TW436867B - Method for decreasing reverse narrow width effect in shallow trench isolation - Google Patents

Method for decreasing reverse narrow width effect in shallow trench isolation Download PDF

Info

Publication number
TW436867B
TW436867B TW89100391A TW89100391A TW436867B TW 436867 B TW436867 B TW 436867B TW 89100391 A TW89100391 A TW 89100391A TW 89100391 A TW89100391 A TW 89100391A TW 436867 B TW436867 B TW 436867B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
silicon nitride
shallow trench
trench isolation
Prior art date
Application number
TW89100391A
Other languages
Chinese (zh)
Inventor
Jian-Li Guo
Tz-Ming Jeng
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW89100391A priority Critical patent/TW436867B/en
Application granted granted Critical
Publication of TW436867B publication Critical patent/TW436867B/en

Links

Landscapes

  • Element Separation (AREA)

Abstract

A method for forming a semiconductor isolation device is disclosed, in which at least a first conductive type substrate having a patterned silicon nitride layer thereon is provided. Thereafter, performing a second conductive type ion implantation with a tilted angle to form a doped region in the substrate. The substrate is an isotropically etched by using the silicon nitride layer as a mask to form a trench and to form a dielectric layer in the trench.

Description

436867 五、發明說明(1) 5-1發明領域: 本發明係有關於一種形成半導體隔離元件的方法,特 別是有關於一種在淺溝槽隔離中降低反轉窄化寬度效應的 方法。 5-2發明背景: 隨著半導體元件的尺寸持續的縮小,隔離元件也從以 往由區域氡化(LOCOS ; Local Oxidation of Silicon)形 成的場氧(FOX ;Field Oxidation)區變成淺溝槽隔離( STI ; shallow trench isolation)。然而,場氧區不會發 生的反轉窄寬度效應(reverse narrow width effect)問 題如今發生在淺溝槽隔離上。對於淺溝槽隔離元件的結構 ’在通道寬度減少時由於反轉窄化寬度效應,元件的起始 電壓(threshold voltage)下降。反轉窄化寬度效應是底 材中侧邊缺乏電荷(depletion charge)是由在淺溝槽隔 離角落的閘極邊緣電場引起的。當通道寬度減少時,寄生 在側壁電荷對總缺乏電荷之比增加,而且起始電壓的下降 增大。對於記憶晶胞(ce 1 1 )元件的應用,在通道寬度減 少時為了補償由反轉窄化寬度效應產生起始電壓減少,通 道摻雜物濃度應該要增加。比如在十億位元(G i g a b i t ) 的動態隨機存取記憶體(DRAM ; dynamic random access memory )中,隔離間隔少於〇. 4微求,底材摻雜濃度應該436867 V. Description of the invention (1) 5-1 Field of the invention: The present invention relates to a method for forming a semiconductor isolation element, in particular to a method for reducing the effect of reverse narrowing width in shallow trench isolation. 5-2 Background of the Invention: As semiconductor devices continue to shrink in size, isolation devices have also changed from field oxide (FOX; Field Oxidation) regions formed by LOCOS (Local Oxidation of Silicon) to shallow trench isolation ( STI; shallow trench isolation). However, the problem of reverse narrow width effect, which does not occur in the field oxygen region, now occurs with shallow trench isolation. For the structure of a shallow trench isolation element, when the channel width is reduced, the threshold voltage of the element is reduced due to the inverse narrowing width effect. The inverse narrowing width effect is the lack of depletion charge on the side of the substrate caused by the electric field at the gate edge in the corner of the shallow trench isolation. As the channel width decreases, the ratio of the parasitic charge on the sidewall to the total lack of charge increases, and the drop in the starting voltage increases. For the application of the memory cell (ce 1 1) element, in order to compensate for the decrease in the initial voltage caused by the inverse narrowing width effect when the channel width is reduced, the channel dopant concentration should be increased. For example, in a Gigabit dynamic random access memory (DRAM; dynamic random access memory), the isolation interval is less than 0.4 micrometers, and the substrate doping concentration should be

4368 6 7 五、發明說明(2) 達到10丨Vein3以得到將近1. 〇伏特 八讨的起始電壓。同時,在儲 存節點(storage node)與底材之間的反轉接人漏 底材的摻雜物濃度增加時也跟者增加。接下來藉由圖二介 紹反轉窄寬度效應的產生以及在記憶體中所產生的影響。 如第一圖所示,是一種傳統隔離元件的結構示意圖。 在一底材100上,一個以傳統的區域氧化(L〇c〇s ; L〇cal Oxidation of Silicon )法形成的場氧區12〇。在場氧區 1 20兩旁是積體電路中兩個半導體元件’例如金屬氧化物 半導體場效電晶體(^105?£1';11^1&1-〇}^(^- semiconductor field effect transistor)。為了 增進元 件之間的隔離能力,一般的製程會在場氧區i 2 〇的下方形 成一通道阻絕層11 0 ’又稱作場植入(f i e 1 d i m p 1 a n t)區。 在N通道金屬氧化物半導體中,一般植入的摻雜物(d〇pant )通常是棚(Boron )。 在場植入區11 0中的摻雜物,在之後的加熱製程或是 回火時’一部份會擴散到場氧區1 20的兩邊,如第二圖中 的角落1 11。擴散到場氧區1 2 0兩邊的摻雜物,對一般的金 屬氧化物半導體電晶體而言會產生如第三圖所示的窄寬度 效應(narrow width effect)。第三圖是起始電壓對通道 長度(channel length)的關係圖,由圖中可以看出當通 道長度減少,起始電壓相對地增加。4368 6 7 V. Description of the invention (2) Reaching 10 丨 Vin3 to get a starting voltage of nearly 1.0 volt. At the same time, when the reverse connection between the storage node and the substrate leaks, the dopant concentration of the substrate increases as it increases. Next, the generation of the inverse narrow-width effect and its effect in the memory are described by using Figure 2. As shown in the first figure, it is a schematic structural diagram of a conventional isolation element. On a substrate 100, a field oxygen region 12 is formed by a conventional area oxidation (Locos; Local Oxidation of Silicon) method. On both sides of the field oxygen region 1 20 are two semiconductor elements in the integrated circuit, such as a metal oxide semiconductor field effect transistor (^ 105? £ 1 '; 11 ^ 1 & 1-〇} ^ (^-semiconductor field effect transistor In order to improve the isolation between components, a general process will form a channel barrier layer 11 0 ′ under the field oxygen region i 2 〇, also known as the field implant (fie 1 dimp 1 ant) region. In the N channel In metal oxide semiconductors, the implanted dopant is usually a boron. The dopant in the field implanted region 110 is subjected to a subsequent heating process or tempering. A portion will diffuse to both sides of the field oxygen region 1 20, such as corner 1 11 in the second figure. The dopants diffused to both sides of the field oxygen region 1 2 0 will produce a general metal oxide semiconductor transistor. The narrow width effect is shown in the third figure. The third figure is the relationship between the starting voltage and the channel length. It can be seen from the figure that when the channel length decreases, the starting voltage is relatively low. increase.

4368 6 7 、—_________ 五、發明說明(3) 現今的隔離元件,如第四圖所示,大都是使用淺溝抻 盡ft { 筠 雕(STI ; Shal low trench isolation ) 122 以取代傳統 的場氧區。同樣地,為了增加隔離能力,也會在淺溝槽隔 離1 22的下方形成一通道阻絕(channei stop )層112。然 而’由於淺溝槽隔離1 2 2的幾何形狀使得通道阻絕層丨丨2中 的操雜物在之後的回火時不容易擴散到主動區域的角落 1 ,而使得主動區域角落的濃度變淡,產生如第五圖的 斤示的反轉窄寬度效應(reverse narr〇w width effect) 由圖令可以看出當通道長度減少,起始電壓也相對地減 反轉窄寬度效應會使得在積體電路元件的尺寸縮小時 生起始電壓(threshold voltage)下降’這樣電晶體就喪 :工,關的功能m方止反轉窄寬度效應,一種傳統的 古、、疋在形成元件主動區域時加上一離子植入的動作以拉 動區,的濃度,使得在主動區域的起始電壓提昇。如 二=所*,是一種傳統的動態隨機存取記憶體侧面結構 =在:^隔離122在一底材100裡形成,而場植入 =在淺溝槽隔離122下形成。離子植入區ιΐ4在底材ι〇〇 衣面形成,係用以提昇了雪曰栌斤& 极幵日日肢7G件的起始電壓。在底材 表面100 ’依序形成一薄氧化層12〇,一 石夕化鎢層U2,-氮氧化石夕層142,座Γ:: ^130… 後形成電容的下電極節點134由上鼠化妙層144,最 由於離子植入區114提昇主 動域的遭度,在儲存節點之處產生漏電流。4368 6 7 ——_________ V. Description of the Invention (3) Today's isolation components, as shown in the fourth figure, mostly use shallow trenches ft {hal 雕 (STI; Shal low trench isolation) 122 to replace traditional fields Oxygen zone. Similarly, in order to increase the isolation capability, a channel stop layer 112 is formed under the shallow trench isolation 122. However, 'due to the geometry of the shallow trench isolation 1 2 2, the inclusions in the channel barrier layer 丨 2 are not easily diffused to the corner 1 of the active area during subsequent tempering, and the concentration of the corners in the active area becomes lighter , As shown in the fifth figure, the reverse narr width effect (reverse narr0w width effect) can be seen from the drawing that when the channel length is reduced, the starting voltage is also relatively reduced. When the size of the body circuit element is reduced, the threshold voltage is reduced, so that the transistor is lost: the function of the gate and the gate m are reversed, and the narrow width effect is reversed. The action of the previous ion implantation to increase the concentration in the pull region increases the starting voltage in the active region. As two = so *, it is a traditional dynamic random access memory side structure = is formed in: ^ isolation 122 in a substrate 100, and field implantation = is formed under shallow trench isolation 122. The ion implantation area ιΐ4 is formed on the substrate ιο〇 clothing surface, which is used to increase the starting voltage of the 7G pieces of snow and sun limbs. A thin oxide layer 120, a tungsten oxide layer U2, and a oxynitride layer 142 are sequentially formed on the substrate surface 100 ', and a lower electrode node 134 forming a capacitor is formed by the upper mouse. The faint layer 144 generates leakage current at the storage node because the ion implantation region 114 enhances the active area.

第6頁 436867 五、發明說明(4) -3發明目的及概述 黎於上述之發明者景中,傳統形成淺溝槽隔離元件的 方法所產生的諸多缺點’本發明主要提供一種形成淺溝槽 隔離的方法’纟中可以增加繞溝槽隔離角落濃度以補償電 荷空乏效應來減少反轉窄寬度效應,並且不增加底材濃度 。對於晶胞電晶體可以保持較高的起始電Μ,並且保持較 低的底材浪度以降低儲存節點的接合漏電流增加的問題。 根據以 隔離的過程 法包含提供 積一層氮化 在光阻層上 淺溝槽隔離 本發明的關 性之離子植 層為遮罩非 渠内形成一 淺溝槽隔離 本發明提供了 寬度效應的方 電性之底材, 梦層上形成一 離的圖案,並 矽層。在移除 一角度進行一 成一植入區。 ,以形成一溝 溝渠内填入一 上所述之目的, 中’降低反轉窄 一具有一第一導 矽層以及在氮化 定義一淺溝槽隔 圖案轉移到氮化 鍵步驟,以傾斜 入,並在底材形 等向性蝕刻底材 介電層,以及在 元件。 一種形成淺溝槽 法。本發明的方 並且在底材上沉 光阻層。接著, 且將光阻層上的 光阻層之後,作 具有一第二導電 然後,以氮化矽 渠。最後,在溝 氧化矽層以形成 5 - 4圖式簡單說明 436867 五、發明說明(5) 本發明之上述目的與優點,將以下列的實施例以及圖 示’做詳細說明如下,其中: 第一圖為使用傳統的技術,以區域氧化法形成場乳隔 離區的結構示意圖,其中場氧區下有通道阻絕層; 第二圖為使用傳統的技術,在經過回火之後通道阻絕 層的摻雜物聚集到主動區域角落的結構示意圖; 第三圖為窄寬度效應的起始電壓對通道長度的關係圖 ( 第四圖為使用傳統的技術,在形成淺溝槽隔離時的結 $意圖’其中淺溝槽隔離下有通道阻絕層; 第五圖為反轉窄寬度效應的起始電壓對通道長度的關 第六圖為使用傳統的技術,在形成一動態隨機存取記 〜趙晶胞時的結構示意圖; 形第七A圖到第七F圖係根據本發明所揭露之技術,在 〆、成溝槽隔離元件時的各步驟結構示意圖;及Page 6 436867 V. Description of the invention (4) -3 Purpose and summary of the invention In the above inventor's view, many disadvantages caused by the traditional method of forming a shallow trench isolation element are described. The present invention mainly provides a method for forming a shallow trench. In the method of isolation, the corner concentration around the trench isolation can be increased to compensate for the charge emptying effect to reduce the reverse narrow width effect without increasing the substrate concentration. For the unit cell transistor, the initial starting voltage M can be kept high, and the substrate wave length can be kept low to reduce the problem of increased junction leakage current of the storage node. The isolation process includes providing a layer of nitride to form a shallow trench on the photoresist layer to isolate the critical ion implant layer of the present invention to form a shallow trench isolation in the non-drain of the mask. The present invention provides a method of width effect. The electrical substrate forms a separate pattern on the dream layer and a silicon layer. An implantation area is made at an angle of removal. In order to form a trench and fill it with the purpose described above, the 'lower inversion narrow' has a first silicon-conducting layer and a shallow trench isolation pattern defined in nitriding is transferred to the nitride bond step to tilt Into and isotropically etch the substrate dielectric layer in the substrate shape, as well as in the device. A method for forming a shallow trench. The method of the present invention also deposits a photoresist layer on the substrate. Next, after the photoresist layer on the photoresist layer, a second conductive layer is formed, and then a silicon nitride channel is formed. Finally, the silicon oxide layer is formed in the trench to form a 5-4 diagram to briefly explain 436867. V. Description of the invention (5) The above objects and advantages of the present invention will be described in detail with the following examples and diagrams, where: The first figure shows the structure of a field emulsion isolation region formed by a regional oxidation method using conventional techniques, where a channel barrier layer is formed under the field oxygen region. The second figure shows the use of conventional techniques to mix the channel barrier layer after tempering. Schematic diagram of debris gathering to the corner of the active area; the third figure is the relationship between the starting voltage of the narrow width effect and the channel length (the fourth figure is the intent of the traditional technique when forming shallow trench isolation) There is a channel barrier layer under the shallow trench isolation. The fifth figure is the relationship between the starting voltage of the inverse narrow width effect and the channel length. The sixth figure is the use of traditional techniques to form a dynamic random access record ~ Zhao Jing cell Fig. 7A through Fig. 7F are structural diagrams of each step when a trench isolation element is formed in accordance with the technology disclosed in the present invention; and

436867 五、發明說明(6) 第八圖係根據本發明所揭露之技術,在形成一動態隨 機存取記憶體晶胞時的結構示意圊。 主要部分之代表符號: 10 底材 12 離子植入區 20 氧化矽層 30 多晶矽層 32 金屬矽化物層 34 儲存節點 40 氮化矽層 42 氮氧化矽層 44 氮化矽層 50 光阻層 60 離子植入 100 底材 110 通道阻絕層 111 角落區 114 角洛區 120 場氧區 122 淺溝槽隔離 130 多晶矽層 132 金屬石夕化物 134 儲存節點436867 V. Description of the invention (6) The eighth figure is a schematic diagram of the structure when a dynamic random access memory cell is formed according to the technology disclosed in the present invention. Main symbols: 10 substrate 12 ion implantation area 20 silicon oxide layer 30 polycrystalline silicon layer 32 metal silicide layer 34 storage node 40 silicon nitride layer 42 silicon oxynitride layer 44 silicon nitride layer 50 photoresist layer 60 ion Implant 100 substrate 110 channel barrier 111 corner area 114 corner area 120 field oxygen area 122 shallow trench isolation 130 polycrystalline silicon layer 132 metal oxide 134 storage node

4368 6 7 五、發明說明(7) 142 氮氧化矽層 144 氮化矽層 5 - 5發明詳細說明: 本發明的半導體元件可以應用到更寬廣的範圍,並且 可以用不同的半導體材料製造。因為目前主要的半導體元 件的是在矽底材上製造’下面的敘述將會討論本發明在半 導體元件上以矽為底材之應用的實施例,而且最常見的應 用是在矽底材上。然而,本發明也可以應用在其他材料的 底材上,如砷化鎵,鍺。因而,本發明的應用並非限定在 以破半導體材料製造的元件上’而是包含以其他半導體材 料製造的元件上。 再者’本發明所顯示之貫施例圖係為;5夕半導體元件, 但是本發明的圖示並非打算用以限制本發明的應周範圍。 甚至’舉例用的例子是使用絕緣的閘極控制結構,然而應 該有這樣的認知’絕緣的間極是可以用其他的結構&代^ 。這樣’這並不打算使本發明的半導體裂置局限於圖示的 架構。這些裝置包括以下顯示本發明較佳實施例的使用和 應用〇 再者,半導體元件的不同部分並没有依照尺叶繪圖。 某些尺度與其他相關尺度相比已經被誇張,以提供更清楚4368 6 7 V. Description of the invention (7) 142 Silicon oxynitride layer 144 Silicon nitride layer 5-5 Detailed description of the invention: The semiconductor element of the present invention can be applied to a wider range, and can be made of different semiconductor materials. Because the current major semiconductor component is fabricated on a silicon substrate ', the following description will discuss embodiments of the present invention using silicon as a substrate on a semiconductor component, and the most common application is on a silicon substrate. However, the present invention can also be applied to substrates of other materials, such as gallium arsenide and germanium. Therefore, the application of the present invention is not limited to components made of broken semiconductor materials' but includes components made of other semiconductor materials. Furthermore, the embodiment shown in the present invention is a semiconductor device, but the illustration of the present invention is not intended to limit the scope of the present invention. Even the example of the example is the use of an insulated gate control structure, but there should be such a recognition that the insulated poles can be replaced with other structures. In this way, this is not intended to limit the semiconductor split of the present invention to the illustrated structure. These devices include the use and application of the preferred embodiment of the present invention shown below. Furthermore, different parts of the semiconductor device are not drawn according to the ruler. Some scales have been exaggerated compared to other related scales to provide clarity

4368 6 7 五、發明說明(8) 的描述和本發明的理解。由於本發明之半導體元件的較佳 實施例的描述包含特定的P型區域與N型區域,但是應該很 清楚地瞭解到半導體元件中不同區域的導電性是可以互換 的。增強(enhancement )模式與缺乏(depieti〇n )模式 也可以同樣地互換。 再者’雖然在這裡畫的實施例是以具有寬度與深度在 不同階段的二維中顯示,應該很清楚地瞭解到所顯示的區 域只是晶圓的三維晶胞(c e 1 1 )的—部份,其中晶圓可能 包含許多在三維空間中排列的晶胞β相對地,在製造實際 的元件時’圊示的區域具有三維的長度,寬度與高度。 本發明主要找出一種形成隔離元件的方法,其中因增 加了淺溝槽隔離角落的濃度以補償此處的電荷缺^,而^ 降低反轉窄寬度效應並且不會增加底材的濃度。這樣可以 ,持較高的起始電壓與較低的底材濃度以消除儲存 合漏電流增加的問題。 ”接 反轉二货明㈣1孜術戶斤^具有降低 人得乍見度效應之隔離元件的較佳實施例。 例的户炉。昔杏技μ 无,丨紹本貫施 ,)机%。百先,k供一底材,並且定義主動區域。 在底材上依序形成氮化矽層與光阻層, 槽隔離區的圖案轉移到光阻層與氮㈣層=溝槽溝 阻層移除。然後,係本發明的關鍵步驟’以—將光 ^ 月度進行4368 6 7 V. Description of invention description (8) and understanding of the invention. Since the description of the preferred embodiment of the semiconductor device of the present invention includes a specific P-type region and an N-type region, it should be clearly understood that the conductivity of different regions in the semiconductor element is interchangeable. Enhancement mode and lackion mode can be interchanged in the same way. Furthermore, although the embodiment drawn here is shown in two dimensions with width and depth at different stages, it should be clearly understood that the displayed area is only the three-dimensional unit cell (ce 1 1) of the wafer. In this case, the wafer may contain a plurality of unit cells β arranged in a three-dimensional space. In contrast, when the actual component is manufactured, the area shown is three-dimensional in length, width, and height. The present invention mainly finds a method for forming an isolation element, in which the concentration of shallow trench isolation corners is increased to compensate for the lack of charge here, and ^ reduces the effect of inverse narrow width without increasing the substrate concentration. In this way, a higher starting voltage and a lower substrate concentration can be used to eliminate the problem of increased storage and leakage current. "A good example of an isolating element that has the effect of reducing the visibility of people. The example is a household furnace. The former technology is not available, and it is implemented in this way." Baixian, k provides a substrate and defines an active area. A silicon nitride layer and a photoresist layer are sequentially formed on the substrate, and the pattern of the trench isolation area is transferred to the photoresist layer and the nitrogen hafnium layer = trench trench resistance. Layer is removed. Then, the key step of the present invention is to 'make light ^ monthly

4368 6 7 五、發明說明(9) 離子植入。之後,以氮化矽層為逆 。接著,與傳統的製程相同,依2 =材以形成溝槽 上所述之流程,將被合下面第半Γ元件。以 本發明所揭露之技術,在形成到苐七F圖介紹依據 ^構示意I 槽隔離元件時的各步驟 如第七A圖所示,在一底姑ln 與一光阻層50。氮切層40主要是==化發層4。 遮罩,^以傳統的化學氣相沉積: = = = = 的目的疋將隔離元件的圖案轉移到氮化破層4〇。 例裡,氮切層4〇的厚度約則刚到18 U = 厚度约為5 000到9000埃。 、而先阻層的 阻層二;微影技術將圖案轉移到光 接著ίΓ:Γ二 圖案是淺溝槽隔離的 UI木 饮有·如笫七C圖所不,以光阻屉职 石夕層40㈣’纟中氮化咬層4G ^罩對氮化 的反應式離子㈣(Reactlve iGn 使用2 的方式將光阻層5 ο移除。 良以傳統 傾斜?關鍵步驟,如第七〇圖所示,以-=度之離子植入60,在底材10上形成一離 ,/、中植入離子的導電性是與底材 ^ 矽底材,右p細& 久例如在p型的4368 6 7 V. Description of the invention (9) Ion implantation. After that, the silicon nitride layer is used as the inverse. Then, the same as the traditional manufacturing process, the process described above to form the trench according to 2 = material will be closed the first half of the Γ component. According to the technique disclosed in the present invention, the steps of forming the I-slot isolation element based on the structure shown in FIG. 7F are shown in FIG. 7A, as shown in FIG. 7A, a substrate ln and a photoresist layer 50. The nitrogen-cutting layer 40 is mainly == chemical hair layer 4. Mask, ^ with traditional chemical vapor deposition: = = = = 疋 The purpose is to transfer the pattern of the isolation element to the nitride breakdown layer 40. In the example, the thickness of the nitrogen-cut layer 40 is about 18 U = the thickness is about 5 000 to 9,000 Angstroms. The first layer is the barrier layer two; the lithography technology transfers the pattern to light and then Γ: Γ the second pattern is a shallow trench isolated UI wood drink. As shown in Figure 7C, the photoresist is used as a photoresistor. Reactlve iGn uses a 2 way to remove the photoresist layer 5 ο. Is it a traditional tilt? Key steps, as shown in Figure 70 It is shown that ion implantation 60 at-= degree forms a separation on the substrate 10, and the conductivity of the implanted ions is the same as that of the substrate ^ silicon substrate, and the right p is thin &

在廷裡植入的離子可以為BF2或是β,如果是在N 第】2頁 436867 五、發明說明(ίο) 型的矽底材,在這裡植入的離子可以為p或是As。在本實 施例裡,傾斜的角度約為7到45度’植入離子的能量約為5 到3 0千電子伏特,而植入離子的濃度約為丨〇lz到2χ丨⑴3每立 方公分。由於離子植入6〇是傾斜一角度,在氮化矽層4〇下 面的底材10 ’角落的離子濃度被提高;意即,在主動區域 的元件具有較高的起始電壓。 之後’與傳統的淺溝槽隔離製程的方式相同。如第七 E圖所示,以氮化矽層4〇為遮罩’以傳統的非等向性地( anisotropical ly)蝕刻一部份底材1〇以形成溝渠β蝕刻的 方式可以是反應式離子蝕刻法(r I Ε )。 如第七F圖所示’進行線性氧化的步驟在溝渠中形成 一氧化層20。形成的方法是將整片晶圓放到爐管内加熱溫 度約為80 0到120 〇°C,時間約1〇到60分鐘。在本實施例中 ,氧化層20的厚度約為1〇〇到3〇〇埃。 第八圖係根據本發明所揭露之技術,在形成一動態隨 機存取記憶體晶胞時的結構示意圖。如第八圖所示,先在 形成的溝渠内以傳統的化學氣相沉積形成氧化矽層22,然 後將作為遮罩用的氮化石夕層4 〇移除’其中氣化石夕層4 〇的移 除可以是將晶圓浸置在磷酸槽。接著,依序在上面形成多 晶矽層30,金屬矽化物層32 ’氮氧化矽層42,以及氮化石夕 層44 ’其中氮氧化矽層42是用在反反射層(an ti-The ions implanted in the court can be BF2 or β. If it is N, the second one is 436867. V. Description of the invention (ίο) silicon substrate, the ions implanted here can be p or As. In this embodiment, the angle of inclination is about 7 to 45 degrees. The energy of the implanted ions is about 5 to 30 kilo-electron volts, and the concentration of the implanted ions is about 0.001 to 2x3. Since the ion implantation 60 is inclined at an angle, the ion concentration at the corner of the substrate 10 'under the silicon nitride layer 40 is increased; that is, the element in the active region has a higher initial voltage. After 'is the same as the conventional shallow trench isolation process. As shown in FIG. 7E, the silicon nitride layer 40 is used as a mask, and a portion of the substrate 10 is etched by traditional anisotropical ly to form a trench β. The etching method may be a reactive method. Ion etching (r I Ε). As shown in FIG. 7F, the step of performing linear oxidation forms an oxide layer 20 in the trench. The formation method is to put the whole wafer into a furnace tube, and the heating temperature is about 80 to 120 ° C, and the time is about 10 to 60 minutes. In this embodiment, the thickness of the oxide layer 20 is about 100 to 300 angstroms. The eighth figure is a schematic diagram of the structure when a dynamic random access memory cell is formed according to the technology disclosed in the present invention. As shown in the eighth figure, a silicon oxide layer 22 is first formed by conventional chemical vapor deposition in the formed trench, and then the nitrided silicon layer 40 used as a mask is removed. Removal can be by immersing the wafer in a phosphoric acid bath. Next, a polycrystalline silicon layer 30, a metal silicide layer 32 ', a silicon oxynitride layer 42, and a nitride nitride layer 44' are sequentially formed thereon. The silicon oxynitride layer 42 is used as an anti-reflection layer (an ti-

第13頁 s 436867 明說明(11) ' ' ref lect10n )。之後,再蝕刻—部份的多晶矽層3〇,金屬 矽化物層32,氮氧化矽層42 ’氮化矽層“,與底材以,以 =成儲存節點34。在本實施例中,由於底材丨〇的濃度並沒 有増加,不會產生儲存節點的接合漏電流。 —根據以上的敘述,本發明找出_種方法來形成一種隔 離凡件,不但可以增加淺溝槽隔離角落濃度以補償電荷空 ,放應來減少反轉載寬效應,而且不增加底材濃度。對於 晶胞電晶體可以保持較高的起始電壓,並且保持較低的底 材澴度以降低儲存節點的接合漏電流增加的問題。 —以上所述僅為本發明之較佳實施例而已,並非用以限 =本發明之申請專利範圍;凡其它未脫離本發明所揭示之 f神下所完成之等效改變或修飾’均應包含在下述之申 專利範圍内。P. 13 s 436867 states (11) '' ref lect10n). After that, it is etched—part of the polycrystalline silicon layer 30, the metal silicide layer 32, the silicon oxynitride layer 42 and the silicon nitride layer ”, and the substrate to form the storage node 34. In this embodiment, because The concentration of the substrate is not increased, and no joint leakage current of the storage node will be generated. According to the above description, the present invention finds a method to form an isolation element, which can not only increase the concentration of the shallow trench isolation corners to Compensate for charge voids and discharges to reduce the effect of reversed load width without increasing the substrate concentration. For the cell transistor, the initial voltage can be kept high, and the substrate thickness can be kept low to reduce the junction leakage of the storage node. The problem of current increase. — The above description is only a preferred embodiment of the present invention, and is not intended to be limited to the scope of the patent application of the present invention; all other equivalent changes made without departing from the god of f disclosed in the present invention Or modification 'should be included in the scope of the patent application described below.

第14頁Page 14

Claims (1)

4368 6 7 六、申請專利範圍 1. 一種形成半導體隔離元件的方法,該方法至少包含: 提供一具有一第〆導電性之底材,在該底材上具有一 圖案轉移過的一氮化矽層; 以傾斜一角度進行一具有一第二導電性之離子植入’ 並在該底材形成一植入區; 以該氮化矽層為遮罩非等向性蝕刻該底材’以形成一 溝渠;及 在該溝渠内形成一介電層。 2 _如申請專利範圍第1項之方法,其中上述之傾斜之角度 約為7到4 5度。 項炙万法 3,如申請專利範圍第i 包含氧化矽。 4蔣t申請專利範圍第1項之方法’其中上述形成該圖案轉 移過之氮化矽層的方法至少包含: 在該底材上沉積一層氮化矽層; 在該氮化矽層上形成一光阻層; 在遠光阻層上定義一淺溝槽隔離的圖案; 及將該光阻層上的淺溝槽隔離圖案轉移到該氮切層; 移除該光阻層。4368 6 7 VI. Scope of patent application 1. A method for forming a semiconductor isolation element, the method at least comprises: providing a substrate having a third conductivity, and having a pattern-transferred silicon nitride on the substrate Layer; performing an ion implantation with a second conductivity at an oblique angle and forming an implanted region in the substrate; using the silicon nitride layer as a mask to anisotropically etch the substrate 'to form A trench; and forming a dielectric layer in the trench. 2 _ The method according to item 1 of the patent application range, wherein the above-mentioned inclined angle is about 7 to 45 degrees. Item 3, if the scope of patent application i includes silicon oxide. 4. The method of claim 1 in the scope of the patent application, wherein the method for forming the patterned silicon nitride layer at least includes: depositing a silicon nitride layer on the substrate; and forming a silicon nitride layer on the silicon nitride layer. A photoresist layer; defining a shallow trench isolation pattern on the far photoresist layer; and transferring the shallow trench isolation pattern on the photoresist layer to the nitrogen-cut layer; removing the photoresist layer. 第15頁 :436867 六、申請專利範圍 5. 如申請專利範圍第4項之方法,其中上述將圖案轉移到 該氮化矽層的方法至少包含以該光阻層為遮罩蝕刻該氮化 矽層。 6. 如申請專利範圍第1項之方法,更包在該溝渠内填入一 氧化矽層以形成淺溝槽隔離元件。 7. —種形成淺溝槽隔離元件的方法,該方法至少包含: 提供一具有一第一導電性之底材,在該底材上具有一 圖案轉移過的氮化矽層; 以傾斜一角度進行一具有一第二導電性之離子植入, 並在該底材形成一植入區; 以該氮化矽層為遮罩非等向性蝕刻該底材,以形成一 溝渠; 在該溝渠内形成一介電層;及 在該溝渠内填入一氧化矽層以形成淺溝槽隔離元件。 8. 如申請專利範圍第7項之方法,其中上述之傾斜之角度 約為7到4 5度。 9. 如申請專利範圍第7項之方法,其t上述該介電層至少 包含氧化梦。 1 0.如申請專利範圍第7項之方法,其中上述形成該圖案轉Page 15: 436867 VI. Application for Patent Scope 5. The method of the scope of application for patent No. 4 wherein the method for transferring a pattern to the silicon nitride layer at least includes etching the silicon nitride with the photoresist layer as a mask Floor. 6. According to the method of claim 1 in the scope of patent application, the trench is further filled with a silicon oxide layer to form a shallow trench isolation element. 7. A method of forming a shallow trench isolation element, the method at least comprising: providing a substrate having a first conductivity, and having a pattern-transferred silicon nitride layer on the substrate; tilting at an angle Performing an ion implantation with a second conductivity, and forming an implantation region in the substrate; using the silicon nitride layer as a mask to anisotropically etch the substrate to form a trench; in the trench A dielectric layer is formed therein; and a silicon oxide layer is filled in the trench to form a shallow trench isolation element. 8. The method of claim 7 in the scope of patent application, wherein the above-mentioned inclined angle is about 7 to 45 degrees. 9. The method according to item 7 of the patent application, wherein the dielectric layer includes at least an oxide dream. 10. The method of claim 7 in the scope of patent application, wherein the above-mentioned pattern transfer is formed 第16頁 4368 6 7 六、申請專利範圍 移過之氮化矽層的方法至少包含: 在該底材上沉積一層氮化發層; 在該氮化梦層上形成一光阻層; 在該光阻層上定義一淺溝槽隔離的圖案; 將該光阻層上的淺溝槽隔離圖案轉移到該氮化矽層; 及 移除該光阻層。 11.如申請專利範圍第1 0項之方法,其中上述將圖案轉移 到該氮化矽層的方法至少包含以該光阻層為遮罩蝕刻該氮 化石夕層。 一種形成淺溝槽隔離的過程中,降低反轉窄寬度效應 的方法,該方法至少包含: 提供一具有一第一導電性之底材; 在忒底材上沉積一層氮化石夕層; 在该氮化矽層上形成一光阻層; 在該光阻層上定義一淺溝槽隔離的圖案: 將該光阻層上的淺溝槽隔離圖案轉移到該氮化;6夕層; 移除該光阻層; 導電性之離子植入 ,傾斜一角度進行一具有一第 亚在邊底材形成一植入區, 溝渠:“氮化矽層為遮罩非等向性蝕刻該底材,以形成Page 16 4368 6 7 6. The method for applying a patented silicon nitride layer at least includes: depositing a nitrided hair layer on the substrate; forming a photoresist layer on the nitrided dream layer; A shallow trench isolation pattern is defined on the photoresist layer; the shallow trench isolation pattern on the photoresist layer is transferred to the silicon nitride layer; and the photoresist layer is removed. 11. The method of claim 10, wherein the method for transferring a pattern to the silicon nitride layer at least includes etching the nitrided oxide layer with the photoresist layer as a mask. A method for reducing the reverse narrow width effect in the process of forming a shallow trench isolation, the method at least comprises: providing a substrate having a first conductivity; depositing a nitrided layer on the concrete substrate; Forming a photoresist layer on the silicon nitride layer; defining a shallow trench isolation pattern on the photoresist layer: transferring the shallow trench isolation pattern on the photoresist layer to the nitride; The photoresist layer; conductive ion implantation, tilted at an angle to form an implanted area with a sub-substrate on the side substrate, trench: "the silicon nitride layer is a mask to etch the substrate anisotropically, To form 第17頁 ;436867 六、申請專利範圍 在該溝渠内形成一介電層;及 在該溝渠内填入一氧化矽層以形成淺溝槽隔離元件。 13. 如申請專利範圍第1 2項之方法,其中上述之傾斜之角 度約為7到4 5度。 14. 如申請專利範圍第1 2項之方法,其中上述該介電層至 少包含氧化石夕。 15. 如申請專利範圍第1 2項之方法,其中上述將圊案轉移 到該氮化矽層的方法至少包含以該光阻層為遮罩蝕刻該氮 化石夕層。Page 17; 436867 6. Scope of patent application A dielectric layer is formed in the trench; and a silicon oxide layer is filled in the trench to form a shallow trench isolation element. 13. The method of claim 12 in the scope of patent application, wherein the above-mentioned inclined angle is about 7 to 45 degrees. 14. The method according to item 12 of the patent application scope, wherein the dielectric layer mentioned above contains at least stone oxide. 15. The method of claim 12 in the scope of patent application, wherein the method for transferring a case to the silicon nitride layer at least includes etching the nitrided oxide layer with the photoresist layer as a mask. 第18頁Page 18
TW89100391A 2000-01-12 2000-01-12 Method for decreasing reverse narrow width effect in shallow trench isolation TW436867B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89100391A TW436867B (en) 2000-01-12 2000-01-12 Method for decreasing reverse narrow width effect in shallow trench isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89100391A TW436867B (en) 2000-01-12 2000-01-12 Method for decreasing reverse narrow width effect in shallow trench isolation

Publications (1)

Publication Number Publication Date
TW436867B true TW436867B (en) 2001-05-28

Family

ID=21658443

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89100391A TW436867B (en) 2000-01-12 2000-01-12 Method for decreasing reverse narrow width effect in shallow trench isolation

Country Status (1)

Country Link
TW (1) TW436867B (en)

Similar Documents

Publication Publication Date Title
TWI353025B (en) Semiconductor structure with improved on resistanc
US6091076A (en) Quantum WELL MOS transistor and methods for making same
JP3544833B2 (en) Semiconductor device and manufacturing method thereof
US6524903B2 (en) Method of manufacturing a semiconductor device having two peaks in an impurity concentration distribution
TWI284925B (en) High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching using an etchant gas that is also a doping source
US6437404B1 (en) Semiconductor-on-insulator transistor with recessed source and drain
CN101834141B (en) Preparation method of asymmetrical source drain field effect transistor
TW560069B (en) Groove gate field-effect transistor and method of manufacturing the same
US6451704B1 (en) Method for forming PLDD structure with minimized lateral dopant diffusion
US6144069A (en) LDMOS transistor
CN103066127B (en) Semiconductor device and method thereof
CN101079380A (en) Semiconductor structure and its making method
JP2004523095A (en) Method of manufacturing trench double-diffused metal oxide semiconductor having low threshold voltage
CN212676274U (en) Charge balance power device
US6740954B2 (en) Semiconductor device reducing junction leakage current and narrow width effect
US7888767B2 (en) Structures of high-voltage MOS devices with improved electrical performance
KR100713267B1 (en) A method of manufacturing a semiconductor device
WO2020198738A1 (en) Extended drain mos with dual well isolation
KR20010025030A (en) Method of manufacturing a mis field-effect transistor
TWI224353B (en) Semiconductor-on-insulator (SOI) device with hyperabrupt source/drain junctions
CN108695158A (en) A kind of semiconductor devices and its manufacturing method
US6238959B1 (en) Method of fabricating LDMOS transistor
TW436867B (en) Method for decreasing reverse narrow width effect in shallow trench isolation
KR19990088300A (en) Soi-semiconductor arrangement and method for producing the same
GB2371676A (en) Modification of dielectric constant of insulating layer by ion implantation

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent