TW437047B - Low-voltage triggering electrostatic discharge protection - Google Patents

Low-voltage triggering electrostatic discharge protection Download PDF

Info

Publication number
TW437047B
TW437047B TW87111857A TW87111857A TW437047B TW 437047 B TW437047 B TW 437047B TW 87111857 A TW87111857 A TW 87111857A TW 87111857 A TW87111857 A TW 87111857A TW 437047 B TW437047 B TW 437047B
Authority
TW
Taiwan
Prior art keywords
patent application
item
scope
region
electrostatic discharge
Prior art date
Application number
TW87111857A
Other languages
Chinese (zh)
Inventor
Wen-Bo Jeng
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW87111857A priority Critical patent/TW437047B/en
Application granted granted Critical
Publication of TW437047B publication Critical patent/TW437047B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

The present invention provides a low-voltage triggering electrostatic discharge (ESD) protection system and method in the field of integrated circuit. The low-voltage triggering ESD protection circuit comprises a path with low triggering voltage and a low resistance that can be rapidly opened. The protection circuit can be applied to power bus, input, and input/output ESD protection device. The protection circuit is compatible with the compensated metal oxide semiconductor (CMOS) processing and achieving high ESD performance even for the device made in the advanced CMOS processing.

Description

卜 4370 4 7 - 案號 87111857 —Μ·"月々 口 __ 五、發明說明(1) 發明背景 1 · 發明領域 本發明大致上指半導體電路之靜電放電(ESD )保 護。在一實例申,本發明更特別指一低電壓激發(LT ) N_ 通道金屬氧化層半導體(NMOS ),能夠在esd事件中快速 開啟,並對一E S D電流,提供相當均勻電流密度路徑之較 低電阻’因此而能有效地使全部之ESD脈衝確實分流開 來。 2 ·相關技術之討論Bu 4370 4 7-Case No. 87111857—M · " Yuekou __ V. Description of the Invention (1) Background of the Invention 1 · Field of the Invention The present invention generally refers to the electrostatic discharge (ESD) protection of semiconductor circuits. In an example, the present invention more particularly refers to a low voltage excited (LT) N_ channel metal oxide semiconductor (NMOS), which can be quickly turned on during an esd event, and provides a relatively uniform current density path for an ESD current. The resistor 'therefore effectively diverts all ESD pulses. 2 Discussion of related technologies

關於靜電放電保護裝置之習知技術,已為熟悉此技術 之人所熟知。舉例來說,一種能夠提供靜電放電保護之傳 統方法,為在裝置中提供一電路,引導具潛在危險之靜電 放電至接地端,並且於靜電放電事件中,遠離電路中保持 工作之元件。 一種提供ESD保護之方法’為使用一厚場裝置(Thick Field Device)。舉例來說,參照第一圖,如圖所示,傳 統之厚場裝置(TFD )中,N +摻質源極丨1〇與n +摻質汲極 120位於一p摻質井丨3〇内。在p摻質丼13〇頂端,絕緣氧化 層1 4 0位於緊接μ +摻質源極11 〇與n +摻質;及極丨2 〇之位 2。如第一圖所示,TFD中並無閘極,且此TF0簡單地藉由 橫跨汲極/通道接面(junction)之累增崩潰(avalanche breakdown)而開啟。如第.一圖所示之TFJ),為一種提供 /Vss ESD保護之傳統方法。 、 另一種提供ESD保護之方法,為使用接地閘薄氧化層 NM0S舉例來說’參照第二圖’如圖所示,一接地閘薄氧The conventional technology of electrostatic discharge protection devices is well known to those familiar with this technology. For example, a conventional method capable of providing electrostatic discharge protection is to provide a circuit in a device to guide a potentially dangerous electrostatic discharge to a ground terminal and to keep working components away from the circuit during an electrostatic discharge event. One way to provide ESD protection is to use a thick field device. For example, referring to the first figure, as shown in the figure, in a traditional thick field device (TFD), the N + doped source electrode 10 and the n + doped drain electrode 120 are located in a p-doped well 3 Inside. At the top of the p-dopant 丼 130, the insulating oxide layer 140 is located at the position 2 immediately next to the μ + dopant source 110 and the n + dopant; As shown in the first figure, there is no gate in TFD, and this TF0 is simply turned on by avalanche breakdown across the drain / channel junction. (TFJ shown in the first figure) is a traditional method to provide / Vss ESD protection. 2. Another method to provide ESD protection is to use a thin oxide layer of the grounding gate. NM0S is an example.

Μ 第4頁 ί 437047 __案號87111857_难Κ月日 條正_ 五、發明說明(2) 化層NMOS (GGNM0S)中’Ν+摻質源極11〇與Ν+摻質汲極 120位於一 Ρ摻質丼130内。閘極210位於Ρ摻質井130之頂 端,且位於Ν +摻質源極11 0與Ν +摻質汲極1 2 0間。兩個η -摻質區220位於閘極210下方,並且第一個位於鄰接Ν + 捧質源極11 0之位置’而第二個則位於鄰接Ν +摻質没極 120之位置。兩個隔片(spacer)230則位於緊接閘極21〇之 位置。在P摻質井130頂端’絕緣氧化層140位於緊接N +摻 質源極110與N+摻質淚極120之位置。如第二圖所示之裝 置’為一傳統且具η-植入之LDD NMOS方法,用以提供vdd / Vss ESD保護。不幸地,甚至如第二圖所示之ldd NMOS 裝置之激發電壓亦不夠低’而無法保護許多類型之電路免 於遭受損壞。 因此,提供Vdd對Vss電源匯流排保護,即如第一圖所 示之厚場裝置(TFD)與如第二圖所示之接地閘薄氧化層 NMOS (GGNM0S)等兩種方法。此兩種保護裝置皆於esd事 件中’扮演NPN雙載子裝置之角色。此種NPN雙載子裝置之 電流對電壓特性’顯示於第三圖中。較特別地是第三圖中 之軌跡,顯示第二圖之GGNM0S電流對電壓特性,具有突然 避轉(snapback)現象。參照第三圖,當達到一激發電整 (Vt r i )時’ NPN裝置開啟並進入低阻抗(Vsp )之突然迴 轉區,以允許大量之ESD能量溢散(dissipation)出去。Μ Page 4 ί 437047 __Case No. 87111857_ Difficulty month month article _ V. Description of the invention (2) 'N + doped source 11 and N + doped drain 120 in chemical layer NMOS (GGNM0S) It is located in a P doped Y 130. The gate 210 is located at the top end of the P-doped well 130, and is located between the N + doped source 110 and the N + doped drain 1220. Two n-doped regions 220 are located below the gate 210, and the first is located adjacent to the N + dopant source 110 'and the second is located adjacent to the N + dopant 120. Two spacers 230 are located immediately next to the gate electrode 21o. At the top of the P-doped well 130, the insulating oxide layer 140 is located immediately next to the N + doped source 110 and the N + doped tear electrode 120. The device ′ shown in the second figure is a conventional LDD NMOS method with η-implantation to provide vdd / Vss ESD protection. Unfortunately, even the excitation voltage of the ldd NMOS device as shown in the second figure is not low enough to protect many types of circuits from damage. Therefore, Vdd to Vss power bus protection is provided, that is, two methods, such as a thick field device (TFD) as shown in the first figure and a thin gate oxide NMOS (GGNM0S) as shown in the second figure. Both of these protection devices play the role of NPN dual carrier devices in the esd event. The current-voltage characteristics of such an NPN dual-carrier device is shown in the third figure. More specifically, the trace in the third graph shows the current-voltage characteristics of the GGNM0S in the second graph, which has a snapback phenomenon. Referring to the third figure, when an excitation voltage (Vt r i) is reached, the 'NPN device is turned on and enters a low-impedance (Vsp) abrupt turnaround region to allow a large amount of ESD energy to dissipate out.

具較低(Vtri )之ES.D保護裝置(如電源匯流排保護 裝置),能夠更有效且快速地(首先)開啟,以保護内部 電路免於遭受損壞。具較低突然迴轉電壓(Vsp )之ESD保 護裝置’能夠進一步溢散較尚電流,並獲得一較高之e s DES.D protection devices with lower Vtri (such as power bus protection devices) can be opened more effectively and quickly (first) to protect internal circuits from damage. An ESD protection device with a lower sudden swing voltage (Vsp) can further swell the relatively current and obtain a higher e s D

)' 4370 4 7 __ 案號 87111857_I./ 月…日_修正 五、發明說明(3) 臨限(thresho 1 d )。一個優良之ESD保護電路必須具備:i ) 較低之激發電壓(V t r i )與i i )較低之突然迴轉電壓(vsp )。 然而,使用這些習知技術方法之ES1)保護性能,已經 無法滿足先進之製程’舉例來說,如輕微摻質没極(L d D )裝置、較薄氧化層之使用,以及自動對準石夕化物製程 等。像此類或其他不斷推演之先進製程中,雖然使用TFD 與GGNM0S方法,但在ESD脈衝應力(stress)期間,卻有愈 來愈多之ESD損壞正發生於次微米積體電路中。 在如前述之輕微掺質汲極(LDD )裝置、較薄氧化層 之使用’以及自動對準矽化物製程等先進製程之背景下, 傳統之TFD與GGNM0S方法並非是一種提供電源匯流排ESd保 護之優良方式。特別是傳統TFD與GGNM0S方法中,固有且 較高之激發電壓準位’並無法保護較弱之電路免於遭受 ESD損壞。 使用如第二圖所示之傳統LDD裝置,有一特別之缺 點’即此類裝置於發生ESD應力(stress)期間顯得相當脆 弱。更詳細的說’ LDD η -區會導致不均勻之電流分布與 局部熱點(local hot spot)現象。當裝置之尺寸縮小至次 微米區域或更小時’局部熱點現象顯得愈來愈棘手。所 以’如第二圖所示之LDD NM0S裝置本身無法成為一種良好 的ESD保護電路。 , 為了解決剛述不均勻電流分布之問題,·一種令人不滿 意之方法中’必須使用非輕微摻質汲極(非LDD )裝置, 即如第四圖所示之非-LDD NM0S裝置。參照第四圖,同樣) '4370 4 7 __ Case No. 87111857_I./ Month ... Day_Amendment V. Description of the invention (3) Threshold (thresho 1 d). A good ESD protection circuit must have: i) a lower excitation voltage (V t r i) and a lower sudden swing voltage (vsp). However, the ES1) protection performance of these conventional techniques and methods cannot meet the requirements of advanced processes. For example, such as lightly doped electrode (L d D) devices, the use of thinner oxide layers, and automatic alignment stones Xi chemical process. In this or other advanced advanced processes, although the TFD and GGNM0S methods are used, during the ESD pulse stress, more and more ESD damage is occurring in the sub-micron integrated circuit. In the context of advanced processes such as the aforementioned slightly doped drain (LDD) devices, the use of thinner oxide layers, and automatic alignment with silicide processes, the traditional TFD and GGNM0S methods are not a way to provide ESd protection for power buses. Good way. Especially in the traditional TFD and GGNM0S methods, the inherent and higher excitation voltage level 'cannot protect weaker circuits from ESD damage. Using the conventional LDD device as shown in the second figure, there is a special disadvantage ', that such a device is quite fragile during the occurrence of ESD stress. In more detail, the LDD η-zone will cause uneven current distribution and local hot spot. When the size of the device is reduced to the sub-micron region or smaller, the local hot spot phenomenon becomes more and more difficult. Therefore, the LDD NMOS device as shown in the second figure cannot itself be a good ESD protection circuit. In order to solve the problem of the uneven current distribution just described, in an unsatisfactory method, a non-slightly doped drain (non-LDD) device must be used, that is, a non-LDD NMOS device as shown in the fourth figure. Referring to the fourth figure, the same

f 4370 4 7 _案號87111857_的年I /月〜日 你不_^ 五、發明說明(4) 地,Ν+摻質源極110與Ν+摻質彡及極120位於ρ摻質井130 内。閘極210同樣地位於Ρ摻質井130之頂端.,且位於ν+摻 質源極11 0與Ν +摻質汲極1 2 0間’兩個隔片2 3 0則位於緊接 閘極21 0之位置。在Ρ摻質井1 3 0頂端,絕緣氧化層1 4 0亦同 樣地位於緊接Ν +摻質源極1 1 0與Ν +摻質汲極1 2 0之位置。 第二圖與第四圖結構間之差別,為第四圖之裝置不具有η -掺質區。只要缺乏任何η-摻質區,就可避免如第二圖 裝置中所示固有之熱點問題。使用此類非LDD(non-LDD)裝 置之目的,為改進電流分布(相較第二圖之裝置而言), 以促使電流分布更均勻。在缺乏η -摻質區之情況下,此 有限的目的可藉由第四圖之裝置加以完成。 不幸地,第四圖中非LDD裝置之激發電壓不夠低,而 無法保護許多類型之電路免於遭受損壞。使用第四圖之裝 置’常因為激發電壓(Vtri )不洽當地過高,而造成ESD 應力損壞,尤其是應用於先進製程之電路時,舉例來說, 如輕微摻質汲極(LDD )裝置、較薄氧化層之使用,以及 自動對準矽化物製程等。 因此,此技術有一需求,可使ESD保護方法能夠非常 快速地切換,以保護積體電路之平衡。所以,所須之解決 之道為利用一低激發電壓(Vtr i ),來達到快速反應時間 之目的〇 此技術之另一需求,.為ESD保護方法能夠確實傳導全 部之ESD脈衝。因此,解決之道為利用—低突然迴轉電壓 (Vsp ),以顯示能夠使全部之ESD脈衝確實開來之能力。 此技術之另一需求,為ESD保護方法能夠確實傳導全f 4370 4 7 _ case number 87111857_ year I / month ~ day you do not _ V. Description of the invention (4) Ground, N + doped source 110 and N + doped lutetium and pole 120 are located in ρ doped well Within 130. The gate 210 is also located at the top of the P-doped well 130, and is located between the ν + doped source 11 0 and the N + doped drain 1 2 0 'the two spacers 2 3 0 are located immediately next to the gate. 21 0 position. At the top of the P-doped well 130, the insulating oxide layer 140 is also located immediately next to the N + doped source 110 and the N + doped drain 1220. The difference between the structures of the second and fourth figures is that the device of the fourth figure does not have an n-doped region. As long as any n-doped region is absent, the hot spots inherent in the device shown in the second figure can be avoided. The purpose of using such non-LDD (non-LDD) devices is to improve the current distribution (compared to the device in the second figure) so as to promote a more uniform current distribution. In the absence of an? -Doped region, this limited purpose can be accomplished by the apparatus of Figure 4. Unfortunately, the excitation voltage of non-LDD devices in the fourth figure is not low enough to protect many types of circuits from damage. The device shown in Figure 4 is often used because the excitation voltage (Vtri) is too high, which causes ESD stress damage, especially when applied to the advanced process circuits, such as a lightly doped drain (LDD) device. , The use of thinner oxide layers, and automatic alignment with silicide processes. Therefore, there is a need for this technology to enable ESD protection methods to be switched very quickly to protect the balance of integrated circuits. Therefore, the required solution is to use a low excitation voltage (Vtr i) to achieve the purpose of fast response time. Another requirement of this technology is that the ESD protection method can indeed conduct all ESD pulses. Therefore, the solution is to use-low sudden swing voltage (Vsp) to show the ability to make all the ESD pulses sure. Another requirement of this technology is that ESD protection methods

437U 4 7 <年丨,月W 日_修正 案號 87111857 五、發明說明(5) 部之E S D脈衝,而不致產生任何熱點效應。因此,解決之 道為利用一均勻之電流分布,以顯示能夠使全部之ESD脈 衝確實分流開來之能力。 此技術之另一需求,為實際執行應用時須具經濟效 益,第一圖至第四圖中所示之先前方法,其一大缺點即為 須相對較高之成本。因此,解決之道為以更具成本效益之 方式,迎合前述之需求。 所以綜觀前述,為了改進ESD之保護性能,必須使用 一低電壓激發保護方法,其結合低激發電壓(V t r i)與低 突然迴轉電壓(V s p),以及均勻之電流分布,並且在自 動對準矽化物積體電路之製造上具經濟效益。截至目前為 止,前述低激發電壓(V t r i)、低突然迴轉電壓(V s p )、均勻之電流分布以及低成本等需求,尚未完全地滿 足,所需之解決之道,即同時滿足全部之需求。 發明概述 本發明之主要目的,係提供一種靜電放電保護裝置。 另一主要之目的為提供一種製造靜電放電裝置之方法_,以 及提供一種操作靜電放電保護裝置之方法。 依據這些目的,存在一種對低電壓激發(LT) N通道 金屬氧化層半導體(NMOS)、其製造方法與操作方法之需 求。因此,同時滿足前述低激發電壓(V t r i )、低突然迴 轉電壓(Vsp)、均勻之f;流分布以及低成本等需求,顯 得相當可行,而這些在習知技術中,常會互相牴觸,且無 法同時滿足。 本發明施行於一實例中之第一個觀點,係以積體電路437U 4 7 < Year 丨 Month W _ Amendment No. 87111857 V. The E S D pulse of Part (5) of the invention description, without any hot spot effect. Therefore, the solution is to use a uniform current distribution to show the ability to reliably divert all ESD pulses. Another requirement of this technology is that it must be economically effective in practical implementation. One of the major disadvantages of the previous methods shown in Figures 1 to 4 is the relatively high cost. Therefore, the solution is to meet the aforementioned needs in a more cost-effective manner. Therefore, in view of the foregoing, in order to improve the protection performance of ESD, a low voltage excitation protection method must be used, which combines a low excitation voltage (V tri) with a low sudden swing voltage (V sp) and a uniform current distribution, and is automatically aligned. There are economic benefits in the manufacture of silicide integrated circuits. So far, the aforementioned requirements for low excitation voltage (V tri), low sudden swing voltage (V sp), uniform current distribution, and low cost have not been fully met. The required solution is to satisfy all the requirements at the same time. . SUMMARY OF THE INVENTION The main object of the present invention is to provide an electrostatic discharge protection device. Another main object is to provide a method for manufacturing an electrostatic discharge device, and to provide a method for operating an electrostatic discharge protection device. According to these purposes, there is a need for a low-voltage excited (LT) N-channel metal oxide semiconductor (NMOS), a method of manufacturing the same, and a method of operating the same. Therefore, it is quite feasible to meet the requirements of the aforementioned low excitation voltage (V tri), low sudden swing voltage (Vsp), uniform f; current distribution, and low cost. These are often in conflict with each other in the conventional technology. And cannot be satisfied at the same time. The first aspect of the invention implemented in an example is an integrated circuit

卜 437047 案號87111857 贫年fl月丨U日 修正Bu 437047 Case No. 87111857 Poverty year fl month U day Amendment

i 437 u 4 7 案號 87111857 gf年丨丨月/(/日 修正 五、發明說明(7) 一第.一 一靜電 極;然 放電電 將全部 線路傳 後,循 區,第 位,最 三區。 總 這些或 而必須 節之描 發明範 之精神 圖號說 110 130 210 230 1020 1040 1060 1045 導電態與一 放電脈衝至 後切換靜電 流一較低電 之靜電放電 導靜電放電 線路傳導靜 二區具有一 後,循線路 第一摻 非導電 放電保 阻,且 脈衝確 脈衝, 電放電 摻質濃 傳導靜 考慮以 觀點, 以下作 述,僅為一種圖解 與修正 明包括 而言之,在 其他目的與 了解的是, 圍内之改變 ,並且本發 明 N +摻質源極 P摻質井 閘極 隔片 N +摻質汲極 P+捧質區 第二P-推質 導體 區 質濃度準位,其方法包含:傳導 狀態中的靜電放電保護裝置之汲 護裝置至導電狀態,以提供靜電 相當均勻電流密度之路徑,藉此 實分流開來,其中該切換包括循 通過第二導電態之第一區,然 脈衝,通過第一導電態之第二 度準位,高於第一摻質濃度準 電放電脈衝通過第二導電態之第 下伴隨之描述與附圖時,本發明 將可得到較佳之注釋與了解。然 為指示本發明較佳實例與特殊細 之方式,而非一種限制。任何本 ,皆有可能發生,而不失本發明 此類全部之修正。 120 N +摻質汲極 140 絕緣氧化層 22 0 η-摻質區 1 0 1 0 Ν +摻質源極 1 0 3 0 Ρ摻質井 1 0 50第一 ρ-摻質區 1 0 7 0閘極 1 08 0隔片i 437 u 4 7 case number 87111857 gf year 丨 丨 month / (/ day amended five, description of the invention (7)-first.-one static electrode; then the discharge power will be transmitted to all lines, cycle area, first place, last three All these or must be described in the spirit of the invention. The drawing number is 110 130 210 230 1020 1040 1060 1045. The conductive state and a discharge pulse are switched after the electrostatic current is switched. After one, non-conductive discharge resistance is added along the line, and the pulse is pulsed. The electric discharge is doped with thick conductive static electricity. From the point of view, the following description is only a diagram and amendment, including for other purposes. It is understood that the changes within the range, and the N + doped source electrode P doped well gate spacer N + doped drain electrode P + the second P-massive conductor region mass concentration level of the present invention, The method includes: the draining device of the electrostatic discharge protection device in the conductive state to the conductive state to provide a path of fairly uniform current density of static electricity, thereby realizing the shunting, wherein the switching includes passing through the second guide The first region of the state, then the pulse, passes the second-degree level of the first conductive state, which is higher than the first dopant concentration. The quasi-electrical discharge pulse passes the second conductive state and the accompanying description and accompanying drawings. A better comment and understanding will be obtained. However, it is a way of indicating the preferred examples and special details of the present invention, rather than a limitation. Any copy is possible without losing all such modifications of the present invention. 120 N + Doped drain 140 Insulating oxide layer 22 0 η-doped region 1 0 1 0 Ν + doped source 1 0 3 0 P doped well 1 0 50 first ρ-doped region 1 0 7 0 gate electrode 1 08 0 spacer

第10頁 43 7 0著號7 87I11857__年 /(月 γ a_ 五、發明說明(8) 1090 絕緣氧化層 505 LDD NMOS之閘極 510 LTNMOS之閘極 515 Ρ推質底材 520 絕緣氧化層 525 η -植入光阻罩幕 530 η -區 535 ρ _植入光阻罩幕 540 ρ-區 545 隔片區 550 Ν+區 555 Ν+區 560 二極體 較佳實例之詳細說明 參照圖解於伴隨附圖與下列說明之非限制實例,本發 明與各種不同特性與具優點之細節等,將進一步獲得更完 全之闡述。至於有關已知元件與製程技術之描述,將予以 刪除’以避免對本發明產生不必要之混淆。 本發明之内容為一種積體電路内之靜電放電(ESD) 保護’且可特別地使用於包括N通道金屬氧化層半導體之 積i電路中。 本技術之發明者發現,在不斷推演之先進製程中,舉 例來說’如輕微摻質汲極(LDD)裝置、較薄氧化層之使 用,以及自動對準矽化物製程等,於ESD脈衝應力期間, 有愈來愈多之ESD損壞正發生於次微米積體電路中。更重 要地’在詳細破壞分析後,本技術之發明者不預期地發 現’破壞之位置通常位於内部電路中。舉例來說,於前述 先進I程之電路中,連續味用如第四圖所示之習知裝 置,將於ESD脈衝應力後’引起待命(stand_by 電流或功能破壞。 保護裝置Page 10 43 7 0 No. 7 87I11857__year / (month γ a_ V. Description of the invention (8) 1090 Insulating oxide layer 505 LDD NMOS gate 510 LTNMOS gate 515 P push substrate 520 Insulating oxide layer 525 η-Implanted photoresist mask 530 η-Region 535 ρ _Implanted photoresist mask 540 ρ-Region 545 Separator region 550 N + region 555 N + region 560 Detailed description of a preferred example of a diode The drawings and the following non-limiting examples, the present invention and various features and details with advantages, will be further fully explained. As for the description of known components and process technology, will be deleted 'to avoid the present invention Unnecessary confusion arises. The content of the present invention is an electrostatic discharge (ESD) protection within a integrated circuit, and can be used particularly in an integrated circuit including an N-channel metal oxide semiconductor. The inventor of the technology has found that In the development of advanced processes, such as' lightly doped drain (LDD) devices, the use of thinner oxide layers, and self-aligned silicide processes, there are more and more during the ESD pulse stress. ESD damage is occurring in sub-micron integrated circuits. More importantly, after detailed damage analysis, the inventor of the technology unexpectedly found that the location of the damage is usually in the internal circuit. For example, in the aforementioned advanced I In the circuit of the circuit, the conventional device shown in the fourth figure is used continuously, which will cause standby (bystand_by current or functional damage) after the ESD pulse stress. Protection device

第11頁 ϊ ' 437 0 4 7 _案號87111857__狄年f/月日 絛正_ 五、發明說明(9) 參照附圖,第五圖至第十四圖提供本發明較佳實例之 詳細說明。接下來’參照第十圖,顯示一具有強化汲極一 閘極場之低電壓激發N通道金屬氧化層半導體,其中,N +摻質源極1 0 1 0與N+摻質汲極1 0 2 0位於一 P摻質井1 〇 3 0 内。P+摻質區1 0 4 0亦位於P掺質井1 0 3 0内。一第一 p~摻 質區1 0 5 0位於鄰接财摻質源極1 0 1 0之位置,而第二p-摻 質區1 0 6 0則位於鄰接N+摻質汲極1 0 2 0之位置。一閘極 1 0 7 0位於P摻質井1 0 3 0之頂端’且位於N+摻質源極1 〇1 〇與 N+摻質汲極1 0 2 0間。因此’兩個p-摻質區1 〇 5 〇 - 1 〇 6 0位 於閘極1 0 7 0下方。閘極1 0 7 0利用一導體1 〇 4 5,電子式地 (e 1 e c t r i c a 1 1 y )連接至P+摻質區1 〇 4 〇。兩個隔片1 〇 8 〇則 位於緊接閘極1 0 7 0之位置《絕緣氧化層ϊ 〇 9 〇位於緊接N+ 摻質源極與汲極之位置,並且介於N+摻質源極1 〇 1 〇與p+ 摻質區1040間。 第十圖中’ P+摻質區1 〇 4 〇為p摻質井ϊ 〇 3 〇之拾起擴散 區(pick-up diffusion)’以電路連接至vss(接地)。p 掺質井103 0可簡寫為PW 1030。PW 1030之電壓準位係經由 連接至Vss金屬線1 0 45之P+擴散區丨〇4〇而建立。第十圖 中’ P+推質區1 040清楚地顯示形成於最後LTNm〇S裝置結 構之寄生NPN雙載子元件》第十圖中LTNM0S之閘極連接至 Vss (意即連接至接地)。 當然’相較於無p~摻質區之情況而言,p_摻質區 1 0 5 0 - 1 0 6 0之存在將減少激發電壓,結果,得到比第四圖 裝置更小之激發電壓,可調整p〜摻質程度,以影響激發 電壓。然而’假使p~摻質程度格外地低,則將造成激發Page 11 ϊ '437 0 4 7 _Case No. 87111857__ Di Nian f / Month Sun Zheng _ V. Description of the invention (9) Referring to the drawings, the fifth to fourteenth drawings provide details of the preferred embodiment of the present invention Instructions. Next, referring to the tenth figure, a low-voltage excited N-channel metal oxide semiconductor with an enhanced drain-gate field is shown, in which N + doped source 1 0 1 0 and N + doped drain 1 0 2 0 is located in a P-doped well 1030. The P + doped region 1040 is also located in the P-doped well 1030. A first p ~ doped region 1 0 50 is located adjacent to the source dopant source 1 0 1 0, and a second p-doped region 1 0 6 0 is located adjacent to the N + dopant drain 1 0 2 0 Its location. A gate 1070 is located at the top of the P doped well 1030 and is located between the N + doped source 1010 and the N + doped drain 1020. Therefore, the 'two p-doped regions 1050-1060 are located below the gate 1070. The gate electrode 1 0 0 is electrically connected to the P + doped region 1 0 4 0 by a conductor 1 0 4 5. The two spacers 1 0 0 0 are located immediately next to the gate 1 0 70, and the insulating oxide layer 〇 9 0 is located immediately adjacent to the N + doped source and the drain, and is located between the N + doped source. Between 1040 and 1040 p + doped regions. In the tenth figure, the 'P + doped region 1 0 4 0 is a pick-up diffusion region of the p doped well 3 0 3 0' is connected to vss (ground) by a circuit. The p doped well 103 0 can be abbreviated as PW 1030. The voltage level of PW 1030 is established via a P + diffusion region connected to the Vss metal line 1045. In the tenth figure, the P + mass region 1 040 clearly shows the parasitic NPN bipolar element formed in the final LTNm0S device structure. The tenth figure of the LTNM0S gate is connected to Vss (that is, connected to ground). Of course, compared to the case where there is no p ~ doped region, the presence of p_ doped region 1 50 0-1 0 6 0 will reduce the excitation voltage. As a result, a smaller excitation voltage is obtained than the device in the fourth figure. , P ~ doping degree can be adjusted to affect the excitation voltage. However, if the p ~ doping level is extremely low, it will cause excitation.

第12頁 ί' 437047 _案號 87111857_____奸年"月Υ日 修正__:>: 五、發明說明(10) 電壓過高,而使最後之裝置無法足夠快速地激發。另一方 面’假使Ρ-摻質程度格外地高,則將造成激發電壓過 低,而使裝置不適當地激發,甚至一直在激發狀態。 必須注意的是,第十圖中ρ摻質井之功能電阻,以簡 單之電阻器符號表示,並標為Rsub。同樣地,第十圖中通 道之二極體功能’以一串聯之二極體符號表示。必須了解 的是’第十圖之低電壓激發崎道金屬氧化層半導體,即 使無強化汲極-閘極場,即無導體i 0 4 5亦可運作。 第十圖顯示一 LTNM0S,利用一接地閘作為Vdd/Vss保 護裝置。ESD脈衝期間’ LTNM0S作為一雙載子NPN T1裝 置’因此可獲得比一低反向擊穿二極體(reverse breakdown diode)更佳之ESD性能。LTNM0S之激發電壓由ρ -濃度、N+濃度,與汲極丨〇 2 〇和閘極〗〇 γ 〇間之電場來決 定。具有強化汲極-閘極場之LTNM〇s可進一步減低崩潰 (breakdown)擊穿電壓,使其少於二極體M之電壓。如個 別之第四圖與第二圖所示’具有強化汲極-閘極場之 LTNM0S並可獲得比非LDD與LDD裝置更低之以“與Vsp。舉 例來說,非LDD隨03與LTNM〇k激發電壓分別為u.7伏特 與9. 4伏特。LTNM0S約6, 0伏特之Vsp,比非LDD約7. 0伏特 之Vs ρ還低所以,LTNM0S可首先開啟以防止内電路遭受 損壞’並且因此而獲得較佳之Es她能。如同前述,内電 路損壞經常被發現於非LDD裝置當作晶片ESD保護時。 雖然第十圖所示之較佳實例係以ρ摻質井、N+摻質源 極與ρ-摻質通道區為基礎,但在閱讀完本發明之内容 後,可發現經由η-摻質通道區之使用,應用本發明於一 i ’ 4 3 7 0 4 7 _案號87111857__狄年"月/(/曰 修正__ 五、發明說明(11) 具有P+摻質源極與P+摻質汲極之N摻質井,亦在本發明 之一般技術範圍内,類似之修正亦同。 在NPN開啟後’具有寄生NPN雙載子之保護裝置將操作 於突然迴轉區’並且突然迴轉電壓Vsp將低於先前所討論 之TFD與GGNM0S之突然迴轉電壓,結果,本發明可獲得高 ESD性能。本發明之另一較佳實例,可使用與非揮發性記 憶體(N V Μ)製程相谷之強化p_通道植入(胞植入),而 非圖10中之LDD ρ~植入,以減少激發電壓。 再來參照第十三圖,LTNM0S裝置之另一實例包括一強 化 ρ-通道(enhanced p— channel implant)植入 1 085,可 與非揮發性記憶體(NVM)製程之記憶p-胞植入(p— ce 1 1 i ιηρ 1 an t )相容’取代p-準LDD植入,以減低激發電壓 (V t r i)。假使p-摻質為硼,且強化p_通道植入1 〇 8 5形 成於閘極氧化層生長之前’且不需額外之熱循環(thermal cycle) ’則強化p-通道植入ι〇85,較佳之硼p_通道植入 劑量,大約為1 ( 1 0 ) 1 3至2 ( 1 0 ) 1 3離子/平方公分。以此方 式’強化p-通道植入1085,可成為低電壓激發N通道金屬 氧化層半導體(LT NM0S)保護裝置之一部分。 製造保達裝置之方法 接下來’將探討一種同時製造低電壓激發ESD裝 置與正常輕微摻質汲極(LDD) NMOS裝置之方法。依據本 發明之一實例,第五圖至第九圖表示鄰近一 LDD NM〇s之低 電壓激發NMOS ( LTNMOS)之一連串製造步驟。必須從以下 製造步驟之描述加以了解的是,LTNM0S製置與所提供之保 護’不僅大致上與CMOS製程相容’並且特別與Lj)j) NM0S自Page 12 ί 437047 _ Case No. 87111857_____ year of trespass " month day correction __: >: V. Description of the invention (10) The voltage is too high, so that the last device cannot be excited quickly enough. On the other hand, if the degree of P-doping is excessively high, the excitation voltage will be too low, and the device will not be excited properly, or even in an excited state. It must be noted that the functional resistance of the p-doped well in the tenth figure is represented by a simple resistor symbol and labeled Rsub. Similarly, the diode function of the channel in the tenth figure is represented by a series diode symbol. It must be understood that the low voltage of the tenth figure excites the rugged metal oxide semiconductor, even without the enhanced drain-gate field, that is, without the conductor i 0 4 5. The tenth figure shows an LTNM0S, which uses a grounding gate as a Vdd / Vss protection device. During the ESD pulse period, 'LTNM0S is used as a double-carrier NPN T1 device' and therefore better ESD performance than a low reverse breakdown diode can be obtained. The excitation voltage of LTNM0S is determined by the ρ-concentration, N + concentration, and the electric field between the drain electrode 〇 02 〇 and the gate electrode 〇 γ 〇. LTNM0s with enhanced drain-gate field can further reduce the breakdown breakdown voltage to less than the voltage of diode M. As shown in the fourth and second figures separately, 'LTNM0S with enhanced drain-gate field can be lower than non-LDD and LDD devices "and Vsp. For example, non-LDD varies with 03 and LTNM 〇k excitation voltages are u.7 volts and 9.4 volts respectively. The Vsp of LTNM0S is about 6, 0 volts, which is lower than the non-LDD of about 7.0 volts Vs ρ. Therefore, LTNM0S can be turned on first to prevent damage to the internal circuit 'And therefore get better Es. She can. As mentioned above, internal circuit damage is often found when non-LDD devices are used as wafer ESD protection. Although the preferred example shown in the tenth figure is ρ doped well, N + doped The mass source electrode is based on the p-doped channel region, but after reading the content of the present invention, it can be found that the application of the present invention to an i '4 3 7 0 4 7 case No. 87111857__ Di Nian " Month / (// Revision__ V. Explanation of the invention (11) N doped wells with P + doped source and P + doped drain are also within the general technical scope of the present invention Similar corrections are the same. After the NPN is turned on, 'the protection device with parasitic NPN double carriers will operate in the sudden turning zone' and However, the turning voltage Vsp will be lower than the sudden turning voltages of TFD and GGNM0S discussed previously. As a result, the present invention can achieve high ESD performance. Another preferred embodiment of the present invention can be used with non-volatile memory (NV M) The enhanced p_ channel implantation (cell implantation) of the process phase valley is used instead of the LDD ρ ~ implantation in Fig. 10 to reduce the excitation voltage. Referring to Fig. 13 again, another example of the LTMMOS device includes an enhancement ρ-channel (enhanced p-channel implant) implant 1 085, compatible with the memory p-cell implant (p-ce 1 1 i ιηρ 1 an t) of the non-volatile memory (NVM) process, replacing p -Quasi-LDD implantation to reduce the excitation voltage (V tri). Assuming that the p- dopant is boron, and enhanced p_channel implantation is formed before the gate oxide layer grows, no additional thermal cycling is required. (Thermal cycle) 'then strengthen p-channel implantation ι〇85, the preferred boron p-channel implantation dose is about 1 (1 0) 1 3 to 2 (1 0) 1 3 ions / cm 2. Method 'Enhanced p-channel implantation 1085 can become a low-voltage excited N-channel metal oxide semiconductor (LT NM0S) protection device Part of the method of manufacturing a Boda device Next, a method of simultaneously manufacturing a low-voltage excited ESD device and a normal slightly doped drain (LDD) NMOS device will be discussed. According to an example of the present invention, the fifth to ninth figures Represents a series of manufacturing steps of a low voltage excited NMOS (LTNMOS) adjacent to an LDD NM0s. It must be understood from the description of the following manufacturing steps that the LTNM0S system and the protection provided are not only substantially compatible with the CMOS process, but also specifically with Lj) j) NM0S since

第14頁 ' 4 3 7 U 4 7 ———一_-案號87111857 冰年"月作日 铬|1: 、 五、發明說明(12) 動對準矽化物製程相容。 第五圖顯示於複晶石夕閘極(ρ 〇 1 y g a t e )银刻後,製造 一鄰近LTNMOS保護裝置之LDD NMOS之第一步驟完成圖。 LDD NM0S將完成於左方,而LTNM0S將完成於右方。LDD NM0S之閘極505與LTNM0S之閘極510位於一 p#質底材51 5之 頂端’而一連串之絕緣氧化層520亦位於底材51 5的頂端。 複晶石夕閘極長度之最小設計規範可使用於L T N Μ 0 S。 第六圖顯示第二步驟,其中未罩幕之表面部位,暴露 於一 LDD Ν-植入程序。第六圖中,LDD η-離子以平行向 下之箭號表示。一 η-植入光阻罩幕525,位於LTNM0S之閘 極5 1 0與某些絕緣氧化層(5 2 0)部位之頂端。假使η_摻 質為磷,則LDD NJ10S裝置需要一 LDD^ η-植入劑量,大約 為I (10 ) 1 3至3 ( 1 0 ) 1 3離子/平方公分;以此方式,兩個η-區5 3 0成為LDD NM0S裝置之一部份。然而如第六圖所示, 因為由η-植入光阻罩幕525所遮蔽,所以右方之LTNM0S保 護裂置_並不會有η-植入’此提供一陡靖接面(a b r u p t junction)。因此,第六圖圖解NMOS—輕微掺質没極n-植 入,但LTNM0S保護裝置則無η-植入。 第七圖顯示第三步驟,其中未罩幕之表面部位,暴露 於一 LDD ρ-植入程序。第七圖中,LDD ρ-離子以平行向 下之箭號表示。一 Ρ-植入光阻罩幕535,位於LDD NM0S之 閘極5 05與某些絕緣氧化層520之頂端,兩個ρ-區540成為 LTNM0S保護裝置之一部份。因此’第七圖表示LTNM0S保護 裝置之準LDD ρ-植入,但LDD NM0S則無ρ-植入。假使ρ -掺質為硼,在CMOS製程中’如形成LDD PM0S之ρ~區Page 14 '4 3 7 U 4 7 ———__ Case No. 87111857 Ice Year " Month of the Day Chromium | 1 、 、 5. Description of the Invention (12) The process of dynamic alignment silicide is compatible. The fifth figure shows the completion of the first step of manufacturing an LDD NMOS adjacent to the LTNMOS protection device after silver engraving of the polycrystalline stone gate (ρ 〇 1 y g a t e). LDD NM0S will be completed on the left and LTNM0S will be completed on the right. The gate 505 of the LDD NM0S and the gate 510 of the LTNM0S are located at the top of a p # substrate 515, and a series of insulating oxide layers 520 are also located at the top of the substrate 515. The minimum design specification of polycrystalline slab gate length can be used for L T N M 0 S. Figure 6 shows the second step in which the unmasked surface area is exposed to an LDD N-implantation procedure. In the sixth figure, the LDD η-ions are indicated by arrows pointing downward. A η-implanted photoresist mask 525 is located at the top of the gates 5 1 0 and some insulating oxide layers (5 2 0) of the LTNM0S. If the η_ dopant is phosphorus, the LDD NJ10S device requires an LDD ^ η-implantation dose, approximately I (10) 1 3 to 3 (1 0) 13 ions / cm 2; in this way, two η -Zone 5 30 becomes part of the LDD NM0S device. However, as shown in the sixth figure, because it is covered by the η-implanted photoresist mask 525, the LTNM0S on the right protects the split_. There will be no η-implantation. This provides an abrupt junction. ). Therefore, the sixth figure illustrates NMOS—slightly doped n-implantation, but the LTNMOS protection device has no n-implantation. Figure 7 shows the third step in which the unmasked surface area is exposed to an LDD p-implantation procedure. In the seventh figure, the LDD ρ-ions are indicated by arrows pointing downward. A P-implanted photoresist mask 535 is located on top of the gate 505 of some LDD NM0S and some insulating oxide layer 520. Two p-regions 540 become part of the LTNM0S protection device. Therefore, the seventh figure shows the quasi-LDD ρ-implantation of the LTMMOS protection device, but the LDD NM0S has no ρ-implantation. If the ρ-dopant is boron, in the CMOS process, such as forming the ρ ~ region of LDD PM0S.

第15頁 ί ' 437U 4 7 __m 87111857 恤 V 月 κ/_Η 修不 五、發明說明(13) " 域,LTNMOS裝置需要之硼ρ~植入劑量,大 LTNMOS保護裝置之製程,將與形成ldd PMOS裝置之製程完 全相容。同時’可選擇是否形成LDD PM〇s裝^,ldd p_70 植入亦形成於LTNM0S保護裝置中,終極目的為從保護裝置 中獲得一較低之激發電壓(Vtri) 。LTNM0S與LDD NM0S間 主要之差別為正常之LDD NMO S並不進行任何l J) ]) p-植 入。 第八圖顯示第四步驟之完成圖,其中,隔片區545已 經形成於鄰接閘極5 0 5與5 1 0之兩邊。隔片區之定義,在 LDD製程中已有相當的了解。因此,第八圖圖解於隔片蝕 刻後之 LDD NM0S與 LTNM0S。 第九圖顯示第五步驟’其中’表面暴露於植入程 序’此常見於LDD NM0S與LTNM0S之次元件 (subcomponents)’兩邊之::及極與源極。第九圖中,離 子以平行向下之箭號表示。兩個N+區550成為LDD NM0S保 護裝置之一部份。同樣地,兩個N+區5 5 5成為LTNM0S保護 裝置之一部份。因此,第九圖圖解LDD NM0S與LTNM0S裝 置中 兩者之N+源極/》及極(S/D)植入。一般而言,較 佳之N+植入為砷(Asenic),劑量大約為1(1〇)15至 4(1〇)15離子/平方公分。LTNM0S保護裝置之LDD P-區, 可藉由複晶矽閘極與隔片自動對準。保護裝置具有低崩潰 電壓之新型二極體D1,係由陡峭之N+接面與自動對準P-區所形成。 仍舊參照第九圖,最後結果之LTNM0S,提供一低電壓Page 15 '437U 4 7 __m 87111857 Shirt V month κ / _Η Revision 5, invention description (13) " domain, boron ρ required by LTNMOS device ~ implantation dose, the process of large LTNMOS protection device will be formed The process of ldd PMOS device is fully compatible. At the same time, it is possible to choose whether to form an LDD PM0s device. The ldd p_70 implant is also formed in the LTNM0S protection device. The ultimate purpose is to obtain a lower excitation voltage (Vtri) from the protection device. The main difference between LTNM0S and LDD NM0S is that normal LDD NMO S does not perform any lJ)]) p-implantation. The eighth figure shows the completion of the fourth step, in which the spacer region 545 has been formed on both sides of the adjacent gate electrodes 5 05 and 5 10. The definition of the spacer area is well understood in the LDD process. Therefore, the eighth figure illustrates the LDD NMOS and LTNMOS after spacer etching. The ninth figure shows the fifth step 'where the surface is exposed to the implantation procedure', which is commonly found on both sides of the LDD NM0S and LTNM0S subcomponents :: and the source and the source. In the ninth figure, the ions are represented by arrows pointing down. The two N + zones 550 become part of the LDD NM0S protection device. Similarly, the two N + regions 5 5 5 become part of the LTMMOS protection device. Therefore, the ninth figure illustrates the implantation of the N + source / and pole (S / D) of both of the LDD NM0S and LTNM0S devices. In general, the better N + implant is Asicic, with a dose of approximately 1 (10) 15 to 4 (10) 15 ions / cm 2. The LDD P-zone of the LTNM0S protection device can be automatically aligned by the compound silicon gate and the spacer. The protection device has a new diode D1 with a low breakdown voltage, which is formed by a steep N + junction and automatic alignment of the P- region. Still referring to the ninth figure, the final result of LTNM0S provides a low voltage

第16頁 I 437047 __案號87Π1857_W f/月K 日 修正 __二' 五、發明說明(14) 激發保護,改進ESD之性能。此ESW呆護裝置具優點地作為 Vdd/Vss電源匯流排保護裝置,以避免内電路遭受破壞。 本發明之激發電壓Vtri足夠低,並可首先開啟(i;uril 以溢散ESD電流,以及防止内電路遭受崩潰。ESD保護電路 可與既存之CMOS製程相容,並由非LDD NM0S裝置及輕微播 質P-區所形成(在CMOS製程中,PM0S裝置用LDD P-植人 )。一具有低崩潰電壓之二極體560,可藉由陡崎之接 面與LDD P-區獲得。在此保護裝置中,介於汲極與閘極 間之電場,將進一步減低激發電壓。所以,本發明之保護 裝置’具有較低激發電壓,並且無LDD裝置之電流不均句 問題。 本發明可應用於輸入、輸出與輸入/輸出保護,以獲 得高ESD保護性能,並可改進ESD性能,以避免先進製程中 引發之ESD退化。本發明特別適用於Vdd/Vss電源匯流排 ESD保護。由於低臨限值,低電壓激發保護可首先開啟以 溢散ESD電流,以及防止内電路遭受崩潰。 第十五圖至第十六圖預測非LDD NM0S裝置及LTNM0S保 護裝置之某些NPN電流對電壓特性。全部四種電流對電壓 曲線’皆由惠普(Hewlett-Packard) HP4156半導體參數 分析儀所量測’並且為直流電特性。主要之焦點在於激發 電壓與突然迴轉電壓區,介於Vtri與Vsp間之區域為一非 穩定狀態。 第十五圖及第十六圖彳固別地顯示一非LDD NM0S裝置之 NPN激發電壓與突然迴轉電壓。第十五圖顯示非LDD NM〇s 裝置之寄生NPN雙載子電流對電壓特性,並以激發區為焦Page 16 I 437047 __Case No. 87Π1857_W f / Month K Days Amendment __ 二 'V. Description of the invention (14) Excitation protection to improve the performance of ESD. This ESW intensive protection device is advantageous as a Vdd / Vss power bus protection device to avoid damage to the internal circuit. The excitation voltage Vtri of the present invention is sufficiently low and can be turned on first (i; uril to overflow the ESD current and prevent the internal circuit from crashing. The ESD protection circuit is compatible with the existing CMOS process, and is made of non-LDD NMOS devices and slightly The mass P-region is formed (in the CMOS process, the PMOS device uses LDD P-planting). A diode 560 with a low breakdown voltage can be obtained by the junction of Ozaki and the LDD P-region. In this protection device, the electric field between the drain and the gate will further reduce the excitation voltage. Therefore, the protection device of the present invention has a lower excitation voltage and does not have the problem of uneven current in the LDD device. The invention can It is applied to input, output and input / output protection to obtain high ESD protection performance and improve ESD performance to avoid ESD degradation caused by advanced processes. The invention is particularly suitable for VDD / Vss power bus ESD protection. Threshold, low voltage excitation protection can be turned on first to spill ESD current and prevent internal circuit from breakdown. Figures 15 to 16 predict some NPN power of non-LDD NM0S devices and LTNM0S protection devices. Voltage characteristics. All four current-voltage curves are 'measured by Hewlett-Packard's HP4156 semiconductor parameter analyzer' and are DC characteristics. The main focus is on the excitation voltage and sudden turning voltage region, which is between Vtri and The area between Vsp is an unstable state. Figures 15 and 16 show the NPN excitation voltage and sudden turning voltage of a non-LDD NM0S device. Figure 15 shows the non-LDD NM0s device. Parasitic NPN double-carrier current vs. voltage characteristics with focus on the excitation region

f ' 437U 4 7 ___87111857_"月 /f/ 曰_修正_ 五、發明說明(15) 點’ Vtri約為12. 1伏特。第十六圖亦顯示非LDD NMOS裝置 之寄生NPN雙載子電流對電壓特性,並以突然迴轉區為焦 點’ V s p約為7,2伏特。第十五圖至第十六圖皆量測相同之 沖LDD NMOS裝置。_f '437U 4 7 ___ 87111857_ " Month / f / _Revision_ 5. Explanation of the invention (15) Point ′ Vtri is about 12. 1 volt. The sixteenth figure also shows the parasitic NPN bipolar current vs. voltage characteristics of non-LDD NMOS devices, with the sudden turning region as the focal point 'V s p is about 7.2 volts. Figures 15 through 16 measure the same impact LDD NMOS device. _

第十七圊及第十八圖顯示一 LTNMOS裝置之NPN激發電 壓與突然迴轉電壓,個別地代表本發明之一實例。第十七 圖顯示LTNMOS保護裝置之寄生NPN雙載子電流對電壓特 性,並以激發區為焦點,Vtri約為8. 6伏特。第十八圖則 以突然迴轉區為焦點,Vsp約為6.0伏特。第十七圖及第十 八圖皆量測相同之LTNMOS裝置。 這些結果類似於前述第十圖裝置所獲得之數據《第十 七圖之LTNMOS’ Vtri為8. 6伏特’低於前述第十圖裝置所 獲得之9. 4伏特,係因為不同之P-植入劑量,以及因為數 據係由不同之晶圓狀態量測而來。必須了解的是,第十 七、十八圖與第十五、十六圖之比較,顯示本發明深具意 義之改進性能。 範例 本發明之特定實例將進一步由以下非限制之範例加以 描述,可提供某些更具意義且詳細之各種不同特性13這些 範例僅是為了使本發明在實用上更易於了解,並進一步使 熟悉此技術之人能夠應用本發明。據此’這些範例不應視 為本發明範圍之一種限制。 範例1 參照第十一圖,圖解一 LTNMOS耦合閘極電路之第一個 範例。在此例中,假使Vdd超過LTNMOS之Vtr i,Vdd將被分Figures 17 and 18 show the NPN excitation voltage and sudden turning voltage of an LTNMOS device, which individually represent an example of the present invention. The seventeenth figure shows the parasitic NPN double-carrier current-to-voltage characteristics of the LTNMOS protection device, with the excitation region as the focus, and Vtri is about 8.6 volts. The eighteenth figure focuses on the sudden turning area, and Vsp is about 6.0 volts. Figures 17 and 18 measure the same LTNMOS device. These results are similar to the data obtained by the device of the tenth picture "LTNMOS 'Vtri of the seventeenth picture is 8.6 volts' is lower than the 9.4 volts obtained by the device of the tenth picture Injected dose, and because the data is measured from different wafer states. It must be understood that the comparison of the seventeenth and eighteenth figures with the fifteenth and sixteenth figures shows the significant improvement performance of the present invention. Examples Specific examples of the present invention will be further described by the following non-limiting examples, which can provide some more meaningful and detailed various characteristics.13 These examples are merely to make the present invention easier to understand in practice and to further familiarize it with Those skilled in the art can apply the invention. Accordingly, these examples should not be considered as a limitation of the scope of the present invention. Example 1 Referring to the eleventh figure, the first example of an LTNMOS coupled gate circuit is illustrated. In this example, if Vdd exceeds Vtr i of LTNMOS, Vdd will be divided

第18頁 '437047 _案號 87111857_gf年"月 /V 日_^___ 五、發明說明(16) 流至接地端。在第十一圖之電路藉由結合閘極耦合電阻器 Rg與LTNM0S保護裝置,將進一步減低激發電壓(Vtri)之 臨限值,而LTNM0S保護裝置之閉極經由耦合電阻器Rg連接 至接地端。在此例中,耦合電阻器Rg為一被動元件,並且 具有大约1至1 Ok歐姆之阻抗,同時,能夠提高LTNM0S保護 裝置之閘極電壓,於ESD脈衝期間減低Vtr卜耦合電阻器 R g可為η -井、η -擴散路徑或任何其他類型之電阻器。 範例2Page 18 '437047 _ case number 87111857_gf year " month / V day _ ^ ___ 5. Description of the invention (16) to the ground. The circuit in Figure 11 will further reduce the threshold value of the excitation voltage (Vtri) by combining the gate coupling resistor Rg and the LTNM0S protection device, and the closed pole of the LTNM0S protection device is connected to the ground terminal via the coupling resistor Rg . In this example, the coupling resistor Rg is a passive element and has an impedance of about 1 to 1 Ok ohms. At the same time, it can increase the gate voltage of the LTNM0S protection device and reduce the Vtr coupling resistor R g during the ESD pulse. Is an n-well, an n-diffusion path or any other type of resistor. Example 2

參照第十二圖,圖解一 LTNM0S麵合閘極電路之第二個 範例。在此例中,假使Vdd^過LTNM0S之Vtri,Vdd亦將被 分流至接地端。第十二圖之電路藉由結合M0S裝置Mg與 LTNM0S保護裝置,而LTNMOS保護裝置之閘極,經由M0S裝 置Mg連接至接地端,第十二圖之電路將進一步減低激發電 壓(Vtri)之臨限值。在此例令,耦合電阻器jjg為一主動 元件。 雖然第十一圖與第十二圖中,LTNM0S之閘極並不直接 連接至Vss,但於正常晶片操作期間(意即無ESD事件, LTNM0S於關閉狀態’且無額外之漏電流),閘極電壓準位 仍然等於V s s (意即接地)。在許多積體電路〔中, PW( P-底材)1〇3〇連接至Vss。但是於某些積體電路中, 如DRAM,PW連接至Vbb (從内建在ic^底材偏壓產生器 (substrate bias generator)) 。Vbb電壓大約為—1.5伏 特至-3. 0伏特。Vbb為負偏壓。所以,PW103〇可能不等於 V s s (意即接地)。Referring to the twelfth figure, a second example of a LTNM0S surface closing circuit is illustrated. In this example, if Vdd ^ passes Vtri of LTNM0S, Vdd will also be shunted to the ground terminal. The circuit of Fig. 12 combines the M0S device Mg with the LTNM0S protection device, and the gate of the LTNMOS protection device is connected to the ground through the M0S device Mg. The circuit of Fig. 12 will further reduce the voltage of excitation (Vtri). Limit. In this example, the coupling resistor jjg is an active element. Although in Figures 11 and 12, the gate of LTNM0S is not directly connected to Vss, but during normal chip operation (meaning no ESD event, LTNM0S is in the off state 'and no additional leakage current), the gate The pole voltage level is still equal to V ss (meaning ground). In many integrated circuits [PW (P-substrate) 1030 is connected to Vss. However, in some integrated circuits, such as DRAM, the PW is connected to Vbb (from a built-in substrate bias generator). The Vbb voltage is approximately -1.5 volts to -3.0 volts. Vbb is negatively biased. Therefore, PW103〇 may not be equal to V s s (meaning ground).

第19頁 43 7U 4 7 __案號87111857 #年"月屮日 修正 五、發明細(Π) ' 等於Vss。但第十一圖或第十二圖中’於ESD脈衝期間, LTNMOS之閘極電壓卻耦合至一電壓準位,此電壓取決於問 極/沒極電容Cgd、閘極/源極電容Cgs、閘極/整體(pw/ 電容Cgb與閘極耦合電阻器Rg等值。舉例來說,當一正電 壓ESD脈衝施加於一LTNMOS之汲極時,源極與底材(pw) 為接地;LTNMOS之閘極電壓準位可藉由Esj)電壓之^麵 合’引動至一正電壓。此RC耗合由以上之Rg、、Cgd、Cgs與 Cgb所定義。一正間極電壓可減低寄生NPN雙載子 屋。第十一、十二圖之LTNM0S即為了達到此=,激發€ 範例3 參照第十四圖’圖解一 LTNMOS搞合閘極電路之第三個 範例。在此例中’ LTNMOS保護裝置與一輸出緩衝並聯,並 提供一額外之電流放電路徑,以避免輸出裝置漏電 (leakage)。在ESD事件期間,LTNMOS非常有效地保護輸出 緩衝之LDD NMOS。相對地,非LDD關0S (第四圖)則無法 提供足夠之保護給輸出緩衝。此外,使用於習知技術以保 護輸出缓衝NMOS之串聯電阻器與厚場裝置(thick f ieid de v i ce )(第一圖)’已被發現將引起輸出緩衝n M〇s之漏 電。本發明之LTNMOS不需額外之串聯電阻器,或減低輸出 NM0S特性,即可獲得較佳之ESD性能。 包括前述三個範例之發表實例,顯示—導體(第十圖 與第十三、十四圖)、一電阻器(第十一圖),與一主動 M0S電阻器(第十二圖)’可充當執行輕合閘極至二極體 功能之結構。然而,叙合閘極至二極體之結構,可為其他 足以行使此功能之結構’例如,擴散線、電線、電容器,Page 19 43 7U 4 7 __ 案 号 87111857 # 年 " Monthly Day Amendment V. Invention Details (Π) 'equals Vss. However, in the eleventh or twelfth figure, during the ESD pulse, the gate voltage of the LTNMOS is coupled to a voltage level, and this voltage depends on the interrogator / dead capacitance Cgd, the gate / source capacitance Cgs, Gate / whole (pw / capacitance Cgb and gate coupling resistor Rg are equivalent. For example, when a positive voltage ESD pulse is applied to the drain of an LTNMOS, the source and substrate (pw) are grounded; LTNMOS The gate voltage level can be induced to a positive voltage by the combination of the Esj) voltage. This RC depletion is defined by Rg, Cgd, Cgs, and Cgb above. A positive pole voltage reduces the parasitic NPN bipolar house. In order to achieve this, the LTNM0S in the eleventh and twelfth pictures is excited. Example 3 Refer to the fourteenth picture ′ to illustrate a third example of the LTNMOS switching gate circuit. In this example, the LTNMOS protection device is connected in parallel with an output buffer and provides an additional current discharge path to avoid leakage of the output device. During an ESD event, LTNMOS is very effective in protecting the output buffered LDD NMOS. In contrast, non-LDD off 0S (Figure 4) cannot provide sufficient protection for the output buffer. In addition, series resistors and thick-field devices (thick figure) used in conventional techniques to protect the output buffered NMOS (first picture) have been found to cause leakage of the output buffered nMOS. The LTNMOS of the present invention can obtain better ESD performance without the need for additional series resistors or reducing the output NMOS characteristics. Including published examples of the above three examples, the display—conductor (Figure 10 and Figures 13 and 14), a resistor (Figure 11), and an active MOS resistor (Figure 12) ' Acts as a structure that performs light-gate to diode functions. However, the structure of the closing gate to the diode may be other structures sufficient to perform this function ’, such as a diffusion line, a wire, a capacitor,

ί ' 4370 4 7 _案號 87111857 五、發明說明(18) W年丨(月U/曰 修正 甚至電感等。 本發明之實際應用 本發明在技術領域内,具有相當償值之實際應用’為 結合Vdd/ Vss電源匯流排’以保護内電路免於遭受ESim 衝之損壞。本發明進一步使用於輸入、輸出或輸八/輸出 端,以防止閘極氧化層之損壞’與對輸出裝置之損壞等。 實際上,本發明有無數之用途,但卻不需在此贅述。 本發明之優點ί '4370 4 7 _ Case No. 87111857 V. Description of the invention (18) W years 丨 (Month U / Year correction or even inductance, etc. Practical application of the present invention In the technical field, the practical application of the present invention has considerable value. Combined with the Vdd / Vss power bus to protect the internal circuit from ESim damage. The invention is further used at the input, output or input / output terminals to prevent damage to the gate oxide layer and damage to the output device Etc. In fact, the present invention has countless uses, but it need not be repeated here. Advantages of the present invention

代表本發明一實例之低電壓激發ESD保護方法,可有 效地減少成本,並且至少具有以下優點β低電壓激發ESD 保護裝置包括一陡峭接面,並且具有一低激發電壓(Vtri )與低突然迴轉電壓(Vsp),同時,具有高於LDD NM0S 裝置之ESD性能。低電壓激發ESD保護裝置於一 ESD脈衝期 間’並不會造成任何電流不均勻問題(意即熱點)。製造 低電壓激發ESD保護裝置之方法’相容於CMOS製程,並且 本發明所提供之高ESD保護性能,亦可依據先進CMOS製程 所製造之實例來達成。舉例來說,製造本發明之方法, 動對準矽化物(sa丨i c i de)製程所製造之輕微摻技 LDD) NM0S製程步驟完全相容。 貝及極 來了解 之最佳 本發明全部發表之實例,完全不需額外之, 與應用。雖然在發明者之深思熟慮下,實 模式已描述於前,但是對本發明之實際應 3 制。因此,對熟悉此技術之人而言,必須鰛 明可應用於非以上所特別提到之處。 料列H個別元件並不需形成所發表之子 〜種限 本發The low-voltage excited ESD protection method, which represents an example of the present invention, can effectively reduce the cost, and has at least the following advantages. Β Low-voltage excited ESD protection device includes a steep junction, and has a low excitation voltage (Vtri) and low sudden rotation. Voltage (Vsp), meanwhile, it has higher ESD performance than LDD NM0S device. Low voltage excitation of the ESD protection device during an ESD pulse 'will not cause any current non-uniformity problems (meaning hot spots). The method of manufacturing a low-voltage excited ESD protection device is compatible with the CMOS process, and the high ESD protection performance provided by the present invention can also be achieved based on examples manufactured by the advanced CMOS process. For example, the method of manufacturing the present invention is fully compatible with the slightly doped LDD) NM0S process steps produced by the saIC process. The best known examples are all published examples of the present invention, without the need for additional, and application. Although the actual mode has been described in the inventor's thought, the actual application of the invention should be controlled. Therefore, for those familiar with this technology, it must be clear that it can be applied to areas other than those specifically mentioned above. Individual components of material H do not need to form the published child

第21頁 Γ,4370 4 7 _案號 狄年I f月/ C/日_修正 五、發明說明(】9) (s h a p e s )或纽合成邮 上,可提供為任—形U之結構(C〇niigUrati〇n)’實際 '不需由所發表之材料成任一結構。而且’個別元件 料製成。此外,雖妙際上,可由任-合適之材 之模組,但顯块地電裝置在實體上被描述成分開 中。更進-步地,除5放電裝置可加入其相關聯之裝置 每一個發表之元件與每^ f兀件與特性互相牴觸之外, …例之元“::::發特性,,可與其他 之特i U ΐ以;:發:正j重新配置本發明各種不同 圍由以下之申請專利範圍所::之2神,範園。本發明範 之增加、修正與重新配置。r ,"同等物亦將涵蓋全部 釋成機構加功能之限制,、下之申凊專利範圍並不可解 中,明顯地使用、用以…‘此—,制,申請專利範圍 用實例則由附屬項加以區別。之炀用語’而本發明之有Page 21 Γ, 4370 4 7 _Case No. Di N / F / C / Day_Amended V. Description of the invention (] 9) (shapes) or New York Post, can be provided as the structure of any-shaped U (C 〇niigUrati〇n) 'Actual' does not require any structure from published materials. And 'individual components are made. In addition, although magically, it can be made of any suitable material, but the electrical device is obviously described in detail. Going one step further, except that 5 discharge devices can be added to their associated devices, each published element and each element and feature conflict with each other,… the element "::: Different from other special features, U :: Send: positive j reconfiguration of the present invention is covered by the following patent applications :: 2 Gods, Fan Yuan. Additions, amendments and reconfiguration of the invention. R, & quot The equivalent will also cover the limitation of all interpretation institutions plus functions. The scope of the patent application below is not solvable. Obviously, it is used to ... 'this—, system. The scope of application for patent scope is distinguished by subsidiary items.的 之 词 'and the present invention has

第22頁Page 22

4 3 7 0 4 7 修正 ___案號 87111857 發明優點與特性、元件與系統模式操作之清晰 參照常用且非為限制,以及圖解於伴隨附圖並 部份之實例,本發明將益發容易了解,其中, 獻,文字代表相同之工件(倘若以多種樣式出 必須了解的是,圖解於附圖之特性無須考慮其 圖解一傳統應用於Vdd/ Vss靜電放電保護之 示意圖,適當地代表習知技術。 圖解一傳統應用於Vdd/ Vss靜電放電保護之 極N通道金屬氧化層半導體裝置之示意圖,適 知技術。 顯示第二圖之裝置,電流對電壓關係突然迴轉 圖解一傳統應用於Vdd/ Vss靜電放電保護之 汲極N通道金屬氧化層半導體裝置(無η-植入 ,適當地代表習知技術。 圖解於製造一鄰接低電壓激發Ν通道金屬氧化 輕微摻質汲極Ν通道金屬氧化層半導體裝置 第一階之示意圖,代表本發明之一實例。 圖式簡單說明 構成本 概念,藉由 形成規格一 如同 現亦 比例 厚場 參考文 同)。 大小。 第一圖 裝置之 第二圖 輕微摻質没 當地代表習 第三圖 之特性。 第四圖 非輕微摻質 之示意圖 第五圖 層半導體之 時, 第六圖圖解於製造一鄰接低電壓激發Ν通道金屬氧化 層半導體之輕微摻質汲極Ν通道金屬氧化層半導體裝置 時,一第二階之示意圖,代表本發明之一實例。 第七圖圖解於製造一鈿接低電壓激發Ν通道金屬氧化 層半導體之輕微摻質汲極Ν通道金屬氧化層半導體裝置 時 第三階之示意圖,代表本發明之一實例4 3 7 0 4 7 Amendment ___ Case No. 87111857 The advantages and characteristics of the invention, the clear reference to the operation of the components and system modes, common and non-limiting, and the examples illustrated in the accompanying drawings and parts, the present invention will be easier to understand Among them, dedication and text represent the same workpiece (if it is presented in multiple styles, it must be understood that the characteristics illustrated in the drawings do not need to consider its illustration-a schematic diagram traditionally applied to Vdd / Vss electrostatic discharge protection, which appropriately represents the known technology . Schematic diagram of a conventional N-channel metal oxide semiconductor device applied to Vdd / Vss electrostatic discharge protection, suitable technology. Shown in the device of the second diagram, the current versus voltage relationship suddenly reverses. Diagram of a conventional application to Vdd / Vss static electricity. Discharge-Protected Drain N-Channel Metal Oxide Semiconductor Device (No η-Implantation, Appropriately Represents Conventional Technology. The diagram illustrates the fabrication of an adjacent low-voltage excited N-channel metal oxide with a slightly doped drain N-channel metal oxide semiconductor device. The schematic diagram of the first stage represents an example of the present invention. The diagram briefly explains the concept of this concept, and The grid is the same as the current thick-field reference. The size is the same. The second picture of the first picture of the device is slightly doped, which does not locally represent the characteristics of Xi third picture. At the time, the sixth diagram illustrates a second-order schematic diagram when manufacturing a lightly doped drain N-channel metal oxide semiconductor device adjacent to a low-voltage excited N-channel metal oxide semiconductor, which represents an example of the present invention. The figure illustrates a third-stage schematic diagram when manufacturing a slightly doped drain N-channel metal oxide semiconductor device connected to a low-voltage excited N-channel metal oxide semiconductor, and represents an example of the present invention.

第23頁 4370 4 7 年丨/月/ty日 修正 _ 案號871】 1857 圖式簡單說明 一第八圖圖解於製造一鄰接低電壓激發N通道金屬氧化 層半導體之輕微摻質汲極N通道金屬氧化層半導體裝置 時,一第四階之示意圖,代表本發明之一實例。 "第九圖圖解於製造—鄰接低電壓激通道金屬氧化 層半導體之輕微摻質汲極n通道金屬氧化層半導體裴置 時 第五階之示意圖,代表本發明之一實例。 ,十圖圖解一具有強化汲極_閘極場之低電壓激發n通 i产氧化層半導體之示意圖’代表本發明之一實例。 十一圖圖解與一耦合電阻器結合之低電壓激發Nit 化屬半導體保護電路之示意方塊圖,以上發通明 第十—圖圖解與一主動式金屬氧化層半導體電阻器社 二=低電壓激發N通道金屬氧化層半導體保護電路之示竟 方塊圖’代表本發明之一實例。 ^ 道金Ϊ ί ΐ Ϊ f Ϊ 一具有強化P通道植人之低電壓激發» ' 層半導體之不意圖’代表本發明之一實例。 十四圓圖解一應用於輸入/輸出(1/ 0)保護之低 =激發N通道金屬氧化層半導體之示意方塊圖,早瘦之低 發明之一實例。 π衣本 第十五圖圖解一非LDD NM0S裝置之ΝΡΝ激發電壓。 壓。第十六圖圖解一非LDD NM〇s裝置之ΝρΝ突然迴轉電 第十七圖圖解一應用於LTNM0S裝置之ΝΡΝ激發電爆’ 代表本發明之一實例。 $ 第十八圖圓解一應用於LTNM0S震置之ΝΡΝ突然迴轉電Page 23 4370 4 7 years 丨 / month / ty date amendment _ case number 871] 1857 diagram briefly illustrates an eighth diagram illustrating the manufacture of a slightly doped drain N channel adjacent to a low voltage excited N channel metal oxide semiconductor In the case of a metal oxide semiconductor device, a fourth-order schematic diagram represents an example of the present invention. " The ninth figure illustrates the fifth stage schematic diagram of manufacturing—a lightly doped drain n-channel metal oxide semiconductor adjacent to the low voltage excited channel metal oxide semiconductor, which represents an example of the present invention. Fig. 10 illustrates a schematic diagram of a low-voltage excited n-channel oxide semiconductor with an enhanced drain-gate field to represent an example of the present invention. Figure 11 illustrates a schematic block diagram of a low-voltage excitation Nit-type semiconductor protection circuit combined with a coupling resistor. The above shows the tenth figure—illustration and an active metal oxide semiconductor resistor company II = low-voltage excitation N The block diagram of the channel metal oxide semiconductor protection circuit represents an example of the present invention. ^ Dao Jinying ί ΐ Ϊ f Ϊ A low-voltage excitation with enhanced P-channel implantation »'Intent of layer semiconductors' represents an example of the present invention. The fourteen-circle diagram is a low block applied to the input / output (1/0) protection = a schematic block diagram that excites an N-channel metal oxide semiconductor, an example of an early thin low invention. π Clothing Figure 15 illustrates the NPN excitation voltage of a non-LDD NMOS device. Pressure. The sixteenth figure illustrates a non-LDD NMOS device's NρN sudden turning electricity. The seventeenth figure illustrates a NPN excitation electric explosion applied to a LTMMOS device, which represents an example of the present invention. $ The eighteenth round solution is applied to the PNNM sudden rotation of the LTNM0S earthquake.

第24頁 ί * 4 3 7 ϋ 4 7 秋年II月_修正 _tlfe 87111857 圖式簡單說明 屋,代表本發明之一實例 i^n 第25頁Page 24 ί * 4 3 7 ϋ 4 7 Autumn in January _ correction _tlfe 87111857 Simple illustration of the house, which represents an example of the present invention i ^ n Page 25

Claims (1)

:437047 _案號87111857_%年f/月/(/日 修正__ 六、申請專利範圍 1. 一種靜電放電保護電路,用於積體電路底材中之受保 護端,積體電路底材具有一第一導電態,靜電放電保護電 路包含: 一位於積體電路底材中之源極,並具有一第二導電態; 一位於積體電路底材中之汲極,並具有第二導電態; 一位於源極與汲極間之通道; 一第一輕微摻質區,位於通道中,並介於源極與汲極間, 且第一輕微摻質區具有第一導電態; 一位於源極中之第一電接觸;與 一位於汲極中之第二電接觸, 其中第一電接觸與第二電接觸,耦合至積體電路底材中之 受保護端。 2. 如申請專利範圍第1項之靜電放電保護電路,其中第一 輕微摻質區與汲極彼此鄰接,並定義一第一二極體。 3. 如申請專利範圍第1項之靜電放電保護電路,進一步包 含一閘極結構,位於通道與第一輕微摻質區兩者之上。 4. 如申請專利範圍第3項之靜電放電保護電路,其中閘極 結構電耦合至接地,以定義一寄生雙載子電晶體。 5. 如申請專利範圍第4項之靜電放電保護電路,進一步包 含一位於積體電路底材中之區域,具有第一導電態,並且 其中閘極結構電耦合至接地。 6. 如申請專利範圍第5項之靜電放電保護電路,其中閘極 結構利用一被動電阻器,電耦合至接地。 7. 如申請專利範圍第5項之靜電放電保護電路,其中閘極: 437047 _ Case No. 87111857_% year f / month / (/ day amendment__ VI. Patent application scope 1. An electrostatic discharge protection circuit for a protected end in a integrated circuit substrate, the integrated circuit substrate has A first conductive state, and the electrostatic discharge protection circuit includes: a source electrode in the integrated circuit substrate and has a second conductive state; a drain electrode in the integrated circuit substrate and has the second conductive state A channel between the source and the drain; a first lightly doped region located in the channel between the source and the drain; and the first lightly doped region has a first conductive state; A first electrical contact in the electrode; and a second electrical contact in the drain, wherein the first electrical contact and the second electrical contact are coupled to the protected end in the integrated circuit substrate. The electrostatic discharge protection circuit of item 1, wherein the first slightly doped region and the drain electrode are adjacent to each other, and define a first diode. 3. The electrostatic discharge protection circuit of item 1 in the scope of patent application, further comprising a gate Pole structure, located in the channel with the first slight doping Areas above both. 4. For the electrostatic discharge protection circuit of item 3 of the patent application, where the gate structure is electrically coupled to ground to define a parasitic bipolar transistor. 5. For item 4 of the patent application scope The electrostatic discharge protection circuit further includes a region in the integrated circuit substrate, which has a first conductive state, and wherein the gate structure is electrically coupled to the ground. 6. The electrostatic discharge protection circuit according to item 5 of the patent application scope, wherein The gate structure uses a passive resistor to be electrically coupled to the ground. 7. The electrostatic discharge protection circuit of item 5 of the patent application, where the gate is 第26頁 ! ' 437047 ^_案號87111857_^ f7月心日 修正__ 六、申請專利範圍 結構利用一主動電阻器,電耦合至接地。 8. 如申請專利範圍第1項之靜電放電保護電路,其中源極 電耦合至接地。 9. 如申請專利範圍第1項之靜電放電保護電路,其中汲極 電耦合至一輸入匯流排。 1 0.如申請專利範圍第1項之靜電放電保護電路,其中汲 極電耦合至一輸出匯流排。 1 1.如申請專利範圍第1項之靜電放電保護電路,其中汲 極電耦合至一輸入/輸出匯流排。 1 2.如申請專利範圍第1項之靜電放電保護電路,其中汲 極電搞合至一電源導軌(power rail)。 1 3.如申請專利範圍第1項之靜電放電保護電路,其中查 保護端由一電源供給輸入端所組成。 1 4 .如申請專利範圍第1項之靜電放電保護電路,其中受 保護端由一資料訊號輸入端所組成。 1 5,如申請專利範圍第2項之靜電放電保護電路,進一步 包含一第二輕微摻質區,位於通道中,並介於第一輕微摻 質區與源極間,且第二輕微摻質區具有第一導電態。 1 6.如申請專利範圍第1 5項之靜電放電保護電路,其中第 二輕微摻質區與源極彼此鄰接,並定義一第二二極體。 1 7.如申請專利範圍第1項之靜電放電保護電路,其中第 一輕微#質區定義一植入通道。. i 8.如申請專利範圍第1項之靜電放電保護電路,其中第 —導電態為p型,而第二導電態為η型。Page 26! '437047 ^ _ Case No. 87111857_ ^ f7th of the month of amendment __ VI. Scope of patent application The structure uses an active resistor, which is electrically coupled to ground. 8. The electrostatic discharge protection circuit according to item 1 of the patent application scope, wherein the source is electrically coupled to the ground. 9. The electrostatic discharge protection circuit according to item 1 of the patent application, wherein the drain is electrically coupled to an input bus. 10. The electrostatic discharge protection circuit according to item 1 of the patent application scope, wherein the drain is electrically coupled to an output bus. 1 1. The electrostatic discharge protection circuit according to item 1 of the patent application, wherein the drain is electrically coupled to an input / output bus. 1 2. The electrostatic discharge protection circuit according to item 1 of the patent application, wherein the drain is connected to a power rail. 1 3. The electrostatic discharge protection circuit according to item 1 of the patent application scope, wherein the protection terminal is composed of a power supply input terminal. 14. The electrostatic discharge protection circuit according to item 1 of the scope of patent application, wherein the protected terminal is composed of a data signal input terminal. 15. The electrostatic discharge protection circuit according to item 2 of the patent application scope, further comprising a second slightly doped region, located in the channel, between the first slightly doped region and the source, and the second slightly doped The region has a first conductive state. 16. The electrostatic discharge protection circuit according to item 15 of the scope of patent application, wherein the second slightly doped region and the source are adjacent to each other, and a second diode is defined. 1 7. The electrostatic discharge protection circuit according to item 1 of the patent application scope, wherein the first slight #mass region defines an implantation channel. i 8. The electrostatic discharge protection circuit according to item 1 of the scope of patent application, wherein the first conductive state is a p-type and the second conductive state is an n-type. 第27頁 437047 _案號 87111857 修正 六、申請專利範圍 19. 如申請專利範圍第1項之靜電放電保護電路,其中第 一電接觸與第二電接觸皆包括矽化物。 20. —種位於一底材中之積體電路,具有一第一導電態與 眾多端(a plurality of· termi 眾多電路(a plurality of cir 電晶體,並耦合至眾多端;與 nals),積體電路包含: cuits),包括底材中之M0S 靜電放電保護電路,耦合至一組由眾多端所組成之受保 護端,靜電放電保護電路包括: 一位於積體電路底材中之源極, 一位於積體電路底材中之汲極, —位於源極與汲極間之通道; —第一輕微摻質區,位於通道中 且第一輕微摻質區具有第一導電 一閘極結構,位於通道與第一輕 結構電耦合至底材,以定義一寄 一位於源極中之第一電接觸;與 •位於汲極中之第二電接觸, 其中第一電接觸與第二電接觸, 2 1.如申請專利範圍第2 0項之積 於積體電路底材中之區域’具有 極結構電裁合至接地。 22 .如申請專利範圍第2 1項之積 用一被動電阻器,電耦合至接地 23.如申請專利範圍第21項之積 並具有一第二導電態; 並具有第二導電態; ,並介於源極與汲極間, 態; 微推質區兩者之上5閉極 生雙載子電晶體; 耦合至受保護端組。 體電路,進一步包含一位 第一導電態,並且其中閘 體電路,其中閘極結構利 體電路,其中閘極結構利Page 27 437047 _ Case No. 87111857 Amendment 6. Scope of patent application 19. For the electrostatic discharge protection circuit of the first scope of patent application, the first electrical contact and the second electrical contact both include silicide. 20. —A integrated circuit in a substrate, having a first conductive state and a plurality of terminals (a plurality of circuits, coupled to a plurality of terminals; and nals). The body circuit includes: cuits), which includes the M0S electrostatic discharge protection circuit in the substrate, which is coupled to a group of protected terminals. The electrostatic discharge protection circuit includes: a source electrode in the substrate of the integrated circuit, A drain electrode located in the substrate of the integrated circuit, a channel between the source and the drain electrode, a first lightly doped region located in the channel and the first lightly doped region having a first conductive-gate structure, The channel and the first light structure are electrically coupled to the substrate to define a first electrical contact located in the source; and a second electrical contact located in the drain, wherein the first electrical contact and the second electrical contact 2 1. If the area of product 20 in the integrated circuit substrate of the scope of application for patents has a pole structure, it is electrically cut to ground. 22. If the product of item 21 of the patent application scope uses a passive resistor electrically coupled to ground 23. If the product of item 21 of the patent application scope has a second conductive state; and has a second conductive state; and Between the source and the drain, the state; the 5-closed bipolar transistor on top of the micro-mass region; coupled to the protected terminal group. The body circuit further includes a bit of the first conductive state, and wherein the gate body circuit has a gate structure, and the gate structure has a favorable structure. 第28頁 !.、437U 4 7 _案號87111857_狄年1/月…日 修正_— 六、申請專利範圍 用一主動電阻器,電耦合至接地。 2 4.如申請專利範圍第2 0項之積體電路,其中源極電耦合 至接地。 2 5 ,如申請專利範圍第2 0項之積體電路,其中汲極電耦合 至一輸入匯流排。 2 6 .如申請專利範圍第2 0項之積體電路,其中汲極電耦合 丨至一輸出匯流排。 2 7.如申請專利範圍第2 0項之積體電路,其_汲極電耦合 至一輸入/輸出匯流排。 2 8.如申請專利範圍第20項之積體電路,其中汲極電耦合 至一電源導執。 29.如申請專利範圍第2 0項之積體電路,其中受保護端由 一電源供給輸入端所組成。 3 0 .如申請專利範圍第2 0項之積體電路,其中受保護端由 —資料訊號輸入端所組成。 3 1.如申請專利範圍第2 0項之積體電路,其中第一輕微摻 質區與汲極彼此鄰接,並定義一第一二極體。 32. 如申請專利範圍第31項之積體電路,進一步包含一第 二輕微摻質區,位於通道_,並介於第一輕微摻質區與源 極間,且第二輕微摻質區具有第一導電態。 33. 如申請專利範圍第32項之積體電路,其中第二輕微摻 質區與源極彼此鄰接,並定義一第二二極體。 34. 如申請專利範圍第20項之積體電路,其中第一輕微摻 質區定義一植入通道。Page 28!., 437U 4 7 _Case No. 87111857_ Di Nian January / January ... Day Amendment _-VI. Patent Application Scope Use an active resistor electrically coupled to ground. 2 4. The integrated circuit of item 20 in the scope of patent application, wherein the source is electrically coupled to ground. 25. The integrated circuit of item 20 in the scope of patent application, wherein the drain is electrically coupled to an input bus. 2 6. The integrated circuit of item 20 in the scope of patent application, wherein the drain is electrically coupled to an output bus. 2 7. The integrated circuit of item 20 in the scope of patent application, whose _drain is electrically coupled to an input / output bus. 2 8. The integrated circuit of claim 20, wherein the drain is electrically coupled to a power source. 29. The integrated circuit of item 20 in the scope of patent application, wherein the protected terminal is composed of a power supply input terminal. 30. The integrated circuit of item 20 in the scope of patent application, wherein the protected terminal is composed of a data signal input terminal. 3 1. The integrated circuit of item 20 in the scope of patent application, wherein the first slightly doped region and the drain are adjacent to each other and define a first diode. 32. For example, the integrated circuit of item 31 of the patent application scope further includes a second slightly doped region located in the channel _, between the first slightly doped region and the source, and the second slightly doped region has First conductive state. 33. For the integrated circuit of item 32 in the scope of patent application, wherein the second slightly doped region and the source are adjacent to each other, and a second diode is defined. 34. The integrated circuit of claim 20, wherein the first lightly doped region defines an implantation channel. 第29頁 ^ ' 437U 4 7 _案號87111857_狄年丨f月/C/日_ 六、申請專利範圍 35. 如申請專利範圍第2 0項之積體電路,其中第一導電態 為P型,而第二導電態為η型。 36. 如申請專利範圍第2 0項之積體電路,其中第一電接觸 與第二電接觸皆包括矽化物。 37. —種製造一積體電路靜電放電保護電路之方法,此積 體電路靜電放電保護電路位於一具有一第一導電態與一第 一摻質濃度準位之半導體底材中,此方法包含: 於半導體底材中’形成一間極; 於半導體底材中,形成一第一導電態之第一掺質區與一第 二摻質區,第一摻質區與第二摻質區位於緊接閘極之位 置,並且因半導體底材中一通道區,而彼此相隔一定空 間,通道區則位於閘極之下方;與 於第一摻質區中,形成一第二導電態之第三摻質區,並於 第二摻質區中,形成一第二導電態之第四摻質區,第三摻 質區與第四摻質區彼此相隔一距離,此距離大於第一摻質 區與第二摻質區間之距離, 其中第一摻質區與第二摻質區之摻質濃度準位,皆大於半 導體底材之摻質濃度準位。 3 8.如申請專利範圍第3 7項之方法,進一步包含:於形成 第一摻質區與第二摻質區之後,且於形成第三摻質區與第 四掺質區之前,形成i) 一第一隔片,鄰接一閘極之第一 邊,並且位於第一摻質區上,與ii) 一第二隔片,鄰接一 閘極之第二邊,並且位於第二摻質區上。 39.如申請專利範圍第3 8項之方法,進一步包含:於形成Page 29 ^ '437U 4 7 _Case No. 87111857_ Di Nian 丨 f / C / Day_ VI. Application for patent scope 35. For the integrated circuit of the 20th patent scope, the first conductive state is P And the second conductive state is n-type. 36. For the integrated circuit of item 20 in the scope of patent application, wherein the first electrical contact and the second electrical contact both include silicide. 37. A method for manufacturing an integrated circuit electrostatic discharge protection circuit, the integrated circuit electrostatic discharge protection circuit is located in a semiconductor substrate having a first conductive state and a first dopant concentration level, and the method includes : Forming a pole in the semiconductor substrate; forming a first doped region and a second doped region in a first conductive state in the semiconductor substrate, the first doped region and the second doped region are located Immediately next to the gate electrode, and because of a channel region in the semiconductor substrate, a certain space is separated from each other, the channel region is located below the gate electrode; and in the first doped region, a third conductive state is formed. A dopant region, and a fourth dopant region of a second conductive state is formed in the second dopant region; the third dopant region and the fourth dopant region are separated from each other by a distance greater than the first dopant region The distance from the second dopant interval, wherein the dopant concentration level of the first dopant region and the second dopant region is greater than the dopant concentration level of the semiconductor substrate. 38. The method of claim 37, further comprising: after forming the first and second dopant regions, and before forming the third and fourth dopant regions, forming i ) A first spacer adjacent to the first side of a gate and located on the first doped region, and ii) a second spacer adjacent to the second side of a gate and located on the second doped region on. 39. The method of claim 38, further comprising: 第30頁 ί ' 437ϋ 4 7 _案號87111857_W年((痛日 修正_二 六、申請專利範圍 第三摻質區與第四摻質區之後,於第三區與第四區上,形 成接觸。 4 〇 .如申請專利範圍第3 9項之方法,其中形成接觸包括: 於第三摻質區與第四摻質區上,形成矽化物,矽化物藉由 第一與第二隔片對準。 41.如申請專利範圍第3 7項之方法,進一步包含:於形成 閘極之後,且於形成第一摻質區與第二摻質區之前, 罩幕一底材之第一部位,其中將形成第一摻質區與第二摻 質區,與 將第二導電態之載子植入一底材之第二部位,以形成底材 第二部位中,MOS電晶體之一部分。, 4 2.如申請專利範圍第3 7項之方法,其中形成第一摻質區 與第二摻質區包括:於植入底材之第二部位後, 罩幕底材之第二部位;與 將第一導電態之載子植入底材之第一部位。 4 3.如申請專利範圍第3 7項之方法,進一步包含:於形成 第三摻質區與第四摻質區之後,耦合閘極至一藉由第一摻 質區與第三摻質區間之接面所形成之二極體。 44. 如申請專利範圍第43項之方法,其中耦合包括:於半 導體底材中,形成一具有第一導電態之區域,並連接此區 域至閘極。 45. 如申請專利範圍第44項之方法,其中連接區域至閘極 包括:利用一被動電阻器,連接閘極至接地。 4 6 .如申請專利範圍第4 4項之方法,其中連接區域至閘極Page 30 ί '437ϋ 4 7 _ Case No. 87111857_W ((pain date amendment _ 26, after the patent application scope of the third and fourth dopant regions, contact was made on the third and fourth regions 〇. The method of claim 39, wherein forming contact includes: forming a silicide on the third dopant region and the fourth dopant region; the silicide is formed by the pair of first and second spacers. 41. The method according to item 37 of the scope of patent application, further comprising: after forming the gate electrode and before forming the first doped region and the second doped region, masking the first portion of a substrate, The first doped region and the second doped region will be formed, and the carrier of the second conductive state will be implanted in the second part of a substrate to form a part of the MOS transistor in the second part of the substrate. 4 2. The method according to item 37 of the scope of patent application, wherein forming the first and second doped regions comprises: after implanting the second portion of the substrate, covering the second portion of the curtain substrate; and The carrier of the first conductive state is implanted in the first part of the substrate. 4 3. As in item 37 of the scope of patent application The method further comprises: after forming the third dopant region and the fourth dopant region, coupling the gate to a diode formed by a junction between the first dopant region and the third dopant region. 44. For example, the method of applying the scope of the patent item 43, wherein the coupling includes: forming a region having a first conductive state in the semiconductor substrate, and connecting the region to the gate. 45. The method of the scope of the patent application, 44 The connection region to the gate includes: using a passive resistor to connect the gate to the ground. 46. The method according to item 44 of the scope of patent application, wherein the connection region to the gate 第31頁 Γ' 4370 4 7 案號 87111857 曰 修正 W/li. 六、申諳專利範圍 包括:利用一主動電阻器 47. 如申請專利範圍第37 型,而第二導電態為 ,連接閘極至接地。 項之方法,其中第一導‘ 補充 II: 48. 電路之方 位,此方 傳導一靜 護裝置之 切換靜電 流一較低 之靜電放 其中切換 循線路傳 然後,循 二區,第 種於-底 底:材,1:麵 脈衝,至 法/此 法包含 電放電 源極; 放電保 電阻, 電脈衝 包括:_ 導靜電 線路傳 二區具 護裝置至 且相當均 確貫分流 電態為P者 # Ψ. % f 供靜電放電保護至一底材中積體 第一導電態和一第一摻質濃度準I F 1' / 一處於非.導電狀態之靜電放電保^ $ #所‘ 立提 一導電狀態,以提供靜電放電電° 4 勻電流密度之路徑,藉此將全部 開來, 放電脈衝,通過一第二導電態之第一區 導靜電放電脈衝,通過一第一導 有一摻質濃度準位,高於第一摻 電態之第 質濃度準 位,與 然後,循線路傳導靜電放電脈衝通過一第二導電態之第 區。 於循線 路傳導靜 電脈衝通 49.如申請專利範圍第48項之方法,進一步包含 路傳導靜電放電脈衝通過第二區之後,且於循線 電放電脈衝通過第三區之前,循線路傳導靜電放 過一第一導電態之第四區。 5 0.如申請專利範圍第48項之方法,其中第一區包括一汲 極,、靜電放電保護裝置包括一閘極,此閘極位於第二區與Page 31 Γ '4370 4 7 Case No. 87111857 Amendment W / li. 6. The scope of the patent application includes: using an active resistor 47. For example, the scope of patent application is 37, and the second conductive state is connected to the gate To ground. The method of the item, where the first guide 'Supplement II: 48. Orientation of the circuit, this side conducts a static protection device switching electrostatic current a lower electrostatic discharge switching circuit transmission and then, through the second zone, the first in- Bottom: Material, 1: Pulse pulse, to method / This method includes the power source of the electric discharge; The discharge protection resistor, the electric pulse includes: _ The conductive line is passed to the two-zone protective device to and is quite uniform and the shunt current state is P者 # Ψ.% F Provides electrostatic discharge protection to the first conductive state of the substrate in the substrate and a first dopant concentration quasi IF 1 '/ one in a non-conductive state. Electrostatic discharge protection in a conductive state ^ $ # 所' 立 提A conductive state to provide a path of uniform current density for electrostatic discharge, thereby opening up all, discharge pulses, conducting electrostatic discharge pulses through a first region of a second conductive state, and a dopant through a first lead The concentration level is higher than the first mass concentration level of the first doped state, and then, an electrostatic discharge pulse is conducted through the line through the second region of the second conductive state. Conducting static pulses through the line 49. The method according to item 48 of the patent application, further comprising: conducting static discharge pulses through the second area through the conductive static discharge pulse, and conducting static discharges through the line before the electrical discharge pulse through the third area passes through the circuit. Pass a fourth region of a first conductive state. 50. The method of claim 48, wherein the first region includes a drain electrode, and the electrostatic discharge protection device includes a gate electrode, and the gate electrode is located in the second region and 第32頁 437 ϋ 4 7 案號 87111857 和年g/ 正 月Page 32 437 ϋ 4 7 Case number 87111857 and year g / month 六、申請專利範圍 第三區之上,且位於兩者之間,並且進一步包含施加一電 場於汲極與閘極間。 ’ 51.如申請專利範圍第5 0項之方法,其中於循線路傳導靜 電放電脈衝,通過由一第一區與第二區間之介面所定義之 一接面時,以寄生之方式獲得電場。 I6. Scope of Patent Application The third area is above and between the two areas, and further includes applying an electric field between the drain and gate. 51. The method according to item 50 of the scope of patent application, wherein an electrostatic field is obtained in a parasitic manner when conducting an electrostatic discharge pulse along a line through a junction defined by an interface between a first zone and a second zone. I 第33頁Page 33
TW87111857A 1998-07-21 1998-07-21 Low-voltage triggering electrostatic discharge protection TW437047B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87111857A TW437047B (en) 1998-07-21 1998-07-21 Low-voltage triggering electrostatic discharge protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87111857A TW437047B (en) 1998-07-21 1998-07-21 Low-voltage triggering electrostatic discharge protection

Publications (1)

Publication Number Publication Date
TW437047B true TW437047B (en) 2001-05-28

Family

ID=21630737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87111857A TW437047B (en) 1998-07-21 1998-07-21 Low-voltage triggering electrostatic discharge protection

Country Status (1)

Country Link
TW (1) TW437047B (en)

Similar Documents

Publication Publication Date Title
US5982600A (en) Low-voltage triggering electrostatic discharge protection
US6624487B1 (en) Drain-extended MOS ESD protection structure
US6804095B2 (en) Drain-extended MOS ESD protection structure
US20030197246A1 (en) ESD protection circuit sustaining high ESD stress
US20060022274A1 (en) Semiconductor integrated circuit device
KR101923763B1 (en) Electrostatic Discharge Protection Circuit and Device for Level Shift Circuit
US6680833B2 (en) Input-output protection device for semiconductor integrated circuit
US20070210387A1 (en) ESD protection device and method
US6191455B1 (en) Semi-conductor device protected by electrostatic protection device from electrostatic discharge damage
US20120061761A1 (en) Semiconductor integrated circuit device and manufacturing method for semiconductor integrated circuit devices
US8207581B2 (en) Semiconductor device
US6670678B2 (en) Semiconductor device having ESD protective transistor
US20050017306A1 (en) Semiconductor integrated circuit
US7408754B1 (en) Fast trigger ESD device for protection of integrated circuits
US7999324B2 (en) Semiconductor device including overcurrent protection element
JP3317345B2 (en) Semiconductor device
US20220310589A1 (en) Integrated circuit device and method for esd protection
US6507090B1 (en) Fully silicide cascaded linked electrostatic discharge protection
TW437047B (en) Low-voltage triggering electrostatic discharge protection
US5543649A (en) Electrostatic discharge protection device for a semiconductor circuit
JPS63244874A (en) Input protective circuit
US20100213987A1 (en) Semiconductor memory device and driving method for the same
TW201431070A (en) Transistor structure for electrostatic discharge protection
KR960039345A (en) Input protection circuit and manufacturing method of semiconductor integrated circuit
JP2006024601A (en) Field effect mos transistor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent