氣矽烷與氨氣進行反應。該氮化矽層1 8偏好被 形成為5 0埃至15 0埃的厚度範圍。 在一主要的步驟中,一知第2圖所示,一薄的氮氧化矽 層2 0被形成於該氮氧化矽層1 8的頂端,其/係藉由將該氮化 碎層1 8在諸如NO或偏好N 20等含氮氣體中加工。該加工可 藉由氮化矽層1 8在爐體或偏好藉由快速加熱處理(RTP)完 成。偏好地,該N 20氣體以1〇〇〇 seem至1 〇〇 〇 〇 sccm間的流 速範圍,在90 (TC至1 10(TC間的溫度範圍,在10 kPa至100 ^pa間的壓力範圍’流動2〇秒至1 8〇秒範圍間的時間。該氮 化發廣2 0偏好被形成為約5埃至3 〇埃間的厚度範圍。 f次’如第1圖所示’使用如前述的化學氣相沈積製 程或氧化製程,一層第二-备, 石夕層20上方。該第二層切層22被形成於該氮氧化 5〇埃間的厚度範圍》 氧化矽層22偏好被形成為20埃至 如第1圖所示,一層第_ 該閘極間介電層上。該導導電屠24, 26, 28被形成於 一矽化鎢次層26以及一複曰B I :由一第—複晶矽次層24, 複晶矽次層24與複晶矽覆蓋士蓋次層28所組成。該第一 程而被形成,其係藉由在57$ 28可使用化學氣相沈積製 130Pa的壓力’將石夕烷執解。=至65此的溫度,在25Pa至 製程或偏好一熱蒸鍍製程(如+化鎢次層26可使用一濺鍍 最後,如第1圖所示,係技藝所熟知)而被形成。 影製程,該第一絕緣層Ϊ 2、黛用如本技藝所熟知的光學微 ,1 8,2 0,2 2以及該第二導電屏〇導電層1 4、第二絕緣層1 6 曰24’26, 2 8被刻晝,而形成一5. Description of the invention (5) Scope 'The reaction of digas silane with ammonia gas. The silicon nitride layer 18 is preferably formed in a thickness range of 50 to 150 angstroms. In a main step, as shown in FIG. 2, a thin silicon oxynitride layer 20 is formed on the top of the silicon oxynitride layer 18. Processed in a nitrogen-containing gas such as NO or N20. This processing can be done by the silicon nitride layer 18 in the furnace body or, preferably, by rapid heat treatment (RTP). Preferentially, the N 20 gas has a flow rate range between 1000 seem and 1,000 sccm, a temperature range between 90 ° C. and 10 ° C., and a pressure range between 10 kPa and 100 ^ pa. 'Flow time between 20 seconds and 180 seconds. The nitrided 20 preference is formed to a thickness range between about 5 angstroms and 30 angstroms. F times' as shown in Figure 1' use as In the aforementioned chemical vapor deposition process or oxidation process, a second layer is prepared above the Shixi layer 20. The second cut layer 22 is formed in a thickness range between 50 Å and 50 Å. The silicon oxide layer 22 is preferred to be It is formed as 20 angstroms to a layer of the first inter-gate dielectric layer as shown in Fig. 1. The conductive layers 24, 26, 28 are formed on a tungsten silicide layer 26 and a complex BI: The first—the polycrystalline silicon sublayer 24, the polycrystalline silicon sublayer 24, and the polycrystalline silicon covering the scotch sublayer 28. This first pass was formed by using chemical vapor deposition at 57 $ 28 The pressure of 130Pa will be used to dissolve the syringane. = To the temperature of 65, at 25Pa to the process or prefer a thermal evaporation process (such as + tungsten tungsten sublayer 26 can use a sputtering last, such as 1 shown in the figure, which is well-known in the art). The first insulation layer Ϊ2, Dai uses optical micro, as well known in the art, 18, 20, 22 and the second conductive screen. 〇The conductive layer 14 and the second insulating layer 16 are 24′26, 2 8 are carved and formed into a

t 4391 3 Ο_ 五、發明說明(6) 通道氧化物、一浮置閘極、一閘極間介電質以及一控制閘 極。藉此形成一源極3 0及一汲極3 2,而完成該記憶體裝置 〇 優點: 本發明提供多數個超過習知技藝的優點。在傳統ΟΝΟ 堆疊的優點(包含製造能力)被維持的同時,本發明可藉 由使用Ν 20與NO氣體所分解的氧氣將懸空鍵氧化,而降低 結構應力並消除針孔。 本發明已被證實可增加耐電壓並降低漏電流,因而提 供優越的性能並使得厚度易於降低。裝置係使用本發明( 0/N/Si ON/0),使用一傳統的0N0製程以及使用二個額外 的製程而被製造。該有效厚度係使用本技藝所熟知的高頻 電容電壓(HFCV)試驗而被決定。擊穿電壓(Vbd)係使用 一升壓試驗,量測電流達1. 0微安培時之電壓而被決定。 擊穿電場(E J係由V b徐以該有效厚度而被決定。試驗結 果被表示於第3圖中。 雖然本發明已被特別地表示,並參考其較佳實施例做 說明,惟應為熟習本技藝之人士所瞭解地是,各種在形式 上及細節上的改變可於不違背本發明之精神與範疇下為之 〇 圖號簡單說明: 10 半導體基板 12 第一絕緣層 14 第一導電層t 4391 3 Ο_ 5. Description of the invention (6) Channel oxide, a floating gate, a dielectric between gates, and a control gate. Thereby, a source 30 and a drain 32 are formed to complete the memory device. Advantages: The present invention provides many advantages over conventional techniques. While the advantages of traditional ONO stacking (including manufacturing capabilities) are maintained, the present invention can oxidize dangling bonds by using oxygen decomposed by N20 and NO gas, thereby reducing structural stress and eliminating pinholes. The present invention has been proven to increase the withstand voltage and reduce the leakage current, thereby providing superior performance and making it easy to reduce the thickness. The device is manufactured using the present invention (0 / N / Si ON / 0), using a conventional ON0 process and using two additional processes. This effective thickness is determined using a high-frequency capacitor voltage (HFCV) test known in the art. The breakdown voltage (Vbd) is determined by using a boost test to measure the voltage when the current reaches 1.0 microampere. The breakdown electric field (EJ is determined by V b Xu with this effective thickness. The test results are shown in Figure 3. Although the present invention has been specifically shown and described with reference to its preferred embodiment, it should be Those skilled in the art understand that various changes in form and detail can be made without departing from the spirit and scope of the present invention. 0 Brief description: 10 Semiconductor substrate 12 First insulating layer 14 First conductive Floor

第1〇頁 五 、發明說明 ⑺ 1 6 第 一 二 氧 化 矽 層 1 8 氮 化 矽 層 2 0 氮 氧 化 矽 層 2 2 第 ^ 一 二 氧 化 矽 層 2 4 第 二 導 電 層 2 6 第 二 導 電 層 2 8 第 •, 導 電 層 3 0 源 極 3 2 汲 極 1_觀團 圖式簡單說明 第1圖係為說明本發明的橫剖面圖。 第2圖係為說明本發明之氮氧化物形成的主要步驟的横剖 面圖。 第3圖說明本發明與傳統ΟΝΟ介電層比較的實驗數據。Page 10 V. Description of the invention ⑺ 1 6 First silicon dioxide layer 1 8 Silicon nitride layer 2 0 Silicon oxynitride layer 2 2 First silicon dioxide layer 2 4 Second conductive layer 2 6 Second conductive layer 2 8th, • Conductive layer 3 0 Source 3 2 Drain 1_ View of the schematic diagram The first figure is a cross-sectional view illustrating the present invention. Fig. 2 is a cross-sectional view illustrating the main steps of the nitrogen oxide formation of the present invention. FIG. 3 illustrates experimental data of the present invention compared with a conventional ONO dielectric layer.

第12頁Page 12

Claims (1)

六、申請專利範圍 1 · 一種用於製造一半導體記憶體裝置的方法,其包含的 步驟有: a )形成一第一絕緣層於具有一種導電類型的一半導體 基板上; b )形成一第一導電層該第一絕緣層上; c )形成一第二絕緣層,其依序堆疊: (I )一層第一二氧氧化矽層; (Π )—層氮化石夕層; (m )—層氮氧化矽層;以及 (IV )—層第二二氧化矽層; 於該第一導電層上; d) 形成一第二導電層於該第二絕緣層上,以及 e) 刻畫該第一絕緣層、該第一導電層、該第二絕緣層 及該第二導電層而形成一浮置閘極、一閘極間介電 層以及一控制閘極。 2 ·如申請專利範圍第1項之方法,其中該氮氧化矽層係 藉由快速加熱處理該氮化石夕層而被形成,其係於含氮 氣體中,在9 0 0°C至11 0 〇°C間的溫度範圍,在1 0 kPa至 100kPa間的壓力範圍,20秒至180秒範圍間的時間進 行;其中該氮氧化矽層具有5埃至3 0埃間的厚度。 3 ·如申請專利範圍第1項之方法,其中該氮氧化矽層係 藉由將該氮化矽層在N 20氣體中處理而被形成。 4 ·如申請專利範圍第1項之方法,其中該氮氧化矽層係 藉由將該氮化矽層在NO氣體中處理而被形成。Scope of Patent Application1. A method for manufacturing a semiconductor memory device, comprising the steps of: a) forming a first insulating layer on a semiconductor substrate having a conductivity type; b) forming a first A conductive layer on the first insulating layer; c) forming a second insulating layer, which are sequentially stacked: (I) a first silicon dioxide layer; (Π) —a layer of nitrided nitride; (m) —layer A silicon oxynitride layer; and (IV) —a second silicon dioxide layer; on the first conductive layer; d) forming a second conductive layer on the second insulating layer, and e) depicting the first insulation Layer, the first conductive layer, the second insulating layer and the second conductive layer to form a floating gate, a dielectric layer between the gates, and a control gate. 2. The method according to item 1 of the scope of patent application, wherein the silicon oxynitride layer is formed by rapid heat treatment of the nitrided layer, which is in a nitrogen-containing gas at 900 ° C to 110 ° A temperature range between 0 ° C and a pressure range between 10 kPa and 100 kPa, and a time between 20 seconds and 180 seconds; wherein the silicon oxynitride layer has a thickness between 5 angstroms and 30 angstroms. 3. The method according to item 1 of the patent application range, wherein the silicon oxynitride layer is formed by processing the silicon nitride layer in a N 20 gas. 4. The method according to item 1 of the patent application range, wherein the silicon oxynitride layer is formed by processing the silicon nitride layer in a NO gas. 第13頁 43 913 0 六、申請專利範圍 5 · —種用於製造一半導體記憶體裝置的方法,其包含的 步驟有: a)形成一第一絕緣層於具有一種導電類型的一半導體 基板上; b )形成一第一導電層該第一絕緣層上; c) 形成一第一二氧氧化矽次層於該第一導電層上; d) 形成一層氮化矽次層於該第一二氧化矽次層上; e) 將該氮化矽次層在含有氧氣及氮氣的氣體中退火; f )形成一層第二二氧化矽次層於該經退火的氮化矽次 層上; g) 形成一層第二導電層於該第二二氧化矽次層上; h) 刻晝該第一絕緣層、該第一導電層、該第一二氧化 矽次層、該經退火的氮化矽次層、該第二二氧化矽 次層以及該第二導電層而形成一浮置閘極、一閘極 間介電層以及一控制閘極;以及 i )形成一源極與一 ί及極。 6 ,如申請專利範圍第5項之方法,其中該經退火的氮氧 化矽次層係藉由快速加熱處理該氮化矽層而被形成, 其係於含氮氣及氧氣的氣體中,在9 0 0°C至1 1 0 0°C間 的溫度範圍,在10kPa至10OkPa間的壓力範圍,20秒 至1 8 0秒範圍間的時間進行。 7 .如申請專利範圍第6項之方法,其中該經退火的氮化 矽次層係藉由將該氮化矽層在N 20氣體中處理而被形 成。Page 13 43 913 0 6. Application scope 5 · A method for manufacturing a semiconductor memory device, comprising the steps of: a) forming a first insulating layer on a semiconductor substrate having a conductivity type B) forming a first conductive layer on the first insulating layer; c) forming a first silicon dioxide sublayer on the first conductive layer; d) forming a silicon nitride sublayer on the first two On the silicon oxide sublayer; e) annealing the silicon nitride sublayer in a gas containing oxygen and nitrogen; f) forming a second silicon dioxide sublayer on the annealed silicon nitride sublayer; g) Forming a second conductive layer on the second silicon dioxide sublayer; h) the first insulating layer, the first conductive layer, the first silicon dioxide sublayer, and the annealed silicon nitride sublayer; Layer, the second silicon dioxide sublayer, and the second conductive layer to form a floating gate, an inter-gate dielectric layer, and a control gate; and i) forming a source and a gate electrode. 6. The method according to item 5 of the scope of patent application, wherein the annealed silicon oxynitride secondary layer is formed by rapid heat treatment of the silicon nitride layer, which is in a gas containing nitrogen and oxygen at 9 The temperature range from 0 ° C to 110 ° C, the pressure range from 10kPa to 10OkPa, and the time from 20 seconds to 180 seconds. 7. The method according to item 6 of the patent application scope, wherein the annealed silicon nitride sublayer is formed by processing the silicon nitride layer in N20 gas. 第14頁 4 3 9 彳 3 Ο 六、申請專利範圍 8 *如申請專利範圍第6之方法,其中該經退火的氮化矽 次層係藉由將該氮化矽層在NO氣體中處理而被形成。 9 ·—種用於製造一半導體記憶體裝置的方法,其包含的 步驟有: a) 形成一第一絕緣層於具有一種導電類型的一半導體 基板上; b) 形成一第一導電層該第一絕緣層上; c) 形成一第一二氧氧化石夕次層於該第一導電層上; d) 形成一層氮化梦次層於該第一二氧化夕次層上; e) 藉由快速加熱處理該氮化矽層而形成氮氧化矽次層 ,其係進行於含氮氣及氧氣的氣體中,在90 0°C至 1100°C間的溫度範圍,在10kPa至lOOkPa間的壓力 範圍,2 0秒至1 8 0秒範圍間的時間; f) 形成一層第二二氧化矽次層於該氮氧化矽次層上; g) 形成一層第二導電層於該第二二氧化矽次層上; h) 刻晝該第一絕緣層、該第一導電層、該第一二氧化 矽次層、該經退火的氮化矽次層、該第二二氧化矽 次層以及該第二導電層而形成一浮置閘極、一閘極 間介電層以及一控制閘極;以及 i )形成一源極與一汲極。 I 0 如申請專利範圍第9項之方法,其中該氮氧化矽次層 被形成為5埃至3 0埃範圍的厚度。 II ·如申請專利範圍第9項之方法,其中該經退火的氮化 矽次層係藉由將該氮化矽層在N 20氣體中處理而被形Page 14 4 3 9 彳 3 〇 6. Application for patent scope 8 * As the method for applying for patent scope No. 6, wherein the annealed silicon nitride sublayer is processed by treating the silicon nitride layer in NO gas. Be formed. 9-A method for manufacturing a semiconductor memory device, comprising the steps of: a) forming a first insulating layer on a semiconductor substrate having a conductivity type; b) forming a first conductive layer; An insulating layer; c) forming a first oxydioxide secondary layer on the first conductive layer; d) forming a nitrided sublayer on the first dioxide secondary layer; e) by The silicon nitride layer is rapidly heated to form a silicon oxynitride sublayer, which is performed in a gas containing nitrogen and oxygen at a temperature range of 90 ° C to 1100 ° C and a pressure range of 10kPa to 100kPa. Time between 20 seconds and 180 seconds; f) forming a second silicon dioxide sublayer on the silicon oxynitride sublayer; g) forming a second conductive layer on the second silicon dioxide sublayer H) the first insulating layer, the first conductive layer, the first silicon dioxide sublayer, the annealed silicon nitride sublayer, the second silicon dioxide sublayer, and the second A conductive layer to form a floating gate, a dielectric layer between the gates, and a control gate; and Into a source and a drain. I 0 The method according to item 9 of the patent application range, wherein the silicon oxynitride sublayer is formed to a thickness ranging from 5 angstroms to 30 angstroms. II. The method of claim 9 in which the annealed silicon nitride secondary layer is formed by processing the silicon nitride layer in N 20 gas 第15頁Page 15
TW89102269A 2000-02-11 2000-02-11 Method of manufacturing a gate structure for a semiconductor memory device with improved breakdown voltage and leakage rate TW439130B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89102269A TW439130B (en) 2000-02-11 2000-02-11 Method of manufacturing a gate structure for a semiconductor memory device with improved breakdown voltage and leakage rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89102269A TW439130B (en) 2000-02-11 2000-02-11 Method of manufacturing a gate structure for a semiconductor memory device with improved breakdown voltage and leakage rate

Publications (1)

Publication Number Publication Date
TW439130B true TW439130B (en) 2001-06-07

Family

ID=21658754

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89102269A TW439130B (en) 2000-02-11 2000-02-11 Method of manufacturing a gate structure for a semiconductor memory device with improved breakdown voltage and leakage rate

Country Status (1)

Country Link
TW (1) TW439130B (en)

Similar Documents

Publication Publication Date Title
US8524589B2 (en) Plasma treatment of silicon nitride and silicon oxynitride
KR100803861B1 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US7544996B2 (en) Methods of fabricating a semiconductor device having a metal gate pattern
JP4544737B2 (en) Method for manufacturing gate electrode of flash memory
US20040033678A1 (en) Method and apparatus to prevent lateral oxidation in a transistor utilizing an ultra thin oxygen-diffusion barrier
TW200522278A (en) Method for manufacturing flash memory device
TWI249185B (en) Semiconductor device and method of manufacturing the same
KR20060100092A (en) Method for manufacturing a semiconductor device
US6187633B1 (en) Method of manufacturing a gate structure for a semiconductor memory device with improved breakdown voltage and leakage rate
KR100729354B1 (en) Methods of manufacturing semiconductor device in order to improve the electrical characteristics of a dielectric
JPH07123146B2 (en) Method of manufacturing nonvolatile semiconductor memory device
TWI279891B (en) Method of manufacturing a flash memory cell
KR100539213B1 (en) Method of forming a composite dielectric layer and method of manufacturing a semiconductor device using the same
KR101107398B1 (en) Semiconductor device and method for manufacturing the same
KR100859256B1 (en) Semiconductor device and fabrication method thereof
TWI245347B (en) Method of fabricating a semiconductor structure
JP2004214608A (en) Method of manufacturing semiconductor device
JP2005064032A (en) Semiconductor device and its manufacturing method
TW439130B (en) Method of manufacturing a gate structure for a semiconductor memory device with improved breakdown voltage and leakage rate
KR20080006270A (en) Method of manufacturing a non-volatile memory device
KR20120140112A (en) Manufacturing method of semiconductor device
KR20020002266A (en) Semiconductor device and manufacturing method thereof
KR100621542B1 (en) Dielectric multilayer of microelectronic device and fabricating method the same
JP2703638B2 (en) Method for producing tunneling oxide
US8187973B2 (en) Method for manufacturing semiconductor device and the semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent