TW434685B - Structure of anti-reflection coating and method for manufacturing the same - Google Patents

Structure of anti-reflection coating and method for manufacturing the same Download PDF

Info

Publication number
TW434685B
TW434685B TW89102691A TW89102691A TW434685B TW 434685 B TW434685 B TW 434685B TW 89102691 A TW89102691 A TW 89102691A TW 89102691 A TW89102691 A TW 89102691A TW 434685 B TW434685 B TW 434685B
Authority
TW
Taiwan
Prior art keywords
layer
silicon oxynitride
vapor deposition
chemical vapor
rich
Prior art date
Application number
TW89102691A
Other languages
Chinese (zh)
Inventor
Jing-Hung Gau
Shuen-Jeng Chen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW89102691A priority Critical patent/TW434685B/en
Application granted granted Critical
Publication of TW434685B publication Critical patent/TW434685B/en

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

A structure of anti-reflection coating and a manufacturing method thereof are provided. A silicon substrate has a conductive layer formed thereon. Plasma-enhanced chemical vapor deposition is performed to form a gradient layer of silicon oxynitride over the conductive layer. During the silicon oxynitride deposition, the concentration of nitrous oxide is controlled so that the gradient layer of silicon oxynitride is silicon-oxide-rich near the bottom but silicon nitride-rich near the top.

Description

43A685 A7 5496twf.doc/008 gy 五、發明說明(丨) -I I I I---Γ I I I I --- (請先閱讀背面之注意事項再填寫本頁) 本發明是有關於一種半導體積體電路之抗反射層之 結構與製造方法,特別是有關於一種氮氧化矽(Si02xNy) 抗反射層之結構與製造方法= 半導體晶片上積體電路的製造,是藉由曝光及顯影製 程將光罩上的圖案轉移至光阻層上而形成的。經由曝光製 程使光通過光罩上未被鉻膜遮蔽的部份,而使光阻層產生 光化學反應,將光罩上的圖案轉移至光阻層,最後再經由 顯影製程以去除產生光化學反應之光阻,使光阻層產生預 定之圖案。但是因爲晶片表層的地勢(topography)所引起 的光阻厚度不一,或晶片表面的反射性不均勻,往往造成 曝光時入射光與反射光發生干渉的效應,這種效應將致使 所轉移的圖案在某些地方產生反射刻痕(reflective notching),而導致元件之線寬有所誤差或圖案的轉移不 正確。 經濟部智慧財產局員工消費合作社印製 尤其當線寬的尺寸要求愈來愈小時,通常曝光系統爲 了達到縮小尺寸的要求而選取波長比較短的光源,而波長 比較短的光在光阻層與晶片之界面將引起較高的反射率, 使得所定義的圖案產生偏差或瑕疵,而且反射光愈強,圖 案的控制也愈加不穩定,特別是在定義多晶矽閘極圖案或 底材是屬於高反光的材料時,如鋁等金屬,這種現象最爲 明顯。因此,在線寬尺寸及高反射率的雙重限制下,使得 微影製程在線寬的控制上愈顯困難。 因此,本發明之目的在於提供一種抗反射層之結 構’可將反射材質表面之反射光的強度減弱,以避免入射 光與反射光產生干渉之效應,而造成圖案的轉移產生偏差 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 ◎ 4685 - 5 496twf.d〇c/〇^ --^ 五、發明說明(i 或瑕破^,並可*改善光阻之聚焦深度範圍(DOF window),以43A685 A7 5496twf.doc / 008 gy V. Description of the Invention (丨) -III I --- Γ IIII --- (Please read the precautions on the back before filling this page) The present invention relates to a semiconductor integrated circuit. The structure and manufacturing method of the anti-reflection layer, in particular, the structure and manufacturing method of a silicon oxynitride (Si02xNy) anti-reflection layer = manufacturing of integrated circuits on a semiconductor wafer, which is performed by exposing and developing the photomask The pattern is formed by transferring to a photoresist layer. Through the exposure process, light is passed through the part of the photomask that is not shielded by the chromium film, so that the photoresist layer has a photochemical reaction. The pattern on the photomask is transferred to the photoresist layer. Finally, the photochemical process is removed by the development process. The photoresist of the reaction produces a predetermined pattern in the photoresist layer. However, due to the uneven topography caused by the topography of the wafer surface, or the uneven reflectivity of the wafer surface, the effect of the incident light and the reflected light drying out during exposure is often caused. This effect will cause the transferred pattern Reflective notching occurs in some places, resulting in errors in the line width of the component or incorrect transfer of the pattern. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, especially when the line width requirements are getting smaller and smaller, usually the exposure system selects a light source with a shorter wavelength in order to meet the size reduction requirements, and the light with a shorter wavelength is in the photoresist layer and The interface of the wafer will cause higher reflectivity, which will cause deviations or flaws in the defined pattern, and the stronger the reflected light, the more unstable the control of the pattern, especially in the definition of the polysilicon gate pattern or the substrate is highly reflective This phenomenon is most pronounced when using materials such as aluminum. Therefore, under the double limitation of line width size and high reflectivity, it becomes more difficult to control the line width of the lithography process. Therefore, the object of the present invention is to provide a structure of an anti-reflection layer, which can reduce the intensity of the reflected light on the surface of the reflective material, so as to avoid the dry effect of the incident light and the reflected light, resulting in deviations in the pattern transfer. Applicable to China National Standard (CNS) A4 (210 X 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ◎ 4685-5 496twf.d〇c / 〇 ^-^ 5. Description of the invention (i or defective ^, And can * improve the DOF window of the photoresist to

Jj提高圖案轉移之精確度與解析度。 丰艮據上述之目的,本發明提供一種抗反射層之結構, 达匕,結構包括一富含氧之氮氧化矽層,一富含氮之氮氧化砂 層了以及一氮氧化砂堆疊層°氮1氧化砂堆疊層係介於富含 氧之氮氧化砂層與富含氮之氮氧彳匕石夕層之間’且氮氧化砂 中愈接近富含氧之氮氧化矽層之處其氧含量愈高, 胃近富含氮之氮氧化矽層之處其氮含量愈高。 本發明提供一種抗反射層之製造方法’此方法以砍 大完、氣氣及一氧化二氮爲反應氣體’利用加強型電槳化學 氣^目法,在反光材質上面沈積一層氮氧化矽漸層薄 g。在進行沈積過程中,維持一定的矽烷與氨氣之流量, 整一^氧化二氮之流量,從開始反應時每分鐘2立方公 遞減至反應結束時爲零,如此反應物之含氧量的比 例漸減,而含氮®^^匕例1漸^曾’司寻戶斤胃胃化 漸層之底層爲富氧化矽性質,而漸層之上層則爲富氮化 矽性質。 按本發明之較佳實施例之氮氧化矽漸層,此氮氧化砂 漸層之底層具有富氧化矽性質,而愈往漸層上層其富氮化 砂性質則逐漸增強。其最上層與最下層之中間則爲含有各 種不同氮氧含量之氮氧化矽漸層’因此可將氮氧化矽漸層 視爲具有很多層氮氧含量不同的氮氧化砍的組合。當進行 曝光時,光線碰到不同物質便會有反射及折射,而光線經 過很多層的反射及折射後,其反射光之強度將逐漸減弱。 透過多層次的反射及折射之原理’亦可改善光阻之聚焦深 4 — — — — — — I ^---- # --- (請先間讀背面之注意事項再填寫本頁) ^eJ·. 本紙張尺度適用中國國家標準<CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 434685 A7 5496twf. doc/008 五、發明說明(λ) 度範圍,故可提高光阻之解析度。 爲讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳 細說明如下: 圖式之簡單說明 第1圖爲按本發明之較佳實施例繪示氮氧化矽漸層之 構造。 第2A圖至第2B圖爲按本發明之較佳實施例繪示半 導體金屬導線之製造剖面略圖。 第3A圖至第3B圖爲按本發明之較佳實施例繪示金 氧半導體之多晶矽閘極之製造剖面略圖。 第4A圖至第4B圖爲按本發明之較佳實施例繪示淺 溝渠隔離區之製造剖面略圖。 圖式之標記說明= 10氮氧化砂漸層 11氮氧化矽堆疊層 12富含氧之氮氧化矽層 14富含氮之氮氧化矽層 200, 300, 400 矽基材 202金屬導電層 202a金屬導線 204, 308, 404氮氧化矽漸層 206, 3 12, 408 光阻層 302閘氧化層 5 -------:---- -t--------訂 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國®家標準(CNS)A4規格(210 x 297公釐) 經濟部智慧財產局員工消費合作社印製 434685 π A/ 549 6twf.doc/008 βγ 五、發明說明(4 ) 302a,4〇2a經定義後之閘氧化層 304多晶矽層 3〇4a經定義後之多晶矽層 306砂化鎢層 3〇6a經定義後之矽化鎢層 308a, 404a經定義後之氮氧化矽漸層 310, 406氮化矽層 310a, 406a經定義後之氮化矽層 402墊氧化層 實施例 第1圖爲按本發明之較佳實施例繪示氮氧化矽漸層之 結構。 請參照第1圖所示,本發明之氮氧化矽漸層結構是由 最上層之富含氮之氮氧化矽層14、底層之富含氧之氮氧化 矽層12及介於最上層與底層中間之之氮氧化矽堆疊層11 所組合而成的。富含氮之氮氧化矽層14中的氧含量極少, 其性質接近於氮化矽。富含氧之氮氧化矽層12之中則是 所含之氮含量非常少,使其之性質接近於氧化矽。而氮氧 化矽堆疊層11係介於富含氧之氮氧化矽層Μ與富含氮之 氮氧化矽層12之間,且氮氧化矽堆疊層11中各堆疊層中 的氮含量與氧含量具有不同的比例,愈接近富含氧之氮氧 化矽層12之處其氧含量愈高,而愈接近富含氮之氮氧化 矽層14之處其氮含量愈高。 上述之氮氧化矽漸層結構10的形成方法例如是以矽 烷、氨氣及一氧化二氮爲反應氣體,並利用加強型電漿化 6 ----------- 裝--------訂. <請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) d3^6B5 A7 5496twf.doc/008 ny 五、發明說明(g ) 學氣相沈積法,使上述氣體進行反應而形成的。 當反應開始進行時,藉由控制一氧化二矽之進料流量 爲每分鐘2公升,然後逐漸遞減至反應結束時爲零,矽院 及氨氣之流量則分別控制於每分鐘150立方公分及每分鐘 2公升並維持一定至反應結束。如此形成之氮氧化矽漸層 之底層12有最大的氧含量,故底層12具有富氧化矽性質。 隨著反應時間的增加,由於反應氣體中的一氧化二氮的含 量漸減,因此所形成之中間堆疊層11,其結構中愈往上層 之處所具有之氮含量愈高,當反應結束時,氮氧化矽漸層 之最上層14有最大的氮含量,其最上層14具有富氮化砂 性質,而介於最上層14與最下層12之間則爲各種不同氮 氧含量之堆疊層11,且其愈往上層其氮含量愈高,而愈往 下層其氮含量愈低。 經濟部智慧財產局員工消费合作社印製 -------r---- -^--------訂· (請先閱讀背面之注意事項再填寫本頁) 在分別形成有本發明之氮氧化矽漸層(Si02xNy)與 習知之單純氮氧化矽層(SiON)的晶片上,分別量測五個不 同位置之反射率,結果顯示本發明之氮氧化矽漸層之平均 反射率爲0.2473,而習知之單純氮氧化矽層之平均反射率 爲0.3188。故由此得知本發明之氮氧化矽漸層結構顯然較 傳統上單純的氮氧化矽層具有較低的反射率,因此本發明 之氮氧化矽漸層可有效地降低反射材質之反射強度。 本發明之氮氧化矽漸層在半導體製程上具有多種用 途,茲舉例說明如下。 第2A圖至第2B圖爲按本發明之較佳實施例繪示半 導體金屬導線之製造剖面略圖。 請參照第2A圖,將本發明之氮氧化矽漸層應用於金 7 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公釐) 經濟部智慧財產局員工消費合作社印製 4346 85 A7 5496twf.doc/008 j^7 __ mm 五、發明說明(C ) 屬導線之製作,在矽基材200上形成一層金屬導電層 202,然後在金屬導電層202上形成一層本發明之氮氧化 矽漸層204作爲抗反射層,以防止曝光時金屬導電層202 之反光,而影響圖案之轉移,然後再於氮氧化矽漸層204 上形成光阻層206,以定義金屬導線。請參照第2B圖, 接著在已形成光阻層206之矽基材200上進行蝕刻及光阻 剝除製程後,金屬導線202a可被準確地定義出來。 第3A圖至第3B圖爲按本發明之較佳實施例繪示金 氧半導體之多晶矽閘極之製造剖面略圖。 請參照第3A圖,將本發明之氮氧化矽漸層應用於金 屬氧化半導體之閘極層之製作上,在矽基材300上依序形 成一層氧化層302、多晶矽層304、矽化鎢層306、本發 明之氮氧化矽漸層308及氮化矽層310,然後在氮化矽層 310上形成光阻層312,再以光阻層312定義閘極,之後 經蝕刻及光阻剝除製程後如第3B圖所示。在閘極之習知 製程中,由於氮化矽層與矽化鎢層間並無本發明之氮氧化 矽漸層,而其兩層間之附著性不佳,且其兩層之界面間存 在著應力不均之問題,而容易造成剝落之現象。而本發明’ 如第3 A圖所示,形成於氮化矽層310與矽化鎢層306間 之氮氧化矽漸層308,除可作爲抗反射層外’亦可釋放氮 化矽層310之應力,同時因氮氧化矽漸層之結構特性,其 最上層之富氮化矽性質可與氮化矽層310有良好之附著 性,而其底層之富氧化矽性質可與矽化鎢層306有良好之 附著性,故可解決習知製程中氮化矽層310與矽化鎢層 306間之應力及其附著性不佳等問題,而造成剝落之情形。 8 ----------- -^--------訂. (請先閱讀背面之注意事項再填寫本頁> 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 434685 A7 5496twf.doc/008 B7 五、發明說明(l) 第4A圖至第4B圖爲按本發明之較佳實施例繪示半 導體之淺渠溝隔離區之製造剖面略圖。 請參照第4A圖,將本發明之氮氧化矽漸層應用於淺 渠溝隔離區之製作,在矽基材400上依序形成一層氧化層 402、氮氧化矽漸層404及氮化矽層406,然後在氮化砂 層406上形成光阻層408,再以光阻層408定義氮化矽層 406及氮氧化矽漸層404以界定淺渠溝隔離區,之後經蝕 刻及光阻剝除製程後如第4B圖所示。如同上一實施例, 氮氧化砂漸層404在此製程中除作爲抗反射層外,亦可釋 放氮化矽層406之應力,以避免產生氮化矽層406之剝 落。 按本發明之較佳實施例,氮氧化矽漸層之結構可視爲 由很多層不同的氮氧含量之氮氧化矽薄層所組合而成的。 當氮氧化砂漸層作爲抗反射層進行曝光時,光線碰到不同 物質便會有反射與折射,而光線經過很多層的反射及折射 後,其反射光之強度將逐漸減弱。透過多層次的反射及折 射之原理,亦可改善光阻之聚焦深度範圍,因此,本發明 之氮氧化矽漸層所具有之結構應用於微影製程時,可提高 圖案轉移之精確度與光阻顯影後的之解析度。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明’任何熟習此技藝者,在不脫離本發明之精 神和範圍內,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者爲準。 9 ----.—-----> ^--------訂. <請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國圉家標準(CNS)A4規格m〇 X 297公釐)Jj improves the accuracy and resolution of pattern transfer. Feng Gen According to the above purpose, the present invention provides a structure of an anti-reflection layer. The structure includes a silicon oxynitride layer rich in oxygen, a nitrogen oxynitride sand layer rich in nitrogen, and a nitrogen oxynitride sand layer ° nitrogen. 1.The stacked layer of oxidized sand is between the layer of nitrogen-rich oxynitride sand and the layer of nitrogen-rich oxydagger stone. The higher the level, the higher the nitrogen content near the nitrogen-rich silicon oxynitride layer. The invention provides a method for manufacturing an anti-reflection layer. 'This method uses chopped end, gas and nitrous oxide as reaction gases.' Using a reinforced electric paddle chemical gas method, a layer of silicon oxynitride is deposited on the reflective material Layer is thin g. During the deposition process, maintain a certain flow of silane and ammonia gas, and reduce the flow rate of dinitrogen oxide from 2 cubic meters per minute at the beginning of the reaction to zero at the end of the reaction, so the oxygen content of the reactants The proportion gradually decreases, and the nitrogen-containing ® ^^ 1 Example 1 Zeng's family is gradually rich in silicon oxide, while the upper layer is rich in silicon nitride. According to the silicon oxynitride gradient of the preferred embodiment of the present invention, the bottom layer of the sand oxynitride layer has silicon oxide-rich properties, and the properties of the nitride-rich sand gradually increase toward the upper layer. Between the uppermost layer and the lowermost layer is a silicon oxynitride gradient layer containing various nitrogen and oxygen contents. Therefore, the silicon oxynitride gradient layer can be regarded as a combination of nitrogen oxide oxide layers with different nitrogen and oxygen contents. When exposure occurs, light will reflect and refract when it encounters different materials, and the intensity of the reflected light will gradually decrease after the light has been reflected and refracted by many layers. The principle of reflection and refraction through multiple levels' can also improve the focal depth of the photoresist 4 — — — — — — I ^ ---- # --- (Please read the precautions on the back before filling this page) ^ eJ .. This paper size applies the Chinese National Standard < CNS) A4 specification (210 X 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 434685 A7 5496twf. doc / 008 5. The scope of the invention description (λ), Therefore, the resolution of the photoresist can be improved. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below in conjunction with the accompanying drawings for detailed description as follows: Brief description of the drawings FIG. 1 is According to a preferred embodiment of the present invention, the structure of the silicon oxynitride gradient is shown. Figures 2A to 2B are schematic cross-sectional views showing the manufacture of a semiconductor metal wire according to a preferred embodiment of the present invention. 3A to 3B are schematic cross-sectional views showing the fabrication of a polysilicon gate of a gold-oxide semiconductor according to a preferred embodiment of the present invention. 4A to 4B are schematic manufacturing cross-sectional views illustrating a shallow trench isolation area according to a preferred embodiment of the present invention. Symbol description of the drawing = 10 Nitrogen oxide sand layer 11 Silicon oxynitride stack layer 12 Oxy-rich silicon oxynitride layer 14 Nitrogen-rich oxynitride layer 200, 300, 400 Silicon substrate 202 Metal conductive layer 202a Metal Conductor 204, 308, 404 Silicon oxynitride gradient 206, 3 12, 408 Photoresist layer 302 Gate oxide layer 5 -------: ---- -t -------- Order (please (Please read the notes on the back before filling this page) This paper size is applicable to China® Home Standard (CNS) A4 (210 x 297 mm) Printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 434685 π A / 549 6twf.doc / 008 βγ V. Description of the invention (4) 302a, 4〇2a after the definition of the gate oxide layer 304 polycrystalline silicon layer 304a after the definition of the polycrystalline silicon layer 306 sanded tungsten layer 306a after the definition of the tungsten silicide layer 308a, Example of 404a silicon nitride oxide gradient layer 310, 406 silicon nitride layer 310a, 406a silicon nitride layer 402 pad oxide layer definition after the definition of 406a FIG. 1 is a diagram showing a nitrogen oxide oxidation according to a preferred embodiment of the present invention Structure of silicon gradient. Please refer to FIG. 1, the silicon oxynitride gradient structure of the present invention is composed of an uppermost nitrogen-rich silicon oxynitride layer 14, an lowermost oxygen-rich silicon oxynitride layer 12, and an intermediate layer between the uppermost and the lower layers. The middle silicon oxynitride stack layer 11 is combined. The nitrogen-rich silicon oxynitride layer 14 has very little oxygen content, and its properties are close to those of silicon nitride. The oxygen-rich silicon oxynitride layer 12 contains a very small amount of nitrogen, making its properties close to those of silicon oxide. The silicon oxynitride stack layer 11 is between the oxygen-rich silicon oxynitride layer M and the nitrogen-rich silicon oxynitride layer 12, and the nitrogen content and oxygen content of each of the stacked layers in the silicon oxynitride stack layer 11 are With different ratios, the closer to the oxygen-rich silicon oxynitride layer 12 is, the higher the oxygen content is, and the closer to the nitrogen-rich silicon oxynitride layer 14 is, the higher the nitrogen content is. The above-mentioned method for forming the silicon oxynitride gradient structure 10 uses, for example, silane, ammonia, and nitrous oxide as reaction gases, and uses enhanced plasma 6 ----------- ------ Order. ≪ Please read the notes on the back before filling in this page) This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) d3 ^ 6B5 A7 5496twf.doc / 008 ny 5. Description of the invention (g) It is formed by reacting the above-mentioned gases by a vapor deposition method. When the reaction starts, by controlling the feed flow rate of silicon monoxide to 2 liters per minute, and then gradually decreasing to zero at the end of the reaction, the flow rate of silicon courtyard and ammonia gas is controlled at 150 cubic centimeters per minute and 2 liters per minute and keep it until the end of the reaction. The bottom layer 12 of the silicon oxynitride gradient thus formed has the largest oxygen content, so the bottom layer 12 has silicon oxide-rich properties. As the reaction time increases, as the content of dinitrogen monoxide in the reaction gas gradually decreases, the intermediate stack layer 11 formed has a higher nitrogen content in the structure toward the upper layer. When the reaction ends, the nitrogen The uppermost layer 14 of the silicon oxide gradient has the largest nitrogen content, and the uppermost layer 14 has a nitride-rich sand property, and between the uppermost layer 14 and the lowermost layer 12 are stacked layers 11 of various nitrogen and oxygen contents, and The higher the level, the higher the nitrogen content, and the lower the level, the lower the nitrogen content. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs --------- r -----^ -------- Order (Please read the precautions on the back before filling this page) On a wafer having the silicon oxynitride layer (Si02xNy) of the present invention and the conventional simple silicon oxynitride layer (SiON), the reflectances at five different positions were measured, and the results show that the average silicon oxynitride layer of the present invention The reflectivity is 0.2473, and the average reflectivity of the conventional simple silicon oxynitride layer is 0.3188. Therefore, it is learned that the silicon oxynitride gradient structure of the present invention obviously has a lower reflectance than the traditional simple silicon oxynitride layer. Therefore, the silicon oxynitride gradient of the present invention can effectively reduce the reflection intensity of the reflective material. The silicon oxynitride gradient layer of the present invention has a variety of uses in semiconductor manufacturing processes, and is exemplified below. Figures 2A to 2B are schematic cross-sectional views showing the manufacture of a semiconductor metal wire according to a preferred embodiment of the present invention. Please refer to Figure 2A. The silicon oxynitride layer of the present invention is applied to gold 7. The paper size applies the Chinese National Standard (CNS) A4 specification (21 × 297 mm). Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives. 4346 85 A7 5496twf.doc / 008 j ^ 7 __ mm V. Description of the invention (C) The production of a conductive wire, a metal conductive layer 202 is formed on a silicon substrate 200, and then a nitrogen layer of the present invention is formed on the metal conductive layer 202 The silicon oxide gradient layer 204 serves as an anti-reflection layer to prevent reflection of the metal conductive layer 202 during exposure and affect the pattern transfer. Then, a photoresist layer 206 is formed on the silicon oxynitride gradient layer 204 to define a metal wire. Referring to FIG. 2B, after the etching and photoresist stripping processes are performed on the silicon substrate 200 on which the photoresist layer 206 has been formed, the metal wire 202a can be accurately defined. 3A to 3B are schematic cross-sectional views showing the fabrication of a polysilicon gate of a gold-oxide semiconductor according to a preferred embodiment of the present invention. Referring to FIG. 3A, the silicon oxynitride gradient layer of the present invention is applied to the fabrication of a gate layer of a metal oxide semiconductor, and an oxide layer 302, a polycrystalline silicon layer 304, and a tungsten silicide layer 306 are sequentially formed on a silicon substrate 300. 5. The silicon oxynitride gradient layer 308 and the silicon nitride layer 310 of the present invention, and then a photoresist layer 312 is formed on the silicon nitride layer 310, and then the gate is defined by the photoresist layer 312, and then subjected to etching and photoresist stripping processes. Then as shown in Figure 3B. In the conventional gate electrode manufacturing process, the silicon oxynitride gradient layer of the present invention is not provided between the silicon nitride layer and the tungsten silicide layer, and the adhesion between the two layers is not good, and there is a stress instability between the interfaces between the two layers. Both problems are easy to cause peeling. In the present invention, as shown in FIG. 3A, the silicon oxynitride gradient layer 308 formed between the silicon nitride layer 310 and the tungsten silicide layer 306 can be used as an anti-reflection layer to release the silicon nitride layer 310. At the same time, due to the structural characteristics of the silicon oxynitride gradient layer, the silicon nitride-rich property of the uppermost layer can have good adhesion with the silicon nitride layer 310, and the silicon oxide-rich property of the bottom layer can have the same properties as the tungsten silicide layer 306. Good adhesion, so it can solve the problems such as the stress between the silicon nitride layer 310 and the tungsten silicide layer 306 and the poor adhesion in the conventional manufacturing process, which can cause peeling. 8 ------------^ -------- Order. (Please read the notes on the back before filling in this page> This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 434685 A7 5496twf.doc / 008 B7 V. Description of the invention (l) Figures 4A to 4B show the preferred embodiments of the present invention A schematic manufacturing cross-section of a shallow trench isolation region for a semiconductor. Referring to FIG. 4A, the silicon oxynitride gradient layer of the present invention is applied to the production of a shallow trench isolation region, and an oxide layer 402 is sequentially formed on the silicon substrate 400. , Silicon oxynitride gradient layer 404 and silicon nitride layer 406, and then a photoresist layer 408 is formed on the nitride nitride layer 406, and the photoresist layer 408 is used to define the silicon nitride layer 406 and the silicon oxynitride gradient layer 404 to define shallow channels. The trench isolation area is then shown in FIG. 4B after the etching and photoresist stripping process. As in the previous embodiment, the nitrogen oxynitride sanding layer 404 can be used as an anti-reflection layer and also release silicon nitride in this process. The stress of the layer 406 is to avoid the peeling of the silicon nitride layer 406. According to the preferred embodiment of the present invention, the structure of the silicon oxynitride gradient It can be considered as a combination of many thin layers of silicon oxynitride with different nitrogen and oxygen contents. When the oxynitride sand layer is exposed as an anti-reflection layer, light will reflect and refract when it encounters different substances, and the light will After many layers of reflection and refraction, the intensity of the reflected light will gradually weaken. Through the principle of multi-level reflection and refraction, the focus depth range of the photoresist can also be improved. Therefore, the silicon oxynitride gradient layer of the present invention has When the structure is applied to the lithography process, the accuracy of pattern transfer and the resolution after photoresist development can be improved. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention to any familiarity. Those skilled in the art can make some modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be determined by the scope of the attached patent application. —----- > ^ -------- Order. ≪ Please read the notes on the back before filling out this page) This paper size is applicable to China Standard (CNS) A4 specification m〇X 297 Mm)

Claims (1)

ABCD 六、申請專利範圍 1. 一種抗反射層之結構,包括: 一富含氧之氮氧化矽層; 一富含氮之氮氧化矽層;以及 一氮氧化矽堆疊層介於該富含氧之氮氧化矽層與該富 含氮之氮氧化矽層之間。 2. 如申請專利範圍第1項所述之抗反射層之結構, 其中,該氮氧化矽堆疊層中愈接近該富含氧之氮氧化矽層 之處其氧含量愈高,愈接近該富含氮之氮氧化矽層之處其 氮含量愈高。 3. 如申請專利範圍第1項所述之抗反射層之結構, 其中,該富含氧之氮氧化矽層、該富含氮之氮氧化矽層與 該氮氧化矽堆疊層係以一加強型電漿化學氣相沉積製程所 形成者。 4. 如申請專利範圍第3項所述之抗反射層之結構, 其中,該加強型電漿化學氣相沉積製程所使用之氣體包括 砂院、氣氣及一氧化二氮。 經濟部中央標準局員工消費合作社印策 (請先閱讀背面之注意事項再填寫本頁) 5. 如申請專利範圍第4項所述之抗反射層之結構, 其中,該加強型電漿化學氣相沉積製程係維持矽烷與氨氣 之流量,改變一氧化二氮氣體之流量以形成該該抗反射層 之結構。 4〆 一種抗反射層之製造方法,該方法包括: 使用矽烷、氨氣及一氧化二氮爲反應氣體,進行一加 強型電漿化學氣相沈積製程,以形成一富含氧之氮氧化政 層; 維持砂院與氣氣之流量,並遞減一氧化二氮之流量, 本紙張尺度逋用中國國家標隼(CNS ) A4規格(210X297公釐) 4346 85 5496twf.doc/008 8 8 8 8 ABCD 申請專利範圍 持續進行該加強型電漿化學氣相沈積製程以在該富含氧之 氮氧化矽層上形成一氮氧化矽堆疊層;以及 維持矽烷與氨氣之流量,但不提供任何一氧化二氮, 持續進行該加強型電漿化學氣相沈積製,以在該氮氧化 矽堆疊層上形成一富含氮之氮氧化矽 如申請專利範圍第項所述之層之製 造方法,其中,形成該富含氧之氮氧化之'蓐加強型電 漿化學氣相沈積製程中,該矽烷之流量約爲¥#鐘150立 方公分,該氨氣之流量約爲每分鐘2公升,該一氧化二氮 氣體之流量約爲每分鐘2公升+ $:¾如申請專利範圍第;所述之抗反射層之製造方 法,其中形成該氮氧化矽堆疊層之該加強型電漿化學氣相 沈積製程中,一氧化二氮氣體之流量由每分鐘2公升開始 遞減。 L峨% 一種半導體元件之圖案轉移的方法,該方法包 (請先閲讀背面之注意事項再填寫本頁) 括 經濟部中央標準局員工消費合作社印裝 提供一基材; 在該基材上形成一材質層,該材質層具有反光性質; 在該反光材質上形成一氮氧化矽漸層 在該氮氧化矽漸層上形成一光阻層;以及 進行一微影製程將圖案轉g至該光阻層上。 MX.如申請專利範圍第Θ項所述之半導體元件之圖 案轉移的方法,其中形成該氮氧化矽漸層的方法係使用一 加強型電漿化學氣相沈積製程。 Y 如申請專利範圍第;^項所述之半導體元件之圖案 本紙張尺度適用中國國家梯準(CNS ) A4規格(210X 297公釐) 43^685 5496twf.doc/008 A8 B8 C8 DB 砂院、氛氣及一氧化> 氮作爲反應氣體。 丨〕^>§c如申請專利範圔桌項所述之半導體元件之圖案 六、申請專利範圍 轉移的方法,其中該加強型電漿化學氣相沈積製程係使用 轉移的方法,其中該氮氧化矽漸層的形成方法包括: 使用矽烷、氨氣及一氧化二氮爲反應氣體’進行一加 強型電漿化學氣相沈積製程’以形成一富含氧之氮氧化砂 層; 維持矽烷與氨氣之流量’並遞減一氧化二氮之流量’ 持續進行該加強型電發化學氣相沈積製程以在該富含氧之 氮氧化矽層上形成一氮氧化矽堆疊層;以及 維持矽烷與氨氣之流量,但不提供任何一氧化二氮’ 持續進行該加強型電漿化學氣相沈積製程’以在該氮氧化 矽堆疊層上形成一富含氮氧化矽層。 如申請專利範圍第>ί項所述之半導體元件之圖案 轉移的方法,其中,形成該富含氧之氮氧化矽層之該加強 型電漿化學氣相沈積製程中’該矽烷之流量約爲每分鐘150 立方公分,該氨氣之流量約爲每分鐘2公升’該—氧化二 氮氣體之流量約爲每分鐘升。 ΐ4<:κ.如申請專利範圍第項所述之半導體元件之圖案 轉移的方法,其中形成該氮氧化矽堆疊層之該加強型電獎 化學氣相沈積製程中,一氧化二氮氣體之流量由每分鐘2 公升開始遞減。 本紙張尺度逋用中困國家標率(CNS )八4規格(210X297公釐) (請先閲讀背面之注^^項再填寫本頁) 訂- 經濟部中央標準局員工消費合作社印製 434685 5496twf.doc/008 A8 B8 C8 D8 經濟部中央揉隼局貝工消費合作社印策 、申請專利範圍 1. 一種抗反射層之結構,包括: 一富含氧之氮氧化矽層; 一富含氮之氮氧化矽層;以及 一氮氧化矽堆疊層介於該富含氧之氮氧化矽層與該富 含氮之氮氧化矽層之間。 2. 如申請專利範圍第1項所述之抗反射層之結構, 其中,該氮氧化矽堆疊層中愈接近該富含氧之氮氧化矽層 之處其氧含量愈高,愈接近該富含氮之氮氧化矽層之處其 氮含量愈高。 3. 如申請專利範圍第1項所述之抗反射層之結構, 其中,該富含氧之氮氧化矽層、該富含氮之氮氧化矽層與 該氮氧化矽堆疊層係以一加強型電漿化學氣相沉積製程所 形成者。 4. 如申請專利範圍第3項所述之抗反射層之結構, 其中,該加強型電漿化學氣相沉積製程所使用之氣體包括 矽烷、氨氣及一氧化二氮。 5. 如申請專利範圍第4項所述之抗反射層之結構, 其中,該加強型電漿化學氣相沉積製程係維持矽烷與氨氣 之流量,改變一氧化二氮氣體之流量以形成該該抗反射層 之結構。 7. —種抗反射層之製造方法,該方法包括: 使用矽烷、氨氣及一氧化二氮爲反應氣體,進行一加 強型電漿化學氣相沈積製程,以形成一富含氧之氮氧化砂 層; 維持砂院與氛氣之流量,並遞減一氧化二氮之流量, I 訂 線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標率(CNS ) A4規格(210X297公釐) 4346 85 5496twf.doc/008 A8 B8 C8 D8 經濟部中央栋準局員工消費合作社印策 六、申請專利範圍 持續進行該加強型電漿化學氣相沈積製程以在該富含氧之 氮氧化矽層上形成一氮氧化矽堆疊層;以及 維持矽烷與氨氣之流量,但不提供任何一氧化二氮, 持續進行該加強型電漿化學氣相沈積製黾\以在該氮氧化 矽堆疊層上形成一富含氮之氮氧化矽層1 8. 如申請專利'範圍第7項所述層之製 造方法,其中,形成該富含氧之氮氧化矽層$^¥強型電 漿化學氣相沈積製程中,該矽烷之流量約爲每分150立 方公分,該氣氣之流量約爲每分鐘2公升,該一氧化二氮 氣體之流量約爲每分鐘2公升。 9. 如申請專利範圍第8項所述之抗反射層之製造方 法,其中形成該氮氧化矽堆疊層之該加強型電漿化學氣相 沈積製程中,一氧化二氮氣體之流量由每分鐘2公升開始 遞減。 10. —種半導體元件之圖案轉移的方法,該方法包 括· 提供一基材; 在該基材上形成一材質層,該材質層具有反光性質; 在該反光材質上形成一氮氧化矽漸層 在該氮氧化矽漸層上形成一光阻層;以及 進行一微影製程將圖案轉移至該光阻層上。 11. 如申請專利範圍第10項所述之半導體元件之圖 案轉移的方法,其中形成該氮氧化矽漸層的方法係使用一 加強型電漿化學氣相沈積製程。 12. 如申請專利範圍第10項所述之半導體元件之圖案 11 --------1裝------訂------線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國圃家揉率(CNS ) A4規格(210X297公釐) 4346 ㈣ 5 49 6twf. doc/OO 8 8 8 8 8 ABCD 經濟部中央標率局員工消費合作社印製 六、申請專利範圍 轉移的方法,其中該加強型電漿化學氣相沈積製程係使用 矽烷、氨氣及一氧化二氮氣體作爲反應氣體。 13. 如申請專利範圍第10項所述之半導體元件之圖案 轉移的方法,其中該氮氧化矽漸層的形成方法包括: 使用矽烷、氨氣及一氧化二氮爲反應氣體,進行一加 強型電漿化學氣相沈積製程,以形成一富含氧之氮氧化矽 層; 維持矽烷與氨氣之流量,並遞減一氧化二氮之流量, 持續進行該加強型電漿化學氣相沈積製程以在該富含氧之 氮氧化矽層上形成一氮氧化矽堆疊層;以及 維持矽烷與氨氣之流量,但不提供任何一氧化二氮, 持續進行該加強型電漿化學氣相沈積製程,以在該氮氧化 矽堆疊層上形成一富含氮之氮氧化矽層。 14. 如申請專利範圍第13項所述之半導體元件之圖案 轉移的方法,其中,形成該富含氧之氮氧化矽層之該加強 型電漿化學氣相沈積製程中,該矽烷之流量約爲每分鐘150 立方公分,該氨氣之流量約爲每分鐘2公升,該一氧化二 氮氣體之流量約爲每分鐘2公升。 15. 如申請專利範圍第13項所述之半導體元件之圖案 轉移的方法,其中形成該氮氧化矽堆疊層之該加強型電漿 化學氣相沈積製程中,一氧化二氮氣體之流量由每分鐘2 公升開始遞減。 ---.------裝------訂-----線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用t國國家標準(CNS ) A4規格(2丨OX297公釐) A8 B8 C8 D8 p 靜 f.doc")08 六、申請專利軌圍 1. 一種抗反射層之結構,包括: 一富含氧之氮氧化砂層; 一富含氮之氮氧化矽層;以及 •氮氧化矽堆疊層介於該富含氧之氮氧化矽層與該富 含氮之氮氧化矽層之間。 2. 如申請專利範圍第1項所述之抗反射層之結構, 其中,該氮氧化矽堆疊層中愈接近該富含氧之氮氧化矽層 之處其氧含量愈高,愈接近該富含氮之氮氧化矽層之處其 氮含量愈高。 3. 如申請專利範圍第〗項所述之抗反射層之結構, 其中,該富含氧之氮氧化矽層、該富含氮之氮氧化矽層與 該氮氧化矽堆疊層係以一加強型電漿化學氣相沉積製程所 形成者。 4. 如申請專利範圍第3項所述之抗反射層之結構, 其中,該加強型電漿化學氣相沉積製程所使用之氣體包括 矽烷、氨氣及一氧化二氮。 5. 如申請專利範圍第4項所述之抗反射層之結構, 其中,該加強型電漿化學氣相沉積製程係維持矽烷與氨氣 之流量,改變一氧化二氮氣體之流量以形成該該抗反射層 之結構。 6. —種抗反射層之製造方法,該方法包括: 使用矽烷、氨氣及一氧化二氮爲反應氣體,進行一加 強型電漿化學氣相沈積製程,以形成一富含氧之氮氧化矽 層; 維持矽烷與氨氣之流量,並遞減一氧化二氮之流量, 1 Q 」------:-------it, . I ..------訂---------線 {請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用令囤國家標準(CNS)A4規格(210 X 297公釐) 4 3 4 六、申請專利範圍 持續進行該加強型電漿化學氣相沈積製程以在該富含氧之 氮氧化矽層上形成一氮氧化矽堆疊層;以及 維持矽烷與氨氣之流量,但不提供任何一氧化二氮, 持續進行該加強型電漿化學氣相沈積製程,以在該氮氧化 矽堆疊層上形成一富含氮之氮氧化矽層。 7. 如申請專利範圍第6項所述之抗反射層之製造方 法,其中,形成該富含氧之氮氧化砂層之該加強型電紫化 學氣相沈積製程中,該矽烷之流量約爲每分鐘150立方公 分,該氨氣之流量約爲每分鐘2公升,該一氧化二氮氣體 之流量約爲每分鐘2公升。 8. 如申請專利範圍第7項所述之抗反射層之製造方 法,其中形成該氮氧化矽堆疊層之該加強型電漿化學氣相 沈積製程中,一氧化二氮氣體之流量由每分鐘2公升開始 遞減。 9. 一種半導體元件之圖案轉移的方法,該方法包 括: 提供一基材; 在該基材上形成一材質層,該材質層具有反光性質: 在該反光材質上形成一氮氧化矽漸層 在該氮氧化矽漸層上形成一光阻層:以及 進行一微影製程將圖案轉移至該光阻層上。 10. 如申請專利範圍第9項所述之半導體元件之圖案 轉移的方法,其中形成該氮氧化矽漸層的方法係使用一加 強型電漿化學氣相沈積製程。 11. 如申請專利範圍第9項所述之半導體元件之圖案 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) c請先閱讀背面之ii意事項再1*本頁i ^°丨. 經濟部智慧財產局員工消費合作杜印制衣ABCD VI. Application Patent Scope 1. A structure of an anti-reflection layer, comprising: an oxygen-rich silicon oxynitride layer; a nitrogen-rich silicon oxynitride layer; and a silicon oxynitride stacked layer between the oxygen-rich layer Between the silicon oxynitride layer and the nitrogen-rich silicon oxynitride layer. 2. The structure of the anti-reflection layer according to item 1 of the scope of the patent application, wherein the closer the silicon oxynitride stack layer is to the oxygen-rich silicon oxynitride layer, the higher the oxygen content is, the closer it is to the rich The nitrogen-containing silicon oxide layer has a higher nitrogen content. 3. The structure of the anti-reflection layer according to item 1 of the scope of the patent application, wherein the oxygen-rich silicon oxynitride layer, the nitrogen-rich silicon oxynitride layer, and the silicon oxynitride stacked layer are reinforced by a Formed by a plasma CVD process. 4. The structure of the anti-reflection layer according to item 3 of the scope of the patent application, wherein the gases used in the enhanced plasma chemical vapor deposition process include sand courtyard, gas and nitrous oxide. The policy of the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling this page) 5. The structure of the anti-reflection layer as described in item 4 of the patent application scope The phase deposition process maintains the flow of silane and ammonia gas, and changes the flow of nitrous oxide gas to form the structure of the anti-reflection layer. 4) A method for manufacturing an anti-reflection layer, the method comprising: performing an enhanced plasma chemical vapor deposition process using silane, ammonia, and nitrous oxide as reaction gases to form an oxygen-rich nitrogen oxidation policy Layer; maintain the flow rate of sand yard and gas, and decrease the flow rate of nitrous oxide, this paper size uses China National Standard (CNS) A4 specification (210X297 mm) 4346 85 5496twf.doc / 008 8 8 8 8 The scope of the ABCD application for patent continues the enhanced plasma chemical vapor deposition process to form a silicon oxynitride stack on the oxygen-rich silicon oxynitride layer; and maintains the flow of silane and ammonia gas, but does not provide any Dinitrogen oxide is continuously produced by the enhanced plasma chemical vapor deposition to form a nitrogen-rich silicon oxynitride layer on the silicon oxynitride stacked layer, as described in the method for manufacturing a layer described in the scope of the patent application, wherein In the formation of the oxygen-enriched nitrogen-oxidized 'thorium-enhanced plasma chemical vapor deposition process, the flow rate of the silane is about ¥ 150 cm3, and the flow rate of the ammonia gas is about 2 liters per minute. oxygen The flow rate of the dinitrogen gas is about 2 liters per minute + $: ¾ as described in the scope of patent application; the manufacturing method of the anti-reflection layer, wherein the enhanced plasma chemical vapor deposition process of forming the silicon oxynitride stacked layer In the process, the flow rate of the nitrogen monoxide gas decreases from 2 liters per minute. L %% A method for pattern transfer of semiconductor components. This method package (please read the precautions on the back before filling out this page) includes a substrate printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs; A material layer having reflective properties; forming a silicon oxynitride gradient on the reflective material to form a photoresist layer on the silicon oxynitride gradient; and performing a lithography process to transfer the pattern to the light On the resistance layer. MX. The method for pattern transfer of a semiconductor device according to item Θ of the patent application scope, wherein the method for forming the silicon oxynitride gradient layer uses an enhanced plasma chemical vapor deposition process. Y The pattern of the semiconductor element as described in the scope of application for patent; item ^ This paper size is applicable to China National Standard (CNS) A4 (210X 297 mm) 43 ^ 685 5496twf.doc / 008 A8 B8 C8 DB Sand Academy, Atmosphere and monoxide > Nitrogen is used as a reaction gas.丨] ^ > §c The pattern of the semiconductor element described in the patent application table 6. The method of patent application range transfer, wherein the enhanced plasma chemical vapor deposition process uses the transfer method, wherein the nitrogen The formation method of the silicon oxide gradient includes: using silane, ammonia, and nitrous oxide as the reaction gases to perform an enhanced plasma chemical vapor deposition process to form an oxygen-rich nitrogen oxide sand layer; maintaining the silane and ammonia The flow of gas 'and decreasing the flow of nitrous oxide' continued the enhanced electro-chemical chemical vapor deposition process to form a silicon oxynitride stacked layer on the oxygen-rich silicon oxynitride layer; and maintaining silane and ammonia The flow of gas, but does not provide any nitrous oxide 'continuously performs the enhanced plasma chemical vapor deposition process' to form a nitrogen-rich silicon oxide layer on the silicon oxynitride stacked layer. The method for pattern transfer of a semiconductor device according to item > of the scope of the patent application, wherein the flow rate of the silane in the enhanced plasma chemical vapor deposition process for forming the oxygen-rich silicon oxynitride layer is about At 150 cubic centimeters per minute, the flow rate of the ammonia gas is about 2 liters per minute. The flow rate of the nitrogen dioxide gas is about 1 liter per minute. ΐ4: κ. The method for pattern transfer of a semiconductor device as described in item 1 of the scope of the patent application, wherein the flow rate of the nitrous oxide gas in the enhanced electro-chemical chemical vapor deposition process for forming the silicon oxynitride stacked layer Decrease from 2 liters per minute. This paper uses the National Standards of Standards for Difficulties (CNS) 8-4 specification (210X297 mm) (please read the note ^^ on the back before filling out this page) Order-Printed by the Consumer Standards Cooperative of the Central Bureau of Standards, Ministry of Economic Affairs 434685 5496twf .doc / 008 A8 B8 C8 D8 Printed by the Central Government Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperatives, patent application scope 1. An anti-reflective layer structure, including: an oxygen-rich silicon oxide layer; a nitrogen-rich layer The silicon oxynitride layer; and the silicon oxynitride stack layer are interposed between the oxygen-rich silicon oxynitride layer and the nitrogen-rich silicon oxynitride layer. 2. The structure of the anti-reflection layer according to item 1 of the scope of the patent application, wherein the closer the silicon oxynitride stack layer is to the oxygen-rich silicon oxynitride layer, the higher the oxygen content is, the closer it is to the rich The nitrogen-containing silicon oxide layer has a higher nitrogen content. 3. The structure of the anti-reflection layer according to item 1 of the scope of the patent application, wherein the oxygen-rich silicon oxynitride layer, the nitrogen-rich silicon oxynitride layer, and the silicon oxynitride stacked layer are reinforced by a Formed by a plasma CVD process. 4. The structure of the anti-reflection layer according to item 3 of the scope of patent application, wherein the gases used in the enhanced plasma chemical vapor deposition process include silane, ammonia and nitrous oxide. 5. The structure of the anti-reflection layer as described in item 4 of the scope of the patent application, wherein the enhanced plasma chemical vapor deposition process maintains the flow of silane and ammonia gas, and changes the flow of nitrous oxide gas to form the The structure of the anti-reflection layer. 7. A method for manufacturing an anti-reflection layer, the method includes: using silane, ammonia, and nitrous oxide as reaction gases to perform an enhanced plasma chemical vapor deposition process to form an oxygen-rich nitrogen oxide Sand layer; Maintain the flow rate of sand yard and atmosphere, and decrease the flow rate of nitrous oxide, I order (please read the precautions on the back before filling this page) This paper size applies to China National Standard (CNS) A4 specification ( (210X297 mm) 4346 85 5496twf.doc / 008 A8 B8 C8 D8 Employee Consumer Cooperative Cooperative of the Central Bureau of the Ministry of Economic Affairs Imprint 6. The scope of patent application continues to carry out the enhanced plasma chemical vapor deposition process in the oxygen-rich A silicon nitride oxide layer is formed on the silicon oxynitride layer; and the flow of silane and ammonia gas is maintained, but does not provide any nitrous oxide, and the enhanced plasma chemical vapor deposition is continuously performed to oxidize the nitrogen A nitrogen-rich silicon oxynitride layer is formed on the silicon stack layer. 8. The manufacturing method of the layer described in item 7 of the scope of the patent application, wherein the oxygen-rich silicon oxynitride layer is formed. Chemical gas In the phase deposition process, the flow rate of the silane is about 150 cubic centimeters per minute, the flow rate of the gas is about 2 liters per minute, and the flow rate of the nitrous oxide gas is about 2 liters per minute. 9. The method for manufacturing an anti-reflection layer as described in item 8 of the scope of the patent application, wherein in the enhanced plasma chemical vapor deposition process for forming the silicon oxynitride stacked layer, the flow rate of the nitrous oxide gas is from one minute 2 liters started to decrease. 10. A method for pattern transfer of a semiconductor element, the method comprising: providing a substrate; forming a material layer on the substrate, the material layer having reflective properties; and forming a silicon oxynitride gradient on the reflective material Forming a photoresist layer on the silicon oxynitride gradient layer; and performing a lithography process to transfer a pattern onto the photoresist layer. 11. The method for pattern transfer of a semiconductor device as described in item 10 of the scope of patent application, wherein the method for forming the silicon oxynitride gradient layer uses an enhanced plasma chemical vapor deposition process. 12. As for the pattern 11 of the semiconductor element as described in item 10 of the scope of patent application -------- 1 package -------- order ------ line (Please read the precautions on the back before (Fill in this page) This paper size is applicable to the Chinese garden home kneading rate (CNS) A4 specification (210X297 mm) 4346 ㈣ 5 49 6twf. Doc / OO 8 8 8 8 8 ABCD A method for transferring the scope of a patent application, wherein the enhanced plasma chemical vapor deposition process uses silane, ammonia gas, and nitrous oxide gas as a reaction gas. 13. The method for pattern transfer of a semiconductor device as described in item 10 of the scope of patent application, wherein the method for forming the silicon oxynitride gradient comprises: using silane, ammonia, and nitrous oxide as reaction gases to perform a reinforced type Plasma chemical vapor deposition process to form an oxygen-rich silicon oxynitride layer; maintain the flow of silane and ammonia gas, and decrease the flow of nitrous oxide, and continue the enhanced plasma chemical vapor deposition process to Forming a silicon oxynitride stacked layer on the oxygen-rich silicon oxynitride layer; and maintaining the flow of silane and ammonia gas without providing any nitrous oxide, and continuing the enhanced plasma chemical vapor deposition process, A nitrogen-rich silicon oxynitride layer is formed on the silicon oxynitride stacked layer. 14. The method for pattern transfer of a semiconductor device as described in item 13 of the scope of patent application, wherein in the enhanced plasma chemical vapor deposition process for forming the oxygen-rich silicon oxynitride layer, the flow rate of the silane is approximately At 150 cubic centimeters per minute, the flow rate of the ammonia gas is about 2 liters per minute, and the flow rate of the nitrous oxide gas is about 2 liters per minute. 15. The method for pattern transfer of a semiconductor device according to item 13 of the scope of the patent application, wherein in the enhanced plasma chemical vapor deposition process for forming the silicon oxynitride stacked layer, the flow rate of the nitrous oxide gas is Minutes 2 liters began to decrease. ---.------ Installation ------ Order ----- line (Please read the notes on the back before filling this page) This paper size is applicable to National Standards (CNS) A4 (2 丨 OX297mm) A8 B8 C8 D8 p static f.doc ") 08 6. Application for patent rail 1. A structure of anti-reflection layer, including: an oxygen-rich nitrogen oxide sand layer; a nitrogen-rich sand layer A silicon oxynitride layer; and a silicon oxynitride stack layer between the oxygen-rich silicon oxynitride layer and the nitrogen-rich silicon oxynitride layer. 2. The structure of the anti-reflection layer according to item 1 of the scope of the patent application, wherein the closer the silicon oxynitride stack layer is to the oxygen-rich silicon oxynitride layer, the higher the oxygen content is, the closer it is to the rich The nitrogen-containing silicon oxide layer has a higher nitrogen content. 3. The structure of the anti-reflection layer as described in the item of the scope of the patent application, wherein the oxygen-rich silicon oxynitride layer, the nitrogen-rich silicon oxynitride layer, and the silicon oxynitride stacked layer are reinforced by a Formed by a plasma CVD process. 4. The structure of the anti-reflection layer according to item 3 of the scope of patent application, wherein the gases used in the enhanced plasma chemical vapor deposition process include silane, ammonia and nitrous oxide. 5. The structure of the anti-reflection layer as described in item 4 of the scope of the patent application, wherein the enhanced plasma chemical vapor deposition process maintains the flow of silane and ammonia gas, and changes the flow of nitrous oxide gas to form the The structure of the anti-reflection layer. 6. A method for manufacturing an anti-reflection layer, the method includes: using silane, ammonia and nitrous oxide as reaction gases to perform an enhanced plasma chemical vapor deposition process to form an oxygen-rich nitrogen oxide Silicon layer; maintain the flow of silane and ammonia gas, and decrease the flow of nitrous oxide, 1 Q ”------: ------- it,. I ..------ order --------- Line {Please read the precautions on the back before filling this page) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Employee Consumer Cooperatives This paper has a national standard (CNS) A4 specification (210 X 297) (Mm) 4 3 4 6. The scope of patent application continues to carry out the enhanced plasma chemical vapor deposition process to form a silicon oxynitride stacked layer on the oxygen-rich silicon oxynitride layer; and to maintain the silane and ammonia gas. Flow, but without providing any nitrous oxide, the enhanced plasma chemical vapor deposition process is continued to form a nitrogen-rich silicon oxynitride layer on the silicon oxynitride stacked layer. 7. The method for manufacturing an anti-reflection layer as described in item 6 of the scope of patent application, wherein in the enhanced electro-violet chemical vapor deposition process for forming the oxygen-rich oxynitride sand layer, the flow rate of the silane is approximately 150 cubic centimeters per minute, the flow rate of the ammonia gas is about 2 liters per minute, and the flow rate of the nitrous oxide gas is about 2 liters per minute. 8. The method for manufacturing the anti-reflection layer according to item 7 in the scope of the patent application, wherein in the enhanced plasma chemical vapor deposition process for forming the silicon oxynitride stacked layer, the flow rate of the nitrous oxide gas is per minute 2 liters started to decrease. 9. A method for pattern transfer of a semiconductor element, the method comprising: providing a substrate; forming a material layer on the substrate, the material layer having reflective properties: forming a silicon oxynitride gradient layer on the reflective material; A photoresist layer is formed on the silicon oxynitride gradient layer; and a lithography process is performed to transfer a pattern onto the photoresist layer. 10. The method for pattern transfer of a semiconductor device as described in item 9 of the scope of patent application, wherein the method for forming the silicon oxynitride gradient layer uses a reinforced plasma chemical vapor deposition process. 11. If the pattern of the semiconductor element described in item 9 of the scope of the patent application is applied, the paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm). C Please read the notice on the back and then 1 * this page i ^ ° 丨. Consumption cooperation between employees of the Intellectual Property Bureau of the Ministry of Economic Affairs 549r)twf.doc/Q08 4 3 4 6 8 5 、 經濟部智慧財產局員工消費合作社印製 申請專利範圍 轉移的方法,其中該加強型電漿化學氣相沈積製程係使用 矽烷、氨氣及一氧化二氮氣體作爲反應氣體。 (請先閱讀背面之注意事項再填寫本頁) Π.如申請專利範圍第9項所述之半導體元件之圖案 轉移的方法,其中該氮氧化矽漸層的形成方法包括: 使用矽烷、氨氣及一氧化二氮爲反應氣體,進行一加 強型電漿化學氣相沈積製程,以形成一富含氧之氮氧化矽 層; 維持矽烷與氨氣之流量,並遞減一氧化二氮之流量, 持續進行該加強型電漿化學氣相沈積製程以在該富含氧之 氮氧化矽層上形成一氮氧化矽堆疊層;以及 維持矽烷與氨氣之流量,但不提供任何一氧化二氮, 持續進行該加強型電漿化學氣相沈積製程,以在該氮氧化 矽堆疊層上形成一富含氮之氮氧化矽層。 13. 如申請專利範圍第12項所述之半導體元件之圖案 轉移的方法,其中,形成該富含氧之氮氧化矽層之該加強 型電漿化學氣相沈積製程中,該矽烷之流量約爲每分鐘150 立方公分,該氨氣之流量約爲每分鐘2公升,該一氧化二 氮氣體之流量約爲每分鐘2公升。 14. 如申請專利範圍第12項所述之半導體元件之圖案 轉移的方法,其中形成該氮氧化矽堆疊層之該加強型電漿 化學氣相沈積製程中,一氧化二氮氣體之流量由每分鐘2 公升開始遞減。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)549r) twf.doc / Q08 4 3 4 6 8 5 The method of transferring patent scope is printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, in which the enhanced plasma chemical vapor deposition process uses silane, ammonia and a Dinitrogen oxide gas was used as a reaction gas. (Please read the precautions on the back before filling this page) Π. The method for pattern transfer of semiconductor devices as described in item 9 of the scope of patent application, wherein the method for forming the silicon oxynitride gradient includes: using silane, ammonia And nitrous oxide as a reactive gas, an enhanced plasma chemical vapor deposition process is performed to form an oxygen-rich silicon oxynitride layer; maintaining the flow of silane and ammonia gas, and decreasing the flow of nitrous oxide, Continuing the enhanced plasma chemical vapor deposition process to form a silicon oxynitride stacked layer on the oxygen-rich silicon oxynitride layer; and maintaining the flow of silane and ammonia gas without providing any nitrous oxide, The enhanced plasma chemical vapor deposition process is continuously performed to form a nitrogen-rich silicon oxynitride layer on the silicon oxynitride stacked layer. 13. The method for pattern transfer of a semiconductor device according to item 12 of the scope of the patent application, wherein in the enhanced plasma chemical vapor deposition process for forming the oxygen-rich silicon oxynitride layer, the flow rate of the silane is approximately At 150 cubic centimeters per minute, the flow rate of the ammonia gas is about 2 liters per minute, and the flow rate of the nitrous oxide gas is about 2 liters per minute. 14. The method for pattern transfer of a semiconductor device as described in item 12 of the scope of the patent application, wherein in the enhanced plasma chemical vapor deposition process for forming the silicon oxynitride stacked layer, the flow rate of the nitrogen monoxide is Minutes 2 liters began to decrease. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW89102691A 2000-02-17 2000-02-17 Structure of anti-reflection coating and method for manufacturing the same TW434685B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89102691A TW434685B (en) 2000-02-17 2000-02-17 Structure of anti-reflection coating and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89102691A TW434685B (en) 2000-02-17 2000-02-17 Structure of anti-reflection coating and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW434685B true TW434685B (en) 2001-05-16

Family

ID=21658808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89102691A TW434685B (en) 2000-02-17 2000-02-17 Structure of anti-reflection coating and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TW434685B (en)

Similar Documents

Publication Publication Date Title
TW559862B (en) Etch pattern definition using a CVD organic layer as an anti-reflection coating and hardmask
CN103809369B (en) Photo blanks, photomask and preparation method thereof
US6429538B1 (en) Method for making a novel graded silicon nitride/silicon oxide (SNO) hard mask for improved deep sub-micrometer semiconductor processing
TW432530B (en) A semiconductor device having an anti-reflective layer and a method of manufacture thereof
US6429151B1 (en) Semiconductor wafer assemblies comprising silicon nitride, methods of forming silicon nitride, and methods of reducing stress on semiconductive wafers
TW582071B (en) Method for etching metal in a semiconductor
TW413865B (en) (Ge, Si)Nx anti-reflective layer and method for forming a pattern using the same
US6037276A (en) Method for improving patterning of a conductive layer in an integrated circuit
US6417559B1 (en) Semiconductor wafer assemblies comprising photoresist over silicon nitride materials
TW434685B (en) Structure of anti-reflection coating and method for manufacturing the same
TW448539B (en) Manufacturing method of semiconductor device and the semiconductor device using it
TW392206B (en) Oxynitride anti-reflective coating for a polysilicon substrate
TW518660B (en) Improved anti-reflection coating layer structure
KR20000006152A (en) Method for fabricating semiconductor devices
TW406363B (en) The method of forming the opening
TW408383B (en) The method of improving the degree of stability of the anti-reflection coating (ARC) film layer
TW509979B (en) Manufacturing method of multi-layered bottom anti-reflection coating
TW313701B (en) Manufacturing method of polysilicon conductive line
TW423051B (en) Method for reducing the reflection light in the photolithography process
White Planarization phenomena in multilayer resist processing
TW401599B (en) The method to improve the photolithography pattern of integrated circuit conductive layer
TW445543B (en) Surface treatment process for metal layer
TW382761B (en) Method of using a dielectric layer as a hard mask and an anti-reflection coating
TW414975B (en) Method of forming SiON layer
TW459035B (en) Etching gas

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent