TW439127B - Method for manufacturing semiconductor self-aligned dual-doped gate - Google Patents
Method for manufacturing semiconductor self-aligned dual-doped gate Download PDFInfo
- Publication number
- TW439127B TW439127B TW88113981A TW88113981A TW439127B TW 439127 B TW439127 B TW 439127B TW 88113981 A TW88113981 A TW 88113981A TW 88113981 A TW88113981 A TW 88113981A TW 439127 B TW439127 B TW 439127B
- Authority
- TW
- Taiwan
- Prior art keywords
- doped
- type
- ion
- region
- layer
- Prior art date
Links
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
五、發明說明(1) 本發明係關於積體電路的製造方法,特别是關於一種 半導體自對準雙摻雜閘極之製造方法。 互補式金氧半導體(CM0S)製程是最重要的半導體積體 電路技術之一’記憶體及邏輯等產品皆以此作為發展的基 礎 個M〇S (Metal-Oxide-Semiconductor)電晶體元件 疋以閑極作為控制電極,亦即以閘極的電壓訊號控制電晶 體的輸出特性。傳統上是以含高濃度η型雜質離子(如磷或 钟)的複晶梦做為閘極材質。M〇s電晶體初期的發展是以金 屬(如銘)做為閘極材質’這也就是M〇s名稱的由來。在 離子佈植(ion impiantati〇n)的自對準(self_aligned)製 程發明以後’由於後續須有高溫的退火(annealing)程 序,複晶矽和氧化層的介面特性良好,且能忍受高溫的製5. Description of the invention (1) The present invention relates to a method for manufacturing an integrated circuit, and more particularly to a method for manufacturing a semiconductor self-aligned double-doped gate. Complementary metal-oxide-semiconductor (CM0S) process is one of the most important semiconductor integrated circuit technologies. 'Memory and logic products are used as the basis for the development of MoS (Metal-Oxide-Semiconductor) transistor elements. The idler electrode is used as the control electrode, that is, the output characteristic of the transistor is controlled by the voltage signal of the gate electrode. Traditionally, compound crystals containing high-concentration n-type impurity ions (such as phosphorus or bell) are used as the gate material. The initial development of the Mos transistor was based on metal (such as Ming) as the gate material ’, which is the origin of the Mos name. After the self-aligned process of ion implantation (ion impiantation) was invented ’, due to the subsequent high-temperature annealing process, the interface characteristics of the polycrystalline silicon and the oxide layer are good, and it can withstand high-temperature manufacturing.
程’這是金屬所無法達到的優點’複晶矽因此取代金屬做 為主要的閉極材質D 在一般CMOS的應用中,n+複晶矽同時作為n_和卜通 道(channel) M0S的閘極,稱為單一複晶矽方式(single poly scheme),主要的優點為加工簡易’不過^站⑽的起 始電壓(Vth)的絕對值會很大(> ! v)。從⑽⑽電路設計的 觀點,若欲達到高速及低功率耗損的要求,p—和n —M〇s的 Vth須呈正負對稱而且不能太大,所以在閘極形成前通常 會在P-M0S元件通道區施以一p_型元素摻雜(d〇ping)程序 (如硼離子佈植)以降低Vth的絕對值。此種p_M〇s結構稱 為潛通道(buried channel) M0S,而n-M0S結構則稱為面 通道(surface channel) M0S ,主要是反應channei相對氧"This is an advantage that cannot be achieved by metals". Polycrystalline silicon therefore replaces metal as the main closed-electrode material D. In general CMOS applications, n + complex silicon serves as the gate of both n_ and channel M0S. The so-called single poly scheme has the main advantage of easy processing, but the absolute value of the starting voltage (Vth) of the ^ station will be large (>! V). From the point of view of circuit design, if you want to meet the requirements of high speed and low power loss, the Vth of p- and n-M0s must be positive-negative and not too large, so the P-M0S element is usually used before the gate is formed. The channel region is subjected to a doping process (such as boron ion implantation) to reduce the absolute value of Vth. This p_M0s structure is called a buried channel M0S, while the n-M0S structure is called a surface channel M0S, which mainly reflects the relative oxygen of channei.
五、發明說明(2) 化層(oxide)/石夕基底(Si)介面的位置,此種CM〇s方式因此 而成為業界標準的技術。 不過到了 0 35以m製程以後開始遇到瓶頸,主要的問 題出在p-MOS電晶體的短通道效應(short channel effects) ’因為潛通道中的載子通道離氧化層介面較遠, 閘極的控制性較差’所以和面通道元件比較起來,短通道 效應要嚴重許多。到0. 2 5 // m的電晶體製作,其相關的效 應’例如Vth下降(roll-off)和源極引發能障衰退 (drain-induced barrier lowering)所導致漏電流增加等 現象,均相當難以控制’因此必須作結構上的改變以解決 此問題。雙複晶矽方式(dual pol y scheme)所形成的 CM,. OS結構和早複晶碎方式(single poly scheme)不一樣 的地方,是採用poly-Si做為p-MOS的閘極,所以可製 作面通道的元件’不過在程序上會較複雜。由於P—和 n-MOS均為面通道,可以提升短通道效應的控制性。目前 此雙複晶矽方式儼然已成為0. 2 5〜0, 1 8 μ m世代閘極技術 的主流,也有文獻發表此方式能成功地應用於0. 08 CMOS的研製,顯見其潛力。傳統的單複晶矽CMOS電路, 許多廠商喜歡使用在同步播雜(in situ doping)化學氣相 沉積(CVD) n+ poly Si薄膜,因為可以節省佈植 (implant)和退火(annealing)的時間與成本。但是在應用 雙複晶矽方式時這種方法就不可行了。 習知技術為改善前述問題,以沈積無摻雜複晶矽薄 膜,完成閘極的微影蝕刻後,再分別進行P- 和η- 型元V. Description of the invention (2) The location of the oxide / Si substrate interface, this CMOs method has therefore become the industry standard technology. However, the bottleneck began to be encountered after the 0 35 m process. The main problem was the short channel effects of the p-MOS transistor. Because the carrier channel in the latent channel is far away from the oxide interface, the gate Poor controllability ', so compared with the surface channel element, the short channel effect is much more serious. To 0. 2 5 // m transistor production, its related effects' such as Vth drop (roll-off) and source-induced barrier lowering (drain-induced barrier lowering) caused an increase in leakage current and other phenomena, are quite equivalent Difficult to control 'so structural changes must be made to address this issue. The CM ,. OS structure formed by the dual poly silicon scheme (dual pol y scheme) is different from the early single poly scheme in that poly-Si is used as the gate of p-MOS, so Components that can make area channels' are, however, more complicated in procedure. Since both P- and n-MOS are area channels, the controllability of the short-channel effect can be improved. At present, this double-multiplexed silicon method seems to have become the mainstream of the gate technology of 0.2 5 ~ 0, 18 μm. There are also publications in the literature that this method can be successfully applied to the development of 0.08 CMOS, showing its potential. Traditional single polycrystalline silicon CMOS circuits, many manufacturers prefer to use in situ doping chemical vapor deposition (CVD) n + poly Si thin films, because it can save the time of implantation and annealing cost. However, this method is not feasible when using the double polysilicon method. In order to improve the aforementioned problems, conventional techniques are to deposit an undoped polycrystalline silicon thin film, complete the lithographic etching of the gate electrode, and then perform P- and η-type elements, respectively.
D:\CSpatent\88006. ptd 第5頁 4391 27 五、發明說明(3) 素的佈植摻雜與活化,其詳細步驟如下: 如第1A圖所示’首先係對p型矽基底1〇〇實施熱氧化製 程,,如區域氧化法(LOCOS)來形成一場絕緣層(未顯示) ’並藉該場絕緣層來隔離出主動區。如第1A圖之第一區 180與第二區190,其t ,第一區180為PM0S,第二區190為 MM0S。然後,在第一區180與第二區19〇表面以埶氧化 產生厂間極絕緣層110,再沈積—層複晶矽導電層12〇 : 請參考第1B圖,塗佈一層光阻122,先以一道光罩進 行微影製程以定義光阻122,然後以蝕刻製程去除第二區 190之光阻122,保留第一區180之光阻12^ 。以佈植製程 佈植硼離子於第二區190之複晶矽導電層12〇,從此,摻雜 硼離子之複晶矽導電層12〇以掺雜硼離子複晶導 120b表示。 十 w 請參考第1C圖,去除光阻122,,接著塗佈一層光阻 124,再以另一道光罩進行微影製程以定義光阻⑴麸後 以蝕刻製程去除第一區180之光阻124,保留第二區19〇之 ^阻124,。以佈植製程佈植磷離子於第一區18〇之複晶石夕 =層12G,從此摻㈣離子之複晶硬導電層…以換 離子複晶矽導電層120a表示。 2考第圖,先去除光阻,再進行熱驅入製程,將 子複W導電層120a中的碟離子與推雜蝴離子複 时矽導電層120b中的硼離子驅入適當的深度。 疼考第1E圖’再以一道光罩進行微影製程與蝕刻程 序’於第H8G中形成摻料離子閑極心,及於第二區 II 1^1 第6頁 D:\CSpatent\88006.ptd ^39127 五、發明說明(4) !9〇中形成摻雜硼離子閘極12〇b,。 清參考第〗F圖’接著,實施習知半導體技術之離子摻 雜步驟並形成閘極側壁物丨5〇,完成一分別具有源/汲極 1 05與閘極結構之N型金氧半導體(NM〇s)電晶體1 及p型金 氧半導體(PMOS)電晶體170。 —由以上步驟可知,習知技術必須使用三道光罩才可以 完成雙摻雜閘極結構的製造,製程較為繁複。本發 成摻雜第二型雜質離子(如硼離子)矽玻璃層與氮化 = 層,然後去除第一區之摻雜第二型雜質離子(如硼離早’访 玻璃層與氮化矽絕緣層,當第一區佈植第—型 j夕 (幕如氣化石夕絕緣層可做為第二區的離子遮蔽罩 幕,以保濩第二區的複晶矽導電層不被佈植 I^卓 摻雜第,型雜質離子(如硼離子)矽玻璃層做為饰植離:: 源,然後以熱製程使雜質離子(如硼離子)擴散並來 區之複晶矽導電層中而成為Ρ—型閘極。在同—埶 第一 可同時將第-區複晶矽導電層中的另一型:程中 離子)驅入適當深度以成為Π-型閘極,如此 (如磷 將第二型雜質離子驅入複晶矽導電層的製程,^準方式 節省一道光罩的使用,所以,本發明簡化’習知技術 步驟,不但可縮短生產週期而且更符合半 術的製程 要降低成本的需求。 體生產迫切需 本發明在於自對準雙摻雜閘極之製造 、 具有第一區與第二區之半導體基底,在 '’適用於一 面形成一閘極絕緣層’在閘極絕緣層表 ,、弗二區表 办成一第一導電D: \ CSpatent \ 88006. Ptd Page 5 4391 27 V. Description of the invention (3) The implantation doping and activation of the element, the detailed steps are as follows: As shown in Figure 1A, 'the first is to p-type silicon substrate 1〇 〇 Implement a thermal oxidation process, such as LOCOS, to form a field insulation layer (not shown) and isolate the active area by the field insulation layer. For example, in the first region 180 and the second region 190 in FIG. 1A, t, the first region 180 is PMOS, and the second region 190 is MMOS. Then, the inter-electrode insulation layer 110 is generated on the surfaces of the first region 180 and the second region 19 by erbium oxidation, and then a polycrystalline silicon conductive layer 12 is deposited. Please refer to FIG. 1B and apply a photoresist 122. First, a photolithography process is performed with a photomask to define the photoresist 122, and then the photoresist 122 in the second region 190 is removed by an etching process, and the photoresist 12 in the first region 180 is retained. In the implantation process, boron ions are implanted in the polycrystalline silicon conductive layer 120 of the second region 190, and thereafter, the boron ion-doped polycrystalline silicon conductive layer 120 is represented by the boron ion doped polycrystalline guide 120b. 10w Please refer to Figure 1C, remove the photoresist 122, then apply a layer of photoresist 124, and then perform a photolithography process with another photomask to define the photoresist. After that, the photoresist in the first area 180 is removed by an etching process. 124, reserve the second zone 19 ^ resistance 124 ,. Phosphate ions were implanted in the first region of the polycrystalline spar of layer 18 in the first region = 12G in the implantation process. From then on, the polycrystalline hard conductive layer doped with erbium ions ... is represented by an ion-exchanged polycrystalline silicon conductive layer 120a. 2 As shown in the figure, the photoresist is removed first, and then the thermal drive-in process is performed to drive the disk ions in the composite W conductive layer 120a and the boron ions in the silicon conductive layer 120b to a proper depth. Figure 1E, “Etching a photolithography process and etching process with a photomask” forms the doped ion core in H8G, and in the second area II 1 ^ 1 page 6 D: \ CSpatent \ 88006. ptd ^ 39127 V. Description of the invention (4)! The doped boron ion gate 12b is formed in 90 °. Refer to Figure F. 'Next, perform the ion doping steps of the conventional semiconductor technology and form the gate sidewalls 50, and complete an N-type metal-oxide semiconductor with source / drain 105 and gate structure ( NMOs) transistor 1 and p-type metal-oxide-semiconductor (PMOS) transistor 170. — According to the above steps, the conventional technology must use three photomasks to complete the manufacture of the double-doped gate structure, and the manufacturing process is more complicated. The present invention is doped with a second type impurity ion (such as boron ion), a silicon glass layer and a nitride layer, and then the first region is doped with a second type impurity ion (such as boron ionomer), and the glass layer and silicon nitride are removed. Insulating layer, when the first type is planted in the first area (the curtain is like a gasified stone, the insulating layer can be used as the ion shielding mask in the second area to protect the polycrystalline silicon conductive layer in the second area from being implanted. The doped first type impurity ions (such as boron ions) of the silica glass layer are used as the decoration implantation source: and then the impurity ions (such as boron ions) are diffused and thermally processed in the polycrystalline silicon conductive layer by the thermal process It becomes a P-type gate. In the same region, the other type of the polycrystalline silicon conductive layer in the first region can be simultaneously driven into the appropriate depth to become a Π-type gate. Phosphorus drives the second-type impurity ions into the polycrystalline silicon conductive layer, which saves the use of a photomask in a standard way. Therefore, the present invention simplifies the steps of the conventional technique, which not only shortens the production cycle but also conforms to the semi-operative process. The need to reduce costs. Mass production urgently needs the present invention which lies in the self-aligned double doped gate Made, the semiconductor substrate having a first region and a second region, the 'forming a gate insulating layer applied to a surface of' in 'accomplishing a first conductive layer on the gate insulating region table Eph Table ,,
•439] 27 五 、發明說明(5) 層,在第一導雷; 緣層,在摻雜ί 面形成一推雜第二型雜質離子第一絕 雜質離子第型雜質離子第一絕緣層表面形成一無摻 雜第二型雜^齙孚f ’定義無掺雜質離子第二絕緣層與摻 質離子第二絕緣層絕緣層,去除位於第一區之無摻雜 出該第~導電層=摻雜第二型雜質離子第一絕緣層,露 植入第一區内之,施行一第一型雜質離子佈植程序’ 子第—導電層,導電層,形成一摻雜第一型雜質離 擋,使得兮笛’第二區因有無摻雜質離子第二絕緣層阻 質離子第一絕緣 質離子無法佈植進入該摻雜第二型雜 離子第二絕緣層層Λ’同時進行第二區内之摻雜第二型雜質 層之程序與第该第二型雜質離子擴散進入該第一導電 該第—型雜質離^内之摻雜第一型雜質離子第一導電層之 該無摻雜質離子t驅入適當深度之程序,去除第二區之 絕緣層,露出第一Γ絕緣層與該推雜第二型雜質離子第一 與第二區之該摻之該摻雜第一型雜質離子第一導電層 區之該摻雜第一!!第二型雜質離子第一導電層,定義第一 第二型雜質離子ί雜:離子第-_、第二區之該摻雜 二區分別护成:導電層與閘極絕緣層,於第一區與第 摻雜第二型區摻雜第一型雜質離子問極與第二區 極。 ’、為離子閘極,完成本發明之自對準雙摻雜閘 s為讓本發明之上述和其他目的、特徵、和優點能更明 …頁易丨董,下文特舉—較佳實施例,並配合附圖式,作詳 細說明如下:• 439] 27 V. Description of the invention (5) layer, the first lightning guide; marginal layer, on the doped surface to form a doped second impurity ions, first impurity ions, first impurity ions, first impurity ion surface Forming a non-doped second-type dopant f 'defines the non-doped second ion insulating layer and the doped ion second insulating layer insulating layer, and removes the non-doped second conductive layer located in the first region = Doping the second type of impurity ion first insulating layer, implanting it in the first region, and performing a first type of impurity ion implantation procedure-the first conductive layer, the conductive layer, forming a doped first type impurity ion Block, so that the second region of Xi Di's do not have implanted dopant ions, the second insulating layer resists the ions, the first insulating ions cannot implant into the doped second type hetero ions, the second insulating layer Λ ', and the second The process of doping the second-type impurity layer in the region and the second-type impurity ions diffuse into the first conductive the first-type impurity ion and the non-doping of the first conductive layer The process of driving the impurity ions t into an appropriate depth to remove the insulating layer in the second region, exposing The first Γ insulating layer and the doped second type impurity ions of the first and second regions are doped with the doped first type impurity ions and the first conductive layer region is doped with the first !! second type impurity ions The first conductive layer defines the first and second type impurity ions. The doped two regions of the first and second ion regions are protected respectively: a conductive layer and a gate insulating layer, and the first and second doped regions are doped. The second type region is doped with the first type impurity ion interrogator and the second region. ', Is an ion gate, and completes the self-aligned double-doped gates of the present invention in order to make the above and other objects, features, and advantages of the present invention clearer ... , And with the accompanying drawings, the detailed description is as follows:
五、發明說明(6) 圖式之簡單說明 第1 A至1F圖係顯示習知技術「雙摻雜閘極之製造方法」之 主要步驟。 第2A至2E圖係代表本發明「自對準雙摻雜閘極之製造方 法」實施例之主要步驟。 符號說明 100,2 0 0〜基底; 105,205〜源/沒極區; 180 , 190 , 280 , 290 〜主動區; 120,120a,12 0b,220,220a,220b 〜導電層; 110,210,2 30,240,110’ ,210’ 〜絕緣層; 120a’ ,120b’ ,2 20 a’ ,220b,〜閘極; 1 2 2,1 2 4〜光阻; 150,2 50〜閘極側壁物; 1 6 0,1 7 0,2 6 0,2 7 0 〜電晶體。 實施例 請參閱第2A圖,其顯示本發明之起始步驟。在圖中, 基底200為一半導體材質,如矽,鍺,而形成方式則有磊V. Description of the invention (6) Brief description of the diagrams Figures 1 A to 1F show the main steps of the conventional technique "manufacturing method of a double-doped gate". Figures 2A to 2E represent the main steps of an embodiment of the "method for manufacturing a self-aligned double-doped gate" according to the present invention. Symbol description 100, 2 0 0 ~ substrate; 105, 205 ~ source / inverted region; 180, 190, 280, 290 ~ active region; 120, 120a, 12 0b, 220, 220a, 220b ~ conductive layer; 110, 210 2 30, 240, 110 ', 210' ~ insulation layer; 120a ', 120b', 2 20 a ', 220b, ~ gate; 1 2 2, 1 2 4 ~ photoresistor; 150, 2 50 ~ gate Side wall objects; 16 0, 1 7 0, 2 6 0, 2 7 0 ~ transistor. Examples Refer to Figure 2A, which shows the initial steps of the present invention. In the figure, the substrate 200 is a semiconductor material, such as silicon and germanium, and the formation method is
D:\CSpatent\88006. ptd 第9頁 五、發明說明(7) 晶或絕緣層上有矽等,為方便說明,在此以一具有P型井 區與N型井區之P型矽基底為例。 起始步驟如第2A圖所示,首先係對P型矽基底20 0實施 熱氡化製程,如以區域氧化法來形成一場絕緣層(未顯 示),並藉場絕緣層來隔離出主動區,如第2A圖之第一區 280與第二區290,第一區280例如是P型井區,第二區290 例如是N型井區。然後,在第一區280與第二區290表面以 熱氧化製程產生一閘極絕緣層21 〇,此閘極絕緣層21 0可以 是一厚度為3 0〜1 5 0埃之閘極氧化層。其次,在閘極絕緣層 210表面沈積一第一導電層22〇,此第一導電層220可以是 以低壓化學蒸氣沈積法(LPCVD)沈積一厚度為1000〜3 0 00 埃之複晶石夕層’為降低其阻值,可使用習知之半導體製程 之擴散或離子植入法植入砷離子或磷離子,或者利用同步 摻雜的方式以形成經摻雜之導電層。接著,在第一導電層 220表面沈積一摻雜第二型雜質離子第一絕緣層230,此摻 雜第二型雜質離子第一絕緣層23 0可以是以習知之化學氣 相沈積法(CVD)、常壓化學氣相沈積法(APCVD)、次常壓化 學氣相沈積法(SAPCVD)、低壓化學氣相沈積法(LPCVD)、 電漿加強型化學氣相沈積法(PECVD)或高密度電黎化學氣 相沈積法(HDPCVD)並伴隨適量的四甲基硼烧(Tetra Methyl Borate)等材料’以沈積一厚度為looo〜5〇〇〇埃之 含硼離子(p型雜質離丰)之矽玻璃層。然後在摻雜第二型 雜質離子第一絕緣層230表面沈積一無摻雜質離子第二絕 緣層240 ’此無摻雜質離子第二絕緣層240可以是以低壓化D: \ CSpatent \ 88006. Ptd Page 9 V. Description of the invention (7) There is silicon on the crystal or insulation layer. For the convenience of explanation, a P-type silicon substrate with P-type well area and N-type well area is used here. As an example. The initial step is shown in Figure 2A. First, the P-type silicon substrate 200 is subjected to a thermal curing process, such as a field oxidation method to form a field insulation layer (not shown), and the field insulation layer is used to isolate the active area. As shown in FIG. 2A, the first area 280 and the second area 290, the first area 280 is, for example, a P-type well area, and the second area 290 is, for example, an N-type well area. Then, a gate insulating layer 21 0 is generated on the surfaces of the first region 280 and the second region 290 by a thermal oxidation process. The gate insulating layer 21 0 may be a gate oxide layer having a thickness of 30 to 150 angstroms. . Secondly, a first conductive layer 22 is deposited on the surface of the gate insulating layer 210. The first conductive layer 220 may be a polycrystalline stone having a thickness of 1000 to 300 angstroms by a low pressure chemical vapor deposition method (LPCVD). In order to reduce its resistance value, arsenic ions or phosphorus ions can be implanted by diffusion or ion implantation methods of conventional semiconductor processes, or by means of simultaneous doping to form a doped conductive layer. Next, a first insulating layer 230 doped with second-type impurity ions is deposited on the surface of the first conductive layer 220. The second insulating layer 230 doped with second-type impurity ions may be formed by a conventional chemical vapor deposition method (CVD). ), Atmospheric pressure chemical vapor deposition (APCVD), sub-normal pressure chemical vapor deposition (SAPCVD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), or high density Electrolytic chemical vapor deposition (HDPCVD) with appropriate amount of materials such as Tetra Methyl Borate to deposit a boron-containing ion (p-type impurity ion abundance) with a thickness of loooo ~ 500 angstroms Layer of silica glass. A non-doped second ion insulating layer 240 is then deposited on the surface of the second type doped impurity ion first insulating layer 230. This non-doped second ion insulating layer 240 may be low voltage
D:\CSpatent\88006. ptd 第10頁 43 91 27 五、發明說明(8) 學蒸氣沈積法(LP r ^ i 層或無摻雜質離切破璃U5心35GG埃之氣化石夕 請參考第2B圖,丨y_丰^ 光罩進行微影製程,要步•,以-道 摻雜第二型雜質離子二離子/二絕緣層240與 仿协错„ οοη 弟絕緣層23 0 ’再以蝕刻步驟去除 却雜哲哲之無摻雜質離子第二絕緣層24 0與摻雜第二 ^ . 、一絕緣層23(),露出第一導電層220表面,此 刑雜哲触I,以是非等向性蝕刻製程進行。然後實施-第-質離子(例如是磷離子)之佈植程序,其離子佈植能量 約為5〜50KeV,佈植劑量約為1〇叭1〇16 i〇ns/cm2,以植入第 -區280内之第-導電層220 ’形成-摻雜第—型雜質離子 之第一導電層220a。第二區29〇因有無摻雜質離子第二絕 緣層24 0的阻擋,第一型雜質離子因此無法佈植進入摻雜 第二型雜質離子第一絕緣層23()。在本步驟中,以無摻雜 質離子第一絕緣層240代替一道光罩,可阻擋第一型雜質 離=佈植進入摻雜第二型雜質離子第一絕緣層23〇,因此 可玲省一道光罩,亦即可縮短生產週期並降低成本。 接著’實施一熱驅入製程,同時進行第二區290内摻 雜第二型雜質離子第一絕緣層中之第二型雜質離子(例 如是硼離子)擴散進入第一導電層22()之程序,並將第一區 2 80内第一導電層22 0中第一型雜質離子(例如是磷離子)驅 入適當深度。以自對準方式進行·第二型雜質離子之熱驅入 程序’為本發明最重要的特徵。自此步驟以後,摻雜第一 型雜質離子之第一導電層220以摻雜第一型雜質離子第一D: \ CSpatent \ 88006. Ptd Page 10 43 91 27 V. Description of the invention (8) Learn about the vapor deposition method (LP r ^ i layer or non-doped material to cut through the glass U5 heart 35GG angstrom of gaseous fossils, please refer to Figure 2B, the photolithography process of y_feng ^ photomask, the step •, doping the second-type impurity ion diion / second insulation layer 240 and imitation co-error „οοη brother insulation layer 23 0 ′ The non-doped second ion insulating layer 24 0 and the second doped impurity ^. And an insulating layer 23 () are removed by an etching step, and the surface of the first conductive layer 220 is exposed. It is an anisotropic etching process. Then, the implantation procedure of the first-mass ion (for example, phosphorus ion) is performed. The ion implantation energy is about 5 ~ 50KeV, and the implantation dose is about 10 × 1016. ns / cm2 to form a first conductive layer 220a doped with a first type impurity ion by the first conductive layer 220 'implanted in the first region 280. The second region 29 is a second insulating layer due to the presence or absence of dopant ions. With the blocking of 24 0, the first type impurity ions cannot be implanted into the first insulating layer 23 () doped with the second type impurity ions. In this step, the non-doped ion The insulating layer 240 replaces a photomask, which can block the first type of impurity from implanting into the first insulating layer 23 doped with the second type of impurity ions. Therefore, a mask can be saved in Keling, which can shorten the production cycle and reduce the cost. Then, a thermal drive-in process is performed, and the second region 290 is doped with the second type impurity ions (for example, boron ions) from the first insulating layer to diffuse into the first conductive layer 22 (). Process, and drive the first type impurity ions (for example, phosphorus ions) in the first conductive layer 22 0 in the first region 2 80 to an appropriate depth. The self-aligned method is used to drive the second type impurity ions by heat. The procedure is the most important feature of the present invention. After this step, the first conductive layer 220 doped with the first type impurity ions is doped with the first type impurity ions.
D:\CSpatent\88006. ptd 第11頁 4 3 91 2 7 五、發明說明(9) 導電層22〇a表示,而摻雜第二型雜質離子之第 220〜以摻雜第二型雜質,子第一導電層以吒表示。 盈摻雜皙雜圖,接* ’以蝕刻步驟去除第二區290之 絕緣層240與摻雜第二型雜質離子第— 二型雜質離子第-導電層’ 此蝕刻步驟可以是以非等向性蝕刻步驟進行。 請參考第2D圖’以微影製程定義第—區28〇之推雜第 雜口 =電=22Γ第二區29°之摻雜第二型 f雕于第導電層220b,再以蝕刻步驟於第一區28〇與 第一區290分別形成一第一區28〇之摻雜第一型雜質離子之 二閉極22〇a’與第二區29〇之摻雜第二型雜質離子之p—型 T極220b ,此蝕刻步驟可以是非等向性蝕刻步驟進行, 至此即完成本發明之自對準雙摻雜閘極。 請參考第2E圖’接著’再結合習知之離子摻雜步驟與 問極側壁物250的形成’即完成一具有源/汲極2〇5與閘極 結構之N型金氧半導體(NM〇s)電晶體26〇及—具有源/汲極 2〇5與閘極結構之P型金氧半導體(pM〇s)電晶體27〇。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 範圍内,當可做些許之更動與潤飾,因此本發明之保 濩範圍當視後附之申請專利範圍所界定者為準。D: \ CSpatent \ 88006. Ptd Page 11 4 3 91 2 7 V. Description of the invention (9) The conductive layer 22〇a is shown, and the second type impurity is doped 220 ~ to dope the second type impurity, The first conductive layer is represented by 吒. Doping the impurity pattern, then * 'remove the insulating layer 240 of the second region 290 and doping the second-type impurity ion—the second-type impurity ion—the conductive layer by an etching step ”This etching step may be anisotropic An etch step is performed. Please refer to the 2D picture 'Define the impurity in the first region—28 ° with a lithographic process = electrical = 22Γ—doped second type f in the second region 29 ° is carved on the second conductive layer 220b, and then the etching step is used in The first region 28o and the first region 290 form a p of the first region 28o doped with two closed electrodes 22aa of the first type impurity ions and the second region 29o doped p with second type impurity ions. -Type T-pole 220b. This etching step may be performed by an anisotropic etching step, and the self-aligned double-doped gate electrode of the present invention is completed. Please refer to FIG. 2E, and then 'combined with the conventional ion doping step and the formation of the interrogation sidewall 250' to complete an N-type metal-oxide-semiconductor (NM0s) with a source / drain 20 and gate structure ) Transistor 26 and P-type metal-oxide-semiconductor (pM0s) transistor 27 with source / drain 205 and gate structure. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make some modifications and retouches without departing from the scope of the present invention. Therefore, the present invention The guarantee scope shall be subject to the definition of the scope of the attached patent application.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW88113981A TW439127B (en) | 1999-08-16 | 1999-08-16 | Method for manufacturing semiconductor self-aligned dual-doped gate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW88113981A TW439127B (en) | 1999-08-16 | 1999-08-16 | Method for manufacturing semiconductor self-aligned dual-doped gate |
Publications (1)
Publication Number | Publication Date |
---|---|
TW439127B true TW439127B (en) | 2001-06-07 |
Family
ID=21641927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW88113981A TW439127B (en) | 1999-08-16 | 1999-08-16 | Method for manufacturing semiconductor self-aligned dual-doped gate |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW439127B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367146A (en) * | 2012-03-27 | 2013-10-23 | 南亚科技股份有限公司 | Manufacturing method of semiconductor device |
-
1999
- 1999-08-16 TW TW88113981A patent/TW439127B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367146A (en) * | 2012-03-27 | 2013-10-23 | 南亚科技股份有限公司 | Manufacturing method of semiconductor device |
CN103367146B (en) * | 2012-03-27 | 2015-12-16 | 南亚科技股份有限公司 | The manufacture method of semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0978141B1 (en) | Method of making nmos and pmos devices with reduced masking steps | |
JP4493536B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3142132B2 (en) | Method for manufacturing CMOS device | |
JP2976197B2 (en) | Method for manufacturing semiconductor device | |
US7935993B2 (en) | Semiconductor device structure having enhanced performance FET device | |
JP4633310B2 (en) | Method for forming germanium-doped polysilicon gate of MOS transistor and method for forming CMOS transistor using the same | |
JP2009272423A (en) | Semiconductor device and method of manufacturing same | |
US8318571B2 (en) | Method for forming P-type lightly doped drain region using germanium pre-amorphous treatment | |
US20070158753A1 (en) | Semiconductor device structure having low and high performance devices of same conductive type on same substrate | |
US20060001105A1 (en) | Semiconductor device having optimized shallow junction geometries and method for fabrication thereof | |
JP2000216386A (en) | Fabrication of semiconductor device having junction | |
US20060030109A1 (en) | Method to produce highly doped polysilicon thin films | |
JP2003078137A (en) | Method for forming elevated source/drain areas using polysilicon spacer | |
US6218229B1 (en) | Method of fabricating semiconductor device having a dual-gate | |
TW574746B (en) | Method for manufacturing MOSFET with recessed channel | |
JP2007529891A (en) | Field effect transistor and method of manufacturing field effect transistor | |
TW439127B (en) | Method for manufacturing semiconductor self-aligned dual-doped gate | |
WO2004114413A1 (en) | Semiconductor device and its manufacturing method | |
JPH09190983A (en) | Manufacture of semiconductor device | |
US7439123B2 (en) | Low resistance contact semiconductor device structure | |
JP2004221301A (en) | Semiconductor device and method for manufacturing the same | |
KR100336572B1 (en) | Method for forming semiconductor device with gate electrode using poly silicon-germanium | |
KR100810430B1 (en) | Method for fabricating the semiconductor device | |
JP3953605B2 (en) | Thin film transistor manufacturing method | |
JP2000340677A (en) | Semiconductor device and fabrication thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |