TW432722B - A method for forming three dimensional poly-silicon layer on semiconductor chip - Google Patents
A method for forming three dimensional poly-silicon layer on semiconductor chip Download PDFInfo
- Publication number
- TW432722B TW432722B TW88120718A TW88120718A TW432722B TW 432722 B TW432722 B TW 432722B TW 88120718 A TW88120718 A TW 88120718A TW 88120718 A TW88120718 A TW 88120718A TW 432722 B TW432722 B TW 432722B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- polycrystalline silicon
- silicon layer
- substrate
- dielectric layer
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
I五、發明說明(I) 丨發明之領域 ; 本發明係提供一種形成三維空間之多晶矽層的方法, 1尤指一種於一半導體晶片上形成一浮置閘極的方法。 I背景說明 在積體電路的應用中’可抹除且可程式之唯讀記憶體 ;(erasable and programmable read only memory, .EPROM)、可電除且可程式之唯讀記憶體(eiectrjcaiiy erasable programmable read only memory, E2PROM)以 丨及快閃(f lash)記憶體’均為一種非揮發性記憶體 丨(non-volatile memory),其是利用高低不同^啟始電壓 ;(threshold voltage)來控制閑極的開關以達到記憶的功 ,使儲存在記憶體中的資料不會因電源中斷而受到影 ;響。 a 揮發性記憶體的問極結構,-般是被設計 為一,堆叠式閘極(stack —gate),其包含有一用來 荷的浮置閘極(£丨〇^丨7^宮^6),一 0N0(oxide-nitride-oxide)結構的介電層,以及— 制資料存取的控制閘極(contr〇1 gate)。所以記憶# :m容的原理:將,感λ電荷儲存於堆疊“極ΐ 五、發明說明(2) | . i 請參考圖一至圖四,圖一至圖四為習知製作一堆疊式 i 丨間極3 6的方法的剖面示意圖。習知製作一非揮發性記憶體I 之堆疊式閘極36的方法,是於一半導體晶片1 0上製作一雙| 丨晶格(twin cell)閘極。如圖一所示’半導體晶片1〇包含 1 有一矽基底1 2,至少二場氧化層1 4設於矽基底1 2上’二閘i 1氧化層1 6設於矽基底1 2表面之預定區域上且均位於二相鄰 i :場氧化層1 4之間,二第一多晶矽層1 8分別設於每—閘氧化 i_ I層1 6上,以及二氮矽層2 0分別設於每一第一多晶矽層1 8 | .上。 丨 如圖二所示,習知方法是先進行一離子佈植製程,於 :未被閘氧化層1 6以及場氧化層1 4覆蓋之矽基底1 2表面下摻 :雜離子。然後進行一高溫氧化製程,使該等摻雜之離子被 | 活化擴散,形成一預定深度之離子佈植層22,係用來作為 丨 一沒極(drain)或一源極(source)。同時,於每一離子佈 i 植層22之區域之石夕基底1 2表面上會長成(grow) —熱氧化層 _24’用來作為一埋藏式沒極與源極(buried drain and : source,BD/BS)。如圖三所示,隨後將氮矽層20完全去 丨 除’並於半導體晶片10表面之預定區域上分別形成二第二 : 多晶石夕層2 6。其中每一第一多晶石夕層1 8與覆蓋於其上之第 丨二多晶矽層2 6會形成一三維空間之多晶矽層2 8,用來作為 ; 丨該非揮發性記憶體之浮置閘極。 丨I. Description of the invention (I) 丨 Field of invention; The present invention provides a method for forming a polycrystalline silicon layer in a three-dimensional space, and 1 particularly a method for forming a floating gate on a semiconductor wafer. I background note in the application of integrated circuits' erasable and programmable read only memory (.EPROM), erasable and programmable read-only memory (eiectrjcaiiy erasable programmable read only memory (E2PROM) and flash memory are both non-volatile memory, which uses different threshold voltages (threshold voltage) to control The idle pole switch can achieve the function of memory, so that the data stored in the memory will not be affected by the power interruption. a The interrogation structure of volatile memory is generally designed as a stack-gate, which contains a floating gate (£ 丨 〇 ^ 丨 7 ^ 宫 ^ 6 for charging). ), A dielectric layer of a 0N0 (oxide-nitride-oxide) structure, and a control gate (contr01 gate) for controlling data access. So the principle of memory #: m capacity: store, sense λ charge in the stack. "V. Description of the invention (2) |. I Please refer to Figure 1 to Figure 4, Figure 1 to Figure 4 for making a stacked i. A schematic cross-sectional view of the method of the intermediate electrode 36. The method of making a stacked gate 36 of a non-volatile memory I is known, which is to make a pair on a semiconductor wafer 10 | 丨 twin cell gate As shown in Figure 1, 'the semiconductor wafer 10 includes 1 with a silicon substrate 12 and at least two field oxide layers 14 are provided on the silicon substrate 12' and the second gate i 1 oxide layer 16 is provided on the surface of the silicon substrate 12 The predetermined areas are all located between two adjacent i: field oxide layers 14; two first polycrystalline silicon layers 18 are provided on each of the gate oxide i_I layers 16 and two silicon nitride layers 20 respectively. It is set on each of the first polycrystalline silicon layers 1 8 |. 丨 As shown in FIG. 2, the conventional method is to first perform an ion implantation process on: the non-gate oxide layer 16 and the field oxide layer 1 4 The covered silicon substrate is doped with hetero ions under the surface of the substrate 2 and then subjected to a high-temperature oxidation process so that the doped ions are activated and diffused to form a predetermined depth of ion. The implantation layer 22 is used as a drain or a source. At the same time, the surface of the stone substrate 12 in the area of each ion implantation layer 22 will grow. —The thermal oxide layer_24 'is used as a buried drain and source (BD / BS). As shown in FIG. 3, the silicon-nitrogen layer 20 is then removed and removed to the semiconductor Two second and second polysilicon layers 26 are formed on predetermined areas on the surface of the wafer 10. Each of the first polycrystalline silicon layers 18 and the second polycrystalline silicon layer 26 overlying them form a three-dimensional structure. The space polycrystalline silicon layer 28 is used as; 丨 the floating gate of the non-volatile memory. 丨
第6頁 !五、發明說明(3) 丨 如圖四所示,隨後於每一浮置閘極表面上形成一由 丨 ONO (oxide-nitride-oxide)結構所組成的介電層3〇,其 :包含有一第一氧化層(未顯示),一氮化層(未顯示)設於第 丨一氧化層上,以及一第二氧化層(未顯示)設於氮化層上。 最後再於半導體晶片1 〇表面上形成一第三多晶石夕層32,使 ;其覆蓋住預定區域内之介電層30與熱氡化層24的表面,係 用來作為該非揮發性記憶體之控制閘極。 i : 如此’浮置閘極、介電層3 0以及控制閘極便構成該非 揮發性記憶體之堆疊式閘極3 6,而位於二場氧化層之間的 丨二堆疊式閘極3 6,則形成雙晶格閘極。當堆疊式閘極之控 |制閘極上被加上一高電壓時,汲極將會經歷載子倍增Page 6! V. Description of the invention (3) 丨 As shown in Figure 4, a dielectric layer composed of 丨 ONO (oxide-nitride-oxide) structure is subsequently formed on the surface of each floating gate. It includes a first oxide layer (not shown), a nitride layer (not shown) provided on the first oxide layer, and a second oxide layer (not shown) provided on the nitride layer. Finally, a third polycrystalline silicon layer 32 is formed on the surface of the semiconductor wafer 10 so as to cover the surfaces of the dielectric layer 30 and the thermally-cured layer 24 in a predetermined area, and is used as the non-volatile memory. Control gate of the body. i: In this way, the floating gate, the dielectric layer 30, and the control gate constitute the stacked gate 36 of the non-volatile memory, and the two stacked gates 36 are located between the two field oxide layers. Then, a double-lattice gate is formed. When a high voltage is applied to the control of the stacked gate, the drain will experience carrier multiplication.
• I (Carrier Multiplication)的現象而產生熱電子。其中 | :一部份的熱電子將會橫越(transverse)閘氧化層16並射入 | I浮置閘極中,使浮置閘極帶有電荷。而這些由熱電子所提 i 供的電荷,會將因為周遭介電層3 0與閘氧化層16而陷於浮 | 置閘極中,便完成了資料的存入。 ;• I (Carrier Multiplication) phenomenon generates thermoelectrons. Among them: a part of the hot electrons will cross the gate oxide layer 16 and be injected into the | I floating gate, so that the floating gate will be charged. And these charges provided by the hot electron i will be trapped in the floating | because of the surrounding dielectric layer 30 and the gate oxide layer 16, and the data storage is completed. ;
II
| I 由於習知之製程方法是利用高溫熱氧化製程,以於矽 基底12表面上形成熱氧化層24用來作為BD/BS。這將使得 丨 熱氧化層2 4的厚度受到兩端之氮矽層2 0的箝制而產生烏喙 :(bird’ s beak)現象,進而造成熱氧化層24的厚度變得非 丨 i常地不均勻,並會破壞矽基底1 2表面的晶格結構,大幅影 1 響半導體晶片10之堆疊式閘極3 6的可靠度。此外,用來形 || I Because the conventional manufacturing method is a high-temperature thermal oxidation process, a thermal oxidation layer 24 is formed on the surface of the silicon substrate 12 for use as a BD / BS. This will cause the thickness of the thermal oxide layer 24 to be clamped by the nitrogen silicon layer 20 at both ends to produce a bird's beak phenomenon, which will cause the thickness of the thermal oxide layer 24 to become abnormal. It is non-uniform and will damage the lattice structure on the surface of the silicon substrate 12, which greatly affects the reliability of the stacked gate 36 of the semiconductor wafer 10. In addition, used to shape |
第7頁Page 7
!五、發明說明(4) 丨成熱氧化層24的高溫熱製程亦會過度趨入該等摻雜於汲極 與源極中的離子,進而相對地縮短了堆疊式閘極3 6下方的 I ! 通道長度(channel length),甚至容易造成汲極與源極間 ί發生不正常的電性貫通(punch thought),嚴重影響堆疊 ί式閘極3 6的電性表現,降低整個半導體產品的製程良率 (yieldrate)。 i .發明概述 I 因此,本發明之主要目的即在於提供一種製作三維空 i :間之多晶矽層的方法,以製備非揮發性記憶體之堆疊式閘 丨極。如此,不但可避免高溫熱製程所導致之不均勻厚度的 i ί BD/BS,而且能精確地控制每一個形成於丰導體晶片上之 i ;堆疊式閘極的通道長度以及BD/PS的厚度,進而有效码縮 | 小各個元件尺t寸,並媸加該等元件的可靠廑。此外,本發 丨 !V. Explanation of the invention (4) 丨 The high-temperature thermal process that forms the thermal oxidation layer 24 will also excessively penetrate into the ions doped in the drain and source, thereby shortening the stacked gate 36 below relatively. I! Channel length can even cause abnormal electrical punching between the drain and source, which seriously affects the electrical performance of the stacked gate 36 and reduces the overall semiconductor product. Process yield (yieldrate). i. Summary of the Invention I Therefore, the main object of the present invention is to provide a method for fabricating a three-dimensional space i: a polycrystalline silicon layer to prepare a non-volatile memory stacked gate. In this way, not only the uneven thickness i BD / BS caused by the high temperature thermal process can be avoided, but also each i formed on the abundant conductor wafer can be accurately controlled; the channel length of the stacked gate and the BD / PS Thickness, which effectively reduces the size of each component, and increases the reliability of these components. In addition, this post 丨!
明之製作三維空間之多晶矽層的方法更可於半導體晶片上 IMing Zhi's method for making polycrystalline silicon layers in three-dimensional space is more suitable for semiconductor wafers.
- I 形成一三維空間之立體結構的堆疊式閛極,進而增加後續 :形成於其,上之0 N 0介電層與控制閘極的接觸面積,使得堆 疊式閘極的㉟極福合率(gate coupling ratio, GCR)提高 約6 5〜7 0% ,大幅提昇該等半導體產品的電性表現。 i 圖示之簡單說明 i 圖一至圖四為習知製作一堆疊式閘極的方法的剖面示 丨 :意圖。 | 圖五至圖九為本發明形成一三維空間之多晶矽層的方 i-I forms a three-dimensional three-dimensional stacked stack pole, which further increases the following: the contact area of the 0 N 0 dielectric layer formed on the control gate and the control gate, so that the stack gate's pole-folding ratio (Gate coupling ratio, GCR) is increased by about 65 to 70%, which greatly improves the electrical performance of these semiconductor products. i Brief description of the diagram i Figures 1 to 4 are cross-sectional views of a conventional method for manufacturing a stacked gate 丨: Intention. Figures 5 to 9 show how to form a three-dimensional polycrystalline silicon layer in the present invention.
笫8頁 '^7 ^ 五、發明說明(5) !法示意圖。 圖十 為 形 成於 圖 九 所 示 之 半導 體 晶 片 上 之 堆 疊 式 閘 極 的 結 構示 意 圖 α : 圖十 一 至 圖十 為 本 發 明 另一 種 形 成 三 維 空 間 之 多 晶 矽 1 層 的方 法 示 意圖 0 1 圖示 之 符 號說 明 40 半導 體 晶 片 42 基 底 44 場氧 化 層 46 閘 氧 化 層 : 48 第一 多 晶 矽 層 50 犧 牲 層 52 摻雜 區 54、 72 介 電 層 5 6' 76 孔洞 58> 78 第 二 多 晶 矽 層 60 > 80 多晶 矽 層 62 ΟΝΟ結構的介電層 : 64 第三 介 電 層 66 堆 疊 式 閘 極 74 保護 層 發 明 之詳 細 說 明 請參 考 圖 五至 圖 九 圖 五 至圖 九 為 本 發 明 形 成 三 維 空 間 之 多晶 矽 層 6 0的 方 法 示 意 圖 。本 發 明 方 法 係 提 供 — 種 於 半 導體 晶 片 4 0上 形 成 — 三 維 空間 之 多 晶 矽 層 6 0的 方 法 j :用 來 作為 — 非 揮發 性 記 憶 體 的 浮置 閘 極 0 如 圖 五 所 示 半 丨導 體 晶片 包 含 有一 基 底 42, 至 少二 場 氧 化 層 4 4設 於 基 底 42 上 > 二閘 氧 化 層4 6設 於 基 底 4 2表面 之 預 定 1¾ 域 上 且 位 於 -- 相 鄰 場乳 化 層 4 4之 間 剖 面 近似 方 形 之 第 多 晶 矽 層 48笫 Page 8 '^ 7 ^ V. Description of the invention (5)! Fig. 10 is a schematic diagram of the structure of a stacked gate formed on the semiconductor wafer shown in Fig. 9 α: Figs. 11 to 10 are schematic diagrams of another method for forming a three-dimensional polycrystalline silicon 1 layer of the present invention. Description 40 semiconductor wafer 42 substrate 44 field oxide layer 46 gate oxide layer: 48 first polycrystalline silicon layer 50 sacrificial layer 52 doped region 54, 72 dielectric layer 5 6 '76 hole 58> 78 second polycrystalline silicon layer 60 > 80 Polycrystalline silicon layer 62 Onion structured dielectric layer: 64 Third dielectric layer 66 Stacked gate 74 Protective layer For a detailed description of the invention, please refer to FIG. 5 to FIG. 9 FIG. 5 to FIG. Schematic diagram of the method of polycrystalline silicon layer 60. The method of the present invention provides a method for forming a polycrystalline silicon layer 60 in a three-dimensional space on a semiconductor wafer 40. The method is used as a floating gate 0 of a non-volatile memory. Contains a substrate 42. At least two field oxide layers 4 4 are provided on the substrate 42. A second gate oxide layer 4 6 is provided on a predetermined 1¾ area on the surface of the substrate 4 2 and is located in a section between the adjacent field emulsified layer 4 4 Polycrystalline silicon layer approximately square 48
第9頁 :五、發明說明(6) 丨分別設於二閘氧化層46的表面之上,二犧牲層50設於每一 第一多晶矽層4 8的正上方,以及複數個摻雜區5.2分別設於 第一多晶碎層48之左右兩側的基底42表面’用來作為該浮 丨置閘極的源極與汲極。其中基底42是由矽元素所構成,而 |犧牲層5 0係由氮矽化合物所構成, I 如圖六所示,本發明方法是先以一高密度電漿化學氣 相沈積(high-density plasma chemical vapor deposition, HDP CVD)方法,於半導體晶片40表面沈積一 由二氧化矽所構成之介電層54,使其覆蓋於基底42以及犧 牲層50上方,且形成於基底42表面之介電層54的厚度大於 :形成犧牲層5 0頂端的高度。如圖七所示,接著進行一化學 機械研磨(chemical mechanical polishing, CMP)製程, 以完全去除犧牲層5 0上方之介電層54’並同時水平地向下 去除基底4 2表面之介電層5 4至一預定厚度。 如圖八所示’然後完全去除第一多晶矽層48上方之犧 牲層50,使得每一個第一多晶矽層4δ之頂面與其周圍相 壤之介電層5 4分別構成—孔洞5 6 ^如圖九所示,隨後於 ;導體晶片4 0表面之一特定區域上形成一第二多晶矽層5 使其填滿於孔洞5 6之内,並使第二多晶矽層5 8得以 :第-多晶石夕層48,以用來作為―浮置問極,完成三 =多晶石夕層60的製作。其中位於第-多晶砂,48兩側: 介電層54,則疋用來作為一埋藏式汲極或源極(buriedPage 9: V. Description of the invention (6) 丨 respectively disposed on the surface of the second gate oxide layer 46, two sacrificial layers 50 are disposed directly above each first polycrystalline silicon layer 48, and a plurality of doping The regions 5.2 are respectively provided on the surfaces 42 of the substrate 42 on the left and right sides of the first polycrystalline chip layer 48 and serve as a source and a drain of the floating gate. The substrate 42 is composed of a silicon element, and the sacrificial layer 50 is composed of a nitrogen silicon compound. As shown in FIG. 6, the method of the present invention first uses a high-density plasma chemical vapor deposition (high-density). plasma chemical vapor deposition (HDP CVD) method, a dielectric layer 54 made of silicon dioxide is deposited on the surface of the semiconductor wafer 40 so as to cover the substrate 42 and the sacrificial layer 50 and to form a dielectric on the surface of the substrate 42 The thickness of the layer 54 is greater than the height of the top of the sacrificial layer 50. As shown in FIG. 7, a chemical mechanical polishing (CMP) process is then performed to completely remove the dielectric layer 54 ′ above the sacrificial layer 50 and simultaneously remove the dielectric layer on the surface of the substrate 42 downward. 5 4 to a predetermined thickness. As shown in FIG. 8 ', then the sacrificial layer 50 above the first polycrystalline silicon layer 48 is completely removed, so that the top surface of each of the first polycrystalline silicon layers 4δ and the dielectric layer 5 4 surrounding it are formed separately—holes 5 6 ^ As shown in FIG. 9, a second polycrystalline silicon layer 5 is formed on a specific area of the surface of the conductor wafer 40 to fill the holes 5 6, and the second polycrystalline silicon layer 5 is formed. 8 is obtained: the first-polycrystalline stone layer 48 is used as a "floating interrogation pole" to complete the production of three = polycrystalline stone layer 60. It is located on the second polycrystalline sand, on both sides of 48: The dielectric layer 54 is used as a buried drain or source (buried
ο 五、發明說明(7) drain/source, BD/BS)0 I 请參考圖十’圖十為形成於圖九所示之半導體晶片 上之堆疊式閘極66的結構示意圖。當浮置閘極製作完成 I後,便可以依序在每一第二多晶矽層58表面上形成:第一 氧化層(未顯示)、一氮化層(未顯示)以及一第二氧化層 丨(未顯示),而這三層結構便形成一 〇 N 〇結構的介電層6 2。 I最後再於半導體晶月4 0表面上形成一第三多晶梦層1 2 364,用 來作為一控制閘極。其中浮置閘極、〇 N 〇結構的介電層6 2 |以及控制閘極,便形成一非揮發性記憶體之堆疊式間極 丨6 6 ’而位於二場氧化層4 4之間的二堆疊式閘極6 β,則複合 ;形成一雙晶格(twin cei 1)閘極’用來作為該非揮發性記 :憶體之浮置閘極。 本發明方法疋以」一 Λ-^aa石夕展48固ff|夕介電層 :5 4來ϋ BD/BS ’所以不需利用熱氧化製程來長成熱氧化 i多晶韵加以^g 6。因此 i後續於第一多晶層4 8上形成第;多晶对j ,笋個三 i維空間之多晶石夕層表面將會隨著孔jg_5L^Ljli規而相對ο 5. Description of the invention (7) drain / source, BD / BS) 0 I Please refer to FIG. 10 ′ FIG. 10 is a schematic diagram of the structure of the stacked gate 66 formed on the semiconductor wafer shown in FIG. 9. After the fabrication of the floating gate I is completed, a first oxide layer (not shown), a nitride layer (not shown), and a second oxide can be sequentially formed on the surface of each second polycrystalline silicon layer 58. Layer 丨 (not shown), and the three-layer structure forms a dielectric layer 6 2 having a 10N0 structure. I finally formed a third polycrystalline dream layer 1 2 364 on the surface of the semiconductor crystal moon 40, and used it as a control gate. Among them, the floating gate, the dielectric layer 6 2 | of the 0N 〇 structure, and the control gate form a stacked interlayer of non-volatile memory 6 6 'and located between the two field oxide layers 4 4 Two stacked gates 6 β are recombined; a twin cei 1 gate is formed to serve as the non-volatile memory: floating gate of the memory. The method of the present invention is based on a Λ- ^ aa Shi Xizhan 48 solid dielectric layer: 5 to 4 BD / BS 'so it is not necessary to use a thermal oxidation process to grow into a thermal oxidation i polycrystalline rhyme and ^ g 6. Therefore, i subsequently forms the first layer on the first polycrystalline layer 4 8; the polycrystalline pair j, and the surface of the polycrystalline layer in the three-dimensional space of i will face each other with the hole jg_5L ^ Ljli gauge.
1 。因此利用 身可 2 藉,HDP CVD的方法以獲得_有效的控制,進而使得製作 丨於半導體晶片40上的每—個堆 3 丨夢。此外本發明是利用CMP的方法將第一_多晶矽層4只固圍 之介電層5 4表面_平坦袅,才再利用一蝕刻製鞀將第一 I五、發明說明(8) I地形成為一三維i間的矣蹲^辑,進而增加後續形成於其 丨上之閘極的接觸面赭「使得利用#發 丨明方法直式-1極一數舍-率(g a t e 丨coupling ratio, GCR)可以提高至6 5〜7 0% ’對於提昇半 導體產品的電性表現有很大的幫助。1 . Therefore, the method of HDP CVD can be used to obtain effective control, so that each stack 3 fabricated on the semiconductor wafer 40 can be dreamed. In addition, in the present invention, the first _ polycrystalline silicon layer 4 is only surrounded by a dielectric layer 5 4 whose surface is flat using a CMP method, and then an etching process is used to form the first I. The description of the invention (8) I becomes A three-dimensional series of squats, which in turn increases the contact surface of the gates that are subsequently formed on it. "This makes it possible to use # 发 丨 明 方法 straight -1 pole one-coupling ratio (GCR) ) Can be increased to 65 ~ 70% 'It is very helpful to improve the electrical performance of semiconductor products.
請參考圖十'一至圖十六’圖十一至圖十六為本發明另 丨一種形成一三維空間之多晶矽層8 0的方法示意圖。如圖十 | 卜所示’本發明另外一種於一半導體晶片4 0上形成一三維 丨空間之多晶矽層8 0的方法’是先以高密度電漿化學氣相沈 積(HDP CVD)方法於半導體晶片40表面沈積一由二氧化石夕 所構成之介電層72 ’使其覆蓋於基底42以及犧牲層50上 :方’且形成於基底4 2表面之介電層7 2的厚度係大於第一多 丨晶紗層4 8的厚度但不超過犧牲層5 0的頂端高度。如圈十二 所示,接著進行一濕蝕刻製程,利用稀釋氩氟酸(diUte :HF, DHF)或緩衝之氧矽蝕刻液(buffere(i 〇xide etchef, I BOE)來當作蝕刻溶液,以去除犧牲層5〇頂端之侧緣的| :介電層72。 } \ 如圖十三所不,接著於介電層72表面形成一由氮矽 δ物所構成之保護層74,並使得保護層74與犧牲層5〇 觸。/後如圖十四所#,進行一化學機械研磨 I (CMP)製程,以去除犧牲層5〇上方之保護 至-預定厚度。接著如圖十五所Η犧牲心上電方層之】Please refer to FIG. 10 ′, FIG. 16 to FIG. 16, and FIG. 11 to FIG. 16 are schematic diagrams of another method for forming a three-dimensional polycrystalline silicon layer 80 in the present invention. As shown in Fig. 10 |, "Another method for forming a three-dimensional space polycrystalline silicon layer 80 on a semiconductor wafer 40 according to the present invention" is to first use a high-density plasma chemical vapor deposition (HDP CVD) method on a semiconductor On the surface of the wafer 40, a dielectric layer 72 'composed of SiO2 is deposited so as to cover the substrate 42 and the sacrificial layer 50: square, and the thickness of the dielectric layer 72 formed on the surface of the substrate 42 is greater than that of the first layer. The thickness of the polycrystalline yarn layer 48 does not exceed the top height of the sacrificial layer 50. As shown in circle twelve, a wet etching process is then performed, using diluted argon fluoride (diUte: HF, DHF) or buffered oxygen silicon etching solution (buffere (i oxide etchef, I BOE)) as the etching solution, To remove the side edge of the top edge of the sacrificial layer 50: the dielectric layer 72.} \ As shown in Figure 13, then a protective layer 74 composed of silicon silicon nitride is formed on the surface of the dielectric layer 72, so that The protective layer 74 is in contact with the sacrificial layer 50. After that, a chemical mechanical polishing I (CMP) process is performed as shown in FIG. 14 to remove the protection over the sacrificial layer 50 to a predetermined thickness. Then, as shown in FIG. Η Sacrifice the Heart to the Electric Layer]
I五、發明說明(9) 丨電層7 2完全去除之後,再進行另一濕蝕刻製程,利用熱碟 ; 丨酸來當作蝕刻溶液,以完全去除半導體晶片7 0表面之保護 層7 4以及第一多晶矽層4 8上方的犧牲層5 0 ’使得第一多晶 石夕層48之頂面與其周圍相接壤之介電層72構成一孔洞76。 如圖十六所示,最後於半導體晶片4 0表面之一特定區 !域上形成一第二多晶矽層7 8並填滿孔洞76,使第二多晶碎 | i層7 8得以電連接於第一多晶矽層4 8 ’便完成三維空間之多 i晶矽層8 0的製作。 如圖十一至圖十六所述之製程,本發明另一種實施例 是先利用HDP CVD的方法將犧牲層50頂端之侧緣部位的介 :電層72去除,再於介電層72表面形成保護層74。因此後續 |在進=CMP製裎時,保護廣74可以有效地避免CMP製程對半 丨導體晶片4 0表面的部份區域過度研磨,造成研磨的不均勻 丨性’進而影響第一多晶矽層48周圍之介電層72的厚度,亦 2 BD^BS的厚度。而且藉由保護層74的保護,還可以避免 ^ ^層Γ表面受到CMP製程所使用之研漿液(slurry)或其 屬 v亏染物(metal contamination)的污染。 本發明製作 應用於非揮發性 I中,亦可用來製 及動態隨機存取 二維空間之多晶石夕層6 0的方法,除了可以 s己憶趙(non-voiatile memory)的製程 作嵌入式快閃記憶體(embedded f 1 ash )以 丢己憶趙(dynamic random access memory,I. Explanation of the invention (9) After the electrical layer 7 2 is completely removed, another wet etching process is performed, and a hot dish is used; acid is used as an etching solution to completely remove the protective layer 7 4 on the surface of the semiconductor wafer 7 0 And the sacrificial layer 5 0 ′ above the first polycrystalline silicon layer 48 makes the top surface of the first polycrystalline silicon layer 48 and the surrounding dielectric layer 72 to form a hole 76. As shown in FIG. 16, a second polycrystalline silicon layer 7 8 is formed on a specific area of the surface of the semiconductor wafer 40 and fills the hole 76, so that the second polycrystalline silicon layer 7 8 is electrically charged. The connection to the first polycrystalline silicon layer 4 8 ′ completes the fabrication of the poly-crystalline silicon layer 80 in a three-dimensional space. As shown in the process described in FIG. 11 to FIG. 16, another embodiment of the present invention is to remove the dielectric layer 72 on the top edge of the sacrificial layer 50 using the HDP CVD method, and then to the surface of the dielectric layer 72 A protective layer 74 is formed. Therefore, in the follow-up | when the CMP process is performed, the protection 74 can effectively prevent the CMP process from over-grinding a part of the surface of the semi-conductor wafer 40, causing non-uniformity of the polishing, and then affecting the first polycrystalline silicon. The thickness of the dielectric layer 72 around the layer 48 is also 2 BD ^ BS. Moreover, by the protection of the protective layer 74, the surface of the ^ layer Γ can be prevented from being polluted by the slurry or metal contamination used in the CMP process. The method of the present invention is applied to non-volatile I, and can also be used to make and dynamically access a polycrystalline layer 60 in a two-dimensional space, in addition to being embedded in a non-voiatile memory process. Embedded flash memory (embedded f 1 ash) to lose one's own memory (dynamic random access memory,
:五、發明說明(10) DRAM)之電容元件的儲存下電極(storage node)。 ! 相較於習知製作複合式多晶矽層28的方法,本發明形 i成三維空間之多晶矽層60的方法,是利用HDP CVD的方法 |先於第一多晶矽層48的周圍形成介電層54,用來作為 B D / B S。然後再利用C Μ P的方法將介電層5 4表面平坦化,並 藉由一蝕刻製程以將第一多晶矽層4 8上方的犧牲層5 0加以 去除’形成孔洞76 ◊因此後續於第一多晶層48上形成第二 多晶矽層7 8之後,整個三維空間之多晶矽層8 0的表面將會 丨隨著孔洞76的出現而相對地形成為一 3D的立體結構,進而 i増加後續形成於其上之0Ν0介電層與控制閘極的接觸面 積’提高閘極耦合率。而在另一實施例中,則是在進行 f ΜΡ製程之前’先於介電層72表面形成保護層74,藉以有 致地控制形成於第一多晶矽層48周圍之介電層72的厚度, 能防止BD/BS表面受到CMP製程所使用之研漿液(slurry) 丨或其產生之金屬污染物(metai contaminati〇n)的污染<= =上所述僅為本發明之較佳實施例,凡依本發明申請 发利範圍所做之均等變化與修飾,皆應屬本發明專利之涵 爽範圍®: V. Description of the invention (10) Storage node of the capacitor element of the DRAM). Compared with the conventional method for manufacturing the composite polycrystalline silicon layer 28, the method for forming the polycrystalline silicon layer 60 in the three-dimensional space according to the present invention is a method using HDP CVD | The dielectric is formed before the first polycrystalline silicon layer 48 Layer 54 is used as BD / BS. Then, the surface of the dielectric layer 54 is planarized by the CMP method, and the sacrifice layer 50 above the first polycrystalline silicon layer 48 is removed by an etching process to form a hole 76. After the second polycrystalline silicon layer 78 is formed on the first polycrystalline layer 48, the surface of the polycrystalline silicon layer 80 in the entire three-dimensional space will be relatively formed into a 3D three-dimensional structure with the appearance of the holes 76. The contact area of the ONO dielectric layer and the control gate formed subsequently thereon increases the gate coupling rate. In another embodiment, the protective layer 74 is formed on the surface of the dielectric layer 72 before the f MP process, so that the thickness of the dielectric layer 72 formed around the first polycrystalline silicon layer 48 is controlled. Can prevent the surface of BD / BS from being polluted by slurry used in CMP process or its metal contaminants (meta contamination) < == The above is only a preferred embodiment of the present invention All equal changes and modifications made in accordance with the scope of the present invention application should be within the scope of the patent of the present invention®
第14頁Page 14
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW88120718A TW432722B (en) | 1999-11-26 | 1999-11-26 | A method for forming three dimensional poly-silicon layer on semiconductor chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW88120718A TW432722B (en) | 1999-11-26 | 1999-11-26 | A method for forming three dimensional poly-silicon layer on semiconductor chip |
Publications (1)
Publication Number | Publication Date |
---|---|
TW432722B true TW432722B (en) | 2001-05-01 |
Family
ID=21643172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW88120718A TW432722B (en) | 1999-11-26 | 1999-11-26 | A method for forming three dimensional poly-silicon layer on semiconductor chip |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW432722B (en) |
-
1999
- 1999-11-26 TW TW88120718A patent/TW432722B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5180827B2 (en) | Split gate storage device including first lateral gate and second vertical gate in groove | |
US8294205B2 (en) | Semiconductor device and method of forming semiconductor device | |
JP6228238B2 (en) | Nonvolatile memory cell having increased channel region effective width and method of manufacturing the same | |
TWI514577B (en) | Semiconductor device and method for fabricating the same | |
US8486808B2 (en) | Manufacturing method of semiconductor device having vertical transistor | |
WO2015142440A1 (en) | Embedded memory device on bulk/soi hybrid substrate, and method of making same | |
CN101465323B (en) | Method for manufacturing a semiconductor device capable of preventing the decrease of the width of an active region | |
KR101541677B1 (en) | self-aligned stack gate structure for use in a non-volatile memory array | |
TW480715B (en) | Nonvolatile memory structure capable of increasing gate coupling-coefficient | |
JP5132068B2 (en) | Semiconductor device and manufacturing method thereof | |
EP3994731B1 (en) | Method of forming split-gate flash memory cell with spacer defined floating gate and discretely formed polysilicon gates | |
TWI702690B (en) | Method of making embedded memory device with silicon-on-insulator substrate | |
JP2672936B2 (en) | Method of manufacturing semiconductor memory cell, as well as method of manufacturing capacitor of semiconductor memory cell | |
JP2005026655A (en) | Method of fabricating semiconductor device | |
TW432722B (en) | A method for forming three dimensional poly-silicon layer on semiconductor chip | |
US8669606B2 (en) | Semiconductor device and method for manufacturing thereof | |
US20050205922A1 (en) | Flash memory cell and methods for fabricating same | |
CN116097919A (en) | Preparation method of three-dimensional memory | |
US6576514B2 (en) | Method of forming a three-dimensional polysilicon layer on a semiconductor wafer | |
US8975731B2 (en) | Semiconductor device having an insulating layer structure and method of manufacturing the same | |
KR100526473B1 (en) | Non-volatile memory device and method for fabricating the same | |
US20100173469A1 (en) | Methods of manufacturing charge trap-type non-volatile memory devices | |
US20070221979A1 (en) | Method for production of memory devices and semiconductor memory device | |
TWI246700B (en) | Trench capacitor and method for preparing the same | |
JP3964758B2 (en) | Capacitor element and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |