TW421793B - Fabricating method of multi-stage memory unit having asymmetric drain current and the integrated circuit - Google Patents

Fabricating method of multi-stage memory unit having asymmetric drain current and the integrated circuit Download PDF

Info

Publication number
TW421793B
TW421793B TW88104546A TW88104546A TW421793B TW 421793 B TW421793 B TW 421793B TW 88104546 A TW88104546 A TW 88104546A TW 88104546 A TW88104546 A TW 88104546A TW 421793 B TW421793 B TW 421793B
Authority
TW
Taiwan
Prior art keywords
memory cell
drain
gate
source
asymmetric
Prior art date
Application number
TW88104546A
Other languages
Chinese (zh)
Inventor
Dau-Jeng Lu
Chang-Ru Chen
Hung-Suei Lin
Ming-Tzung Wang
Jin-Shi Lin
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW88104546A priority Critical patent/TW421793B/en
Application granted granted Critical
Publication of TW421793B publication Critical patent/TW421793B/en

Links

Abstract

This invention relates to an asymmetric multi-stage memory unit that provides suppressed source reading current. This suppressed source reading current can greatly reduce the error possibility of misreading for device type of the memory array that includes multi-stage memory unit. The fabricating method of asymmetric multi-stage memory unit includes source ion implantation. Isolation material is formed to the drain side of the gate before source/drain ion implantation, and finally the compensated bias region is formed in between channel and drain. This compensated bias region is not controlled by gate voltage. For 0.12 mu m isolation material, drain current is 3.5 times larger than source current at 1.5 volt voltage bias. The asymmetric multi-stage memory unit in the memory array has common source assembly and in fact proceeds the read operation in one direction due to the fact that source current of the memory unit near the word line is smaller than drain current of the reading unit.

Description

4.2179 3 A7 ___B7 五、發明説明(1 ) 本發明是有關於積體電路記憶體,尤其是每單元有多 個二元數目(位元)的金氧半(MOS)積體電路記憶體裝置。 相關技術之說明 積體電路記憶裝置的成本與儲存一筆固定資料量所需 的積體電路面積大小很有關係,該積體電路面積大小常被 當作是元件密度的參數°節省積體電路面積,製造商便能 在製造廠內,用給定的晶圓製作出更多的晶片。每個晶圓 有更多的晶片就可以直接節省下製造成本給記億裝置的消 費者。. 增加記憶裝置元件密度的一種方法是在每個記憶單元 儲存一位元以上的資料。例如,每記憶單元儲存二位元資 料便在積體電路上提供二倍的資料密度。 目前對懸浮閘極記憶裝置,已經發展出每單元多位元 的技術,如Mehrotra等人的美國專利5,1 63,02 1。然而, 懸浮閘極記憶裝置的方法牽涉到懸浮閘極的複雜充電'與放 電處理,以及困難的偵測技術,此將增加其複雜度以及降 低記億裝置的可靠度。 因此,需要一種簡單、可靠.、低成本的技術,在積體 電路中實現每記億單元有多位元的記憶單元。 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公簸) 經濟部中央標隼局員工消費合作社印聚 4.2179 3 ______ Β7 五、發明説明(> ) 發明摘要 本發明提供一種在具有非對稱記憶單元的積體電路中 每記憶單元儲存多個位元資料的技術。在記憶陣列中所發 現到的錯誤來源包括對稱記憶單元。另一錯誤來源是經過 附近記憶單元的電流路徑,這些電流路徑會改變所需記億 單元的汲極讀取電流,使得讀取到的是不同類型的單元。 非對稱記憶單元會大幅的降低源極讀取電流。適當的安置 非對稱記憶單元到記憶裝置中,利用該已降低的源極讀取 電流,以確保記憶裝置中的多階記憶單元能精確的被讀取 出。本發明因此能去除掉從電流路徑而來的錯誤。 在本發明的一些實施例中,記憶單元具有汲極,源極, 以及安置在汲極與源極間的通道,所有這些構造都是在記 憶單元的基底上。在非對稱記億單元中,該通道是從汲極 橫向展開。間隔開汲極與源極的橫向距離是一補偏區。補 偏區被安置在基底中。該補偏區是在汲極與通道之間。 記憶單元具有複數個位元,儲存在通道中a MOS元 件具有多組的記憶單元。其中特定的一組記憶單元與其它 組的記憶單元比較起來,具有不同的臨界電壓。臨界電壓 是取決於通道區的雜質濃度。每個資訊位元都是對應於記 億單元的臨界電壓値。 4 本紙張尺度適用中國國家標傘(CNS ) A4規格(210x297公後) ^------1, I 裝-- } (請先閱讀背面之注意事項再填寫本頁) 訂 421793 A7 ___________B?_ 五、發明説明(孑) 本發明的第一實施例提供一種在基底上的記憶陣列中 形成多階記憶單元的方法。該記憶陣列具有複數個多階記 憶單元。每個多階記憶單元包含閘極、閘極氧化層、通道、 汲極、以及源極。該閘極是在閘極氧化層上。閘極氧化層 具有一頂部。通道位於基底內,而且與閘極對齊。汲極 是在閘極的第一側壁上。源極位於基底內,且在閘極的第 二側壁上。第二側壁是與第一側壁相反。 形成多階記憶單元的方法包括進行源極離子佈植、形 成第一隔離物、以及進行源極/汲極離子佈植。源極離子 佈植是對每個多階記憶單元的源極來進行的。 第一隔離物是在閘極的的第一側壁上形成的,並從閘 極氧化層的頂部向上延伸。第一隔離物具有第一隔離物寬 度。第一隔離物寬度能在每個多階記憶單元的通道與汲極 之間提供補偏,値。4.2179 3 A7 ___B7 V. Description of the invention (1) The present invention relates to integrated circuit memory, especially a metal-oxide-semiconductor (MOS) integrated circuit memory device having multiple binary numbers (bits) per unit. Description of related technology The cost of an integrated circuit memory device is closely related to the size of the integrated circuit area required to store a fixed amount of data. This integrated circuit area size is often used as a parameter of component density ° to save integrated circuit area , Manufacturers can make more wafers from a given wafer in the manufacturing plant. Having more wafers per wafer can directly save manufacturing costs to consumers of hundreds of millions of devices. One way to increase the density of memory device components is to store more than one bit of data in each memory cell. For example, storing two bits of data per memory cell provides twice the data density on the integrated circuit. For floating gate memory devices, multi-bit technology has been developed, such as U.S. Patent No. 5,1 63,02 1 to Mehrotra et al. However, the method of the floating gate memory device involves the complex charging and discharging processes of the floating gate, as well as difficult detection techniques, which will increase its complexity and reduce the reliability of the hundreds of millions of devices. Therefore, there is a need for a simple, reliable, and low-cost technology to implement memory cells with multiple bits per billion cells in integrated circuits. This paper size is applicable to Chinese National Standard (CNS) A4 (210X297). Printed by the Consumers' Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 4.2179 3 ______ Β7 5. Summary of the Invention (>) Summary of the Invention The present invention provides a Technology for storing multiple bits of data in each memory cell in an integrated circuit of a memory cell. Sources of errors found in memory arrays include symmetric memory cells. Another source of error is the current paths through nearby memory cells. These current paths will change the drain read current of the required 100 million cells, so that different types of cells are read. Asymmetric memory cells will greatly reduce the source read current. Properly place the asymmetric memory unit into the memory device and use the reduced source read current to ensure that the multi-level memory unit in the memory device can be accurately read out. The invention therefore eliminates errors from the current path. In some embodiments of the invention, the memory cell has a drain, a source, and a channel disposed between the drain and the source, all of which are on the substrate of the memory cell. In asymmetric billion-count cells, the channel extends laterally from the drain. The lateral distance between the drain and the source is a biased region. The offset area is placed in the substrate. The offset region is between the drain and the channel. The memory cell has a plurality of bits, and the a MOS element stored in the channel has multiple groups of memory cells. A particular group of memory cells has different threshold voltages compared to other groups of memory cells. The threshold voltage depends on the impurity concentration in the channel region. Each information bit is a threshold voltage 値 corresponding to a hundred million cells. 4 This paper size applies to China National Standard Umbrella (CNS) A4 size (210x297 male rear) ^ ------ 1, I installed-} (Please read the precautions on the back before filling this page) Order 421793 A7 ___________B 5. Explanation of the Invention (i) The first embodiment of the present invention provides a method for forming a multi-level memory unit in a memory array on a substrate. The memory array has a plurality of multi-level memory cells. Each multi-level memory cell includes a gate, a gate oxide, a channel, a drain, and a source. The gate is on the gate oxide layer. The gate oxide layer has a top. The channel is inside the substrate and is aligned with the gate. The drain is on the first side wall of the gate. The source is located inside the substrate and on the second sidewall of the gate. The second side wall is opposite to the first side wall. A method of forming a multi-level memory cell includes performing source ion implantation, forming a first spacer, and performing source / drain ion implantation. Source ion implantation is performed on the source of each multi-level memory cell. A first spacer is formed on the first sidewall of the gate and extends upward from the top of the gate oxide layer. The first spacer has a first spacer width. The first spacer width can provide offset between the channel and the drain of each multi-level memory cell.

經濟部中央標準局員工消費合作社印I 源極/汲極離子佈植是對每個多階記憶單元的源極與 汲極來進行的。經過這些步驟,形成補偏區。補偏區是在 通道與汲極之間。補偏區能抑制源極讀取電流。 對於第一實施例而言,第一隔離物寬度是在約〇.〇5微米 5 本紙張尺度適用中國國家標準(CNS > A4規格< 210X297公釐) 42Π93 經濟部中央標準局J工消費合作社印製 A7 ______ B7五、發明説明(〆) 到約〇.2〇微米的範圍內。該補偏値小於第一隔離物寬度。 對某些實施例,該補偏値的大小是約大於百分之五十的第 一隔離物寬度(> 50%)。 對於第一實施例,該方法進一步包括進行第一通道離 子佈植、進行第一碼離子佈植、進行第二碼離子佈植、形 成閫極氧化層、沉積出第一導電層'從第一導電層定義出 閘極圖案、以及遮蔽住汲極;在進行源極離子佈植之前。 第一通道離子佈植是針對多階記憶單元來進行的。第 一位元碼離子佈植是針對第一群被選定的多階記憶單元通 道來進行的。第二位元碼離子佈植是針對第二群被選定的 多階記憶單元通道來進行的。第二位元碼離子佈植比起第 一通道離子佈植來,具有不同的投射範圍。第二位元碼離 子佈植比起第一位元碼離子佈植來,也具有不同的投射範 圍,亦即深度分佈。每個多階記憶單元都具有一位元碼, 是從一組四個不同位元中所選取出來的。四個不同位元中 的每一個都對應到特定組合的第一通道離子佈植,進行第 一位元碼離子佈植,以及進行第二位元碼離子佈植。 一般來說,位元碼離子佈植可以當作是針對η個被選 定多階記憶單元通道的群組所進行的η個位元碼離子佈 植。η個離子佈植其中的每一個都具有一組離子佈植特性, 6 本紙張尺度適用中國國家標準(CNS ) Α4規格(2〖〇X297公釐) 421793 Λ7 ______B7_五、發明説明(今) 而與其它η-1個離子佈植不同。每個多階記憶單元可以具 有一位元碼,是從2η個不同位元碼的群組中所選取出來 的。2"個不同位元碼的的每一個位元碼都對應到特定組 合的第一通道離子佈植以及η個位元碼離子佈植。對某些 實施例來說,該組離子佈植特性包含投射範圍以及離子佈 植的離子數目。 對某些第一實施例來說,該方法進一步包括沉積出第 二導電層並定義出第二導電層;在進行源極/疾極離子佈 植之後。 對某些第一實施例來說,該方法進一步包括在閘極的 第二側上形成第二隔離物,該第二隔離物從閘極氧化層的 頂部向上延伸》 本發明的第二實施例係在積體電路中提供MOS記憶 單元。該積體電路具有基底。該MOS記億單元具有在基 底上形成的源極以及閘極。MOS記憶單元也具有MOS記 憶單元閘極氧化層,在基底與閘極之間。閘極氧化層進一 步包含汲極、通道、以及補偏區。該汲極是在基底內形成 的,而且具有寬度。 該通道是在基底內形成。該通道接觸到閘極氧化層。 I . 7 本紙張尺度適用中國國家標準(CNS > Α4規格(210XM7公釐) 42Π93 A7 B? 五、發明説明(匕) 該通道與閘極對齊。該通道從源極向汲極至少延伸一段距 離。該通道與汲極被一補偏區所隔離開。該通道被調節成 能儲存多位元資料。 對某些實施例,該通道會在接近閘極氧化層的區域形 成空乏層,以反應閘極電壓。 該補偏區具有起始的導通狀態。該補偏區能保持住接 近閘極氧化層時的原始導通狀態,以反應閘極電壓》MOS 記憶單元具有對應到汲極電壓的汲極讀取電流,以及對應 到源極電壓的源極讀取電流。源極電壓等於閘極電壓。該 汲極讀取電流的大小與源極讀取電流的大小不同。The source / drain ion implantation of the staff consumer cooperative of the Central Standards Bureau of the Ministry of Economic Affairs is performed on the source and drain of each multi-level memory cell. After these steps, an offset region is formed. The offset region is between the channel and the drain. The offset region can suppress the source read current. For the first embodiment, the width of the first spacer is about 0.05 μm. 5 This paper size is applicable to Chinese national standards (CNS > A4 specifications < 210X297 mm). Cooperative printed A7 ______ B7 V. Description of invention (〆) The range is about 0.20 microns. The offset bias is smaller than the width of the first spacer. For some embodiments, the magnitude of the offset is approximately greater than fifty percent of the first spacer width (> 50%). For the first embodiment, the method further includes performing a first channel ion implantation, performing a first code ion implantation, performing a second code ion implantation, forming a samarium oxide layer, and depositing a first conductive layer from the first The conductive layer defines the gate pattern and shields the drain; before the source ion implantation is performed. The first channel ion implantation is performed on a multi-level memory cell. The first bit code ion implantation is performed for the first group of selected multi-level memory cell channels. The second bit code ion implantation is performed for the second group of selected multi-level memory cell channels. The second bit code ion implantation has a different projection range than the first channel ion implantation. The second bit code ion implantation also has a different projection range than the first bit code ion implantation, that is, the depth distribution. Each multi-level memory cell has a bit code, which is selected from a set of four different bits. Each of the four different bits corresponds to the first channel ion implantation of a specific combination, the first bit code ion implantation, and the second bit code ion implantation. In general, bit code ion implantation can be regarded as n bit code ion implantation performed on a group of n selected multi-level memory cell channels. Each of the η ion implants has a set of ion implant characteristics, 6 paper sizes are applicable to the Chinese National Standard (CNS) A4 specifications (2 〖〇X297mm) 421793 Λ7 ______B7_ V. Description of the invention (today) But different from other η-1 ion implantation. Each multi-level memory cell can have one bit code, which is selected from a group of 2n different bit codes. Each bit code of 2 " different bit codes corresponds to the first channel ion implantation of a specific combination and the n-bit code ion implantation. For some embodiments, the set of ion implantation characteristics includes the projection range and the number of ions implanted. For some first embodiments, the method further includes depositing a second conductive layer and defining a second conductive layer; after performing the source / discharge ion implantation. For certain first embodiments, the method further includes forming a second spacer on a second side of the gate, the second spacer extending upward from the top of the gate oxide layer. A second embodiment of the present invention The MOS memory cell is provided in the integrated circuit. The integrated circuit has a substrate. This MOS memory cell has a source and a gate formed on a substrate. The MOS memory cell also has a gate oxide layer of the MOS memory cell between the substrate and the gate. The gate oxide further includes a drain, a channel, and an offset region. The drain is formed in the substrate and has a width. The channel is formed in the substrate. The channel contacts the gate oxide. I. 7 This paper size applies the Chinese national standard (CNS > A4 size (210XM7mm) 42Π93 A7 B? V. Description of the invention (dagger) The channel is aligned with the gate. The channel extends at least one section from the source to the drain. The channel is separated from the drain by a biased region. The channel is adjusted to store multi-bit data. For some embodiments, the channel will form an empty layer near the gate oxide layer to The gate voltage is reacted. The compensation region has an initial conduction state. The compensation region can maintain the original conduction state when it is close to the gate oxide layer. The MOS memory cell has a voltage corresponding to the drain voltage. The drain read current and the source read current corresponding to the source voltage. The source voltage is equal to the gate voltage. The magnitude of the drain read current is different from the source read current.

锖 先 (T 讀 背 面 之 注 意 事 -¾ 填 寫 本 I 經濟部中央標準局員工消費合作社印製 對某些第二實施例來說,源極讀取電流小於汲極讀取 電流,補偏區會在接近聞極氧化層的區域形成空乏層,以· 反應汲極電壓,補偏區是在約0.02微米到約0.20微米的 範圍內,以及補偏區能保持住接近閘極氧化層時的原始導 通狀態,以反應源極電壓。 對某些第二實施例來說,閘極具有閘極寬度。該閛極 也具有第一側,與第一側相反的第二側,底部,以及頂部。 閘極寬度是第一側與第二側之間的距離。該閘極位於源極 與汲極之間。該閘極是在閘極氧化層上。汲極在第一側上 8 本紙張尺度適用中國國家標準(CNS ) Α4規格(2丨0X297公釐) 經濟部中央標準局貝工消費合作社印製 42^93 A7 _______B7五、發明説明(夕) 而源極在第二側上。閘極寬度小於源極與汲極之間的距 離。閘極氧化層具有頂部。在該實施例中,MOS記億單 元進一步包含沿著閘極第一側的第一隔離物。該第一隔離 物從閘極氧化層的頂部向上延伸。該第一隔離物也具有第 一隔離物寬度。 本發明的第三實施例提供包含有記憶單元陣列、位元 線、與字線的積體電路。該記憶單元包含數個電晶體,該 電晶體在基底的通道區內具有通道。陣列中被選定的記憶 單兀在通道中儲存多位元資料》 字線與位元線分別耦合到陣列中記憶單元的列與行, 藉此讀取儲存在陣列中的資料。位元線包含積體電路的第 一圖案層。字線包含積體電路的第二圖案層。 每個被選定的記億單元都具有在基底內形成的源極. 閛極、以及在基底閘極之間的閘極氧化層。每個被選定的 記憶單元進一步包含非對稱汲極、通道、以及補偏區。非 對稱汲極在基底內形成並具有一寬度。 該通道是在基底內形成的。該通道與閘極對齊。該通 道從源極向非對稱汲極延伸》該通道與非對稱汲極被一補 偏區所隔離開。該通道被調節成能儲存多位元資料。該通 9 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央標準局員工消費合作社印掣 A7 __B 7五、發明説明(?) 道會在接近閘極氧化層的通道區域內形成空乏層,以反應 閘極電壓。 補偏區具有起始的導通狀態。該補偏區能保持住接近 閘極氧化層時的原始導通狀態,以反應閘極電壓。 每個被選定的記憶單元具有對應到汲極電壓的汲極讀 取電流,以及對應到源極電壓的源極讀取電流。反應第一 時間下施加源極電壓與第二時間下施加汲極電壓,稹體電 路中的電流在第一時間下是以第一方向流動,而在第二時 間下是以第二方向流動。第二方向是與第一方向相反。源 極電壓等於汲極電壓。該汲極讀取電流的大小與源極讀取 電流的大小不同。 每個被選定的記憶單元電晶體的補偏値夠大,足以確 保被選定的記憶單元電晶體只能精確的被同一方向上相對 應字線與相對應位元線所讀取出來。 對某些第三實施例來說,補偏値是在約0.02微米到 約0.2〇微米的範圍內。該補偏區會在接近閘極氧化層的 區域形成空乏層,以反應汲極電壓,以及補偏區能保持住 接近閘極氧化層時的原始導通狀態,以辰應源極電壓。 10 本紙張尺度適用中國國家標準(CNS )六4現格(210X:297公釐) (請1聞讀背面之注意事彳#··填寫本頁) -裝· 訂 4 217 9 3 Λ7 Β7 經濟部中央標準局員工消費合作社印裝锖 先 (Notes on the back of T reading-¾ Fill out this I Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs For some second embodiments, the source read current is less than the drain read current, and the offset area will An empty layer is formed in a region close to the oxidized oxide layer to reflect the drain voltage. The offset region is in the range of about 0.02 microns to about 0.20 microns, and the offset region can maintain the original when close to the gate oxide layer. The on-state responds to the source voltage. For some second embodiments, the gate has a gate width. The gate also has a first side, a second side opposite to the first side, a bottom, and a top. The gate width is the distance between the first and second sides. The gate is between the source and the drain. The gate is on the gate oxide. The drain is on the first side 8 paper sizes Applicable to China National Standard (CNS) Α4 specification (2 丨 0X297 mm) Printed by Shellfish Consumer Cooperative of Central Standards Bureau of Ministry of Economic Affairs 42 ^ 93 A7 _______B7 V. Description of the invention (Even) The source is on the second side. Gate The width is less than the distance between the source and the drain. The electrode oxide layer has a top. In this embodiment, the MOS memory cell further includes a first spacer along the first side of the gate. The first spacer extends upward from the top of the gate oxide. The first isolation The object also has a first spacer width. A third embodiment of the present invention provides an integrated circuit including a memory cell array, a bit line, and a word line. The memory cell includes a plurality of transistors, and the transistors are on the substrate. There are channels in the channel area. The selected memory unit in the array stores multi-bit data in the channel. Word lines and bit lines are coupled to the columns and rows of the memory cells in the array, thereby reading the data stored in the array. Information. The bit line contains the first pattern layer of the integrated circuit. The word line contains the second pattern layer of the integrated circuit. Each selected billion cell has a source formed in the substrate. The gate oxide layer between the base gates. Each selected memory cell further includes an asymmetric drain, channel, and offset region. The asymmetric drain is formed in the substrate and has a width. The channel is in the base The channel is aligned with the gate. The channel extends from the source to the asymmetric drain. The channel and the asymmetric drain are separated by an offset region. The channel is adjusted to store multi-bit data. . This paper 9 paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) A7 __B printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs V. Description of the invention (?) An empty layer is formed in the channel region to reflect the gate voltage. The offset region has an initial conduction state. The offset region can maintain the original conduction state when it is close to the gate oxide layer to reflect the gate voltage. The selected memory cell has a drain read current corresponding to the drain voltage and a source read current corresponding to the source voltage. The source voltage is applied at the first time and the drain voltage is applied at the second time. The current in the body circuit flows in a first direction at a first time and flows in a second direction at a second time. The second direction is opposite to the first direction. The source voltage is equal to the drain voltage. The magnitude of the drain read current is different from the magnitude of the source read current. The offset of each selected memory cell transistor is large enough to ensure that the selected memory cell transistor can only be accurately read by the corresponding word line and corresponding bit line in the same direction. For some third embodiments, the offset compensation is in the range of about 0.02 microns to about 0.20 microns. The offset region will form an empty layer in the region close to the gate oxide layer to reflect the drain voltage, and the offset region can maintain the original conduction state when it is close to the gate oxide layer, so as to respond to the source voltage. 10 This paper size applies to the Chinese National Standard (CNS) 6 and 4 grids (210X: 297 mm) (Please read the notes on the back 背面 # ·· Fill in this page)-Binding · Binding 4 217 9 3 Λ7 Β7 Economy Printed by the Consumer Standards Cooperative of the Ministry of Standards

五、發明説明(f ) 對某些第三實施例來說,每個被選定的記憶單元的閘 極可以由相對應的字線來定址。該積體電路進一步包含感 測放大器,接地,第一被選定記憶單元電晶體,以及第二 被選定記憶單元電晶體。 感測放大器具有導線、第一側、以及第二側。接地具 有導線、第一側、以及第二側。位元線接近接地導線。位 元線接近感測放大器的導線。位元線是在感測放大器導線 的第二側。 第一被選定記憶單元電晶體是在位元線與感測放大器 導線的第二側之間。第一被選定記憶單元電晶體的汲極接 到感測放大器的導線。 第二被選定記憶單元電晶體是在位元線與接地導線的 第一側之間。第二被選定記億單元電晶體的汲極接到接地 導線。第一被選定記憶單元電晶體與第二被選定記憶單元 電晶體都具有共用源極。位元線接到第一與第二被選定記 憶單元電晶體的共用源極上。其中,第一被選定記憶單元 電晶體只能精確的被相對應字線與相對應位元線以第一方 向讀取出來。第二被選定記憶單元電晶體Η能精確的被相 對應字線與相對應位元線以第二方向讀取出來。第一方向 與第二方向是相反的D I-------^^-- 4 .一 (請先閲讀背面之注意事項再填寫本頁) 、va 專 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ΑΊ 421Τ9 3 ____L7___ 發明说明(㈨) 對某些實施例,積體電路進一步包含感測放大器、接 地、第一被選定記憶單元電晶體、以及第二被選定記億單 元電晶體。對這些實施例,第一方向是從第一被選定記憶 單元電晶體的汲極到第一被選定記憶單元電晶體的源極。 第二方向是從第二被選定記憶單元電晶體的汲極到第二被 選定記憶單元電晶體的源極。 部分第二方向上的電流會從第一被選定記憶單元電晶 體的源極流到第一被選定記憶單元電晶體的汲極。第一被 選定記憶單元電晶體內的部分第二方向電流是小於百分之 四十的第二被選定記憶單元電晶體內的第二方向電流。部 分第一方向上的電流會從第二被選定記憶單元電晶體的源 極流到第二被選定記憶單元電晶體的汲極。第二被選定記 憶單元電晶體內的部分第一方向電流是小於百分之四十的 第一被選定記憶單元電晶體內的第一方向電流。 本發明的第四實施例提供一種讀取具補偏値的記憶單 元的方法。該方法包括提供記億單元,其中記憶單元是非 對稱記憶單元。對該組群中的某些實施例,非對稱記憶單 兀是多階記憶單元。 圖式的簡單說明 . 12 本紙張尺度適用中國國家標準(CNS ) A4規格(2〗0X297公浼) (請L閱讀背面之注意事 填寫本頁) .裝· '11 經濟部中央標準局員工消費合作社印製 421793 __'_B7 五、發明説明(ί)) 圖一顯示對具有四個不同位元碼的二位元階記憶單元中, 汲極讀取電流與臨界電壓的關係。 圖二顯示本發明實施例中背閘極偏壓對臨界電壓。 圖三顯示本發明實施例中的垂直慘雜分佈資料》 圖四顯示對具有八個不同位元碼的三位元階記憶單元,汲 極讀取電流與臨界電壓的關係。 圖五是習用技術中對稱記憶單元的剖面示意圖。 圖六顯示本發明實施例中非對稱記憶單元的剖面示意圖。 圖七是本發明第二群組實施例中,在沉積出閘極氧化層,_ 第一導電層與第一介電層後記憶單元製作層的剖示圖。 圖八顯示本發明實施例中,在定義出第—導電層之圖案後 記憶單元製作層的剖示圖。 圖九顯示本發明實施例中源極離子佈植以及記憶單元製作 層的割示圖。 圖十顯示本發明實施例中記憶單元層的剖示圖,圖中也顯 示出汲極離子佈植。 經濟部中央標準局員工消費合作社印製 圖十一顯示本發明實施例中,在去除掉第二階段閘極遮蔽 層後記憶單元製作層的剖示圖。 圖十二顯示本發明實施例中,在沉積出第二導電層後記憶 單元製作層的剖示圖。 圖十三顯示本發明不同補偏(隔離物)大小的實施例中,非 對稱記憶單元的電流-電壓圖。 13 本紙張尺度適用中國國家標準(CNS ) Λ4规格(210X297公釐) 一 經濟部中央標準局員工消費合作社印裝 42Π93 B7 五、發明説明(\V) '圖十四是使用習用對稱記憶單元技術所形成的記憶單元陣 列結構圖。 圖十五顯示出包含非對稱多階記憶單元的記憶單元陣列結 構圖。 圖十六顯示出在包含非對稱多階記憶單元的記憶單元陣列 中,阻止其它電流路徑的圖式。 詳細說明 參考圖1〜13,揭露出實現具有非對稱汲極之多階記 憶單元的製造方法與積體電路。在以下的說明中,爲了解 釋起見,特定的名稱會先提出來,以提供完整的了解。然 而,這些特定名稱的許多細節對本發明來說是不需要的。 對於具有多階記憶單元所提供的所有改善記憶體密度 優點的積體電路來說,該積體電路必須精確的讀取多階記 憶單元中每個型式的位元碼。每組多階記憶單元具有特別 的位元碼値。每個位元碼値是由唯一的臨界電壓(Vt)來定 義。在缺少因習用對稱記憶單元技術所導致的汲極電流讀 取錯誤來源時,位元碼已經被分隔開,因爲每個記憶單兀 型式都具有唯一的臨界電壓,可以藉讀取出記億單元的汲 極電流而決定。然而,在習用包含對稱記憶單元的記憶單 元陣列技術中,發現到有一錯誤來源。該錯誤來源是因有 本紙伕尺度適用中國國家標準(CNS ) Λ4規择(210X297公浼) (請先旷讀背面之注意事t填寫本頁) 、τ A7 42ΊΤ9 3 五、發明説明(Oy) 其它經過鄰近記憶單元的電流路徑而產生的,會改變掉所 需記憶單元的汲極電流,使得能被當作不同的記憶單元來 讀取。 本發明提供新的對稱記億單元結構。本發明非對稱記 憶單元被調節成能大幅降低源極讀取電流。記億單元陣列 中適當安置的非對稱記憶單元利用已降低的源極讀取電 流,來確保能精確的讀取記憶裝置中多階記憶單元。因此 本發明免除掉從其它電流路徑而來的錯誤來源。非對稱記 憶單元特別適合給多階光罩ROM積體電路用。 請 閲 讀 背 之 注 拳 糞▲ 本本 頁 訂 經濟部中央標準局員工消費合作社印製 藉由結合每個記憶單元通道中的不同離子佈植,來達 到不同的臨界電壓。離子佈植的不同組合提供唯一的臨界 電壓給記憶陣列中每個型式的記億單元。 一串η位元碼離子佈植是在所有記憶單元通道進行起 始淺臨界電壓離子佈植處理後,針對被選定記憶單元通道 來進行的。每個位元碼離子佈植具有一組與其它位元碼離 子佈植不同且與起始淺臨界電壓離子佈植不同的離子佈植 特性。位元碼離子佈植被調節成提供淸楚分開的臨界電壓 給一些基底偏壓用。該組離子佈植特性包含投射範圍以及 15 本纸浪疋度適用中國國家標準(CNS ) A4規袴(210 X 297公釐)5. Description of the Invention (f) For some third embodiments, the gate of each selected memory cell may be addressed by a corresponding word line. The integrated circuit further includes a sense amplifier, ground, a first selected memory cell transistor, and a second selected memory cell transistor. The sense amplifier has a lead, a first side, and a second side. The ground has a lead, a first side, and a second side. The bit line is close to the ground wire. The bit lines are close to the leads of the sense amplifier. The bit line is on the second side of the sense amplifier wire. The first selected memory cell transistor is between the bit line and the second side of the sense amplifier wire. The drain of the first selected memory cell transistor is connected to the lead of the sense amplifier. The second selected memory cell transistor is between the bit line and the first side of the ground wire. The drain of the second selected hundred million unit transistor is connected to the ground wire. Both the first selected memory cell transistor and the second selected memory cell transistor have a common source. The bit line is connected to a common source of the first and second selected memory cell transistors. Among them, the first selected memory cell transistor can only be accurately read out by the corresponding word line and corresponding bit line in the first direction. The second selected memory cell transistor can be accurately read out by the corresponding word line and corresponding bit line in the second direction. The first direction is opposite to the second direction D I ------- ^^-4. 1. (Please read the precautions on the back before filling in this page), va Special paper size applies Chinese national standards ( CNS) A4 specification (210X297 mm) ΑΊ 421Τ9 3 ____L7___ Description of the invention (㈨) For some embodiments, the integrated circuit further includes a sense amplifier, a ground, a first selected memory cell transistor, and a second selected memory Million unit transistors. For these embodiments, the first direction is from the drain of the first selected memory cell transistor to the source of the first selected memory cell transistor. The second direction is from the drain of the second selected memory cell transistor to the source of the second selected memory cell transistor. Part of the current in the second direction will flow from the source of the first selected memory cell transistor to the drain of the first selected memory cell transistor. Part of the second direction current in the first selected memory cell transistor is less than forty percent of the second direction current in the second selected memory cell transistor. Part of the current in the first direction will flow from the source of the second selected memory cell transistor to the drain of the second selected memory cell transistor. A portion of the first direction current in the second selected memory cell transistor is less than forty percent of the first direction current in the first selected memory cell transistor. A fourth embodiment of the present invention provides a method for reading a memory cell with a complementary bias. The method includes providing a billion-memory unit, wherein the memory unit is an asymmetric memory unit. For some embodiments in the group, the asymmetric memory unit is a multi-level memory unit. Brief description of the drawings. 12 This paper size applies to China National Standard (CNS) A4 specification (2〗 0X297 gong) (please read the notes on the back and fill out this page). Equipment · '11 Staff Consumption of the Central Standards Bureau of the Ministry of Economic Affairs Printed by the cooperative 421793 __'_ B7 V. Description of the invention (ί)) Figure 1 shows the relationship between the drain read current and the threshold voltage in a two-bit order memory cell with four different bit codes. FIG. 2 shows the back gate bias voltage versus the threshold voltage in the embodiment of the present invention. Figure 3 shows the vertical miscellaneous distribution data in the embodiment of the present invention. "Figure 4 shows the relationship between the drain read current and the threshold voltage for a three-bit memory cell with eight different bit codes. FIG. 5 is a schematic cross-sectional view of a symmetric memory cell in a conventional technique. FIG. 6 is a schematic cross-sectional view of an asymmetric memory unit according to an embodiment of the present invention. FIG. 7 is a cross-sectional view of a memory cell fabrication layer after a gate oxide layer, a first conductive layer and a first dielectric layer are deposited in a second group of embodiments of the present invention. FIG. 8 is a cross-sectional view of a memory cell fabrication layer after the pattern of the first conductive layer is defined in the embodiment of the present invention. Fig. 9 shows a cut-away view of the source ion implantation and the memory cell fabrication layer in the embodiment of the present invention. FIG. 10 is a cross-sectional view of a memory cell layer according to an embodiment of the present invention, and a drain ion implantation is also shown in the figure. Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Figure 11 shows a cross-sectional view of the memory cell production layer after the second-stage gate shielding layer is removed in the embodiment of the present invention. FIG. 12 shows a cross-sectional view of a memory cell fabrication layer after a second conductive layer is deposited in an embodiment of the present invention. FIG. 13 shows a current-voltage diagram of an asymmetric memory cell in an embodiment of different offset (isolator) sizes of the present invention. 13 This paper size applies the Chinese National Standard (CNS) Λ4 specification (210X297 mm) 1 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 42Π93 B7 V. Description of the invention (\ V) 'Figure 14 is the use of the conventional symmetric memory cell technology Structure diagram of the formed memory cell array. Figure 15 shows the structure of a memory cell array containing asymmetric multilevel memory cells. Figure 16 shows a scheme for blocking other current paths in a memory cell array containing asymmetric multilevel memory cells. Detailed description With reference to FIGS. 1 to 13, a manufacturing method and an integrated circuit for realizing a multi-level memory cell with an asymmetric drain are disclosed. In the following description, for the sake of explanation, a specific name will be mentioned first to provide a complete understanding. However, many details of these specific names are not needed for the present invention. For an integrated circuit with all the advantages of improved memory density provided by a multi-level memory unit, the integrated circuit must accurately read the bit code of each type in the multi-level memory unit. Each group of multi-level memory cells has a special bit code 値. Each bit code 値 is defined by a unique threshold voltage (Vt). In the absence of the source of the drain current reading error caused by the conventional symmetric memory cell technology, the bit code has been separated, because each memory unit type has a unique threshold voltage, which can be read out to record billions. It depends on the drain current of the cell. However, in the conventional memory cell array technology including symmetric memory cells, a source of errors was found. The source of this error is due to the fact that this paper applies the Chinese National Standard (CNS) Λ4 rule (210X297 gong) (please read the notice on the back first to fill out this page), τ A7 42ΊΤ9 3 V. Description of the invention (Oy) Other currents flowing through the adjacent memory cells will change the drain current of the required memory cells so that they can be read as different memory cells. The present invention provides a new symmetrical 100 million cell structure. The asymmetric memory cell of the present invention is adjusted to greatly reduce the source read current. The properly arranged asymmetric memory cells in the billion-cell array use the reduced source read current to ensure that the multi-level memory cells in the memory device can be accurately read. The invention therefore eliminates the source of errors from other current paths. The asymmetric memory unit is particularly suitable for multi-level photomask ROM integrated circuits. Please read the note on the back of the box. ▲ This page is printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. By combining different ion implants in each memory cell channel, different threshold voltages are achieved. Different combinations of ion implantation provide unique threshold voltages for each type of billion-cell in the memory array. A series of n-bit code ion implantation is performed on the selected memory cell channel after the initial shallow critical voltage ion implantation process is performed on all memory cell channels. Each bit code ion implantation has a set of ion implantation characteristics that are different from other bit code ion implantation and different from the initial shallow critical voltage ion implantation. The bit code ion cloth vegetation is adjusted to provide a critical threshold voltage for some substrate bias. This set of ion implantation characteristics includes projection range and 15 paper waves with Chinese National Standard (CNS) A4 regulations (210 X 297 mm)

I 42Π93 Λ7 __B? 五、發明説明(\V) 離子佈植的離子數目。不同位元碼離子佈植的不同組合提 供每記憶單元能儲存多階位元資料的記憶單元。 當記憶陣列中的所有記億單元都經過第一通道離子佈 植時,亦即起始臨界電壓的離子佈植時,表1與表2提供 決定每記憶單元位元數目的基礎,其中每記憶單元位元數 目將是給已給定位元碼離子佈植數目用。 最簡單的例子是,針對被選定記憶單元進行單一位元 碼離子佈植以便形成一位元記憶陣列。此時,n= 1且只有 一位元儲存在每個記憶單元中,0(記憶單元中沒有位元離 子佈植)或1(記憶單元中有位元離子佈植)。n=l時,每個 記憶單元都具有一位元碼,從群組0或1中選取出,或是 形成二位元碼的選取群組》也且,n=l時,記憶陣列包含 二種型式的記憶單元,記億單元0與記憶單元1。要注意 的是,選取群組中的位元碼數目等於記憶陣列中記憶單元 型式的數目。 經濟部中央標準局員工消費合作社印製 基於本範例以及以上述,建立起選取群組中位元碼數 目(S)以及針對被選定記憶單元所進行的位元碼離子佈植 數目之間的關係,其中S等於2n。當n = 2時,S = 2k2。 表1列出當n = 2時,或針對被選定記憶單元通道進行 16 本紙張尺度適用中g家標準(CNS ) A4規格(2丨0X 297公釐) 421T93 經濟部中央標準局貝工消費合作社印製 A7 B7 五、發明説明(〆) 可辨別的二位元碼離子佈植時,每記憶單元多位元。依據 所假設的關係,對於二位元碼離子佈植(n = 2),選取群組 中位元碼數目是S = 22 = 4。因此,由表1可以看出來,對n = 2 時本假設(S = 2n)仍成立。 對n = 2時,如表1所示,該記憶陣列包含四種記憶單 元型式°藉結合二位元碼離子佈植與第一通道離子佈植, 以提供這四種記憶單元型式。這種組合是應用到二位元階 記憶單元陣列上。在所討論的範例中,第一位元碼離子佈 植比第二位元碼離子佈植,較具有較小的投射範圍(因爲 較低的離子佈植能量)>> 第一型記憶單元;00只具有窠一通 道離子佈植,亦即其它的位元碼離子佈植。第二型記憶單 元01具有另外的第二位元碼離子佈植。第三型記憶單元 10具有另外的第一位元碼離子佈植。第四型記憶單元11 具有另外的第一位元碼離子佈植以及另外的第二位元碼離 子佈植。 第一通道離子 佈植 第一位元碼離 子佈植 第二位元碼離 子佈植 記憶單元型式 Y N N 00 Y Y N 01 Y N .Y 10 Y Y Y 11 二位元階記億 單元 位元碼離子佈 植數目=2 = n 記憶單元型式 數目=2n=4 表1 17 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) {請^t.,聞請背面之注意事項异填寫本頁)I 42Π93 Λ7 __B? 5. Description of the invention (\ V) Number of ions implanted by ions. Different combinations of different bit code ion implants provide memory cells capable of storing multi-level bit data per memory cell. Table 1 and Table 2 provide the basis for determining the number of bits per memory cell when all the 100 million cells in the memory array are ion implanted in the first channel, that is, the ion implantation of the initial threshold voltage. The number of unit bits will be used for the number of ions implanted for the given positioning code. The simplest example is a single bit code ion implantation of selected memory cells to form a one-bit memory array. At this time, n = 1 and only one bit is stored in each memory cell, 0 (no bit ion implantation in the memory cell) or 1 (bit ion implantation in the memory cell). When n = 1, each memory cell has a one-bit code, which is selected from group 0 or 1, or a selection group that forms a two-bit code. Also, when n = 1, the memory array contains two This type of memory unit is worth 0 million units and 1 memory unit. It should be noted that the number of bit codes in the selection group is equal to the number of memory cell types in the memory array. Based on this example and the above, printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs, the relationship between the number of bit codes (S) in the selected group and the number of ion implantations of bit codes for the selected memory unit , Where S equals 2n. When n = 2, S = 2k2. Table 1 lists when n = 2, or 16 paper sizes for the selected memory cell channel are applicable to the Chinese standard (CNS) A4 specification (2 丨 0X 297 mm) 421T93 Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Printed A7 B7 V. Description of the invention (〆) When the discernable two-bit code is ion-implanted, there are multiple bits per memory unit. According to the assumed relationship, for two-bit code ion implantation (n = 2), the number of bit codes in the selected group is S = 22 = 4. Therefore, it can be seen from Table 1 that this hypothesis (S = 2n) still holds for n = 2. For n = 2, as shown in Table 1, the memory array includes four types of memory cell types. These four types of memory cell types are provided by combining two-bit code ion implantation and first channel ion implantation. This combination is applied to a two-bit order memory cell array. In the example discussed, the first bit code ion implantation has a smaller projection range than the second bit code ion implantation (because of the lower ion implantation energy) > > Type I memory Unit; 00 has only one channel ion implantation, that is, other bit code ion implantation. The second type memory cell 01 has another second bit code ion implantation. The third type memory cell 10 has another first bit code ion implantation. The fourth type memory unit 11 has another first bit code ion implantation and another second bit code ion implantation. The first channel ion implantation The first bit code ion implantation The second bit code ion implantation memory cell type YNN 00 YYN 01 YN .Y 10 YYY 11 The two-bit order records the billion-bit unit code ion implantation number = 2 = n Number of memory cell types = 2n = 4 Table 1 17 This paper size applies Chinese National Standard (CNS) A4 (210X297 mm) {Please ^ t., Please note the notes on the back, please fill in this page)

42179 3 λ7 ____ Β7___ 五、發明説明(\W ) 圖一的圖式顯示對具有四個不同位元碼的二位元階記 憶單元,汲極讀取電流與臨界電壓的關係。在該範例中, 對與已給定的電壓,每種型式的記憶單元藉汲極讀取電流 而與不同型式的記憶單元分開。如圖一所示,〇〇單元電 流/電壓特性1 00包含有最高的汲極讀取電流以及最低的 .臨界電壓,而11單元電流/電壓特性115包含有最低的汲 極讀取電流以及最高的臨界電壓。 圖二與圖三提供依據本發明所實現的臨界電壓資料與 垂直摻雜分佈資料,給二位元階光罩η通道ROM陣列。 圖2顯示出對二位元階光罩n通道ROM的臨界電壓的影 響。特別是用四個記憶單元來實現的。 第一記憶單元,記憶單元00,沒有位元碼離子佈植, 而且是起始低臨界電壓記憶單元。該記憶單元的起始臨界 電壓在零背偏壓下,是在點200上,而且隨著背閘極偏壓 的增加到1 volt, 3 volt,該臨界電壓會藉其相對應的負通 道偏壓而升到點201。 經濟部中央標準局員工消費合作社印製 (诗先閱讀背面之注意事項#填寫本頁) 第二記憶單元,記億單元0 1,具單一淺位元碼離子佈 植,硼離子濃度2xl014cm_2,離子佈植能量150KeV。該記 憶單元的起始臨界電壓在零背偏壓下,是在點202上。背 閘極偏壓3 volt時,該臨界電壓會升到點20 3。 第三記憶單元,記億單元1 〇,具單一深位元碼離子佈 植,砸離子濃度9.3xlOl4cm·2,離子佈植能量2 00KeV。該42179 3 λ7 ____ Β7 ___ 5. Description of the Invention (\ W) The diagram in Figure 1 shows the relationship between the drain read current and the threshold voltage for a two-bit memory cell with four different bit codes. In this example, for a given voltage, each type of memory cell is separated from a different type of memory cell by the drain read current. As shown in Figure 1, the 00 unit current / voltage characteristic 100 includes the highest drain read current and the lowest threshold voltage, and the 11 unit current / voltage characteristic 115 includes the lowest drain read current and the highest. Critical voltage. Figures 2 and 3 provide critical voltage data and vertical doping profile data implemented according to the present invention for a two-bit mask n-channel ROM array. Figure 2 shows the effect on the threshold voltage of a two-bit mask n-channel ROM. This is achieved in particular with four memory units. The first memory unit, memory unit 00, has no bit code ion implantation, and is the initial low threshold voltage memory unit. The initial threshold voltage of the memory cell is at point 200 under zero back bias, and as the back gate bias voltage increases to 1 volt, 3 volt, the threshold voltage will be offset by its corresponding negative channel. Press up to point 201. Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (Notes on the back of the poem before reading #Fill this page) The second memory unit, remembering 100 million units, with a single shallow bit code ion implantation, boron ion concentration 2xl014cm_2, ion Planting energy of 150KeV. The initial threshold voltage of the memory cell is at point 202 at zero back bias. With a back-gate bias of 3 volts, this threshold voltage will rise to point 20 3. The third memory unit, remembering 100 million units, has a single deep bit code ion implantation, with an ion concentration of 9.3 × 10 4 cm · 2, and an ion implantation energy of 2000 KeV. The

1B i紙張尺度通用中國國家ϋ( CNS ) A4規格(210X297公釐) " Μ Β7 ^21793 五、發明説明(\夕) 記憶單元的起始臨界電壓在零背偏壓下,是在點204上。 背鬧極偏壓3 volt時,該臨界電壓會升到點205 » 最後的記憶單元,記憶單元1 1,具有淺位元碼離子佈 植與單一深位元碼離子佈植的組合。該記憶單元的起始臨 界電壓在零背偏壓下,是在點206上。背閘極偏壓3 volt 時,該臨界電壓會升到點207。如圖2所示的,四個記憶 單元型式可以得到良好的準位到準位差異。背閘極偏壓對 四階光罩ROM記憶單元的影響也很淸楚。加上2volt的 背閘極偏壓,其準位到準位的差異從每記億單元約1 volt 以下,被放大到每記憶單元約2 volt。臨界電壓的偏移主 要是因爲,二位元階ROM記憶單元的總體摻雜分佈被離 子佈植所改變。 圖三顯示出圖二中二位元階ROM記憶單元陣列中所 使用到的離子佈植組合的摻雜分佈。對記憶單元〇〇 ,垂 直摻雜分佈是由曲線301來表示。對記憶單元01,垂直 摻雜分佈是由曲線3 02來表示。對記憶單元u,垂直摻 雜分佈是由曲線3〇3來表示。記憶單元π中較高的表面 摻雜濃度會導致在零背閘極偏壓下,較高的臨界電壓。而 且,表面摻雜濃度的差異對這些記憶單元的本體效應具有 相當大的衝擊。因此,背閘極偏壓會產生較大的準位到準 位差異,給該四個記憶單元型式。 所以,藉調節離子佈植的劑量與能量,四階光罩ROM 記憶單元便可以只利用二個光罩來實現。另外,藉加上背 19 本紙張尺度適用中國國家標準(CNS > A4規格(210 X 297公玆) 背 面 之 注 填 本衣 頁 訂 經濟部中央標準局員工消費合作社印製 經濟部中央標準局貝工消費合作社印製 421793 A7 B7 五、發明説明(沒) 閘極偏壓,雜訊邊際會因爲該四個記憶單元型式所遇到的 本體效應的差異大小而增加。 表2列出當n = 3時,或是對被選定記億單元通道進行 三可分辨位元碼離子佈植之組合時,每記憶單元中的多位 元。依據所假設的關係,對三位元碼離子佈植(n = 3),記 憶單元型式的數目是S=23 = 8。如表2所示,所假設的關 係對n = 3時也成立。 對表2所示的範例,結合三位元碼離子佈植與第一通 道離子佈植,提供八個記億單元型式。該結合被應用到三 位元階記憶陣列中。對本發明的一些實施例,第一位元碼 離子佈植比第二位元碼離子佈植與第三位元碼離子佈植, 具有較小的投射範圍。第二位元碼離子佈植比第三位元碼 離子佈植,具有較多的離子佈植離子。第二位元碼離子佈 植的投射範圍與第三位元碼離子佈植的相同。第一記憶單 兀型式000只有第一通道離子佈植,亦即沒有其它的位元 碼離子佈植。第二記億單元型式〇〇1具有另外的第一位元 碼離子佈植。第三記憶單元型式010具有另外的第二位元 碼離子佈植。第四記憶單元型式011具有另外的第三位元 碼離子佈植。第五記憶單元型式100具有另外的第一位元 碼離子佈植與另外的第二位元碼離子佈植。第六記憶單元 型式101具有另外的第一位元碼離子佈植與另外的第三位 元碼離子佈植。.第七記憶單元型式110具有另外的第二位 20 本纸張尺度適用中國國家標準(CNS ) A4規格(2!OX297公鏟) ----------I (诗先Μ'讀背面之注意事!^填寫本頁) -訂 命 41B i Paper size General Chinese National Standard (CNS) A4 specification (210X297 mm) " Μ B7 ^ 21793 V. Description of the invention (\ xi) The initial threshold voltage of the memory unit is at zero back bias at point 204 on. When the back bias voltage is 3 volts, the threshold voltage will rise to point 205 »The last memory cell, memory cell 11 has a combination of shallow bit code ion implantation and single deep bit code ion implantation. The initial critical voltage of the memory cell is at point 206 with zero back bias. With a back-gate bias of 3 volts, this threshold voltage will rise to point 207. As shown in Figure 2, the four memory cell types can get good level-to-level differences. The effect of the back gate bias on the fourth-order photomask ROM memory cell is also very clear. Adding a 2 volt back gate bias, the level-to-level difference varies from less than about 1 volt per billion cells to about 2 volts per memory cell. The shift of the threshold voltage is mainly because the overall doping profile of the two-bit ROM memory cells is changed by ion implantation. Figure 3 shows the doping profile of the ion implantation combination used in the two-bit ROM memory cell array in Figure 2. For memory cell 00, the vertical doping profile is represented by curve 301. For memory cell 01, the vertical doping profile is represented by curve 32. For the memory cell u, the vertical doping distribution is represented by the curve 303. A higher surface doping concentration in the memory cell π results in a higher threshold voltage at zero back gate bias. Moreover, the difference in surface doping concentration has a considerable impact on the bulk effect of these memory cells. Therefore, the large back-to-gate bias will produce a large level-to-level difference, giving the four memory cell types. Therefore, by adjusting the dose and energy of the ion implantation, the fourth-order photomask ROM memory unit can be implemented using only two photomasks. In addition, by adding 19 paper sizes to the Chinese national standard (CNS > A4 size (210 X 297 km)), the note on the back page is ordered by the Central Standards Bureau of the Ministry of Economic Affairs, and printed by the Ministry of Economic Affairs. Printed by Beige Consumer Cooperative Co., Ltd. 421793 A7 B7 V. Explanation of the invention (No) Gate bias, the noise margin will increase due to the difference in the ontological effects encountered by the four memory cell types. Table 2 lists when n = 3, or a combination of three-resolution bit-code ion implantation of the selected 100 million cell channels, multiple bits per memory cell. According to the assumed relationship, three-bit code ion implantation (N = 3), the number of memory cell types is S = 23 = 8. As shown in Table 2, the assumed relationship is also true for n = 3. For the example shown in Table 2, combining the three-bit code ion The implantation and the first channel ion implantation provide eight hundred million cell types. This combination is applied to a three-bit order memory array. For some embodiments of the present invention, the first-bit code ion implantation is better than the second-bit. Meta code ion implantation and third digit code The sub-planting has a smaller projection range. The second-bit code ion implantation has more ion implantation ions than the third-bit code ion implantation. The projection range of the second-bit code ion implantation and The third bit code ion implantation is the same. The first memory unit type 000 has only the first channel ion implantation, that is, there is no other bit code ion implantation. The second memory unit type 001 has another The first bit code is ion implanted. The third memory cell type 010 has another second bit code ion implant. The fourth memory cell type 011 has another third bit code ion implant. The fifth memory cell type 100 has another first bit code ion implantation and another second bit code ion implantation. The sixth memory cell type 101 has another first bit code ion implantation and another third bit code ion implantation. Planting: The seventh memory unit type 110 has an additional second 20 This paper size is applicable to China National Standard (CNS) A4 specifications (2! OX297 male shovel) ---------- I (Poem First M 'read the notes on the back! ^ Fill out this page)-Order 4

3 S 7 7 Λ Β 五、發明説明(\β ) 元碼離子佈植與另外的第三位元碼離子佈植。第八記憶單 元型式111具有另外的第一位元碼離子佈植,另外的第二 位元碼離子佈植與另外的第三位元碼離子佈植。 進一步分析顯示,s = 2·'關係對任何多階記憶陣列都成 立,其中η是正整數。所以,因爲使用非對稱記憶單元而 大幅降低記憶陣列中的汲極電流讀取誤差,多階記憶陣列 中所增加的密度優點,被位元碼離子佈植的離子佈植製程 嚴重的限制住。 (請t閲讀背面之注$^—^填寫本") 裝_ 經濟部中央標準局員工消費合作社印製 第一通道 離子佈植 第一位元 碼離子佈 植 第一位元 碼離子佈 植 第一位元 碼離子佈 植 記憶單元 型式 Υ Ν N N 000 Υ Υ N N 000 1 Υ Ν Y N 010 Υ Ν N Y 011 Υ Υ Y N 1 00 Υ Υ N Y 101 Υ Ν Y Y 1 10 Υ Υ Y Y 1 1 1 三位元階 記憶單元 位元碼離 子佈植數 目=3=n 記憶單元 型式數目 =2" = 8 表2 21 本紙張尺度適用中國國家標準(CNS ) 规格(210 X 297公釐) 42179 3 Β7 五、發明説明 圖四的圖式顯示對具有八個不同位元碼的三位元階記 憶單元,汲極讀取電流與臨界電壓的關係,亦即具有包含 八個不同位元碼的選取群組。在該範例中,每個記憶單元 的型式是可以與不同的記億單元型式,藉給定電壓下汲極 讀取電流而分辨出來。如圖四所示,〇〇〇記憶單元電流/電 壓特性400包含最高汲極讀取電流以及最低臨界電壓。而 且,對於三位元階記憶單元陣列Π 1,其記憶單元電流/電 壓特性435包含最低汲極讀取電流以及最高臨界電壓。 圖五提供習用技術中對稱記億單元500的剖面示意 圖。圖五也顯示出代表以下圖14與圖15中對稱記憶單元 所使用到的等效電路符號。對稱記憶單元500包含閘極 505,傳統汲極510,以及源極515。該閘極具有第一側520 與第二側525。閘極505是在閘極氧化層53 0上。傳統汲 極510在閘極的第一側520上,且在閛極氧化層530下。 圖五也顯示出傳統對稱記憶單元的電路符號550。 經濟部中央標準局員工消費合作社印製 圖六提供顯示出本發明實施例中代表非對稱多階記憶 單元600的剖面示意圖。圖六也顯示出代表以下圖15中 非對稱多階記憶單元所使用到的等效電路符號。非對稱多 階記憶單元600包含閘極505,非對稱汲極610,以及源 極515。該閘極具有第一側520與第二側525。閘極5〇5 是在閘極氧化層530上。閘極氧化層具有一頂部。 22 本紙乐尺度適用中國國家標準(CNS ) A4規格(2IOX297公釐) 42179 3 at B7 五、發明説明(tA ) 非對稱汲極610在閘極5 05的第一側5 20上,且在閘 極氧化層530下。源極515在閘極的第二側525上,且在 鬧極氧化層530下。 第一隔離物620在閘極氧化層530上,且鄰近閘極505 的第一側5 20。第一隔離物620在閘極氧化層530的頂部 上,具有第一隔離物寬度。對某些實施例,第二隔離物625 在閘極氧化層530上,且鄰近閘極505的第二側525。 對本發明的某些實施例,第一隔離物620寬度是在 0.05微米到0.20微米的範圍內。本發明的實施例具有0.12 微米的第一隔離寬度。 經濟部中央標準局貝工消費合作社印製 .非對稱多階記憶單元600的非對稱汲極6 1 0,是由補 偏區63 0與閘極505做橫向的間隔開。圖6也顯示出非對 稱多階記憶單元6〇〇的等效電路符號6S0。閘極左邊的陰 影區代表補偏區1〇30,是在非對稱汲極610與通道1020 之間形成的,並在以下說明中參考圖1 〇做討論。 以下就形成非對稱記憶單元的方法作一說明: 本發明的第一實施例包括形珙非對稱多階記億單元的 方法。對於調節過記憶單元通道的臨界電壓以及形成閘極 23 本紙張尺度適用t國國家標ί ( CNS )八4祕(210X297公褒) ""^~ 421793 A7 —_竺·? 五、發明説明( 氧化層後的關鍵步驟以下將做說明。圖七是本發明第一群 組實施例中,在沉積出沉積閘極光罩層720後非對稱多階 記憶單元製作層700的第一剖面示意圖。圖七顯示出沉積 出閘極氧化層530到基底材料7 1 0上後的記憶單元製作 層。也顯示出沉積的第一導電層715,用來形成閘極505, 以及沉積閘極光罩層720的第一階段。當作沉積閘極光罩 層72〇的第一階段一般是介電質,而氮化矽已經成功的被 當作沉積閘極光罩層720來使用。 '圖八是本發明第一實施例中,在閘極505圖案用位元 線光罩來形成後,非對稱多階記憶單元製作層800的第二 剖面示意圖。沉積閘極光罩層720是以閘極505相同組合 而定義出圖案,在閘極505上,形成圖案閘極光罩層820。 經濟部中央標準局貝工消費合作社印製 圖九是本發明第一實施例中,非對稱多階記憶單元製 作層90 0的第三剖面示意圖,顯示出第一離子佈植910。 汲極光阻光罩91 5在基底710汲極區上被定義出圖案,而 且每個圖案閛極光罩層820的一部分是橫向鄰接到該汲極 區。因此,記憶單元基底7 1 0的汲極區,只接收很少量從 第一離子佈植910而來的雜質。第一離子佈植910將雜質 離子射入每個非對稱多階記憶單元600源極5 1 5區,因爲 源極515區沒有被汲極光阻光罩915覆蓋住。從第一離子 佈植9 1 0到閘極505的雜質量很少,因爲圖案閘極光罩層 24 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X29?公趦) 4217 9 3 A7 B7_ _ 五、發明説明(>>) 820吸收掉大部分的雜質離子,否則便會射到閘極5〇5。 第一離子佈植910對齊閘極505。要注意的是,第一離子 佈植910是使用非對稱光罩進行的,而且是在形成第一隔 離物620之前。 圖十是非對稱多階記憶單元製作層1 000的第四剖面 示意圖,顯示出本發明實施例的記憶單元陣列中在閘極二 側都有隔離物。圖十也顯示出第二離子佈植1 〇 1 〇。 經濟部中央標準局員工消費合作社印製 汲極光阻光罩915在第二離子佈植1010之前被去除 掉。第一隔離物620是在第二離子佈植1010之前形成的。 第一隔離物620 —般是由二氧化所所構成,但也可以用其 它的介電材料構成。第一隔離物620從閘極氧化層530向 上延伸到圖案閘極光罩層820的頂部。針對非對稱多階記 憶單元600的非對稱汲極610,進行第二離子佈植1010。 對某些實施例,第二離子佈植1010是只對非對稱汲極610 進行。對其它如圖所示的實施例,第二離子佈植是對 每個非對稱多階記憶單元600的非對稱汲極610與源極 515來進行的。第二離子佈植1010與第一隔離物620對 齊。 對某些如圖十所示的實施例,第二隔離物625是鄰接 到閘極505的第二側525。對具有第二隔離物625的實施 25 1本紙張尺度適用中國國家標準(CNS 規格(210X297公釐) 經濟部中央標準局舅Η消費合作杜印製 4 2ίΤ9? Λ 7 __ Β7__ 五、發明説明(〆) 例,第二隔離物625是與第一隔離物62 0同時形成的,亦 即在第二離子佈植1010之前》對這些實施例,第二離子 佈植1010是對每個非對稱多階記憶單元600的非對稱汲 極6 1 0與源極5 1 5來進行的。 對某些實施例,第一隔離物620(以及具有第二隔離物 625之實施例的第二隔離物625)包含用正矽酸乙酯(TEOS) 沉積製程所形成的氧化層。然後用溼蝕刻法定義出第一隔 離物纟20(以及具有第二隔離物625之實施例的第二隔離 物62 5)的圖案,。對具有第二隔離物625之實施例,第二隔 離物62 5是與第一隔離物620用相同製程同時形成的。 基底710內通道1020被安置在接近閘極氧化層530 的地方,並與閘極5 05對齊。通道1 020從源極5 1 5向上 朝非對稱汲極_610延伸。通道1020不會四面八方的延伸 到非對稱汲極610。而是,基底內的補偏區1030被安置 在通道1020與非對稱汲極610之間。補偏區1030也是接 近閘極氧化層530。補偏區1 0 30是本發明非對稱多階記 億單元600的關鍵特點。 第二離子佈植1010射向非對稱汲極610表面。曝露 的非對稱汲極610表面具有由閘極氧化層53〇頂部面積所 定義出來的寬度,其中該閘極氧化層530頂部是仍未被鄰 26 I紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨〇><297公釐Ί 嫌 ^ — (請先k讀背面之注意事項_填寫本頁) 訂 421793 Λ7 B7 五 、發明説明 經濟部中央標準局貝工消費合作社印製 接第一隔離物620的非對稱汲極610所覆蓋住的。 對某些實施例,第二離子佈植是對源極515與非對稱 汲極610進行的。 第二離子佈植1 0 1 0雜質的最後位置是從非對稱汲極 610的區域,橫向的向外延伸,而非對稱汲極610的區域 是第二離子佈植1010所投射到的。因此,第一隔離物620 寬度大於補偏區63〇。對某些本發明的實施例,補偏區是 大於第一隔離物620寬度的百分之五十(50%)。對具有0.05 微米到0.20微米範圍內第一隔離物62 0寬度的某些本發 明實施例,補偏區63 0會在0.02微米到0.2 0微米範圍內。 補偏區1 03 0被調節成能阻止源極電流,如以下具抑制源 極電流段之多階記憶單元所討論的。 第一隔離物620確保補偏區1030不會接收從第二離 子佈植1010而來的大劑量雜質。第二隔離物625並不給 某些本發明實施例用,因爲第二隔離物625不會影響到補 偏區1 030。然而,第二隔離物625提供對閘極505的對 稱性以及簡化製程,所以是給其它本發明實施例用的,如 圖十所示。 第二離子佈植1010並不射入接近源極515任一側的 27 請 閱〜 讀 背 之 注 意 Ρ t 裝 訂3 S 7 7 Λ Β V. Description of the invention (\ β) Meta code ion implantation and another third bit code ion implantation. The eighth memory cell pattern 111 has another first bit code ion implantation, another second bit code ion implantation, and another third bit code ion implantation. Further analysis shows that the s = 2 · 'relationship is valid for any multi-level memory array, where η is a positive integer. Therefore, because the use of asymmetric memory cells greatly reduces the reading error of the drain current in the memory array, the increased density advantage in the multi-level memory array is severely limited by the ion implantation process of the bit code ion implantation. (Please read the note on the back of $ ^ — ^ Fill this ") Equipment _ Printed by the Consumers' Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs, the first channel ion implantation first ion code ion implantation first ion code ion implantation The first digit code ion implanted memory unit type: Ν NN 000 Υ Υ NN 000 1 Υ Ν YN 010 Υ Ν NY 011 Υ Υ YN 1 00 Υ Υ NY 101 Υ Ν YY 1 10 Υ Υ YY 1 1 1 Three digits Number of ions implanted in meta-level memory cell bit code = 3 = n Number of memory cell types = 2 " = 8 Table 2 21 This paper size applies to China National Standard (CNS) specifications (210 X 297 mm) 42179 3 Β7 V. DESCRIPTION OF THE INVENTION The diagram in FIG. 4 shows the relationship between the drain read current and the threshold voltage for a three-bit order memory cell with eight different bit codes, that is, it has a selection group including eight different bit codes. In this example, the type of each memory cell can be distinguished from the different types of bat- tery cells by reading the drain current at a given voltage. As shown in Fig. 4, the memory cell current / voltage characteristic 400 includes the highest drain read current and the lowest threshold voltage. Moreover, for the three-bit-order memory cell array Π 1, its memory cell current / voltage characteristic 435 includes the lowest drain read current and the highest threshold voltage. Figure 5 provides a schematic cross-sectional view of a symmetric hundred million cell 500 in the conventional technology. Figure 5 also shows the equivalent circuit symbols used in the symmetric memory cells shown in Figures 14 and 15 below. The symmetric memory cell 500 includes a gate 505, a conventional drain 510, and a source 515. The gate has a first side 520 and a second side 525. The gate electrode 505 is on the gate oxide layer 530. The conventional drain electrode 510 is on the first side 520 of the gate electrode, and under the rubidium oxide layer 530. FIG. 5 also shows a circuit symbol 550 of a conventional symmetric memory cell. Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Figure 6 provides a schematic cross-sectional view showing an asymmetric multi-level memory unit 600 in the embodiment of the present invention. Figure 6 also shows the equivalent circuit symbols used in the asymmetric multi-level memory cell shown in Figure 15 below. The asymmetric multi-level memory cell 600 includes a gate 505, an asymmetric drain 610, and a source 515. The gate has a first side 520 and a second side 525. The gate electrode 505 is on the gate oxide layer 530. The gate oxide layer has a top. 22 This paper scale applies the Chinese National Standard (CNS) A4 specification (2IOX297 mm) 42179 3 at B7 V. Description of the invention (tA) The asymmetric drain 610 is on the first side 5 20 of the gate 5 05 and is on the gate Under the polar oxide layer 530. The source electrode 515 is on the second side 525 of the gate electrode and under the anode oxide layer 530. The first spacer 620 is on the gate oxide layer 530 and is adjacent to the first side 5 20 of the gate 505. The first spacer 620 has a first spacer width on top of the gate oxide layer 530. For some embodiments, the second spacer 625 is on the gate oxide layer 530 and is adjacent to the second side 525 of the gate electrode 505. For some embodiments of the invention, the width of the first spacer 620 is in the range of 0.05 micrometers to 0.20 micrometers. Embodiments of the invention have a first isolation width of 0.12 micrometers. Printed by the Bayer Consumer Cooperative of the Central Standards Bureau of the Ministry of Economics. The asymmetric drain 6 1 0 of the asymmetric multi-level memory unit 600 is laterally spaced by the offset region 63 0 and the gate 505. Fig. 6 also shows the equivalent circuit symbol 6S0 of the asymmetric multi-level memory unit 600. The shaded area to the left of the gate represents the offset compensation area 1030, which is formed between the asymmetric drain 610 and the channel 1020, and is discussed in the following description with reference to FIG. The following describes a method for forming an asymmetric memory cell: The first embodiment of the present invention includes a method for forming an asymmetric multi-level billion-count cell. For adjusting the threshold voltage of the memory cell channel and forming the gate electrode 23 This paper is applicable to the national standard (CNS) of the 4th secret (210X297) 褒 " " ^ ~ 421793 A7 —_ Zhu ·? V. Invention Explanation (The key steps after the oxide layer will be described below. FIG. 7 is a first schematic cross-sectional view of an asymmetric multi-level memory cell fabrication layer 700 after depositing a gate light mask layer 720 in a first group of embodiments of the present invention Figure 7 shows the memory cell fabrication layer after the gate oxide layer 530 is deposited on the base material 7 10. The first conductive layer 715 is also deposited to form the gate 505 and the gate mask layer is deposited. The first stage of 720. The first stage as the deposition of the gate mask layer 72 is generally a dielectric, and silicon nitride has been successfully used as the deposition of the gate mask layer 720. 'Figure 8 is the present invention In the first embodiment, after the gate electrode 505 pattern is formed with a bit line mask, a second cross-sectional view of the asymmetric multi-level memory cell fabrication layer 800 is formed. Define the pattern on the gate 505 A pattern gate polar mask layer 820 is formed. Printed in Figure 9 by the Central Standards Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, is a schematic diagram of the third cross section of the asymmetric multi-level memory cell fabrication layer 900 in the first embodiment of the present invention, showing Ion implantation 910. A drain photoresist mask 91 5 has a pattern defined on the drain region of the substrate 710, and a portion of each pattern 閛 aurora mask layer 820 is laterally adjacent to the drain region. Therefore, the memory cell substrate 7 The drain region of 10 receives only a small amount of impurities from the first ion implantation 910. The first ion implantation 910 emits impurity ions into the source 5 1 5 region of each asymmetric multi-level memory cell 600 , Because the source 515 area is not covered by the drain photoresist mask 915. The amount of impurities from the first ion implantation 9 10 to the gate 505 is very small, because the pattern gate photomask layer 24 This paper size applies to Chinese national standards (CNS) Λ4 specification (210X29? Male) 4217 9 3 A7 B7_ _ V. Description of the invention (> >) 820 absorbs most of the impurity ions, otherwise it will shoot to the gate electrode 505. The first ion The planting 910 is aligned with the gate 505. It should be noted that the first separation The planting 910 is performed using an asymmetric photomask, and before the first spacer 620 is formed. FIG. 10 is a fourth schematic cross-sectional view of the asymmetric multi-level memory cell fabrication layer 1 000, which shows a memory cell according to an embodiment of the present invention. There are spacers on both sides of the gate in the array. Figure 10 also shows the second ion implantation 010. The central government bureau of the Ministry of Economic Affairs printed a drain photoresist mask 915 on the second ion implantation 1010 It was previously removed. The first spacer 620 was formed before the second ion implantation 1010. The first spacer 620 is generally composed of dioxide, but may be composed of other dielectric materials. The first spacer 620 extends upward from the gate oxide layer 530 to the top of the patterned gate mask layer 820. For the asymmetric drain 610 of the asymmetric multi-level memory unit 600, a second ion implantation 1010 is performed. For some embodiments, the second ion implantation 1010 is performed only on the asymmetric drain 610. For other embodiments as shown, the second ion implantation is performed on the asymmetric drain 610 and source 515 of each asymmetric multi-level memory cell 600. The second ion implant 1010 is aligned with the first spacer 620. For some embodiments shown in Fig. 10, the second spacer 625 is adjacent to the second side 525 of the gate 505. For the implementation with the second spacer 625 25 1 This paper size applies the Chinese national standard (CNS specification (210X297 mm)) Central Bureau of Standards, Ministry of Economic Affairs, Consumer Cooperation Du printed 4 2ίΤ9? Λ 7 _7 Β7__ V. Description of the invention ( Ii) For example, the second spacer 625 was formed at the same time as the first spacer 620, that is, before the second ion implantation 1010. For these examples, the second ion implantation 1010 is more The asymmetric drain 6 1 0 and source 5 1 5 of the second-order memory cell 600. For some embodiments, the first spacer 620 (and the second spacer 625 of the embodiment having the second spacer 625) ) Includes an oxide layer formed by a TEOS deposition process. Then a first spacer 纟 20 (and a second spacer 62 of the embodiment having the second spacer 625) are defined by wet etching. ). For the embodiment having the second spacer 625, the second spacer 625 is formed at the same time by the same process as the first spacer 620. The channel 1020 in the substrate 710 is disposed near the gate oxide layer 530 And align with gate 5 05. Channel 1 020 from The pole 5 1 5 extends upward toward the asymmetric drain 610. The channel 1020 does not extend to the asymmetric drain 610 in all directions. Instead, the offset region 1030 in the substrate is placed between the channel 1020 and the asymmetric drain 610. The offset region 1030 is also close to the gate oxide layer 530. The offset region 1030 is a key feature of the asymmetric multi-order billion cell 600 of the present invention. The second ion implantation 1010 is directed toward the surface of the asymmetric drain electrode 610. The exposed asymmetric drain electrode 610 surface has a width defined by the top area of the gate oxide layer 53. The top of the gate oxide layer 530 is still unadjacent. 26 I paper size applies Chinese National Standard (CNS) Λ4 specifications. (2 丨 〇 > < 297 mm Ί 嫌 ^ — (Please read the notes on the back _ fill out this page first) Order 421793 Λ7 B7 V. Description of the Invention Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A spacer 620 is covered by the asymmetric drain 610. For some embodiments, the second ion implant is performed on the source 515 and the asymmetric drain 610. The second ion implant is 1 0 1 0 impurities The final position is from the area of the asymmetric drain 610, horizontal The area of the asymmetric drain 610 is projected by the second ion implant 1010. Therefore, the width of the first spacer 620 is larger than the offset region 63. For some embodiments of the present invention, the The bias region is fifty percent (50%) greater than the width of the first spacer 620. For some embodiments of the present invention having a width of the first spacer 620 in the range of 0.05 micrometers to 0.20 micrometers, the bias compensation region 630 Will be in the range of 0.02 microns to 0.20 microns. The offset region 1 03 0 is adjusted to prevent source current, as discussed in the following multi-level memory cell with source current suppression section. The first spacer 620 ensures that the offset region 1030 will not receive a large amount of impurities from the second ion implant 1010. The second spacer 625 is not used by some embodiments of the present invention because the second spacer 625 does not affect the offset region 1 030. However, the second spacer 625 provides symmetry to the gate 505 and simplifies the process, so it is used for other embodiments of the present invention, as shown in FIG. The second ion implantation 1010 does not shoot into the side close to either side of the source electrode 515.

A 本紙張尺度適用中闺國家標率(CNS ) A4規格(210X297公釐) 42179 3 Λ7 _ B7 五、發明説明(A ) 源極515區。從第二離子佈植1010而來的離子只射入源 極515的中央部分,因爲第二離子佈植1010會吸收掉將 射入接近源極515側邊的離子佈植的離子。第二離子佈植 1010不太會影響源極515,因爲圖案閘極光罩層820吸收 掉大部分將射入源極515的離子佈植離子。 圖十一是非對稱多階記億單元製作層1100的第五剖 面示意圖,顯示出本發明實施例中在去除掉圖案閘極光罩 層820.後的記憶單元製作層。第一隔離物620與第二隔離 物625向上延伸到超過閘極505的頂部。 圖十二是非對稱多階記憶單元製作層1200的第六剖 面示意圖,顯示出本發明實施例中在去除掉第二導電層 1210後的記憶單元製作層。然後定義出第二導電層1210 的圖案,在記憶單元陣列中形成字線。 以下爲具受限源極電流的多階記憶單元之說明: 非對稱多階記憶單元600所提供的關鍵優點是,會抑 制住源極5 1 5讀取電流,使得非對稱多階記億單元600只 能用一個方向來進行讀取。對某些本發明的實施例,非對 稱多階(MOS)記憶單元600是加強型電晶體,而且是常態 關閉的。 28 本紙張尺度適用中國國家標準(CNS)A4規格(2丨0X297公釐) A7 421793 ____B1____ 五、發明説明(1) 非對稱多階記憶單元6〇〇在積體電路內。每個非對稱 多階記憶單元600都具有上述本說明書中非對稱記憶單元 所討論到的限制。 閘極505具有第一閘極電壓,是給MOS記憶單元用 的正電壓。閘極氧化層53 0當作介電層,限制住通道1020 與閘極505之間載子流動。閘極505的高電壓會造成通道 1020內的電子流到閘極氧化層530。在接近通道1020/閘 極氧化層53 0界面處所聚集的這些電子,在通道1 020內 形成空乏區,其中靠近閘極氧化層530的通道1020電子 濃度變得較高,足以導通電子越過通道1020。 因爲閘極505延伸到源極515上,且通道1020對齊 閘極5 05,通道1〇2〇便從各個方向延伸到源極515。然而 非對稱汲極610是被補偏區630橫向的與閘極505的第一 側520間隔開。因此,對應於閘極505的第一側520的通 道1020,也會被補偏區63 0橫向的與非對稱汲極610間 隔開。 接近閘極氧化層530並在通道1020與非對稱汲極61〇 之間的基底710區是補偏區1030。補偏區1030具有依據 P型基底7 10中載子濃度的起始導通狀態,如同用低劑量 臨界電壓離子佈植所實現的。補偏區1030是在閘極505 29 本纸浪又度適用中國國家標準(CNS ) A4規格(210X297公釐) I I n ^ . 1 (請先閱讀背面之注意事項再填寫本I) 經濟部中央標準局員工消費合作社印掣 經濟部中央標準局員工消費合作社印掣 42IT93 Λ7 Β7 ______ 五、發明説明(7^) 的第一側5 2 0上。 補偏區1 03 0不能被閘極電壓所控制,因爲閘極505 並不在補偏區1030上。閘極電壓不會吸引足夠的電子到 補偏區1030上,而在補偏區1030內形成空乏區。補偏區 103 0的另一說法是,在補偏區103內的通道1〇 20”消失” 掉。補偏區1 0 3被調節成能保持住其起始導通狀態,以反 應閘極電壓。除閘極電壓外不再施加其它的電壓,則跨越 補偏區1 030的電流會被抑制住,而且非對稱多階記憶單 元600仍保持非導通。 圖十三顯示本發明實施例中,非對稱多階記憶單元 600的電流-電壓圖。該曲線是提供給具有第一隔離物620 與第二隔離物62 5寬度的非對稱多階記憶單元600,範位 從0.10微米到0.12微米。該數値是對應到寬度1.0微米 的非對稱多階記憶單元600,以及長度0.32微米的非對稱 多階記憶軍元600。圖十三所代表對非對稱多階記憶單元 600的位元線負載效應是8kilohm。 如上所述的,非對稱多階記憶單元6Ό0被調節成抑制 住源極讀取電流。該抑制作用能藉比較汲極電壓下(源極 電壓爲零)非對稱多階記憶單元600的汲極讀取電流與源 極電壓下(汲極電壓爲零)非對稱多階記憶單元600的源極 30 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公瀣) (請先閲讀背面之注意事項#'.填寫本頁;> .装. 訂 421793 Λ7 B7 (V s = 0 ) / I ( V d = 0 ) 五、發明説明(^)A The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 42179 3 Λ7 _ B7 5. Description of the invention (A) Source 515 area. The ions from the second ion implantation 1010 only enter the central portion of the source electrode 515, because the second ion implantation 1010 absorbs ions that will be incident on the ion implantation near the side of the source electrode 515. The second ion implantation 1010 is unlikely to affect the source electrode 515 because the patterned gate mask layer 820 absorbs most of the ion implantation ions that will be incident on the source electrode 515. FIG. 11 is a fifth cross-sectional schematic diagram of an asymmetric multi-level billion-count cell-manufacturing layer 1100, which shows a memory cell-manufacturing layer after removing the pattern gate reticle layer 820. in the embodiment of the present invention. The first spacer 620 and the second spacer 625 extend upward beyond the top of the gate electrode 505. FIG. 12 is a sixth cross-sectional diagram of an asymmetric multi-level memory cell fabrication layer 1200, showing a memory cell fabrication layer after the second conductive layer 1210 is removed in the embodiment of the present invention. Then, a pattern of the second conductive layer 1210 is defined, and word lines are formed in the memory cell array. The following is a description of a multi-level memory cell with limited source current: The key advantage provided by the asymmetric multi-level memory cell 600 is that it will suppress the source 5 1 5 reading current, making the asymmetric multi-level memory cell The 600 can only be read in one direction. For some embodiments of the present invention, the asymmetric multi-level (MOS) memory cell 600 is a reinforced transistor and is normally off. 28 This paper size applies to China National Standard (CNS) A4 specification (2 丨 0X297 mm) A7 421793 ____B1____ 5. Description of the invention (1) Asymmetric multi-level memory unit 600 is in the integrated circuit. Each asymmetric multi-level memory cell 600 has the limitations discussed above for the asymmetric memory cell in this specification. The gate 505 has a first gate voltage and is a positive voltage for the MOS memory cell. The gate oxide layer 53 0 acts as a dielectric layer, and restricts the carrier flow between the channel 1020 and the gate 505. The high voltage of the gate 505 causes electrons in the channel 1020 to flow to the gate oxide layer 530. These electrons gathered near the channel 1020 / gate oxide layer 53 0 interface form an empty region in channel 1 020. The channel 1020 near the gate oxide layer 530 has a higher electron concentration, which is sufficient to conduct electrons across the channel 1020. . Because the gate 505 extends to the source 515, and the channel 1020 is aligned with the gate 505, the channel 1020 extends from all directions to the source 515. However, the asymmetric drain 610 is laterally spaced from the first side 520 of the gate 505 by the offset region 630. Therefore, the channel 1020 corresponding to the first side 520 of the gate electrode 505 is also laterally separated from the asymmetric drain electrode 610 by the offset region 630. The region 710 of the substrate near the gate oxide layer 530 and between the channel 1020 and the asymmetric drain 610 is an offset region 1030. The offset region 1030 has an initial conduction state according to the carrier concentration in the P-type substrate 7 10, as realized by implantation with a low-dose critical voltage ion. The offset area 1030 is at the gate electrode 505 29 This paper wave is again applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) II n ^. 1 (Please read the notes on the back before filling in this I) Central of the Ministry of Economy Standards Bureau Consumer Consumption Cooperatives Seal of the Ministry of Economic Affairs Central Standards Bureau Employee Consumption Cooperatives Seal 42IT93 Λ7 Β7 ______ 5. The first side of the invention description (7 ^) is 5 2 0. The offset region 1 03 0 cannot be controlled by the gate voltage because the gate 505 is not on the offset region 1030. The gate voltage will not attract enough electrons to the offset region 1030, but an empty region will be formed in the offset region 1030. Another statement of the offset region 103 0 is that the channel 10 20 “disappears” in the offset region 103. The bias compensation region 103 is adjusted to maintain its initial conduction state in response to the gate voltage. If no other voltage is applied in addition to the gate voltage, the current across the offset region 1 030 will be suppressed, and the asymmetric multi-level memory cell 600 will remain non-conductive. FIG. 13 shows a current-voltage diagram of an asymmetric multi-level memory cell 600 according to an embodiment of the present invention. The curve is provided to an asymmetric multi-level memory cell 600 having a width of the first spacer 620 and the second spacer 625, and the range is from 0.10 micrometer to 0.12 micrometer. The number is an asymmetric multi-level memory cell 600 corresponding to a width of 1.0 micron, and an asymmetric multi-level memory army 600 having a length of 0.32 micron. The bit line load effect on the asymmetric multi-level memory cell 600 represented by FIG. 13 is 8 kiloohm. As described above, the asymmetric multilevel memory cell 6Ό0 is adjusted to suppress the source read current. The suppression effect can be compared by comparing the drain read current of the asymmetric multi-level memory cell 600 at the drain voltage (the source voltage is zero) with the asymmetric multi-level memory cell 600 at the source voltage (the drain voltage is zero). Source 30 This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X297 cm) (Please read the note on the back # '. Fill out this page; >. Binding. Order 421793 Λ7 B7 (V s = 0) / I (V d = 0) 5. Description of the invention (^)

讀取電流而被量測到,或。比例 也當作是對特定記憶單元的記憶單元型式誤讀取之自由度 的量度。記憶單元型式誤讀取之自由度會隨著量度數値的 增加而獲得改善,但是卻視其它的因素而定,比如記憶陣 列中每個記億單元型式的電流-電壓特性,以及每個記憶 單元型式之間的臨界電壓差。以電流-電壓特性(臨界電壓) 來說,某一型式的非對稱多階記憶單元600愈接近相同陣 列中的另一型式非對稱多階記憶單元600時,I 比例傅會愈高,以確保非對稱多階記憶單元600被正確的 讀取出來。 · 對具有0.12微米之隔離物的非對稱多階記憶單元 600,圖十三顯示出對源極電壓〇.5伏特,其源極讀取電 流約9微安培,如點1301。對於源極電壓0.5伏特,其汲 極讀取電流約20微安培,如點丨3丨丨。在〇 _.5伏特電壓下, 對於該記憶單元來說,記憶單元型式誤讀取之自由度量度 的 IiVs = D>/I(Vd-e>比例約 2.22。 對具有0.12微米之第—隔離物620以及1.0伏特源 極讀取電壓的非對稱多階記憶單元6〇〇,其源極讀取電流 約16微安培,如點1302。對1.〇伏特源極電壓,其汲極 讀取電流約45微安培,如點1312。在1.〇伏特電壓下, 對於該記憶單元來說t記憶單元型式誤讀取之自由度量度 31 本紙張尺度適用中國國家標準(CNS ) A4規格( 锖 閲. 讀 背 面 之 注 意 事 項 t 經濟部中央標準局貝工消費合作社印製 42'U93 Λ7 _B7 五、發明説明(/) 的 比例約 2.81 » 對具有0.12微米之第一隔離物620寬度以及1.伏特 源極讀取電壓的非對稱多階記憶單元600,其源極讀取電 流約19微安培,如點1 303。對1.5伏特源極電壓,其汲 極讀取電流約68微安培,如點1313。在1.5伏特電壓下, 對於該記憶單元來說,記憶單元型式誤讀取之自由度量度 的I(Vs-D/I(Vd =。)比例約3.58 »因此,如圖十三所示0.12微 米之箄一隔離物620寬度的實施例,較高的汲極電壓會得 到最精確的讀取電流'圖十三所示的資料,對於達到1.5 伏特的汲極電壓,淸楚的顯示出,精確度會隨著汲極電壓 的增加而增加。 對具有0.12微米之第一隔離物620寬度的非對稱多 階記憶單元600,圖十三顯示出,在1.5伏特源極電壓下, 其源極讀取電流約59微安培,如點1323。在1.5伏特汲 極電壓下,其汲極讀取電流約85微安培,如點1 33 1。在 1.5伏特電壓下,對於該記憶單元來說,記億單元型式誤 讀取之自由度量度的I(vs-e>/I(Vd = <M比例約1 .44。然而,對 具有0.12微米之第一隔離物620寬度的非對稱多階記億 單元600,該量度大小的改善並不如該比例那麼大,而要 注意的是,對於較小的記憶單元尺寸,較小的第一隔離物 6 20寬度會有較顯著降低的記憶單元型式誤讀取。基於 32 . 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公鏟) 經濟部中央標準局貝工消費合作社印製 Λ7 ____B?五、發明説明(W ) ~~" 0,12微米之第一隔離物62〇寬度以及與記憶單元大小有 關的投射的資料,希望非對稱記憶單元能有效的降低〇 〇5 微米到0.20微米範圍的第—隔離物62〇寬度之記憶單元 型式誤讀取。 當足夠大的汲極電壓加到非對稱多階記憶單元600 上,電子會從基底710與通道1〇2〇流到補偏區1030,直 到空乏區在補偏區1030內建立且該記憶單元傳導電子, 穿過情偏區1 0 3 0到汲極。 如圖十三所示,1.5伏特的汲極電壓,對0.12微米之 第一隔離物620寬度,提供68微安培的汲極讀取電流。 該電流表示,1.5伏特的汲極電壓足夠在補偏區1030內建 立補偏區1030內。對1.5伏特的源極電壓以及0,12微米 之第一隔離物620寬度,源極讀取電流爲19微安培,亦 即遠低於68微安培的汲極讀取電流。較低的源極讀取電 流說明,補偏區1030被調節成能保持補偏區的起始導通 狀態(亦即加強型-關閉),以反應1.5伏特的源極電壓。 以下就具源極電流限制記憶單元的積體電路作一說明·· 本發明的第三群組實施例提供包含有記億單元陣列的 積體電路。該記憶單元陣列包含非對稱(源極電流抑制)多 階記憶單元1 500,如圖十五所示,是被設計成相鄰記憶單 ' 33 --------^-I^-- (请先k讀背面之注意事!^填寫本頁) 丁 . "<* 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公逄) A7 42179 3 ____B7 五、發明説明(导方) 元都共用一共用源極。在此設計中,記憶單元的非對稱汲 極電流讀取將比包含有對稱記憶單元500的記憶陣列更爲 精確,因爲鄰近非對稱多階記憶單元600的源極電流比所 讀取記憶單元的非對稱汲極電流低很多,如上述圖十三中 所示的具受限源極電流的多階記憶單元。這些實施例所提 供的積體電路一般包含有複數個具非對稱多階記憶單元 15〇〇的互連記憶單元陣列。 獒記憶單元陣列包含記憶單元。該記憶單元包含具有 通道的電晶體,而該通道是在基底的通道區內。記憶單元 陣列中被選定的非對稱多階記憶單元能儲存多位元資料。 該記憶單元陣列進一步包含字線與位元線。字線與位 元線非別與記憶單元陣列中的記憶單元列以及記憶單元行 耦合在一起。施加電壓到記憶單元陣列中的記憶單元列以 及記憶單元行上,提供讀取記憶單元陣列中所儲存資料的 經濟部中央樣準局貝工消費合作社印裝 方法。字線包含有第一積體電路圖案層。位元線包含有第 二積體電路圖案層。 圖十四顯示出包含習用技術對稱記憶單元1400的記 憶單元陣列。圖十四顯示在第一字線1410內的單一可選 取記憶單元的記憶單元列。相對應記憶帶左選取線1 4 1 5 是在第一字線1410下,·而相對應記憶帶右選取線1420是 34 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公澄〉 經濟邓中央標準局員工消費合作社印製 421793 λ7 Λ7 — _B?_____ 五、發明説明(7^) 在第一字線14 10上。每個記憶帶選取線都耦合到電晶體 列上。 包含習用技術對稱記憶單元1400的記憶單元陣列, 不能提供精確的對稱汲極讀取電流。例如,如圖十四所示 的,如果讀取在第一字線1410上的第一記憶單元14〇5, 第一字線1410與記億帶左選取線1415將會在高電壓,而 記憶帶右選取線1420會在低電壓第一電流1425從感測放 大器1430經過第一記憶單元.1405,第二記憶單元1435, 而流到接地1 440。感測放大器1 430具有感測放大器導線 1445,用來連接記憶帶左選取線1415,記億帶右選取線 Η20,以及第一字線1410。感測放大器導線1445具有第 一側(圖十四的左側)與第二側(圖十四的右側)。 接地144〇具有接地導線1450,用來連接記憶帶左選 取線1 41 5,記憶帶右選取線1 420 ,以及第一字線I 4 1 0。 接地導線1 450具有第一側與第二側。 第一位元線1 455接近接地導線1450,而且是在接地 導線1450的第一側上=第一位元線1455也接近感測放大 器導線1445,而且是在感測放大器導線1445的第二側上。 第一記憶單元1 405是在感測放大器導線1445與第一位元 線1 45 5之間。第二記億單元1435是在記憶帶左選取線 35 本紙張尺度適用中國國家標準(CNS > Α4現格(210Χ297公釐) 請先閱讀背面之注意事填寫本頁) 裝· -訂· 經濟部中央標準局負工消費合作社印製 421793 B7 五、發明説明(?的 1415上,而且是在第一位元線14S5與接地導線145〇之 間。 第三記億單兀1460在第一字線1410上,介於第—位 元線14S5與接地導線1450之間。第三記憶單元146〇提 供第一電流1465路徑,在第一記憶單元1405與接地1440 之間,會繞過第二記憶單元1 4 3 5。如果第三記憶單元i 4 6 〇 是低臨界電壓的記憶單兀,第一記憶單元14 0 5有可能被 誤讀取,而使得第一記憶單元1405被讀成不同的,更導 通的記憶單元型式。 所以第一記憶單元1 405的讀取電流強烈的取決於其 相鄰記憶單元的臨界電壓,第三記憶單元H60。第三記 憶單元1460的相對有效電阻値(R146e),以及第二記憶單 元1435的相對有效電阻値(R 1 4 3 5 )將會決定出,第—記憶 單元14〇5被記憶單元型式誤讀取的情況。第一記憶單元 1405 的讀取電流正比於(R, 4 3 5 + R,46D)/ (R| 4 3 5 X R|46。;)。除 非R146。大於RI435,否則對稱記憶單元的第三記憶單元1460 會導致記憶單元型式誤讀取,因爲(R1435+ RI46。)/ (Rl4 3 5 X Rl46D)小於 Κ·1;ί:35。 對於上述二位元記憶陣列的範例,小電阻(低臨界電 壓)的第三記憶單元1460,可能會造成較不導通的第一記 36 本紙張尺度適用中國國家榇率(CNS ) A4規格(2丨0X297公釐1 {請先閲讀背面之注意事項再填寫本頁) .裝_ 421793 A7 B7 五、發明説明(方^) 憶單元1405,被誤讀成較爲導通的記憶單元。例如,參考 圖1 , 11記憶單元會被誤讀成1 〇記憶單元,〇 1記憶單元 或00記憶單元。相同的,1 〇記憶單元會被誤讀成0 1記 憶單元或〇〇記憶單元;或01記憶單元會被誤讀成00記 憶單元。 圖十五顯示出包含非對稱多階記憶單元1 500的記憶 單元陣列,是本發明第三群組中的一個實施例。在第二字 線1 505上的二位元階記憶單元是非對稱多階記憶單元 600 ° 每個非對稱多階記憶單元600的讀取電流,以單一方 向精確的讀取出,因爲非對稱多階記億單元600內的電 流,從非對稱汲極6 1 0到源極5 1 5,要比從源極5 1 5到非 對稱汲極610還要多,如上述所提具受限源極電流的多階 記憶單元中所討論到的。由非對稱多階記憶單元所提供的 源極電流抑制,當I, .〇)/ A( Vd*0) 比例大於2.5或I(Vd =。〆』、 請 閲 之 注 意 事Ιγ 貪 裝 訂 •線 經濟部中央標準局負工消費合作社印製 於百分之四十的I(Vs = (〇時,對記憶單元陣列特別有用。 不像傳統記憶陣列1 400中的對稱記憶單元500,每 個非對稱多階記憶單元600的精確讀取,是在非對稱多階 記憶單元600從適當的陣列端被感測到時所提供的。 37 本紙張尺度適用中國國家標準(CNS ) Α<4規格(2丨ΟΧ297公釐) 4 21793__b7__ 五、發明説明(万V?) 有五個陣列端顯示於圖十五中。每個陣列端都提供二 個功能。依照精確讀取被選定記憶單元的電流流動方向’ 每個相關的陣列端都當成是接地或感測放大器。本討論所 用到的三個陣列端包括第一陣列端1 5 1 〇,第二陣列端 1512,以及第三陣列端1514。第一陣列端1510具有第一 陣列端導線1 5 1 6,第二陣列端1 5 1 2具有第二陣列端導線 15 18,第三陣列端1514具有第三陣列端導線1 520。每個 陣列端導線都具有第一側(圖1 5左邊)與第二側(圖15右 邊)。第二陣列端導線1 5 1 8是在第一陣列端導線1 5 1 6的 第二側,而且是在第三陣列端導線1520的第一側。第二 位元線1 522是在第一陣列端導線1 5 1 6與第二陣列端導線 1 5 1 8之間。第三位元線1 524是在第二陣列端導線1 5 1 8 與第三陣列端導線1520之間。 第四記憶單元1 525是在第二字線1505上,而且是在 第一陣列端導線1516與第二位元線1522之間。爲讀取第 四記憶單元1525,第一陣列端1510當作是感測放大器, 經濟部中央標準局貝工消費合作社印掣 而第二陣列端1512當作是接地。在第二字線1505與記憶 帶左選取線1415是高電壓,而記憶帶右選取線1420是低 電壓時,第四記憶單元152S被精確的讀取出。這些電壓 造成第二電流1 530,從第一陣列端1510,經第四記憶單 元1 525,第五記憶單元1 535,而到第二陣列端1512。第 五記憶單元1 5 3 5是在記億帶左選取線14 1 5上,而且是在 38 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) 421793 A7 B7 經濟部中央標準局貝工消費合作杜印製 五、發明説明fV)) 第二位元線1 522與第二陣列端導線1 5 1 8之間。 第六記憶單元1 540是與第二字線1 505上的第四記憶 單元1 525相鄰。第六記憶單元是在第二位元線1 522與第 二陣列端導線1 5 1 8之間。第六記憶單元1 540與第四記憶 單元1 525共用一共用源極515。經過第六記憶單元1540 到第二陣列端1 5 1 2的電流,還不夠大到會造成記憶單元 型式誤讀取。可以避免掉該錯誤,因爲第六記憶單元1540 中從源極5 1 5到非對稱汲極6 1 0的電流,是很小於第四記 憶單元1525中從非對稱汲極610到源極515的電流,而 且實際的電流會從第六記憶單元1 540的源極5 1 5流到非 對稱汲極610,造成第四記憶單元1525的記憶單元型式 誤讀取。 例如,具有0.1 2微米補偏區的非對稱多階記憶單元 600,如上述所提具受限源極電流的多階記憶單元中所討 論到的,其I<vs =。〆 I(vd = 〇)比例在1.5伏特時約爲3.58。因 此,即使包含非對稱多階記憶單元1 500的記億陣列中不 同記憶單元型式的臨界電壓差値,只有傳統對稱記憶單元 1400中記憶單元型式的臨界電壓差値的一半,包含非對 稱多階記憶單元1 500的記憶陣列,其記憶單元型式誤讀 取的機率也只有傳統對稱記憶單元1400中記億單元型式 誤讀取機率的一半 39 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公漦) 請 閲' 面 之 注 意 事 t 裝 訂 '~ί% A7 421793 B7 ~~~「第三電流I545需要精確的讀取出第六記"憶單τϋ 五、發明説明(对) 1 5 40。第二陣列端1512當作感測放大器,而第一陣列端 1 5 1 0當作接地。第三電流1 545依照記憶帶右選取線1 420 與第二字線1505的高壓以及記憶帶左選取線1415的低電 壓而流動。第三電流1 545從第二陣列端1512流過第六記 憶單元1540,經第七記憶單元155〇而到第一陣列端1510。 經濟部中央標準局負工消費合作社印製 對第三電流1545,其狀況是與對應於第六記憶單元 1 540與第四記億單元1 525的第二電流1 530情況相反。 對第三電流1545,第四記憶單元1525是與進行讀取操作 的記億單元相鄰,即第六記憶單元1 540。第六記憶單元 15 40與第四記憶單元1 525都是在第二字線1 505上。第 四記憶單元1 525不會讓足夠的電流經到第一陣列端 1510,而造成記憶單元型式誤讀取。可以避免掉該錯誤, 因爲第四記憶單元1525中從源極515到非對稱汲極610 的電流,是很小於第六記憶單元1 540中從非對稱汲極610 到源極515的電流,而且實際的電流會從第四記憶單元 1 5 25的源極515流到非對稱汲極610,造成第六記億單元 1 540的記憶單元型式誤讀取。 第八記憶單元1560是在第二字線1 505上,而且是在 第三位元線1524與第三陣列端導線1 520之間。需要第四 40 本紙張尺度適用中國國家標準(CNS ) Α4現格(210X297公避} 經濟部4-央標準局員工消費合作社印製 42 179 3 A7 B7 五、發明説明(y?) 電流1 5 55來精確的讀取第八記憶單元1 560。第三陣列端 1 5 1 4當作感測放大器,而第二陣列端1 5 1 2當作接地。第 四電流1 555依照記憶帶左選取線1415與第二字線1505 的高壓以及記憶帶右選取線1 420的低電壓而流動。第四 電流1 5 5 5從第三陣列端1 5 1 4流過第八記憶單元1 5 6 0 , 經第九記憶單元1 565而到第二陣列端1 5 1 2。第九記憶單 元1 565是在記憶帶左選取線1415上,而且是在第二陣列 端導線1 5 1 8與第三位元線1 524之間。Read the current and be measured, or. Proportion is also used as a measure of the degree of freedom of misreading the memory cell type of a particular memory cell. The degree of freedom of misreading of memory cell types will improve as the number of measurements increases, but it depends on other factors, such as the current-voltage characteristics of each billion cell type in the memory array, and each memory Critical voltage difference between unit types. In terms of current-voltage characteristics (critical voltage), the closer the one type of asymmetric multi-level memory cell 600 is to another type of asymmetric multi-level memory cell 600 in the same array, the higher the I-scale factor will be to ensure asymmetry. The multi-level memory unit 600 is correctly read. · For an asymmetric multi-level memory cell 600 with a 0.12 micron spacer, Figure 13 shows a source voltage of 0.5 volts and a source read current of about 9 microamperes, such as point 1301. For a source voltage of 0.5 volts, the drain read current is about 20 microamperes, such as point 丨 3 丨 丨. At the voltage of 0. 5 volts, for this memory cell, the ratio of the degree of freedom of misreading of the memory cell type is IiVs = D > / I (Vd-e >, the ratio is about 2.22. Object 620 and asymmetric multi-level memory cell 600 with a 1.0 volt source read voltage, its source read current is about 16 microamperes, such as point 1302. For a 1.0 volt source voltage, its drain read The current is about 45 microamperes, such as point 1312. Under the voltage of 1.0 volts, the degree of freedom of misreading of the t memory cell type is 31 for this memory cell. This paper size applies the Chinese National Standard (CNS) A4 specification (锖Read. Notes on the back t Printed 42'U93 Λ7 _B7 printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. The ratio of the invention description (/) is about 2.81 »For the first spacer 620 with a width of 0.12 microns and 1. Asymmetric multi-level memory cell 600 with a volt source read voltage has a source read current of about 19 microamperes, such as point 1 303. For a 1.5 volt source voltage, its drain read current is about 68 microamperes, such as Point 1313. At 1.5 volts, for this For the memory cell, the ratio of I (Vs-D / I (Vd =.) Of the degree of freedom of misreading of the memory cell type is about 3.58 »Therefore, as shown in FIG. In the embodiment, a higher drain voltage will obtain the most accurate reading current. The data shown in Figure 13 shows that for a drain voltage of 1.5 volts, it is clearly shown that the accuracy will vary with the drain voltage. For an asymmetric multi-level memory cell 600 having a width of the first spacer 620 of 0.12 microns, FIG. 13 shows that at a source voltage of 1.5 volts, its source read current is about 59 microamperes, such as Point 1323. Under the 1.5 volt drain voltage, its drain read current is about 85 microamperes, such as point 1 33 1. At 1.5 volt voltage, for this memory cell, the freedom to remember the wrong type of the hundred million cell type The ratio of I (vs-e > / I (Vd = < M) is about 1.44. However, for an asymmetric multi-order billion cell 600 having a width of the first spacer 620 of 0.12 microns, the size of the metric The improvement is not as large as this ratio, but it should be noted that for smaller memory cell sizes, the The width of the first spacer 6 20 will have a significantly reduced memory cell type misreading. Based on 32. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 male shovel). Print Λ7 ____B? V. Description of the invention (W) ~~ " The width of the first spacer of 0,12 microns and the projection data related to the size of the memory cell, hoping that the asymmetric memory cell can effectively reduce the data. The memory cell type of the first-isolator with a width of 62 micrometers ranging from 5 micrometers to 0.20 micrometers was misread. When a sufficiently large drain voltage is applied to the asymmetric multi-level memory cell 600, electrons will flow from the substrate 710 and the channel 1020 to the offset region 1030 until the empty region is established in the offset region 1030 and the memory cell Conducting electrons, passing through the bias zone 1 30 to the drain. As shown in Fig. 13, a drain voltage of 1.5 volts provides a drain read current of 68 microamperes for a width of the first spacer 620 of 0.12 micrometers. This current indicates that a drain voltage of 1.5 volts is sufficient to establish an offset region 1030 in the offset region 1030. For a source voltage of 1.5 volts and a width of the first spacer 620 of 0,12 micrometers, the source read current is 19 microamperes, which is much lower than the drain read current of 68 microamperes. The lower source read current indicates that the offset region 1030 is adjusted to maintain the initial on-state of the offset region (ie, enhanced-off) to reflect a source voltage of 1.5 volts. The following describes an integrated circuit with a source current limiting memory cell. A third group of embodiments of the present invention provides an integrated circuit including an array of hundreds of millions of cells. The memory cell array includes an asymmetric (source current suppression) multi-level memory cell 1 500, as shown in Figure 15, which is designed as an adjacent memory sheet '33 -------- ^-I ^- -(Please read the notes on the back first! ^ Fill in this page) D. " < * This paper size is applicable to China National Standard (CNS) A4 specification (210X297 cm) A7 42179 3 ____B7 V. Description of the invention (guide (Square) The elements all share a common source. In this design, the reading of the asymmetric drain current of the memory cell will be more accurate than that of the memory array containing the symmetric memory cell 500, because the source current of the adjacent asymmetric multi-level memory cell 600 is greater than that of the read memory cell. The asymmetric drain current is much lower, such as the multi-level memory cell with limited source current shown in FIG. 13 above. The integrated circuits provided in these embodiments generally include a plurality of interconnected memory cell arrays with asymmetric multi-level memory cells 1500.獒 The memory cell array contains memory cells. The memory cell contains a transistor having a channel, and the channel is in a channel region of the substrate. Memory cells Selected asymmetric multilevel memory cells in the array can store multi-bit data. The memory cell array further includes a word line and a bit line. Word lines and bit lines are coupled to memory cell columns and memory cell rows in the memory cell array. A voltage is applied to the memory cell row and the memory cell row in the memory cell array to provide a printing method for the Central Samples Bureau of the Ministry of Economic Affairs of the Ministry of Economic Affairs to read the data stored in the memory cell array. The word line includes a first integrated circuit pattern layer. The bit line includes a second integrated circuit pattern layer. FIG. 14 shows a memory cell array including a conventional symmetric memory cell 1400. FIG. 14 shows a memory cell column of a single selectable memory cell within the first word line 1410. The corresponding memory band left selection line 1 4 1 5 is under the first word line 1410, while the corresponding memory band right selection line 1420 is 34. This paper size applies Chinese National Standard (CNS) A4 specifications (210X297 Gongcheng> Economy Printed by Deng Central Bureau of Standards Consumer Cooperatives 421793 λ7 Λ7 — _B? _____ 5. Description of the invention (7 ^) on the first word line 14 10. Each memory band selection line is coupled to the transistor column. Contains conventional technology The memory cell array of the symmetric memory cell 1400 cannot provide an accurate symmetrical drain read current. For example, as shown in FIG. 14, if the first memory cell 1405 on the first word line 1410 is read, the The word line 1410 and the memory card left selection line 1415 will be at high voltage, while the memory belt right selection line 1420 will pass from the sense amplifier 1430 to the first memory unit. 1405 at the low voltage first current 1425, the second memory unit 1435, and flow to ground 1 440. Sense amplifier 1 430 has a sense amplifier wire 1445, which is used to connect the left selection line 1415 of the memory band, the right selection line 20 of the memory band, and the first word line 1410. The sense amplifier wire 1445 has Side (left side of Fig. 14) and second side (right side of Fig. 14). The ground 1440 has a ground wire 1450 for connecting the left selection line 1 41 5 of the memory band, the right selection line 1 420 of the memory band, and the first A word line I 4 1 0. The ground wire 1 450 has a first side and a second side. The first bit line 1 455 is close to the ground wire 1450 and is on the first side of the ground wire 1450 = the first bit line 1455 is also close to the sense amplifier wire 1445 and is on the second side of the sense amplifier wire 1445. The first memory unit 1 405 is between the sense amplifier wire 1445 and the first bit line 1 45 5. The second Billion Unit 1435 is the 35th line selected on the left side of the memory tape. The paper size is in accordance with Chinese National Standards (CNS > A4 format (210 × 297 mm). Please read the notes on the back first and fill in this page.) Printed by the Bureau of Standards, Consumer Cooperatives 421793 B7 V. Description of the invention (? 1415, and between the first bit line 14S5 and the ground wire 1450. The third record billion unit 1460 is on the first word line 1410 , Between the first bit line 14S5 and the ground wire 1450. The three memory units 146〇 provide a first current 1465 path, and between the first memory unit 1405 and the ground 1440, the second memory unit 1 4 3 5 will be bypassed. If the third memory unit i 4 6 〇 is of low threshold voltage The memory unit may be erroneously read by the first memory unit 1405, and the first memory unit 1405 may be read as a different, more conductive memory unit type. Therefore, the reading current of the first memory cell 1 405 depends strongly on the threshold voltage of its neighboring memory cell, and the third memory cell H60. The relative effective resistance 値 (R146e) of the third memory unit 1460 and the relative effective resistance 値 (R 1 4 3 5) of the second memory unit 1435 will determine that the first memory unit 1405 is misread by the memory unit type Take the situation. The reading current of the first memory cell 1405 is proportional to (R, 4 3 5 + R, 46D) / (R | 4 3 5 X R | 46 .;). Except for R146. Greater than RI435, otherwise the third memory unit 1460 of the symmetric memory unit will cause the memory unit type to be misread because (R1435 + RI46.) / (Rl4 3 5 X Rl46D) is less than κ · 1; ί: 35. For the above two-bit memory array example, the third memory unit 1460 with a small resistance (low critical voltage) may cause the first record that is less conductive. 36 This paper is applicable to the Chinese National Standard (CNS) A4 specification (2丨 0X297mm1 {Please read the precautions on the back before filling this page). _ 421793 A7 B7 V. Description of the Invention (Party ^) The memory unit 1405 was misread as a more conductive memory unit. For example, referring to Fig. 1, the memory unit will be misread as 10 memory unit, 0 memory unit or 00 memory unit. Similarly, the 10 memory unit will be misread as 0 1 memory unit or 00 memory unit; or 01 memory unit will be misread as 00 memory unit. FIG. 15 shows a memory cell array including asymmetric multi-level memory cells 1 500, which is an embodiment of the third group of the present invention. The two-bit memory cell on the second word line 1 505 is an asymmetric multi-level memory cell 600 ° The reading current of each asymmetric multi-level memory cell 600 is accurately read in a single direction, because asymmetric multi-level memory cells The current in the order-million cell 600 from the asymmetric drain 6 1 0 to the source 5 1 5 is more than that from the source 5 1 5 to the asymmetric drain 610. As mentioned above, there is a limited source. Discussed in Multi-level Memory Cells with Extreme Currents. The source current suppression provided by the asymmetric multi-level memory cell, when the ratio of I, .〇) / A (Vd * 0) is greater than 2.5 or I (Vd =. 〆 ”, please read the note Ⅰ Printed by 40% of I (Vs = (0), the work co-operative consumer cooperative of the Central Standards Bureau of the Ministry of Economic Affairs is particularly useful for memory cell arrays. Unlike the symmetric memory cell 500 in the traditional memory array 1 400, each non- The accurate reading of the symmetric multi-level memory unit 600 is provided when the asymmetric multi-level memory unit 600 is sensed from the appropriate array end. 37 This paper size applies the Chinese National Standard (CNS) Α < 4 specifications ( 2 丨 〇Χ297mm) 4 21793__b7__ 5. Description of the Invention (10,000 V?) There are five array terminals shown in Figure 15. Each array terminal provides two functions. According to the precise reading of the current flow of the selected memory cell Orientation 'Each associated array end is considered a ground or sense amplifier. The three array ends used in this discussion include the first array end 1510, the second array end 1512, and the third array end 1514. An array end 1510 has a first array end Line 1 5 1 6, the second array end 1 5 1 2 has a second array end lead 15 18, and the third array end 1514 has a third array end lead 1 520. Each array end lead has a first side (FIG. 1 5 left) and the second side (right of FIG. 15). The second array-side lead 1 5 1 8 is on the second side of the first array-end lead 1 5 1 6 and is the first on the third array-end lead 1520. The second bit line 1 522 is between the first array end wire 1 5 1 6 and the second array end line 1 5 1 8. The third bit line 1 524 is the second array end wire 1 5 1 8 and the third array-side wire 1520. The fourth memory cell 1 525 is on the second word line 1505, and is between the first array-side wire 1516 and the second bit line 1522. To read the fourth For the memory unit 1525, the first array end 1510 is used as a sense amplifier, the Central Standards Bureau of the Ministry of Economic Affairs is responsible for printing and the second array end 1512 is used as a ground. The second word line 1505 and the left side of the memory band are selected. 1415 is a high voltage, and when the memory band right selection line 1420 is a low voltage, the fourth memory unit 152S is accurately read. These voltages Causes the second current 1 530, from the first array end 1510, through the fourth memory cell 1 525, the fifth memory cell 1 535, and to the second array end 1512. The fifth memory cell 1 5 3 5 Select the line 14 1 5 on the left, and apply the Chinese National Standard (CNS) A4 size (210X297 mm) on 38 paper sizes. 421793 A7 B7 Printed by the Shell Department of the Central Standards Bureau of the Ministry of Economic Affairs. )) Between the second bit line 1 522 and the second array-end wire 1 5 1 8. The sixth memory cell 1 540 is adjacent to the fourth memory cell 1 525 on the second word line 1 505. The sixth memory cell is between the second bit line 1 522 and the second array-end wire 1 5 1 8. The sixth memory unit 1 540 and the fourth memory unit 1 525 share a common source 515. The current passing from the sixth memory cell 1540 to the second array terminal 1512 is not large enough to cause the memory cell type to be misread. This error can be avoided because the current from the source 5 1 5 to the asymmetric drain 6 1 0 in the sixth memory unit 1540 is much smaller than the current from the asymmetric drain 610 to the source 515 in the fourth memory unit 1525. Current, and the actual current will flow from the source 5 1 5 of the sixth memory unit 1 540 to the asymmetric drain 610, causing the memory cell type of the fourth memory unit 1525 to be misread. For example, an asymmetric multi-level memory cell 600 with a 0.1 2 micron offset region, as discussed in the above-mentioned multi-level memory cell with limited source current, has I < vs =.比例 I (vd = 〇) ratio is about 3.58 at 1.5 volts. Therefore, even if the critical voltage difference 不同 of different memory cell types in a 500-million array containing asymmetric multi-level memory cells 1500 is only half of the critical voltage difference 记忆 of a conventional memory cell type in a symmetric memory cell 1400, including asymmetric multi-level The memory array of memory unit 1 500 has a 50% chance of misreading the memory cell type in the traditional symmetric memory unit 1400, which is half the chance of misreading the 39 million unit type. 39 This paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 (Public note) Please read 'Notes on the face of the bookbinding' ~ ί% A7 421793 B7 ~~~ "The third current I545 needs to read out the sixth record accurately" " memory list τϋ V. Description of the invention (pair) 1 5 40. The second array end 1512 is used as a sense amplifier, and the first array end 15 1 0 is used as a ground. The third current 1 545 is selected according to the high voltage of the memory band right 420 and the high voltage of the second word line 1505 and the memory band. The left selects the low voltage of line 1415 and flows. A third current 1 545 flows from the second array terminal 1512 through the sixth memory unit 1540, and passes through the seventh memory unit 1550 to the first array terminal 1510. The central standard of the Ministry of Economic Affairs The local co-operative consumer cooperative prints the third current 1545, which is the opposite of the second current 1 530 corresponding to the sixth memory unit 1 540 and the fourth billion unit 1 525. For the third current 1545, the fourth The memory unit 1525 is adjacent to the billion-bit memory unit that performs the reading operation, that is, the sixth memory unit 1 540. The sixth memory unit 15 40 and the fourth memory unit 1 525 are both on the second word line 1 505. The fourth The memory cell 1 525 does not allow sufficient current to pass to the first array terminal 1510, which causes the memory cell type to be misread. This error can be avoided because the fourth memory cell 1525 runs from the source 515 to the asymmetric drain 610 The current is much smaller than the current from the asymmetric drain 610 to the source 515 in the sixth memory cell 1 540, and the actual current will flow from the source 515 to the asymmetric drain 610 in the fourth memory cell 1 5 25 , Causing the sixth memory cell type 1 540 memory cell type to be misread. The eighth memory cell 1560 is on the second word line 1 505 and is between the third bit line 1524 and the third array end wire 1 520 Requires a 40th paper size for China Standard (CNS) Α4 is present (210X297 public avoidance) Printed by the Consumers' Cooperative of the 4-Central Standards Bureau of the Ministry of Economic Affairs 42 179 3 A7 B7 5. Invention Description (y?) Current 1 5 55 to accurately read the eighth memory unit 1 560. The third array terminal 1 5 1 4 is used as the sense amplifier, and the second array terminal 1 5 1 2 is used as the ground. The fourth current 1 555 is based on the high voltage of the left selection line 1415 and the second word line 1505 of the memory band. And the memory band right selects the low voltage of line 1 420 and flows. The fourth current 1 5 5 5 flows from the third array terminal 15 14 through the eighth memory cell 1560 and passes through the ninth memory cell 1 565 to the second array terminal 1512. The ninth memory cell 1 565 is on the left selection line 1415 of the memory band, and is between the second array end wire 1 5 1 8 and the third bit line 1 524.

I 第十記憶單元1 570是與第二字線1 505上的第八記億 單元1560相鄰。第十記憶單元157G是在第三位元線1524 與第二陣列端導線1 5 1 8之間。第十記憶單元1 570不會讓 足夠的電流經到第二陣列端1512,而造成記憶單元型式 誤讀取。可以避免掉該錯誤,因爲第十記憶單元1 570中 從源極5 1 5到非對稱汲極6 1 0的電流,是很小於第八記憶 單元1560中從非對稱汲極610到源極515的電流,而且 實際的電流會從第十記憶單元157〇的源極515流到非對 稱汲極610,造成記憶單元型式誤讀取》 需要第五電流1 575來精確的讀取第十記憶單元 1 5 70,第二陣列端1512當作感測放大器,而第三陣列端 1H4當作接地。第五電流1575依照記憶帶右選取線142 0 與第二字線1 5〇5的高壓以及記憶帶左選取線1 4 1 5的低電 4] 本紙張尺度適用中國國家標準(CMS ) A4規格(210X297公釐) --------I 參-- V (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部中央標隼局員工消費合作社印製 A7 ___B7___ 五、發明説明(W) 壓而流動。第五電流1 575從第二陣列端1512流過第十記 憶單元1 570,經第十一記憶單元1 580而到第三陣列端 1514。第十一記憶單元1 580是在記憶帶右選取線1420上, 而且是在第三位元線1 524與記憶帶右選取線1420之間。 對第五電流1 575,第八記憶單元1 560是與進行讀取 操作的記憶單元相鄰,即第十記憶單元1 570。第八記億 單元1560與第十記憶單元1570都是在第二字線1505上。 第八記憶單元1 560不會讓足夠的電流經到第二陣列端 1 5 1 2 ,而造成記憶單元型式誤讀取。可以避免掉該錯誤, 因爲第八記憶單元1 560中從源極5 1 5到非對稱汲極6 1 0 的電流,是很小於第十記億單元1570中從非對稱汲極610 到源極515的電流,而且實際的電流會從第八記憶單元 I 5 60的瓛極5 1 5流到非對稱汲極6 1 0,造成記憶單元型式 誤讀取。 如圖十六所示,第十二記憶單元1605是在第二字線 1 5 05上第四記憶單元1 525的左側而且是相鄰的。圖16 也顯示出第一選擇電晶體1610以及第二選擇電晶體1615 是在記億帶左選取線1415上。第一選擇電晶體1610直接 在第十二記憶單元1605底下,而第二選擇電晶體1615直 接在第四記憶單元1525底下。第一選擇電晶體161〇以及 第二選擇電晶體丨615都是高Vt記憶單元。第三選擇電晶 . 42 _ 本紙張尺度適用中國國家榇準(CNS ) A4規格(210X297公釐) --------71#-- t (請先閲讀背面之注意事項#(填寫本頁)I The tenth memory cell 1 570 is adjacent to the eighth billion cell 1560 on the second word line 1 505. The tenth memory unit 157G is between the third bit line 1524 and the second array-end wire 1 5 1 8. The tenth memory unit 1 570 will not allow sufficient current to pass through the second array terminal 1512, which will cause the memory unit type to be misread. This error can be avoided, because the current from the source 5 1 5 to the asymmetric drain 6 1 0 in the tenth memory cell 1 570 is much smaller than the current from the asymmetric drain 610 to the source 515 in the eighth memory cell 1560. Current, and the actual current will flow from the source 515 of the tenth memory unit 157 to the asymmetric drain 610, causing a misreading of the memory cell type. A fifth current of 1 575 is required to accurately read the tenth memory unit. 1 5 70, the second array terminal 1512 is used as a sense amplifier, and the third array terminal 1H4 is used as a ground. The fifth current 1575 is in accordance with the high voltage of the right selection line 142 0 and the second word line 1550 of the memory band and the low power of the left selection line 1 4 1 5 of the memory band. 4] This paper size applies the Chinese National Standard (CMS) A4 specification. (210X297 mm) -------- I ---- V (Please read the precautions on the back before filling this page) Order the A7 ___B7___ printed by the Staff Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs W) Press and flow. The fifth current 1 575 flows from the second array terminal 1512 to the tenth memory unit 1 570 and passes through the eleventh memory unit 1 580 to the third array terminal 1514. The eleventh memory unit 1 580 is on the right selection line 1420 of the memory band, and is between the third bit line 1 524 and the right selection line 1420 of the memory band. For the fifth current 1 575, the eighth memory unit 1 560 is adjacent to the memory unit performing the reading operation, that is, the tenth memory unit 1 570. The eighth billion cell 1560 and the tenth memory cell 1570 are both on the second word line 1505. The eighth memory unit 1 560 will not allow sufficient current to pass to the second array terminal 1 5 1 2, which will cause the memory unit type to be misread. This error can be avoided, because the current from the source 5 1 5 to the asymmetric drain 6 1 0 in the eighth memory cell 1 560 is much smaller than the current from the asymmetric drain 610 to the source in the tenth billionth cell 1570 515 current, and the actual current will flow from the pole 5 1 5 of the eighth memory cell I 5 60 to the asymmetric drain 6 1 0, causing the memory cell type to be misread. As shown in FIG. 16, the twelfth memory cell 1605 is on the left side of the fourth memory cell 1 525 on the second word line 1 05 05 and is adjacent. FIG. 16 also shows that the first selection transistor 1610 and the second selection transistor 1615 are on the left selection line 1415 of the recording band. The first selection transistor 1610 is directly under the twelfth memory unit 1605, and the second selection transistor 1615 is directly under the fourth memory unit 1525. The first selection transistor 1610 and the second selection transistor 615 are high Vt memory cells. The third choice is transistor. 42 _ This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm) -------- 71 #-t (Please read the note on the back first # (fill in (This page)

•1T -. c 經濟部中央標準局員工消費合作社印製 42trg3 A7 B7 五、發明説明(vl) 體1620是在記憶帶左選取線1415上,而且是與第一選擇 電晶體1610的左側相鄰。第四陣列端1625具有第四陣列 端導線1 630。第四陣列端導線1630是在第一陣列端導線 1516的第一側(圖16的左邊)。 除非包含非對稱多階記憶單元1 500的記憶陣列具有 本說明書中所討論到的特點,另外的第六電流1 6 3 5路徑 會造成第四陣列端1 625的記憶單元型式誤讀取。如果沒 有被阻擋的話,第六電流1 63 5會從第1陣列端1 5 1 0 ,經 第一選擇電晶體1610,第二選擇電晶體1615,而到第二 陣列端1512。然而,第六電流1635可以用在第六電流1635 路徑上的高Vt記憶單元(第一選擇電晶體1610以及第二 選擇電晶體161 5)有效的阻擋起來。 圖十六也顯示出,沒有被阻擋掉而可能會造成第四陣 列端1625的記憶單元型式誤讀取的第七電流1640。第七 電流1640如果沒有被阻擋掉,便會從第一陣列端1510, 經第三選擇電晶體1 620,而到第四陣列端1 625。然而, 在讀取第四記憶單元1 525時,藉施加偏壓條件到記憶陣 列內的陣列端而不加到第二陣列端1512,以使得第七電 流1 640被阻擋掉。加到其它陣列端上的偏壓條件,亦即 第四陣列端1625,大約等於第一陣列端1510上的電壓。 因此,沒有電流會流到第四陣列端1 62。第二陣列端1 5 1 2 43 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公潑) (請先閱讀背面之注^^項再填寫本頁) 裝 、?τ_ 421793 Λ7 B7_____ 五、發明説明(分 是接地,以確保第四記憶單元1 525能藉維一的電流路徑 . 被讀取出來。 第一陣列端導線1 5 1 6向下連到記憶帶左選取線1 4 1 5 底下。當第一陣列端導線1 5 1 6延伸到超過記憶帶左選取 線1415時,第一陣列端導線1516是連接到積體電路內另 一記憶陣列(也稱作記憶帶)的位元線上。這種連接能讓積 體電路使用相同的感測放大器,對積體電路內一個以上的 記憶陣列進行讀取操作。 本發明的一些實施例包括一種讀取具補偏區的記憶單 元的方法。該方法包括提供具非對稱汲極610的對稱記憶 單元,該非對稱汲極610是藉由補偏區630而與通道1020 間隔開。一些這種的方法包括提供非對稱多階記憶單元 600 = 請 面 之 注 意 事 裝 訂 'it 經濟部中央標準局負工消t合作社印製 以上所述者,僅爲本發明之較佳實施例而已,並非 用來限定本發明實施之範圍。即凡依本發明申請專利 範圍所作的均等變化及修飾,皆爲本發明之專利範圍 所涵蓋》 44 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)• 1T-. C Printed by 42trg3 A7 B7 of the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (vl) The body 1620 is on the left selection line 1415 of the memory band, and is adjacent to the left of the first selection transistor 1610 . The fourth array terminal 1625 has a fourth array terminal wire 1 630. The fourth array-side wire 1630 is on the first side (left side of FIG. 16) of the first array-side wire 1516. Unless the memory array containing the asymmetric multi-level memory cell 1 500 has the characteristics discussed in this specification, the other sixth current 1 6 3 5 path will cause the memory cell type 1 625 of the fourth array end to be misread. If not blocked, the sixth current 163 5 will pass from the first array terminal 15 10 through the first selection transistor 1610, the second selection transistor 1615, and then to the second array terminal 1512. However, the sixth current 1635 can be effectively blocked by the high Vt memory cells (the first selection transistor 1610 and the second selection transistor 1615) on the path of the sixth current 1635. Fig. 16 also shows that the seventh current 1640, which is not blocked, may cause the memory cell type of the fourth array terminal 1625 to be misread. If the seventh current 1640 is not blocked, it will pass from the first array terminal 1510 to the third array transistor 1 620 to the fourth array terminal 1 625. However, when the fourth memory cell 1 525 is read, a bias condition is applied to the array terminal in the memory array instead of the second array terminal 1512, so that the seventh current 1 640 is blocked. The bias condition applied to the other array terminals, that is, the fourth array terminal 1625, is approximately equal to the voltage on the first array terminal 1510. Therefore, no current flows to the fourth array terminal 162. The second array end 1 5 1 2 43 This paper size applies the Chinese National Standard (CNS) Α4 specification (210X297). (Please read the note ^^ on the back before filling this page.) Installation,? Τ_ 421793 Λ7 B7_____ V. Description of the invention (Sub-grounded to ensure that the fourth memory unit 1 525 can use the current path of dimension one. It is read out. The first array end wire 1 5 1 6 is connected down to the left side of the memory band 1 4 1 5 Bottom. When the first array end wire 1 5 1 6 extends beyond the left selection line 1415 of the memory band, the first array end wire 1516 is a bit connected to another memory array (also called a memory band) in the integrated circuit On-line. This connection allows the integrated circuit to use the same sense amplifier to perform read operations on more than one memory array in the integrated circuit. Some embodiments of the present invention include a method for reading a memory cell with an offset region. Method. The method includes providing a symmetric memory cell with an asymmetric drain 610 that is spaced from the channel 1020 by an offset region 630. Some such methods include providing an asymmetric multi-level memory cell 600 = Please Attention binding, it is printed by the Central Standards Bureau of the Ministry of Economic Affairs, and the cooperatives printed above are only the preferred embodiments of the present invention, and are not intended to limit the scope of implementation of the present invention. Equal changes and modifications made in the scope are covered by the patent scope of the present invention. 44 This paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm).

Claims (1)

Λ 29 3 Α8 Β8 C8 D8 六、申請專利範圍 經濟部中央標準局貝工消費合作社印裝 1. 一種具非對稱汲極電流之多階記憶體單元的製造方法, 該記憶陣列具有複數個多階記憶單元,每個多階記憶單 元包含有閘極、閘極氧化層、通道、汲極、以及嫄極, 其中閘極在閘極氧化層上,閘極氧化層具有頂部,通道 在基底內,汲極是在基底內且是在該通道的第一側,源 極是在基底內且是在該通道的第二側,其中第二側是與 第一側相反,該方法包括: 對_個多階記憶單元的源極進行第一離子佈植,而該+ 第一離子佈植是與閘極相對齊; 在每個多階記憶單元閘極的第一側上,形成第一隔離 物,該第一隔離物從閘極氧化層的頂部向上延伸,該第 一隔離物在閘極氧化層的頂部上具有第一隔離物寬度, 該第2隔離物寬度被調節成能提供補偏區,介於每個多 階記憶單元的通道與汲極之間;以及 對每個多階記憶單元的汲極進行第一離子佈植,而該 第二離子佈植是與第一隔離物相對齊。 2. 如申請專例範圍第1項之具非對稱汲極電流之多階記憶 體單元的製造方法,其中該第一隔離物寬度是在約0.05 微米到0.20微米的範圍內。 3. 如申請專例範圍第1項之具非對稱汲極電流之多階記憶 體單元的製造方法,其中該補偏區的寬度是大於約第一 隔離物寬度的百分之五十(>5 0%)。 45 本紙張尺度逍用中國國家標率(CNS ) A4规格(210X297公釐) 請 先 閲 面 之 注 本 裝 訂 Α8 Β8 C8 D8 ^21793 々、申請專利範圍 4. 如申請專例範圍第ί項之具非對稱汲極電流之多階記億 體單元的製造方法,在進行第一離子佈植前進_步包括 以下步驟: 對每個多階記憶單元的通道進行第一通道離子佈植; 對第一被選取群組的多階記憶單元通道進行第一位元 碼離子佈植; 對第二被選取群組的多階記憶單元通道進行第二位元 碼離子佈植,該第二位元碼離子佈植比第一位元碼離子 佈植,具有不同的投射範圍:每個多階記憶單元都具有 —位元碼,是從一組四個不同位元碼中選取出來的,四 個不同位元碼中的每一個位元碼都是對應於由第一通 道離子佈植,第一位元碼離子佈植,以及第二位元碼離 子佈植所構成的特定組合; 开乡成閘極氧化層; 沉積出第一導電層; 從該第一導電層定義出閘極的圖案;以及 遮蓋住該汲極。 5. 如申請專例範圍第1項之具非對稱汲極電流之多階記憶 體單元的製造方法,在進行第一離子佈植前進一步包括 以下步驟: 對每個多階記憶單元的通道進行第一通道離子佈植; 對η個被選取群組的多階記憶單元通道進行η個位元 碼離子佈植,η個位元碼離子佈植的每一個都與其它η- 46 本紙張尺度適用中國_家標準(CNS ) Α4规格(210X297公嫠) — 一;;-----Γ'·'丨^------1Τ-----Q (锖先閱讀背面之注意事項再填寫本页) 經濟部中央樣準局員工消费合作社印装 42口9 3 B8 C8 D8 , 六、申請專利範圍 1個位元碼離子佈植,具有一組不同的離子佈植特性; 每個多階記憶單元都具有一位元碼,是從—組2"個不 同位元碼中選取出來的,2"個不同位元碼中的每一個位 元碼都是對應於由第一通道離子佈植以及η個位元碼 離子佈植所構成的特定組合; 形成閘極氧化層; 沉積出第一導電層; 從該第一導電層定義出閘極的圖案;以及 .遮蓋住該汲極。 6. 如申請專例範圍第1項之具非對稱汲極電流之多階記憶 體單元的製造方法,進一步包括在閘極的第二側上,形 成第二隔離物,該第二隔離物是從閘極氧化層的頂部向 上延伸。 7. 如申請專例範圍第4項之具非對稱汲極電流之多階記憶 體單元的製造方法,其中該第一隔離物寬度是在約0.0 5 微米到0.20微米的範圍內。 8. 如申請專例範圍第4項之具非對稱汲極電流之多階記憶 體單元的製造方法,進一步包括在進行第二離子佈植後 的以下步驟: 沉積出第二導電層;以及 定義出第二導電層的圖案》 9. 如申請專例範圍第5項之具非對稱汲極電流之多階記憶 體單元的製造方法,其中該組離子佈植特性包含投射範 47 又&適^中國國家標準(CNS ) Α4規格(210χ297公釐) — (請先閲讀背面之注意事項再填寫本頁) •裝· 經濟部中央標準局員工消費合作社印装 421793 A8 B8 C8 D8 六、申請專利範圍 圍以及離子佈植的離子數目。 10.如申請專例範圍第5項之具非對稱汲極電流之多階記 (請先聞讀背面之注意事項再填窝本頁) 億體單元的製造方法,其中該第一隔離物寬度是在約 0.05微米到0.20微米的範圍內。 •1 1 .如申請專例範圍第5項之具非對稱汲極電流之多階記 憶體單元的製造方法,進一步包括在進行第二離子佈植 後的以下步驟: 沉積出第二導電層;以及 定義出第二導電層的圖案。 « 12.如申請專例範圍第6項之具非對稱汲極電流之多階記 憶體單元的製造方法,其中該第一隔離物寬度是在約 〇.〇5微米到0.20微米的範圍內。 1 3 .如申請專例範圍第6項之具非對稱汲極電流之多階記 憶體單元的製造方法,進一步包括在進行第二離子佈植 後的以下步驟: 沉積出第二導電層;以及 定義出第二導電層的圖案。 經濟部中央標率局員工消費合作社印裝 14.如申請專例範圍第6項之具非對稱汲極電流之多階記 憶體單元的製造方法,其中該第一隔離物寬度是在約 0-05微米到0.20.微米的範圍內,該方法進一步包括在 進行第二離子佈植後的以下步驟: 沉積出第二導電層;以及 定義出第二導電層的圖案。 48 本紙浪尺度適用中國固家揉準(CNS)A4規格(210X297公舍) 經濟部中央標準局員工消費合作社印裝 / 421793 - / C8 /_ D8 申請專利範圍 15. —種稹體電路金氧半記憶單元,該積體電路具有基底; 該積體電路金氧半記憶單元具有一源極,一閘極,一閘 極氧化層,而源極是在基底內,閘極氧化層是在基底與 閘極之間;該積體電路包含: 一汲極,在基底內形成,該汲極具有一寬度; —通道,在基底內形成,該通道接觸到閘極氧化層, 並與閘極對齊,該通道從源極朝汲極向上延伸,該通道 被一補偏區而與該汲極隔離開,該通道被調節成能儲存 多位元資料,該通道被調節成在接近閘極氧化層的通道 區內形成空乏區,以反應閘極電壓;以及 一補偏區,在基底內,而且是在通道與汲極之間,該 補偏區具有起始導通狀態,該補偏區被調節成保持瘦辟 閘極氧化層的該起始導通狀態,以反應閘極電壓,該金 氧半記憶單元具有對應於汲極電壓的汲極讀取電流,以 及對應於源極竃壓的源極讀取電流,該源極電壓是等於 該汲極電壓,該汲極讀取電流的大小與該源極讀取電流 的大小不相同。 16. ·如申請專例範圍第15項之積體電路金氧半記憶單元, 其中該源極讀取電流小於該汲極讀取電流。 17. 如申請專例範圍第15項之積體電路金氧半記憶單元, 其中該補偏區被調節成在接近閘極氧化層內形成空乏 區,以反應汲極電壓。 18. 如申請專例範圍第15項之積體電路金氧半記憶單元, 49 ‘紙珉尺度適用中國國家標準(CNS ) A4規格(210><297公釐) T -- : Γ t請先閱讀背面之注意事項再填寫本頁) 訂 Q 421T93 as CS D8 六、申請專利範圍 其中該補偏區是在約0.0 2微米到0.2 0微米的範圍內。 19. 如申請專例範圍第15項之積體電路金氧半記憶單元, 其中該補偏區被調節成在接近閘極氧化層內形成空乏 區,以反應汲極電壓:該補偏區是在約0.02微米到〇.2〇 微米的範圍內。 20. 如申請專例範圍第15項之積體電路金氧半記憶單元, 其中該補偏區被調節成在接近閘極氧化層內形成空乏 區,以反應汲極電壓;該補偏區被調節成保持接近閘極 氧化層的該起始導通.狀態,以反應源極電壓;以及該補 偏區是在約0.02微米到0.20微米的範圍內。 經濟部中央標隼局負工消費合作社印製 (請先聞讀背面之注意事項再填寫本頁) 21·如申請專例範圍第15項之積體電路金氧半記憶單元, 其中該補偏區被調節成在接近閘極氧化層內形成空乏 區,以反應汲極電壓,該補偏區被調節成保持接近閘極 氧化層的該起始導通狀態,以反應源極電壓,以及該補 偏區是在約〇·〇2微米到0.20微米的範圍內,該閘極具 有閘極寬度,第一側,第二側,底部,以及頂部,該第 二側是與第一側相反;閘極寬度是第二側與第一側之 間的距離,該閘極在源極與非對稱汲極之間,該閘極在 閘極氧化層上,該非對稱汲極是在第一側上,該源極是 在第二側上,該閘極寬度小於源極與非對稱汲極之間的 距離,閘極氧化層具有頂部;以及 在其中,積體電路金氧半記憶單元進一步包含第一隔 離物,沿著閘極的第一側,第一隔離物從閘極氧化層的 50 本紙張ϋ用中國國家標準(CNS ) Α4規格(210Χ297公釐) 經濟部中央標準局貝工消費合作社印裝 421793 B8 C8 D8 _ 六、申請專利範圍 頂.部向上延伸,第一隔離物在閘極氧化層的頂部上具有 第一隔離物寬度;第一隔離物寬度是等於或大於補偏 區的大小。 22.—種積體電路,包含: 一記億單元陣列,該記憶單元包含有電晶體,而該電 晶體則在基底的通道區內具有通道,且在該陣列中的被 選取非對稱多階記億單元能儲存多位元資料; 一字線與一位元線,分別耦合到陣列中記憶單元列與 記憶單元行,藉以讀取陣列中所儲存的資料,該位元線 包含第一積體電路圖案層,而該字線包含第二積體電路 圖案層; 每個被選取的非對稱記憶單元,都具有一源極,一閘 極,一閘極氧化層,該源極是在基底內形成的,而閘極 氧化層是在基底與閘極之間;每個被選取的非對稱記 憶單元還進一步包含: —非對稱汲極,是在基底內形成的,該非對稱汲極具 有一寬度; 一通道,是在基底內形成的,該通道接觸到閘極氧化 層,並與閘極對齊,該通道從源極朝非對稱汲極延伸, 一補偏區隔離開該通道與非對稱汲極,該通道被調節成 能儲存多位元資料,該通道被調節成能在靠近閘極氧化 層的通道內,形成空乏區,以反應閘極電壓;以及 一補偏區,在基底內,而且是在通道與非對稱汲極之 51 本紙浪尺度逋用尹國國家標準(€\3)厶4規格(210¥297^釐) (请先聞讀背面之注f項再填寫本頁) ί裝. 訂 經濟部中央標準局負工消費合作社印製 421793 a8 B8 C8 D8 六、申請專利範圍 間,該補偏區具有起始導通狀態,該補偏區被調節成能 保持住在靠近閘極氧化層的起始導通狀態,以反應閘極 電壓,每個被選取的非對稱記憶單元都具有對應於汲極 電壓的第一非對稱汲極讀取電流,以及對應於源極電壓 的源極讀取電流,源極電壓等於汲極電壓,汲極讀取電 流的大小與源極讀取電流的不同;每個被選取的非對 稱記憶單元電晶體的補偏區都足夠大,能確保被選取記 憶單元電晶體只能被相對應的字線以及同一方向上的 位元線精確的讀取出來。 I · 23. 如申請專例範圍第22項之積體電路,其中該補偏區是 在約0.02微米到0.20微米的範圍內。 24. 如申請專例範圍第22項之積體電路,其中該補偏區被 調節成能在靠近閘極氧化層的通道內,形成空乏區,以 反應汲極電壓;該補偏區被調節成能保持住在靠近閘 極氧化層的起始導通狀態,以反應源極電壓;以及該補 偏區是在約0.02微米到0.20微米的範圔內。 25. 如申請專例範圍第22項之積體電路,其中每個被選取 的非對稱記憶單元的閘極都是可用相對應的字線來做 定址,.而且該積體電路進一步包含: —感測放大器,具有一感測放大器導線,該感測放大 器導線具有第一側與第二側; 一接地,具有一導線,該接地導線具有第一側與第二 側:位元線接近接地導線,位元線是在接地導線的第一 52 本紙張尺度適用中國國家標準(CNS )六彳規^格(210X297公漦) (請先閲讀背面之注$項再填寫本頁) i· 、ττ-_ 經濟部中央標隼局貞工消費合作社印策 4· 2, 口 9 3 . A8 BS C8 D8六、申請專利範圍 側,位元線接近感測放大器導線,位元線是在感測放大 器導線的第二側; 一第一被選取記憶單元,在位元線與感測放大器導線 的第二側之間,第一被選取記憶單元的非對稱汲極連接 到感測放大器導線,第二被選取記憶單元的非對稱汲極 連接到接地導線;第一被選取記憶單元與第二被選取 記憶單元都具有一共用源極,位元線連接到第一記憶單 元與第二記憶單元的共用源極;其中,第一記憶單元只 能被第一方向上的祖對應字線以及位元線精確的讀取 I 出來,第二記憶單元只能被第二方向上的相對應字線以 及位元線精確的讀取出來,第二方向是與第一方向相 反。 26. 如申請專例範圍第22項之積體電路,進一步包含記憶 帶選擇線,耦合到陣列中的電晶體列上,以反應所施加 的電壓,該記憶帶選擇線被用來決定出該陣列所要讀取 的被選取非對稱多階記憶單元,電.晶體列耦合到記憶帶 選擇線,包含複數個高臨界電壓電晶體,該高臨界電壓 電晶體是在陣列內,以阻擋掉其它的電流路徑。 27. 如申請專例範圍第25項之積體電路,其中該第一方向 是從第一被選取記憶單元的非對稱汲極到第一被選取 記憶單元的源極,而該第二方向是從第二被選取記憶單 元的非對稱汲極到第二被選取記憶軍元的源極》 28. 如申請專例範圍第25項之積體電路,其中該第一方向 53 本^「張尺度逋用肀國國家揉準(CNS ) A4规格(210X297公釐) A8 B8 C8 DS 六、申請專利範圍 是從第一被選取記憶單元的非對稱汲極到第一被選取 記憶單元的源極.,而該第二方向是從第二被選取記憶單 元的非對稱汲極到第二被選取記憶單元的源極;一部 分的第二方向電流會從第一被選取記億單元的源極流 到第一被選取記億單元的非對稱汲極,第一被選取記憶 單元內的該部分第二方向電流,小於百分之四十的第二 被選取記憶單元的第二方向電流;一部分的第一方向 電流會從第二被選取記憶單元的源極流到第二被選取 記憶單元的非對稱汲極,第二被選取記憶單元內的該部 分第一方向電流,小於百分之四十的第一被選取記憶單 元的第一方向電流。 29.—種讀取具補偏値之記憶單元的方法,包括提供記憶 單元;該記憶單元具有一源極,一閘極,一閘極氧化層, 該源極在基底內,該閘極氧化層在基底與閘極之間;該 記億單元包含: 一汲極,在基底內形成,該汲極具有一寬度; 一通道,在基底內形成,該通道接觸到閘極氧化層, 經濟部央標隼局員工消費合作社印製 (請先聞讀背面之注$項再填寫本頁) 並與閘極對齊,該通道從源極朝汲極延伸,一補偏區隔 離開該通道與非對稱汲極,該通道被調節成能儲存多位 元資料,該通道被調節成能在靠近閘極氧化層的通道 內,形成空乏區,以反應閘極電壓;以及 一補偏區,在基底內,而且是在通道與非對稱汲極之 間,該補偏區具有起始導通狀態,該補偏區被調節成能 54 本^張尺度適用中國囷家捸準(〇邮)八4規格(210><297公釐) '~~' A5 421了93 S D8 __ 六、申請專利範園 保持住在靠近閘極氧化層的起始導通狀態,以反應閘極 電壓,每個被選取的非對稱記憶單元都具有對應於汲極 電壓的第一非對稱汲極讀取電流,以及對應於源極電壓 的源極讀取電流,源極電壓等於汲極電壓,汲極讀取電 流的大小與源極讀取電流的不同》 3 0.如申請專例範圍第29項之讀取具補偏値之記憶單元的 方法,其中該通道被調節成能儲存多位元資料。 (請先閲讀背面之注意事項再填寫本頁) 彳裝· 經濟部中夬標準局員工消費合作社%— 55 準 標 家 國 國 中 用 適 一嘈 公 一97 2 X 10Λ 29 3 Α8 Β8 C8 D8 VI. Application for Patent Scope Printing by the Central Standards Bureau of the Ministry of Economic Affairs, Shelley Consumer Cooperatives 1. A method for manufacturing a multi-level memory cell with asymmetric drain current, the memory array has a plurality of multi-level A memory cell, each multi-level memory cell includes a gate, a gate oxide, a channel, a drain, and a ytterbium, wherein the gate is on the gate oxide, the gate oxide has a top, and the channel is in a substrate. The drain is inside the substrate and on the first side of the channel, and the source is inside the substrate and on the second side of the channel, where the second side is opposite to the first side, the method includes: The source of the multi-level memory cell is implanted with a first ion, and the + first ion implant is aligned with the gate; on the first side of the gate of each multi-level memory cell, a first spacer is formed, The first spacer extends upward from the top of the gate oxide layer, the first spacer has a first spacer width on the top of the gate oxide layer, and the second spacer width is adjusted to provide an offset region, Between each multilevel memory cell Between the channel and drain; and each memory cell of the multi-stage drain electrode a first ion implantation, ion implantation and the second is aligned with the first spacer. 2. The method for manufacturing a multi-level memory cell with asymmetric drain current according to item 1 of the scope of the application, wherein the width of the first spacer is in a range of about 0.05 micrometers to 0.20 micrometers. 3. For example, the method for manufacturing a multi-level memory cell with asymmetric drain current in item 1 of the scope of the application, wherein the width of the offset region is greater than about 50% of the width of the first spacer (> 50%). 45 This paper is a Chinese standard (CNS) A4 size (210X297 mm). Please read the original binding. A8 Β8 C8 D8 ^ 21793 々, apply for a patent scope 4. If the scope of the application for the first item In the manufacturing method of a multi-level memory cell with asymmetric drain current, the first step of implanting the first ion includes the following steps: performing a first-channel ion implant on each channel of the multi-level memory cell; A multi-level memory cell channel of a selected group is ion-implanted with a first bit code; a second-bit code ion implantation is performed with a multi-level memory cell channel of a second selected group, the second bit code Ion implantation has a different projection range than the first bit code ion implantation: each multi-level memory cell has a -bit code, which is selected from a set of four different bit codes, four different Each bit code in the bit code corresponds to a specific combination of the first channel ion implantation, the first bit code ion implantation, and the second bit code ion implantation; Polar oxide layer A first conductive layer; define a gate pattern from the first conductive layer; obscured and the drain. 5. For the method for manufacturing a multi-level memory cell with asymmetric drain current in item 1 of the scope of the application, before the first ion implantation, the method further includes the following steps: Ion implantation of the first channel; n-bit code ion implantation of n selected multi-level memory cell channels, each of the n-bit code ion implantation is related to other η-46 paper sizes Applicable to China_Home Standard (CNS) Α4 specification (210X297 male) — one;; ----- Γ '·' 丨 ^ ------ 1T ----- Q (锖 Please read the note on the back first Please fill in this page for further details.) Employees' Cooperatives of the Central Procurement Bureau of the Ministry of Economic Affairs printed 42 mouths. 9 3 B8 C8 D8. VI. Patent application 1 bit code ion implantation, with a different set of ion implantation characteristics; Each multi-level memory unit has a bit code, which is selected from the group of 2 different bit codes. Each bit code of the 2 different bit codes corresponds to the first channel. Specific combination of ion implantation and n-bit code ion implantation; formation of gate oxygen Depositing a first conductive layer; defining a pattern of the gate electrode from the first conductive layer; and covering the drain electrode. 6. For example, the method for manufacturing a multi-level memory cell with an asymmetric drain current in the first scope of the application, further comprising forming a second spacer on the second side of the gate, the second spacer being Extends upward from the top of the gate oxide. 7. The method for manufacturing a multi-level memory cell with asymmetric drain current according to item 4 of the scope of the application, wherein the width of the first spacer is in a range of about 0.0 5 μm to 0.20 μm. 8. The method for manufacturing a multi-level memory cell with asymmetric drain current according to item 4 of the scope of the application, further comprising the following steps after the second ion implantation: depositing a second conductive layer; and a definition The pattern of the second conductive layer "9. The method for manufacturing a multi-level memory cell with asymmetric drain current according to item 5 of the scope of the application, wherein the set of ion implantation characteristics includes a projection range 47 and & ^ China National Standard (CNS) A4 Specification (210x297 mm) — (Please read the notes on the back before filling this page) • Equipment · Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 421793 A8 B8 C8 D8 VI. Patent Application Range and number of ions implanted by the ion. 10. If you apply for a multi-level record with asymmetrical drain current in item 5 of the scope of the application (please read the precautions on the back first and then fill in this page). It is in the range of about 0.05 microns to 0.20 microns. • 1 1. The method for manufacturing a multi-level memory cell with asymmetric drain current according to item 5 of the scope of the application, further comprising the following steps after performing the second ion implantation: depositing a second conductive layer; And defining a pattern of the second conductive layer. «12. The method for manufacturing a multi-level memory cell with asymmetric drain current according to item 6 of the scope of the application, wherein the width of the first spacer is in the range of about 0.05 micrometer to 0.20 micrometer. 1 3. The method for manufacturing a multi-level memory cell with asymmetric drain current according to item 6 of the scope of the application, further comprising the following steps after performing the second ion implantation: depositing a second conductive layer; and The pattern of the second conductive layer is defined. Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. 14. The manufacturing method of a multi-level memory cell with an asymmetric drain current as described in item 6 of the scope of the application, wherein the width of the first spacer is about 0- In the range of 05 micrometers to 0.20 micrometers, the method further includes the following steps after performing the second ion implantation: depositing a second conductive layer; and defining a pattern of the second conductive layer. 48 This paper scale is applicable to China's Gus Standard (CNS) A4 (210X297). Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs / 421793-/ C8 / _ D8 Application for patent scope 15. — Kind of carcass circuit metal oxide Semi-memory unit, the integrated circuit has a substrate; the integrated circuit metal-oxygen semi-memory unit has a source, a gate, and a gate oxide layer, and the source is within the substrate, and the gate oxide layer is on the substrate Between the gate and the gate; the integrated circuit includes: a drain formed in the substrate, the drain having a width;-a channel formed in the substrate, the channel contacts the gate oxide layer and is aligned with the gate The channel extends upward from the source to the drain. The channel is isolated from the drain by a biased region. The channel is adjusted to store multi-bit data. The channel is adjusted to approach the gate oxide layer. An empty region is formed in the channel region to reflect the gate voltage; and a biased region in the substrate, and between the channel and the drain, the biased region has an initial conduction state, and the biased region is adjusted Keep thin gate oxygen The initial conduction state of the layer reflects the gate voltage. The metal-oxide-semiconductor memory cell has a drain read current corresponding to the drain voltage, and a source read current corresponding to the source voltage. The source The voltage is equal to the drain voltage, and the magnitude of the drain read current is different from the magnitude of the source read current. 16. · The integrated circuit metal-oxide semiconductor memory cell of item 15 of the scope of the application, wherein the source read current is less than the drain read current. 17. For example, the integrated circuit metal-oxide-semiconductor memory cell of item 15 of the scope of the application, wherein the offset region is adjusted to form an empty region near the gate oxide layer to reflect the drain voltage. 18. For the integrated circuit metal-oxygen half-memory unit in the scope of the application case No. 15, the 49 'paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210 > < 297 mm) T-: Γ tPlease (Please read the notes on the back before filling in this page) Order Q 421T93 as CS D8 VI. Patent application range The offset area is in the range of about 0.0 2 microns to 0.2 0 microns. 19. For example, the integrated circuit metal-oxygen half-memory cell in the scope of the application case No. 15, wherein the offset region is adjusted to form an empty region near the gate oxide layer to reflect the drain voltage: the offset region is In the range of about 0.02 microns to 0.20 microns. 20. For example, the integrated circuit metal-oxygen half-memory unit of the scope of the application case No. 15, wherein the offset region is adjusted to form an empty region near the gate oxide layer to reflect the drain voltage; the offset region is adjusted by It is adjusted to maintain the initial ON state close to the gate oxide layer to reflect the source voltage; and the offset region is in the range of about 0.02 microns to 0.20 microns. Printed by the Central Bureau of Standards, Ministry of Economic Affairs and Consumer Cooperatives (please read the notes on the back before filling out this page) 21 · If you apply for the integrated circuit metal-oxygen half-memory unit of item 15 in the scope of the special case, the compensation The region is adjusted to form an empty region near the gate oxide layer to reflect the drain voltage, and the offset region is adjusted to maintain the initial conduction state close to the gate oxide layer to reflect the source voltage and the compensation The bias region is in the range of about 0.02 μm to 0.20 μm, the gate has a gate width, a first side, a second side, a bottom, and a top, the second side is opposite to the first side; the gate The pole width is the distance between the second side and the first side, the gate is between the source and the asymmetric drain, the gate is on the gate oxide layer, and the asymmetric drain is on the first side, The source is on the second side, the gate width is smaller than the distance between the source and the asymmetric drain, the gate oxide layer has a top; and the integrated circuit metal-oxygen half-memory cell further includes a first Spacer, along the first side of the gate, the first spacer from the gate 50 papers with extremely oxidized layer are printed in accordance with Chinese National Standard (CNS) Α4 (210 × 297 mm). Printed by the Bayer Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. 421793 B8 C8 D8. A spacer has a first spacer width on top of the gate oxide layer; the first spacer width is equal to or greater than the size of the offset region. 22. A kind of integrated circuit, comprising: an array of 100 million cells, the memory cell contains a transistor, and the transistor has a channel in the channel region of the substrate, and an asymmetric multi-stage selected in the array Billion cells can store multi-bit data; a word line and a bit line are respectively coupled to the memory cell row and the memory cell row in the array to read the data stored in the array. The bit line contains the first product A body circuit pattern layer, and the word line includes a second integrated circuit pattern layer; each selected asymmetric memory cell has a source, a gate, and a gate oxide layer, and the source is on the substrate The gate oxide layer is formed between the substrate and the gate; each selected asymmetric memory cell further includes:-an asymmetric drain, which is formed in the substrate, the asymmetric drain has a Width; a channel is formed in the substrate, the channel contacts the gate oxide layer and is aligned with the gate electrode, the channel extends from the source electrode to the asymmetric drain electrode, and an offset region separates the channel from the asymmetric electrode Drain The channel is adjusted to store multi-bit data, and the channel is adjusted to form an empty region in the channel near the gate oxide layer to reflect the gate voltage; and a biased region in the substrate, and in Channels and Asymmetric Drains 51 Paper Wave Scales Use Yin National Standard (€ \ 3) 厶 4 Specifications (210 ¥ 297 ^ cent) (Please read the note f on the back before filling this page). Printed by the Central Standards Bureau of the Ministry of Economic Affairs and Consumer Cooperatives to print 421793 a8 B8 C8 D8 6. Between the scope of patent application, the offset area has an initial conduction state, and the offset area is adjusted to keep living near the gate oxide layer. The initial on-state is to reflect the gate voltage. Each selected asymmetric memory cell has a first asymmetric drain read current corresponding to the drain voltage, and a source read corresponding to the source voltage. Current, the source voltage is equal to the drain voltage, and the magnitude of the drain read current is different from the source read current; the offset area of each selected asymmetric memory cell transistor is large enough to ensure the selected memory Unit electricity Body can be accurately read out on the bit line corresponding to the word line and the same direction. I. 23. The integrated circuit of item 22 of the scope of the application, wherein the offset region is in a range of about 0.02 μm to 0.20 μm. 24. For the integrated circuit of item 22 of the scope of the application, wherein the offset region is adjusted to form an empty region in the channel near the gate oxide layer to reflect the drain voltage; the offset region is adjusted Cheng energy can be maintained in the initial conduction state near the gate oxide layer to reflect the source voltage; and the offset region is in the range of about 0.02 microns to 0.20 microns. 25. For the integrated circuit of item 22 in the scope of the application, in which the gate of each selected asymmetric memory cell can be addressed using a corresponding word line, and the integrated circuit further includes:- A sense amplifier has a sense amplifier wire, the sense amplifier wire has a first side and a second side; a ground, has a wire, the ground wire has a first side and a second side: the bit line is close to the ground wire The bit line is the first 52 of the ground wire. This paper standard applies the Chinese National Standards (CNS) six-dimensional rule (210X297 cm) (please read the note on the back before filling this page) i, ττ -_Initial policy of Zhengong Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs 4 · 2, Port 9 3. A8 BS C8 D8 6. On the side of the patent application, the bit line is close to the sense amplifier wire, and the bit line is in the sense amplifier. The second side of the wire; a first selected memory cell, between the bit line and the second side of the sense amplifier wire, the asymmetric drain of the first selected memory cell is connected to the sense amplifier wire, the second Selected memory unit The asymmetric drain is connected to the ground wire; both the first selected memory cell and the second selected memory cell have a common source, and the bit line is connected to the common source of the first and second memory cells; The first memory cell can only be read out by the corresponding word line and bit line in the first direction, and the second memory cell can only be accurately read by the corresponding word line and bit line in the second direction. Read it out, the second direction is opposite to the first direction. 26. If the integrated circuit of item 22 of the scope of the application includes a memory band selection line, which is coupled to the transistor column in the array to reflect the applied voltage, the memory band selection line is used to determine the The selected asymmetric multi-level memory cell to be read by the array is electrically coupled to the memory band selection line and contains a plurality of high-critical voltage transistors which are in the array to block out other Current path. 27. For the integrated circuit of item 25 of the scope of the application, wherein the first direction is from the asymmetric drain of the first selected memory cell to the source of the first selected memory cell, and the second direction is From the asymmetric drain of the second selected memory cell to the source of the second selected memory army. "28. For example, if you apply for the integrated circuit of item 25 in the scope of the application, the first direction is 53 copies.逋 Use the national standard (CNS) A4 specification (210X297 mm) A8 B8 C8 DS 6. The scope of patent application is from the asymmetric drain of the first selected memory cell to the source of the first selected memory cell. And the second direction is from the asymmetric drain of the second selected memory cell to the source of the second selected memory cell; part of the second direction current will flow from the source of the first selected memory cell to The asymmetric drain of the first selected memory cell, the current in the second direction of the part in the first selected memory cell, and the current in the second direction of the second selected memory cell that is less than forty percent; Current in one direction will be selected from the second The source of the selected memory cell flows to the asymmetric drain of the second selected memory cell, and the current in the first direction of the part in the second selected memory cell is less than forty percent of the first selected memory cell. Current in one direction. 29. A method for reading a memory cell with complementary bias, including providing a memory cell; the memory cell has a source, a gate, and a gate oxide layer, and the source is in the substrate. The gate oxide layer is between the substrate and the gate; the billion-unit includes: a drain formed in the substrate, the drain having a width; a channel formed in the substrate, the channel contacting the gate oxide Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs (please read the note “$” on the back before filling out this page) and align it with the gate. The channel extends from the source to the drain, and the offset zone is isolated. The channel and the asymmetric drain are adjusted to store multi-bit data, and the channel is adjusted to form an empty region in the channel near the gate oxide layer to reflect the gate voltage; and a bias compensation Zone Moreover, it is between the channel and the asymmetric drain. The offset region has an initial conduction state, and the offset region is adjusted to be 54 squares. It is applicable to China's standard (0) 8 4 specifications (210 &gt); < 297 mm) '~~' A5 421, 93 S D8 __ VI. The patent application park maintains the initial conduction state near the gate oxide layer to reflect the gate voltage. Each selected non- Symmetric memory cells each have a first asymmetric drain read current corresponding to the drain voltage, and a source read current corresponding to the source voltage. The source voltage is equal to the drain voltage. Differences in source read currents "3 0. For the method of reading the memory cell with complementary bias, as described in the scope of application case No. 29, wherein the channel is adjusted to be able to store multi-bit data. (Please read the precautions on the back before filling out this page) Employees ’Cooperatives of the China Standards Bureau of the Ministry of Outfitting and Economics% — 55 Standards Standards China National Standards Applicable Noisy Public 1 97 2 X 10
TW88104546A 1999-03-23 1999-03-23 Fabricating method of multi-stage memory unit having asymmetric drain current and the integrated circuit TW421793B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88104546A TW421793B (en) 1999-03-23 1999-03-23 Fabricating method of multi-stage memory unit having asymmetric drain current and the integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88104546A TW421793B (en) 1999-03-23 1999-03-23 Fabricating method of multi-stage memory unit having asymmetric drain current and the integrated circuit

Publications (1)

Publication Number Publication Date
TW421793B true TW421793B (en) 2001-02-11

Family

ID=21640054

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88104546A TW421793B (en) 1999-03-23 1999-03-23 Fabricating method of multi-stage memory unit having asymmetric drain current and the integrated circuit

Country Status (1)

Country Link
TW (1) TW421793B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513007B (en) * 2009-05-26 2015-12-11 Macronix Int Co Ltd Memory device and methods for fabricating and operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513007B (en) * 2009-05-26 2015-12-11 Macronix Int Co Ltd Memory device and methods for fabricating and operating the same

Similar Documents

Publication Publication Date Title
TW444383B (en) NAND-Type nonvolatile memory device, manufacturing method thereof and driving method thereof
US7859043B2 (en) Three-terminal single poly NMOS non-volatile memory cell
US6312990B1 (en) Structure nonvolatile semiconductor memory cell array and method for fabricating same
EP0461764B1 (en) EPROM virtual ground array
KR100198659B1 (en) Memory cell, memory device and its fabrication method
EP0627742B1 (en) Semiconductor memory device
TW300338B (en) Semiconductor memory device and process thereof
TW478166B (en) A semiconductor device
GB2077492A (en) Electrically alterable nonvolatile floating gate memory cell
JPS6225460A (en) Electrically alterable non-volatile memory and manufacture thereof
JPH09293795A (en) Nonvolatile semiconductor memory device and operating method thereof
GB1593435A (en) Semiconductor devices
US9287277B2 (en) Semiconductor device and fabricating method thereof
KR100198662B1 (en) Dram cell, dram and its fabrication method
EP0618621B1 (en) Non-volatile semiconductor memory device
TW421793B (en) Fabricating method of multi-stage memory unit having asymmetric drain current and the integrated circuit
JPH05283654A (en) Mask rom and manufacture thereof
US6362502B1 (en) DRAM cell circuit
TW313706B (en) Read only memory structure and manufacturing method thereof
TW400626B (en) The read-only memory(ROM) structure and the manufactureing method thereof
US20020034854A1 (en) Process and integrated circuit for a multilevel memory cell with an asymmetric drain
US5933731A (en) Semiconductor device having gate oxide films having different thicknesses and manufacturing method thereof
US6525361B1 (en) Process and integrated circuit for a multilevel memory cell with an asymmetric drain
TW490846B (en) Integrated dynamic memory-cells with smaller propagation-area and its production method
JP3690921B2 (en) Semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent