TW425542B - Kalman filter for speech enhancement - Google Patents

Kalman filter for speech enhancement Download PDF

Info

Publication number
TW425542B
TW425542B TW88104303A TW88104303A TW425542B TW 425542 B TW425542 B TW 425542B TW 88104303 A TW88104303 A TW 88104303A TW 88104303 A TW88104303 A TW 88104303A TW 425542 B TW425542 B TW 425542B
Authority
TW
Taiwan
Prior art keywords
sub
band
speech
noise
filter
Prior art date
Application number
TW88104303A
Other languages
Chinese (zh)
Inventor
Wen-Rung Wu
Bo-Cheng Chen
Huai-Tzu Jang
Jiun-Hung Guo
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW88104303A priority Critical patent/TW425542B/en
Application granted granted Critical
Publication of TW425542B publication Critical patent/TW425542B/en

Links

Abstract

The present invention relates to a Kalman filter for speech enhancement that, in a low operation volume, can effectively enhance the speech quality by eliminating the speech noises. The Kalman filter mainly consists of a secondary band analysis filter bank, several secondary band frame parameter estimators, several Kalman filters, and a secondary band synthesis filter bank. The secondary band analysis filter bank can separate the speech signal into several secondary band speeches. The secondary band frame parameter estimators can separate a secondary band speech into several continuous frames and calculate the autoregressive parameter of each frame. The Kalman filters can then use the autoregressive parameter of each frame to enhance the sound quality of the respective secondary band speech. Finally, the secondary band synthesis filter bank can synthesize the enhanced secondary band speeches into an enhanced speech.

Description

425^42 五、發明說明(1) 本發明是有關於一種語音強化(Speech Enhancement) 裝置’且特別是有關於一種用於語音強化之卡門減波器。 卡門(Ka 1 ma η )濾波技術在數位訊號處理領域為眾所周 知。在1987年四月出版的Proceeding IEEE International Conference On Acoustic, Speech,425 ^ 42 V. Description of the invention (1) The present invention relates to a Speech Enhancement device ', and in particular to a Carmen wave reducer for speech enhancement. Carmen (Ka 1 ma η) filtering technology is well known in the field of digital signal processing. Proceeding IEEE International Conference On Acoustic, Speech, published in April 1987,

Signa1, Processing 第177 頁到 1 80 頁中”A Speech Enhancement Method Based On Ka 1 man F i 1 te r|’ng 丨丨一文 的作者Pai i wal、Basu利用卡門濾波器以強化受白色雜訊 (White Noise)污染的語音訊號。在1.9 91年八月出版的 IEEE Transactions On Signal Processing 第1732 頁到1741 頁中"Filtering Of Colored Noise For Speech Enhancement And Coding" 一文的作者Gibson、 Koo、Gray則針對受有色雜訊(Colored Noise)污染的語音 訊號進行討論。在這個例子裡,G i b son ' Koo ' Gray將語 音sH號及有色雜说假设為為自迴歸模型(Autoregressive Model,簡稱AR Model),藉以建立純量及向量的卡門濾 波决异法。為推估自迴歸係數(AR Coefficients),係採 用EM為基礎的>臾具法。在1995年九月出版Signal Processing 第1 頁到14 頁中"An EM-Base Approach For Parameter Enhancement With An Application To Speech Signals1 ’ 一文的作者Lee 'Ann則提出非高斯 (Non-Gaussian)自動回歸模型的語音訊號。在這個例子 裡,Lee、Ann將驅動雜訊的分佈假設為高斯混合 (Gaussian Mixture)模型,並應用決定導向Signa1, Processing, pp. 177 to 1 80 "A Speech Enhancement Method Based On Ka 1 man F i 1 te r | 'ng 丨 丨 The authors of the paper Pai i wal, Basu use Carmen filter to enhance the white noise ( White Noise) contaminated voice signals. Gibson, Koo, and Gray, authors of the article "Filtering Of Colored Noise For Speech Enhancement And Coding" in IEEE Transactions On Signal Processing, page 1.32 to 1741, published in August 1991, aim at The speech signal polluted by colored noise is discussed. In this example, Gibson 'Koo' Gray assumes the speech sH number and colored noise as an Autoregressive Model (AR Model). The Carmen filtering method based on scalar and vector is established. In order to estimate the AR Coefficients, the EM-based tooling method is used. Published in Signal Processing, September 1995, pages 1 to 14 The author of 'An EM-Base Approach For Parameter Enhancement With An Application To Speech Signals1' Lee 'Ann proposed non-Gaussian (Non-Ga ussian) automatic regression model of the speech signal. In this example, Lee and Ann assumed that the distribution of driving noise was a Gaussian Mixture model, and applied decision-making

第4頁Page 4

五 '發明說明¢2) (Decision-Directed)的非線性卡門濾波器。另外,在 1996 年三月出版的 IEEE Transactions 〇n signal Processing 第528 頁到537 頁中"Adaptive Scheme ForFive 'Invention Note ¢ 2) (Decision-Directed) nonlinear Carmen filter. In addition, IEEE Transactions on Signal Processing, pages 528 to 537, published in March 1996 " Adaptive Scheme For

Elimination Of Broadband Noise And Impulsive Disturbance From AR And ARMA Signals" —文的作者 Niedzwiecki、Cisowki則假設語音訊號為非定態 (Nonstat ionary)自迴歸模型,並假設自迴歸係數為隨走 (Random-Walk)模型。而延伸的卡門濾.波器(ExtendedElimination Of Broadband Noise And Impulsive Disturbance From AR And ARMA Signals "-The authors of the text, Niedzwiecki and Cisowki, assume that the speech signal is a Nonstat ionary autoregressive model, and assume that the autoregressive coefficient is a Random-Walk model. . And the extended Carmen filter. Wave filter (Extended

Kalman Fi 1 ter)則同時推估語音訊號及自迴歸係數。 上述的卡門濾波器實際應用來強化語音音質時,會發 生计算量過咼的問題。這是由於語音訊號通常假設為高冪 次(Order)的自迴歸模型’因此需應用高冪次的卡門濾波 器來慮波。而估算高冪次的自迴歸模塑的參數及應用高幂 次的卡門濾波器需要很大的計算量。 有鑑於此’本發明的主要目的就是提供—種適用於語 a強化之卡門濾波器以減少估算高冪次自迴歸模型的參數 (簡稱自迴歸參數)及應用高冪次的卡門濾波器所需要的大 量計算。 為達成上述目的,本發明利用次頻帶t音訊號可以設 為較低冪次的自迴歸模型的1性,提出一 ^用於語音強化 的卡門;慮波器。此種卡門濾逆器主要是由—個次頻帶分析 濾波,組(Analysis Filter iank)、複數個次頻帶音框參 數估算器、複數個卡門濾波器、—個次頻帶波 (㈣heSlsFllterBank)所組成。其中,次頻Y分析滤Kalman Fi 1 ter) estimates both the speech signal and the autoregressive coefficient. When the above-mentioned Carmen filter is actually applied to enhance the sound quality of a voice, the problem of excessive calculation amount may occur. This is because the speech signal is usually assumed to be an autoregressive model of high order (Order), so a high-powered Carmen filter is required to consider the wave. Estimating the parameters of high-powered autoregressive molding and the application of high-powered Carmen filters require a large amount of calculation. In view of this, the main purpose of the present invention is to provide a kind of Carmen filter that is suitable for strengthening a language to reduce the parameters for estimating high-power autoregressive models (referred to as autoregressive parameters) and the application of high-power Carmen filters A lot of calculations. In order to achieve the above object, the present invention utilizes the nature of the autoregressive model in which the sub-band t audio signal can be set to a lower power, and proposes a Carmen for speech enhancement; a wave filter. This type of Carmen filter is mainly composed of a sub-band analysis filter, an Analysis Filter iank, a plurality of sub-band sound box parameter estimators, a plurality of Carmen filters, and a sub-band wave (㈣heSlsFllterBank). Among them, the secondary frequency Y analysis filter

IH 第5頁 425542 五'發明說明(3) 波模組可以將語音訊號分離為複數個次頻帶語音;次頻帶 音框參數估算器可以將次頻帶語音訊號分成連續個音框 (Frame ),並針對每個音框以創新的自相關函數相減法計 算不含雜訊的次頻語音訊號的自相關函數 (Autocorrelation Function),再以習知的尤勒-渥克 (Yuler-Walker)方程式解出自迴歸參數(s. Hayk in ’ Adaptive Filter Theory ’Englewood Clitts ,N.J.: Prentice-Ha 11 1991);卡門濾波器可以利用各音框的自 迴歸參數強化次頻帶語音音質;而次頻帶合成濾波模組則 可以將強化後的次頻帶語音合成強化語音(Enhanced Speech)。 在這種用於語音強化的卡門渡'波器中,次頻帶分析濾 波模組可以由數個帶通濾波器(Bandpass Fi Iter)及數個 倍減取樣(Downsampi ing)器所組成。其中,數個帶通濾波 器可以分別濾波該語音訊號至該些次頻帶的對應成分;而 數個倍減取樣器則可以分別倍數減少取樣該些次頻帶的對 應成分以得到該些次頻帶語音訊號。 在這種用於語音強化的卡門濾波器中’次頻帶合成濾 波模組可以由數個倍增取樣(Ups amp 1 i ng)器、數個帶通濾 波器、一個相加器所組成。其中,數個倍增取樣器可以倍 數增加取樣強化後的次頻帶語音訊號以得到次頻帶的對應 成分;數個帶通濾波器可以分別濾波次頻帶的對應成分; 而相加器則可以相加該些帶通濾波器的輸出以得到強化語 音。IH Page 5 425542 Explanation of the Five 'Invention (3) The wave module can separate the voice signal into a plurality of sub-band voices; the sub-band voice frame parameter estimator can divide the sub-band voice signal into consecutive frames, and For each frame, an innovative autocorrelation function subtraction method is used to calculate the autocorrelation function of the sub-frequency speech signal without noise, which is then solved by the conventional Yuler-Walker equation. Regression parameters (s. Hayk in 'Adaptive Filter Theory' Englewood Clitts, NJ: Prentice-Ha 11 1991); the Carmen filter can use the autoregressive parameters of each sound box to enhance the sound quality of the sub-band speech; and the sub-band synthesis filter module is The enhanced sub-band speech can be synthesized into enhanced speech. In this Carmen's wave filter for speech enhancement, the sub-band analysis filter module can be composed of several bandpass filters (Bandpass Fi Iter) and several downsampling devices (Downsampiing). Among them, several band-pass filters can respectively filter the corresponding components of the voice signal to the sub-bands; and several down-sampling samplers can respectively multiply reduce the corresponding components of the sub-bands to obtain the sub-band voices. Signal. In this type of Carmen filter used for speech enhancement, the 'sub-band synthesis filter module' may be composed of several upsampling filters, several bandpass filters, and an adder. Among them, several multiplier samplers can multiply the sampled and strengthened sub-band voice signals to obtain the corresponding components of the sub-bands; several band-pass filters can filter the corresponding components of the sub-bands separately; The output of these band-pass filters for enhanced speech.

IHI I 第6頁 / 4 4 2 t 五、發明說明(4) 次頻帶分析濾波模組及次頻帶合成濾波模組的詳細設 計方法’可以參考:p.L.Vaidyanthan ’Mutirate System And Filter Bank,Ciitts,N. I :Prentice-HalI, 1 993 ° 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂’下文特舉一實施例,並配合所附圖式,作詳細說 明如下: 圖式說明 第1圖係本發明用於語音強化的卡門濾波器的方境 圖;及 第2圖係第1圖的詳細方塊圖。 實施例 首先說明習知的卡門濾波器如何用於強化受白色或有 色雜訊干擾的語音。 如以短時間為基礎(Short-Time Basis),不含雜訊的 語音訊號序列(Sequence ),+)’可表示成自迴歸模型, 亦即: jf i-1 v ^ 其中,〜為自迴歸係數,<«)為均值為零 (Zero-Mean)且方差(Var iance)為4的白色高斯(wh. tIHI I Page 6/4 4 2 t V. Description of the invention (4) Detailed design method of sub-band analysis filter module and sub-band synthesis filter module 'can refer to: pLVaidyanthan' Mutirate System And Filter Bank, Ciitts, N I: Prentice-HalI, 1 993 ° In order to make the above and other objects, features, and advantages of the present invention more comprehensible, an example is given below, and it is described in detail with the accompanying drawings as follows: Figure The first diagram is a context diagram of a Carmen filter for speech enhancement according to the present invention; and the second diagram is a detailed block diagram of the first diagram. Example First, it is explained how a conventional Carmen filter is used to enhance speech disturbed by white or colored noise. For example, based on Short-Time Basis, the sequence of speech signals without noise (Sequence), +) 'can be expressed as an autoregressive model, that is: jf i-1 v ^ where ~ is autoregressive T < «) is a white Gaussian (wh. T) with a mean of zero (Zero-Mean) and a variance (Var iance) of 4

Gaussian)驅動訊號。而語音訊號办)則可以加 y 〜J从假設為X⑻附Gaussian) drive signal. And the voice signal office) you can add y ~ J from the assumption of X⑻

_ 4255 4 2 五、發明說明(5) 加一個白色雜訊V(«),亦即: s(n) = H~v(«) (2) 其中ν(«)為均值為零且方差為 < 的白色高斯雜訊。令 X(n)^[x(n) x(n-l) A x(n-p + \)]r 則運算式(1 )、( 2 )可重新排列 成狀態方程式,亦即: --FX{n -1)+ gw(n) (3) .s(«)= hT x {ή)+ v{n) ⑷ αι a2 A S-1 1 0 A 0 0 F = 0 1 A 0 0 (5) Μ Μ 0 M M 0 0 Λ 1 0 ~1 产? g = k -- = [10 Λ 〇L ⑹ 根據(3)和(4),Gibson、Koo、Gray便可以用卡門遽 波器來求得4«)的最佳估計值亦即強化語音。卡門濾波器 可以下列四式遞迴表示之: X(^) = FX(^~ V) s(n) - hTF X(n -1) (7) k(n) = P{n\i -\)h[al +/2r^(«|« - (8) Ρ(?ί^ -1)= FP{?i - \)FT + gcF^gr (9) P{n) = [l - k{n)hT |p(«|« -1) (10)_ 4255 4 2 V. Description of the invention (5) Add a white noise V («), that is: s (n) = H ~ v («) (2) where ν («) is zero and the variance is < White Gaussian Noise. Let X (n) ^ [x (n) x (nl) A x (np + \)] r, then the expressions (1) and (2) can be rearranged into state equations, that is: --FX {n- 1) + gw (n) (3) .s («) = hT x (ή) + v (n) ⑷ α 2 a S-1 1 0 A 0 0 F = 0 1 A 0 0 (5) Μ Μ 0 MM 0 0 Λ 1 0 ~ 1 Production? G = k-= [10 Λ 〇L ⑹ According to (3) and (4), Gibson, Koo, and Gray can be obtained by using a Carmen waver 4 «) The best estimate of is enhanced speech. The Carmen filter can be expressed recursively in the following four forms: X (^) = FX (^ ~ V) s (n)-hTF X (n -1) (7) k (n) = P {n \ i-\ ) h [al + / 2r ^ («|«-(8) Ρ (? ί ^ -1) = FP (? i-\) FT + gcF ^ gr (9) P (n) = [l-k { n) hT | p («|« -1) (10)

\ 425542 五、發明說明(6) 其中’為⑻的推估值、是⑻為卡門增益、户(4*-1) 為狀恐預測錯疾方差矩陣(State Prediction-Error Covariance Matrix)、作)為狀態濾波錯誤方差矩陣 (State Fi1 tering-Error Covariance Matrix)。而強化 , 語音則可由得到。 針對有色雜訊的濾波’首先假設有色雜訊為定態的 (Stationary)且可以表示為冪次為Q的自迴歸模型,亦 即: ν(«) = ρν(”ϋ«) (n) 若自迴 則運算 其中’ Τ7(«)為均值為零且方差σ〖的白色高斯訊號。 歸係數h λ 及< 可以在無語音訊號的區間 (Non-Speech Interval)估計 式(11)可表示為狀態方程式。 Γ(«) = FvV{n -1) + gvi7(«) v{n)=klV{n) 且可以假設為已知 (12) (13) 其中,❿) = [々》-:!)’...,、Ί,、Αϊ 與運算式(5)、 (6)相同,但f Ρ由卜Μ取代。組合運算式(12) ^ ' (3 )、( 4 ),可得到:\ 425542 V. Description of the invention (6) where 'is the estimated value of ⑻, ⑻ is the Carmen gain, and (4 * -1) is the State Prediction-Error Covariance Matrix. () State Filtration Error Covariance Matrix. And enhanced, speech can be obtained. Filtering for colored noise 'First assume that colored noise is Stationary and can be expressed as an autoregressive model with a power of Q, that is: ν («) = ρν (" ϋ «) (n) if The self-returning operation calculates where Τ7 («) is a white Gaussian signal with a mean value of zero and a variance σ [. The reduction coefficients h λ and < can be expressed in a non-speech interval (Non-Speech Interval) estimation formula (11). Is the equation of state. Γ («) = FvV {n -1) + gvi7 («) v {n) = klV (n) and can be assumed to be known (12) (13) where ❿) = [々》- :!) '... ,, Ί, Αϊ are the same as expressions (5) and (6), but f P is replaced by BU. The combined expressions (12) ^' (3), (4) can be get:

第9頁 五、發明說明(7) X(n) - FX{n - 1) + Gw(«) s(«) = kr X (η) 其中, (14) (15) X{n)= F = , w(«) ,⑻. »_ (Γ ,σ = g 0 — Fy, 0 Sv. (16) (17) F h5. Explanation of the invention (7) X (n)-FX {n-1) + Gw («) s («) = kr X (η) where (14) (15) X {n) = F =, W («), ⑻.» _ (Γ, σ = g 0 — Fy, 0 Sv. (16) (17) F h

吨)的方差矩陣定義為:&啦⑻。根 據(1 4 )、( 1 5 ),卡門運算式則可以藉由設定Θ = 〇 、並將 Λ (7)至(10)式中f⑻、尸、A4、g 以歹⑻、歹、尽、0 ' 一 Λ r 土 σ取代而得到。而強化語音*⑻則可由咖)=0 得Ton) variance matrix is defined as: & la⑻. According to (1 4) and (1 5), the Carmen's expression can be set by Θ = 〇, and f⑻, corpse, A4, g in Λ (7) to (10) are expressed by 歹 ⑻, 歹, 、, 0 '-Λ r soil σ instead. (Enhanced voice * ⑻ can be obtained from coffee) = 0

到D 接著,說明本發明用於語音強化的卡門濾的作法如 下。 請參考第1圖,此為本發明用於語音強化的卡門濾波 器的方塊圖。圖中,此種濾波器主要是由次頻帶分析濾波 模組10、卡門濾波器20^2(^、次頻帶音框參數估算器25i 〜2 5M、頻帶合成濾波模組30所組成。次頻帶分析濾波模組 1 0接收語音訊號咖)、並將其分離成複數個(如Μ個)次頻帶 語音訊號♦),其中,I = 1〜Μ。而Μ個卡門濾波器2 〜2 0Μ則Go to D. Next, the method of the Carmen filter for speech enhancement according to the present invention will be described as follows. Please refer to FIG. 1, which is a block diagram of a Carmen filter for speech enhancement according to the present invention. In the figure, such a filter is mainly composed of a sub-band analysis filter module 10, a Carmen filter 20 ^ 2 (^, a sub-band sound frame parameter estimator 25i to 25M, and a band synthesis filter module 30. The sub-band The analysis and filtering module 10 receives the voice signal (c), and separates it into a plurality of (eg, M) sub-band voice signals ♦), where I = 1 ~ M. And M Carmen filters 2 ~ 2 0M

五、發明說明(8) 分別接收Μ個次艇^ . ν 仆e此次頻帶1頻▼ θ ,並進行濾波動作以強 最t二音訊號’及得到強化後的次頻帶語音訊號 1 _ |入頻帶合成濾波模組30將強化後的次頻帶語 個次頻音框參數估匕二。母個卡門遽波器都結合-要的參數。 算器25ι〜,用以供給卡門濾波器所需 在這個實施例裡,受雜訊任 個次頻帶分析濾波槿&八伽:的叩曰唬汛办)盲先由 恩疚Μ組为成Μ個次頻帶語音號訊V. Description of the invention (8) Receiving M sub-boats ^. Ν e e this frequency band 1 frequency ▼ θ, and perform a filtering action to strengthen the strongest two-tone signal 'and the enhanced sub-band voice signal 1 _ | The in-band synthesis filter module 30 estimates the parameters of the enhanced sub-band voice frequency sub-frames. All the Carmen wave filters are combined-required parameters. The calculator is 25m ~, which is used to supply the Carmen filter. In this embodiment, any sub-band analysis and filtering by noise is performed blindly by the guilt M group. M sub-band voice signals

Si(n), τ = \,...,Μ 。-a 此桃 1 ^ -人頻帶浯音訊號可以表示成: A («)=々〇!)+_), j = 1; ^ Μ) ί二:)㈣分別㈣及·)的次頻帶訊號。若响為 ’則州亦可假設為白色雜訊。反之,若V⑷為 色雜讯’則响)亦可假設為有色雜訊。如此,咖亦可 ί二為at自if歸模型。#以短時間為基礎,Χ加可被視為 頻帶語音訊號的頻1 ί,'因f帶語0訊號的頻譜較其全 低幕次的自迴;^帶語音訊號可利用較 可以較為簡化。' 種清/兄下’卡門遽波器亦 令观⑻表示冪攻户的自翅鉍 9 、知杈型’貝0(«)可表示成: (w) = 2 ai Xi (n~ j)+ W; («) J-1 (19) 其中’ %(«)係均值為零且方 — 受l*的白色尚斯驅動訊號。Si (n), τ = \, ..., Μ. -a This peach 1 ^-human band audio signal can be expressed as: A («) = 々〇!) + _), j = 1; ^ Μ) ί 二 :) ㈣ and)) subband signals, respectively . If the sound is', then the state can also assume white noise. Conversely, if V⑷ is colored noise, then it will sound) It can also be assumed to be colored noise. In this way, the coffee can also be used as a self-return model. #Based on a short time, X plus can be regarded as frequency 1 of the band voice signal. 'Because the frequency spectrum of the band 0 signal is lower than its full-time turn-back; ^ band voice signals can be used and can be simplified. . The 'Qing Qing / Xia Xia' Carmen waver also made the watchman express the self-winged bismuth 9 of the power attacker, and the type of 'shell 0 («) can be expressed as: (w) = 2 ai Xi (n ~ j) + W; («) J-1 (19) where '% («) means zero and square — white lancet driven signal by l *.

iH IHI 頁 第11 425542 五、發明說明¢9) (1 8 )、( 1 9 )可改寫成狀態方程式,因此卡門濾波器2 〜2 0M便可應用於強化次頻帶語音訊號。強化後的次頻帶語 音訊號,其表示為’,則由次頻帶合成濾波模組重建強 化語音訊號,其表示為雄)。 . 要使用卡門濾波器必需要估算次頻帶語音訊號^⑻及 雜訊κ⑻的自迴歸參數;包括自迴歸係數及驅動雜訊方 差。'⑻的自迴歸參數可以從無語音的區間(只含雜訊的 區間)估計之:首先估算出〜⑻的自相關函數,再以尤勒〜 渥克方程式解出自迴歸係數iH IHI page 11 425542 V. Description of the invention ¢ 9) (1 8), (1 9) can be rewritten into state equations, so the Carmen filter 2 ~ 2 0M can be used to strengthen the sub-band voice signal. The enhanced sub-band speech signal, which is expressed as', is then reconstructed by the sub-band synthesis filter module to strengthen the speech signal, which is shown as male). To use the Carmen filter, it is necessary to estimate the autoregressive parameters of the sub-band speech signal ^ ⑻ and noise κ⑻; including the autoregressive coefficient and the drive noise variance. The autoregressive parameters of '⑻ can be estimated from the interval without speech (the interval containing only noise): first estimate the autocorrelation function of ~ ⑻, and then solve the autoregressive coefficient by the Ulle ~ Walk equation.

^ = h (κ), ν; (« - 1),Λ ,vi{n-q + l)f JL < =E{V, {n)V, («)Γ} ' E{Vi (« +1)^ («)} (20) 其中,M·)為期望值運算元,則^㈦的自迴歸係數, ,可由尤勒-渥克方程式的解得到,亦即: ^ = (^)-1^ (21) 而對應的驅動雜訊方差則可表示成: <=^(〇)-ΣάΧ〇) (22) J-1 其中,4(〇 =跑“為W)的自相關函數。值-得注意的是,砣及β是由自相關函數4(0構成,其中, r = 0,1,Λ ,q-\ 。^ = h (κ), ν; («-1), Λ, vi (nq + l) f JL < = E (V, (n) V, («) Γ) 'E {Vi («+1 ) ^ («)} (20) where M ·) is the expected value operand, then the autoregressive coefficient of ^ ㈦ can be obtained from the solution of the Juler-Walker equation, that is: ^ = (^)-1 ^ (21) The corresponding driving noise variance can be expressed as: < = ^ (〇) -Σάχ〇) (22) J-1 Among them, 4 (〇 = run is “W” autocorrelation function. Value- It should be noted that 砣 and β are composed of the autocorrelation function 4 (0, where r = 0,1, Λ, q- \.

第12頁 425542 五、發明說明(ίο) 若以短時間為基礎,\⑻可被視為定態。因此,若將 次頻帶語音訊號切割成連續的音框,則每個音框中可 以假設為自迴歸模型。然而使實際上我們只有含雜訊的次 頻帶語音α(«)並無不含雜訊的次頻帶語音4«),因此無法 用習知方法求出的自相關函數甚至自迴歸參數。本發明 提出一種自相關函數相減法來解決此一問題。自相關函數 相減法描述如下:不含雜訊的次頻帶語音的自相關函數可 以用含雜訊的次頻帶語音的自相關函數部分減去次頻帶雜 訊的自相關函數估算之。自相關函數相減法可以數學式表 示如下。首先假設不含雜訊的次頻帶語音&⑻及次頻帶雜Page 12 425542 V. Description of the Invention (ίο) If it is based on a short time, \ ⑻ can be regarded as a steady state. Therefore, if the sub-band speech signal is cut into continuous frames, each frame can be assumed to be an autoregressive model. However, in fact, we only have noise in the sub-band speech α («) and no sub-band speech 4«) without noise, so the auto-correlation function and even the auto-regressive parameters cannot be obtained by conventional methods. The present invention proposes an autocorrelation function subtraction method to solve this problem. The autocorrelation function subtraction method is described as follows: The autocorrelation function of the subband speech without noise can be estimated by subtracting the autocorrelation function of the subband noise from the autocorrelation function of the subband speech with noise. The autocorrelation function subtraction method can be expressed mathematically as follows. First assume that noise-free sub-band speech & sub-band noise

訊ν»並無關連,令4(0及4⑺分別表示5»及a⑻的自相 關函數,貝1J Ο) =£{si(« + r)si(«)} =(« + r) + V; (« + 〇][^ («) + Vj («)]} (23) =+ ΐ·)^(«)} + +r)Vj («)} =4⑺+4⑺ 如此,次頻帶語音訊號的自相關函數可由自相關函數 相減得到,亦即: 4(0 =咖)-弋(Γ) (24) 其中"wOO、及4(Γ)分別表示Vi⑻、及5⑻的自相關函 數。為使4(0的估計更有彈性,(24)式可改寫成News ν »is irrelevant. Let 4 (0 and 4⑺ denote the autocorrelation functions of 5» and a⑻, respectively, 1J Ο) = £ {si («+ r) si («)} = («+ r) + V ; («+ 〇] [^ («) + Vj («)]} (23) = + ΐ ·) ^ («)} + + r) Vj («)} = 4⑺ + 4⑺ So, the sub-band voice signal The autocorrelation function can be obtained by subtracting the autocorrelation function, that is: 4 (0 = Ca)-弋 (Γ) (24) where " wOO, and 4 (Γ) represent the autocorrelation functions of Vi⑻, and 5⑻, respectively. To make the estimation of 4 (0 more flexible), (24) can be rewritten as

第13頁 (25) 五、發明說明(π) 4 (0 = 4 其中,α是介於0和1之間的常數。 令 40)=[七〇),七〇-1),Λ,'(«+ l)f" ,且 (26) 4 = («)4 ⑻7},Θ =对…(《 +1)4 («)) 則砼及Θ可由4(0組合而成。類似運算式(2 1 ),々w的自 動回係數,义=k,aUeUf ,可以由尤勒-渥克方程式的解 得到,即: 而對應的驅動雜訊方差則是 σίιν = 4(〇)_Σ«⑺ (27) (28) 在這個例子中,矩陣反轉亦包含於參數的估算過程。 不過,若自迴歸模型的冪次較低,則這些動作亦可輕易地 達成。另外,次頻帶語音的自相關函數亦可取時間平均以 得到預估值。例如: (29) 其中,#為音框大小、μ為特定音框的序號。 請參考第2圖,此圖比第1圖更詳細描述次頻帶分析濾 波模組及次頻帶合成濾波模組的内部方塊圖。其中,次頻 帶分析濾波模组1 0是由Μ個帶通濾波器1 2,〜1 2Μ及姑個倍減取Page 13 (25) V. Description of the invention (π) 4 (0 = 4 where α is a constant between 0 and 1. Let 40) = [七 〇), 七 〇-1), Λ, ' («+ L) f ", and (26) 4 = («) 4 ⑻7}, Θ = pair ... (《+1) 4 («)) Then 砼 and Θ can be combined by 4 (0. Similar expressions (2 1), the automatic return coefficient of 回 w, meaning = k, aUeUf, which can be obtained from the solution of the Juler-Walker equation, that is: and the corresponding driving noise variance is σίιν = 4 (〇) _Σ «⑺ (27) (28) In this example, matrix inversion is also included in the parameter estimation process. However, if the power of the autoregressive model is low, these actions can be easily achieved. In addition, the The correlation function can also be time averaged to get the estimated value. For example: (29) where # is the size of the sound frame and μ is the number of the specific sound frame. Please refer to Figure 2, which describes the sub-band in more detail than Figure 1. Internal block diagrams of the analysis filter module and the sub-band synthesis filter module. Among them, the sub-band analysis filter module 10 is obtained by MU band-pass filters 1, 2, 12

第14頁 五、發明說明(12) 樣器14「14M所組成1個帶通濾波器12丨]2 語音訊號咖)、並將立嗆、古八舱士 W / Μ刀J接收輸 '、濾波刀離成Μ個次頻帶成分与⑷。而|{ 個倍減取樣則分別倍數減少取樣二而Μ 藉以得到先^所述的次頻帶語音訊號咖)。 乃 另外— 人頻帶合成濾波模组3 0則是由μ彳因俾极尙掙哭 32丨〜叫、Μ個帶通濾浊哭“ ^ 』疋個倍增取樣益 中,Μ個倍數增加‘樣3 "二;°盗36所組成。其 徠器3 2〗〜3 2Μ分別接收μ個卡門濾波器 2 0] ~ 2 0Μ所付到的強化訊號毛⑷,卄拉私描丄 以得到Μ個次頻帶成分而增加取樣這些訊號 而M個帶通濾波器34丨〜34M則分別濾 波這些成分,藉以得至“⑻。另外,相加器36則是相加這 些訊號小),藉以得到強化語音办)。 士 r Γ: η便:M·5且帶通濾波器長度為二十的次頻帶濾' 波模組為例’說明本發明的模擬結果。在這個例子中,語 音訊號是由女性發聲’1同時考慮白色雜訊及有色雜訊。 並且’為有助於濾波特性的瞭解,有色雜訊採用機車雜訊 及/飞車雜Λ兩種。右輸入的訊雜比為5db,則強化的結果 如第1表所示。第1表中的數據為訊雜比強化的肫數。在第 1表中,(p , Q)分別表示不含雜訊的次頻帶語音訊號及次 頻帶雜訊的自迴歸模型冪次。並且,為簡化問題’所有次 頻帶訊號的(P,Q)均相同。為顯現本發明強化語音的效 果,本發明的模擬並與Β· κ〇〇及j· d. Gibs〇n所提的全頻Page 14 V. Description of the invention (12) Sampler 14 "14M composed of a band-pass filter 12 丨] 2 voice signal coffee), and will receive the input from Richmond and Ancient Eighth Class W / M knife J ', The filtering knife is divided into M sub-band components and ⑷. And | {subsampling samples are respectively multiplied by 2 to reduce the sampling and M to obtain the sub-band voice signal coffee described above). In addition — human band synthesis filter module 3 0 is caused by μ 彳 wailing due to 俾 俾 32 丨 ~ called, M band-pass filter turbid crying "^" In the multiplier sampling benefit, M multiplier increases' sample 3 "Second; ° Pirates 36 composition. Its device 3 2 ~ 3 2 Μ respectively receive the enhanced signal signal from the μ Carmen filter 2 0 ~ 2 0 Μ, and the private signal is drawn to obtain M sub-band components, and these signals are sampled and M Each band-pass filter 34 丨 ~ 34M filters these components separately, so as to obtain "另外. In addition, the adder 36 adds these signals (small), so as to obtain the enhanced voice office). 士 r Γ: η: M · 5 and a bandpass filter with a length of twenty sub-band filter 'wave module as an example' to illustrate the simulation results of the present invention. In this example, the voice signal is uttered by a woman '1 while considering white noise and colored Noise. In order to understand the filtering characteristics, colored noise uses locomotive noise and / speed noise Λ. The noise ratio of the right input is 5db, and the results of enhancement are shown in Table 1. The data in Table 1 are the enhancements of the noise-to-noise ratio. In Table 1, (p, Q) represents the power of the autoregressive model of the sub-band speech signal without noise and the sub-band noise, respectively. To simplify the problem, (P, Q) of all sub-band signals are the same. To show the present invention The effect of the speech, and the analog of the present invention and κ〇〇 Β · j · d. Gibs〇n mentioned full frequency

卡門EM濾波器作比較。令e = ,b κ〇ο及J DCarmen EM filter for comparison. Let e =, b κ〇ο and J D

第15頁 425542 五、發明說明(13) G i b s ο η所提的演具法首先將語音訊號分成複數音框,然後 再對個別音框反覆進行下列兩個步驟。 步驟1.使用進行卡門濾波 步驟2.使用办)的估算值以計算少w) 其中,/為重覆次數。這個模擬的結果列於第1表, 且標示為ΕΜ-/ ’其中卜1,2 ’ 3。對卡門ΕΜ濾波演算法而 言,語音設為四階,雜訊設為兩階的自迴歸模型。由表中 可知,在白色或機車雜訊下,除EM- 1表現最差外,所有方 法的結果都差不多。而本發明的(〇,2)應用在所有雜訊上 其效果皆比ΕΜ-2來得好’且(2 ’ 2)可對汽車雜訊達到最好 的效果。 接著,將本發明(〇,2 ) )及ΕΜ-1(4 量列在第2表上。在第2表中,MPU、DVU、ADU表示每單位 時間的乘法量、每單位時間的除法量、每單位時間的加$ 量。第3表列出本發明(0,2)、(2,2)及._〗的計算量此 例。(2,2)的計异量只有EM _ ^的i /2,而(〇,2 )只有} / 6 左意的是,EM-2的計算量兩倍於⑽—丨,EM_3的計算量三卞 1。&第3表可知’本發明演算法的計算量遠於全 頻卡門EM演算法。Page 15 425542 V. Description of the invention (13) The performance method proposed by Gib s η first divides the voice signal into plural frames, and then repeats the following two steps for individual frames. Step 1. Use Carmen Filter. Step 2. Use the estimated value of) to calculate less w) where / is the number of repetitions. The results of this simulation are listed in Table 1 and are labeled as EM- / ', where 1,2,3. For the Carmen EM filtering algorithm, the speech is set to the fourth order, and the noise is set to the second order autoregressive model. It can be seen from the table that under the white or locomotive noise, except for the worst performance of EM-1, the results of all methods are similar. And (0, 2) of the present invention is better than EM-2 when applied to all noise 'and (2' 2) can achieve the best effect on automobile noise. Next, the amounts of the present invention (0, 2)) and EM-1 (4) are listed in Table 2. In Table 2, MPU, DVU, and ADU represent the amount of multiplication per unit time and the amount of division per unit time. The amount of increase per unit of time. Table 3 lists the calculated amounts of (0, 2), (2, 2), and ._ in this example. The amount of difference calculated for (2, 2) is only EM _ ^ I / 2, and (〇, 2) is only} / 6 The left is that the calculation amount of EM-2 is twice as much as ⑽— 丨, and the calculation amount of EM_3 is three 卞 1. & The calculation amount of the algorithm is far more than the full-frequency Carmen EM algorithm.

降依述’本發明用於語音強化之卡門遽波器可大幅 凃冰#间幕次的自迴歸模型的參數及應用高冪次的卡門 二/器的汁算量並有效達成語音訊號的音質強化。另外, 若雜0孔為I頻(Wide Band)雜訊’則(0 ’0)模型便足以提Descend according to the present invention's Carmen waver for speech enhancement can greatly coat the parameters of the auto-regressive model of the intermission # and use the power of the high-powered Carmen II / device to effectively achieve the sound quality of the voice signal strengthen. In addition, if the Noise 0 hole is a Wide Band noise ’, then the (0’0) model is sufficient to improve

425542 五、發明說明(14) 供滿意的強化結果。而若雜訊為窄頻Band)雜 訊’則較高冪次的(2 ’2)模型亦足以提供滿意的強化結 果本,明所提以次頻帶音框為基礎的卡門濾波器可以用 號處理器(Digital Signal Processor,DSP),特 C又 /貝鼻〆去積體電路(Algorithm Specific Integrated jrCUl t ’ As 1C)或高階程式語言,如C、Fortran、Mat lab 實現之, 限定雖然本發明已以較佳實施例揭露如上,然其並非用以 ^ $本發明,任何熟習此技藝者,在不脫離本發明之精神 ^ ^圍内,當可做變更與潤飾,因此本發明之保護範圍當 <附之申請專利範圍所界定者為準。 (P* Q) 白色雜訊 機車雜极 汽車雜訊 本發明(0, 0) 5.39 5.81 3.53 本發明(1,0) 5.50 5.82 1 II 3.43 本發明(0,1) 5.40 5.81 5.7〇 本發明(1,1) 5.49 5.S4 6.98 本發明(2,0) 5.38 5.64 2.94 本發明(0,2) 5.40 5.82 7.51 本發明(2,2) 5.19 5.57 9.05 EM-1(4 ' 2) 3.7 3.51 4.97 EM-2(4,2) 5.4 5.16 737~ EM-3(4'2) 5.63 5.84 8^20~ 第1表425542 V. Description of the invention (14) Provide satisfactory enhancement results. If the noise is a narrow-band Band noise, the higher power (2 '2) model is sufficient to provide satisfactory enhancement results. The card-door filter based on the sub-band sound frame can be used. Processor (Digital Signal Processor, DSP), special C / Algorithm Specific Integrated jrCUl t 'As 1C) or high-level programming languages, such as C, Fortran, Mat lab, etc. The above embodiments have been disclosed as above, but they are not used for the present invention. Any person skilled in the art can make changes and retouching within the scope of the present invention. Therefore, the protection scope of the present invention When < the scope of the patent application is defined. (P * Q) White noise locomotive hybrid pole automobile noise The present invention (0, 0) 5.39 5.81 3.53 The present invention (1, 0) 5.50 5.82 1 II 3.43 The present invention (0, 1) 5.40 5.81 5.7〇 The present invention ( 1,1) 5.49 5.S4 6.98 The present invention (2,0) 5.38 5.64 2.94 The present invention (0,2) 5.40 5.82 7.51 The present invention (2,2) 5.19 5.57 9.05 EM-1 (4 '2) 3.7 3.51 4.97 EM-2 (4, 2) 5.4 5.16 737 ~ EM-3 (4'2) 5.63 5.84 8 ^ 20 ~ Table 1

五、發明說明(15) 動作 ΕΜ·1(4,2) 本發明(2,2) 本發明(〇,2) MPU DVU ADU MPU DVU ADU MPU DVU ADU 卡門 濾波器 120 6 111 56 4 51 16 2 15 自相關 函數計算 5 - 5 3 3 1 1 次頻帶 濾波模组 - - 4 4 4 4 總和 127 6 116 63 4 58 21 2 20 第2表 SB(2,2) SB(0,2) 卡門 EM-1(4,2) 1/2 1/6 卡門 EM-2(4,2) 1/4 1/12 卡門 EM-3(4,2) 1/6 1/18 第3表V. Description of the invention (15) Action EM · 1 (4, 2) The invention (2, 2) The invention (0, 2) MPU DVU ADU MPU DVU ADU MPU DVU ADU Carmen filter 120 6 111 56 4 51 16 2 15 Autocorrelation function calculation 5-5 3 3 1 1 Band filter module--4 4 4 4 Total 127 6 116 63 4 58 21 2 20 Table 2 SB (2, 2) SB (0, 2) Carmen EM -1 (4,2) 1/2 1/6 Carmen EM-2 (4,2) 1/4 1/12 Carmen EM-3 (4,2) 1/6 1/18 Table 3

IMII 第18頁IMII Page 18

Claims (1)

425542 六、申請專利範圍 i. 一種甩於語音強化之丰 λ μ她\ 虫化之卡門濾波器,包括 語音訊號分離為複數個 -—二人頻帶为析濾波模組,將 次頻帶語音; 複數個次頻帶音框參齡士;^ π ν ^ ^ \ ^ 多数估算器’分別將該次頻帶語音 分割成複數個連續的音框,* & & 曰柩並估算出該連續的音框内不含 雜訊的一次頻帶語音所對應的 複數個卡門遽波器,分別利;=帶語音所對應的 自迴歸參數以強化該次頻帶語音;以及 一次頻帶合成慮波模組,將複數個強化後的次頻帶語 音合*成為一強化語音。 2·如申請專利範圍第1項所述用於語音強化之卡門濾 波器’其中’該次頻帶分析濾波模組包括: 複數個帶通滤波器’分別將該語音訊號濾波為複數個 次頻帶的對應成分;以及 複數個倍減取樣器’分別倍數減少取樣該次頻帶的對 應成分以得到該次頻帶語音訊號。 3.如申請專利範圍第1項所述用於語音強化之卡門遽 波器,其中,該次頻帶合成濾波模組包括: 複數個倍增取樣器’倍數增加取樣該強化後的次頻帶 語音訊號以得到複數個次頻帶的對應成分; .複數個帶通濾波器’分別將該次頻举的對應成分遽 波;以及 一相加器,相加該帶•通遽波器的複數個輸出以得到一 強化語音。425542 6. Scope of patent application i. A kind of Carmen filter that is used to strengthen the speech enhancement λ μ \ \ Insectification, including the separation of speech signals into a plurality of-two-person band is an analysis filter module, the sub-band voice; complex number ^ Π ν ^ ^ \ ^ Most estimators' separate the sub-band speech into a plurality of continuous sound frames, respectively. * &Amp; & The multiple Carmen chirpers corresponding to the primary frequency band speech without noise are separately profitable; = the autoregressive parameters corresponding to the speech are used to strengthen the secondary frequency band speech; and the primary frequency band synthesis wave module is used to convert multiple The enhanced sub-band speech is combined into an enhanced speech. 2. The Carmen filter for speech enhancement described in item 1 of the scope of the patent application, where 'the sub-band analysis and filtering module includes: a plurality of band-pass filters', which respectively filter the voice signal into a plurality of sub-bands. Corresponding components; and a plurality of down-samplers' respectively down-sample the corresponding components of the sub-band to obtain the sub-band voice signal. 3. The Carmen wave filter for speech enhancement as described in item 1 of the scope of the patent application, wherein the sub-band synthesis filtering module includes: a plurality of multiplier samplers' multiples to increase sampling of the enhanced sub-band voice signal Obtain the corresponding components of a plurality of sub-bands;. A plurality of band-pass filters' respectively correspond to the corresponding components of the sub-band; and an adder that adds the multiple outputs of the band-pass filter to obtain A fortified voice. 第19頁 4255 4 2 「、申請專利範圍 4. 如申請專利範圍第1項所述用於語.音強化之卡門濾 波器,其中該次頻帶語音的自迴歸參數,是利用一自相關 函數相減法計算該連續的音框内各個音框中不含雜訊的該 次頻語音訊號所對應的一自相關函數,再以一尤勒-渥克. 方程式解出該各個音框中不含雜訊的該次頻語音訊號所對 應的該自迴歸參數。 5, 如申請專利範圍第4項所述自相關函數相減法,其 中該各個音框中不含雜訊的該次頻語音訊號所對應的該自 相關函數,是利用一含有雜訊的次頻帶語音所對應的一自 相關函數減去α倍的一次頻帶雜訊所對應的一自相關函數 以估算之,其中α是介於0與1之間的常數。 ~Page 19, 4255 4 2 ", patent application scope 4. Carmen filter for speech and tone enhancement as described in item 1 of the patent application scope, wherein the autoregressive parameter of the sub-band speech uses an autocorrelation function phase Subtraction calculates an autocorrelation function corresponding to the sub-frequency speech signal that contains no noise in each frame in the continuous frame, and then uses a Juler-Walker. Equation to find that each frame contains no noise. The autoregressive parameter corresponding to the sub-frequency voice signal of the sub-frequency voice signal. 5, as described in item 4 of the scope of the patent application, the auto-correlation function subtraction method, wherein each sub-frame of the sub-frequency voice signal that does not contain noise corresponds to the sub-frequency voice signal. The autocorrelation function is estimated by subtracting an autocorrelation function corresponding to α times the primary frequency band noise from an autocorrelation function corresponding to a subband speech containing noise, where α is between 0 and Constant between 1. ~ 第20頁Page 20
TW88104303A 1999-03-19 1999-03-19 Kalman filter for speech enhancement TW425542B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88104303A TW425542B (en) 1999-03-19 1999-03-19 Kalman filter for speech enhancement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88104303A TW425542B (en) 1999-03-19 1999-03-19 Kalman filter for speech enhancement

Publications (1)

Publication Number Publication Date
TW425542B true TW425542B (en) 2001-03-11

Family

ID=21640004

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88104303A TW425542B (en) 1999-03-19 1999-03-19 Kalman filter for speech enhancement

Country Status (1)

Country Link
TW (1) TW425542B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725506B2 (en) 2010-06-30 2014-05-13 Intel Corporation Speech audio processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725506B2 (en) 2010-06-30 2014-05-13 Intel Corporation Speech audio processing
TWI455112B (en) * 2010-06-30 2014-10-01 Intel Corp Speech processing apparatus and electronic device

Similar Documents

Publication Publication Date Title
Venkataramani et al. End-to-end source separation with adaptive front-ends
US6408269B1 (en) Frame-based subband Kalman filtering method and apparatus for speech enhancement
CN105957537B (en) One kind being based on L1/2The speech de-noising method and system of sparse constraint convolution Non-negative Matrix Factorization
CN102739886B (en) Stereo echo offset method based on echo spectrum estimation and speech existence probability
Venkataramani et al. Adaptive front-ends for end-to-end source separation
Djendi et al. A new efficient two-channel backward algorithm for speech intelligibility enhancement: A subband approach
KR20110036175A (en) Noise elimination apparatus and method using multi-band
Saleem et al. On improvement of speech intelligibility and quality: A survey of unsupervised single channel speech enhancement algorithms
Saleem et al. Multi-objective long-short term memory recurrent neural networks for speech enhancement
Saleem et al. Low rank sparse decomposition model based speech enhancement using gammatone filterbank and Kullback–Leibler divergence
Ullah et al. Single channel speech dereverberation and separation using RPCA and SNMF
TW425542B (en) Kalman filter for speech enhancement
Saleem Single channel noise reduction system in low SNR
Venkateswarlu et al. Speech enhancement using recursive least square based on real-time adaptive filtering algorithm
CN110060699A (en) A kind of single channel speech separating method based on the sparse expansion of depth
Lee et al. Single-channel speech separation using phase-based methods
Shraddha et al. Noise cancellation and noise reduction techniques: A review
Shanmugapriya et al. Evaluation of sound classification using modified classifier and speech enhancement using ICA algorithm for hearing aid application
Fulchiero et al. Speech enhancement using the bispectrum
Özen et al. Speech noise reduction with wavelet transform domain adaptive filters
Chokkarapu et al. Implementation of spectral subtraction noise suppressor using DSP processor
US9384757B2 (en) Signal processing method, signal processing apparatus, and signal processing program
KR101260684B1 (en) Blind source separation method and apparatus according to independent vector analysis using feed forward network
Rivet et al. Solving the indeterminations of blind source separation of convolutive speech mixtures
Liang et al. The analysis of the simplification from the ideal ratio to binary mask in signal-to-noise ratio sense

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees