TW416841B - Pulse diagnosis system, pulse data generation method, motion indicator detection, motion strength detection, heart extrusion capacity detection, once extrusion capacity detection, heart function diagnostic method and apparatus - Google Patents
Pulse diagnosis system, pulse data generation method, motion indicator detection, motion strength detection, heart extrusion capacity detection, once extrusion capacity detection, heart function diagnostic method and apparatus Download PDFInfo
- Publication number
- TW416841B TW416841B TW87109953A TW87109953A TW416841B TW 416841 B TW416841 B TW 416841B TW 87109953 A TW87109953 A TW 87109953A TW 87109953 A TW87109953 A TW 87109953A TW 416841 B TW416841 B TW 416841B
- Authority
- TW
- Taiwan
- Prior art keywords
- pulse wave
- body motion
- detecting
- pulse
- analysis data
- Prior art date
Links
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
a? Γ 41684 1 Β7 五、發明説明(1 ) 〔發明之技術領域〕 本發明是關於從脈波中抽出與生體狀態有關的資訊, 據以測定生體狀態或者診斷裝置及方法。 〔技術背景〕 於診斷人體之循環器系統的狀態時,一般最常使用的 是血壓或脈搏數等。因此從以往循環器官系狀態或更廣義 解釋是作爲把握身體狀況用的一種判斷材料是以可簡便測 定從人體採取的最高血壓、最低血壓等的血壓値或脈搏數 爲指標而加以重視。此一指標是測量一定時間中的脈搏所 獲得的値,因此可稱爲測量時間中的代表値。 如上述,隨著脈波硏究的進步,可以種種的方法解析 從人體所採取的脈搏波型,藉此可獲得僅以血壓値或脈搏 數所不能獲得的各種生體狀態,而可根據該等生體狀態診 斷獲得β於此,脈波是藉血管運送從心臟排出之血液的波 *檢測脈波加以解析而可獲得種種的醫學資訊等β 例如,東洋醫學之脈診是醫生以指按壓橈骨動脈,利 用手指感覺脈動,進行生體狀態的診斷。代表的脈波波型 有平脈、滑脈、弦脈等脈象。 但是,脈診係藉上述以人指感覺出微妙之觸覺而診斷 生體的狀態,因此如上述的技能藉由人的傳授困難*至其 熟練須耗費長的年月。且,生體一旦有體動時,血液的變 化會產生掌握特定的正確脈象困難。 又,由於各種的體能訓練,會經常在某一強度下進行 {却先閏讀背面之注意事項再磧巧本頁) *1Τ 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐} -4 - b7 f 4 16 8 4 1 五、發明説明(2 ) 運動。而該時的運動強度是藉例如『嚴苛』、p輕鬆』等 主觀的評估所獲得。 但是,根據主觀評估所獲得的運動強度並未考慮肉體 的體能,因此不能謂之正確的評估。 又,評估心機能時,是著眼於心臟所排出的血液量爲 指標。例如,一次排出量S V或排出量C 0是相當於該指 標。 但是,在運動或日常生活當中,會隨著某種的體動, 而由於該體動影響著血液流動,會在脈波波型上使體動成 份重疊其上。因此,在運動或曰常生活中不能測量連續之 —次排出量SV或排出量C0» 〔發明說明〕 本發明的目的爲提供可一邊考慮上述生體狀態的以下 u-μ αχ» 裝置。 1) 根據脈波波型可客觀地特定脈象的裝置及方法。 2) 可客觀檢測運動強度之裝置及方法。 3) 測量一次排出量或心臟排出量的裝置及方法。 首先,根據脈波波型可客觀地特定脈象之裝置及方法 有如下述。 第1之發明係有關脈波診斷裝置者,其特徵爲:具備 檢測來自生體檢測部位之脈波波型的脈波檢測手段;藉上 述脈波檢測手段所檢測之上述脈波波型施以子波轉換,在 各頻率領域內產生脈波解析數據之子波轉換手段:及,於 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (却先閱讀背面之注意事項再填艿本頁) 訂 -5- 対"•部中呔<?$?'^JU 1消氕合竹.^印^ : 4 16841 五、發明説明(3 ) 上述脈波解析數據施以運算處理,產生顯示上述脈波波型 種類之脈象數據的脈象數據產生手段。 第2發明是有關脈波診斷裝置者,其特徵爲:具備檢 測來自生體檢測部位之脈波波型的脈波檢測手段;藉上述 脈波檢測手段所檢測之上述脈波波型施以子波轉換,在各 頻率領域內產生脈波解析數據之第1子波轉換手段;檢測 生體的體動而輸出體動波型之體動檢測手段;在上述體動 檢測手段所檢測的上述體動波型上施以子波轉換|在各頻 率領域內產生體動解析數據之第2子波轉換手段;從上述 脈波解析數據減去上述體動解析數據,而產生除去體動後 修正脈波數據之遮蔽手段:及,於上述遮蔽手段所產生的 上述修正脈波數據上施以運算處理,產生顯示上述脈波波 型種類之脈象數據的脈象數據產生手段。 第3發明是有關脈波診斷裝置者,其特徵爲:具備檢 測來自生體檢測部位之脈波波型的脈波檢測手段;藉上述 脈波檢測手段所檢測之上述脈波波型施以子波轉換I在各 頻率領域內產生脈波解析數據之子波轉換手段:根據所對 應之各頻率,施以使對應頻率之動力規格化而修正上述脈 波解析數據,產生修正脈波數據之頻率修正手段:於上述 修正脈波數據上施以運算處理,產生顯示上述脈波波型種 類的脈象數據之脈象數據產生手段。 第4發明是有關脈波診斷裝置者,其特徵爲:具備檢 測來自生體檢測部位之脈波波型的脈波檢測手段;藉上述 脈波檢測手段所檢測之上述脈波波型施以子波轉換,在各 本紙張尺度適用中國國家標率(CNS ) A4規格(2丨0X297公釐) r „ P------;--訂 I— (誚先閱讀背面之注意事項再填巧冬頁) -6- _______B7 r 4 16841 五、發明説明(4 ) 頻率領域內產生脈波解析數據之第1子波轉換手段;檢測 (誚先閱讀背面之注意事項再填巧本頁) 生體的體動而輸出體動波型之體動檢測手段:根據所對應 之各頻率,施以使對應頻率之動力規格化而修正上述脈波 解析數據,產生修正脈波數據之第1頻率修正手段;檢測 生體的體動而輸出體動波型之體動檢測手段;於上述體動 檢測手段所檢測的上述體動波型上施以子波轉換,在各頻 率領域內產生體動解析數據之第2子波轉換手段;根據所 對應之各頻率,施以使對應頻率之動力規格化而修正上述 體動解析數據,產生體動修正數據之第2頻率修正手段: 從上述修正脈波數據減去上述體動修正數據,而產生除去 體動後修正脈波數據之遮蔽手段;及,於上述遮蔽手段所 產生之上述修正脈波數據上施以運算處理,產生顯示上述 脈波波型種類的脈象數據之脈象數據產生手段》 第5發明是有關脈波診斷裝置者,其特徵爲:具備檢 測來自生體檢測部位之脈波波型的脈波檢測手段;藉上述 脈波檢測手段所檢測之上述脈波波型施以子波轉換,在各 頻率領域內產生脈波解析數據之第1子波轉換手段;檢測 生體的體動而輸出體動波型之體動檢測手段:在上述體動 檢測手段所檢測的上述體動波型上施以子波轉換,在各頻 率領域內產生體動解析數據之第2子波轉換手段;從上述 脈波解析數據減去上述體動解析數據,而在各個頻率領域 內產生除去體動後修正脈波數據的遮蔽手段;根據所對應 之各頻率,施以使對應頻率之動力規格化而修正上述脈波 解析數據,產生修正脈波數據之頻率修正手段;在上述遮 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 好浐部中次"^/;Jh 3消合竹私印?ί ^ * 416841 χί / 五、發明説明(5 ) 蔽手段所產生的上述修正脈波數據上施以運算處理,產生 顯示上述脈波波型種類的脈象數據之脈象數據產生手段。 第6之發明是有關脈波診斷裝置者*其特徵爲:具備 檢測來自生體檢測部位之脈波波型的脈波檢測手段;藉上 述脈波檢測手段所檢測之上述脈波波型施以子波轉換,在 各頻率領域內產生脈波解析數據之子波轉換手段;除去對 應體動的頻率成份,產生脈波解析之體動分離手段:對於 上述體動分離手段所產生的脈波解析數據,對應於所對應 應之進行修正而產生修正脈波數據之頻率修正手段;及, 對上述脈波解析數據施以運算處理,產生顯示上述脈波波 型種類的脈象數據之脈象數據產生手段。 第7發明是有關脈波診斷裝置者,其特徵爲:上述脈 象數據產生手段具備對上述修正脈波數據施以逆子波處理 而產生除去體動後之脈波數據的逆子波轉換手段;根據上 述脈波數據的各峰値資訊產生上述脈象數據之數據產生手 段。 第8發明是有關脈波診斷裝置者,其特徵爲:根據上 述體動檢測手段所檢測的體動波型,檢測生體之運動狀態 的狀態檢測手段;及,對應上述運動狀態控制上述第1子 波轉換手段使形成頻率解析對象的頻率領域爲可變之控制 手段。 第9發明是有關脈波診斷裝置者,其特徵爲:上述控 制手段具備預先記億形成上述生體運動狀態與頻率解析對 象之頻率領域的關係之記憶手段;根據上述狀態檢測手段 I : j - -- - - I n n^i .^^^1 - --- - m am (对先閱讀背面之注意事項再硪寫本頁) 本紙張尺度適用t囤國家標準(CNS ) Α4規格(210X297公釐) -8 - 好沪部中央^"而夂3消贽合竹^印5? B7 - 4 1 6 84 1 五、發明説明(6 ) 所檢測之上述生體的運動狀態讀取形成頻率解析對象之頻 率領域的讀取手段;可根據該讀取結果控制形成頻率解析 對象之頻率領域者。 第1 0發明是有關脈波診斷裝置者,其特徵爲:具備 檢測上述脈波波型週期之脈波週期檢測手段,上述子波轉 換手段係與所檢測之上述週期同步施予子波轉換者。 第1 1發明是有關脈波診斷裝置者,其特徵爲:具備 檢測上述脈波波型週期之脈波週期檢測手段,上述第1子 波轉換手段及上述第2子波轉換手段係與所檢測之上述週 期同步施予子波轉換者。 第12之發明之特徵爲:具備可藉上述脈象產生手段 告知所產生上述脈象數據之告知手段。 第1 3發明是有關脈波診斷裝置者,其特徵爲:上述 脈波檢測手段係藉由壓力檢測生體動脈的脈動之壓力感測 器所成。 第1 4發明是有關脈波診斷裝置者,其特徵爲:上述 脈波檢測手段係檢測接受3 0 0 nm〜7 0 0 〇 nm波長 的光照射在生體檢測部位時所獲得反射光之受光信號以作 爲脈波波型者。 第1 5發明是有關脈波診斷裝置者,其特徵爲:上述 脈波檢測手段係檢測接受6 0 0 nm〜1 〇 〇 〇 nm波長 的光照射在生體檢測部位時所獲得穿透光之受光信號以作 爲脈波波型者。 第1 6發明是有關脈象數據產生方法,其特徵爲:具 ^^1 '-ΰ^ nm ^^^1 nr^ ^i·^— ^^^1 、·='* (讀先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標率{ CNS ) A4規格(210X2S»7公釐) -9- 鉍浐部中^"^/Jh-T消扎4'竹妇卬" :丨 416841 五、發明説明(7 ) 備檢測來自生體檢測部位的脈波波型之第1步驟:於所檢 測之上述脈波波型施以子波轉換,在各頻率領域內產生脈 波解析數據之第2步驟:及,對上述脈波解析數據施以運 算處理而產生顯示上述脈波波型種類之脈象數據的第3步 驟。 第1 7發明是有關脈象數據產生方法,其特徵爲:具 備檢測來自生體檢測部位的脈波波型之第1步驟;於上述 第1步驟所檢測之上述脈波波型施以子波轉換,在各頻率 領域內產生脈波解析數據之第2步驟:檢測上述生體的體 動而產生體動波型之第3步驟:於所檢測之上述體動波型 施以子波轉換,而在各頻率領域內產生體動解析數據之第 4步驟;從上述脈波解析數據減去上述體動解析數據而產 生除去體動的修正脈波數據之第5步驟;及,對上述修正 脈波數據施以運算處理,產生顯示上述脈波波型種類的脈 象數據之第6步驟。 第1 8發明是有關脈象數據產生方法,其特徵爲:具 備檢測來自生物檢測部位的脈波波型之第1步驟;對上述 第1步驟所檢側之上述脈波波型施以子波轉換,在各頻率 領域內產生脈波解析數據之第2步驟;根據所對應之各頻 率,對於上述脈波解析數據進行使各頻率的動力規格化之 修正而產生修正脈波數據之第3步驟:及,對上述修正脈 波數據施以運算處理,產生顯示上述脈波波型種類的脈象 數據之第4步驟。 第1 9發明是有關脈象數據產生方法,其特徵爲:具 {誚先閱讀背面之注意事項再填寫本頁) i 訂 本紙張尺度適汛中國國家標準(CNS ) A4規格(2I0X297公釐) -10- ab] r 4 1 684 1 五、發明説明(8 ) 備檢測來自生體檢測部位的脈波波型之第1步驟:對上述 第1步驟所檢側之上述脈波波型施以子波轉換*在各頻率 領域內產生脈波解析數據之第2步驟;根據所對應之各頻 率,對於上述脈波解析數據進行使各頻率的動力規格化之 修正而產生修正脈波數據之第3步驟;檢測上述生體的體 動而產生體動波型之第4步驟:對上述第4步驟所檢測之 上述體動波型施以子波轉換處理,在各頻率領域內產生體 動解析數據之第5步驟:根據所對應之各頻率,對於上述 體動解析數據進行各頻率之動力規格化修正而產生體動修 正數據之第6步驟:從上述修正脈波數據減去上述體動修 正數據,產生除去體動後的修正脈波數據之第7步驟;及 ,對上述修正脈波數據施以運算處理I產生顯示上述脈波 波型種類的脈象數據之第8步驟》 第2 0發明是有關脈象數據產生方法,其特徵爲:具 備檢測來自生體檢測部位的脈波波型之第1步驟;對於上 述脈波波型施以子波轉換,而在各頻率領域內產生脈波解 析數據之第2步驟;檢測上述生體體動產生體動波型之第 3步驟;對於上述第3步驟所檢測之脈波波型施以子波轉 換,而在各頻率領域內產生體動解析數據之第4步驟;從 上述解析數據減去上述體動解析數據,於各頻率領域產生 除去體動後的脈波數據之第5步驟;根據所對應之各頻率 ,對於上述脈波數據進行使各頻率的動力規格化之修正而 產生修正脈波數據之第6步驟;對上述修正脈波數據施以 運算處理,產生顯示上述脈波波型種類之脈象數據的第7 本紙張尺度適fl)中國國家標準(CNS)A4規格(210><297公釐) I I I) 1 n I m an Hr If---I n T -5 (#先閱讀背面之注意事項再蛾艿本頁) -11 - 好浐部中呔ι!ϊ?·^·.;ί.τ消汝合作.311卬« ^77 ί 4 1684 1 五'發明説明(9) 步驟。 第2 1發明是有關脈象數據產生方法,其特徵爲:具 備檢測來自生體檢測部位的脈波波型之第1步驟;對於上 述脈波波型施以子波轉換,而在各頻率領域內產生脈波解 析數據之第2步驟:從上述解析數據中除去對應體動之頻 率成份而產生脈波解析數據之第3步驟:相對於所對應各 頻率,產生對上述解析數據進行修正之第4步驟:及,對 上述修正脈波數據施以運算處理,產生顯示上述脈波波型 種類之脈象數據的第5步驟》 其次,客觀地檢測出運動強度之裝置及方法係如下所 述。 第2 2之發明是有關運動指標測定裝置者,其特徵爲 :具備檢測被檢驗者脈搏數之脈搏數檢測手段;檢測被檢 驗者運動間距之間距檢測手段:判定使所檢測之脈搏數及 所檢測的運動間距形成大致互相相同點之判定手段:求得 對應所判定點的運動強度之第1算出手段:及,以所求得 運動作爲運動指標而告知之第1告知手段》 第2 3之發明是有關運動指標測定裝置者,其特徵爲 :上述判定手段所檢測之脈搏數及所檢測之運動間距的差 在± 1 0%的範圍時,可判定兩者爲同一者。 第2 4之發明是有關運動指標測定裝置者,其特徵爲 :具備使上述第1算出手段所求得的運動強度與時間對應 後加以記憶之第1記憶手段’及將記憶在上述第1記憶手 段的內容,隨時間推移的同時而告知之第2告知手段。 (#先閱讀背面之注意事項再填艿本頁)a? Γ 41684 1 B7 V. Description of the Invention (1) [Technical Field of the Invention] The present invention relates to extracting information related to the state of a living body from a pulse wave, and measuring the state of the living body or a diagnostic device and method therefor. [Technical Background] When diagnosing the state of the circulatory system of the human body, blood pressure, pulse rate, etc. are most commonly used. Therefore, from the previous circulatory organ system state or a broader interpretation, it is used as a judgment material for grasping the physical condition, and it is taken as an index to easily measure the blood pressure and pulse number such as the highest blood pressure and the lowest blood pressure taken from the human body. This index is the radon obtained by measuring the pulse in a certain time, so it can be called the representative radon in the measurement time. As mentioned above, with the advancement of pulse wave research, various methods can be used to analyze the pulse wave pattern taken from the human body, so as to obtain various biological states that cannot be obtained only with blood pressure or pulse number. Β is obtained when the body condition is diagnosed. Pulse wave is a wave that transports blood discharged from the heart by blood vessels. * Pulse waves are detected and analyzed to obtain various medical information. Β For example, the pulse diagnosis of Toyo Medical is a doctor's finger press The radial artery uses the fingers to sense the pulse to diagnose the state of the body. The typical pulse wave patterns are pulses such as Pingmai, Huamai, and Xuanmai. However, pulse diagnosis is based on the above-mentioned diagnosis of a living body by using a human finger to sense subtle touch. Therefore, it is difficult for a person to teach the skills mentioned above * to reach proficiency. Moreover, once the body is in motion, changes in blood can make it difficult to grasp certain correct pulses. In addition, due to various physical training, it will often be performed at a certain intensity {but read the precautions on the back before coping with this page) * 1Τ This paper size applies the Chinese National Standard (CNS) Α4 specification (210X297 mm) -4-b7 f 4 16 8 4 1 V. Description of the Invention (2) Exercise. The intensity of the exercise at that time was obtained through subjective evaluations such as "strict" and "p relaxed". However, it was obtained based on subjective evaluations. The intensity of exercise does not take into account the physical fitness of the body, so it cannot be said to be a correct assessment. Also, when evaluating cardiac function, the focus is on the amount of blood discharged by the heart as an indicator. However, in sports or daily life, it will follow some kind of body movement, and because the body movement affects blood flow, the body movement component will be superimposed on the pulse wave pattern. Therefore, in Continuous or secondary discharge SV or discharge C0 cannot be measured during exercise or daily life. [Explanation of the invention] The object of the present invention is to provide the following u-μ αχ »device that can take into account the above-mentioned living conditions. 1) According to the pulse Popo Device and method for objectively specifying pulse patterns. 2) Device and method for objectively detecting exercise intensity. 3) Device and method for measuring once-through volume or cardiac output. First, an apparatus and method for objectively specifying a pulse pattern based on a pulse wave pattern are as follows. The first invention relates to a pulse wave diagnosis device, which is characterized by having a pulse wave detection means for detecting a pulse wave pattern from a living body detection site; and applying the pulse wave pattern detected by the pulse wave detection means. Wavelet conversion, the wavelet conversion method for generating pulse wave analysis data in each frequency domain: and, in accordance with this paper standard, the Chinese National Standard (CNS) A4 specification (210X297 mm) is applied (but please read the precautions on the back before filling in) (This page) Order -5- 対 " • 部 中 呔 <? $? '^ JU 1 Eliminate 氕 合 竹. ^ 印 ^: 4 16841 V. Description of the invention (3) The above pulse wave analysis data is subjected to arithmetic processing And generating pulse data generating means for displaying the pulse data of the pulse wave type. A second invention relates to a pulse wave diagnostic device, which is characterized by having a pulse wave detection means for detecting a pulse wave pattern from a living body detection site; and applying a pulse wave pattern to the pulse wave pattern detected by the pulse wave detection means. Wave conversion, the first wavelet conversion method that generates pulse wave analysis data in each frequency domain; body motion detection method that detects the body motion of a living body and outputs a body motion waveform; the body detected by the body motion detection method Wavelet transform is applied to the dynamic wave pattern | The second wavelet transform means to generate body motion analysis data in each frequency domain; the body motion analysis data is subtracted from the pulse wave analysis data to generate a pulse correction after removing body motion Means for masking wave data: and applying arithmetic processing to the modified pulse wave data generated by the masking means to generate pulse data generating means for displaying the pulse data of the pulse wave type. The third invention relates to a pulse wave diagnostic device, which is characterized by including a pulse wave detection means for detecting a pulse wave pattern from a living body detection site; and applying a pulse wave pattern to the pulse wave pattern detected by the pulse wave detection means. Wavelet conversion I Wavelet conversion means for generating pulse wave analysis data in each frequency domain: According to the corresponding frequency, the above-mentioned pulse wave analysis data is corrected by normalizing the power of the corresponding frequency to generate a frequency correction for correcting the pulse wave data Means: Perform arithmetic processing on the modified pulse wave data to generate a pulse shape data generating means that displays the pulse shape data of the pulse wave type. A fourth invention relates to a pulse wave diagnosis device, which is characterized by including pulse wave detection means for detecting a pulse wave pattern from a living body detection site; and applying a pulse wave pattern to the pulse wave pattern detected by the pulse wave detection means. Wave conversion, the Chinese National Standard (CNS) A4 specification (2 丨 0X297 mm) applies to each paper scale r „P ------;-order I— (诮 read the precautions on the back before filling Qiaodong page) -6- _______B7 r 4 16841 V. Description of the invention (4) The first wavelet transform method for generating pulse wave analysis data in the frequency domain; detection (诮 read the precautions on the back before filling this page) Body motion detection means for outputting body motion waveforms of the body: According to the corresponding frequencies, normalize the power of the corresponding frequencies to correct the pulse wave analysis data, and generate a first frequency correction for correcting the pulse wave data. Means; a body motion detection means that detects a body motion of a living body and outputs a body motion waveform; applies a wavelet transform to the body motion waveform detected by the body motion detection means, and generates a body motion analysis in each frequency domain Data's second wavelet transform method; based on Corresponding to each frequency, the normalization of the power of the corresponding frequency is performed to modify the body motion analysis data to generate a second frequency correction means for generating body motion correction data: subtracting the body motion correction data from the correction pulse wave data to generate A masking means for correcting the pulse wave data after removing body motion; and applying arithmetic processing to the modified pulse wave data generated by the masking means to generate a pulse data generating means that displays the pulse wave type of the pulse wave type described above. The 5th invention relates to a pulse wave diagnostic device, which is characterized by having a pulse wave detection means for detecting a pulse wave pattern from a living body detection site; and applying a wavelet to the pulse wave pattern detected by the pulse wave detection means. Conversion, the first wavelet conversion means that generates pulse wave analysis data in each frequency domain; body movement detection means that detects the body movement of a living body and outputs a body movement wave type: the body movement detected by the body movement detection means Wavelet transform is applied to the second wavelet transform method to generate body motion analysis data in each frequency range; the body motion is subtracted from the pulse wave analysis data Analyze the data, and generate a masking method to correct the pulse wave data after removing body motion in each frequency domain; according to the corresponding frequency, apply the normalization of the power of the corresponding frequency to correct the pulse wave analysis data to generate a modified pulse wave Means of frequency correction of data; Chinese National Standard (CNS) A4 specification (210X297 mm) is applicable to the above-mentioned paper size. The middle part of the Ministry of Justice " ^ /; Jh 3 Consumer Bamboo Private Seal? Ί * 416841 χί / V. Description of the invention (5) The above-mentioned modified pulse wave data generated by the shielding means is subjected to arithmetic processing to generate a pulse wave data generating means that displays the pulse wave type of the pulse wave type. The sixth invention relates to a pulse wave diagnosis device * It is characterized by: having a pulse wave detection means for detecting a pulse wave pattern from a living body detection part; the above-mentioned pulse wave pattern detected by the above-mentioned pulse wave detection means is subjected to wavelet conversion, and is generated in each frequency domain Wavelet conversion means for pulse wave analysis data; body motion separation means for generating pulse wave analysis by removing frequency components corresponding to body motion: For pulse waves generated by the above body motion separation means Analysis of the data, corresponding to the corresponding frequency correction means for correcting and generating modified pulse wave data; and, applying arithmetic processing to the pulse wave analysis data to generate pulse data that displays the pulse wave type of the pulse wave type means. The seventh invention relates to a pulse wave diagnostic device, wherein the pulse data generating means includes inverse wavelet transforming means for applying pulse wave data to the modified pulse wave data to generate pulse wave data excluding body motion; The peak generating information of the pulse wave data generates the above-mentioned pulse data data generating means. An eighth invention relates to a pulse wave diagnostic device, which is characterized by: a state detecting means for detecting a state of motion of a living body based on the body motion wave pattern detected by the body motion detecting means; and controlling the first according to the state of motion The wavelet conversion means is a control means that makes the frequency domain forming the object of frequency analysis variable. A ninth invention is related to a pulse wave diagnosis device, wherein the control means includes a memory means that records a billion in advance to form a relationship between the biological motion state and a frequency domain of a frequency analysis object; and the state detection means I: j- ---I nn ^ i. ^^^ 1-----m am (Please read the notes on the back before writing this page) This paper size is applicable to the national standard (CNS) Α4 specification (210X297) (Centi) -8-Haohubu central ^ " and 夂 3 eliminates the combination of bamboo ^ India 5? B7-4 1 6 84 1 V. Description of the invention (6) The detected frequency of the above-mentioned living body reads the formation frequency Reading means in the frequency domain of the analysis target; those in the frequency domain that form the frequency analysis target can be controlled based on the reading results. The tenth invention relates to a pulse wave diagnosis device, which is characterized by including pulse wave period detection means for detecting the pulse wave period, and the wavelet conversion means is provided to the wavelet converter in synchronization with the detected period. . A first aspect of the present invention relates to a pulse wave diagnosis device, which is characterized by including pulse wave period detection means for detecting the pulse wave period, and the first wavelet conversion means and the second wavelet conversion means are related to the detection. The above-mentioned period is applied to the wavelet converter synchronously. The twelfth invention is characterized in that it is provided with a notifying means capable of notifying the above-mentioned generated pulse data by the above-mentioned pulse generating means. A thirteenth invention relates to a pulse wave diagnostic device, wherein the above-mentioned pulse wave detecting means is formed by a pressure sensor that detects the pulsation of a living body artery by pressure. A fourteenth invention relates to a pulse wave diagnostic device, characterized in that the above-mentioned pulse wave detection means detects the light received by the reflected light obtained when light having a wavelength of 300 nm to 700 nm is irradiated on a biological detection site. The signal is used as a pulse wave. The fifteenth invention relates to a pulse wave diagnostic device, characterized in that the above-mentioned pulse wave detection means detects a penetrating light obtained when a light having a wavelength of 600 nm to 1000 nm is irradiated on a biological detection site. Receive light signal as a pulse wave pattern. The 16th invention relates to a method for generating pulse data, which is characterized by: ^^ 1 '-ΰ ^ nm ^^^ 1 nr ^ ^ i · ^ — ^^^ 1 、 · =' * Note: Please fill in this page again.) This paper size is applicable to China's national standard {CNS) A4 specification (210X2S »7mm). -9- Bismuth tritium ^ " ^ / Jh-T Elimination 4 '竹 女 卬 ": 丨 416841 V. Description of the invention (7) The first step of detecting the pulse wave pattern from the biological detection site: applying a wavelet transform to the detected pulse wave pattern to generate pulses in each frequency domain The second step of the wave analysis data: and the third step of applying arithmetic processing to the pulse wave analysis data to generate pulse shape data showing the type of the pulse wave pattern. The seventeenth invention relates to a method for generating pulse data, which is characterized in that it includes a first step of detecting a pulse wave pattern from a living body detection site; and performing a wavelet conversion on the pulse wave pattern detected in the first step. The second step of generating pulse wave analysis data in each frequency domain: detecting the body motion of the living body to generate a body motion wave shape. The third step: applying wavelet conversion to the detected body motion wave shape, and The fourth step of generating body motion analysis data in each frequency domain; the fifth step of subtracting the body motion analysis data from the pulse wave analysis data to generate corrected pulse wave data excluding body motion; and, for the modified pulse wave, The data is subjected to arithmetic processing to generate a sixth step of displaying pulse shape data of the aforementioned pulse wave type. The eighteenth invention relates to a method of generating pulse data, which is characterized in that it includes a first step of detecting a pulse wave pattern from a biological detection site; and applying a wavelet transform to the pulse wave pattern on the side detected in the first step. The second step of generating pulse wave analysis data in each frequency domain; according to the corresponding frequencies, the third step of correcting the pulse frequency analysis data to normalize the dynamics of each frequency to generate modified pulse wave data: And, the fourth step is to perform arithmetic processing on the modified pulse wave data to generate the pulse shape data showing the type of the pulse wave pattern. The 19th invention is related to the pulse data generation method, which is characterized by: {具 Read the notes on the back before filling in this page) i The size of the paper is suitable for the Chinese National Standard (CNS) A4 specification (2I0X297 mm)- 10- ab] r 4 1 684 1 V. Description of the invention (8) The first step of detecting the pulse wave pattern from the living body detection part: apply the sub-wave to the above pulse wave pattern on the side detected in the first step. Wave conversion * The second step of generating pulse wave analysis data in each frequency range; according to the corresponding frequencies, the pulse wave analysis data is modified to normalize the dynamics of each frequency to generate the modified pulse wave data. Step 4: Detecting the body motion of the living body to generate a body motion pattern. Step 4: Applying a wavelet conversion process to the body motion pattern detected in the fourth step to generate body motion analysis data in each frequency domain. Step 5: According to the corresponding frequencies, the body motion analysis data is subjected to power normalization correction at each frequency to generate body motion correction data. Step 6: Subtract the body motion correction data from the correction pulse wave data. , The seventh step of generating the corrected pulse wave data after removing body motion; and the eighth step of generating the pulse data showing the type of the pulse wave pattern by applying the arithmetic processing I to the corrected pulse wave data. The 20th invention is related to The method of generating pulse data is characterized in that it includes a first step of detecting a pulse wave pattern from a living body detection part; applying a wavelet transform to the pulse wave pattern to generate pulse wave analysis data in each frequency domain The second step; the third step of detecting the body motion wave pattern generated by the above-mentioned biological body motion; applying a wavelet transform to the pulse wave pattern detected in the third step, and generating the body motion analysis data in each frequency domain Step 4: Subtracting the body motion analysis data from the analysis data to generate the pulse wave data after removing body motion in each frequency domain; and performing frequency adjustments on the pulse wave data according to the corresponding frequencies The sixth step of generating the modified pulse wave data by correcting the normalization of the power; applying a calculation process to the modified pulse wave data to generate a seventh paper showing the pulse data of the pulse wave type. Applicable dimensions fl) Chinese National Standard (CNS) A4 specification (210 > < 297 mm) III) 1 n I m an Hr If --- I n T -5 (#Read the precautions on the back first and then the moth version Page) -11-In the Ministry of Education, 呔 ι! Ϊ? · ^ ·.; Ί.τelimination of cooperation.311 卬 «^ 77 ί 4 1684 1 Five 'invention description (9) steps. The 21st invention relates to a method for generating pulse data, which is characterized in that: it has a first step of detecting a pulse wave pattern from a living body detection part; a wavelet conversion is performed on the above pulse wave pattern, and each frequency region is The second step of generating pulse wave analysis data: the third step of generating pulse wave analysis data by removing the frequency component of the corresponding body motion from the above analysis data: generating a fourth step of correcting the above analysis data with respect to the corresponding frequency Steps: And the fifth step of applying arithmetic processing to the above-mentioned modified pulse wave data to generate and display the pulse shape data of the above-mentioned type of pulse wave pattern. Second, the apparatus and method for objectively detecting exercise intensity are as follows. The 22nd invention relates to a device for measuring an exercise index, which is characterized by: having a pulse number detection means for detecting the pulse number of a test subject; detecting means for detecting a distance between motions of the test subject: determining the number of pulses to be detected and the Judging means for the detected movement distances forming approximately the same points: the first calculating means for obtaining the exercise intensity corresponding to the judged point: and the first notifying means for informing the obtained movement as an exercise index. The invention relates to a device for measuring an exercise index, which is characterized in that when the difference between the pulse number detected by the above-mentioned determination means and the detected exercise interval is within a range of ± 10%, it can be determined that the two are the same. A twenty-fourth invention relates to an exercise index measuring device, which is characterized by including a first memory means for associating the exercise intensity obtained by the first calculation means with time and memorizing it, and memorizing in the first memory. The content of the means is the second notification means that is notified at the same time. (#Read the notes on the back before filling this page)
11T 本紙乐尺度適州中國國家禕準(CNS ) Μ规格(210X297公瘦) -12- 416841 五、發明説明(1〇) 第2 5之發明是有關運動指標測定裝置者,其特徵爲 :具備從所檢測之運動間距或者脈搏數求得該時間運動強 度之第2算出手段,及藉上述第2算出手段告知所求得之 運動強度的第3告知手段》 第2 6之發明是有關運動指標測定裝置者,其特徵爲 :具備檢測被檢驗者脈搏數之脈搏數檢測手段;檢測被檢 驗者運動間距之間距檢測手段;求得上述脈搏數檢測手段 所檢測之脈搏數與上述間距檢測手段所檢測之間距差,並 將此差與求得之該等脈搏數或間距間程度比較之第1比較 手段;及,告知上述比較手段所求得的比較結果之第4告 知手段。 第2 7之發明是有關運動指標測定裝置者,其特徵爲 :具備檢測被檢驗者脈搏數之脈搏數檢測手段;檢測被檢 驗者運動間距之間距檢測手段:比較上述脈搏數檢測手段 所檢測之脈搏數與上述間距檢測手段所檢測間距之第2比 較手段;藉上述比較手段的比較結果告知消除兩者差之方 向的運動指示之第5告知手段。 第2 8之發明是有關運動指標測定裝置者,其特徵爲 :被檢驗者進行的運動爲跑步運動,其具備預先記億被檢 驗者步幅之第2記憶手段,上述間距檢測手段係檢測被檢 驗者之跑步間距,上述第1或第2算出手段是在記億於上 述第2記憶手段的步幅,以乘以上述間距檢測手段所檢測 之跑步間距加以換算所成的値作爲運動強度來求得。 第2 9之發明是有關運動指標測定裝置者,其特徵爲 I Jn. m I - I HI n n. an m- T. (誚先閲讀背面之注意事項再填艿本頁〕 本紙張尺度通用中囷國家樣準(CNS ) A4規格(2丨OX 297公釐) -13- 4 1 6 8 41 五、發明説明(11) :具備隨著被檢驗者的跑步間距或者脈搏數的變動而修正 記憶在上述第2記憶手段的步幅之修正手段。 第3 0之發明是有關運動指標測定裝置者,其特徵爲 :具備在與外部機器之間進行資訊的傳遞之通訊手段。 第31之發明是有關運動指標測定裝置者•其特徵爲 :具備記憶顯示以上述脈搏數檢測手段所檢測之脈搏數; 以上述間距檢測手段所檢測之間距:或者以上述修正手段 所修正的步幅等之中至少一個以上的數據之第3記億手段 :及,將上述第3記憶手段所記憶的數據傳送至外部機器 之通訊手段。 第3 2之發明是有關運動指標測定裝置者,其特徵爲 :上述通訊手段至少可接收顯示藉外部機器設定之脈搏數 、間距、或者步幅等其中之一以上數據者。 第3 3之發明是有關運動指標測定方法者,其特徵爲 :具備檢測被檢驗者運動間距之第2步驟;判定所檢測之 脈搏數及所檢測的運動間距互相形成大致相同點之第3步 驟;求得對應所判定點的運動強度之第4步驟;及以求得 之運動強度作爲運動指標而告知之第5步驟。 第3 4之發明是有關運動指標測定方法者,其特徵爲 :具備使上述運動強度與時間對應而予記憶之第6步驟, 及將所記憶之內容隨時間的推移而告知之第7步驟。 第3 5之發明是有關運動指標測定方法者,其特徵爲 :具備可從所檢測之運動間距或脈搏數求得該時間的運動 強度之步驟以代替上述第3步驟及上述第4步驟。 {誚先閲讀背面之注意事項再填寫本頁) i裝-11T This paper is a standard of China ’s National Standards (CNS) M standard (210X297 male thin) -12-416841 V. Description of the invention (10) The invention of No. 2 is a device for measuring sports indicators, which is characterized by: The second calculation means for obtaining the exercise intensity at that time from the detected exercise interval or pulse number, and the third notification means for informing the obtained exercise intensity by the second calculation means. The invention of the twenty-sixth is related to the exercise index The measuring device is characterized in that it has a pulse number detection means for detecting the pulse number of the examinee; a detection means for detecting the distance between the movement distances of the examinee; and the pulse number detected by the pulse number detection means and the distance detection means. The first comparison means for detecting the distance difference and comparing the difference with the obtained pulse number or the degree of the distance; and the fourth notification means for notifying the comparison result obtained by the comparison means. The twenty-seventh invention relates to a device for measuring an exercise index, which is characterized by: having a pulse number detecting means for detecting the pulse number of the examinee; detecting a distance interval between the examinee's movement distance; detecting means: comparing the pulse count detecting means described above The second comparison means for the pulse number and the distance detected by the distance detection means; and the fifth notification means for notifying the movement instruction in the direction of eliminating the difference between the two by the comparison result of the comparison means. The 28th invention relates to a device for measuring an exercise index, which is characterized in that the exercise performed by the test subject is a running exercise, and it has a second memory means which memorizes the stride of the test subject in advance. The running distance of the examiner. The above-mentioned first or second calculation means is to record the stride of the second memory means by multiplying the running distance detected by the above-mentioned distance detecting means and converting the 値 as the exercise intensity. Find it. The 29th invention is related to the exercise index measuring device, which is characterized by I Jn. M I-I HI n n. An m- T. (诮 Please read the precautions on the back before filling this page] This paper has a common size China National Standard (CNS) A4 specification (2 丨 OX 297 mm) -13- 4 1 6 8 41 V. Description of the invention (11): It can be corrected as the running distance or pulse number of the subject changes. The means for correcting the stride stored in the second memory means described above. The 30th invention is related to the exercise index measuring device, and is characterized by having a communication means for transmitting information to and from an external device. The 31st invention It is related to exercise index measuring device. It is characterized by having memory to display the pulse number detected by the above-mentioned pulse number detection means; the distance detected by the above-mentioned distance detection means: or the stride corrected by the above-mentioned correction means. At least one or more data of the three hundred million means: and a communication means for transmitting the data stored in the third memory means to an external device. The thirty-second invention relates to a sports index measuring device, which is characterized in that: The information means can receive and display at least one of the pulse number, interval, or stride set by an external device. The 33rd invention relates to a method for measuring an exercise index, and is characterized in that it has the ability to detect the movement of the test subject. The second step of the distance; the third step of determining the detected pulse number and the detected motion interval to form approximately the same point with each other; the fourth step of obtaining the exercise intensity corresponding to the determined point; and the obtained exercise intensity as the The fifth step of the exercise index is informed. The invention of the thirty-fourth is a method for measuring the exercise index, which is characterized by the sixth step of memorizing the above-mentioned exercise intensity and time, and memorizing the content with time. Step 7 to be notified of the change. The invention of Claim 35 is related to a method for measuring exercise index, which is characterized by having a step for obtaining the exercise intensity at that time from the detected exercise interval or pulse number instead of the above-mentioned step. 3 steps and step 4 above. {诮 Read the precautions on the back before filling this page) i 装-
,1T 本紙乐尺度適用中國國家標準(CNS ) A4規格(210Χ297公釐) -14- A7 ί 4 16 8 4 1 Β7 五、發明説明(12) 第3 6之發明是有關運動指標測定方法者,其特徵爲 :具備檢測被檢驗者脈搏數之第1步驟;檢測被檢驗者運 動間距之第2步驟:求得上述所檢測之脈搏數及上述間距 的差,並將此差與求得之該等脈搏數或間距的程度比較之 第3步驟;及,告知該等比較結果之第4步驟。 第3 7之發明是有關運動指標測定方法者,其特徵爲 :具備檢測被檢驗者脈搏數之第1步驟;檢測被檢驗者運 動間距之第2步驟:比較所檢測之脈搏數及所檢測之間距 的第3步驟;及根據該等比較結果告知消除兩者差的方向 運動指示之第4步驟" 第3 8之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 :檢測上述生體體動顯示之體動波型的體動檢測手段;根 據上述體動波型產生上述脈波波型中的體動成份,從上述 脈波波型除去上述體動成份而產生體動除去脈波波型之體 動除去手段;根據上述體動除去脈波波型,抽出呼吸成份 的呼吸成份抽出手段:根據上述呼吸成份抽出手段所抽出 的呼吸成份,算出運動強度之運動強度產生手段。 第3 9之發明是有關運動強度檢測裝置者,其特徵爲 :上述呼吸成份抽出手段,具備:將上述體動除去脈波波 型施以子波轉換而產生體動除去脈波解析數據之子波轉換 部:從上述體動除去脈波解析數據除去與脈波成份相當之 頻率成份而產生呼吸波型解析數據,對於該等呼吸波型解 析數據施以逆子波轉換,產生呼吸波型以作爲上述呼吸成 --I - I- - - — :1 n - I --1 .....I - n I I (誚先間讀背面之注意事碩再楨巧本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨Ο X 297公釐) -15- b77 4 1 6 8 4 1 五、發明説明(13) 份之呼吸波型產生部。 第4 0之發明是有關運動強度檢測裝置者,其特徵爲 ;上述運動強度產生手段是根據對於上述呼吸成份抽出手 段所抽出的呼吸成份施以頻率解析而獲得的頻率成份比例 算出上述運動強度者。 第4 1之發明是有關運動強度檢測裝置者,其特徵爲 :上述運動強度產生手段是根據對於上述呼吸成份抽出手 段所抽出的呼吸成份施以頻率解析後所獲得的頻率成份比 例算出撓曲率,並根據該變形率算出上述運動強度者。 第4 2之發明是有關運動強度檢測裝置者,其特徵爲 ;上述運動強度產生手段是根據對於上述呼吸成份抽出手 段所抽出的呼吸成份施以頻率解析後所獲得的頻率成份比 例而算出基本波頻率成份及第3諧波成份的比例,並根據 該比例算出上述運動強度者。 第4 3之發明是有關運動強度檢測裝置者,其特徵爲 :上述呼吸成份抽出手段是抽出上述呼吸成份作爲呼吸波 型,上述運動強度產生手段係檢測上述呼吸成份抽出手段 所抽出呼吸波型之負荷比,並根據該負荷比產生上述運動 強度者。 第4 4之發明是有關運動強度檢測裝置者,其特徵爲 :上述體動除去手段具備:解析上述脈波波型之頻率波譜 的第1頻率解析部;解析上述體動波型之頻率波譜的第2 頻率解析部;及,從上述第1頻率解析部所解析之頻率波 譜除去與上述第2頻率解析部所解析頻率波譜相同的頻率 -16- (誚先閱讀背面之注意事項再填朽本頁) 本紙張尺度適州中國國家標準(CNS ) A4規格(210X297公釐) Α7 Γ 4 1684 1 B7 ^ 1 五、發明説明(14) ,產生除去體動之體動除去波譜的體動除去部,上述呼吸 成份抽出手段是可從上述體動除去波譜中抽出相當於呼吸 成份的基本波成份之頻率波譜,上述運動強度產生手段是 根據相當於上述呼吸成份之基本波成份的頻率波譜位準與 相當於其諧波成份之頻率波譜的位準•算出上述運動強度 0 第4 5之發明是有關運動強度檢測裝置者,其特徵爲 :上述呼吸成份抽出手段是從上述體動除去波譜中特定對 應脈搏數所決定的帶域,並自該帶域內之頻率波譜中抽出 1 1相當於呼吸成份之基本波成份的頻率波譜。 第4 6之發明是有關運動強度檢測裝置者,其特徵爲 :上述運動強度產生手段是根據相當於上述呼吸成份之基 本波成份的頻率波譜位準與相當於其諧波成份之頻率波譜 位準,算出上述呼吸波型的撓曲率,並根據該等撓曲率算 出上述運動強度者。 第4 7之發明是有關運動強度檢測裝置者,其特徵爲 :上述運動強度產生手段是根據相當於上述呼吸成份之基 本波成份的頻率波譜位準與相當於第3諧波成份之頻率波 位準的比例,並根據該等比例算出上述運動強度者。 第4 8之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 ’及根據上述呼吸成份抽出手段所抽出的呼吸成份算出運 動強度之運動強度產生手段。 第4 9之發明是有關運動強度檢測裝置者,其特徵爲 ---------裝—------訂 (誚先閱讀背面之注意事項再填巧本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨〇X297公釐) -17- Αβ] ! 4 1 684 1 五、發明説明(15) :上述呼吸成份抽出手段具備:施以上述脈波波型頻率解 析而產生脈波解析數據之頻率解析部:從上述脈波解析數 據除去脈波成份之脈波成份除去部:預先賦予體動基本頻 率與呼吸基本波頻率的對應關係而予以儲存之基本頻率表 1 2 ;參閱上述基本頻率表,從上述解析數據中特定呼吸 基本波頻率與體動基本頻率之頻率特定部;及,根據上述 頻率特定部所特定之上述呼吸基本頻率,算出其各諧波頻 率而抽出呼吸成份之抽出部。 第5 0之發明是有關運動強度檢測裝置者,其特徵爲 :上述運動強度產生手段是根據相當於上述呼吸成份之基 本波成份的波譜位準及相當於其諧波成份之波譜位準算出 呼吸波型的撓曲率,並根據該等撓曲率算出上述運動強度 者。 第5 1之發明是有關運動強度檢測裝置者,其特徵爲 :上述運動強度產生手段是根據相當於上述呼吸成份之基 本波成份的波譜位準與相當於其第3諧波成份之波譜位準 的比例,而根據該比例算出上述運動強度者。 第5 2之發明是有關運動強度檢測裝置者,其特徵爲 :具備可告知上述運動強度產生手段所產生上述運動強度 之告知手段。 第5 3之發明是有關運動強度檢測方法者,其特徵爲 :具備來自檢測生體檢測部位的脈波波型之第1步驟;檢 測顯示上述生體體動之體動波型的第2步驟;根據上述體 動波型產生上述脈波波型中體動成份的第3步驟;從上述 (韵先閲讀背面之注意事項典球泠本茛) i 訂 本紙張尺度速用中國國家標準(CNS ) A4規格(210X297公釐) -18- A7 ^ 4 166 4) B7 五、發明説明(16) 脈波波型除去上述體動成份而產生體動除去脈波波型之第 4步驟:根據上述體動除去脈波波型抽出呼吸成份之第5 步驟;及,根據抽出之上述呼吸成份而算出運動強度之第 6步驟。 第5 4之發明是有關運動強度檢測方法者,其特徵爲 :上述第5步驟具備施予上述體動除去脈波波型子波轉換 而產生體動除去脈波解析數據的步驟,及從上述產生體動 除去脈波解析數據除去相當於脈波成份的頻率成份產生呼 吸波型解析數據,施以該呼吸波型解析數據逆子波轉換| 而產生作爲上述呼吸成份之呼吸波型的步驟。 第5 5之發明是有關運動強度檢測方法者,其特徵爲 :上述第6步驟係根據所抽出上述呼吸成份施以頻率解析 所獲得的頻率成份比例算出上述運動強度者。 第5 6之發明是有關運動強度檢測裝置者,其特徵爲 :上述第5步驟是從上述體動除去脈波波型抽出作爲上述 呼吸成份之呼吸波型,上述第6步驟係檢測抽出之上述呼 析波型的負荷比,而根據該負荷比產生上述運動強度者《 第5 7之發明是有關運動強度檢測方法者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的第1步驟:解 析上述脈波波型的頻率波譜之第2步驟:檢測顯示上述生 體體動的體動波型之第3步驟;解析上述體動波型的頻率 波譜之第4步驟;從解析之上述脈波波型的頻率波譜除去 與所解析之上述體動波型頻率波譜相同頻率的頻率波譜, 而產生除去體動成份之體動除去波譜的第5步驟;從上述 ---------卜------訂 {誚先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -19- 好浐部中央"準而ρτ_>νΙ资合作沿印來 at r 416841 __ ___B7__ 五、發明説明(17) 體動除去波譜抽出相當於呼吸成份的基本波成份之頻率波 譜的第6步驟;根據相當於上述呼吸成份之基本波成份的 頻率波譜位準及相當於其諧波成份之頻率波譜位準算出上 述運動強度的第7步驟。 第5 8之發明是有關運動強度檢測方法者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的第1步驟:從 上述脈波波型抽出呼吸成份之第2步驟:及,根據所抽出 之上述呼吸成份算出運動強度的第3步驟。 第5 9之發明是有關運動強度檢測方法者,其特徵爲 :上述第3步驟具備預先賦予對應體動基本波頻率與呼吸 基本波頻率的關係而予以記憶之步驟;施以上述脈波波型 頻率解析而產生脈波解析數據之步驟;從上述脈波解析數 據除去脈波成份的步驟;參照上述記億內容而自上述解析 數據中特定呼吸基本波頻率與體動基本波頻率的步驟:及 ,根據所特定之上述呼吸基本波頻率,算出各諧波頻率而 抽出呼吸成份之步驟。 第6 0之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 :檢測顯示上述生體體動之體動波型的體動檢測手段;根 據上述體動波型產生上述脈波波型中的體動成份|從上述 脈波波型除去上述體動成份而產生體動除去脈波波型之體 動除去手段;檢測上述生體心脈動數之心脈動數檢測手段 :根據上述體動除去脈波波型,檢測心臟驅出期間之驅出 期間檢測手段;及,根據上述心臟驅出期間與上述心脈動 本紙張尺度適州中围國家標準(CNS ) Α4規格(210X297公釐) (对先閱讀背面之注意事項再填艿本頁) •丨取· 訂 -20- A7 416841 ______ _ B7 五、發明説明(18 ) 數算出心排出量之心排出量算出手段。 第6 1之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自體物檢測部位之脈波波型的脈波檢測手段 :檢測顯示上述生體體動之體動波型的體動檢測手段;根 據上述體動波型產生上述脈波波型中的體動成份,從上述 脈波波型除去上述體動成份而產生體動除去脈波波型之體 動除去手段;檢測上述生體心脈動數之心脈動數檢測手段 ;根據上述體動除去脈波波型,檢測心臓驅出期間之驅出 期間檢測手段;及•根據上述心臟驅出期間之上述體動除 去脈波波型與上述心脈動數算出心排出量之心排出量算出 手段。 第6 2之發明是有關運動強度檢測裝置者,其特徵爲 __具備根據上述體動檢測手段所檢測之體動波型,判定上 述生體體動的有無之判定手段,上述體動除去手段在上述 判定手段的判定結果顯示無體動時,停止體動除去手段而 輸出上述脈波波型以代替上述體動除去脈波波型者。 第6 3之發明是有關運動強度檢測裝置者,其特徵爲 :上述心脈動數檢測手段是根據上述心臟的心電波型或上 15述體動除去脈波波型的週期性求得上述心脈動數者。 第6 4之發明是有關運動強度檢測裝置者,其特徵爲 :對上述心臟之心電波型或上述體動除去脈波波型施以頻 率解析,並根據該等解析結果求得上述心脈動數者。 第6 5之發明是有關運動強度檢測裝置者,其特徵爲 :上述驅出期間檢測手段係檢測上述體動除去脈波波形之 I I , m I I~ n n I— I (請先閲讀背面之注意事項再填艿本頁) 本紙乐尺度適用中固國家標準(CNS ) Α4規格(210Χ297公釐) -21 - A7 「4 16841 B7 五、發明説明(19) 各峰値,可從各峰値特定顯示第1或第2個負峰値與最低 峰値,藉此可檢測上述驅出期間者。 第6 6之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 ;檢測顯示上述生體體動之體動波型的體動檢測手段:根 據上述體動波型產生上述脈波波型中的體動成份,從上述 脈波波型除去上述體動成份而產生體動除去脈波波型之體 動除去手段;對於上述體動除去脈波波型施以子波轉換, 於各頻率領域產生除去體動後之體動除去脈波解析數據的 子波轉換手段;根據上述體動除去脈波解析數據,檢測心 脈動數之心脈動數檢測手段;根據上述體動除去脈波解析 數據,檢測心臟驅出期間之驅出期間檢測手段;及,根據 上述心臟驅出期間之上述體動除去脈波波型與上述心脈動 數算出心排出量之心排出量算出手段。 第6 7之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 :檢測顯示上述生體體動之體動波型的體動檢測手段;根 據上述體動波型產生上述脈波波型中的體動成份,從上述 脈波波型除去上述體動成份而產生體動除去脈波波型之體 動除去手段;對上述體動除去脈波波型施以子波轉換•在 各頻率領域產生除去體動後之體動除去脈波解析數據的體 動除去手段;根據所對應之各頻率,對於上述體動除去脈 波解析數據進行使各頻率的動力規格化之修正而產生修正 脈波數據之頻率修正手段;根據上述修正脈波數據,檢測 本紙張尺度適扣中國國家標隼(CNS )Α4規格(210X 297公釐) (誚先閱讀背面之注意事項再填巧本頁) 丨裝 、π 22" ^-¾:-部中次"'4,-而;^^消羚合竹^"" at ' 4 168 4 1 _B7_ 五、發明説明(2〇) 心脈動數之心脈動數檢測手段:根據上述修正脈波數據, 檢測心臟驅出期間之驅出期間檢測手段:及,根據上述心 臓驅出期間之上述體動除去脈波波型與上述心脈動數算出 心排出量之心排出量算出手段。 第6 8之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 ;對上述脈波波型施以子波轉換而在各頻率領域產生脈波 解析數據的第1子波轉換手段;檢測顯示上述生體體動之 體動波型的體動檢測手段;對上述體動波型施以子波轉換 而在各頻率領域產生體動解析數據的第2子波轉換手段; 從上述脈波解析數據減去上述體動解析數據,而產生除去 體動後之體動除去脈波解析數據的體動除去手段:根據上 述體動除去脈波解析數據檢測心脈動數之心脈動數檢測手 段;根據上述體動除去脈波解析數據檢測心臟驅出期間之 驅出期間檢測手段:及,根據加上上述心臟驅出期間之各 頻率領域的上述體動除去脈波解析數據的結果與上述心脈 動數算出心排出量之心排出量算出手段。 第6 9之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 ;對上述脈波波型施以子波轉換而在各頻率領域產生脈波 解析數據的第1子波轉換手段;根據對應之各頻率,對於 上述脈波解析數據進行使各頻率的動力規格化之修正而產 生修正脈波解析數據之第1頻率修正手段;檢測顯示上述 生物體動之體動波型的體動檢測手段;對上述體動波型施 (誚先閱讀背面之注意事項再填寫本頁), 1T This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210 × 297 mm) -14- A7 ί 4 16 8 4 1 Β7 V. Description of the invention (12) The invention of the 36th is related to the measurement method of exercise index, It is characterized in that it has the first step of detecting the pulse number of the examinee; the second step of detecting the motion interval of the examinee: obtaining the difference between the detected pulse number and the interval, and comparing the difference with the obtained The third step is to compare the degree of the pulse rate or the interval; and the fourth step to inform the comparison result. The 37th invention relates to a method for measuring exercise index, which is characterized by: having the first step of detecting the pulse number of the examinee; the second step of detecting the exercise distance of the examinee: comparing the detected pulse number and the detected The third step of the distance; and the fourth step of informing the direction movement instruction to eliminate the difference between the two according to the results of the comparison. The invention of the 38th aspect is related to the exercise intensity detection device, which is characterized by: The pulse wave detection means of the part's pulse wave pattern: a body motion detection means that detects the body motion wave pattern of the above-mentioned body motion display; according to the body motion wave pattern, a body motion component in the pulse wave pattern is generated from the above The pulse wave pattern removes the above body motion components to generate a body motion removal pulse wave pattern; a body motion removal method that removes the pulse wave pattern according to the above body motion, and extracts a respiratory component extraction means: according to the above respiratory component extraction means The extracted breathing component is used to calculate the exercise intensity generating means. The thirty-ninth invention relates to a device for detecting exercise intensity, characterized in that the breathing component extraction means includes: applying a wavelet transform to the body motion removing pulse wave pattern to generate a wavelet of body motion removing pulse wave analysis data Conversion unit: Removes the pulse wave analysis data from the body motion, and generates the respiratory wave shape analysis data by removing the frequency components corresponding to the pulse wave components. The respiratory wave shape analysis data is subjected to inverse wavelet conversion to generate the respiratory wave shape as the above. Breathing into --I-I----: 1 n-I --1 ..... I-n II (read the cautions on the back first, and then take this page) This paper size is applicable to China Standard (CNS) A4 specification (2 丨 〇 X 297 mm) -15- b77 4 1 6 8 4 1 V. Description of the invention (13) Breath pattern generator. The 40th invention relates to an exercise intensity detection device, characterized in that the above-mentioned exercise intensity generating means is a person who calculates the above-mentioned exercise intensity based on the frequency component ratio obtained by applying frequency analysis to the respiratory components extracted by the respiratory component extraction means. . The 41st invention relates to a device for detecting exercise intensity, characterized in that the above-mentioned exercise intensity generating means is to calculate the deflection rate based on the frequency component ratio obtained by applying frequency analysis to the respiratory component extracted by the breathing component extraction means, The exercise intensity is calculated based on the deformation rate. The 42nd invention relates to a device for detecting exercise intensity, characterized in that the above-mentioned exercise intensity generating means calculates a fundamental wave based on the frequency component ratio obtained by applying frequency analysis to the respiratory component extracted by the respiratory component extracting means. The ratio of the frequency component and the third harmonic component, and the exercise intensity is calculated based on the ratio. The invention of claim 43 relates to a device for detecting exercise intensity, which is characterized in that: the breathing component extraction means extracts the breathing component as a breathing pattern, and the exercise intensity generating means detects the breathing waveform extracted by the breathing component extraction means. A load ratio and a person who generates the above-mentioned exercise intensity based on the load ratio. The 44th invention relates to a device for detecting exercise intensity, characterized in that the body motion removing means includes a first frequency analysis unit that analyzes the frequency spectrum of the pulse wave pattern; and a method that analyzes the frequency spectrum of the body motion wave pattern. The second frequency analysis unit; and removes the same frequency as the frequency spectrum analyzed by the second frequency analysis unit from the frequency spectrum analyzed by the first frequency analysis unit. (Page) This paper is in accordance with China National Standard (CNS) A4 size (210X297 mm) A7 Γ 4 1684 1 B7 ^ 1 V. Description of the invention (14), body movement removal section that generates body movement removal spectrum The above-mentioned means for extracting the respiratory component can extract a frequency spectrum corresponding to the fundamental wave component of the respiratory component from the body movement removal spectrum, and the means for generating the exercise intensity is based on the frequency spectrum level and The level of the frequency spectrum corresponding to its harmonic components. Calculating the above exercise intensity 0. The 5th and 5th inventions are related to exercise intensity detection devices, which are characterized by: The absorption component extraction means is to remove the band determined by the specific pulse number in the spectrum from the above body motion, and extract a frequency spectrum corresponding to the fundamental wave component of the respiratory component from the frequency spectrum in the band. The 46th invention relates to a device for detecting exercise intensity, characterized in that the above-mentioned exercise intensity generating means is based on the frequency spectrum level of the fundamental wave component equivalent to the respiratory component and the frequency spectrum level of the harmonic component. , Calculate the deflection rate of the breathing pattern, and calculate the exercise intensity based on the deflection rate. The invention of claim 47 relates to a device for detecting exercise intensity, characterized in that the above-mentioned exercise intensity generating means is based on the frequency spectrum level of the fundamental wave component equivalent to the respiratory component and the frequency wave level equivalent to the third harmonic component. The ratio of the standard exercise and the above-mentioned exercise intensity. The 48th invention relates to an exercise intensity detection device, which is characterized by including a pulse wave detection means for detecting a pulse wave pattern from a living body detection site and calculating the exercise intensity based on the respiratory component extracted by the breathing component extraction means. Means of generating exercise intensity. The 49th invention is related to the exercise intensity detection device, which is characterized by --------- installation ------- order (诮 read the precautions on the back before filling in this page) The scale applies to the Chinese National Standard (CNS) A4 specification (2 丨 〇297297 mm) -17- Αβ]! 4 1 684 1 V. Description of the invention (15): The means for extracting the above-mentioned breathing components are provided with: applying the above-mentioned pulse wave pattern Frequency analysis unit that generates pulse wave analysis data by frequency analysis: Pulse wave component removal unit that removes pulse wave components from the above pulse wave analysis data: Basic frequency that is given in advance to the correspondence between the basic frequency of body movements and the basic frequency of breathing and is stored Table 1 2; Refer to the above-mentioned basic frequency table, and from the analysis data, specify the frequency specific part of the basic respiratory frequency and the basic frequency of body movement; and calculate the harmonics based on the basic respiratory frequency specified by the frequency specific part. The extraction portion of the respiratory component is extracted at a frequency. The 50th invention relates to a device for detecting exercise intensity, which is characterized in that the above-mentioned exercise intensity generating means calculates respiration based on the spectral level of the fundamental wave component equivalent to the respiratory component and the spectral level of the harmonic component. The wave-type deflection, and the above-mentioned exercise intensity is calculated based on the deflection. The 51st invention relates to a device for detecting exercise intensity, characterized in that the above-mentioned exercise intensity generating means is based on the spectral level of the fundamental wave component equivalent to the respiratory component and the spectral level of the third harmonic component. And the exercise intensity is calculated based on the ratio. The 52nd invention relates to a device for detecting exercise intensity, and is characterized by having a notification means capable of notifying the exercise intensity generated by the exercise intensity generating means. The invention of claim 53 relates to a method for detecting exercise intensity, which is characterized in that it includes a first step of detecting a pulse wave pattern from a living body detection site, and a second step of detecting and displaying the body motion wave shape of the body motion. ; The third step of generating the body motion components in the above pulse wave pattern according to the above body motion wave pattern; from the above (read the note on the back of the rhyme first, the ball ball ranunculus) i. ) A4 specification (210X297 mm) -18- A7 ^ 4 166 4) B7 V. Description of the invention (16) Pulse wave pattern removes the above body motion components and generates body motion. Pulse wave pattern removal step 4: According to the above The fifth step of extracting the respiratory component by removing the pulse wave pattern of the body motion; and the sixth step of calculating the exercise intensity based on the extracted respiratory component. The invention of claim 54 relates to a method for detecting exercise intensity, characterized in that the fifth step includes the step of applying the body motion removing pulse wave type wavelet transform to generate body motion removing pulse wave analysis data, and Generating body motion, removing pulse wave analysis data, removing frequency components corresponding to pulse wave components, generating respiratory wave shape analysis data, and applying the inverse wavelet conversion of the respiratory wave shape analysis data to generate a breathing wave shape as the breathing component. The fifty-fifth invention relates to a method for detecting exercise intensity, characterized in that the sixth step is to calculate the exercise intensity based on the frequency component ratio obtained by performing frequency analysis on the extracted respiratory component. The 56th invention relates to a device for detecting exercise intensity, characterized in that the fifth step is to extract the pulse wave pattern from the body motion and extract the breathing pattern as the breathing component, and the sixth step is to detect the extracted A person who exhales the load ratio of the analysis wave pattern and generates the above-mentioned exercise intensity based on the load ratio. The invention of No. 5 is a method for detecting the exercise intensity, which is characterized by: Step 1: Analyze the frequency spectrum of the above-mentioned pulse wave pattern. The second step: The third step of detecting and displaying the body motion waveform of the body motion. The fourth step of analyzing the frequency spectrum of the body motion pattern. From the analysis, The frequency spectrum of the above-mentioned pulse wave pattern removes the frequency spectrum of the same frequency as the analyzed body-motion-wave frequency spectrum, and a fifth step of removing the body-movement-removing spectrum from the body-motion component is generated; from the above-mentioned ----- ---- Bu ------ Order {诮 Please read the notes on the back before filling this page) This paper size is applicable to China National Standard (CNS) A4 specification (210X 297 mm) -19- Haobu Central " quasi and ρτ_ > νΙ At r 416841 __ ___B7__ V. Explanation of the invention (17) The sixth step of extracting the frequency spectrum of the basic wave component equivalent to the respiratory component by removing the body motion spectrum; according to the frequency spectrum of the basic wave component corresponding to the above respiratory component The seventh step of calculating the above-mentioned exercise intensity is the level and the frequency spectrum level corresponding to its harmonic component. The 58th invention relates to a method for detecting exercise intensity, which is characterized by having a first step of detecting a pulse wave pattern from a living body detection site: a second step of extracting a respiratory component from the pulse wave pattern: and, The third step of calculating exercise intensity based on the extracted breathing components. The invention according to claim 9 relates to a method for detecting exercise intensity, characterized in that the third step includes a step of memorizing in advance the relationship between the fundamental body wave frequency and the respiratory fundamental wave frequency, and applying the pulse wave pattern. A step of generating pulse wave analysis data by frequency analysis; a step of removing pulse wave components from the above pulse wave analysis data; and a step of specifying a fundamental respiratory wave frequency and a body motion basic wave frequency from the above analysis data with reference to the contents of the above-mentioned billions of records: and , According to the specific breathing fundamental wave frequency, calculate each harmonic frequency and extract the breathing component. The 60th invention relates to a device for detecting exercise intensity, and is characterized by having a pulse wave detection means for detecting a pulse wave pattern from a living body detection part: detecting a body motion showing the body motion wave shape of the body motion described above Detection means; generating body motion components in the pulse wave pattern based on the body motion wave pattern | body motion removing means for removing the pulse wave pattern by removing the body motion component from the pulse wave pattern; Heart pulsation number detection means: removing pulse wave patterns based on the body motion, and detecting means for detecting the pulsation period during the cardiac expulsion period; and, according to the above-mentioned cardiac pulsation period and the cardiac pulsation, the paper size is in Shizhou Zhongwei National Standard (CNS) A4 Specification (210X297 mm) (Read the precautions on the back before filling out this page) • 丨 Reorder-20- A7 416841 ______ _ B7 5. Calculation of the invention (18) Cardiac output calculation method. The 61st invention relates to a device for detecting exercise intensity, and is characterized by having a pulse wave detection means for detecting a pulse wave pattern from a body object detection part: detecting body motion of the body motion waveform showing the above-mentioned body motion Detecting means; generating body motion components in the pulse wave pattern according to the body motion wave pattern, and removing the body motion components from the pulse wave pattern to generate body motion removing pulse wave pattern; Means of detecting heart pulsation number of body-heart pulsation; means of detecting pulse wave pattern based on the above-mentioned body motion, detecting means of detecting period during palpitate expulsion; and The cardiac output calculation means for calculating the cardiac output with the number of cardiac pulses. The 62nd invention relates to a device for detecting exercise intensity, characterized in that __ is provided with determination means for determining the presence or absence of said body motion based on the body motion wave pattern detected by said body motion detection means, and said body motion removal means When the determination result of the determination means shows that there is no body motion, the body motion removing means is stopped and the pulse wave pattern is output instead of the body motion removing pulse wave pattern. The invention of claim 63 relates to a device for detecting exercise intensity, characterized in that the means for detecting the number of cardiac pulses is to periodically obtain the heart pulse based on the cardiac wave pattern of the heart or the pulse wave pattern of the body movement described above. Count. The invention of claim 64 relates to a device for detecting exercise intensity, which is characterized in that frequency analysis is performed on the above-mentioned cardiac electrocardiogram or the body motion-removing pulse wave, and the number of heart pulses is obtained based on the analysis results. By. The 65th invention relates to a device for detecting exercise intensity, which is characterized in that the detection means during the drive-out period is to detect the above-mentioned body movement to remove the pulse wave waveform II, m II ~ nn I—I (please read the precautions on the back first) (Fill in this page) The paper scale is applicable to the China National Standard (CNS) A4 specification (210 × 297 mm) -21-A7 "4 16841 B7 V. Description of the invention (19) Each peak can be displayed from each peak. The 1st or 2nd negative peak and the lowest peak can be used to detect the above-mentioned expulsion period. The invention of claim 6 is related to the exercise intensity detection device, which is characterized in that it has the ability to detect the pulse from the body detection site. Wave shape pulse wave detection means; body motion detection means that detects the body motion wave pattern of the above-mentioned biological body motion: according to the body motion wave pattern, the body motion component in the pulse wave pattern is generated from the pulse wave Body movement removing means for removing body wave components by removing the aforementioned body movement components; applying wavelet transformation to the body movement removing pulse wave forms to generate body movement removing pulses after removing body movements in each frequency range Wavelet transformer for wave analysis data ; Means for detecting the number of cardiac pulses based on the above-mentioned analysis of body motion to remove pulse waves; means for detecting the period of cardiac drive during the period of cardiac drive based on the analysis of pulse waves to analyze the body motion; and The above-mentioned body motion-removing pulse wave pattern and the above-mentioned heart pulsation number are used to calculate the cardiac output in a cardiac output calculation method. The invention of claim 7 relates to an exercise intensity detection device, which is characterized by having a detection from a living body. Pulse wave detection means of a part's pulse wave pattern: a body motion detection means for detecting and displaying the body motion wave pattern of the above-mentioned biological body motion; according to the body motion wave pattern, a body motion component in the pulse wave pattern is generated, from the above Pulse wave pattern removes the above body motion components to generate a body motion removal pulse wave pattern body motion removal method; performs wavelet conversion on the above body motion removal pulse wave pattern • Generates a body after body motion removal in each frequency range Body motion removing means for dynamically removing pulse wave analysis data; according to the corresponding frequencies, the body motion removing pulse wave analysis data is modified to normalize the power of each frequency. Frequency correction means for generating and correcting pulse wave data; according to the above-mentioned modified pulse wave data, it is detected that the paper size is suitable for the Chinese National Standard (CNS) A4 specification (210X 297 mm) (诮 Please read the precautions on the back before filling in the manual (Page) 丨 Equipment, π 22 " ^ -¾: -Ministry " '4, -and; ^^ 消 羚 合 竹 ^ " " at' 4 168 4 1 _B7_ V. Description of the invention (2〇) Heart pulsation number and heart pulsation number detection means: detecting means for detecting pulsation period during cardiac expulsion based on the above-mentioned modified pulse wave data: and removing the pulse wave pattern and the heart pulsation according to the body motion during the palpitation expulsion Cardiac output calculation means for counting cardiac output. The invention of claim 68 relates to a device for detecting exercise intensity, which is characterized by having a pulse wave detection means for detecting a pulse wave pattern from a living body detection part; subjecting the pulse wave pattern to wavelet conversion at each frequency The first wavelet conversion method for generating pulse wave analysis data in the field; the body motion detection method for detecting and displaying the body motion wave pattern of the above-mentioned biological body motion; applying wavelet transformation to the body motion wave pattern to generate the body wave in each frequency range The second wavelet conversion means of the motion analysis data; the body motion removal means which removes the pulse wave analysis data after the body motion is removed by subtracting the body motion analysis data from the pulse wave analysis data: removes the body motion based on the body motion Pulse wave analysis data means for detecting the number of cardiac pulses; means for detecting the period during which the heart is being expelled is detected based on the above-mentioned analysis of the body motion to remove the pulse wave analysis data; and, according to each frequency domain in which the above period of heart is being expelled The results of the analysis of the body motion-removed pulse wave and the cardiac output calculation means for calculating the cardiac output by the cardiac pulse number. The invention of claim 69 relates to a device for detecting exercise intensity, which is characterized by: having a pulse wave detection means for detecting a pulse wave pattern from a living body detection part; applying a wavelet conversion to the pulse wave pattern at each frequency The first wavelet conversion means for generating pulse wave analysis data in the field; the first frequency correction means for correcting the pulse wave analysis data by correcting the dynamics of each frequency according to the corresponding frequencies; The body motion detection means of the above-mentioned biological motion wave shape detection; apply the above-mentioned body motion wave shape (诮 Read the precautions on the back before filling this page)
,1T 本紙张尺度述用中固围家標準(CNS ) A4規格(2丨0X297公釐) -23- 鳑"·部屮次ir4,^h 5消^;合竹^卬5^ A7 f 4 1684 1 B7 五、發明説明(21) 以子波轉換而在各頻率領域產生體動解析數據的第2子波 轉換手段;根據所對應之各頻率*對於體動解析數據進行 使各頻率的動力規格化之修正而產生修正體動解析數據之 第2頻率修正手段;從上述修正脈波解析數據減去上述修 正體動解析數據,而產生除去體動後之體動除去脈波解析 數據的體動除去手段;根據上述體動除去脈波解析數據檢 測心脈動數之心脈動數檢測手段;根據上述體動除去脈波 解析數據檢測心臟驅出期間之驅出期間檢測手段;及,根 據加上上述心臟驅出期間之各頻率領域的上述體動除去脈 波解析數據的結果與上述心脈動數算出心排出量之心排出 量算出手段。 第7 0之發明是有關運動強度檢測裝置者,其特徵爲 :上述第1子波轉換手段與上述第2子波轉換手段係同步 進行子波轉換者。 第7 1之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢瑯部位之脈波波型的脈波檢測手段 ;對上述脈波檢測手段所檢測之脈波波型施以子波轉換, 而在各頻率領域產生脈波解析數據的子波轉換手段;從上 述脈波解析數據中除去所對應之預定體動的頻率成份而產 生體動除去脈波解析數據之體動除去手段;根據上述體動 除去脈波解析數據,檢測心脈動數之心脈動數檢測手段; 根據上述修正脈波數據,檢測心臟驅出期間之驅出期間檢 測手段:及,加上上述心臟驅出期間之各頻率領域的上述 體動除去脈波解析數據的結果與上述心脈動數算出心排出 —1 -- I - -- - - 1- I ----I- in ——..I- - I - !1 (誚先閲讀背面之注意事項再蛾寫本頁) 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -24- A7 ί 4 1 6 8 4 1 ____Β7 五、發明説明(22 ) 量之心排出量算出手段。 ---------^— <讀先聞讀背面之注意事項再填艿本頁) 第7 2之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 ;對上述脈波檢測手段所檢測之脈波波型施以子波轉換, 而在各頻率領域產生脈波解析數據的子波轉換手段;從上 述脈波解析數據中除去所對應之預定體動的頻率成份而產 生體動除去脈波解析數據之體動除去手段:根據所對應之 各頻率*對於體動除去脈波解析數據進行使各頻率的動力 規格化的修正而產生修正脈波解析數據之頻率修正手段: 根據上述修正脈波解析數據,檢測心脈動數之心脈動數檢 測手段:根據上述修正脈波解析數據,檢測心臟驅出期間 之驅出期間檢測手段:及•加上上述心臟驅出期間之各頻 率領域的上述修正脈波解析數據的結果與上述心脈動數算 出心排出量之心排出量算出手段。 第7 3之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 ;對上述脈波檢測手段所檢測之脈波波型施以子波轉換, 而在各頻率領域產生脈波解析數據的子波轉換手段;從上 述脈波解析數據中除去所對應之預定體動的頻率成份而產 生體動除去脈波解析數據之體動除去手段;對上述體動除 去脈波解析數據施以逆子波轉換而產生體動除去脈波波型 之逆子波轉換手段;根據上述體動除去脈波波型,檢測心 脈動數之心脈動數檢測手段;根據上述體動除去脈波波型 ,檢測心臟驅出期間之驅出期間檢測手段:及,根據上述 本紙張尺度通用中國國家標準(CNS ) A4規格(210X297公釐) -25- A7 J 4 1 6 8 4 1 __ B7 五、發明説明(23 ) 心臟驅出期間之上述體動除去脈波波型與上述心脈動數算 出心排出量之心排出量算出手段。 {誚先閲讀背面之注意事項再填艿本頁) 第7 4之發明是有關運動強度檢測裝置者|其特徵爲 :上述心排出量算出手段係藉由上述心臟驅出期間之體動 除去脈波波型的積分而運算對應該期間之上述體動除去脈 波波型的面積,並根據該面積算出心排出量者。 第7 5之發明是有關運動強度檢測裝置者,其特徵爲 :上述心排出量算出手段是根據上述心臟驅出期間之體動 除去脈波波型的各峰値運算對應該期間之上述體動除去脈 波波型的面積•並根據該面積算出心排出量者。 第7 6之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 ;檢測上述生體心脈動數之心脈動數檢測手段:預先記憶 對應上述心臟驅出時間及上述生體心脈動數的一次心排出 量的記憶部,根據上述驅出期間檢測手段所檢測之心臟驅 出期間與上述心脈動數檢測手段所檢測的心脈動數,從上 述記憶部讀取上述一次心排出量,乘以此一次心排出量與 上述心脈動數而算出排出量之心排出量算出手段。 第7 7之發明是有關運動強度檢測裝置者,其特徵爲 :具備檢測來自生體檢測部位之脈波波型的脈波檢測手段 ;檢測生體心脈動數之心脈動數檢測手段:根據脈波波型 檢測心臟驅出期間之驅出期間檢測手段;根據上述心臟驅 出期間之上述脈波波型的各峰値運算對應該期間之上述脈 波波型的面積,並根據該面積算出上述心排出量的心排出 本紙張尺度適州中國國家標率(CNS ) A4規格(210X297公釐) -26- Γ 416841 五、發明説明(24) 量算出手段。 第7 8之發明是有關運動強度檢測裝置者,其特徵爲 :具備記億基準裝置所測定之基準心排出量與上述心排出 量算出手段所測定之上述心排出量的比作爲修正係數之記 憶手段;乘上從此記憶手段所讀取的上述修正係數與上述 心排出量算出手段所算出的上述心排出量,以此乘算結果 作爲心排出暈而輸出之乘法手段。 第7 9之發明爲具備心排出量檢測裝置之心機能診斷 裝置,其特徵爲:具備告知上述心排出量檢測裝置所檢測 心排出量的告知手段。 第8 0之發明爲具備心排出量檢測裝置之心機能診斷 裝置,其特徵爲:具備將上述心排出量檢測裝置所檢測之 心排出量與各臨界値比較而產生評估指標之評估手段,及 告知上述評估手段所產生之評估指標的告知手段。 第8 1之發明爲具備心排出量檢測裝置之心機能診斷 裝置’其特徵爲:上述評估手段是對應上述心脈動數檢測 手段所檢測之心脈動數而變更上述各臨界値之變更部。 第8 2之發明爲具備心排出量檢測裝置之心機能診斷 裝置’其特徵爲:上述評估手段具備輸入算出被檢驗者體 表面積用參數的輸入部;根據所輸入之上述參數運算體表 面積之運算部:及,根據所運算之上述體表面積變更上述 各臨界値之變更部。 第8 3之發明爲心排出量檢測方法,其特徵爲:檢測 來自生體檢測部位的脈波波型之第1步驟;檢測顯示上述 "-- (誚先閲讀背面之注意事項再填寫本頁), 1T This paper uses the China Solid Wood Standard (CNS) A4 specification (2 丨 0X297 mm) -23- 鳑 " · 部 屮 次 ir4, ^ h 5 消 ^; 合 竹 ^ 卬 5 ^ A7 f 4 1684 1 B7 V. Description of the invention (21) The second wavelet transform means for generating body motion analysis data in each frequency domain by wavelet conversion; according to the corresponding frequencies *, the body motion analysis data is converted to each frequency. A second frequency correction means for correcting the body motion analysis data by the correction of the power normalization; subtracting the correction body motion analysis data from the correction pulse wave analysis data to generate body motion removal pulse wave analysis data after removing the body motion Means for removing body motion; means for detecting the number of cardiac pulses based on the above-mentioned analysis data for removing body wave pulses; means for detecting the period during which the heart is expelled based on the analysis data for removing pulse waves; The result of the analysis of the body motion-removed pulse wave in each frequency range during the above-mentioned cardiac expelling period, and the cardiac output calculation means for calculating the cardiac output by the cardiac pulse number. The 70th invention relates to a device for detecting exercise intensity, characterized in that the first wavelet conversion means and the second wavelet conversion means perform wavelet conversion in synchronization with each other. The 71st invention relates to a device for detecting exercise intensity, which is characterized by: having a pulse wave detection means for detecting a pulse wave pattern from a biological examination site; and applying a pulse wave pattern detected by the above pulse wave detection means Wavelet conversion, and wavelet conversion means for generating pulse wave analysis data in each frequency domain; removing the corresponding frequency component of the predetermined body motion from the above pulse wave analysis data to generate body motion removing body motion removing pulse wave analysis data Means; detecting means for detecting the number of cardiac pulses in accordance with the above-mentioned analysis of body motion to remove the pulse wave; detecting means for detecting the period of cardiac ejection in accordance with the above-mentioned modified pulse wave data: and, in addition to the above-mentioned cardiac ejection The results of the analysis of the above-mentioned body motion-removed pulse wave in each frequency range and the above-mentioned number of cardiac pulses are used to calculate cardiac ejection—1-I----1- I ---- I-in —— .. I- -I-! 1 (read the notes on the back first, and then write this page) This paper size applies to Chinese National Standard (CNS) A4 (210X297 mm) -24- A7 ί 4 1 6 8 4 1 ____ Β7 5 、 Invention description (22) Quantitative heart row Amount calculating means. --------- ^ — < Read the notes on the back and then fill in this page) The 72nd invention is related to exercise intensity detection device, which is characterized by: Pulse wave detection means of the pulse wave pattern of the part; wavelet conversion means for applying the wavelet transform to the pulse wave pattern detected by the above pulse wave detection means, and generating pulse wave analysis data in each frequency domain; The body motion removal means for removing the pulse wave analysis data by removing the corresponding frequency components of the predetermined body motion from the wave analysis data: according to the corresponding frequencies Frequency correction means for generating modified pulse wave analysis data based on normalized correction: Heart pulse number detection means for detecting the number of cardiac pulses based on the above-mentioned modified pulse wave analysis data: means for detecting the driving force during cardiac expulsion based on the modified pulse wave analysis data Means of detecting period: and • Add the result of the above-mentioned corrected pulse wave analysis data of each frequency range during the above-mentioned cardiac expelling period and the above-mentioned cardiac pulse number to calculate the cardiac output. Means. The invention of claim 73 relates to a device for detecting exercise intensity, which is characterized by: having a pulse wave detection means for detecting a pulse wave pattern from a living body detection part; and applying a pulse wave pattern detected by the above pulse wave detection means Wavelet conversion, and wavelet conversion means for generating pulse wave analysis data in each frequency domain; removing the corresponding frequency component of the predetermined body motion from the above pulse wave analysis data to generate body motion removing body motion removing pulse wave analysis data Means; inverse wavelet conversion means for applying inverse wavelet transformation to the above-mentioned body motion removing pulse wave analysis data to generate a body movement removing pulse wave pattern; detecting the heart pulse number based on the body movement removing pulse wave pattern Means; removing the pulse wave pattern according to the above-mentioned body movements, and detecting the detecting means during the expelling period during cardiac expulsion: and, in accordance with the above-mentioned paper size, the general Chinese National Standard (CNS) A4 specification (210X297 mm) -25- A7 J 4 1 6 8 4 1 __ B7 V. Description of the invention (23) The above-mentioned body motion removal pulse wave pattern and the above-mentioned heart pulsation number are used to calculate the cardiac output during cardiac drive. (诮 Please read the precautions on the back before filling in this page) The invention of the 74th is related to the exercise intensity detection device | It is characterized in that the above-mentioned cardiac output calculation means is to remove the pulse by the body movement during the above-mentioned cardiac expulsion The integral of the wave pattern is used to calculate the area of the body motion excluding the pulse wave pattern in the corresponding period, and calculate the cardiac output based on the area. The invention of claim 75 relates to a device for detecting exercise intensity, characterized in that the means for calculating the cardiac output is to remove the peaks of the pulse wave pattern based on the body motion during the cardiac expelling period, and calculate the body motion corresponding to the period. Remove the area of the pulse wave pattern and calculate the cardiac output based on the area. The invention of claim 76 relates to an exercise intensity detection device, which is characterized by: having a pulse wave detection means for detecting a pulse wave pattern from a living body detection part; and a heart pulse number detection means for detecting the heart heart pulse number: in advance A memory unit that memorizes a single cardiac output corresponding to the above-mentioned cardiac drive time and the number of cardiac pulses of the living body, based on the cardiac drive period detected by the drive-period detection means and the cardiac pulse number detected by the heart-pulse count detection means A means for calculating the cardiac output by reading the primary cardiac output from the memory unit and multiplying the primary cardiac output by the cardiac pulse number to calculate the cardiac output. The invention of claim 7 relates to a device for detecting exercise intensity, which is characterized by: having a pulse wave detecting means for detecting a pulse wave pattern from a living body detection part; and a heart pulse number detecting means for detecting a heart heart pulse number: Wave pattern detection means for detecting the period during the expulsion of the heart; based on the peaks of the pulse wave pattern during the period of the cardiac expulsion, calculate the area corresponding to the pulse wave pattern of the period, and calculate the above based on the area Cardiac output The cardiopulmonary output of this paper is in accordance with China's national standard (CNS) A4 specification (210X297 mm) -26- Γ 841841 V. Description of the invention (24) Volume calculation method. The 78th invention relates to a device for detecting exercise intensity, and is characterized by having a memory including a ratio of a reference cardiac output measured by a reference device for counting hundreds of millions to the cardiac output measured by the cardiac output calculation means as a correction coefficient. Means; multiplying the correction coefficient read from the memory means and the cardiac output calculated by the cardiac output calculation means, and using the multiplication result as a multiplication means to output cardiac discharge halo. The invention according to claim 79 is a cardiac function diagnosis device including a cardiac output detection device, and is characterized by including a notification means for notifying the cardiac output detected by the cardiac output detection device. The eightyth invention is a cardiac function diagnostic device provided with a cardiac output detection device, and is characterized by including evaluation means for generating an evaluation index by comparing the cardiac output detected by the cardiac output detection device with each threshold value, and Notification means for notifying the evaluation indicators generated by the above evaluation means. The eighty-first invention is a cardiac function diagnostic device 'including a cardiac output detection device, wherein the evaluation means is a change unit that changes each of the critical thresholds in response to the number of heart pulses detected by the number of heart pulse detection means. The eighth invention is a cardiac function diagnostic device including a cardiac output detection device, characterized in that the above-mentioned evaluation means includes an input section for inputting a parameter for calculating a body surface area of the examinee; and calculating a body surface area calculation based on the inputted parameters. And a changing unit that changes each of the critical thresholds according to the calculated body surface area. The invention of claim 83 is a method for detecting cardiac output, which is characterized by: the first step of detecting the pulse wave pattern from the biological detection site; the detection shows the above "-(诮 read the precautions on the back before filling in this page)
*1T 本紙張尺度適用肀國囤家標準(CNS ) A4規格(2丨0X297公釐) -27- at 416841 ______B7 五、發明説明(25) 生體體動之體動波型的第2步驟:根據上述體動波型產生 上述脈波波型中的體動成份之第3步驟;從上述脈波波型 除去上述體動成份而產生體動除去脈波波型之第4步驟: _檢測上述生體心脈動數之第5步驟;根據上述體動除去 脈波波型檢測心臟驅出期間的第6步驟;及,根據上述心 臟驅出期間與上述心脈動數而算出心排出量之第7步驟。 第8 4之發明爲心排出量檢測方法,其特徵爲:根據 上述心臟驅出時期的上述體動除去脈波波型與上述心脈動 數算出心排出量以代替上述第7步驟之步驟。 第8 5之發明爲心排出量檢測方法,其特徵爲:具備 從生體檢測部位檢測脈波波型之第1步驟;檢測顯示上述 生體體動的體動波型之第2步驟;根據上述體動波型產生 上述脈波波型中的體動成份之第3步驟:從上述脈波波型 除去上述體動成份而產生體動除去脈波波型之第4步驟: 對上述體動除去脈波波型施以子波轉換而在各頻率領域上 產生除去體動之體動除去脈波解析數據的第5步驟;根據 上述體動除去脈波解析數據檢測心脈動數之第6步驟;根 據上述體動除去脈波解析數據檢測心臟驅動期間之第7步 驟:及,根據上述心臟驅出期間之上述體動除去脈波波型 及上述心脈動數,算出心排出量的第8步驟。 第8 6之發明爲心排出量檢測方法,其特徵爲:具備 從生體檢測部位檢測脈波波型之第1步驟:檢測顯示上述 生體體動的體動波型之第2步驟:根據上述體動波型產生 上述脈波波型中的體動成份之第3步驟;從上述脈波波型 (誚先閲讀背面之注意事項再填巧本頁) i^_ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -28 -* 1T This paper size applies the national standard (CNS) A4 specification (2 丨 0X297 mm) -27- at 416841 ______B7 V. Description of the invention (25) The second step of the body motion wave of the body motion: The third step of generating the body motion component in the pulse wave pattern according to the body motion waveform; the fourth step of removing the pulse wave pattern by generating the body motion by removing the body motion component from the pulse wave pattern: _ detecting the above The fifth step of the number of cardiac pulses in the living body; the sixth step of detecting the period of cardiac expulsion based on the body motion removing pulse wave pattern; and the seventh of calculating the cardiac output based on the period of cardiac expulsion and the number of cardiac pulses step. The eighty-fourth invention is a method for detecting cardiac output, which is characterized by calculating a cardiac output based on the body motion-removing pulse wave pattern and the cardiac pulsation number at the time of cardiac drive, instead of the step of the seventh step. The eighth invention is a method for detecting cardiac output, which is characterized by: a first step of detecting a pulse wave pattern from a living body detection site; a second step of detecting a body motion wave shape showing the above-mentioned body motion; based on The third step of generating the body motion component in the pulse wave pattern by the body motion waveform: a fourth step of removing the pulse wave pattern by generating the body motion by removing the body motion component from the pulse wave pattern: on the body motion The fifth step of removing the pulse wave pattern by applying wavelet transform to generate body motion removal pulse wave analysis data in each frequency domain; the sixth step of detecting the number of heart pulses based on the body motion removal pulse wave analysis data ; Step 7 of detecting the cardiac drive period based on the body motion removal pulse wave analysis data: and Step 8 of calculating the cardiac output based on the body motion removal pulse wave pattern and the number of heart pulses during the heart drive . The invention of claim 86 is a method for detecting cardiac output, which is characterized in that it includes a first step of detecting a pulse wave pattern from a living body detection site: a second step of detecting a body motion wave pattern showing the above-mentioned body motion: based on The third step of the above body wave pattern to generate the body movement components in the above pulse wave pattern; from the above pulse wave pattern (诮 read the precautions on the back before filling this page) i ^ _ This paper size is applicable to China Standard (CNS) A4 specification (210X297 mm) -28-
A7 J 4 1 6 Q 4 I B7 五、發明説明(26 ) 除去上述體動成份而產生體動除去脈波波型之第4步驟; 對上述體動除去脈波波型施以子波轉換而在各頻率領域上 產生除去體動之體動除去脈波解析數據的第5步驟;根據 所對應之各頻率,對於體動除去脈波解析數據施以使各頻 率的動力規格化之修正而產生修正脈波數據之第6步驟: 根據上述修正脈波數據檢測心脈動數之第7步驟:根據上 述修正脈波數據檢測心臓驅動期間之第8步驟;及,根據 上述心臟驅動期間之上述體動除去脈波波型及上述心脈動 數,算出心排出量的第9步驟。 第8 7之發明爲心排出量檢測方法,其特徵爲:具備 從生體檢測部位檢測脈波波型之第1步驟:對上述脈波波 型施以子波轉換處理而在各頻率領域產生脈波解析數據之 第2步驟:檢測顯示上述生體體動的體動波型之第3步驟 ;對上述體動波型施以子波轉換而在各頻率領域產生體動 解析數據之第4步驟;從上述脈波解析數據減去上述體動 解析數據,產生除去體動後之體動除去脈波解析數據的第 5步驟:根據上述體動除去脈波解析數據檢測心脈動數之 第6步驟;根據上述體動除去脈波解析數據檢測心臟驅出 期間之第7步驟:根據加上上述心臟驅出期間各頻率領域 之上述體動除去脈波解析數據的結果與心脈動數而算出心 排出量之第8步驟。 第8 8之發明爲心排出量檢測方法,其特徵爲:具備 從生體檢測部位檢測脈波波型之第1步驟;對上述脈波波 型施以子波轉換處理而在各頻率領域產生脈波解析數據之 ("先閱讀背面之注意事項再填寫本頁) 丨此" 本紙張尺度適用中國國家標準(CNS > A4規格(210X297公釐) -29- A7 I 4 16 8 4 1 __B7 五、發明説明(27 ) 第2步驟;根據所對應之各頻率,對於脈波解析數據施以 使各頻率的動力規格化之修正而產生修正脈波數據之第3 步驟;檢測顯示上述生體體動的體動波型之第4步驟;對 上述體動波型施以子波轉換而在各頻率領域產生體動解析 數據之第5步驟;根據所對應之各頻率,對體動解析數據 施以使各頻率的動力規格化之修正而產生修正體動解析數 據之第6步驟;從上述修正脈波解析數據減去上述修正體 動解析數據,產生除去體動後之體動除去脈波解析數據的 第7步驟:根據上述體動除去脈波解析數據檢測心脈動數 之第8步驟;根據上述體動除去脈波解析數據檢測心臟驅 出期間之第9步驟;根據加上上述心臟驅出期間各頻率領 域之上述體動除去脈波解析數據的結果與心脈動數而算出 心排出量之第1 0步驟。 第8 9之發明爲心排出量檢測方法,其特徵爲:具備 從生體檢測部位檢測脈波波型之第1步驟;對上述脈波波 型施以子波轉換處理而在各頻率領域產生脈波解析數據之 第2步驟:從上述脈波解析數據中除去所對應之預定體動 的頻率成份而產生體動除去脈波解析數據之第3步驟:根 據上述體動除去脈波解析數據檢測心脈動數之第4步驟: 根據上述體動除去脈波解析數據檢測心臟驅出期間之第5 步驟;及,根據加上上述心臟驅出期間各頻率領域之上述 體動除去脈波解析數據的結果與心脈動數而算出心排出量 之第6步驟。 第9 0之發明爲心排出量檢測方法,其特徵爲:具備 - I ^^^1 —^^1 ^—^1 · ^^1· It --- ^ J. {销先閲讀背面之注意事項再填寫本頁) 本紙乐尺戾述用中國國家標率(CNS >A4規格(2丨0X297公釐) -30- A7 f 4 1684 1 B7 五、發明説明(28) 從生體檢測部位檢測脈波波型之第1步驟;對上述脈波波 型施以子波轉換處理而在各頻率領域產生脈波解析數據之 第2步驟:從上述脈波解析數據中除去所對應之預定體動 的頻率成份而產生體動除去脈波解析數據之第3歩驟;根 據所對應之各頻率,對於體動除去脈波解析數據施以使各 頻率的動力規格化之修正而產生修正脈波解析數據之第4 步驟;根據上述修正脈波解析數據檢測心脈動數之第5步 驟;根據上述修正脈波解析數據檢測心臓驅出期間之第6 步驟;及,根據加上上述心臟驅出期間各頻率領域之上述 修正脈波解析數據的結果與心脈動數而算出心排出量之第 7步驟。 第9 1之發明爲心排出量檢測方法,其特徵爲:具備 從生體檢測部位檢測脈波波型之第1步驟;對上述脈波波 型施以子波轉換處理而在各頻率領域產生脈波解析數據之 第2步驟:從上述脈波解析數據中除去所對應之預定體動 的頻率成份而產生體動除去脈波解析數據之第3步驟;根 據所對應之各頻率,對於上述體動除去解析脈波數據施以 逆子波轉換而產生體動除去脈波波型之第4步驟:根據上 述體動除去脈波波型檢測心脈動數之第5步驟;根據上述 體動除去脈波波型檢測心臟驅出期間之第6步驟:及,根 據上述心臓驅出期間之上述體動除去脈波波型與心脈動數 而算出心排出童之第7步驟。 第9 2之發明爲心排出量檢測方法,其特徵爲:具備 從生體檢測部位檢測脈波波型之第1步驟:檢測上述生體 (誚先閲讀背面之注意事項再蛾艿本頁) 1" 本紙張尺度適用中國國家標準(CMS〉A4現格U10X297公釐) -31 - 好浐部中戎^^^:^工消货合作扣印^ A7 丨 4 1 6 8 4 1 B7 五、發明説明(29) 心脈動數之第2步驟;根據上述脈波波型檢測心臟驅出期 間之第3步驟;預先記憶對應上述心臟驅出期間及上述生 體心脈動數之一次心排出量的第4步驟:根據所檢測之上 述驅出期間與所檢測之上述心脈動數,而從上述第4步驟 所記憶的內容讀取上述一次心排出量之第5步驟;及,乘 以該一次心排出量與上述心脈動數而算出心排出量之第6 步驟。 第9 3之發明爲心排出量檢測方法,其特徵爲:具備 從生體檢測部位檢測脈波波型之第1步驟;檢測上述生體 心脈動數之第2步驟;根據上述脈波波型檢測心臟驅出期 間之第3步驟;根據上述心臟驅出期間之上述脈波波型的 各峰値,運算對應該等期間之上述脈波波型面積的第4步 驟;及,根據上述第4步驟的運算結果算出心排出量之第 5步驟。 第9 4之發明是根據心排出量檢測方法所檢測之上述 心排出量而測定心機能之心機能測定方法,其特徵爲:具 備將上述心排出量與各臨界値比較而產生評估指標的步驟 ,及告知上述評估指標的步驟。 第9 5之發明是關於一次排出量檢測裝置,其特徵爲 :具備檢測來自生體檢測部位的脈波波型之脈波檢測手段 :檢測顯示上述生體體動之體動波型的體動檢測手段;根 據上述體動波型產生上述脈波波型中的體動成份,.從上述 脈波波型除去上述體動成份而產生體動除去脈波波型之體 動除去手段;根據上述體動除去脈波波型,檢測心臟驅出 本紙張尺度適用中國國家標準(CNS 規格(210X297公釐) -32 (誚先閱讀背面之注意事項再填朽本頁) iA衣. 訂 i 416841 MM部中戎^;.if^h-Ti/)费合竹拍印^! A7 B7 五、發明説明(30) 期間之驅出期間檢測手段:根據上述體動除去脈波波型算 出心脈動期間之心脈動期間算出手段;及,根據上述心臟 之驅出期間與上述心脈動期間算出一次排出量之一次排出 量算出手段- 第9 6之發明是關於一次排出量檢測裝置,其特徵爲 :具備檢測來自生體檢測部位的脈波波型之脈波檢測手段 :檢測顯示上述生體體動之體動波型的體動檢測手段;根 據上述體動波型產生上述脈波波型中的體動成份,從上述 脈波波型除去上述體動成份而產生體動除去脈波波型之體 動除去手段;根據上述體動除去脈波波型,檢測心臟驅出 期間之驅出期間檢測手段;根據上述心臟驅出期間之上述 體動除去脈波波型算出一次排出量之一次排出量算出手段 第9 7之發明是關於一次排出量檢測裝置,其特徵爲 :具備根據上述體動檢測手段所檢測之體動波型,判定有 無上述生體體動的判定手段,上述體動除去手段在上述判 定手段的判定結果顯示無體動時,停止體動除去動作而輸 出上述脈波波型以代替上述體動除去脈波波型。 第9 8之發明是關於一次排出量檢測裝置,其特徵爲 :上述驅出期間檢測手段係檢測上述體動除去脈波波型之 各個峰値,可從最大峰値特定第1或第2呈現負峰値與最 小峰値,藉此可檢測上述驅出期間者。 第9 9之發明是關於一次排出量檢測裝置,其特徵爲 :具備檢測來自生體檢測部位的脈波波型之脈波檢測手段 (誚先聞讀背面之注意事項再楨寫本頁) •I % 訂 本紙張尺度適用中國國家標率(CNS ) A4現格(210X297公釐〉 -33- a7 'Γ' 4 16841 ______Β7 __ 五、發明説明(31 ) :檢測顯示上述生體體動之體動波型的體動檢測手段;根 據上述體動波型產生上述脈波波型中的體動成份,從上述 脈波波型除去上述體動成份而產生體動除去脈波波型之體 動除去手段;對上述體動除去脈波波型施以子波轉換,而 在各頻率領域產生除去體動的體動除去脈波解析數據之子 波轉換手段;根據上述體動除去脈波解析數據,檢測心臟 驅出期間之驅出期間檢測手段;根據上述心臟驅出期間之 上述體動除去脈波波型算出一次排出量之一次排出量算出 手段。 第1 0 0之發明是關於一次排出量檢測裝置,其特徵 爲:具備檢測來自生體檢測部位的脈波波型之脈波檢測手 段;檢測顯示上述生體體動之體動波型的體動檢測手段: 根據上述體動波型產生上述脈波波型中的體動成份,從上 述脈波波型除去上述體動成份而產生體動除去脈波波型之 體動除去手段;對上述體動除去脈波波型施以子波轉換, 而在各頻率領域產生除去體動的體動除去脈波解析數據之 體動除去手段:根據所對應之各頻率,對於體動除去脈波 解析數據施以使各頻率的動力規格化之修正而產生修正脈 波數據之頻率修正手段;根據上述修正脈波解析數據,檢 測心臟驅出期間之驅出期間檢測手段;及,根據上述心臟 驅出期間之上述體動除去脈波波型算出一次排出量之一次 排出量算出手段。 第1 0 1之發明是關於一次排出量檢測裝置,其特徵 爲:具備檢測來自生體檢測部位的脈波波型之脈波檢測手 ---------裝------訂 (销先閱讀背面之注意事項再填艿本頁) 本紙張尺度適州中國國家標隼(CNS ) A4规格(2丨0><297公釐) -34- μ f 416841 B7 五、發明説明(32 ) 段;對上述脈波波型施以子波轉換,而在各頻率領域產生 脈波解析數據之第1子波轉換手段;檢測顯示上述生體體 動的體動波型之體動檢測手段;對上述體動波型施以子波 轉換,而在各頻率領域產生體動解析數據之第2子波轉換 手段;從上述脈波解析數據減去上述體動解析數據而產生 除去體動之體動除去脈波解析數據的體動除去手段;根據 上述體動除去脈波解析數據,檢測心臟驅出期間之驅出期 間檢測手段:及,根據加上上述心臟驅出期間之各頻率的 上述體動除去脈波解析數據的結果,算出一次排出量之一 次排出量算出手段。 第1 0 2之發明是關於一次排出量檢測裝置,其特徵 爲:具備檢測來自生體檢測部位的脈波波型之脈波檢測手 段;對上述脈波波型施以子波轉換,而在各頻率領域產生 脈波解析數據之第1子波轉換手段:根據所對應之各頻率 ,對於脈波解析數據施以使各頻率的動力規格化之修正而 產生修正脈波解析數據之第1頻率修正手段:檢測顯示上 述生體體動的體動波型之體動檢測手段:對上述體動波型 施以子波轉換,而在各頻率領域產生體動解析數據之第2 子波轉換手段;根據所對應之各頻率,對於體動解析數據 施以使各頻率的動力規格化之修正而產生修正體動解析數 據之第2頻率修正手段:從上述修正脈波解析數據減去上 述修正體動解析數據而產生除去體動之體動除去脈波解析 數據的體動除去手段:根據上述體動除去脈波解析數據, 檢測心臓驅出期間之驅出期間檢測手段;及,根據加上上 (部先聞讀背面之注意事項再填寫本筲) 訂 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐} 35- A7 1' 41684 1 B7 五、發明説明(33) 述心臟驅出期間之各頻率領域的上述體動除去脈波解析數 據的結果,算出一次排出量之一次排出量算出手段。 第1 0 3之發明是關於一次排出量檢測裝置,其特徵 爲:上述第1子波轉換手段與上述第2子波轉換手段係同 步進行子波轉換者。 第1 0 4之發明是有關一次排出量檢測裝置者,其特 徵爲:具備檢測來自生體檢測部位之脈波波型的脈波檢測 手段;對上述脈波檢測手段所檢測之脈波波型施以子波轉 換,而在各頻率領域產生脈波解析數據的子波轉換手段; 從上述脈波解析數據中除去所對應之預定體動的頻率成份 而產生體動除去脈波解析數據之體動除去手段:根據上述 體動除去脈波解析數據,檢測心臟驅出期間之驅出期間檢 測手段;根據加上上述心臟驅出期間之各頻率領域的上述 體動除去脈波解析數據的結果算出一次排出量之一次排出 量算出手段》 第1 0 5之發明是有關一次排出量檢測裝置者,其特 徵爲:具備檢測來自生體檢測部位之脈波波型的脈波檢測 手段:對上述脈波檢測手段所檢測之脈波波型施以子波轉 換,而在各頻率領域產生脈波解析數據的子波轉換手段: 從上述脈波解析數據中除去所對應之預定體動的頻率成份 而產生體動除去脈波解析數據之體動除去手段;根據所對 應之各頻率,對於體動除去脈波解析數據進行使各頻率的 動力規格化之修正而產生修正脈波解析數據之頻率修正手 段;根據上述修正脈波解析數據,檢測心臟驅出期間之驅 本紙張尺度適用中國國家標隼(CNS >Α4规格(210X297公釐) ---------"-- (誚先閲讀背面之注意事項再填巧本頁) -δ * 36 - 4 16841 A7 _____B7 五、發明説明(34) 出期間檢測手段:及根據加上上述心臟驅出期間之各頻率 領域的上述修正脈波解析數據的結果算出一次排出量之一 次排出量算出手段》 第1 0 6之發明是有關一次排出量檢測裝置者,其特 徵爲:具備檢測來自生體檢測部位之脈波波型的脈波檢測 手段;對上述脈波檢測手段所檢測之脈波波型施以子波轉 換,而在各頻率領域產生脈波解析數據的子波轉換手段; 從上述脈波解析數據中除去所對應之預定體動的頻率成份 而產生體動徐去脈波解析數據之體動除去手段:對上述體 動除去脈波解析數據施以逆子波轉換而產生體動除去脈波 波型之逆子波轉換手段:根據上述體動除去脈波波型,檢 測心臟驅出期間之驅出期間檢測手段;及,根據上述心臟 驅出期間之上述體動除去脈波波型而算出一次排出量之一 次排出量算出手段。 第1 0 7之發明是有關一次排出量檢測裝置者,其特 特徵:上述一次排出量算出手段係藉由上述心臟驅出期間 之體動除去脈波波型的積分而運算對應該期間之上述體動 除去脈波波型的面積,並根據該面積運算一次排出量者。 第1 0 8之發明是有關一次排出量檢測裝置者,其特 徵爲:上述一次排出量算出手段是根據上述心臟驅出期間 之體動除去脈波波型的各峰値運算對應該期間之上述體動 除去脈波波型的面積,並根據該面積算出上述一次排出量 者。 第1 0 9之發明是有關一次排出量檢測裝置者,其特 本紙張尺度適Λ]中國國家標準(CNS ) A4規格(210X297公釐) {对先閲讀背面之注意事項再硪艿本頁)A7 J 4 1 6 Q 4 I B7 V. Explanation of the invention (26) The fourth step of removing the body motion components to generate the body motion and removing the pulse wave pattern; applying the wavelet conversion to the body motion removing pulse wave pattern and The fifth step of generating body motion-removing pulse wave analysis data in each frequency domain is generated; according to the corresponding frequencies, the body motion-removing pulse wave analysis data is corrected by normalizing the power of each frequency to generate The sixth step of correcting the pulse wave data: The seventh step of detecting the number of cardiac pulses based on the modified pulse wave data: the eighth step of detecting the palpitating drive period based on the modified pulse wave data; and the body motion during the cardiac drive period The ninth step of calculating the cardiac output by excluding the pulse wave pattern and the aforementioned cardiac pulsation number. The eighth invention is a method for detecting cardiac output, which is characterized in that it includes a first step of detecting a pulse wave pattern from a living body detection part: applying a wavelet conversion process to the pulse wave pattern to generate it in each frequency range The second step of pulse wave analysis data: the third step of detecting and displaying the body motion wave pattern of the above-mentioned biological body motion; the fourth step of applying wavelet transformation to the body motion wave pattern to generate body motion analysis data in each frequency domain Step 5: Subtract the body motion analysis data from the pulse wave analysis data to generate a body motion-removed pulse wave analysis data after removing the body motion. The fifth step is to detect the sixth heartbeat number based on the body motion removal pulse wave analysis data. Step 7: Detecting the period of cardiac expulsion based on the above-mentioned body motion removing pulse wave analysis data: calculating the heart based on the result of adding the above-mentioned body motion removing pulse wave analysis data and the number of heart pulses in each frequency domain during the above-mentioned heart drive The eighth step of the discharge amount. The eighth invention is a method for detecting cardiac output, which is characterized in that it includes a first step of detecting a pulse wave pattern from a living body detection part; and applying a wavelet conversion process to the pulse wave pattern to generate it in each frequency domain Pulse wave analysis data (" Read the precautions on the back before filling this page) 丨 This " This paper size applies to Chinese national standards (CNS > A4 size (210X297mm) -29- A7 I 4 16 8 4 1 __B7 V. Explanation of the invention (27) The second step; the third step of generating the modified pulse wave data by applying corrections to the normalization of the power of each frequency to the pulse wave analysis data according to the corresponding frequencies; the detection shows the above The fourth step of the body motion wave pattern of the biological body motion; the fifth step of applying the wavelet transformation to the body motion wave pattern to generate the body motion analysis data in each frequency domain; and the body motion according to the corresponding frequency The analysis data is subjected to the sixth step of correcting the body motion analysis data by correcting the dynamics of each frequency; subtracting the correction body motion analysis data from the correction pulse wave analysis data to generate body motion removal after removing body motion Pulse wave solution The seventh step of analyzing the data: the eighth step of detecting the number of heart pulses based on the body motion removing pulse wave analysis data; the ninth step of detecting the cardiac drive period based on the body motion removing pulse wave analysis data; The tenth step of calculating the cardiac output in the above-mentioned analysis of the body motion and the pulse wave analysis data and the number of cardiac pulses in each frequency range during the outbound period. The eighth and ninth invention is a cardiac output detection method, which is characterized by: The first step of detecting the pulse wave pattern at the body detection site; the second step of applying pulse wave conversion processing to the pulse wave pattern to generate pulse wave analysis data in each frequency domain: removing the corresponding from the pulse wave analysis data The third step of generating body motion removing pulse wave analysis data based on the frequency component of the predetermined body motion: detecting the heart pulse number based on the body motion removing pulse wave analysis data. The fourth step: detecting the heart based on the body motion removing pulse wave analysis data The fifth step during the expulsion period; and the cardiac pulsation is calculated based on the result of analyzing the pulse wave analysis data and the number of cardiac pulses in each frequency domain during the above-mentioned cardiac expulsion period. The sixth step of the output. The 90th invention is a cardiac output detection method, which is characterized by:-I ^^^ 1 — ^^ 1 ^ — ^ 1 · ^^ 1 · It --- ^ J. {Please read the notes on the back of the pin before filling in this page) The Chinese ruler for this paper rule (CNS > A4 specification (2 丨 0X297 mm) -30- A7 f 4 1684 1 B7 V. Description of the invention ( 28) The first step of detecting the pulse wave pattern from the biological detection site; the second step of applying pulse wave conversion processing to the pulse wave pattern to generate pulse wave analysis data in each frequency domain: analyzing the data from the pulse wave The third step of generating the body motion removal pulse wave analysis data by removing the corresponding frequency component of the predetermined body motion; according to the corresponding frequencies, the body motion removal pulse wave analysis data is normalized to the power of each frequency The fourth step of generating modified pulse wave analysis data; the fifth step of detecting the number of cardiac pulses based on the above-mentioned modified pulse wave analysis data; the sixth step of detecting the palpitate expulsion based on the above-mentioned modified pulse wave analysis data; and, according to Plus the above-mentioned modified pulses in each frequency domain during the above-mentioned cardiac expulsion The results of analytical data and the number of heart pulsations calculated cardiac output of the seventh step. The 91st invention is a method for detecting cardiac output, which is characterized in that it includes a first step of detecting a pulse wave pattern from a biological detection site; and applying a wavelet conversion process to the pulse wave pattern to generate it in each frequency domain The second step of pulse wave analysis data: the third step of removing the pulse wave analysis data by generating body motion by removing the corresponding frequency component of the predetermined body motion from the above pulse wave analysis data; according to the corresponding frequencies, for the body Motion removal analysis pulse wave data is subjected to inverse wavelet transformation to generate body motion. The fourth step of removing the pulse wave pattern: the fifth step of detecting the number of heart pulses based on the body motion removing pulse wave pattern; the pulse wave is removed according to the body motion. The sixth step of wave shape detection during cardiac expulsion: and the seventh step of calculating cardiac ejection child based on the above-mentioned body movements during the cardiac palpitate expulsion and removing the pulse wave pattern and the number of heart pulses. The 92nd invention is a method for detecting cardiac output, which is characterized by the first step of detecting a pulse wave pattern from a living body detection site: detecting the above-mentioned living body (read the precautions on the back first, and then the moth page) 1 " This paper size applies to Chinese national standards (CMS> A4 now U10X297 mm) -31-Haobu Department Zhongrong ^^^: ^ Industrial and consumer goods cooperation deduction ^ A7 丨 4 1 6 8 4 1 B7 V. Description of the invention (29) The second step of the number of cardiac pulses; the third step of detecting the period of cardiac expulsion based on the above-mentioned pulse wave pattern; pre-memory of one cardiac output corresponding to the period of cardiac expulsion and the number of cardiac pulses of the living body Step 4: Step 5 of reading the primary cardiac output from the content memorized in Step 4 according to the detected drive-out period and the detected cardiac pulsation number; and multiplying by the primary heart The sixth step of calculating the cardiac output by the discharge volume and the above-mentioned cardiac pulsation number. The invention of claim 93 is a method for detecting cardiac output, which is characterized in that it includes a first step of detecting a pulse wave pattern from a living body detection site; a second step of detecting the number of heart pulses of the living body; and according to the pulse wave pattern Detecting the third step during cardiac expulsion; calculating the fourth step corresponding to the area of the above-mentioned pulse wave pattern based on the peaks of the above-mentioned pulse wave pattern during the above-mentioned heart ejection period; and, according to the above-mentioned fourth step The calculation result of the step is the fifth step of calculating the cardiac output. The ninety-fourth invention is a cardiac function measurement method for measuring cardiac function based on the cardiac output detected by the cardiac output detection method, and is characterized in that it includes a step of generating an evaluation index by comparing the cardiac output with each critical threshold. , And inform the steps of the above assessment indicators. The invention of claim 9 relates to a primary discharge amount detection device, which is characterized by having pulse wave detection means for detecting a pulse wave pattern from a living body detection part: detecting body motion of the body motion wave shape that shows the above-mentioned body motion. Detection means; generating body motion components in the pulse wave pattern according to the body motion wave pattern; removing body motion components from the pulse wave pattern to generate body motion removing pulse wave body motion removing means; according to the above Body movement removes the pulse wave pattern, detects the heart drive. The paper size applies Chinese national standards (CNS specifications (210X297 mm) -32 (诮 Please read the precautions on the back before filling out this page) iA clothing. Order i 416841 MM Bu Zhongrong ^ ;. if ^ h-Ti /) Feizhu Bamboo Printing ^! A7 B7 V. Explanation of the invention (30) Period drive-out period detection means: Calculate the heart pulse period based on the above-mentioned body motion to remove the pulse wave pattern Means for calculating a cardiac pulse period; and means for calculating a primary discharge amount based on the ejection period of the heart and the cardiac pulse period-The invention of claim 96 relates to a primary discharge detection device, which is characterized by: Detection from a living body Pulse wave detection means of the pulse wave pattern at the detection site: a body motion detection means for detecting and displaying the body motion wave pattern of the above-mentioned biological body motion; according to the body motion wave pattern, the body motion component in the pulse wave pattern is generated, from The above-mentioned pulse wave pattern removes the body movement components to generate a body movement removing pulse wave pattern; a body movement removing means for detecting the period of cardiac expulsion based on the body movement removing the pulse wave pattern; according to the heart The above-mentioned body movement removing pulse wave pattern for calculating the primary discharge amount during the drive-out period. The invention of claim 7 relates to the primary discharge amount detection device, which is characterized by having a body detected by the above-mentioned body movement detection means. The motion wave pattern is a determination means for determining the presence or absence of the body motion. The body motion removal means stops the body motion removal operation when the determination result of the determination means shows no body motion, and outputs the pulse wave pattern instead of the body motion. Remove the pulse wave pattern. The ninety-eighth invention relates to a primary discharge detection device, characterized in that the detection means during the drive-out period detects the body movement and removes each peak wave of the pulse wave pattern, and can specify the first or second peak from the maximum peak wave Negative peaks and minimum peaks can be used to detect the above-mentioned expulsion period. The invention of claim 9 relates to a primary discharge detection device, which is characterized by having a pulse wave detection means for detecting a pulse wave pattern from a living body detection site (诮 first read the precautions on the back and then write this page) • I% The size of the paper is applicable to the Chinese National Standards (CNS) A4 (210X297 mm) -33- a7 'Γ' 4 16841 ______ Β7 __ V. Description of the invention (31): The test shows that the living body is moving Motion wave type body motion detection means; generating body motion components in the pulse wave pattern according to the body wave pattern, removing the body motion component from the pulse wave pattern to generate body motion and removing pulse wave type body motion Removing means; applying wavelet transform to the body motion removing pulse wave pattern, and generating wavelet conversion means for removing body motion removing pulse wave analysis data in each frequency domain; according to the body movement removing pulse wave analysis data, Detecting means for detecting an expulsion period during cardiac expulsion; means for calculating an expulsion amount for one expulsion amount based on the above-mentioned body motion removal pulse wave pattern during the cardiac expulsion period. The invention of the 100th invention relates to one expulsion amount inspection The measuring device is characterized by having pulse wave detection means for detecting a pulse wave pattern from a living body detection part; and body motion detection means for detecting and displaying the body motion wave pattern of the body motion: generated based on the body motion wave pattern The body motion component in the pulse wave pattern is a body motion removing means for removing the body wave component by removing the body motion component from the pulse wave pattern; and applying a wavelet to the body motion removing pulse wave pattern. Conversion to generate body motion removal pulse wave analysis data to remove body motion in each frequency domain: according to the corresponding frequency, the body motion removal pulse wave analysis data is applied to normalize the power of each frequency. Frequency correction means for generating corrected pulse wave data by correction; detecting means for detecting the period of cardiac expulsion based on the above-mentioned modified pulse wave analysis data; and calculating based on the above-mentioned body motion during the period of cardiac expulsion to remove the pulse wave pattern Means for calculating the amount of primary discharge. The invention of No. 101 relates to a single-discharge detection device, which is characterized by detecting pulse waves from a living body detection site. Wave shape pulse detection hand --------- install ------ order (read the precautions on the back before filling this page) This paper size is suitable for China National Standards (CNS) A4 specification (2 丨 0 > < 297 mm) -34- μ f 416841 B7 V. Description of the invention (32) paragraph; apply wavelet conversion to the above pulse wave pattern, and generate pulse wave analysis in each frequency domain The first wavelet conversion means of data; the body motion detection means for detecting and displaying the body motion wave pattern of the above-mentioned biological body motion; the wavelet conversion is performed on the body motion wave pattern to generate body motion analysis data in each frequency domain The second wavelet conversion means; a body motion removing means that removes the body motion and removes the pulse wave analysis data by subtracting the body motion analysis data from the pulse wave analysis data; and detects the pulse wave analysis data based on the body motion Means of detecting the period of the expulsion during the cardiac expulsion: and means of calculating the amount of primary expulsion based on the results of the analysis of the body motion removing pulse wave at each frequency of the period of the cardiac expulsion. The invention of No. 102 relates to a primary discharge detection device, which is characterized by: having a pulse wave detection means for detecting a pulse wave pattern from a living body detection part; applying a wavelet conversion to the pulse wave pattern, and The first wavelet conversion means for generating pulse wave analysis data in each frequency domain: According to the corresponding frequencies, the pulse wave analysis data is modified to normalize the power of each frequency to generate the first frequency of the modified pulse wave analysis data. Correction means: Body motion detection means for detecting and displaying the body motion waveforms of the above-mentioned biological body motions: second wavelet conversion means for applying body wave analysis to the body motion analysis data in each frequency domain ; According to the corresponding frequencies, the second frequency correction means for correcting the body motion analysis data by applying the normalization of the power of each frequency to the body motion analysis data: subtracting the correction body from the correction pulse wave analysis data Motion analysis method to generate body motion removal pulse wave analysis data: Body motion removal means to remove pulse wave analysis data: Based on the above body motion removal pulse wave analysis data, detection of palpitations during palpitations Detection methods during the period of export; and, according to the above (read the notes on the back of the ministry first and then fill in this card) The size of the paper is applicable to China National Standard (CNS) A4 specification (210X297 mm) 35- A7 1 '41684 1 B7 V. Description of the invention (33) The results of the analysis of the above-mentioned body motion-removed pulse wave analysis data in each frequency range during the cardiac expulsion, and the calculation method for calculating the amount of discharge once. The displacement detection device is characterized in that the first wavelet conversion means and the second wavelet conversion means perform wavelet conversion in synchronization. The invention of claim 104 relates to a one-time discharge amount detection device, which is characterized in that : Equipped with a pulse wave detection means for detecting a pulse wave pattern from a living body detection part; a sub-wavelet is applied to the pulse wave pattern detected by the above pulse wave detection means to generate pulse wave analysis data in each frequency domain Wave conversion means; removing the corresponding frequency component of the predetermined body motion from the above-mentioned pulse wave analysis data to generate body movement; removing the body wave removing pulse wave analysis data: removing the pulse wave solution based on the above body movement Analyze the data to detect the detection method during the expulsion period; based on the result of adding the above-mentioned body motion removal pulse wave analysis data in each frequency range of the above-mentioned cardiac expulsion period, calculate the once-discharge amount calculation method. The invention of 105 is a device for detecting a primary discharge volume, and is characterized by having a pulse wave detection means for detecting a pulse wave pattern from a living body detection site: applying a pulse wave pattern detected by the pulse wave detection means. Wavelet conversion means that uses wavelet conversion to generate pulse wave analysis data in each frequency domain: Removes the corresponding frequency component of the predetermined body motion from the above pulse wave analysis data to generate body motion and removes body motion from pulse wave analysis data Removal means; frequency correction means for correcting the pulse wave analysis data by correcting the dynamics of each frequency for body motion removal pulse wave analysis data according to the corresponding frequencies; detecting the heart based on the above-mentioned modified pulse wave analysis data The paper size during the drive-out period applies to the Chinese national standard (CNS > A4 size (210X297 mm) --------- "-( (Read the precautions on the back before filling in this page) -δ * 36-4 16841 A7 _____B7 V. Description of the invention (34) Detection method during output: and according to the above-mentioned correction pulses in each frequency domain during the period of cardiac drive A method for calculating the primary discharge volume based on the results of the wave analysis data. The invention of the 106th invention relates to a primary discharge volume detection device, which is characterized by having a pulse wave that detects a pulse wave pattern from a living body detection site. Detection means; applying wavelet transformation to the pulse wave patterns detected by the above-mentioned pulse wave detecting means to generate pulse wave analysis data in each frequency domain; and removing corresponding predetermined plans from the above pulse wave analysis data Means of body motion removal based on frequency components of body motion to generate body motion and depulsion analysis data: Inverse wavelet conversion of the body motion removal pulse wave analysis data to generate body motion removal pulse wave type: Removing the pulse wave pattern based on the body motion, and detecting an expulsion period detecting means during the cardiac expulsion; and removing the pulse wave based on the body motion during the cardiac expulsion. A discharge amount calculated one secondary discharge amount calculation means. The 107th invention relates to a one-time discharge detection device, which is characterized in that the one-time discharge calculation means calculates the above-mentioned corresponding period by removing the integral of the pulse wave pattern by the body movement during the cardiac expelling period. The body motion removes the area of the pulse wave pattern, and calculates the amount of discharge once based on the area. The 108th invention relates to a one-time discharge detection device, characterized in that the above-mentioned one-time discharge calculation means is to remove the peaks of the pulse wave pattern based on the body movements during the cardiac drive period, and to calculate the corresponding peaks in the corresponding period. The body motion removes the area of the pulse wave pattern and calculates the above-mentioned primary discharge amount based on the area. The invention of No.109 is related to the detection device of the primary discharge, and its special paper size is suitable. Chinese National Standard (CNS) A4 specification (210X297 mm) {Please read the precautions on the back first, and then click this page)
丨V 訂 -37- Α7 ί' 4 1 684 1 Β7 五、發明説明(35) -------- (誚先閲讀背面之注意事項再填寫水頁) 徵爲:具備檢測來自生體檢測部位之脈波波型的脈波檢測 手段;檢測上述生體心脈動數之心脈動數檢測手段;根據 上述脈波波型檢測心臟驅出期間之驅出期間檢測手段;及 ,預先記億對應上述心臟驅出期間及上述生體心脈動數的 一次心排出量的記憶部,根據上述驅出期間檢測手段所檢 測之心臟驅出期間與上述心脈動數檢測手段所檢測的心脈 動數,從上述記憶部讀取上述一次心排出量,而算出一次 排出量之一次排出量算出手段。 第1 10之發明是有關一次排出量檢測裝置者,其特 徵爲:具備檢測來自生體檢測部位之脈波波型的脈波檢測 手段:檢測生體心脈動數之心脈動數檢測手段;根據上述 脈波波型檢測心臟驅出期間之驅出期間檢測手段;及,根 據上述心臓驅出期間之上述脈波波型的各峰値運算對應該 期間之上述脈波波型的面積,並根據該面積運算上述一次 排出量之一次排出量算出手段。 第1 1 1之發明是有關一次排出量檢測裝置者,其特 徵爲:具備以基準裝置所測定之基準一次排出量與上述一 次排出量算出手段所測定之上述一次排出量的比作爲修正 係數而算出之修正係數算出手段:使上述修正係數對應上 述生體心脈動數而予以記憶之記憶手段;從上述記憶讀取 對應上述生體心脈動數之上述修正係數,乘以讀取上述修 正係數與上述一次排出量算出手段所算出的上述一次排出 量,以此乘算結果作爲一次排出量而輸出之乘法手段。 第1 1 2之發明爲具備一次排出量檢測裝置之心機能 本紙張尺度通用中國國家標半(CNS )六4祝格(210X:297公釐) -38- a7 4 1 6 Q 4 1 ___ _ B7 五、發明説明(3δ) 診斷裝置,其特徵爲:具備告知上述一次排出量檢測裝置 所檢測之一次排出量的告知手段。 第1 1 3之發明爲具備一次排出量檢測裝置之心機能 診斷裝置,其特徵爲:具備將上述一次排出量檢測裝置所 檢測之一次排出量與各臨界値比較而產生評估指標之評估 手段,及告知上述評估手段所產生之評估指標的告知手段 〇 第1 1 4之發明爲具備一次排出量檢測裝置之心機能 診斷裝置,其特徵爲:具備算出上述一次排出量的變化率 之變化率算出手段;比較上述一次排出量的變化率與各臨 界値而產生評估指標之評估手段:及,告知上述評估手段 所產生之評估指標的告知手段。 第1 1 5之發明爲具備一次排出量檢測裝置之心機能 診斷裝置,其特徵爲:上述評估手段是對應上述生體之心 脈動數而變更上述各臨界値之變更部。 第116之發明爲具備一次排出量檢測裝置之心機能 診斷裝置,其特徵爲:上述評估手段具備輸入算出被檢驗 者體表面積用參數的輸入部;根據所輸入之上述參數運算 體表面積之運算部;及,根據所運算之上述體表面積變更 上述各臨界値之變更部。 第1 1 7之發明爲一次排出量檢測方法,其特徵爲: 檢測來自生體檢測部位的脈波波型之第1步驟:檢測顯示 上述生體體動之體動波型的第2步驟:根據上述體動波型 產生上述脈波波型中的體動成份之第3步驟:從上述脈波 -39- {部先閲讀背面之注意事項再硪寫本頁) 本紙張尺度通用中國國家標率{CNS)A4規格(210X297公釐) Α7 Γ 416841 B7 ' 五、發明説明(37 ) 波型除去上述體動成份而產生體動除去脈波波型之第4步 驟;根據上述體動除去脈波波型檢測心臟驅出期間的第5 步驟;根據上述體動除去脈波波型算出心脈動期間之第6 步驟;及,根據上述心臟驅出期間與上述心脈動期間算出 一次排出量之第7步驟。 第1 1 8之發明爲一次排出量檢測方法,其特徵爲: 檢測來自生體檢測部位的脈波波型之第1步驟:檢測顯示 上述生體體動之體動波型的第2步驟;根據上述體動波型 產生上述脈波波型中的體動成份之第3步驟:從上述脈波 波型除去上述體動成份而產生體動除去脈波波型之第4步 驟;根據上述體動除去脈波波型檢測心臓驅出期間的第5 步驟;根據上述心臟驅出期間之上述體動除去脈波波型算 出一次排出量之第7步驟。 第1 1 9之發明爲一次排出量檢測方法,其特徵爲: 具備從生體檢測部位檢測脈波波型之第1步驟;檢測顯示 上述生體體動的體動波型之第2步驟:根據上述體動波型 產生上述脈波波型中的體動成份之第3步驟:從上述脈波 波型除去上述體動成份而產生體動除去脈波波型之第4步 驟;對上述體動除去脈波波型施以子波轉換而在各頻率領 域上產生除去體動之體動除去脈波解析數據的第5步驟; 根據上述體動除去脈波解析數據檢測心臟驅出期間之第6 步驟;及,根據上述心臟驅出期間之上述體動除去脈波波 型,算出一次排出量的第7步驟。 第1 2 0之發明爲一次排出量檢測方法,其特徵爲: - ^—^1 ί 1^1 ^^^1 - nx-^r (誚先聞讀背面之注意事項再填艿本頁) 本紙張尺度適州中國囤家標準(<:见)戌4現格(210'/297公釐) -40- A7 I 4 1 6 8 4 1 B7 五、發明説明(38 ) 具備從生體檢測部位檢測脈波波型之第1步驟;檢測顯示 上述生體體動的體動波型之第2步驟:根據上述體動波型 產生上述脈波波型中的體動成份之第3步驟;從上述脈波 波型除去上述體動成份而產生體動除去脈波波型之第4步 驟‘•對上述體動除去脈波波型施以子波轉換而在各頻率領 域上產生除去體動之體動除去脈波解析數據的第5步驟; 根據所對應之各頻率,對於體動除去脈波解析數據施以使 各頻率的動力規格化之修正而產生修正脈波數據之第6步 驟;根據上述修正脈波數據檢測心臟驅出期間之第7步驟 ;根據上述心臟驅動期間之上述體動除去脈波波型,算出 心排出量的第8步驟。 第1 2 1之發明爲一次排出量檢測方法,其特徵爲: 具備從生體檢測部位檢測脈波波型之第1步驟;對上述脈 波波型施以子波轉換處理而在各頻率領域產生脈波解析數 據之第2步驟:檢測顯示上述生體體動的體動波型之第3 步驟;對上述體動波型施以子波轉換而在各頻率領域產生 體動解析數據之第4步驟:從上述脈波解析數據減去上述 體動解析數據,產生除去體動後之體動除去脈波解析數據 的第5步驟;根據上述體動除去脈波解析數據檢測心臟驅 出期間之第6步驟;根據加上上述心臟驅出期間各頻率領 域之上述體動除去脈波解析數據的結果算出心排出量之第 8步驟。 第1 2 2之發明爲一次排出量檢測方法,其特徵爲: 具備從生體檢測部位檢測脈波波型之第1步驟:對上述脈 ---------裝------訂 (禎先閲讀背面之注意事項再填艿本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨OX25»7公釐) -41 - at 1' 4 1684 1 B7 五、發明説明(39) 波波型施以子波轉換處理而在各頻率領域產生脈波解析數 據之第2步驟;根據所對應之各頻率,對於脈波解析數據 施以使各頻率的動力規格化之修正而產生修正脈波數據之 第3步驟:檢測顯示上述生體體動的體動波型之第4步驟 ;對上述體動波型施以子波轉換而在各頻率領域產生體動 解析數據之第5步驟;根據所對應之各頻率,對體動解析 數據施以使各頻率的動力規格化之修正而產生修正體動解 析數據之第6步驟;從上述修正脈波解析數據減去上述修 正體動解析數據,產生除去體動後之體動除去脈波解析數 據的第7步驟;根據上述體動除去脈波解析數據檢測心臟 驅出期間之第8步驟;根據加上上述心臟驅出期間各頻率 領域之上述體動除去脈波解析數據的結果算出一次排出量 之第9步驟。 第1 2 3之發明爲一次排出量檢測方法,其特徵爲: 具備從生體檢測部位檢測脈波波型之第1步驟;對上述脈 波波型施以子波轉換處理而在各頻率領域產生脈波解析數 據之第2步驟;從上述脈波解析數據中除去所對應之預定 體動的頻率成份而產生體動除去脈波解析數據之第3步驟 :根據上述體動除去脈波解析數據檢測心臓驅出期間之第 4步驟:及,根據加上上述心臟驅出期間各頻率領域之上 述體動除去脈波解析數據的結果算出一次排出量之第5步 驟。 第1 2 4之發明爲一次排出量檢測方法,其特徵爲: 具備從生體檢測部位檢測脈波波型之第1步驟;對上述脈 -- II - - - - - JH 1· 1Α-^I —^1 (誚先閱讀背面之注意事項再填艿本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(2I0X297公釐) -42- Α7 Γ 4 1684! __ _ Β7 五、發明説明(4〇) 波波型施以子波轉換處理而在各頻率領域產生脈波解析數 據之第2步驟;從上述脈波解析數據中除去所對應之預定 體動的頻率成份而產生體動除去脈波解析數據之第3步驟 :根據所對應之各頻率,對於體動除去脈波解析數據施以 使各頻率的動力規格化之修正而產生修正脈波解析數據之 第4步驟;根據上述修正脈波解析數據檢測心臓驅動期間 之第5步驟:及,根據加上上述心臟驅出期間各頻率領域 之上述修正脈波解析數據的結果算出一次排出量之第6步 驟。 第1 2 5之發明爲一次排出量檢測方法,其特徵爲: 具備從生體檢測部位檢測脈波波型之第1步驟:對上述脈 波波型施以子波轉換處理而在各頻率領域產生脈波解析數 據之第2步驟:從上述脈波解析數據中除去所對應之預定 體動的頻率成份而產生體動除去脈波解析數據之第3步驟 ;對於上述體動除去解析脈波數據施以逆子波轉換而產生 體動除去脈波波型之第4步驟;根據上述體動除去脈波波 型檢測心臟驅出期間之第5步驟;及,根據上述心臟驅出 期間之上述體動除去脈波波型算出一次排出量之第6步驟 〇 第1 2 6之發明爲一次排出量檢測方法,其特徵爲: 具備從生體檢測部位檢測脈波波型之第1步驟;檢測上述 生體心脈動數之第2步驟:根據上述脈波波型檢測心臟驅 出期間之第3步驟;預先記憶對應上述心臟驅出期間及上 述生體心脈動數之一次心排出量的第4步驟;根據所檢測 -43- ("先閲讀背面之注意事項再填寫本頁) 本紙張尺度適汛中國國家標準(CNS)A4规格( 210X297公釐) a? f 4 16841 B7 * 五、發明説明(4Ί) 之上述驅出期間與所檢測之上述心脈動數,而從上述第4 步驟所記憶的內容讀取上述一次心排出量藉此算出一次排 出量的第5步驟》 第1 2 7之發明爲一次排出量檢測方法,其特徵爲: 具備從生體檢測部位檢測脈波波型之第1步驟;檢測上述 生體心脈動數之第2步驟;根據上述脈波波型檢測心臟驅 出期間之第3步驟:根據上述心臟驅出期間之上述脈波波 型的各峰値,運算對應該等期間之上述脈波波型面積,而 根據該等面積運算上述一次排出量之第4步驟。 第1 2 8之發明是根據一次排出量方法所檢測之上述 一次排出量而測定心機能之心機能測定方法,其特徵爲: 具備將上述一次排出量與各臨界値比較而產生評估指標的 步驟,及告知上述評估指標的步驟。 第1 2 9之發明是根據一次排出量方法所檢測之上述 一次排出量而測定心機能之心機能測定方法,其特徵爲: 具備算出上述一次排出量之變化率的步驟;將上述一次排 出量的變化率與各臨界値比較,產生評估指標的步驟:及 ,告知上述評估指標的步驟。 〔實施發明用之最佳形態〕 參閱圖式說明實施本發明用之最佳形態如下。 同形態中,分別說明以下各章俾以使該業者可容易實 施之。 首先,第1章中係針對特定人之脈搏種別所使用之脈 ii 先 閲 讀 背 面 之 注 項 再 填 % ^6 表衣 頁 訂 好浐部中""^^h-T-;ii旮合作扣印51 本紙張尺度適用中國國家標率(CNS ) A4規格(21〇X;297公釐) -44- A7 1' 416841 _ _B7 五、發明説明(42) 波診斷裝置說明。此時,必須將脈波波型分類爲平脈、滑 脈、弦脈等的脈像。此時並使用子波轉換等適當地抽出脈 波波型的特徵。並揭示有攜帶便利而可在日常生活中獲得 脈像的裝置,同時並述及有除去體動影響的技術。 其次,第2章中,測定爲了提高全身持久力用時所需 要的訓鍊運動強度,說明以此作爲運動指標而告知之運動 指標測定裝置。並且,此一運動強度是綜合運動時被檢驗 人肉體上.精神體力上的考量。 其次,第3章中,是說明根據從脈波波型所抽出的呼 吸成份算出運動強度之運動強度檢測裝置。 再者,第4章中,是說明根據脈波波型檢測一次排出 量或心排出量的裝置,及診斷心機能之裝置者。 1 .第1章 1 - 1 :槪要 東洋醫學的脈診中,醫生是以手指按壓橈骨動脈I藉 著手指感覺脈搏而進行生體狀態的診斷。代表的脈波波型 有平脈、滑脈、弦脈等脈像》平脈爲「一般人」,即正常 健康人的脈像,平脈爲平順而緩和者,節律一定不紊亂爲 特徵者。另一方面,滑脈的原因是血流狀態異常,因此爲 浮腫、肝腎疾病、呼吸器疾病、腸胃疾病、發炎性疾病等 病變而產生脈像來往非常順暢、圓滑。又,弦脈爲血管壁 的緊張或老化等原因,因此會出現肝膽疾病、皮膚疾病、 高血壓、疼痛性疾病等病變。會降低血管壁的彈力,而導 本紙張尺度適用中國國家標率(CNS ) A4規格(210X297公釐} {谛先閏讀背面之注意事項再硪寫本頁) 訂 -45 - A7 1' 416841 < B7 五、發明説明(43) 致不易對所排出之血液的脈動發生影響的原因《弦脈的波 型特徵是形成急劇上升,不能急速下降的高壓狀態而持續 一預定時間,以手指感覺時,呈直線且形成緊繃的長脈。 但是,脈診如上述是藉手指的感覺而產生微妙觸覺以 診斷生體狀態,因此如上述的技能並不容易根據人的傳承 而學得,其熟練度必須經長年累月所成β且,生體的體動 等會因血流的變化而不能獲得特定的正確脈像。 因此,第1章中,是說明即使體動存在仍可客觀地特 定脈像之脈波診斷裝置。 1 一 2 :實施形態之機能構成 首先,參閱圖式說明本發明一實施形態相關之脈波診 斷裝置的機能如下。圖1爲本實施形例相關之脈波診斷裝 置的機能方塊圖。圖中,f 1爲脈波檢測手段,可檢測脈 波波型。脈波波型,例如從皮膚上方按壓撓骨動脈所檢測 出。又,f 2爲第1之子波轉換手段,對於脈波檢測手段 f 1所檢測之脈波波型施以子波轉換,在各頻率領域上產 生脈波解析數據。又,f3爲第1頻率修正手段,係根據 所對應之各頻率,對於上述脈波解析數據施以使各頻率的 動力密度一定之修正,而產生脈波修正數據。藉此可比較 以不同頻率時間領域所檢測之子波。 其次,f 4爲體動檢測手段,可檢測體動輸出體動波 型。藉此可檢測人的移動。又,f 5爲第2子波轉換手段 ,可對於體動檢測手段f 4所檢測之體動波型施以子波轉 (誚先閱讀背面之注意事項再填寫本頁) 丨冰" 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨0X297公釐) -46- A7 「416841 B7 五、發明说明(44) 換而在各頻率領域上產生體動解析數據。又,f6爲第2 頻率修正手段,其係根據所對應之各頻率,對於上述體動 解析數據施以使各頻率的動力密度一定之修正而產生體動 修正數據。藉此所算出之體動修正數據可施以頻率修正, 因此可據以與脈波修正數據比較。 其次,f 7爲遮蔽手段,從脈波修正數據減去體動修 正數據而產生除去體動之脈波修正數據。又,f 8爲脈像 數據產生手段,於各頻率領域解析遮蔽手段f 7所產生的 脈波修正數據而產生顯示脈像之脈像數據。脈像的種類例 如有弦脈、平脈、滑脈。 此外,在睡眠中等|安靜時檢測出不均勻脈動時,不 須檢測體動*因此可省略體動檢測手段f 4、第2子波轉 換手段f 5、第2頻率修正手段f 6及遮蔽手段f 7。又 ,可在遮蔽手段ί 7的後段設置頻率修正手段以代替第1 頻率修正手段f 3與第2頻率修正手段,形成簡單之構成 亦可。並且也可以省略所有的頻率修正手段。 其次,f 9爲告知手段,其可根據脈像數據產生手段 ί 8所產生的脈像數據告知脈像。藉此可讓使用者或醫生 等的第三者認識脈像。 1 _ 3 :第1實施形態 1 — 3 — 1 :第1實施形態之構成 參閱圖式說明本發明一實施形態相關之脈波診斷裝置 的構成。 -47- {誚先閲讀背面之注意事項再"艿本頁) 本紙張尺度適用中國國家標率(CNS )A4規格(210X297公釐) A7 1' 4 16841 A7 , B7 五、發明説明(45)丨 V order-37- Α7 ί '4 1 684 1 Β7 V. Description of the invention (35) -------- (诮 Please read the precautions on the back before filling in the water page) The sign is: Have the detection from the living body Pulse wave detection means for detecting the pulse wave pattern of the detection site; heart pulse number detection means for detecting the above-mentioned heart pulse rate of the living body; detection method for detecting the drive-out period during the cardiac drive-out period based on the above-mentioned pulse wave pattern; The memory unit corresponding to the cardiac ejection period and the cardiac pulsation number of the living body at a time, based on the cardiac ejection period detected by the ejection period detection means and the cardiac pulsation number detected by the cardiac pulsation number detection means, A primary discharge volume calculation means that reads the primary cardiac discharge volume from the memory unit and calculates the primary discharge volume. The invention of claim 10 relates to a device for detecting primary discharge, and is characterized by having a pulse wave detection means for detecting a pulse wave pattern from a living body detection part: a heart pulse number detection means for detecting a heart heart pulse number; The pulse wave pattern detection means for detecting an expulsion period during a cardiac expulsion period; and calculating an area corresponding to the pulse wave pattern of the period based on each peak of the pulse wave pattern during the cardiac expulsion period, and according to This area calculates a primary discharge amount calculation means for the primary discharge amount. The first eleventh invention relates to a primary discharge amount detection device, which is characterized by including a ratio of a reference primary discharge amount measured by a reference device to the primary discharge amount measured by the primary discharge amount calculation means as a correction factor. Calculated means for calculating the correction coefficient: a memory means for memorizing the correction coefficient corresponding to the number of cardiac pulses in the body; reading the correction coefficient corresponding to the number of cardiac pulses in the body from the memory, and multiplying by reading the correction coefficient and A multiplying means for outputting the one-time discharge amount calculated by the one-time discharge amount calculation means and using the multiplication result as a one-time discharge amount. The invention of No. 1 2 is the heart function with a single discharge detection device. The paper size is generally Chinese National Standard Half (CNS) 6 4 Zhuge (210X: 297 mm) -38- a7 4 1 6 Q 4 1 ___ _ B7 V. Description of the Invention (3δ) The diagnostic device is characterized by having a notification means for notifying a single discharge amount detected by the above-mentioned primary discharge amount detection device. The invention of claim 113 is a cardiac function diagnostic device provided with a primary discharge detection device, and is characterized by including evaluation means for generating an evaluation index by comparing the primary discharge detected by the primary discharge detection device with each threshold value, And a notification means for notifying the evaluation index generated by the above-mentioned evaluation means. The invention of No. 114 is a cardiac function diagnostic device provided with a primary discharge detection device, and is characterized by including a change rate calculation for calculating a change rate of the primary discharge. Means; an assessment means that compares the rate of change of the above-mentioned primary discharge with each threshold value to generate an assessment index: and a means of notifying the assessment index generated by the above-mentioned assessment means. The invention of claim 115 is a cardiac function diagnosis device provided with a primary discharge detection device, wherein the evaluation means is a changing section that changes each of the critical thresholds in response to the number of cardiac pulses of the living body. The 116th invention is a cardiac function diagnostic device provided with a primary discharge detection device, wherein the evaluation means includes an input section for inputting a parameter for calculating a body surface area of the examinee, and a calculation section for calculating a body surface area based on the inputted parameters. ; And changing the change unit of each of the critical ridges according to the calculated body surface area. The invention of claim 17 is a method for detecting a single discharge, which is characterized in that: the first step of detecting the pulse wave pattern from the biological detection site: the second step of detecting the body motion waveform showing the above-mentioned body motion: The third step of generating the body motion components in the above pulse wave pattern according to the above body motion wave pattern: From the above pulse wave -39- {Ministry read the precautions on the back before writing this page) This paper standard is generally Chinese national standard Rate (CNS) A4 specification (210X297 mm) A7 Γ 416841 B7 'V. Description of the invention (37) The fourth step of removing the above-mentioned body movement components by the wave shape and generating the body movement removing the pulse wave shape; The wave pattern detects the fifth step of the cardiac drive period; the sixth step of calculating the heart pulse period based on the body wave removal pulse wave pattern; and the first step of calculating the discharge amount based on the cardiac drive period and the cardiac pulse period. 7 steps. The invention of claim 18 is a method for detecting a single discharge amount, which is characterized in: a first step of detecting a pulse wave pattern from a living body detection part: a second step of detecting a body motion wave shape showing the above-mentioned body motion; The third step of generating the body motion component in the pulse wave pattern according to the body motion wave pattern: the fourth step of removing the pulse wave pattern by generating the body motion by removing the body motion component from the pulse wave pattern; according to the body The fifth step of detecting the pulse wave pattern during the dynamic cardiac removal period is the seventh step of calculating the primary discharge amount based on the body motion removing pulse wave pattern during the cardiac ejection period. The invention of claim 119 is a method for detecting a single discharge amount, which is characterized by: a first step of detecting a pulse wave pattern from a biological detection site; and a second step of detecting the body motion wave pattern showing the body motion: The third step of generating the body motion component in the pulse wave pattern according to the body motion wave pattern: the fourth step of removing the pulse wave pattern by generating the body motion by removing the body motion component from the pulse wave pattern; The fifth step of performing pulse wave analysis by applying wavelet transformation to generate body motion removing pulse wave analysis data in each frequency range; and detecting the first period of cardiac expulsion based on the body motion removing pulse wave analysis data. Step 6; and Step 7 of calculating the primary discharge amount based on the body motion removal pulse wave pattern during the cardiac drive. The 120th invention is a one-time discharge detection method, which is characterized by:-^ — ^ 1 ί 1 ^ 1 ^^^ 1-nx- ^ r (诮 Read the precautions on the back before filling this page) This paper is suitable for China Standards (<: see) 戌 4 Appearance (210 '/ 297 mm) -40- A7 I 4 1 6 8 4 1 B7 V. Description of the invention (38) The first step of detecting the pulse wave pattern at the detection site; the second step of detecting the body motion wave pattern showing the body motion of the living body: the third step of generating the body motion component in the pulse wave pattern according to the body motion wave pattern ; The fourth step of removing the body motion component from the pulse wave pattern to generate a body motion removing pulse wave pattern is to apply a wavelet transform to the body motion removing pulse wave pattern to generate a removal body in each frequency range. The fifth step of removing the pulse wave analysis data by the moving body motion; the sixth step of generating the corrected pulse wave data by applying the correction to normalize the power of each frequency to the body movement removal pulse wave analysis data according to the corresponding frequency ; Detecting the seventh step during cardiac expulsion according to the above-mentioned modified pulse wave data; according to the above-mentioned body during the above-mentioned cardiac driving Eliminated pulse waveform type, cardiac output is calculated in Step 8. The invention of No. 121 is a method for detecting a single discharge amount, which is characterized in that: it has a first step of detecting a pulse wave pattern from a living body detection part; applying a wavelet conversion process to the pulse wave pattern in each frequency range The second step of generating pulse wave analysis data: the third step of detecting and displaying the body motion wave pattern of the above-mentioned biological body motion; the wave motion conversion of the body motion wave pattern to generate body motion analysis data in each frequency domain Step 4: Subtract the body motion analysis data from the pulse wave analysis data to generate a fifth step of body motion removal pulse wave analysis data after removing the body motion; detect the period of cardiac expulsion based on the body motion removal pulse wave analysis data. Step 6: Step 8 of calculating the cardiac output based on the result of adding the analysis data of the above-mentioned body motion-removing pulse wave in each frequency region during the above-mentioned cardiac expulsion. The invention of No. 12 2 is a method for detecting a single discharge amount, which is characterized in that: it has the first step of detecting a pulse wave pattern from a living body detection site: to the above-mentioned pulse ------------- --Order (祯 Please read the notes on the back before filling in this page) This paper size applies to China National Standard (CNS) A4 size (2 丨 OX25 »7mm) -41-at 1 '4 1684 1 B7 V. Description of the invention (39) The second step of applying wavelet transform processing to the wave pattern to generate pulse wave analysis data in each frequency domain; according to the corresponding frequencies, the pulse wave analysis data is normalized to the dynamics of each frequency. The third step of generating modified pulse wave data by correction: the fourth step of detecting and displaying the body motion wave pattern of the above-mentioned biological body motion; applying wavelet transformation to the body motion wave pattern to generate body motion analysis in each frequency domain Step 5 of the data; Step 6 of correcting the body motion analysis data by applying the normalization of the dynamics of each frequency to the body motion analysis data according to the corresponding frequencies; subtracting from the above-mentioned modified pulse wave analysis data The above analysis of body motion analysis data produces body motion removal after removal of body motion Step 7 of wave analysis data; Step 8 of detecting cardiac drive period based on the body motion removal pulse wave analysis data; calculation based on the result of adding the body motion removal pulse wave analysis data in each frequency domain during the heart drive period The ninth step in one discharge. The invention of claim 123 is a method for detecting a single discharge amount, which is characterized in that: it has a first step of detecting a pulse wave pattern from a living body detection part; applying a wavelet conversion process to the pulse wave pattern in each frequency range The second step of generating pulse wave analysis data; the third step of removing pulse wave analysis data by generating body motion by removing the corresponding frequency component of the predetermined body motion from the above pulse wave analysis data: removing the pulse wave analysis data according to the above body motion Step 4 of detecting cardiac palpitations during expulsion: and step 5 of calculating a primary discharge amount based on the result of adding the body motion removal pulse wave analysis data in each frequency domain during the period of cardiac expulsion. The invention of No. 124 is a method for detecting primary discharge, which is characterized by: having a first step of detecting a pulse wave pattern from a biological detection site; and for the above pulses-II-----JH 1 · 1Α- ^ I — ^ 1 (诮 Please read the notes on the back before filling in this page) The paper size is applicable to the Chinese National Standard (CNS) A4 specification (2I0X297 mm) -42- Α7 Γ 4 1684! __ _ Β7 V. Description of the invention (4) The second step of applying wavelet transform processing to the wave pattern to generate pulse wave analysis data in each frequency domain; removing the corresponding frequency component of the predetermined body motion from the pulse wave analysis data to generate body motion removal The third step of the pulse wave analysis data: According to the corresponding frequencies, the fourth step of correcting the pulse wave analysis data is generated by applying a correction to normalize the power of each frequency to the body motion to remove the pulse wave analysis data; The fifth step of the pulse wave analysis data detecting the palpitations driving period: and the sixth step of calculating the primary discharge amount based on the result of adding the corrected pulse wave analysis data of each frequency region during the cardiac drive. The invention of claim 125 is a method for detecting a single discharge, and is characterized in that it includes a first step of detecting a pulse wave pattern from a biological detection site: applying a wavelet conversion process to the pulse wave pattern in each frequency range The second step of generating pulse wave analysis data: the third step of removing the pulse wave analysis data by generating the body motion by removing the corresponding frequency component of the predetermined body motion from the above pulse wave analysis data; removing and analyzing the pulse wave data for the body motion A fourth step of applying inverse wavelet transformation to generate a body motion to remove a pulse wave pattern; a fifth step of detecting a heart drive period based on the body wave removal pulse wave pattern; and based on the body motion during the heart drive period The sixth step of calculating the primary discharge amount by removing the pulse wave pattern. The invention of the first two-sixth is a method for detecting the primary discharge amount, which is characterized by: having a first step of detecting a pulse wave pattern from a biological detection site; The second step of the number of body-heart pulsations: the third step of detecting the period of cardiac expulsion based on the above-mentioned pulse wave pattern; the first-time heart ejection amount corresponding to the period of cardiac expulsion and the number of pulsations of the body heart is stored in advance. 4 steps; according to the detected -43- (" read the precautions on the back before filling in this page) This paper size is suitable for China National Standard (CNS) A4 specification (210X297 mm) a? F 4 16841 B7 * Five, Description of the invention (4Ί) The fifth step of calculating the primary ejection volume by reading the above-mentioned primary cardiac output from the content memorized in the fourth step and the above-mentioned drive-out period and the above-mentioned detected cardiac pulsation number. The invention of 7 is a method for detecting primary discharge, which is characterized in that: it has a first step of detecting a pulse wave pattern from a living body detection site; a second step of detecting the number of heart pulses of the living body; and detecting the heart based on the pulse wave pattern The third step in the expulsion period: According to the peaks of the above-mentioned pulse wave pattern during the above-mentioned cardiac expulsion period, the area corresponding to the above-mentioned pulse wave pattern during these periods is calculated, and the first part of the above-mentioned one-time discharge volume is calculated according to the areas 4 steps. The invention of No. 128 is a cardiac function measuring method for measuring cardiac function based on the above-mentioned one-time discharge volume detected by the one-time discharge method, and is characterized in that it includes a step of generating an evaluation index by comparing the above-mentioned one-time discharge volume with each critical threshold. , And inform the steps of the above assessment indicators. The invention of claim 129 is a cardiac function measuring method for measuring cardiac function based on the above-mentioned one-time discharge volume detected by the one-time discharge volume method, and is characterized in that it includes a step of calculating a rate of change of the one-time discharge volume; The step of generating the evaluation index by comparing the rate of change with each threshold: and, the step of informing the above evaluation index. [Best Mode for Carrying Out the Invention] The best mode for carrying out the invention will be described below with reference to the drawings. In the same form, the following chapters are explained separately so that the practitioner can easily implement them. First of all, the first chapter is the pulse used for the pulse type of a specific person. Ii. Read the notes on the back and fill in% ^ 6. The cover sheet has been ordered in the "" " ^^ hT-; ii.印 51 This paper scale is applicable to China National Standards (CNS) A4 specification (21〇X; 297mm) -44- A7 1 '416841 _ _B7 V. Description of the invention (42) Wave diagnostic device description. In this case, the pulse wave pattern must be classified into pulse images such as Ping mai, Hua mai, and Xuan mai. At this time, the characteristics of the pulse wave pattern are appropriately extracted using wavelet conversion and the like. It also discloses devices that are convenient to carry and can obtain pulse images in daily life, and also describes technologies that remove the effects of body movements. Next, in Chapter 2, the exercise chain exercise intensity required for improving the endurance of the whole body is measured, and the exercise index measuring device notified as an exercise index will be described. In addition, this exercise intensity is a physical and mental physical consideration of the person being tested during comprehensive exercise. Next, in Chapter 3, an exercise intensity detecting device for calculating exercise intensity based on the respiratory component extracted from the pulse wave pattern is explained. In addition, in Chapter 4, a device for detecting a single discharge or cardiac output based on a pulse wave pattern and a device for diagnosing cardiac function are explained. 1. Chapter 1 1-1: 槪 NOTE In Toyo Medical's pulse diagnosis, the doctor presses the radial artery with a finger I and diagnoses the state of the body by feeling the pulse with the finger. The typical pulse wave types are pulses such as Pingmai, Huamai, and Xuanmai. "Pingmai is a" normal person ", that is, the pulse image of a normal and healthy person. Pingmai is smooth and moderate, and the rhythm must not be characterized by disorder. On the other hand, the cause of slippery pulses is abnormal blood flow, so pulses flow smoothly and smoothly for edema, liver and kidney disease, respiratory disease, gastrointestinal disease, and inflammatory diseases. In addition, the string vein is caused by tension or aging of the blood vessel wall, and therefore, liver and gallbladder diseases, skin diseases, hypertension, and painful diseases may occur. Will reduce the elasticity of the blood vessel wall, and the paper size of this guide applies the Chinese National Standard (CNS) A4 specification (210X297 mm) {谛 Read the precautions on the back before writing this page) Order -45-A7 1 '416841 < B7 V. Explanation of the invention (43) Causes that it is not easy to affect the pulsation of the discharged blood "The characteristic of the wave pattern of the string pulse is the formation of a high pressure state that can not rise rapidly and can not drop rapidly for a predetermined time, felt by the fingers At that time, they are straight and form tight long veins. However, pulse diagnosis, as mentioned above, uses the sense of fingers to create a subtle touch to diagnose the state of the body. Therefore, the above-mentioned skills are not easy to learn based on human heritage, and their proficiency must be β over many years. Due to changes in blood flow, certain correct pulse images cannot be obtained. Therefore, Chapter 1 is a pulse wave diagnostic device that can objectively specify a pulse image even when body motion is present. 1-12: Functional structure of embodiment First, the function of a pulse wave diagnosis device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a functional block diagram of a pulse wave diagnosis device according to this embodiment. In the figure, f 1 is a pulse wave detection means, which can detect the pulse wave pattern. The pulse wave pattern is detected, for example, by pressing the articular artery from above the skin. Further, f 2 is the first wavelet conversion means, and the wave shape detected by the pulse wave detection means f 1 is subjected to wavelet conversion to generate pulse wave analysis data in each frequency range. In addition, f3 is a first frequency correction means, and the pulse wave correction data is generated by applying correction to the pulse wave analysis data so that the dynamic density of each frequency is constant according to the corresponding frequencies. This allows comparison of wavelets detected in different frequency time domains. Secondly, f 4 is a body motion detection means, which can detect the body motion output body motion waveform. This can detect the movement of a person. In addition, f 5 is the second wavelet conversion means, which can perform wavelet transformation on the body motion wave pattern detected by body motion detection means f 4 (诮 Please read the precautions on the back before filling this page) 丨 Bing " Order This paper scale applies the Chinese National Standard (CNS) A4 specification (2 丨 0X297 mm) -46- A7 "416841 B7 V. Description of the invention (44) Instead, it generates body motion analysis data in each frequency domain. Also, f6 is The second frequency correction means generates body motion correction data by applying a constant power density correction to the frequency of the body motion analysis data according to corresponding frequencies. The calculated body motion correction data can be applied. It uses frequency correction, so it can be compared with the pulse wave correction data. Secondly, f 7 is a masking means, which subtracts the body motion correction data from the pulse wave correction data to generate the pulse wave correction data excluding body motion. Also, f 8 is The pulse image data generating means analyzes the pulse wave correction data generated by the masking means f 7 in each frequency domain to generate pulse image data showing the pulse image. The types of the pulse image are, for example, a string pulse, a flat pulse, and a slippery pulse. In addition, sleep Medium | Quiet When non-uniform pulsations are detected, body motion is not required to be detected *. Therefore, body motion detection means f 4, second wavelet conversion means f 5, second frequency correction means f 6 and masking means f 7. may be omitted. A frequency correction means is provided in the latter stage of means ί 7 to replace the first frequency correction means f 3 and the second frequency correction means, and a simple structure may be formed. All frequency correction means may also be omitted. Second, f 9 is a notification means. It can notify the pulse image based on the pulse image data generated by the pulse image data generating means 8. This allows the user or a third party, such as a doctor, to recognize the pulse image. 1 _ 3: First Embodiment 1 — 3 — 1 : Structure of the first embodiment Referring to the drawings, the structure of a pulse wave diagnosis device according to an embodiment of the present invention will be described. -47- {诮 Read the precautions on the back first " 艿 This page) This paper size applies Chinese national standards Rate (CNS) A4 specification (210X297 mm) A7 1 '4 16841 A7, B7 V. Description of the invention (45)
I - —^1 ^^1 J 1^1 If. - -I ]^i ϋ? *T (ii先閱讀背£之注意事項再填荇本頁J 1_3—1—1:第1實施形態之外觀構成 圖2是表示第1實施形態相關之脈波診斷裝置的外觀 構成透視圖。 圖2中,本例之脈波診斷裝置1大致爲具手錶構造的 裝置本體1 1 0 ;連接該裝置本體1 1 〇的纜線1 20 : 及,設於該纜線1 2 0前端側之脈波檢測用感測器1 3 0 所構成。纜線120前端側構成有連接件80,該連接件 8 0係相對於構成裝置本體1 1 0之6點鐘側的連接部 70形成可自由脫著者。在裝置本體110上,設置從手 錶的1 2鐘方向纏繞腕部,並在其6點鐘方向側固定表格 帶6 0,可藉此表格帶6 0使裝置本體1 1 0可自由裝著 在手腕上。脈波檢測用感測器單元1 3 0是利用感測器固 定用帶1 4 0遮光並裝著在食指指根上。如上述,一旦在 指根上裝著脈波檢測用感測器單元1 3 0時,只須較短的 纜線1 2 0即可,因此電纜1 2 0不會造成跑步時的阻礙 。且在測量手掌至指尖體溫的分佈時,寒冷時指尖的溫度 會顯著降低,而相對於此指根的溫度較不會降低。因此· 只須在指根上裝著脈波檢測用感測器單元1 3 0時,即使 在冷天的屋外跑步時仍可正確的測量脈搏數等a 又,裝置本體1 1 0具備樹脂製錶盒2 0 0 (本體盒 ),在該錶盒200表面側除了現在時刻或曰期之外,另 外構成有顯示跑步時或走路時距離,及脈脈搏等的脈動資 訊等的E L附有後照光液晶顯示裝置2 1 0。液晶顯示裝 本紙張尺度通州中國國家標率(CNS ) A4規格(210X297公釐) -48- 恕浐部中成"卑而卩-τ消费合作妇印" Αν Γ 416841 B7 五、發明説明(46) 置2 1 0上,除了區域顯示領域之外,構成點顯示領域’ 點顯示領域中係可以圖樣顯示各種資訊* 又,在錶盒2 0 0內部是根據測量脈波檢測用感測器 單元1 3 0後的脈波波型MH求得脈像或脈動數的變化等 ,同時爲使其顯示於液晶顯示裝置210而構成可進行各 種控制或數據處理之微電腦等所成的控制部。在控制部上 構成有計時電路,形成可將一般時刻、重疊時間、分開時 間等顯示於液晶顯示裝置2 1 0上。又,錶盒2 0 0外周 圍部構成有可進行對時或顯示模式轉換等外部操作用的按 鍵開關1 1 1〜1 1 5。 其次,脈波檢測用感測單元1 3 0爲圖3表示之 LED32、光電晶體33等所構成。開關SW形成on 的狀態,外加電源電壓時,從LED 3 2照射光而藉血管 或組織反射後,以光電晶體3 3受光而檢測脈波信號Μ。 在此L E D的發光波長是選擇血液中血紅蛋白之吸收 波長峰値附近。因此,受光位準是對應血流量而變化。如 上述,可藉檢測受光位準檢測脈波波型》 又’ LED32最好是I nGaN (姻一錄—氮系) 的藍色LED。藍色LED的發光位準具有例如450 nm的發光峰値,其發光波長領域爲3 5 0 nm至6 0 0 nm的範圍。此時,對應具有相關發光特性之L E D的光 電晶體3 3可使用G a A s P系(鎵一砷一磷系)之光電 晶體即可。該光電晶體3 3的受光波長領域,例如其主要 感度領域在300nm至600nm的範圔,300nm (誚先閲讀背面之注意事項再填寫本頁} .丨裝 訂 本紙張尺度適用中國國家標準(CNS } Α4規格(21〇Χ;297公嫠) -49- 好-¾:部中戎"'^^hj消赍合竹·^1印繁 A7 j' 416641 B7 五、發明説明(47) 以下也具感度領域組合上述藍色LED與光電晶否3 3 時,於其重覆領域之3 0 0 nm至6 0 0 nm的波長領域 中,可檢測脈波。此時具有以下的優點" 首先,外光所含的光中,波長領域在7 0 0 nm以下 的光具有不易透過手指組織的傾向,因此當外光照射感測 器固定用帶所未包覆手指的部份時,不能經由手指組織到 達光電晶體3 3,而僅能使檢測不具影響之波長領域的光 到達光電晶體。另一方面,低於3 0 0 nm之波長領域的 光幾乎爲皮膚表面所吸收,因此即使受光領域在7 0 0 nm以下時,實際的受光波長領域仍形成3 0 0 nm〜 7 0 0 nm。因此,即使未包覆手指的大部份仍可抑制外 光的影響。 又,血液中的血紅蛋白相對於波長從3 0 0 nm至 7 Q 0 nm的光之吸收係數較大,與相對於波長8 8 0 nm的光之吸光係數比較大至數倍〜約100倍以上。因 此,使用如上述配合血紅蛋白而以吸光特性大的波長領域 (3 0 0 nm至7 0 0 nm)的光作爲檢測光時,其檢測 値係對應血量變化而敏感地變化,因此可提高因血量變化 所產生之脈波波型MH的S/N比。 1 — 3_1_2 :第1實施形態之電氣構成 其次,參閱圖4說明脈波診斷裝置之電氣構成如下。 圖4是表示脈波診斷裝置之電氣構成方塊圖。 脈波診斷裝置1是由以下部份所構成。10爲子波轉 本紙張尺度適扪中國國家標率(0〜&)八4規格(210><297公釐> (誚先閏讀背面之注項再填巧本頁) % 訂 -50- A7 Γ 4 18641 B7 五、發明説明(48) 換部,相對於脈波檢測用感測器單元1 3 0所輸出的脈波 波型MH施以習知之子波轉換,產生脈波解析數據MKD 〇 一般,從時間及頻率雙方同時獲得信號之時間頻率解 析中,子波是形成截取信號部份的單位*子波轉換是表示 以此單位截取信號各部的大小。以基本函數作爲定義子波 轉換之用,而時間上、頻率上皆是導入局部化常數0 ( X )作爲主子波轉換。於此常數f (X)之主子波轉換(X )所構成之子波轉換係定義如下。 (ϊψί) (b,a): 7ΓΨ1 x-b 1 f (x)dx 式1 I n I 1—i n I I n --,- I . 11 I ("先閱讀背面之注意事項再填艿本頁) 衫?"'·部中戎"'^·而h-T"费 AD 作扣印5? 式1中的b是將主子波0 (x)進行轉換(平行移動 )時所使用之參數,另一方面,a爲比例(伸縮)時的參 數。因此,式1中波0/( (X — b)/a)是僅使主子波 玲(X)平行移動b,僅伸縮a者。此時,對應比例參數 a而伸長主子波0 ( X )的寬度,因此l/a係對應頻率 者。並且,針對子波轉換部1 0的詳細構成敘述如後。 其次’ 1 1爲頻率修正部係相對於脈波解析數據 MKD進行頻率修正。上述式1中具有對應頻率之「1/ a 1 / 2」項,但是在不同的頻率領域間比較數據時,有必 須修正該項響的必要。頻率修正部1 1是爲此而設者,係 於子波數據WD乘以係數a 1/2而產生脈波修正數據 本紙張尺度適川中國國家標準(CNS ) A4規格(210X297公釐) -51 - Γ 416841 Α7 _Β7____ 五、發明説明(49 ) MKD’ 。藉此可根據所對應之各頻率施以使各頻率動力 密度形成一定之修正β 其次,1 2爲脈像數據產生部,可根據脈波修正數據 MKD’特定平脈、弦脈、滑脈等的脈像,而產生指示此 之脈像數據ZD。又,13爲顯示部,係藉ROM、控制 電路及液晶顯示裝置等所構成。將脈像數據Z D洪應至顯 示部1 3時,控制電路可檢測之,並讀取儲存在ROM內 的字元而將此顯示在液晶顯示器上。字元除了「平脈」、 「弦脈」、「滑脈」等文字之外,也可以使用特定的記號 或圖符。藉此可告知使用者或醫生其健康狀態》 1 一 3 _ 1 — 3 :子波轉換部 其次,使用圖式詳細說明子波轉換部1 0的構成如下 。圖5爲第1實施形態相關之子波轉換部10的方塊圖》 脈波波型MH係供應於波型整形部1 0 〇與A/D轉 換器2 2 0。波型整形部1 0 0係產生與脈波波型MH同 步之控制信號C S與時鐘信號CK -圖6係表示波型整形 部1 0 0之方塊圖。圖6中,阻尼振盪濾波器1 〇 1的中 心頻率爲2.2Hz '通頻帶爲0.8〜3.5Hz之Q値高 的濾波器。脈波波型的基本波成份一般是在0.8〜3.5 Η z的範圍內,因此脈波波型MH—旦通過阻尼振盪濾波 器1 0 1時,可抽出其基本波成份。例如,圖7 ( a·)表 示之脈波波型MH —旦通過阻尼振盪濾波器1 〇 1時可獲 得圖7 (b)表示之正弦波。 I 1 I —^^1 ^^1 I— I ^^1 ^^1 I ..!/ ^^^1 ^^1 1^— ^—4 ,·=» {讳先閲讀背面之注意事項再填巧本頁} 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) -52- at I 4 16841 B7 五、發明説明(5〇) 其次,零交叉檢測電路1 Ο 2是由比較器等所構成* 阻尼振盪濾波器1 0 1的輸出信號與基礎位準比較,係產 生短型波β此一短型波是形成與心脈動同步者》例如,阻 尼振盪濾波器1 Ο 1的輸出信號如表示於圖7 ( b )時, 檢測信號1 0 2的輸出信號則是表示於圖7 ( c )。 另外,比較部103、環路濾波器104、電壓控制 振盪電路1 0 5及分頻電路1 0 6係構成鎖相環。比較部 1 0 3 —側之輸入是供應零交叉檢測電路1 0 2的輸出信 號,其另一側的輸入則是供應分頻電路1 0 6的輸出信號 ,如此比較部1 0 3可對應兩者相位差而輸出誤差信號。 誤差信號一旦經由環路濾波器1 0 4供應於電壓控制振盪 電路1 0 5時,電壓控制振盪電路1 0 5係輸出時鐘信號 CK。且時鐘信號CK是以分頻電路1 〇 6分爲1/8, 而饋入比較部1 0 3另一側的輸入。此時,時鐘信號CK 的頻率與圖7 ( d )表示之零交叉檢測電路1 〇 2的輸出 信號頻率比較形成8倍的頻率。隨後將時鐘信號C K以分 頻電路1 0 7分爲1/2而作爲圖7 ( e )表示之控制信 號C S輸出。 其次,圖5表示之脈波波型MH是藉A/D轉換器 2 2 0轉換爲數據信號,之後儲存於第1記憶體2 2 1及 第2記憶體2 2 2內。在此第1記憶體2 2 1之光啓動端 子可直接供應控制信號C S,第2記憶體2 2 2之光啓動 端可藉著反相器2 2 3供應反轉後的控制信號C S =因此 ,第1、2記憶體22 1、222可以時鐘週期單位交互 I :· - I - 1 I I 1—^-^1 - - - - I I - - - -(誚先M讀背&之注意事項再填艿本頁) 本纸張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) -53- 好分部中呔"-^^^:-7消贽合竹^印5! at Ί' 416841 _Β7 五、發明説明(51 ) 儲存脈波波型Μ Η。 又,224爲多工器,從第1、2記憶體22 1、 2 2 2選擇交互讀出之脈波數據M D而輸出於基底常數展 開部W。如上述,在第1記憶體2 2 1的寫入期間從第2 記憶體2 2 2讀出脈波數據MD,而在第1記憶體2 2 1 的讀出期間則是將脈波數據MD寫入第2記憶體2 2 2內 〇 其次,基本函數展開部W是進行上式1之運算處理的 構成,可供應上述時鐘信號C Κ,形成以時鐘週期進行運 算處理。基本函數展開部W爲記憶主子波0 ( X )的基本 函數記憶部W1、轉換比例參數a之比例轉換部W2、緩 衝記憶體W 3、進行移位之平行移動部W4及乘法部W5 所構成。並且,記憶在基本函數記憶部W 1的主子波0 ( X )除了加波爾子波之外,可運用墨式、Haar子波、 Meyer子波、Shannon子波等。 首先,從基本函數記億部W1讀出主子波0(X)時 ,比例轉換部W 2可進行比例參數a的轉換。於此,比例 參數a係對應週期,因此a大時,主子波0 (X)會在時 間軸上延伸。此時,記億在基本函數記憶部W1之主子波 必(X )的數據量形成一定,因此a大時會造成每單位時 間數據的減少。比例轉換部W2可藉以對此進行內插處理 ’同時形成小的a値時則是進行外抽處理,而產生函數0 (x/2)。可將此數據暫時儲存在緩衝記憶體W3內。 其次,平行移動部W4是以對應平移參數b的時機從 (誚先閲讀背面之注意事項再填寫本页) ,** 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -54- Α7 ! 4 16841 Β7 五、發明説明(52) 緩衝記憶體W3讀出函數0(x/2),藉此可進行函數 0 (x/a)的平行移動而產生函數0 (X — b/2)。 另外,乘法部W4是乘以變數l/a1/2、函數办( X - b/2 )及脈波數據MD而以心脈動單位進行子波轉 換’而產生脈波解析數據MKD。於此例中,脈波解析數 據MKD可分割爲OHz〜〇.5Hz 、〇.5Hz〜1.0 Hz、1·〇Ηζ 〜1.5Ηζ、1·5Ηζ 〜2.0Hz、 2.0Hz 〜2·5Ηζ、2,5Hz 〜3.0Hz、3.0Hz 〜3.5Hz ' 3.5Hz〜4.0Hz等領域輸出。並且, 基本函數展開部W是以上述時鐘周期進行運算處理,時鐘 頻率是設置在脈波波型MH之基本頻率的8倍,因此1次 心脈動所產生的脈波解析數據MK D係形成圖8表示之數 據 Μ 1 1 〜Μ 8 8。 1 一 3_1 — 4 :脈像數據產生部 其次說明脈像產生部12如下。圖9爲本實施形態相 關之脈像數據產生部12的方塊圖。 圖中,加法器121、計算電路122、124及記 憶體1 2 3係於各頻率領域中算出脈波修正數據MKD’ 的平均値之電路。此外,計算電路1 2 2之係數爲1/Κ +1、計算電路124的係數爲Κ。加法器121係將脈 波修正數據MKD’加上計算電路1 2 4的輸出,加法器 1 2 1的輸出數據係藉由計算電路1 2 2儲存在記憶體 1 2 3內。又,使記憶體1 2 3僅延遲8時鐘周期而輸出 (銷先閲讀背面之注意事項再硪艿本頁) i % 本紙張尺度速用中國國家標準(CNS ) A4規格(210 X 297公釐) -55- i 416841 A7 £7__ 五、發明説明(53) 所輸入的數據。 在此,設心脈動周期爲t、現在時刻爲τ、儲存在記 憶體12 3的數據爲1^3時’時刻1'之數據皿3(1')可 以下式表示之。I-— ^ 1 ^^ 1 J 1 ^ 1 If.--I] ^ i ϋ? * T (ii Please read the precautions before backing and then fill in this page J 1_3-1—1-1: The first implementation form Appearance and Configuration Fig. 2 is a perspective view showing the appearance and configuration of a pulse wave diagnosis device related to the first embodiment. In Fig. 2, the pulse wave diagnosis device 1 of this example is roughly a device body 1 1 0 with a watch structure; connected to the device body 1 1 0 cable 1 20: and a pulse wave detection sensor 1 3 0 provided at the front end side of the cable 120. A connector 80 is formed at the front end side of the cable 120, and the connector 8 0 is a free-releasing person with respect to the connection part 70 at the 6 o'clock side of the device body 1 10. The device body 110 is provided with a wrist wound around the watch at 12 o'clock, and at 6 o'clock The side fixing table strap 6 0 can be used to freely mount the device body 1 1 0 on the wrist. The sensor unit for pulse wave detection 1 3 0 uses the sensor fixing strap 1 4 0 It is light-shielded and attached to the base of the index finger. As described above, once the pulse wave detection sensor unit 130 is attached to the base of the finger, only a short cable 1 2 0 is required, so the cable 1 2 0 does not cause obstacles during running. When measuring the temperature distribution from the palm to the fingertips, the temperature of the fingertips will be significantly reduced in the cold, and the temperature of the fingertips will not be lowered. Therefore, When the sensor unit for pulse wave detection 130 is installed on the root, the pulse rate can be accurately measured even when running outdoors in cold weathera. Also, the device body 1 1 0 is equipped with a resin watch box 2 0 0 (the body Box), in addition to the current time or date on the surface side of the watch box 200, an EL that displays the distance during running or walking, pulsation information such as pulse, etc., is equipped with a backlight LCD device 2 1 0 . LCD display paper size Tongzhou China National Standards (CNS) A4 specification (210X297 mm) -48- Shunbu Zhongcheng " Bei Er 卩 -τ Consumer Cooperation Women's Seal " Αν Γ 416841 B7 V. Invention Explanation (46) On 2 1 0, in addition to the area display area, the point display area is formed. In the point display area, various information can be displayed in a pattern * Also, inside the meter box 2 0 0 is based on the measured pulse wave detection sense. Find the pulse wave pattern MH after the detector unit 1 3 0 The pulse image or the number of pulses is also controlled by a microcomputer that can perform various controls and data processing in order to display it on the liquid crystal display device 210. A timing circuit is formed on the control portion to form a general The time, overlap time, separation time, etc. are displayed on the liquid crystal display device 2 0. The outer peripheral part of the watch box 2 0 is configured with a key switch 1 1 for external operation such as time synchronization or display mode switching. 1 5. Next, the pulse wave detection sensing unit 130 is composed of the LED 32, the photo-crystal 33, and the like shown in FIG. When the switch SW is turned on, when a power source voltage is applied, light is irradiated from the LED 32 and reflected by a blood vessel or tissue, and then the pulse wave signal M is detected by the photoelectric crystal 33. Here, the emission wavelength of LED is selected near the peak wavelength of the absorption wavelength of hemoglobin in the blood. Therefore, the light receiving level changes according to the blood flow. As described above, the pulse wave pattern can be detected by detecting the light-receiving level. The LED 32 is preferably a blue LED of InGaN (Nitride-Nitrogen). The light emitting level of the blue LED has, for example, a light emission peak of 450 nm, and its light emission wavelength range is from 350 nm to 600 nm. In this case, the phototransistor 3 3 corresponding to the LED with relevant light emitting characteristics may be a GaAsP-based (gallium-arsenic-phosphorus) photovoltaic crystal. The photonic crystal 33's light-receiving wavelength range, for example, its main sensitivity range is in the range of 300nm to 600nm, 300nm (诮 Please read the precautions on the back before filling out this page}. Α4 Specifications (21〇 ×; 297 Gong) -49- Good -¾: Ministry of Central Rong " '^^ hj Elimination and Combination of Bamboo · ^ 1 Yinfan A7 j' 416641 B7 V. Description of Invention (47) The following also When combining the above-mentioned blue LED and photoelectric crystal No. 3 in the sensitive field, the pulse wave can be detected in the wavelength range of 300 nm to 600 nm in the overlapping field. At this time, it has the following advantages " First Of the light contained in external light, light with a wavelength range of less than 700 nm tends not to pass through the finger tissue. Therefore, when external light irradiates the part of the finger that is not covered by the sensor fixing belt, it cannot pass through. The finger tissue reaches the photoelectric crystal 3 3, and only the light in the wavelength region that has no effect on the detection can reach the photoelectric crystal. On the other hand, light in the wavelength region below 300 nm is almost absorbed by the skin surface, so even in the light receiving region Below 700 nm, the actual light receiving wavelength range is still Forms 300 nm to 700 nm. Therefore, the effect of external light can be suppressed even if most of the fingers are not covered. In addition, the hemoglobin in the blood relative to the wavelength from 300 nm to 7 Q 0 nm The absorption coefficient of light is large, which is several times to about 100 times larger than the absorption coefficient of light with a wavelength of 880 nm. Therefore, the wavelength range (3 0 0 (nm to 7 0 nm) as the detection light, its detection system changes sensitively in response to changes in blood volume, so the S / N ratio of the pulse wave type MH generated by the change in blood volume can be increased. 1 — 3_1_2: The electrical configuration of the first embodiment. Next, the electrical configuration of the pulse wave diagnostic device will be described with reference to Fig. 4. Fig. 4 is a block diagram showing the electrical configuration of the pulse wave diagnostic device. The pulse wave diagnostic device 1 is composed of the following parts. .10 is the wavelet scale of this paper. Applicable to China's national standard (0 ~ &) 8-4 specifications (210 > < 297mm > (read the notes on the back and fill in this page first)% Order -50- A7 Γ 4 18641 B7 V. Description of the invention (48) Replacement unit, compared with pulse wave detection The pulse wave pattern MH output from the detector unit 130 is subjected to a conventional wavelet transformation to generate pulse wave analysis data MKD. Generally, in the time-frequency analysis in which signals are obtained from both time and frequency, the wavelet is intercepted. The unit of the signal part * wavelet conversion means that the size of each part of the signal is intercepted in this unit. The basic function is used to define the wavelet conversion, and the localization constant 0 (X) is introduced as the main wavelet in time and frequency. Conversion. The wavelet transformation system composed of the main wavelet transformation (X) of the constant f (X) is defined as follows. (ϊψί) (b, a): 7ΓΨ1 xb 1 f (x) dx Formula 1 I n I 1—in II n-,-I. 11 I (" Read the precautions on the back before filling this page) Shirt? " '部 中 荣 "' ^ · And h-T " fee AD as a deduction 5? b in Equation 1 is a parameter used when transforming (parallel movement) the main wavelet 0 (x), and On the one hand, a is a parameter at the time of scaling (stretching). Therefore, in Equation 1, wave 0 / ((X — b) / a) is the one that only moves the main wavelet (X) in parallel by b, and only stretches a. At this time, the width of the main wavelet 0 (X) is extended corresponding to the proportional parameter a, so l / a is the one corresponding to the frequency. The detailed configuration of the wavelet conversion unit 10 will be described later. Next, '1 1' indicates that the frequency correction unit performs frequency correction with respect to the pulse wave analysis data MKD. In the above formula 1, there is a "1 / a 1/2" term corresponding to the frequency, but when comparing data between different frequency domains, it is necessary to correct the response. The frequency correction unit 11 is designed for this purpose. It is generated by multiplying the wavelet data WD by the coefficient a 1/2 to generate the pulse wave correction data. The paper size is in accordance with the Chinese National Standard (CNS) A4 (210X297 mm)- 51-Γ 416841 Α7 _Β7 ____ 5. Description of the invention (49) MKD '. In this way, a certain correction β can be applied to the dynamic density of each frequency according to the corresponding frequencies. Second, 12 is the pulse image data generating unit, and can specify specific pulses, string pulses, and slip pulses based on the pulse wave correction data MKD '. Pulse image, and pulse data ZD indicating this is generated. Reference numeral 13 denotes a display unit, which is constituted by a ROM, a control circuit, a liquid crystal display device, and the like. When the pulse image data Z D is flooded to the display section 13, the control circuit can detect it and read the characters stored in the ROM to display this on the liquid crystal display. In addition to characters such as "Pingmai", "Xuanmai" and "Huamai", you can also use specific symbols or icons. This can inform the user or doctor about their health status. "1-3 _ 1-3: Wavelet conversion section Next, the structure of the wavelet conversion section 10 will be described in detail using drawings. FIG. 5 is a block diagram of the wavelet conversion section 10 according to the first embodiment. The pulse wave type MH is supplied to the wave shape shaping section 100 and the A / D converter 220. The waveform shaping section 100 generates a control signal CS and a clock signal CK which are synchronized with the pulse waveform MH. FIG. 6 is a block diagram showing the waveform shaping section 100. In FIG. 6, the ringing filter 101 has a center frequency of 2.2 Hz and a Q-high filter having a passband of 0.8 to 3.5 Hz. The basic wave component of the pulse wave type is generally in the range of 0.8 ~ 3.5 Η z. Therefore, when the pulse wave type MH-O is passed through the damping filter 1 01, the basic wave component can be extracted. For example, the pulse wave pattern MH shown in Fig. 7 (a ·)-when the damped oscillation filter 101 is passed, the sine wave shown in Fig. 7 (b) can be obtained. I 1 I — ^^ 1 ^^ 1 I— I ^^ 1 ^^ 1 I ..! / ^^^ 1 ^^ 1 1 ^ — ^ —4, · = »{Do not read the precautions on the back first Fill out this page} This paper size applies Chinese National Standard (CNS) A4 (210 X 297 mm) -52- at I 4 16841 B7 V. Description of the invention (50) Second, the zero-crossing detection circuit 1 0 2 is Composed of a comparator, etc. * The output signal of the damping filter 1 0 1 is compared with the basic level, and a short wave β is generated. This short wave is formed in synchronization with the heart pulse. For example, the damping filter 1 〇 When the output signal of 1 is shown in FIG. 7 (b), the output signal of the detection signal 102 is shown in FIG. 7 (c). In addition, the comparison section 103, the loop filter 104, the voltage-controlled oscillation circuit 105, and the frequency division circuit 106 constitute a phase-locked loop. Comparator 1 0 3 —The input on the side is the output signal that supplies the zero-crossing detection circuit 102, and the input on the other side is the output signal that supplies the frequency division circuit 106. In this way, the comparator 1 0 3 can correspond to two The phase difference results in an error signal. Once the error signal is supplied to the voltage-controlled oscillation circuit 105 via the loop filter 104, the voltage-controlled oscillation circuit 105 outputs the clock signal CK. In addition, the clock signal CK is divided into 1/8 by the frequency dividing circuit 106 and fed to the input on the other side of the comparison section 103. At this time, the frequency of the clock signal CK is compared with the frequency of the output signal of the zero-crossing detection circuit 102 shown in Fig. 7 (d) to form an eight-fold frequency. The clock signal C K is then divided into 1/2 by the frequency division circuit 107 and output as a control signal C S shown in FIG. 7 (e). Next, the pulse wave pattern MH shown in FIG. 5 is converted into a data signal by the A / D converter 2 2 0 and then stored in the first memory 2 2 1 and the second memory 2 2 2. Here, the light start terminal of the first memory 2 2 1 can directly supply the control signal CS, and the light start terminal of the second memory 2 2 2 can supply the inverted control signal CS through the inverter 2 2 3 = Therefore , The first and second memory 22 1, 222 can interact in units of clock cycles I: ·-I-1 II 1-^-^ 1----II----(诮 M read back & precautions (Fill in this page again) The paper size is in accordance with Chinese National Standard (CNS) A4 (210X297mm) -53- Good Division Zhong 呔 "-^^^:-7 消 贽 合 竹 ^ 印 5! At Ί '416841 _Β7 V. Description of the invention (51) Store the pulse wave shape MΗ. Further, 224 is a multiplexer, and the pulse wave data M D which is read out alternately is selected from the first and second memories 22 1 and 2 2 2 and outputted to the basis constant developing portion W. As described above, the pulse wave data MD is read from the second memory 2 2 2 during the writing period of the first memory 2 2 1, and the pulse wave data MD is read from the second memory 2 2 1 during the reading period. It is written in the second memory 2 222. Secondly, the basic function expansion unit W is configured to perform the arithmetic processing of the above formula 1. The clock signal CK can be supplied to perform the arithmetic processing at a clock cycle. The basic function expansion unit W is composed of a basic function memory unit W1 that memorizes the main wavelet 0 (X), a ratio conversion unit W2 that converts the proportional parameter a, a buffer memory W3, and a parallel movement unit W4 and a multiplication unit W5 that perform shifting . In addition to the main wavelet 0 (X) memorized in the basic function memory portion W1, Moore, Haar wavelet, Meyer wavelet, Shannon wavelet, etc. can be used in addition to the Gabor wavelet. First, when the main wavelet 0 (X) is read from the basic function counting part W1, the proportional conversion part W2 can convert the proportional parameter a. Here, the proportional parameter a corresponds to the period, so when a is large, the main wavelet 0 (X) will extend on the time axis. At this time, the amount of data of the main wavelet (X) recorded in the basic function memory portion W1 is constant, so when a is large, the data per unit time will decrease. The proportional conversion unit W2 can perform interpolation processing on this ′ while forming a small a 値 to perform extrapolation processing to generate a function 0 (x / 2). This data can be temporarily stored in the buffer memory W3. Secondly, the parallel moving part W4 is at the timing corresponding to the translation parameter b (诮 Please read the precautions on the back before filling this page), ** This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -54 -Α7! 4 16841 Β7 V. Description of the invention (52) The buffer memory W3 reads out the function 0 (x / 2), so that the function 0 (x / a) can be moved in parallel to generate the function 0 (X — b / 2). In addition, the multiplication unit W4 multiplies the variable l / a1 / 2, the function office (X-b / 2), and the pulse wave data MD to perform wavelet conversion in cardiac pulse units to generate pulse wave analysis data MKD. In this example, the pulse wave analysis data MKD can be divided into OHz ~ 0.5Hz, 0.5Hz ~ 1.0 Hz, 1 · 〇Ηζ ~ 1.5Ηζ, 1.5 * ζ ~ 2.0Hz, 2.0Hz ~ 2 · 5Ηζ, 2, 5Hz to 3.0Hz, 3.0Hz to 3.5Hz, 3.5Hz to 4.0Hz and other fields. In addition, the basic function expansion unit W performs calculation processing based on the above-mentioned clock cycle, and the clock frequency is 8 times the basic frequency of the pulse wave type MH. Therefore, the pulse wave analysis data MK D generated by a single cardiac pulse is formed. Data represented by 8 are M 1 1 to M 8 8. 1 to 3_1 — 4: Pulse image data generating section Next, the pulse image generating section 12 will be described below. Fig. 9 is a block diagram of the pulse image data generating section 12 according to this embodiment. In the figure, the adder 121, the calculation circuits 122, 124, and the memory 1 2 3 are circuits for calculating the average chirp of the pulse wave correction data MKD 'in each frequency region. The coefficient of the calculation circuit 1 2 2 is 1 / K + 1, and the coefficient of the calculation circuit 124 is K. The adder 121 adds the pulse correction data MKD 'to the output of the calculation circuit 1 2 4, and the output data of the adder 1 2 1 is stored in the memory 1 2 3 by the calculation circuit 1 2 2. In addition, the memory 1 2 3 is output with a delay of only 8 clock cycles (please read the precautions on the back first, and then 硪 艿 this page). ) -55- i 416841 A7 £ 7__ 5. The data entered in the description of invention (53). Here, a data plate 3 (1 ') where the cardiac pulsation cycle is t, the current time is τ, and the data stored in the memory body 12 3 is 1 ^ 3' time 1 'can be expressed by the following formula.
Ma(T) = {Ma(T-t)*K + MKD'(T)}/K+l 該式中,Ma (T_t)爲僅經過時間t的數據,即 表示1心脈動前的數據。因此,數據M a ( T )係形成加 權平均過去的數據與現在的數據。此一處理係於每t時間 重覆進行者,其結果可將脈波修正數據MKD*的平均値 儲存在記憶體1 2 3內。又’脈波修正數據MKD’係於 各頻率領域內產生,因此可於各頻率領域內算出平均値。 如上述,在記憶體123中以圖10表示之0,5Hz單 位儲存有脈波修正數據MKD’的平均値Ma 1 1〜Ma 8 8。其係意味著記憶體1 2 3具有平均値表的功能。 其次,運算部1 2 5是根據儲存在記憶體1 2 3的平 均値Ma 1 1〜Ma 88而產生脈像數據ZD。在此說明 弦脈、平脈、滑脈的代表性波型與平均値的關係。此外, 以下所述之例中,脈波波型MH的基本波頻率是設定爲 1.3Hz。 —般,脈波波型ΜΗ是如圖8所示,係最初升降形成 之主波wf 1、隨後重疊脈動前波wf 2、中狹波wf 3 及重疊脈動波wf 4所構成。主波wf 1是相當於左心室 ---------^-- (郐先閱讀背面之注意事項再填艿本頁} *11 本紙张尺度適用中國國家標準(CNS>A4洗格(210X297公嫠) -56- at r 416841 B7 五、發明説明(54) 之急遽驅出期。重疊脈動前波w f 2是藉大動脈的彈性擴 大與抵消反射波的相互關係所構成。中狹波w ί 3是表示 左心室擴張期的大動脈壓力,相當於擴張期壓力。重疊脈 動波w f 4是隨著大動脈閥關閉之外端血流的逆流所產生 的波。 首先,圖1 1是表示弦脈之代表性波型及平均値Ma 1 1〜Ma 8 8的關係圖。弦脈的特徵是將重疊脈動前波 w f 2融合於主波w f 1的點|隨之不顯示中狹波wf 3 的點,在明確表示重疊脈動前波w f 2及中狹波w f 3時 ,相對於脈波波型MH的基本波成份形成大的第2高頻波 成份、第3高頻波成份。因此,弦脈時的期間t 2、t 3 中,2H z以上的頻率成份具有較小的傾向。在此例中, 期間t 2、t 3之2Hz以上頻率成份的合計S1皆形成 「7」。且S1是以下式定義之。Ma (T) = {Ma (T-t) * K + MKD '(T)} / K + l In this formula, Ma (T_t) is the data that elapses only time t, that is, the data before 1 heart pulse. Therefore, the data Ma (T) is a weighted average of the past data and the present data. This process is repeated every t time. As a result, the average 値 of the pulse wave correction data MKD * can be stored in the memory 1 2 3. Since the "pulse wave correction data MKD" is generated in each frequency region, the average chirp can be calculated in each frequency region. As described above, the average 値 Ma 1 1 to Ma 8 8 of the pulse wave correction data MKD 'is stored in the memory 123 at the unit of 0,5 Hz shown in Fig. 10. This means that the memory 1 2 3 has the function of averaging. Next, the arithmetic unit 1 2 5 generates the pulse image data ZD based on the average values Ma 1 1 to Ma 88 stored in the memory 1 2 3. The relationship between the representative wave patterns of the Xuanmai, Pingmai, and Huamai and the average 値 is explained here. In the examples described below, the fundamental wave frequency of the pulse wave type MH is set to 1.3 Hz. In general, as shown in FIG. 8, the pulse wave pattern M 系 is composed of a main wave wf 1 formed by initial lifting, followed by overlapping pulsating front waves wf 2, medium narrow waves wf 3, and overlapping pulsating waves wf 4. The main wave wf 1 is equivalent to the left ventricle --------- ^-(郐 Read the precautions on the back before filling this page} * 11 This paper size applies the Chinese national standard (CNS > A4 wash (210X297 公 嫠) -56- at r 416841 B7 V. Explanatory period of invention (54). The overlapping pulsating front wave wf 2 is formed by the correlation between the expansion of the aorta and the cancellation of the reflected wave. Narrow wave w ί 3 is the aortic pressure during the expansion of the left ventricle, which is equivalent to the pressure during the dilatation. The overlapping pulse wave wf 4 is a wave generated by the countercurrent of the blood flow outside the aortic valve. First, Figure 11 shows the string The relationship between the representative wave shape of the pulse and the average 値 Ma 1 1 ~ Ma 8 8. The characteristic of the string pulse is the point where the overlapping pulsating front wave wf 2 is fused to the main wave wf 1 | When it is clearly shown that the pulsating front wave wf 2 and the middle narrow wave wf 3 overlap, the second high-frequency wave component and the third high-frequency wave component are formed relatively to the fundamental wave component of the pulse wave type MH. In the periods t 2 and t 3, the frequency components above 2H z tend to be smaller. In this example, the period t 2. The total S1 of frequency components above 2Hz at t3 all form "7", and S1 is defined by the following formula.
Sl = Ma23 + Ma24 + Ma25 + Ma26 + Ma27 + Ma28 + Ma3 3 + Ma34 + Ma3 5 + Ma36 + Ma37 + Ma38 其次,圖1 2是表示平脈之代表性波型與平均値的關 係圖。平脈之特徵爲主波w f 1、重疊脈動前波w f 2及 重疊脈波w f 4之三峰波所成之點。即,在期間t 2、 t 3表示其特徵。此時,可明確顯示重疊脈動前波w f 2 、中狹波w f 3及w f 4,因此會形成大的脈波波型ΜΗ 之基本波的第2諧波成份、第3諧波成份。如上述平脈時 ί I 1 —I. '木衣 I— n »^1' :J *1τ (討先閱讀背面之注意事項再填巧本頁) 本紙張尺度適州中國國家標率(CNS ) A4規格(210X297公着) -57- Α7 Γ 4 1684 1 B7 ‘___ 五、發明説明(55 ) 的期間t 2、t 3中,2Hz以上的頻率成份具有形成較 大的傾向。又,尤其是將期間t 2與期間ί 3比較時’期 間t 2中存在有重疊脈動前波1^ f 2的峰値’因此可獲知 其多數存在有高域頻率成份。此例之期間t 2、t 3中, 2Hz以上頻率成份的合計S1皆是形成「25」。又’ 期間t 2之4.0〜3,OH z的頻率成份合計S 2皆是形成 「12」,另一方面,期間t 3之4_0〜3.0Hz的頻率 成份合計S3皆是形成「7」。其中,S2、S3是以下 式定義之。 S2=Ma 27+Ma 28 S3=Ma 37+Ma 38 赶浐部中成打4(-而'_;;.1.消於合作ii印5'i ---------— (誚先聞讀背面之注意事項再填巧本頁) 此外,圖1 3是表示滑脈的代表性波型與平均値的關 係圖。滑脈的特徵是將主波w ί 1與重疊脈動前波w f 2 逐一地層積成雙峰波所成的點。即在期間t 2、t 3表示 其特徵。此時,明確顯示出幾乎不具重疊脈動前波w f 2 之中狹波w ί 3,因此會形成大的脈波波型ΜΗ之基本波 的第2諧波成份、第3諧波成份。如上述滑脈時的期間 t 2、t 3中,2Hz以上的頻率成份具有形成較大的傾 向。又,尤其是將期間t 2與期間t 3比較時,期間t 2 中並未存有重叠脈動前波w f 2的峰値,另一方面,在期 間t 3中存在有中狹波wf 3,因此可獲知在期間t 3側 存在有高域頻率成份。此例之期間t 2、t 3中,2Hz 本紙張尺度適用中國國家標準(CNS > A4規格(210X297公釐〉 -58- 好浐部-^-Αίτ4,·^·,Μ-τ消资合作.¾印繁 A7 丨 4 1684 1 ___ B7_ 五、發明説明(56) 以上頻率成份之合計S1皆是形成「24」。又,期間 t 2之4.0〜3.0Hz的頻率成份合計S2是形成「6 ,另一方面,期間t 3之4.0〜3.OH z的頻率成份合計 S 3是形成「1 ◦」。 如以上說明之各脈像中存在有特徵的部份。本實施形 態係以此爲著眼點根據以下判定基準判定脈像者。 期間t2、t3之2.0Hz 以上的合計31在「 S 1<1 5j時,判定爲弦脈。此時,運算手段1 25係 產生表示作爲脈像數據ZD之弦脈的數據Dg。 2)判定爲平脈時 期間t2、t3之2.0Hz 以上的合計51爲「 S1215」,且其期間t 2之4.0〜3.0Hz頻率成份 的合計S 2與期間t 3之4.0〜3.0H Z頻率成份的合計 S3爲「S2SS3」的關係時,可判定爲弦脈。此時, 運算手段1 2 5係產生作爲脈像數據ZD而顯示滑脈之數 據D h。 期間t2、t3之2.0Hz 以上的合計呂1爲「 S1215」,且其期間t2之4.0〜3·0Ηζ頻率成份 的合計S2與期間t 3之4.0〜3.0Hz頻率成份的合計 S3爲「S2<S3」的關係時,可判定爲滑脈。此時, 運算手段1 2 5係產生作爲脈像數據Z D而顯示滑脈之數 據D k » 1^1 ^^1 ^^1 - HI ί ϋ— In l^i A--9 {邻先閲讀背面之注意事項再填寫本頁) 本紙張尺度適扣中國國家標準(CNS ) A4規格(210X297公釐) -59- ^ 丨 416841 五、發明説明(57) 1_3_1—5:脈像數據產生部之其他例 圖14是表示脈像數據產生部的其他構成例之方塊圖 "記憶體1 2 3具有作爲平均値表的功能,根據儲存其中 之平均値評估常數運算部1 2 6可產生評估數據QDg、 QDh、QDk。評估常數運算部1 2 6並具備有記憶體 。於其中,對於使分別對應弦脈、平脈、滑脈之代表性脈 波波型施以子波轉換的結果,以相同於平均値表的形式預 先予以儲存。並且,以Mg 1 1〜Mg 8 8表示對應弦脈 之代表性脈波波型的數據,以Mh 1 1〜Mh 8 8表示對 應平脈之代表性脈波波型的數據,並以Mk 1 1〜Mk 8 8表示對應滑脈之代表性脈波波型的數據。 評估數據Q D g是表示將所測量的脈波波型MH與代 表性弦脈的脈波波型形成如何程度一致的數據,可藉下式 運算產生。 QDg=ZPij· IMgU-Maijl/Mgij : 1=1^8, 經 Μ 部中呔iT.n'-^h.T消资合竹.Jti印ί5 ---------裝-- (讳先閱讀背面之注意事項再填寫本頁) 又,評估數據QD h是表示將所計測的脈波波型ΜΗ 與代表性平脈的脈波波型形成如何程度一致的數據,可藉 下式運算產生。 ^ m.. QDh=IPij· I M h i j-M a i j I/M h i j : i = l 〜8, j = 1 〜8 , 且,評估數據QD k是表示將所計測的脈波波型ΜΗ 與代表性平脈的脈波波型形成如何程度一致的數據,可藉 下式運算產生。 本紙張尺度適用中國國家標準(CNS ) Α4現格(210Χ297公釐) -60- Α7 416841 _Β7____ 五、發明説明(58 ) QDk=ZPU. MaiTT>MkiJ—: i=l~8, j=1 〜8 ---------取-- (誚先閱讀背面之注意事項再填巧本頁) 於此,P i j爲係數,但是不具特徵的時間頻率領域 中,設定爲「0」,僅具特徵的部份設定爲「1」°設定 如上述之係數是由於脈波波型的特徵部份具有大的能源’ 因此可根據此一部份判別脈像,另一方面,根據位準低的 部份判別脈像時,由於S N比不良而不能進行正確的判別Sl = Ma23 + Ma24 + Ma25 + Ma26 + Ma27 + Ma28 + Ma3 3 + Ma34 + Ma3 5 + Ma36 + Ma37 + Ma38 Second, Figure 12 shows the relationship between the representative wave pattern of the Pingmai and the mean chirp. The characteristics of the flat pulse are the points formed by the three peak waves of the main wave w f 1, the superimposed pulsating wave w f 2, and the superimposed pulse wave w f 4. That is, the characteristics are shown in the periods t 2 and t 3. At this time, the superimposed pulsating front waves w f 2, medium narrow waves w f 3, and w f 4 can be clearly displayed, so that the second harmonic component and the third harmonic component of the fundamental wave of the large pulse wave type MΗ are formed. As mentioned above, I 1 —I. '木 衣 I— n »^ 1': J * 1τ (Please read the precautions on the back before filling in this page) The paper size is suitable for China National Standards (CNS) A4 specification (210X297) -57- Α7 Γ 4 1684 1 B7 '___ 5. In the period t 2 and t 3 of the description of the invention (55), the frequency component above 2 Hz tends to form a large amount. In particular, when comparing the period t 2 with the period ί 3 ', there is a peak 値 of the overlapping pulsating wave 1 ^ f 2 in the period t 2'. Therefore, it can be seen that most of them have high-domain frequency components. In the period t 2 and t 3 in this example, the total S1 of frequency components above 2 Hz is formed as "25". In addition, during the period t 2 of 4.0 to 3, the total frequency components S 2 of OH z all form "12". On the other hand, during the period t 3 of the frequency components 4_0 to 3.0 Hz, the total S 3 all forms "7". Among them, S2 and S3 are defined by the following formulas. S2 = Ma 27 + Ma 28 S3 = Ma 37 + Ma 38 To drive the middle part of the army to fight 4 (-and '_ ;;. 1. Eliminate the cooperation ii India 5'i ---------- (闻 First read the notes on the back and then fill in this page) In addition, Figure 13 shows the relationship between the representative wave shape of the Hua mai and the average 値. The characteristic of the Hua mai is that the main wave w ί 1 is overlapped with the pulse before The waves wf 2 are layered one by one into points formed by bimodal waves. That is, the characteristics are expressed during the periods t 2 and t 3. At this time, it is clearly shown that there is almost no narrow wave w ί 3 among the overlapping pulsating waves wf 2, so The second harmonic component and the third harmonic component of the fundamental wave of the large pulse wave type MΗ will be formed. For example, during the period t 2 and t 3 when the pulse is slipped, the frequency component above 2 Hz tends to form a larger tendency. In addition, when comparing the period t 2 with the period t 3, the peak 値 of the overlapping pulsating front wave wf 2 does not exist in the period t 2. On the other hand, the narrow wave wf 3 exists in the period t 3. Therefore, it can be known that there is a high-domain frequency component on the side of period t 3. In this example, during periods t 2 and t 3, 2 Hz. This paper size is applicable to the Chinese national standard (CNS > A4 size (210X297 mm> -58- good)浐 部-^-Αίτ4, · ^ ·, M-τ consumer cooperation. ¾ Printing A7 丨 4 1684 1 ___ B7_ V. Description of the invention (56) The total S1 of the above frequency components forms "24". In addition, the period t 2 is 4.0 ~ 3.0 The total frequency component S2 of Hz forms "6". On the other hand, the total frequency component S3 of 4.0 to 3.OHz during period t3 forms "1." There are characteristics in each pulse image as described above. Part. In this embodiment, the pulse image is judged based on the following judgment criteria based on this point. During the period t2 and t3, the total 31 is 2.0. When "S 1 < 1 5j", it is judged as a pulse. At this time, the calculation is Means 1 to 25 is to generate data Dg indicating the pulse pulses as the pulse image data ZD. 2) The total 51 that is 2.0Hz or more during the period t2 and t3 when it is judged to be the pulse period is "S1215", and the period t 2 is 4.0 to 3.0Hz When the relationship between the total S2 of frequency components and the total S3 of 4.0 ~ 3.0HZ frequency components during period t3 is "S2SS3", it can be judged as a string pulse. At this time, the arithmetic means 1 2 5 system generates pulse data ZD and Shows the data of Hua mai D h. During the period t2 and t3, the total Lv1 above 2.0 is "S1215", and the period t2 is 4.0 ~ 3 When the relationship between the total S2 of 0Ηζ frequency components and the total S3 of 4.0 ~ 3.0Hz frequency components during period t 3 is "S2 < S3", it can be judged as a slippery pulse. At this time, the arithmetic means 1 2 5 system generates pulse data ZD shows the data of Huamai D k »1 ^ 1 ^^ 1 ^^ 1-HI ί ϋ — In l ^ i A--9 (Please read the precautions on the back before filling in this page) The paper size is suitable for deduction China National Standard (CNS) A4 specification (210X297 mm) -59- ^ 丨 416841 V. Description of the invention (57) 1_3_1-5: Other examples of the pulse image data generating unit FIG. 14 shows other configurations of the pulse image data generating unit The block diagram of the example "memory 1 2 3 has a function as an average table, and according to the average value stored in the average evaluation constant calculation unit 1 2 6 can generate evaluation data QDg, QDh, QDk. The evaluation constant computing unit 1 2 6 is provided with a memory. Here, the results of wavelet conversion of the representative pulse wave patterns corresponding to the Xuan mai, Ping mai, and Hua mai are stored in advance in the same form as the average table. In addition, Mg 1 1 ~ Mg 8 8 represents the data of the representative pulse wave pattern corresponding to the Xuan mai, Mh 1 1 ~ Mh 8 8 represents the data of the representative pulse wave pattern corresponding to the Ping mai, and Mk 1 1 ~ Mk 8 8 represents data of a representative pulse wave pattern corresponding to the Hua mai. The evaluation data Q D g is data indicating how closely the measured pulse wave pattern MH and the pulse wave pattern representative of the sinusoidal pulse are formed, and can be generated by the following equation. QDg = ZPij · IMgU-Maijl / Mgij: 1 = 1 ^ 8, iT.n '-^ hT Consumer Capital Hezhu.Jtiyin 5 --------- install-(tab (Please read the notes on the back before filling in this page) Also, the evaluation data QD h is data that shows how the measured pulse wave pattern MΗ is consistent with the pulse wave pattern of a typical flat pulse, which can be generated by the following formula . ^ m .. QDh = IPij · IM hi jM aij I / M hij: i = l ~ 8, j = 1 ~ 8, and the evaluation data QD k represents the measured pulse wave pattern ΜΗ and the representative Ping mai Data on how much the pulse wave pattern is formed can be generated by the following equation. This paper size applies Chinese National Standard (CNS) A4 (210 × 297 mm) -60- Α7 416841 _Β7 ____ V. Description of the invention (58) QDk = ZPU. MaiTT > MkiJ—: i = l ~ 8, j = 1 ~ 8 --------- Take-(诮 Read the precautions on the back before filling out this page) Here, P ij is the coefficient, but in the time and frequency domain with no characteristics, set to "0", Only the characteristic part is set to "1". The coefficient set as above is because the characteristic part of the pulse wave shape has large energy ', so the pulse image can be discriminated based on this part. On the other hand, according to the level When the pulse image is discriminated in the lower part, it cannot be accurately discriminated due to the poor SN ratio.
其次,比較部127是比較評估數據QDg、QDh 、QDk的大小,將對應顯示最小値之評估數據的脈像特 定爲所計測之脈波波型MH的脈像,而產生脈像數據ZD 根據上述本實施形態,與脈波波型ΜΗ同步施以子波 轉換,將1個脈波波型分割爲複數個頻率時間領域,並在 所分割之頻率領域中,抽出特徵性顯示脈像的部份,據此 特定其脈像,因而可正確地判定脈像》 1 _ 4 :第2實施形態 第1實施形態相關之脈波診斷裝置是以使用者於安靜 狀態爲前提者。但是,心脈動會由於人的運動而強烈脈動 ,因此當使用者在步行時或抓取物時,脈波波型會受體動 的影響而變動。因此,第1實施形態相關之脈波診斷裝置 —旦有體動時正確地檢測脈像困難。第2實施形態是有鑑 本紙張尺度適;1]中國國家標準(CNS ) A4说格(210X297公釐) -61 - I 416β41 A7 * B7 五 '發明説明(59) 於此點所硏創者,其可從脈波波型中消除體動成份,因此 即使有體動時仍可提供正確檢測脈像之脈波診斷裝置。 1 — 4一1 :第2實施形態之構成 第2實施形態之外觀構成是與圖2表示之第1實施形 態的外觀構成相同。但是,第2實施形態相關之脈波診斷 裝置是在其裝置本體110的內部設置加速度感測器21 〇 其次,針對第2實施形態相關之脈波診斷裝置的電氣 構成說明如下。圖1 5爲第2實施形態相關之脈波診斷裝 置的方塊圖。圖中,第1子波轉換部1 0A及第1頻率修 正部11A是分別與上述第1實施形態之子波轉換部1〇 及頻率修正部1 1相同的構成,形成從第1頻率修正部 11A輸出脈波修正數據MKD’ 。 又,藉加速度感測器2 1檢測體動波型TH時,將此 供應至第2子波轉換部1 Ο B。在此,對體動波型TH施 以子波轉換,形成可產生體動解析數據TKD者。其中, 第2子波轉換部1 Ο B具有與第1實施形態之子波轉換部 1 0相同的構成。因此,體動解析數據TKD是將〇〜4 Η z的頻率領域以〇 .5 Η z刻度分割的各頻率成份所構成 。又,第2頻率修正部1 1 Β具有與第1實施形態之頻率 修正部1 1相同的構成,對體動解析數據TKD施以頻率 修正而產生體動修正數據TKD’ 。 其次,遮蔽部18是從_脈波修正數據MKD’減去體 ---------東-- (郐先閱讀背面之注意事項再填寫本頁) 訂 本紙張又度適用中國國家榇準(CNS ) A4規格(2丨〇Χ297公釐) -62- 好7^部中央ir4,-^m-T消於合作妇印5!! A7 ' 416841 _ ____ B7 五、發明説明(6〇) 動修正數據TKD’而產生除去體動成份之脈波修正數據 MKD"。其次,脈像數據產生部12是根據脈波修正數 據MKD”產生與第1實施形態相同的脈像數據ZD »且 顯示部13是根據脈像數據ZD顯示脈像者。 1一4_2:第2實施形態的動作 其次,參閱圖式說明第2實施形態的動作如下。 在此例中,脈像的檢測中設定使用者以手舉起杯子後 ,將其恢復至原來位置的場合。此時,顯示於圖1 6之脈 像波型Μ Η係藉脈波檢測用感測器單元1 3 0予以檢測, 且同時檢測出圖1 6 ( b )顯示之體動波型ΤΗ。 於此,體動波型TH是從時刻T 1開始增加,在時刻 T 2形成正峰値,之後,隨著減少而在T 2通過位準0, 在時刻T3達到負的峰値,而在時刻T4恢復至位準0。 但是,體動波型TH是藉加速度感測器2 1所檢測,因此 時刻T 3對應使用者舉起杯子最高的時刻,時刻T 1則是 對應舉起的開始時刻,又,時刻T 4是對應舉起終止時刻 。因此,時刻τ 1至時刻T4的期間是體動存在的期間。 並且,圖16(c)爲體動不存在時的脈波波型MH’ 。 又,在此例中,脈波波型的基本頻率是形成1,3 Hz。 其次,參閱圖1 7〜圖1 9說明圖1 6表示之期間 T c的第2實施形態相關之脈波診斷裝置的動作如下《圖 17是表示期間Tc之脈波修正數據MKD’ ’圖18是 I ----- ^^1 - - I I--- I —ϋ I - --- ! -- I ("先閲讀背面之注項再硪巧本頁) 本紙張尺度適用中國國家標準(CNS)A4规格(210X297公釐} -63- A7 B7 丨 4 16841 五、發明説明(6〇 表示期間Tc之體動修正數據TKD,。圖中’可獲知體 動波型ΤΗ在〇〇〜1 .〇 Η ζ的頻率影域內存在有較大位 準的頻率成份。Next, the comparison unit 127 compares the magnitudes of the evaluation data QDg, QDh, and QDk, specifies the pulse image corresponding to the evaluation data showing the smallest value as the pulse image of the measured pulse wave pattern MH, and generates pulse image data ZD according to the above In this embodiment, a wavelet conversion is performed in synchronization with the pulse wave pattern MΗ, and one pulse wave pattern is divided into a plurality of frequency-time domains, and a characteristic portion showing a pulse image is extracted in the divided frequency domain According to this, the pulse image is specified, so that the pulse image can be accurately determined. "1 _ 4: Second embodiment. The pulse wave diagnosis apparatus according to the first embodiment is based on the premise that the user is in a quiet state. However, the heart pulsation is strongly pulsated due to the movement of the person. Therefore, when the user is walking or grasping an object, the pulse wave pattern may be changed by the influence of the motion. Therefore, the pulse wave diagnosis apparatus according to the first embodiment is difficult to accurately detect a pulse image when there is body movement. The second embodiment is suitable for the size of the paper; 1] Chinese National Standard (CNS) A4 grid (210X297 mm) -61-I 416β41 A7 * B7 Five 'invention description (59) The creator of this point It can eliminate the body motion component from the pulse wave pattern, so it can provide a pulse wave diagnosis device that can correctly detect the pulse image even when there is body motion. 1-4: 1: Configuration of the second embodiment The appearance configuration of the second embodiment is the same as that of the first embodiment shown in FIG. However, the pulse wave diagnosis apparatus according to the second embodiment includes an acceleration sensor 21 inside the apparatus body 110. Next, the electrical configuration of the pulse wave diagnosis apparatus according to the second embodiment will be described below. Fig. 15 is a block diagram of a pulse wave diagnosis apparatus according to the second embodiment. In the figure, the first wavelet conversion section 10A and the first frequency correction section 11A have the same configurations as the wavelet conversion section 10 and the frequency correction section 11 of the first embodiment, respectively, and form the first frequency correction section 11A. The pulse wave correction data MKD 'is output. When the body motion wave type TH is detected by the acceleration sensor 21, this is supplied to the second wavelet conversion unit 10B. Here, wavelet conversion is performed on the body motion wave type TH to form a body motion analysis data TKD. The second wavelet conversion unit 10B has the same configuration as the wavelet conversion unit 10 of the first embodiment. Therefore, the body motion analysis data TKD is constituted by each frequency component in which a frequency range of 0 to 4 Η z is divided on a 0.5 〇 z scale. The second frequency correction unit 11B has the same configuration as the frequency correction unit 11 of the first embodiment, and applies frequency correction to the body motion analysis data TKD to generate body motion correction data TKD '. Secondly, the masking part 18 subtracts the body from the _pulse wave correction data MKD '----------- (郐 Please read the precautions on the back before filling this page) The bound paper is applicable to China again Standard (CNS) A4 specification (2 丨 〇 × 297 mm) -62- Good 7 ^ Central ir4,-^ mT disappeared in cooperation with women's seal 5 !! A7 '416841 _ ____ B7 V. Description of the invention (6〇) Motion correction data TKD 'to generate pulse wave correction data MKD " excluding body motion components. Next, the pulse image data generating unit 12 generates the same pulse image data ZD as the first embodiment based on the pulse wave correction data MKD ", and the display unit 13 displays the pulse image based on the pulse image data ZD. 1-4_2: 2nd The operation of the embodiment is as follows. The operation of the second embodiment will be described with reference to the drawings. In this example, in the detection of the pulse image, it is set that the user lifts the cup with his hand and returns it to the original position. At this time, The pulse wave shape M shown in FIG. 16 is detected by the pulse wave detection sensor unit 130, and the body motion wave shape T shown in FIG. 16 (b) is detected at the same time. Here, the body The dynamic wave pattern TH increases from time T 1 and forms a positive peak 値 at time T 2. After that, it passes through level 0 at T 2 as it decreases, reaches a negative peak 値 at time T 3, and returns to time T 4. Level 0. However, the body motion waveform TH is detected by the acceleration sensor 21, so time T 3 corresponds to the time when the user raises the cup, and time T 1 corresponds to the start time of the lift. Time T 4 is the corresponding lifting end time. Therefore, the period from time τ 1 to time T4 is a body The period during which the motion exists. Also, Fig. 16 (c) shows the pulse wave pattern MH 'when the body motion does not exist. In this example, the fundamental frequency of the pulse wave pattern is 1,3 Hz. Next, refer to FIG. 17 to FIG. 19 illustrate the operation of the pulse wave diagnosis apparatus related to the second embodiment of the period T c shown in FIG. 16 as follows. FIG. 17 shows the pulse wave correction data MKD '' showing the period Tc. FIG. 18 is I- ---- ^^ 1--I I --- I --ϋ I----!-I (" Read the notes on the back before digging into this page) This paper size applies Chinese National Standard (CNS ) A4 specification (210X297 mm) -63- A7 B7 丨 4 16841 V. Description of the invention (60 indicates the body motion correction data TKD during the period Tc. In the figure, it can be known that the body motion wave type T is between 〇〇〜1. There is a large level of frequency components in the frequency shadow domain of ζ.
一旦將脈波修正數據MKD’與體動修正數據TKD ’供應至遮蔽部1 8時,遮蔽部1 8可從脈波修正數據 Μ K D ·減去體動修正數據T K D 1 ,產生圖19表示之 除去體動成份的脈波修正數據MKD'。藉此,即使具有 體動成份時仍可消除其影響而獲得與安靜時從脈波波型所 獲得之脈波修正數據MKD’相同的脈波修正數據MKD »> 〇 之後,脈像數據產生部1 2係根據該脈波修正數據 MKD”判定脈像。此一例中,期間t 2、t 3之2.0 Hz以上的合計S1爲28,因此形成「S1215」。 又,期間t 2之4.0Hz〜3.0之頻率成份的合計S2形 成9。期間t 3之4.0Hz〜3.0之頻率成份的合計S3 是形成13»因此形成「S2<S3」。如上述,根據上 述之判定基準判定爲滑脈之脈像數據產生部12係產生顯 示作爲脈像數據ZD之數據Dk。 如上述之第2實施形態中,同樣對體動波型施以子波 轉換,而據此消除體動成份,因此即使在日常生活或運動 中仍可正確地檢測脈像。 1 一 5 :第3實施形態 第2實施形態中,對於脈波波型之子波及體動波型之 本紙張尺度通用中國國家標车(CNS ) A4規格(210Χ2ίΠ公釐〉 (誚先閲讀背面之注意事項再蛾艿本頁) 丨^. -s -64- A7 1' 416841 _B7___ 五、發明説明(62) 子波分別施予頻率修正之後,藉體動波型之子波遮蔽脈波 波型。此時,必須具備2種類的頻率修正波型,形成複雜 的構造。第3實施形態是有鑑於該點所硏創而成者》 第3實施形態之外觀構成是與圖2表示之第1實施形 態的外觀構成相同。但是,第3實施形態相關之脈波診斷 裝置是在與第2實施形態相同的裝置本體110內部設置 加速度感測器2 1。 其次,說明第3實施形態相關之脈波診斷裝置的電氣 構成圖如下。圖2 0爲第3實施形態相關之脈波診斷裝置 的方塊圖。圖中,第1、第2子波轉換部l〇A、10B 及頻率修正部11是分別具有與上述第1實施形態之子波 轉換部10及頻率修正部11相同的構成。 .iif 部中央ίτ.^·^,,3ί-τ消伶合作ίί卬r ^^1 m - I— -- ^^1 I- If Hr 1 «^^1 n TJ u?-* (誚先閱讀背面之注意事項再填寫本頁) 遮蔽部1 8是在施以頻率修正前,從脈波解析數據 MKD減去體動解析數據TKD而產生除去體動成份之體 動除去脈波數據。之後,頻率修正部1 1係產生脈波修正 數據MKD”可對於體動除去脈波數據施以使各頻率的動 力密度形成一定的頻率修正。藉此,可在不同的頻率成份 間進行位準的比較。其次•脈像數據產生部1 2 —旦根據 脈波修正數據MKD”產生脈像數據ZD時,可將此脈像 數據ZD顯示於顯示部13上。 如上述,根據第3實施形態,由於在遮蔽部1 8後段 設置頻率修正部1 1,因此可簡單地構成脈波診斷裝置, 即使存有體動時仍可形成特定的脈像。 本紙張尺度通用中國國家標準(〔阳)八4规格(210父297公釐} -65- a? ' 4 16 8 4 1 B7 五、發明説明(63) 1 一 6 :第4實施形態 第2,3實施形態中,藉加速度感測器2 1檢測體動 波型TH,對體動波型TH施以子波轉換》並且,比較脈 波波型Μ Η之子波轉換的結果與體動波型T Η的子波轉換 結果,可將含於脈波波型ΜΗ之頻率成份的體動成份除去 而特定脈像。但是,必須加速度感測器2 1及第2子波轉 換部1 Ο Β等,因此構成上複雜。第4實施形態是有鑑於 該點而提供不僅具簡易之構成,且即使有體動存在時仍可 正確特定其脈像之脈波診斷裝置》 1一6_1:第4實施形態之構成 第4實施形態相關之脈波診斷裝置的外觀構成是與圖 2表示之第1實施形態的外觀構成相同,在此省略其說明 ,而僅針對其電氣構成說明如下。圖2 1爲第4實施形態 相關之脈波診斷裝置的方塊圖,除了在頻率修正部1 1與 脈像數據產生部12之間另外設置體動分離部19之外, 皆與第1實施形態所說明之圖4相同。以下,說明其不同 點。 體動分離部19是從脈波修正數據MKD·分離除去 體動成份而產生體動分離脈波數據TBD。其中,體動分 離部1 9是利用以下所述之體動性質。 體動是藉著手臂上下擺動或行走時手臂的振動等所產 生,但是日常生活中,人體幾乎不具瞬間的擺動。因此在 曰常生活中,體動頻率波型ΤΗ的頻率成份並不高,一般 ---------裝------訂 (ti先閲讀背面之注意事項再填巧本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 66- 恕浐部中央i?^^h-T"·赍合作妇印製 A7 f 416841 __B7_ 五、發明説明(64) 在OHz〜1Hz的範圍內。此時,脈波波型ΜΗ的基本 頻率大多在1 Η ζ〜2Η ζ的範圍。因此,在曰常生活中 體動波型ΤΗ的頻率成份是在低於脈波波型ΜΗ基本頻率 的頻率領域內。 另一方面,在慢跑等的運動之中,由於手臂擺動等的 影響,會若干增加體動波型ΤΗ的頻率成份,但是由於運 動量而增加脈搏數,會同時使脈波波型ΜΗ的基本頻率增 高。因此即使在運動中,體動波型ΤΗ的頻率成份一般都 是在低於脈波波型ΜΗ之基本頻率的頻率領域內。 體動分離部1 9係針對此點而分離體動成份者,其係 構成爲可忽略低於脈波波型ΜΗ之基本頻率的頻率領域。 此時,高於脈波波型ΜΗ之基本波成份的頻率領域中存在 有體動成份時會降低脈像的檢測精度。但是,如上述之體 動成份在低於脈波波型ΜΗ的基本波成份之頻率領域的可 能性較高,因此可以高精度進行脈像的檢測。圖2 2爲體 動分離部19的詳細方塊圖。波型整形部191是對脈波 波型ΜΗ施以波型整形,而產生與脈波波型ΜΗ同步之重 設脈波。具體而言,是藉上述圖6之阻尼振盪濾波器 1 0 1與零交叉檢測電路1 0 2等所構成》計數器1 9 2 是計算未圖示之時鐘脈衝,並藉上述重設脈波重新設定計 數値。又,平均値算出電路1 9 3可算出計數器1 9 2之 計數値的平均値。具體而言,是藉上述圖8表示之加法器 121、計算電路122,123、記憶體12 3等構成 即可。此時,藉平均値算出電路1 9 3所算出的平均値是 : 1 - I m 1^1 J I f u ! -1 ^^1 ^^1 ——- -- *τ {讳先閲讀背面之注意事項再填艿本頁) 本紙張尺度遥用中國國家標準(CNS ) A4規格(210X297公釐) -67 - 好W部中夾打準而hJr消资合作ii印掣 i 416841 A7 , B7 五、發明説明(65) 對應脈波波型ΜΗ的平均周期。因此,只須參照平均値即 可檢測脈波波型ΜΗ的基本頻率。 其次,置換電路1 9 4是根據上述平均値來特定包含 脈波波型ΜΗ之基本頻率的頻率領域。例如,上述平均値 顯示0.7 1秒時,基本頻率形成1.4Η ζ,因此所特定之 頻率領域形成1Hz〜1.5Hz。隨後之置換電路 1 9 4是對於特定頻率領域未滿的頻率領域,將脈波修正 數據MKD’置換成「〇」而產生體動分離脈波數據 T B D。藉此,在脈像的判定時可無視於低於脈波波型 MH之基本頻率的頻率領域的成份。此時,脈波成份會與 體動成份同樣被置換成「0」,但是脈波波型MH的特徵 部份係存在於較基本波頻率高領域的頻率領域,因此即使 置換爲「0」仍幾乎不致於影響脈像的判定。 根據上述所產生的體動分離脈波數據TBD,圖2 1 表示之脈像數據產生部12係可進行脈像的判定並產生脈 像數據ZD。此外,一旦將脈像數據ZD供應於顯示部 13時,顯示部13除了例如,「平脈」、「弦脈」、「 滑脈」等文字之外,並會顯示特定的記號或圖符。 1 — 6 - 2 :第4實施形態之動作 其次,參閱圖式說明第4實施形態的動作如下。 此一例中,如藉脈波檢測用感測器單元1 3 0檢測圖 1 6 ( a )表示之脈波波型MH (基本波頻率1·3Ηζ ) 時,期間Tc之脈波修正數據MKD’係形成圖17所示 —Bn In n ^ {誚先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(2IOX297公釐) -68- 好沪部中呔^卑^,-^-!-消费合竹·印i'i a? ί A ]6Q4] ___B7 五、發明説明(66) 者。 此時,由於置換電路1 9 4所特定的頻率領域形成 1.0Hz〜l_5Hz,因此形成置換對象的頻率領域會形 成對應0·5Ηζ〜1.0Hz的Ma 1 2〜Ma 8 2及對應 0Hz〜0·5Ηζ的Mall〜Ma81。因此,將脈 波數據MKD’的數據Mai 2〜Ma 82、Mall〜 Ma 8 1置換爲「0」而產生圖2 3表示的體動分離脈波 數據T B D。 隨後之脈像數據產生部12是根據該體動分離脈波數 據T B D判定脈像。此一例中,期間t 2、t 3之2 . 0 Hz以上的合計S1爲28,因此形成「S 1215」。 又,期間t 2之4.0〜3.0Hz之頻率成份的合計S2是 形成9。另外,期間t 3之4.0〜3.0Hz之頻率成份的 合計S3則是形成13»因此形成「S2<S3」。如上 述,根據上述判定基準可判定滑脈,脈像數據產生部1 2 係產生顯示作爲脈像數據Z D之滑脈的數據D k。根據上 述第4實施形態體動成份係巧妙利用機率高而存在低於脈 波波型Μ Η的基本波頻率成份之頻率領域的體動性質來分 離體動成份。因此於第2、第3實施形態中省略所須要之 加速度感測器2 1及第2子波轉換部1 0 Β等構成,並且 即使體動的存在仍可正確地檢測脈像。 1 _ 7 :第5實施形態 上述之第2〜第4實施形態中,係對脈波波型ΜΗ施 (邻先閲讀背面之注意事項再填巧本頁) .丨裝.Once the pulse wave correction data MKD 'and the body motion correction data TKD' are supplied to the masking section 18, the masking section 18 can subtract the body motion correction data TKD1 from the pulse wave correction data MKD. Pulse wave correction data MKD 'excluding body motion components. Thereby, even when the body motion component is included, the influence can be eliminated and the same pulse wave correction data MKD as the pulse wave correction data MKD 'obtained from the pulse wave pattern at quiet time is obtained. The unit 12 determines the pulse image based on the pulse wave correction data MKD ". In this example, the total S1 of 2.0 Hz or more during the period t 2 and t 3 is 28, and thus" S1215 "is formed. In addition, the total S2 of the frequency components from 4.0 Hz to 3.0 during the period t 2 becomes 9. The total S3 of the frequency components from 4.0 Hz to 3.0 during the period t 3 is 13 13 and therefore "S2 < S3" is formed. As described above, the pulse image data generating unit 12 that is determined to be a Huamai based on the above-mentioned determination criterion generates data Dk that is displayed as the pulse image data ZD. As in the second embodiment described above, the body motion wave pattern is also subjected to wavelet conversion, and the body motion component is eliminated accordingly, so that the pulse image can be accurately detected even in daily life or exercise. 1-15: In the third embodiment, in the second embodiment, the paper size of the pulse wave type wavelet and body motion wave type is the standard of China National Standard Car (CNS) A4 (210 × 2ίΠ mm) (诮 read the first Note on this page) 丨 ^. -S -64- A7 1 '416841 _B7___ V. Description of the Invention (62) After the wavelet has been subjected to the frequency correction, the wavelet pattern is shielded by the wavelet of the body motion pattern. At this time, it is necessary to have two types of frequency correction waveforms to form a complicated structure. The third embodiment is created in view of this point. The appearance of the third embodiment is the same as the first embodiment shown in FIG. 2. The appearance and configuration of the form are the same. However, the pulse wave diagnosis device according to the third embodiment is provided with an acceleration sensor 21 inside the same device body 110 as the second embodiment. Next, the pulse wave related to the third embodiment will be described. The electrical configuration diagram of the diagnostic device is as follows. Figure 20 is a block diagram of the pulse wave diagnostic device according to the third embodiment. In the figure, the first and second wavelet conversion sections 10A and 10B and the frequency correction section 11 are respectively Has the son of the first embodiment The conversion unit 10 and the frequency correction unit 11 have the same structure. The central part of the iif unit ίτ. ^ · ^ ,, 3ί-τelimination cooperation ί 卬 r ^^ 1 m-I—-^^ 1 I- If Hr 1 « ^^ 1 n TJ u?-* (诮 Please read the precautions on the back before filling in this page) The masking unit 18 removes the body motion analysis data TKD from the pulse wave analysis data MKD before applying frequency correction. The body motion component removes the pulse wave data. After that, the frequency correction unit 11 generates the pulse wave correction data MKD ", which can apply a certain frequency correction to the dynamic density of each frequency for the body motion removal pulse wave data. The level comparison can be performed between different frequency components. Secondly, the pulse image data generating unit 12-Once the pulse image data ZD is generated based on the pulse wave correction data MKD, the pulse image data ZD can be displayed on the display unit. 13. As described above, according to the third embodiment, since the frequency correction section 11 is provided at the rear section of the shielding section 18, a pulse wave diagnosis device can be simply constructed, and a specific pulse image can be formed even when there is body movement. The paper size is in accordance with the Chinese National Standard ([Yang] 8 4 specifications (210 father 297 mm) -65- a? '4 16 8 4 1 B7 V. Description of the invention (63) 1 6: In the second and third embodiments of the fourth embodiment, the body motion wave type TH is detected by the acceleration sensor 21 and the body motion wave is detected. In addition, comparing the wavelet conversion result of the pulse wave type M 与 with the wavelet conversion result of the body wave type T ,, the body motion contained in the frequency component of the pulse wave type M》 can be compared. The components are removed and the pulse image is specified. However, since the acceleration sensor 21 and the second wavelet conversion unit 10 Β are required, the structure is complicated. The fourth embodiment provides a pulse wave diagnosis device that not only has a simple structure but can accurately specify its pulse shape even when a body movement exists in view of this point. 1-6-1: The structure of the fourth embodiment The fourth embodiment The appearance configuration of the shape-related pulse wave diagnostic device is the same as the appearance configuration of the first embodiment shown in FIG. 2, and its description is omitted here, and only the electrical configuration is described below. FIG. 21 is a block diagram of a pulse wave diagnosis apparatus according to the fourth embodiment, except that a body motion separation section 19 is additionally provided between the frequency correction section 11 and the pulse image data generating section 12, and is the same as the first embodiment. The illustrated FIG. 4 is the same. The differences will be described below. The body motion separation unit 19 separates and removes body motion components from the pulse wave correction data MKD and generates body motion separation pulse wave data TBD. Among them, the body motion separation unit 19 utilizes the body motion properties described below. Body movement is caused by the arm swinging up and down or the vibration of the arm when walking, but in daily life, the human body has almost no instantaneous swing. Therefore, in daily life, the frequency component of the body motion frequency waveform TT is not high. Generally --------------------- order (ti read the precautions on the back before filling in the smart book Page) This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X297 mm) 66- Central i? ^^ h-T " · Printed by cooperating women A7 f 416841 __B7_ V. Description of the invention (64) In the range of 0Hz ~ 1Hz. At this time, the basic frequency of the pulse wave pattern MΗ is often in the range of 1 Η ζ to 2 Η ζ. Therefore, in daily life, the frequency component of the body wave type TQ is in a frequency range lower than the basic frequency of the pulse wave type MQ. On the other hand, during sports such as jogging, the frequency component of the body wave shape TQ will be increased slightly due to the effects of arm swings, etc. However, increasing the pulse number due to the amount of exercise will also make the basic frequency of the pulse wave shape MQ Increase. Therefore, even in motion, the frequency component of the body motion wave type TQ is generally in a frequency range lower than the basic frequency of the pulse wave type MQ. The body motion separation unit 19 is designed to separate body motion components in response to this point, and is configured to ignore a frequency range lower than the basic frequency of the pulse wave type MZ. At this time, when there is a body motion component in a frequency region higher than the fundamental wave component of the pulse wave type MZ, the pulse image detection accuracy is reduced. However, as described above, the body motion component is more likely to be in a frequency range lower than the fundamental wave component of the pulse wave type MW, so that the pulse image can be detected with high accuracy. 22 is a detailed block diagram of the body motion separation section 19. The wave shape shaping unit 191 performs wave shape shaping on the pulse wave shape MW, and generates a reset pulse wave synchronized with the pulse wave shape MW. Specifically, it is constituted by the above-mentioned damped oscillation filter 1 0 1 and zero-cross detection circuit 1 0 2 in FIG. 6. The counter 1 9 2 calculates a clock pulse (not shown), and resets the pulse wave by using the reset pulse. Set the count 値. The average 値 calculation circuit 193 can calculate the average 値 of the count 値 of the counter 192. Specifically, it may be constituted by the adder 121, the calculation circuits 122, 123, and the memory 123 shown in FIG. 8 described above. At this time, the average 値 calculated by the average 値 calculation circuit 193 is: 1-I m 1 ^ 1 JI fu! -1 ^^ 1 ^^ 1 ——--* τ {Do not read the note on the back first Please re-fill this page) This paper uses the Chinese National Standard (CNS) A4 size (210X297 mm) for this paper size -67-Good standard in the Ministry of Commerce and hJr Consumer Investment Cooperation 416841 A7, B7 V. DESCRIPTION OF THE INVENTION (65) Corresponds to the average period of the pulse wave pattern MZ. Therefore, the basic frequency of the pulse wave pattern MW can be detected simply by referring to the average 値. Next, the replacement circuit 194 specifies a frequency range including the fundamental frequency of the pulse wave pattern MH based on the average chirp. For example, when the above-mentioned average 0.7 is displayed for 0.7 1 second, the fundamental frequency becomes 1.4Η ζ, so the specified frequency range is 1Hz to 1.5Hz. The subsequent replacement circuit 194 replaces the pulse wave correction data MKD 'with "0" for the frequency range that is not full in the specific frequency range to generate body motion separation pulse wave data T B D. Thereby, the components in the frequency domain which are lower than the fundamental frequency of the pulse wave pattern MH can be ignored in the determination of the pulse image. At this time, the pulse wave component will be replaced with "0" like the body motion component, but the characteristic part of the pulse wave type MH exists in the frequency range higher than the basic wave frequency, so even if it is replaced with "0" It hardly affects the determination of pulse image. Based on the body motion separation pulse wave data TBD generated above, the pulse image data generating section 12 shown in FIG. 2 can determine the pulse image and generate the pulse image data ZD. In addition, once the pulse image data ZD is supplied to the display section 13, the display section 13 displays specific symbols or icons in addition to characters such as "Pingmai", "Xuanmai", and "Huamai". 1-6-2: Operation of the fourth embodiment Next, the operation of the fourth embodiment will be described with reference to the drawings. In this example, when the pulse wave detection sensor unit 130 is used to detect the pulse wave type MH (fundamental wave frequency 1 · 3Ηζ) shown in FIG. 16 (a), the pulse wave correction data MKD 'in the period Tc The system is shown in Figure 17—Bn In n ^ {诮 Please read the notes on the back before filling in this page) This paper size is applicable to the Chinese National Standard (CNS) A4 specification (2IOX297 mm) -68- Good Shanghai Department 呔 ^ Humble ^,-^-!-Consumption Hezhu · Yin i'i a? Ί A] 6Q4] ___B7 V. Inventor (66). At this time, since the specific frequency range specified by the replacement circuit 194 is 1.0 Hz to 1-5 Hz, the frequency range that forms the replacement object will form Ma 1 2 to Ma 8 2 corresponding to 0 · 5Ηζ to 1.0 Hz and 0 Hz to 0 · 5Ηζ Mall ~ Ma81. Therefore, the data Mai 2 to Ma 82 and Mall to Ma 8 1 of the pulse wave data MKD 'are replaced with "0" to generate the body motion separation pulse wave data T B D shown in Fig. 23. The subsequent pulse image data generating section 12 determines the pulse image based on the body motion separation pulse wave data T B D. In this example, since the total S1 of 2.0 Hz or more between the periods t 2 and t 3 is 28, "S 1215" is formed. In addition, the total S2 of the frequency components from 4.0 to 3.0 Hz during the period t 2 is formed as 9. In addition, the total S3 of the frequency components of 4.0 to 3.0 Hz during the period t 3 is 13 13 and therefore "S2 < S3" is formed. As described above, the Hua mai can be determined based on the above-mentioned determination criterion, and the pulse image data generating unit 12 generates data D k that displays the Hua mai as the pulse image data Z D. According to the above-mentioned fourth embodiment, the body motion component is made by clever use of body motion properties in a frequency range that has a high probability and is lower than the fundamental wave frequency component of the pulse wave type M 来 to separate the body motion component. Therefore, in the second and third embodiments, the acceleration sensor 21 and the second wavelet conversion unit 10B, etc., which are necessary, are omitted, and the pulse image can be accurately detected even in the presence of body motion. 1 _ 7: 5th embodiment In the above 2nd to 4th embodiments, the pulse wave type M is applied (next to the precautions on the back, then fill in this page).
、1T 本紙浪尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 69 - A7 },4 1664 1 __ B7 ' 五、發明説明(67 ) 以子波轉換而從轉換結果除去體動成份•並根據其時間頻 率領域的能源位準特定脈像。但是|在子波處理中,對於 子波轉換的轉換結果施以逆子波轉換時即可使時間軸上的 信號重現爲一般所知悉《第5實施形態是著眼於該點,對 於除去體動成份的子波轉換結果施以逆子波轉換而在時間 軸上特定脈像。 1 一 7 — 1 :第5實施形態之構成 第5實施形態相關之脈波診斷裝置的外觀構成係與圖 2表示之第1實施形態的外觀構成相同而省略其說明,並 就其電氣構成說明如下。且在該例中,以對於上述第4實 施形態利用逆子波轉換的場合爲例說明之,也可以對第2 、第3實施形態施以逆子波轉換而在時間軸上特定脈像。 圖2 4是表示第5實施形態相關之脈波診斷裝置的方 塊圖。第5實施形態相關之脈波診斷裝置之未使用頻率修 正部1 1的點、設置脈像判定部2 2來代替脈像數據產生 部1 2的點、在體動分離部1 9與脈像判定部2 2之間設 置逆波轉換部2 0的點與圖2 1表示之第4實施形態的脈 波診斷裝置不同。並說明其不同點如下。 首先,未設置頻率修正部1 1是由於本例中,從時間 軸上的信號波型特定脈像,因此不須在各時間頻率領域內 比較子波轉換的轉換結果。又,其他理由爲,逆子波轉換 是對於子波轉換的轉換結果施以處理而使時間軸上的信號 波型重現,因此施以頻率修正時可使信號波型正確地重現 ----------^------ΪΤ------.^ {ii先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中图國家標準(CNS ) A4規格(210X297公釐) -70- 五、發明説明(68) A7 B7 ^ J6d4 1 其次,逆子波轉換部2 0是形成與子波轉換部1 0相 輔的關係,可以下述式2運算。 》(x)=士//r2_ (⑹古少 x-b ' dadb a a£ •式2 好沪部中决打準而h-T消贽合竹私印欠 藉此,可根據體動分離脈波數據T B D獲得體動分離 脈波波型TMH 〇例如藉脈波檢測用感測器單元1 3 0檢 測圖16 (a)表示之脈波波型MH時,在期間Tc中, 脈波解析數據MKD係形成圖2 3所示者。其次,藉體動 分離部1 9除去體動成份時,可獲得體動分離脈波數據 TBD。並且,以逆子波轉換部2 0施以逆子波轉換時, 可產生作爲體動分離脈波波型TMH之圖16(c)表示 的脈波波型Μ Η ’ 。 其次,脈像判定部2 2首先爲了特定脈像而抽出特定 體動分離脈波波型ΤΜΗ的形狀之波型參數》其中,1脈 動量的體動分離脈波波型ΤΜΗ如形成圖2 5表示的形狀 時,波型參數可定義如下。此外,圖2 1中,縱軸爲血壓 ,橫軸爲時間。 ①當對應1脈動之脈波豎立後(以下,稱此一豎立時 刻稱之爲脈波開始時間)以至對應其次脈動之脈波開始直 立的時間t 6。 ----------- (誚先閱讀背面之注意事項再填艿本頁) 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X25*7公釐) -71 - 好矛部·ΐΓ-Α^.^·ΛΝ.τ消责合作Jri印ίι A7 t 4 16 8 4 1 _ B7 _ __ 丨 — ' - -- - I , — . __ 五、發明説明(69) 0在脈波內依序呈現極大點P1、極小點P2、極大 點P3、極小點P4及極大點P5的血壓値y 1〜y 2。 ③脈波開始時刻以後•呈現上述各點P 1〜P 2的經 過時間t 1〜t 5。 脈像判定部2 2是爲了算出波型參數,而對於上述極 大點或極小點,抽出與該各點關連之所謂「峰値資訊」的 資訊。並且,峰値資訊的詳細係與其內容相關之脈像判定 部的構成 '動作,因此在說明電路構成時詳細說明峰値資 訊。 圖2 6是脈像判定部2 2之構成方塊圖。圖中, 1 8 1是微電腦|其可控制各構成部份》1 8 4是藉 RAM所構成之波型記憶體,可藉A/D轉換器1 8 2獲 得體動分離脈波波型TMH的波型値,並依序予以記憶。 1 9 5是波型値位址量測器,從微電腦1 8 1輸出波型採 取指示S T A R T的期間,計測抽樣時鐘,並將其計測 結果作爲須寫入波型値之波型値位址ADR 1輸出•可藉 微電腦18 1監測該波型値位址ADR 1。 1 9 6是選擇器,未從微電腦1 8 1输出選擇信號 S 1時,選擇波型値位址量測器1 9 5輸出的波型値位址 ADR1而供應至波型記憶體1 84的位址輸入端。另一 方面,從微電腦1 8 1輸出選擇信號S 1時,藉微電腦 1 8 1選擇所輸出的讀出位址ADR4而供應至波型記憶 體184的位址輸入端。 2 0 1爲微分電路,可運算從低通濾波器1 8 3依序 11 1 I i I n I 11 I PI .^1 M {1i先閲讀背面之注意事項再填本頁) 本紙張尺度適和中囡國家標準(^5)戍4規格(21(^297公釐) -72- A7 丨 4 1 684 1 B7 五、發明説明(7〇) 輸出之波型値W的時間微分而輸出< 2 0 2是零交叉檢測電路,藉著使波型値W形成極大 値或極小値使波型値W的時間微分爲〇時輸出零交叉檢測 脈波A。更詳述時,零交叉檢測電路2 0 2係於圖2 7例 示之脈波波型中•作爲檢測峰値點PI 、P2、..用所 設置的電路,輸入對應該等峰値點之波型値W時可輸出零 交叉檢測脈波Z = 2 0 3爲峰値位址量測器,從微電腦1 8 1輸出波型 採取指示START的期間,測量零交叉檢測脈波Z,而 將其測量結果作爲峰値位址ADR2輸出。 2 0 4爲移動平均算出電路*是算出現時點爲止微分 電路2 0 1所輸出之過去預定個數量波型値W之時間微分 値的平均値,將其結果作爲顯示現時點爲止之脈波傾斜的 傾斜資料S L P輸出。 2 0 5是記憶下述峰値資料用而設置之峰値資料記億 體。其中•針對峰値資訊的詳細說明如下*即,圖28表 示之峰値資訊的詳細內容係列舉如下。 ①波型値位址ADR 1. 當低通濾波器1 8 3所輸出之波型値W形成極大値或 極小値時,從波型値位致測量器1 9 5所輸出的寫入位址 。換言之,即相當於極大値或極小値的波型値W之波型記 億體184的寫入位址。 IK I n ( Μ <誚先Ν1Ϊ*背面之注意事項再縝巧本頁) 本紙張尺度適用中國國家#準(CNS ) A4規格(210X297公釐) -73- 416841 A7 B7 五、發明説明(71)、 1T This paper wave scale applies the Chinese National Standard (CNS) A4 specification (210 × 297 mm) 69-A7}, 4 1664 1 __ B7 'V. Description of the invention (67) The wavelet transform is used to remove body motion components from the conversion result. And specific pulse image based on its energy level in the time-frequency domain. However, in the wavelet processing, when the inverse wavelet conversion is performed on the conversion result of the wavelet conversion, the signal on the time axis can be reproduced as a general knowledge. The fifth embodiment focuses on this point, and removes body motion. The component wavelet transform result is subjected to inverse wavelet transform to specify a pulse image on the time axis. 1 7 — 1: Configuration of the Fifth Embodiment The appearance configuration of the pulse wave diagnosis device related to the fifth embodiment is the same as the appearance configuration of the first embodiment shown in FIG. 2, and its description is omitted, and the electrical configuration is described. as follows. Furthermore, in this example, the case where the inverse wavelet conversion is used for the fourth embodiment is described as an example, the inverse wavelet conversion may be applied to the second and third embodiments to specify the pulse image on the time axis. Fig. 24 is a block diagram showing a pulse wave diagnosis apparatus according to a fifth embodiment. In the pulse wave diagnosis apparatus according to the fifth embodiment, the points of the unused frequency correction section 11 and the pulse image determination section 22 are provided instead of the points of the pulse image data generation section 12 and the body motion separation section 19 and the pulse image. The point where the inverse wave conversion unit 20 is provided between the determination units 22 is different from the pulse wave diagnosis apparatus of the fourth embodiment shown in FIG. 21. The differences are explained below. First of all, the frequency correction section 11 is not provided. In this example, since the specific pulse image of the signal waveform on the time axis is used, it is not necessary to compare the conversion results of the wavelet transform in each time-frequency domain. Another reason is that inverse wavelet conversion is to process the conversion result of wavelet conversion to reproduce the signal waveform on the time axis. Therefore, when frequency correction is applied, the signal waveform can be accurately reproduced --- ------- ^ ------ ΪΤ ------. ^ {Ii Read the precautions on the back before filling out this page) This paper size applies the Chinese National Standard (CNS) A4 specification ( 210X297 mm) -70- V. Description of the invention (68) A7 B7 ^ J6d4 1 Secondly, the inverse wavelet conversion unit 20 forms a complementary relationship with the wavelet conversion unit 10, which can be calculated by the following formula 2. 》 (X) = 士 // r2_ (⑹ 古 少 xb 'dadb aa £) • Formula 2 A good match in the Ministry of Shanghai and hT eliminate the need for a private seal. This can be obtained from the body motion separation pulse wave data TBD The body motion separates the pulse wave pattern TMH. For example, when the pulse wave pattern MH shown in FIG. 16 (a) is detected by the pulse wave detection sensor unit 130, the pulse wave analysis data MKD is formed during the period Tc. It is shown by 2 3. Secondly, when the body motion component is removed by the body motion separation unit 19, the body motion separation pulse wave data TBD can be obtained. When the inverse wavelet conversion unit 20 performs the inverse wavelet conversion, it can be generated as The body motion separation pulse wave pattern TMH is shown in FIG. 16 (c) of the pulse wave pattern MΗ '. Next, the pulse image determination unit 22 first extracts a shape of a specific body movement separation pulse wave pattern TMΗ for a specific pulse image. Among the wave shape parameters, where the body motion separation pulse wave shape TM with 1 pulsation amount forms the shape shown in FIG. 25, the wave shape parameters can be defined as follows. In addition, in FIG. 21, the vertical axis is blood pressure and the horizontal axis It is time. ① When the pulse wave corresponding to 1 pulsation is erected (hereinafter, this erection time is called the pulse wave start time) and the The time at which the pulsating pulse starts to stand up t 6. ----------- (诮 Please read the notes on the back before filling in this page) The size of the paper is applicable to China National Standard (CNS) A4 (210X25 * 7 mm) -71-Good Spear Department · ΐΓ-Α ^. ^ · ΛΝ.τ Responsibility for cooperation Jri Yin A7 t 4 16 8 4 1 _ B7 _ __ 丨 — '---I, —. __ V. Description of the invention (69) 0 Blood pressures 极大 y 1 ~ y 2 of the maximum point P1, the minimum point P2, the maximum point P3, the minimum point P4, and the maximum point P5 are sequentially presented in the pulse wave. ③ The pulse wave starts After the time • The elapsed time t 1 to t 5 of each of the above points P 1 to P 2 is presented. The pulse image determination unit 22 is for calculating the wave shape parameters, and extracts the maximum or minimum points associated with the points from the above points. The so-called "peak peak information" information. The details of the peak peak information are related to the operation of the pulse image determination section related to its content. Therefore, the peak pulse information will be described in detail when describing the circuit configuration. The block diagram of the structure of 2 2. In the figure, 1 8 1 is a microcomputer | it can control the various components. 1 8 4 is a wave-shaped memory composed of RAM. The A / D converter 1 8 2 obtains the wave pattern of the body motion separation pulse wave pattern TMH and sequentially memorizes it. 1 9 5 is a wave pattern address measurement device, which is taken from the microcomputer 1 8 1 output wave pattern. During the period of START, the sampling clock is measured, and the measurement result is output as the waveform address ADR 1 to be written into the waveform. The waveform address ADR 1 can be monitored by the microcomputer 18 1. 1 9 6 is a selector. When the selection signal S 1 is not output from the microcomputer 1 8 1, the waveform / address measuring device 1 9 5 selects the waveform / address ADR1 and supplies it to the waveform memory 1 84. Address input. On the other hand, when the selection signal S 1 is output from the microcomputer 1 81, the microcomputer 1 81 selects the output read-out address ADR4 and supplies it to the address input terminal of the wave memory 184. 2 0 1 is a differential circuit, which can be calculated from the low-pass filter 1 8 3 in sequence 11 1 I i I n I 11 I PI. ^ 1 M {1i Please read the precautions on the back before filling this page) The paper size is suitable And China National Standard (^ 5) 戍 4 Specification (21 (^ 297mm) -72- A7 丨 4 1 684 1 B7 V. Description of the Invention (7〇) Waveform of output 値 W is time differentiated and output & lt 2 0 2 is a zero-crossing detection circuit. By making the waveform 値 W into a maximum or minimum, the time of the waveform 値 W is differentiated to 0 to output a zero-crossing detection pulse A. In more detail, zero-crossing detection The circuit 2 0 2 is in the pulse wave pattern exemplified in Fig. 27. • As the detection peak point PI, P2, ... Using the set circuit, inputting the wave shape 値 W corresponding to these peak points can output zero. The cross detection pulse wave Z = 2 0 3 is a peak-to-peak address measurement device. The output waveform from the microcomputer 1 8 1 is taken to indicate the START period, and the zero-cross detection pulse wave Z is measured, and the measurement result is used as the peak-to-peak address. ADR2 output. 2 0 4 is a moving average calculation circuit. * It is a time-differentiation level of a predetermined predetermined number of wave patterns 値 W output by the differential circuit 2 0 1 at the time of occurrence.値 The result is output as the slope data SLP showing the pulse wave inclination up to the current point. 2 0 5 is the memory of the peak peak data set for memorizing the peak peak data described below. Among them • Detailed description of the peak peak information It is as follows * That is, the detailed content series of the peak peak information shown in FIG. 28 is as follows: ① Waveform address ADR 1. When the waveform 値 W output by the low-pass filter 1 8 3 forms a maximum or minimum 値, The write address output from the waveform chirp measuring device 195. In other words, it is the write address corresponding to the maximum or minimum waveform 値 W of the wave shape memory 184. IK I n (Μ < 诮 N1Ϊ * Notes on the back of the page, and then this page is a good one) This paper size is applicable to China National Standard #CNS (A4) (210X297 mm) -73- 416841 A7 B7 V. Description of the invention (71)
0峰値類別B / T 寫入上述波型値位址A D R 1之波型値W是顯示爲極 大値T (Top)或極小値B (Bo.t tom)的資訊。0 peak type B / T Write the waveform of address A D R 1 above. Waveform W is displayed as extremely large T (Top) or extremely small B (Bo.t tom).
③ 波型値W 相當於上述極大値或極小値之波型値。③ The wave shape 値 W corresponds to the wave shape 値 of the maximum or minimum 极 described above.
④ 行程資訊S TRK 從瞬間其的峰値至該等峰値爲止之波型値的變化量》④ Itinerary information S TRK The amount of change in the waveform 値 from its peak to the peak 瞬间
⑤ 傾斜資訊S L P 至該等峰値爲止之過去預定個數量的波型値時間微分 的平均値。 (a )波型値及其峰値資訊的採取 藉微電腦181輸出波型採取指示START時·可 解除波型値位址測量器1 9 5及波型値位址測量器2 0 3 的重設·。 其結果,藉波型値位址測量器1 9 5開始抽樣時鐘0 的測量,其測量値是作爲波型値位址ADR 1而藉由選擇 器196供應至波型記憶體184。並且,將人體所檢測 之脈波信號輸入A/D轉換器1 8 2,根據抽樣時鐘0依 序轉換爲數位信號,藉低通濾波器1 8 3作爲波型値W依 序輸出。如上述所输出之波型値W是依序供應於波型記憶 - n ^^1 n n,a"^I— -I --- i (liitM讀背面之注意事項再填艿本5 ) 好浐部中次V:準而Ί.Τ消於合作i.i印y- 本紙張尺度適扣中图囷家標率(CNS ) A4規格(210X297公釐) -74- 416841 A7 __ _B7 五、發明説明(72) 體1 8 4,在其時點寫入藉波型値位址ADR 1所指定的 記憶領域中。根據以上的動作,可將對應圖2 7例示之脈 波波型的連續波型値W儲存在波型記億體1 8 4內。 另一方面,與上述動作平行可藉以下說明進行對於峰 値資訊的檢測及峰値資訊記憶體2 0 5的寫入。 首先,體動分離脈波波型TMH之波型値W的時間微 分是藉著微分電路2 0 1加以運算》將此時間微分輸入零 交叉檢測電路2 0 2及移動平均算出電路2 0 4。移動平 均算出電路2 0 4係如上述,於每供應波型値W的時間微 分値時,運算過去預定個數之時間微分値的平均値(即, 波型平均値),將運算結果作爲傾斜資訊SLP輸出。其 中,波型値W在上升中或上升完後形成極大狀態時,以其 作爲傾斜資訊S L P輸出正値,下降中或下降完後形成極 小狀態時則輸出作爲傾斜資訊S L P而輸出負値。 並且,例如一旦從低通濾波器輸出對應圖2 7表示之 極大點P 1的波型値W時,以〇作爲時間微分而從微分電 路2 0 1輸出,並從零交叉檢測電路2 0 2輸出零交叉檢 測脈波Z。 其結果,可藉微電腦1 8 1讀取該時點之波型値位址 測量器1 9 5的測量値所成之波型位址ADR 1、波型値 W、峰値位址測量器的測量値所成之峰値位址ADR 2 ( 此時,ADR2 = 0)及傾斜資訊SLP。又,藉著零交 叉檢測脈波Z的輸出可使峰値位址測量器2 0 3的測量値 A D R 2形成1。 I n n I 裝 u I Μ (对先閏讀背面之注意事項再镇巧本两) 本紙張尺度適扣中國国家標準(CNS ) A4現格(210X297公釐) -75- A7 丨 416841 B7 五、發明説明(73) 另一方面*微電腦1 8 1可根據所獲得的傾斜資訊 S L P的符號作成峰値種別B/T。輸出如上述之極大値 P 1的波型値W時,於其時點輸出正的傾斜資訊,因此微 電腦1 8 1可設定使峰値資訊B/T値對應極大値。且微 電腦1 8 1可指定峰値位址測量器2 0 3所獲得之峰値位 址ADR2 (此時,ADR2 = 0)作爲寫入狀態位址 ADR3,以波型値W、對應該波型値W之波型位址 ADR1、峰値種別B/T、傾斜資訊作爲第1次的峰値 資訊寫入峰値資訊記憶體2 0 5內。並且,第1次峰値資 訊的寫入時,由於不具瞬間前的峰値資訊而不能進行行程 資訊S TRK的製作及寫入。 隨後一旦從低通濾波器1 8 3輸出對應圖2 7表示之 極小點P 2的波型値W時,與上述同樣輸出零交叉檢測脈 波Z *而藉微電腦1 8 1獲得寫入位址ADR1、波型値 W、峰値位址ADR2 (=1)、傾斜資訊SLP (0) 〇 另外,與上述相同I利用微電腦1 8 1根據傾斜資訊 SLP決定峰値種別B/T(此時,” B” )。又,藉微 電腦1 8 1讀出僅較峰値位址ADR2小1的位址而作爲 位址ADR3供應於峰値資訊205,讀出第1次寫入之 波型値W。並且,利用微電腦1 8 1運算從低通濾波器 1 8 3此次獲得的波型値W及峰値資訊記億體2 0 5所讀 出之第1次波型値W的差分,求得行程資訊STRK。如 上述所求得的峰値類別B/T、行程資訊STRK係與其 -76- ("先閲讀背面之注意事項再填艿本頁) 本紙张尺度適用中囤囷家標準(CNS ) A4規格(210X297公釐) i 416841 A7 ___B7 五、發明说明(74) 他資訊*即波形値位址ADR 1、波型値W、傾斜資訊 S L P等同時作爲第2次峰値資訊而寫入對應峰値資訊 2 0 5之峰値位址ADR3 = 1的記憶領域內。以後在檢 測峰値點P3、P4 _ .後也可以進行同樣的動作。 此外,經過預定時間時,藉微電腦1 8 1停止波型採 取指示S TART的輸出,完成波型値W及峰値資訊的採 取。 (b )脈波波型的分割處理 記億於峰値資訊記憶體2 0 5的各種資訊中,可特定 對應進行波型參數的採取之1脈動置的波型之資訊用處理 是藉微電腦181進行者。 首先•從峰値資訊記憶體2 0 5依序讀出對應各峰値 點P2、P2、..之傾斜資訊SLP及行程資訊 S TRK。其次,從各行程資訊S TRK中選擇對應正傾 斜之行程資訊(即·對應傾斜資訊SLP形成正値者), 更從該等行程資訊中選擇較大値之上位預定個數。並從所 選擇之行程資訊S TRK中選擇相當於中央値,獲得進行 波型參數的抽出之1脈動量脈波之直立部(例如圖2 7中 ,符號S TRK表示之直立部)的行程資訊。另可求得較 該等行程資訊之峰値位址的1個前之峰値位址(即,進行 波型參數抽出之1脈動量的脈波開始點P 6之峰値位址) n ]—_ I -- I— —I— I I I.XJ^-. —^1 an n n m (对it閱讀背面之注意事項再填巧本頁) 本紙張尺度速用中國國家標準(CNS )六4規_格(210X297公釐) -77- Γ 416841 A7 一 B7 五、發明説明(75) (c )波型參數的抽出 微電腦181係參照對應記憶在峰値資訊記憶體 2 0 5的上述1脈動量脈波的各峰値資訊算出各波型參數 。此一處理是例如藉以下可求得。 ①血壓値y 1〜y 5 分別將對應峰値點P7〜P11的波型値設定爲y1 〜y 5。 0時間t 1 從對應峰値點P 7的波型位址減去對應於峰値點P 6 的波型位址,將其結果乘以抽樣時鐘P而算出t1。 ③時間t 2〜t 6 與上述t 1相同,根據對應之各峰値點間的波型位址 差加以運算。 且,將上述所獲得的各波型參數儲存於微電腦1 8 1 內部的緩衝記憶體內。 (d )根據波型參數之脈像的判定處理 參閱圖2 9之流程圖說明根據波型參數之脈像的判定 處理如下。 d - 1 :主波之波型寬Wt算出動作 1 I n n 、1τ—ϋ i 1^1 n 1 {对先閱讀背面之注意事項再4艿本頁) 本紙張尺度適用中國国家標準(CNS ) Α4規格(210X297公釐) -78· *f浐部消於合竹妇卬欠 A7 I 4 1684 1 __ B7 五、發明説明(76) 如上述之峰値資訊爲圖2 5表示之波型峰値P 1〜 P5的時間t 1〜t 5,血壓yl〜y4及波型的1週期 t 6所構成。一般,脈波波型是由最初升降所產生的主波 (對應峰値點P1),隨後之重叠脈動前波(對應對應峰 値點P3) •降中狹(從峰値點P3對應峰値點P4)及 重叠脈動波(對應峰値點P 5 )所構成。主波是相當於左 心室之急遽驅出期。重叠脈動前波是藉大動脈之彈性擴大 與抵消反射波的相互關係所構成》中狹波是表示左心室擴 張期的大動脈壓力,對應擴張期壓。另外,重疊脈動波是 隨著大動脈閥封閉之外端血流的逆流波。 微電腦1 8 1是根據峰値資訊判別脈波的種類如下》 在此之前首先算出圖2 5表示之Wt »Wt是從主波高度 y 1的1/3位置之波型寬。圖2 1中,微電腦1 8 1係 算出2*yl/3(步驟S300),將算出的結果與波 型記億體1 8 4所讀出之波高値依序比較。且將兩者一致 時的波型位址儲存在微電腦1 8 1內的緩衝記憶體內(步 驟S301)。藉此可求得點Qa、Qb的時間,並運算 兩者差而算出主波之波型寬Wt (步驟S302)。 d - 2 :脈種類的判別動作 其次,藉微電腦1 8 1判別脈的種類如下。 ①弦脈係如圖1 1所示,由於是融合重疊脈動前波與 主波,因此,其特徵爲1 )主波較寬,且對於主波的高度 形成較高的重疊脈動前波高度。因此,微電腦1 8 1可運 ---------裝------訂 (却先閱讀背面之ii意事項再硪艿本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -79- 4 1 6841 A7 B7 五、發明説明(77) 算以下的關係式(55) 爲弦脈(步驟303) » (59),滿足該等時則判定 0 . 20<Wt/t<0 . 28 y3/yl^0-7 y4/yl^0 . 5 Cy5-y4)/yl<〇 · 〇3 t 1 < 0 . 1 2 (55) (56) (57) (58) (59) 平脈是如圖1 2所示,爲主波、重疊脈動前波、重叠 脈動波所構成的三峰波》因此,微電腦1 8 1可運算以下 的關係式(60)〜(64),滿足該等時判定爲平脈( 步驟3 0 4 )。 y 3 / y 1 < 〇 . 7 y3/yl>y4/yl 0 -⑤ Slope information S L P The average of time differentials of a predetermined number of wave patterns (time difference) over the peaks. (a) The waveform and its peak information are taken by the microcomputer 181 to output the waveform taking instruction START. The waveform and address measuring device 195 and the waveform and address measuring device 2 0 3 can be reset. ·. As a result, the measurement of the sampling clock 0 is started by the wave pattern address detector 195, and the measurement signal is supplied to the wave pattern memory 184 as the wave pattern address ADR 1 through the selector 196. Furthermore, the pulse wave signal detected by the human body is input to the A / D converter 1 8 2 and sequentially converted into a digital signal according to the sampling clock 0, and the low-pass filter 1 8 3 is sequentially output as the waveform 値 W. The waveforms output as above 値 W are sequentially supplied to the waveform memory-n ^^ 1 nn, a " ^ I— -I --- i (liitM read the precautions on the back and fill out this 5) Good? Part V of the Ministry of Standards: quasi and Ί disappeared through cooperation ii. Printing- The paper size is suitable for deduction in the Chinese standard (CNS) A4 specification (210X297 mm) -74- 416841 A7 __ _B7 V. Description of the invention ( 72) The body 1 8 4 is written into the memory area designated by the borrowed wave type address ADR 1 at that time. According to the above operation, the continuous wave pattern 値 W corresponding to the pulse wave pattern illustrated in FIG. 27 can be stored in the wave pattern recorder 184. On the other hand, in parallel with the above-mentioned operation, the following description can be used to detect peak peak information and write peak peak information memory 205. First, the time differential of the waveform 値 W of the body motion separation pulse wave type TMH is calculated by the differential circuit 2 01. The time differential is input to the zero-crossing detection circuit 2 0 2 and the moving average calculation circuit 2 0 4. The moving average calculation circuit 2 0 4 is as described above. When the time differential 値 of the waveform 値 W is supplied, the average 値 of the time differential 値 (ie, the waveform average 値) of a predetermined number of past times is calculated, and the calculation result is used as the slope. Information SLP output. Among them, when the wave shape 値 W is in a maximum state during rising or after rising, it is used as the slope information S L P to output positive 値, and when it is reduced to a minimum state after falling, it is output as slope information S L P and is output as negative 値. Furthermore, for example, when a waveform 値 W corresponding to the maximum point P 1 shown in FIG. 7 is output from the low-pass filter, it is output from the differential circuit 2 0 1 with time differentiation of 0, and from the zero-cross detection circuit 2 0 2 Output zero-cross detection pulse wave Z. As a result, the microcomputer 1 8 1 can be used to read the measurement of the waveform at this point in time. The measurement of the waveform address ADR 1, the waveform 値 W, and the peak 値 address measuring device can be performed. The resulting peak address is ADR 2 (in this case, ADR2 = 0) and the slope information SLP. In addition, by detecting the output of the pulse wave Z at the zero crossing, the measurement Δ A D R 2 of the peak 値 address measuring device 2 0 3 can be set to 1. I nn I Loading u I Μ (Notes for reading the back of the book first, and then copy the two) The paper size is suitable for the Chinese National Standard (CNS) A4 format (210X297 mm) -75- A7 丨 416841 B7 V. Description of the invention (73) On the other hand, the microcomputer 1 8 1 can generate a peak type B / T based on the obtained sign of the slope information SLP. When the waveform 値 W of the maximum value P 1 as described above is output, positive slope information is output at that point in time. Therefore, the microcomputer 1 8 1 can be set so that the peak value information B / T 値 corresponds to the maximum value 値. And the microcomputer 1 8 1 can specify the peak address ADR2 (at this time, ADR2 = 0) obtained by the peak address address measuring device 2 0 3 as the write status address ADR3, with the waveform 値 W, corresponding to the waveform The W address ADR1, peak type B / T, and slope information are written as the first peak information in the peak information memory 2 0 5. In addition, at the time of writing the peak peak information for the first time, it is impossible to create and write the stroke information S TRK because there is no peak peak information immediately before. Then, once the wave pattern 値 W corresponding to the minimum point P 2 shown in FIG. 2 is output from the low-pass filter 1 8 3, a zero-cross detection pulse wave Z * is output in the same manner as described above, and the write address is obtained by the microcomputer 1 8 1 ADR1, waveform 値 W, peak address ADR2 (= 1), tilt information SLP (0) 〇 In addition, the same as above, using a microcomputer 1 8 1 to determine peak type B / T based on the tilt information SLP (in this case, "B"). In addition, the microcomputer 1 8 1 reads out an address which is only 1 smaller than the peak address ADR2 and supplies it as the address ADR3 to the peak address information 205, and reads out the waveform W of the first write. In addition, the difference between the first wave pattern 値 W read from the low-pass filter 1 8 3 and the peak wave information obtained from the low-pass filter 1 8 3 is calculated using a microcomputer 1 8 1 to obtain Itinerary information STRK. The peak-to-peak category B / T and itinerary information STRK obtained as described above are the same as -76- (" Read the precautions on the back before filling this page) This paper size applies the Chinese Standard (CNS) A4 (210X297 mm) i 416841 A7 ___B7 V. Description of the invention (74) Other information *, that is, waveform 値 address ADR 1, waveform 値 W, tilt information SLP, etc. are simultaneously written as the second peak 値 information and corresponding peak 値Information 2 0 5 in the memory area of address ADR3 = 1. The same operation can be performed after detecting the peak point P3, P4_. In addition, when the predetermined time elapses, the microcomputer 1 8 1 stops the output of the waveform acquisition instruction S TART and completes the acquisition of the waveform 値 W and peak information. (b) The segmentation processing of the pulse wave pattern is recorded in the various information of the peak wave information memory 205, and the information processing of the 1-pulse wave pattern that can be used to determine the waveform parameter is specified by the microcomputer 181 Proceeder. First • Read out the slope information SLP and stroke information S TRK corresponding to each peak point P2, P2, .. in sequence from the peak point information memory 2 0 5. Next, from each trip information S TRK, select the trip information corresponding to the positive tilt (that is, those who form a positive response to the tilt information SLP), and select a larger predetermined number from the trip information. And from the selected travel information S TRK, select the equivalent of the central 値 to obtain the travel information of the upright portion of the 1 pulse volume pulse wave (for example, the upright portion indicated by the symbol S TRK in FIG. 2) for the extraction of the wave shape parameters. . In addition, it is possible to obtain a previous peak address (that is, the peak address of the pulse wave start point P 6 of the 1 pulse amount with the wave shape parameter extraction) compared with the peak address of the itinerary information. —_ I-I— —I— II I.XJ ^-. — ^ 1 an nnm (Notes on the back of it, please fill in this page) This paper uses the Chinese National Standard (CNS) 6-4 rules _Grid (210X297mm) -77- Γ 841841 A7-B7 V. Description of the invention (75) (c) Extraction of the waveform parameters The microcomputer 181 refers to the above-mentioned 1 pulsation corresponding to the information stored in the peak-information memory 2 0 5 The information of each peak of the pulse wave is used to calculate each wave shape parameter. This process can be obtained by, for example, the following. ① The blood pressures 値 y 1 to y 5 are set to the waveforms 对应 corresponding to the peak points P7 to P11 to y1 to y 5, respectively. At time 0, t1 subtracts the waveform address corresponding to the peak point P6 from the waveform address corresponding to the peak point P7, and multiplies the result by the sampling clock P to calculate t1. ③ Time t 2 to t 6 are the same as t 1 above, and are calculated based on the wave shape address differences between the corresponding peaks and points. Moreover, each of the obtained waveform parameters is stored in a buffer memory inside the microcomputer 1 8 1. (d) Judgment processing of the pulse image based on the wave shape parameters Refer to the flowchart of FIG. d-1: Calculate the action of the wave width Wt of the main wave 1 I nn , 1τ—ϋ i 1 ^ 1 n 1 {Please read the precautions on the back first and then 4 艿 this page) The paper size applies the Chinese National Standard (CNS) Α4 specification (210X297 mm) -78 · * f The part disappears with the woman's daughter-in-law A7 I 4 1684 1 __ B7 V. Description of the invention (76) The above peak information is the wave shape peak shown in Figure 2 5 The time t 1 to t 5 of P 1 to P 5 is composed of blood pressure yl to y 4 and one cycle t 6 of the waveform. Generally, the pulse wave pattern is the main wave (corresponding to the peak point P1) generated by the initial rise and fall, and the subsequent overlapping pulse wave (corresponding to the peak point P3). Point P4) and an overlapping pulsating wave (corresponding to the peak point P 5). The main wave is equivalent to the acute expulsion phase of the left ventricle. The superimposed pulsatile wave is formed by the correlation between the expansion of the aorta and the offset of the reflected wave. The narrow wave is the aortic pressure that indicates the left ventricular dilatation phase and corresponds to the dilatation pressure. In addition, the superimposed pulsation wave is a countercurrent wave accompanying the blood flow outside the aortic valve. The microcomputer 1 8 1 judges the type of the pulse wave based on the peak-to-peak information as follows. "Before that, first calculate Wt» Wt shown in Fig. 25 as the width of the wave pattern from the main wave height y 1 1/3 position. In Fig. 21, the microcomputer 18 1 calculates 2 * yl / 3 (step S300), and sequentially compares the calculated result with the wave heights 读 出 read by the waveform recorder 184. And the waveform address when the two are consistent is stored in the buffer memory in the microcomputer 1 81 (step S301). With this, the times of the points Qa and Qb can be obtained, and the difference between them is calculated to calculate the mode width Wt of the main wave (step S302). d-2: Pulse type discrimination operation Next, the microcomputer 1 8 1 is used to determine the pulse type as follows. ① The chord pulse system is shown in Figure 11. Since the overlapping pulsating front wave and the main wave are fused, it is characterized by 1) the main wave is wider and the height of the main pulsating wave is higher. Therefore, the microcomputer 1 8 1 can be shipped --------- installed -------- order (but read the ii meanings on the back before 硪 艿 this page) This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) -79- 4 1 6841 A7 B7 V. Description of the invention (77) Calculate the following relational expression (55) as a pulse (step 303) »(59), when it is satisfied, judge 0. 20 < Wt / t < 0. 28 y3 / yl ^ 0-7 y4 / yl ^ 0. 5 Cy5-y4) / yl < 〇 · 〇3 t 1 < 0. 1 2 (55) (56) (57 ) (58) (59) The flat pulse is a three-peak wave composed of a main wave, an overlapping pulsating wave, and an overlapping pulsating wave, as shown in Figure 12. Therefore, the microcomputer 1 8 1 can calculate the following relational expression (60) ~ (64), if it is satisfied, it is judged as Pingmai (step 3 0 4). y 3 / y 1 < 〇. 7 y3 / yl > y4 / yl 0-
Sy4/yl<0 (y5-y4)/yl> 0 · 12<Wt/t<0 .05 (60) (61) (62) (63) (64) 裝. 订 滑脈是如圖1 3所示,幾乎形成主波與重疊脈動前波 重疊之雙峰波•因此,微電腦1 8 1可運算以下的關係式 (65)〜(68),滿足該等時判定爲滑脈(步驟 3 0 5 )- 本紙張尺度述用中國國家標準(CNS ) A4規格(210X 297公釐) -80- 五、發明説明(78) A7 B7 0 · 2<y3/yl<0 4 0 2<y4/yl<0 . 4 (y5-y4)/yl>0· W t / t < 〇 . 2 Ο • 4 » · · * (65)(66) ¢67) (68) 中头"T,iA'妗合竹iJ印" 如上述,一旦特定脈像的種類時,脈像判定部2 2係 產生顯示脈像之脈像數據ZD(步驟S306)。並且, 不符合上述弦脈、平脈、滑脈時,則以錯誤處理之(步驟 S 3 0 6 ) · 如上述之第5實施形態中,對於脈波波型MH施以子 波轉換,並巧妙利用體動的性質分離體動成份,再次構成 體動分離脈波波型TMH,藉此,可除去作爲噪音成份而 作用之體動成份,即使在有體動成份時仍可使用信號波型 正確地檢測脈像。 1 - 8 :第1章之變形例 本發明不僅限於上述之各實施形態,例如可進行以下 各種變形》 1 一 8 - 1 :頻率修正手段的省略 上述第1章之各實施形態中•在不同的頻率領域中雖 係使用比較能源用之頻率修正手段,但是也可以著眼於某 一頻率領域,根據其領域位準而特定脈像者。 (邻先閱讀背面之注意事項再硪巧本頁) 装·Sy4 / yl < 0 (y5-y4) / yl > 0 · 12 < Wt / t < 0 .05 (60) (61) (62) (63) (64) It is shown that a double-peak wave with a main wave and an overlapping pulsating wave is almost formed. Therefore, the microcomputer 1 8 1 can calculate the following relational expressions (65) to (68), and it is judged to be a slippery pulse when the time is satisfied (step 3 0 5 )-This paper uses China National Standard (CNS) A4 (210X 297 mm) -80- V. Description of the invention (78) A7 B7 0 · 2 < y3 / yl < 0 4 0 2 < y4 / yl < 0. 4 (y5-y4) / yl > 0 · W t / t < 〇 2 2 〇 • 4 »· * * (65) (66) ¢ 67) (68) Middle head " T, iA '妗As described above, once the type of pulse image is specified, the pulse image determination unit 22 generates pulse image data ZD that displays the pulse image (step S306). In addition, if it does not meet the above-mentioned Xuanmai, Pingmai and Huamai, it is treated as an error (step S306). As in the fifth embodiment described above, the pulse wave type MH is subjected to wavelet conversion, and it is clever. Use the nature of body motion to separate the body motion components, and again form the body motion separation pulse wave type TMH. This can remove the body motion components that act as noise components, and can use the correct signal waveform even when there is a body motion component. Ground detection pulse. 1-8: Modifications of Chapter 1 The present invention is not limited to the above-mentioned embodiments. For example, the following various modifications are possible. 1 1 8-1: Omission of frequency correction means. Although the frequency correction method used in comparison with energy sources is used in the frequency domain, it is also possible to focus on a certain frequency domain and specify the pulse image according to its level. (Neighbor read the precautions on the back first, and then clever this page)
*1T 本紙張尺度適用中國國家標準(CNS ) A4現格(2丨0X297公釐) -81 - a? , f 4 16 8 41 _B7_ 五、發明说明(79) 例如•第1實施形態中·對於脈波檢測用感測器單元 1 3 0所檢測之脈波波型MH施以子波轉換,在各頻率領 域上產生脈波解析數據MKD,並對此脈波解析數據 MK D施以運算處理而產生顯示脈波波型種類的脈像數據 Z D即可。 例如,第2、3實施形態中,省略頻率修正手段的場 合,一旦藉脈波檢測用感測器單元1 3 0檢測脈波波型 MH時,第1子波轉換部1 0A對脈波波型MH施以子波 轉換,在各頻率領域產生脈波解析數據MKD。又,以加 速度感測器21檢測體動波型TH時第2子波轉換部 1 Ο B對體動波型TH施以子波轉換而在各頻率領域產生 體動解析數據TKD。隨後遮蔽部1 8從脈波解析數據 MKD減去體動解析數據TKD,產生除去體動之修正脈 波數據MKD”時,也可以脈像數據產生部1 2對修正脈 波數據MKD"施以運算處理,產生顯示脈波波型MH種 類的脈像數據ZD » 1 — 8 - 2 :體動分離之其他例 上述之第5實施形態中,係對體動分離部1 9的輸出 施以子波轉換而產生體動分離脈波波型TMH,但是本發 明係再構成除去體動後的子波而可於時間軸上評估脈像, 因此不僅限於此,只要是根據除去體動後施以逆子波者皆 可。例如,藉脈波檢測用感測器單元1 3 0檢測脈波波型 MH時,第1子波轉換部1 0A可對脈波波型MH施以子 ------ ---- ^ I n H ϋ n ^ (对先Μ讀背面之注意事項再填巧本頁) 本紙張尺度速用中國國家標準(CNS > A4規格(210X297公釐) -82· J 416841 Α7 ________Β7 五、發明説明(8〇) 波轉換而在各頻率領域上產生脈波解析數據MKD。又, 以加速度感測器2 1檢測體動波型TH時,第2子波轉換 部1 Ο B對體動波型TH施以子波轉換而在各頻率領域產 生體動解析數據TKD »隨後遮蔽部1 9從脈波解析數據 MKD減去體動解析數據TKD,產生除去體動後之修正 脈波數據MKD”時,也可對此施以逆子波轉換。 1_8 — 3 :運用子波轉換之濾波器組 上述的各實施形態中,各子波轉換部1 〇、1 0A、 1 Ο B具備基底展開部W,可藉此進行子波轉換,但是本 發明不僅限於此,也可以藉濾波器組實現子波轉換。滅波 器組的構成例係如圖3 0所示《圖中,嫌波器組爲3段之 構成,其基本單位爲高域濾波器1 A與濾波器1 C,及低 域濾波器1B與濾波器1C者。將高域濾波器1A與低域 濾波器1B分割成預定的頻率帶域而可分別輸出高域頻率 成份與低域頻率成份。在此例中,將脈波數據MD的頻率 帶域設定在ΟΗζ〜4Hz,因此可將第1段之高域濾波 器1Α的通頻帶域設定爲2Hz〜4Hz ,另一方面,可 將第1段之低域濾波器1 Β的通頻帶域設定在ΟΗζ〜 2Hz »又,濾波器1C係於1抽樣之間間隔抽取數據。 將上述所產生的數據供應於下一段時*重覆頻率帶域 的分割與數據的抽取,最後可獲得8分割0 Η ζ〜4 Η ζ 的頻率帶域之數據Μ 1〜Μ 8。 又,高域濾波器1 Α與低域濾波器1 Β係於其內部以 裝------訂------Μ (对尤閱讀背面之注意事項再蜞巧本頁) 本紙張尺度通用中國國家標準(CNS M4現格(2丨0X297公釐) -83- A7 1' 4 16 8 4 1 B7 _ 五、發明説明(81) 包含延遲元件(D雙穗態多諧振盪器)之横向濾波器構成 即可。但是,人的脈動數在4 0〜2 0 0的範圍,脈波波 型MH的基本頻率是隨著生體的狀態而時時刻刻在改變。 此時,只須與基本波頻率同步,形成可變之分割帶域即可 獲得隨動態之生體狀態的資訊。因此•也可以將供應橫向 濾波器的時鐘設定爲脈波波型MH,因應分割的帶域而形 成可變者。 又,脈波解析數據MKD中,表示脈波波型MH特徵 的代表性頻率成份爲基本波、第2諧波及第3諧波的各頻 率成份。因此,可利用濾波器組的輸出數據Μ* 1〜M* 8中的一部份判定脈像。此時,只須將上述濾波器組構成 與脈波波型MH同步,即可省略高域濾波器1 A、低域澳 波器1B及濾波器1C的一部份而可簡易構成者。 1 一 8_4 :運用逆子波轉換之濾波器組 上述之第5實施形態中,以圖3 0表示之濾波器組構 成子波轉換部1 0時,也可以圖3 1表示之濾波器組構成 逆子波轉換部2 0。圖中,係以3段構成濾波器組,其基 本單位爲高域濾波器2 A及內插濾波器2 C,及低域濾波 器2B及內插濾波器2C與加法器2D。高域濾波器2A 與低域濾波器2 B係分割預定之頻率帶域而形成可分別輸 出高域頻率成份與低域頻率成份者。且,內插濾波器2 C 係於每2抽樣間內插1抽樣者。 在此,爲了重現波型必須使用圖3 0表示之濾波器組 -1 装 i I Μ {对先閲对背面之注意事項再填本頁) 本紙張尺度通用中國國家標準(CNS ) A4規格(210X25»7公釐) -84- r 4 1 6841 A7 _B7 五、發明説明(82) 及在圖3 1所示之濾波器組的完全再構成濾波器組。此時 ,高域濾波器ΙΑ、2A及低域濾波器1 B、2B的特性 必須有以下的關係。 H0(-Z)F0(Z) + H1(-Z)F1(Z) = 0 H0(Z)F0(Z) + H1(-Z)F1(Z) = 2Zl 又,高域濾波器2 A與低域濾波器2 B是以內部包含 延遲元件(D雙穩態多諧振盪器)之橫向濾波器構成即可 。並且,使子波轉換部1 0使用之濾波器組與脈波波型 MH的基本頻率同步,形成可變之分割帶域,因此當所供 應之時鐘與脈波波型MH同步時,可將此時鐘供應於高域 濾波器2A與低域濾波器2B。 1_8- 5 :構成頻率解析對象之頻率範圍的自動調 節 上述之第2、第3實施形態中,藉加速度感測器2 1 檢測體動波型TH。但是,檢測出體動時,利用者係處於 運動狀態,因此會提高脈波波型MH的基本波頻率。此一 脈波波型MH是藉第1子波轉換部1 〇 A予以頻率解析, 但是一旦固定構成頻率解析對象的頻率領域時,充份對於 脈波波型MH的特徵部份進行解析困難。例如,安靜狀態 之脈波波型MH的基本波頻率爲1 Η z的人進行慢跑,使 脈波波型ΜΗ的基本波頻率變化爲2Hz (相當於脈動數 本紙乐尺度適用中园國家標準(CNS ) Α4规格(210X297公釐) 装 訂 I I ——線 {1*先W讀背面之注項再硪艿本頁) -85- 恕浐部中^C^-^;J!-7消赀合竹妇印5^ a? ,ι 416841B7五、發明说明(83) 120)。在安靜狀態中,如第2實施形態所說明於0〜 4 Η z的範圍進行子波轉換,藉此可進行頻率解析至脈波 波型ΜΗ的第3諧波爲止·但是,在慢跑中,第3諧波會 形成6Hz,因而不能進行頻率解析。 如上述,根據體動波型ΤΗ求得運動量,並隨著運動 量的增大可控制第1、第2子波轉換部1 0Α,1 0Β使 進行子波轉換的頻率領域提升至高的領域* 又•以上述濾波器組構成第1、第2子波轉換部1 0 A、1 〇 Β時,只須對應運動量控制其時鐘頻率即可。即 隨著運動的增加,施以習知之反饋控制提高時鐘頻率即可 〇 慢跑中,體動波型TH的間距是表示手腕往返的間距 ,而與腳的滑動間距形成一定的關係,一般是相對於手腕 一次的擺動而前進2步。又,運動量則可以跑步速度與步 幅的乘積表示=一般,隨著跑步速度的增加並提高其間距 ,且會有減少步幅的傾向》因此,體動波型TH與運動量 係形成一定的關係。例如*圖3 2是以相同的圖表示第1 之運動場跑步時跑步速度與脈動數的關係,及第2之跑步 速度及跑步間距的關係。如該圖所示,可判定出被檢驗入 的脈動數及跑步間距是隨著跑步速度而增加。即,可獲知 增加跑步間距時,會隨之增加運動量與脈動數•因此,可 預先測定體動波型TH的間距與運動量的關係,並將此記 錄於圖表,而可參照此圖表算出運動量者。 ---------装------1T------^ ("先閲讀背面之注意事項再填巧本頁) 本紙張尺度速用中國囤家標率(CNS )八4说格(2I0X297公釐) • 86 at ‘丨 41684! B7 五、發明説明(84) 1 — 8 — 6 :告知手段之其他例 又,上述之各實施形態中,雖以顯示部1 3作爲告知 手段之一例說明,但是由裝置告知人類用的手段則可舉例 如以下說明。該等手段是以五感爲基準而予以適當分類。 且該等手段不僅可單獨使用1當然也可以組合複數個使用 。此外,如以下說明,例如使用視覺以外的手段時,即使 是視障者也可以理解告知內容,同樣的,如使用聽覺以外 的手段時,即使是聽障者同樣可理解其告知內容,其對於 具有障礙之使用者構成可方便使用之裝置者。 首先,作爲聽覺之告知手段係具有可告知脈像分析. 診斷結果用爲目的,或警告目的者》例如,蜂鳴器之外, 可使用壓電元件、揚聲器。又,特殊之例有,使構成告知 對象的人持有攜帶用無線電呼叫接收機,於進行告知時可 從裝置側呼叫此攜帶甩無線電呼叫接收機。又,使用該等 機器進行告知時,不僅可實現告知結果,並可同時傳達所 欲傳達的資訊。如上述,對應所欲傳達資訊的內容,只須 改變以下表示之音量等的資訊位準即可。例如,音高、音 量、音色、聲音、樂音的種類(曲名等)。 其次,作爲視覺之告知手段時,以從裝置告知各種訊 息、測定結果爲目的,並可作爲警告之用。爲此之手段則 可考慮以下的機器。例如,顯示裝置、CRT (陰極射線 管顯示裝置)、LCD(液晶顯示裝置)、印表機、X-Y製圖器、燈泡等。並且•特殊的顯示裝置有眼鏡式的投 射器。又,於告知時可考慮有以下的種種變化。例如,顯 n n n n n n M {对先閱讀背面之注意事項再坧荇本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(2〗0X297公釐) -87- A7 ,Γ 4 1684 1 __ Β7 五、發明説明(8S) 示色的濃淡、數値或以數値等級告知時的棒型圖表顯示、 圓形圖表 '表情圖等》而表情圖有例如可分別以老人的臉 對應弦脈、健康壯年的臉對應平脈而不健康之壯年的臉貝IJ 是對應滑脈。 其次,作爲觸覺之告知手段係可考慮以警告爲目的而 使用者。爲此之手段係如以下所述。首先•設置從手錶等 攜帶機器的裏面突出的形狀記憶合金•將此形狀記億合金 導電而可以電氣式刺激。又,可以從手錶等攜帶機器裏面 可自由伸縮之突起物(例如尖端鈍的針等)構造,而可藉 該突起物賦予機械式刺激。* 1T This paper size applies Chinese National Standard (CNS) A4 (2 丨 0X297 mm) -81-a ?, f 4 16 8 41 _B7_ V. Description of the invention (79) For example • In the first embodiment, The pulse wave type MH detected by the pulse wave detection sensor unit 130 is subjected to wavelet conversion to generate pulse wave analysis data MKD in each frequency domain, and arithmetic processing is performed on this pulse wave analysis data MK D It is only necessary to generate the pulse image data ZD showing the type of the pulse wave pattern. For example, when the frequency correction means is omitted in the second and third embodiments, once the pulse wave type MH is detected by the pulse wave detection sensor unit 130, the first wavelet conversion unit 10A detects the pulse wave. Type MH performs wavelet conversion to generate pulse wave analysis data MKD in each frequency domain. In addition, when the body motion waveform TH is detected by the acceleration sensor 21, the second wavelet conversion unit 10B performs wavelet conversion on the body motion waveform TH to generate body motion analysis data TKD in each frequency range. Subsequently, the masking unit 18 subtracts the body motion analysis data TKD from the pulse wave analysis data MKD to generate the modified pulse wave data MKD excluding the body motion ", and the pulse image data generating unit 12 may also apply the modified pulse wave data MKD " The arithmetic processing generates pulse image data ZD »1 — 8-2 showing pulse wave type MH types: Other examples of body motion separation In the fifth embodiment described above, the output of the body motion separation unit 19 is applied to the sub- The body motion separates the pulse wave type TMH generated by wave conversion. However, the present invention reconstructs the wavelet after removing the body motion to evaluate the pulse image on the time axis. Therefore, it is not limited to this, as long as it is applied after removing the body motion. Any inverse wavelet may be used. For example, when the pulse wave type MH is detected by the pulse wave detection sensor unit 130, the first wavelet conversion unit 10A may apply a pulse to the pulse wave type MH ---- ----- ^ I n H ϋ n ^ (Please read the notes on the back side before filling out this page) The paper size is the national standard of China (CNS > A4 size (210X297 mm) -82 · J 416841 Α7 ________ Β7 V. Description of the invention (80) Wave conversion generates pulse wave analysis data MKD in each frequency domain. When the body motion wave type TH is detected by the acceleration sensor 21, the second wavelet conversion unit 1 0 B performs wavelet conversion on the body motion wave type TH to generate body motion analysis data TKD in each frequency domain » The unit 19 may subtract the body motion analysis data TKD from the pulse wave analysis data MKD to generate the corrected pulse wave data MKD after removing the body motion ", which may also be subjected to inverse wavelet conversion. 1_8 — 3: Using wavelet conversion In each of the above embodiments of the filter bank, each of the wavelet conversion sections 10, 10A, and 10B includes a base expansion section W, thereby performing wavelet conversion. However, the present invention is not limited to this, and a filter may be used. The wavelet conversion is implemented in the group. An example of the structure of the wave extinguisher group is shown in FIG. 30. In the figure, the wave susceptor group is composed of three sections, and its basic unit is the high-domain filter 1 A and filter 1 C. And the low-domain filter 1B and the filter 1C. The high-domain filter 1A and the low-domain filter 1B are divided into a predetermined frequency band to output a high-domain frequency component and a low-domain frequency component. In this example, The frequency band of the pulse wave data MD is set to 0 to ζ to 4 Hz, so the high range filter of the first stage can be filtered. The passband range of the wave filter 1A is set to 2 Hz to 4 Hz. On the other hand, the pass band range of the low-level filter 1 Β of the first stage can be set to 〇Ηζ to 2 Hz. Furthermore, the filter 1C is between 1 sample Extract the data at intervals. Supply the generated data to the next section. * Repeat the frequency band segmentation and data extraction, and finally obtain 8 divisions of the frequency band data of 0 Η ζ ~ 4 Η ζ Μ 1 ~ Μ 8. In addition, the high-domain filter 1 Α and the low-domain filter 1 Β are installed inside it --------------- M (for the precautions on the back of You especially read this page again) ) This paper standard is in accordance with the Chinese national standard (CNS M4 is now (2 丨 0X297 mm) -83- A7 1 '4 16 8 4 1 B7 _ V. Description of the invention (81) Including delay element (D double spike multi-harmonic Oscillator) can be formed by a transverse filter. However, the number of human pulsations is in the range of 40 to 200, and the basic frequency of the pulse wave pattern MH is constantly changing according to the state of the living body. At this time, it is only necessary to synchronize with the fundamental wave frequency to form a variable segmented band to obtain information about the state of the living body with dynamics. Therefore, you can also set the clock to which the transversal filter is supplied to a pulse wave type MH, which can be changed depending on the divided band. In the pulse wave analysis data MKD, the representative frequency components representing the characteristics of the pulse wave pattern MH are the frequency components of the fundamental wave, the second harmonic wave, and the third harmonic wave. Therefore, a part of the output data M * 1 ~ M * 8 of the filter bank can be used to determine the pulse image. At this time, by simply synchronizing the above-mentioned filter bank configuration with the pulse wave type MH, a part of the high-domain filter 1 A, the low-domain Australian wave filter 1B, and the filter 1C can be omitted and can be simply constructed. 1-8_4: Filter bank using inverse wavelet conversion In the fifth embodiment described above, when the wavelet conversion unit 10 is configured by the filter bank shown in FIG. 30, the inverse wave filter unit may be configured by the filter bank shown in FIG. 31. Wave conversion section 2 0. In the figure, the filter bank is composed of three segments, and its basic units are a high-domain filter 2 A and an interpolation filter 2 C, and a low-domain filter 2B, an interpolation filter 2C, and an adder 2D. The high-domain filter 2A and the low-domain filter 2B are divided into predetermined frequency bands to form those that can output a high-domain frequency component and a low-domain frequency component, respectively. In addition, the interpolation filter 2 C is obtained by interpolating 1 sample every 2 samples. Here, in order to reproduce the wave form, the filter bank shown in Figure 30 must be used. -1 i i Μ {For the precautions of the first read and the back, please fill in this page) The paper standard is in accordance with China National Standard (CNS) A4. (210X25 »7mm) -84- r 4 1 6841 A7 _B7 V. Description of the invention (82) and the complete reconstruction of the filter bank shown in Figure 3 1 At this time, the characteristics of the high-domain filters 1A and 2A and the low-domain filters 1 B and 2B must have the following relationship. H0 (-Z) F0 (Z) + H1 (-Z) F1 (Z) = 0 H0 (Z) F0 (Z) + H1 (-Z) F1 (Z) = 2Zl Also, the high-domain filter 2 A and The low-domain filter 2 B may be constituted by a transversal filter including a delay element (D bistable multivibrator). In addition, the filter bank used by the wavelet conversion unit 10 is synchronized with the basic frequency of the pulse wave type MH to form a variable division band. Therefore, when the supplied clock is synchronized with the pulse wave type MH, the This clock is supplied to the high-domain filter 2A and the low-domain filter 2B. 1_8- 5: Automatic adjustment of the frequency range constituting the frequency analysis target In the above-mentioned second and third embodiments, the body motion wave type TH is detected by the acceleration sensor 2 1. However, when body motion is detected, the user is in a moving state, so the fundamental wave frequency of the pulse wave type MH is increased. This pulse wave pattern MH is subjected to frequency analysis by the first wavelet conversion unit 10 A. However, once the frequency domain constituting the frequency analysis target is fixed, it is difficult to analyze the characteristic portion of the pulse wave pattern MH. For example, a person with a basic wave frequency of pulse wave type MH in a quiet state of 1 Η z jogs to change the basic wave frequency of pulse wave type MΗ to 2 Hz. CNS) Α4 size (210X297mm) Binding II —— Thread {1 * Read the note on the back before printing this page) -85- 浐 部 中 CC ^-^; J! -7 消 赀Hezhu Women's Seal 5 ^ a ?, 416841B7 V. Description of the Invention (83) 120). In the quiet state, as described in the second embodiment, wavelet conversion is performed in the range of 0 to 4 Η z, thereby performing frequency analysis up to the third harmonic of the pulse wave type MΗ. However, during jogging, The third harmonic forms 6Hz, so frequency analysis cannot be performed. As described above, the amount of exercise can be obtained based on the body motion waveform TΗ, and as the amount of exercise increases, the first and second wavelet conversion units 10A, 10B can be controlled to increase the frequency domain in which the wavelet conversion is performed. * • When the first and second wavelet conversion sections 10A and 10B are configured with the above filter bank, it is only necessary to control the clock frequency according to the amount of motion. That is, as the movement increases, the conventional feedback control can be applied to increase the clock frequency. During jogging, the pitch of the body motion wave TH is the interval between the wrist and the wrist, and it has a certain relationship with the sliding distance of the foot, which is generally relative. 2 steps forward with a single swing of the wrist. In addition, the amount of exercise can be expressed as the product of running speed and stride = general. As the running speed increases and the distance is increased, there is a tendency to decrease the stride. Therefore, the body motion wave pattern TH and the amount of exercise form a certain relationship. . For example, * FIG. 2 shows the relationship between the running speed and the number of pulses when running in the first field and the relationship between the running speed and the running distance in the second field. As shown in the figure, it can be determined that the number of pulsations and the running distance that have been checked increase with the running speed. That is, it can be known that increasing the running distance will increase the amount of exercise and the number of pulses. Therefore, the relationship between the interval of the body motion wave TH and the amount of exercise can be measured in advance, and this can be recorded in a chart, and the amount of exercise can be calculated by referring to this chart . --------- Installation ------ 1T ------ ^ (" Read the precautions on the back before filling out this page) This paper standard uses the Chinese standard rate ( CNS) 8 4 grids (2I0X297 mm) • 86 at '丨 41684! B7 V. Description of invention (84) 1 — 8 — 6: Other examples of means of notification. In each of the above embodiments, the display unit Although 13 is described as an example of the notification means, the means for notifying humans by the device may be described as follows. These methods are appropriately classified based on the five senses. And these methods can be used not only alone1 but also in combination of multiple ones. In addition, as described below, for example, when using a means other than vision, even a visually impaired person can understand the content of the notification. Similarly, when using a means other than hearing, even a hearing impaired person can understand the content of the notification. A user with a barrier constitutes a device that can be easily used. First of all, as a means of hearing, there is a pulse image analysis that can be notified. For the purpose of diagnosis, or to warn the person. For example, in addition to a buzzer, piezoelectric elements and speakers can be used. A special example is that the person constituting the notification object holds a portable radio call receiver, and when the notification is made, the portable radio call receiver can be called from the device side. In addition, when using these devices for notification, not only the notification result can be achieved, but also the information to be transmitted can be conveyed at the same time. As mentioned above, in response to the content of the information to be conveyed, it is only necessary to change the information level such as the volume indicated below. For example, pitch, volume, timbre, sound, type of musical tone (music title, etc.). Secondly, when used as a visual means of notification, the purpose is to notify various information and measurement results from the device, and it can also be used as a warning. For this purpose, the following machines can be considered. For example, a display device, a CRT (cathode ray tube display device), an LCD (liquid crystal display device), a printer, an X-Y plotter, a light bulb, and the like. And • special display devices include glasses-type projectors. In addition, the following changes can be considered in the notification. For example, display nnnnnn M {Notes on the back of the page before reading this page) This paper size applies the Chinese National Standard (CNS) A4 specification (2〗 0X297 mm) -87- A7, Γ 4 1684 1 __ Β7 five 、 Explanation of the invention (8S) The shade of the color, bar graph display when the number is displayed or the number of levels is notified, the circular chart 'emoticon, etc.', and the emoticon includes, for example, the face of the elderly, corresponding to the pulse, health The mature face corresponds to Pingmai and the unhealthy mature face IJ corresponds to Huamai. Second, as a means of tactile notification, users may be considered for the purpose of warning. The means for this are as follows. First, set up a shape memory alloy that protrudes from the inside of a portable device such as a watch. This shape memory alloy is electrically conductive and can be electrically stimulated. Furthermore, it is possible to construct a protrusion (such as a blunt needle) that is freely retractable from a portable device such as a watch, and mechanical protrusion can be imparted by the protrusion.
其次,作爲嗅覺之告知手段係於裝置設置香料等的吐 出機構,使告知內容預先與香味對應,而構成可吐出對應 告知內容的香味。並且,在香料等的吐出機構最好是使用 微形泵等I 1 一 8 — 7 :脈波檢測手段的變形例 上述之各實施形態中,雖已舉脈波檢測用感測器單元 1 3 0爲例說明脈波檢測手段f 1之一例,但是本發明不 僅限於此,只要可檢測脈動皆可。 1 — 8 — 7 — 1 :檢測方式 1 — 8 — 7 - 1 一 1 :穿透光方式 例如,脈波檢測用感測器單元1 3 0雖是利用反射光 ,但也可以使用穿透光者。惟,波長領域在7 0 0 nm以 ---------U------II------^ {誚氟閱讀背面之注項再填艿本頁) 本紙乐尺度述用中國國家標準(CNS) A4規格(2丨0X297公釐) -88- 耔浐部中夾il.M'-^hJ消,k合竹ii卬ti A7 J' 416841 B7 五、發明説明(S6) 下的光具有不易穿透手指的傾向。因此,利用穿透光的場 合,可從發光部照射波長6 0 0 n m〜1 0 0 0 n m的光 ,使照射光依組織—血管組織的順序穿透,而檢測該穿 透光的光量變化。穿透光係接受血液中的血紅蛋白吸收, 而可藉著穿透光的光量變化檢測脈波波型。 此時*發光部最好是InGaAs系(銦一鎵—砷) 或GaAs (鎵一砷)之激光發光二極體。但是,波長爲 6 0 0 nm〜1 〇 〇 〇 nm的外光容易穿透組織,如上述 受光部一旦接受外光入射時會造成脈波信號的劣化。因此 ,從發光部照射偏光之激光,使穿透光經由偏光濾波而形 成受光部的受光。藉此可以不受外光的影響,可以良好的 S / N比檢測脈波信號。 此時,如圖32 (a)所示,將發光部230設於固 定件1 4 5的固定側,並於時鐘本體側設置受光部2 3 1 。於此發光部2 0 0所照射的光是穿透血管1 4 3後,通 過橈骨232與尺骨233之間,而到達受光部231。 並且在使用穿透光時,照射光必須穿透組織,因此一旦考 慮組織吸收時,光的波長最好是6 0 0 nm〜1 0 0 0 n m > 又,同圖(b )是以耳朵爲檢測部位爲例。把持構件 2 3 4與把持構件2 3 5是藉著彈簧2 3 7作用,形成可 以軸2 3 6爲中心轉動者。又,把持構件2 34與把持構 件2 3 5上設有發光部2 3 0與受光部2 3 1。使用該脈 波檢測部時,以把持構件2 3 4與把持構件2 3 5把持耳 I I I n n I I 11 訂 I I M {誚先閱讀背面之注意事項再填艿本頁> 本紙張尺度適用中國國家栋準(CNS) A4規格(210Χ2ί»7公釐) -89- A7 ! 4 1 6 8 4 1 B7 五、發明説明(87) 朵而檢測脈波。且於使用反射光時,也可以從同圖(C ) 表示之指尖部檢測脈波波型Μ Η。 1 一 8 — 7_1 - 2 :壓力感測器方式 其次,藉壓力感測器檢測脈波波型ΜΗ例說明如下。 圖3 3 ( a )是表示使用壓力感測器之脈波診斷裝置的外 觀構成透視圖。如圖所示,在脈波診斷裝置1設置一對帶 144' 144,於其一側固定件145的固定側突出設 置壓力感測器1 3 0 a之彈性橡膠1 3 1。具備固定件 1 4 5的帶1 4 4係形成以軟性塑膠包覆可供應藉壓力感 測器1 3 0所產生之檢測信號的F P C ( Flexible Printed Circuit)基板構造(詳細係以圖示省略之)。 又,於使用時如圖33 (b)所示,將設置於固定件 1 4 5的彈性橡膠1 3 1定位在橈骨動脈1 4 3的附近, 而將手錶1 4 6捲繞在被檢驗人的左腕1 4 7上《因此, 可恒常性的檢測脈波者。並且,對此一捲繞與一般手錶的 使用狀態並無任何不同。如上述之彈性橡膠1 3 1 —旦被 推壓至被檢驗人的橈骨動脈1 4 3附近時,該動脈的血流 變動(即脈波)可經由彈性橡膠1 3 1而傳達至壓力感測 器1 3 0 a ,壓力感測器1 3 0 a則可以此爲血壓檢測之 1-8-7 — 2 :使用態樣 1 — 8 — 7 — 2 — 1 :眼鏡式 I t I n ^ n I n I n ^ {对先閲讀背面之注意事項再填艿本頁) 本紙張尺度述用中國國家標準(CNS > A4規格(210X297公釐) -90- 好沪部中A"sv/JhJ"^""^rF^ A7 11 4 1 6 8 4 1 ____B7___ 五、發明说明(88) 其次,說明將光電式脈波感測器與眼鏡組合的使用態 樣如下。並且,該眼鏡的形態中,係形成與作爲使用者告 知手段的顯示裝置同時組裝的構造。因此,合併說明脈波 檢測部以外之具有顯示裝置的功能如下。 圖3 4是表示將連接有脈波檢測部的裝置安裝在眼鏡 的樣子之透視圖β如圖所示,裝置本體係分爲本體7 5 a 與本體7 5 b,並分別安裝在眼鏡的鏡框上,使該等本體 藉由埋入鏡架7 6內部導線而互相導電連接。 本體7 5 a內設顯示控制電路,在該本體7 5 a之透 鏡7 7側的側面,全面安裝有液晶面板7 8 ·又,在該側 面的一端是以預定的角度固定著鏡7 9。並在本體7 5 a 上組裝含光源(圖示省略)之液晶面板7 8的i驅動電路* 及制作顯示數據用的電路。從此光源發射的光是經由液晶 面板7 8以鏡7 9反射,而投射至眼鏡的透鏡7 7上。又 ,本體7 5 b上組裝有裝置的主要部,在其上面設有各種 按鍵。並且,該等按鍵80、8 1的功能是根據裝置而有 所不同。又,構成光電式脈波感測器之L ED 3 2及光電 晶體管3 3 (參閱圖3 )是內設在墊片8 2、8 3的同時 ,形成可將墊片82、83固定於耳朵者。該等墊片82 、83是利用從本體75b引出的導線84、84而導電 連接。 1 — 8 — 7 — 2 — 2 :項鍊式 其次,說明將光電式脈波感測器變形爲項鍊式的使用 {誚先閱讀背面之注意事項再4巧本頁) 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X25*7公釐) -91 - at J 416641 B7 五、發明説明(89) 態樣如下"並且,例如可考慮使裝置整體構成圖3 5表示 之項鍊者。 該圖中,1 6 0 1爲感測器墊片而以海綿狀緩衝材等 所構成。在該感測器墊片1 6 0 1中,安裝可與皮膚面接 觸之脈波檢測用感測器單元1 3 0 «將項鍊掛於頸部時’ 脈波檢測用感測器單元1 3 0可與頸後側的皮膚接觸而測 定脈波。又,同圖中,在具有類似胸針之中空部的盒體 1 6 0 2上安裝裝置的主要部,必要時除了可進行通訊用 之L E D或光電二極管外,可在圖中的盒體1 6 0 2的裏 側設置可進行各種設定用的按鍵開關等(未圖示)。並且 ,脈波檢測部1 0 1與盒體1 6 0 2是分別安裝在鎖 1 6 0 3上*而經由埋入該鎖1 6 0 3中的導線(未圖示 )導電連接者。 1 — 8 — 7 — 2 — 3 :卡片式 又,其他之形態例可考慮圖3 6表示之卡片型者。該 卡片型裝置是收容在被檢驗者的左胸口袋內。此一形態之 脈波檢測部爲設於卡片表面的壓電麥克風1 3 0 b所構成 ,可相對於被檢驗者的皮虜表面,檢測出被檢驗者的鼓動 而檢測脈搏數者。又| 2 0 8是以聲音告知警告聲或脈像 的告知部。如上述以麥克風等構成脈波檢測部時,告知部 2 0 8 —旦發出警告聲或聲音等時,會檢測發聲,以致使 設於裝置內部之C P U在發出警告聲時,必須留意不致進 行因壓電麥克風1 3 0 b而造成對於脈動數檢測的處理。 ("先閲讀背面之注意事項再填巧本頁) % '* 本紙張尺度適用中國國家標準{ CNS ) A4规格(2丨0X297公釐) -92- i 416841 A7 t __B7____ 五、發明説明(90) 1_8-7_2-4:計步器式 此外,其他之形態例可考慮圖3 7 ( a )表示之計步 器式者"該計步器之裝置本體1 9 0 0係如同圖(b)所 示,是安裝在被檢驗人的腰帶上。此一形態之脈波檢測用 感測器單元1 3 0是與圖2表示之手錶式相同,係裝著於 被檢驗人左手食指的指根部至第2手指關節之間。此時* 對於連結裝置本體1 9 0 0與脈波檢測用感測器單元 1 3 0的線1 2 0最好是縫入外衣等以不致造成被檢驗人 運動上的妨礙爲佳。 1 — 8 — 8 :第1子波轉換部10Α的變形例 上述之第2實施形態中,第1子波轉換部1 0Α也可 以構成圖38所示者。 圖3 8中,將體動波型ΤΗ供應至振幅檢測電路 225時,可檢測其振幅値ΡΡ。該振幅値ΡΡ是藉著比 較器2 2 6與基準値REF比較。比較器2 2 6可於振幅 値Ρ Ρ高於基準値R E F的期間產生低位準,而當振幅値 Ρ Ρ低於基準値R E F的期間則可產生高位準的控制信號 。該控制信號是表示體動的有無,低位準的期間具有體動 ,當高位準的期間則不具體動。此時,基準値R E F係可 以實驗預先決定可判別體動的有無。其次•閘極電路 2 2 7係根據控制信號提供閘極於脈波波型Μ.Η 〇具體而 言,控制信號在高位準的期間,可將脈波波型Μ Η供應於 本紙張尺度適刖中國國家標率(CNS > A4現格(210X297公釐} 93 A7 ! 4 16 8 41 _ B7____ 五、發明説明(9〇 阻尼振盪濾波器•另一方面,控制信號在低位準期間則不 供應脈波波型MH於阻尼振逯濾波器1 0 1。藉此,於具 有體動的期間形成可遮蔽脈波波型者。 此時,由於設定高的阻尼振盪濾波器1 0 1的Q値, 因此脈波波型MH的供應即使在一定期間停止時’仍可持 續輸出連續於停止前輸出波型的正弦波β因此,即使具有 體動時,可算出脈波波型ΜΗ的週期,而可據以實施子波 轉換者。 1 一 8 — 9 :利用獲得生體之各種資訊用的子波轉換 結果之例 上述之各實施形態中,對脈波波型MH施以子波轉換 可藉此判定脈像’但是也可以利用獲得生體之各種資訊用 的子波轉換的轉換結果。 1一 8_9 — 1 :放鬆度的判定 例如,可藉著解析脈波波型或心電波型來檢測放鬆度 〇 心電圖中,一脈動之R波與其次脈動的R波之時間間 隔係稱爲R R間隔。該R R間隔係形成人體自律神經機能 指標之數値"圖3 9是以圖示心電圖之脈動與自該等脈動 波型所獲得的R R間隔°同圖可得知’根據心電圖之測定 結果的解析,可獲得只1^間隔是隨著時間的推移而變動° 另一方面,藉橈骨動脈部等測定之血壓變動係以收縮 -94- ("先閱讀背面之注意事項再硝艿本頁) 本紙張尺度通和中國國家標準(CNS)A4規格(2丨0Χ297公釐) a? ί 4 16 8 4 1 _________B7 .____ 五、發明说明(92) 期血壓及擴張期血壓的各脈動變動定義之,而形成與心電 圖之R.R間隔的變動而對應者。圖4 0是表示心電圖與血 壓的關係圖。如圇所示,各個脈動的收縮期及擴張期的血 壓係測定爲各RR間隔之動脈壓的最大値,及該最大値瞬 間前所顯示之極小値。 藉著該等心脈動變動乃至血壓變動之波譜分析的進行 ,可從複數個頻率的波構成該等變動。該等係可區分爲以 下表示之3種類的變動成份。 ① 呼吸之一致變動的H F ( High Frequency)成份。 ② 以10秒前後的週期變動之LF ( Low Frequency ) 成份·ϊ Ο以低於測定界限頻率變動之傾向(Trend) * 分別測定之脈波可求得鄰接之脈波與脈波間的R R間 隔,而可以適當的方法補償所獲得之RR間隔的離散値( 例如3次樣條內插)(參閱圖39)。此外,對內插後的 曲線施以F F T處理而進行波譜分析|形成可取出上述變 動成份作爲頻率軸上的峰値。圖41(a)是表示所測定 之脈波的RR間隔變動波型及將該變動波型分解爲3個頻 率時的各變動成份的波型。又,圖4 1 ( b )是相對於圖 4 1 ( a )表示之RR間隔之變動波型的光譜分析結果。 圖中,可獲知例如在安靜時,0.07Hz附近、 0·2 5 Η z附近的2個頻率中可顯示峰値,前者爲LF成 份而後者爲H F成份。並且,由於傾向成份在測定界限以 下,因此不能從圖中讀出。 I n i I n .«.e {対先W讀背面之注意事項再墒巧本頁) 本紙張尺度述用中囤囤家標芈(CNS ) A4規格(2丨Ox 297公釐) -95- 紂浐部中^ii.^-^h 消於合竹311印來 A7 / 4 ) 684 ] B7 ' 五、發明説明(93) L F成份是表示交感神經的緊張程度,該成份的振幅 越大時會增加緊張程度(或呈興奮狀態)。另一方面, H F成份則是表示副交感神經的緊張程度,該成份的振幅 越大時越是放鬆(或呈鎭靜狀態)。 L F成份及H F成份的振幅値由於有個人差|因此在 考慮此値時,L F成份及HF成份的振幅比「L F/HF 」在被檢驗人的緊張程度的推定上極爲有用。從上述L F 成份與HF成份可獲知「LF/HF」値越大時緊張程度 越高,「LF/HF」値越小時緊張程度越小而呈現放鬆 現像。 另一方面,RR50是於預定時間的測定中,以50 微秒以上變動的個數定義對應連續2脈動之RR間隔之脈 波間隔的絕對値。可獲悉R R 5 0的値越大時被檢驗人是 呈鎭靜狀態,RR 5 0的値越小時則被檢驗人是呈興奮狀 態。 因此,也可以子波轉換心電波型或脈波波型算出上述 的L F、HF,據以算出放鬆度。又心電波型或脈波波型 在每一脈動皆急劇上升,因此子波轉換心電波型或脈波波 型時,在上升的部形成大的高域頻率成份。因此,也可從 高域頻率成份的變動求得RR間隔,據此算出RR 5 0而 檢測其放鬆度。 1 — 8 - 9 — 2 :瞌睡防止 近年來,汽車等駕駛中的瞌睡原因所造成的交通事故 ---------求------ix------0 {钟先閲讀背面之注意事項再峨巧本頁) 本紙張尺度適用中囷國家標準(CNS ) A4規格(210X297公釐) -96- *''〕淤部中头 c^XJ.h η'φ;4'竹^1印st I 416841 A7 ' __ _B7 五、發明説明(94) 頻發。因此,以防止上述事故於未然爲目的而硏創出以往 種種的裝置。其中一例是安裝在方向盤的裝置。如上述之 裝置中,是預先在方向盤左右黏貼導體,使駕駛人兩手可 常時性接觸此一導體而進行人體(駕駛人)的電阻測定。 駕駛人於瞌睡之中,手從方向盤離開時即會產生導體間電 阻値的變化,因此此一現象可視爲打瞌睡而對於駕駛人發 出警告聲即可防止事故的發生於未然。 又,其他例的有利用駕駛人心電圖測定所獲得的脈動 變動,或利用駕駛人呼吸的變動等。 但是,如上述將導體黏貼在方向盤的方式中,駕駛人 僅以單手駕駛時,或帶上手套駕駛時等皆不能正確地進行 磕陲監視。且捕捉脈動變動或呼吸變動等的方式中,不但 須要大型的裝置,且在日常駕駛人的攜帶上極爲不適。 因此,也可以脈波波型波轉換的結果解析人體的覺醒 位準,而檢測打磕睡的狀態》 運用子波轉換的磕睡防止裝置中,是以存在於包含脈 波之資訊與人體的覺醒位準之間的相關關係爲基礎,檢測 人體的打磕睡狀態。此時,以脈波所獲得之數個測定量作 爲判斷人體覺醒狀態上的指標,其具體例以下是使用L F 、HF、 「LF/HF」 、RR50。根據上述相關關係 ,隨較深沉的磕睡會使生體狀態朝著鎭靜狀態,而藉著瞌 睡例如會使R 5 0的値逐漸增大。因此•檢測該等指標的 變化可檢測出瞌睡狀態。 ---------裝------訂 (計先聞讀背面之注意事項再填巧本頁) 本紙張尺度適用中围囷家標準(CNS ) A4規格(210X297公釐) -97- f 416841 _____B7___ 五、發明説明(95) 2 .第2章 2 — 1 :槪要 一般從事運動的人(被檢驗人)可獲知該時刻的運動 強度時,可根據運動處方進行運動,或者可運用各種競技 中的體力改造》 在此,雖然有種種顯示運動強度的方法,但是大體上 可分爲該等運動的效率,或以顯示運動間距等數値絕對之 表示方法,及使用脈動數等相對的表示方法,及組合該等 的3種方法+。 另一方面,即使未算出運動強度,在進行運動時會導 致有某種主觀上的評估(例如「嚴苛」或者「輕鬆」等) 。因此,被檢驗人根據自己的主觀性評估,可判斷在其時 刻的運動強度,而各種訓練可以極爲一般性地進行。例如 ,在以不嚴苛、精神上具有餘裕的強度持續運動時,可進 行最大氧氣攝取量的改善(「曰本厚生省之『強健體魄用 的運動需要量』」:進藤宗洋:保健科學第32卷第3號 1 9 9 0 年)。 如上述,爲了各種訓練而經常進行一定強度的運動* 但是此時的運動強度是從上述的主觀性評估所獲得》 但是,根據主觀性評估所獲得的運動強度並未考慮肉 體上的體力,因此並非適當的評估。 原來利用上述方法所顯示之運動強度是除去相對性表 示,而僅以定量式表示該時刻之被檢驗人物理上的運動強 度,並未綜合性考量被檢驗人肉體上、精神上的體力等。 I n n! I i 11 挺 ("先閲讀背面之注意事項再填巧本頁) 本紙張尺度適用中囷國家標準(CNS ) A4規格(210X297公釐) 98 - A7 41684 1 B7 五、發明説明(96) 又,相對表示之運動強度是即使考量被檢驗人肉體上的體 力,但是其並未考慮被檢驗人精神上的體力。 因此,即使以上述求得之運動強度作爲運動指標而進 行運動時,由於並未直接連結被檢驗人肉體上與精神上的 體力,而會導致運動強度過強勉強進行,或相反的過弱而 不能達成訓練效果等不當情形的產生。 如上述,第2章中,第1是綜合考量運動時被檢驗人 肉體上.精神上的體力之運動強度,提供爲提高全身持久 力測定所須訓練之運動強度,而作爲運動指標告知之運動 指標測定裝置。 第2是針對被檢驗者的運動強度提供可綜合考量被檢 驗人肉體上.精神上體力而告知定暈化運動指標之運動指 標測定裝置。 第2是綜合考量運動時被檢驗人肉體上.精神上體力 之運動強度,提供可容易達到提高全身持久力用所須的訓 練強度。 2 — 2 :理論性根據 在說明第2章之實施形態前,針對其理論性根據的原 理說明如下。 首先,本發明人爲了有效運用測功器之運動強度的指 標,是對於被檢驗人階段式的變化其跑步速度,進行採取 各種數據的實驗,並根據此一實驗結果參閱圖4 4說明如 下。 I! —裝 I 11 i I Μ {誚先閲讀背面之注意事項再填艿本頁) 本紙張尺度適;η中國國家標準(CNS ) Α4規格(210 X 297公釐) -99- 經":部中决橾涑局工消费合作枉印奴 丨 416841 A7 B7 五 '發明説明(97 ) 同圖( a )是將第1之運動跑步的跑步速度及脈動數 的關係,及第2之跑步速度與跑步間距的關係表示於同一 圖中。如圖所示,可獲知被檢驗人的脈動數及跑步間距是 隨著跑步速度而增加。 同圖(b)是表示運動場跑步時的跑步速度及被檢驗 人主觀性運動強度之圖。其中,主觀性運動強度是被檢驗 人以其速度跑步時,係以點數記錄以何種主觀性感覺者, 如圖4 5所示,設定越感覺「嚴苛」時越爲提高。如圖 44(b)表示,跑步速度越提高時,增加主觀性運動強 度的點數,可獲知被檢驗人感覺「嚴苛」的程度也越高。 其次,同圖(c )是表示運動場跑步時的跑步速度, 及藉耳朵採血法求得之血中乳酸濃度的關係圖。如圖中所 示,可獲知在點A附近,被檢驗人的血中乳酸濃度開始急 劇地上升& 如一般所熟知,乳酸是疲勞物質,一旦提高此一濃度 時會形成不能以一定強度持續運動。相反地,單純僅爲了 進行持續性運動時,只要以乳酸濃度低的領域強度進行運 動即可。另一方面,即使壓制低乳酸濃度的運動強度時, 只要被檢驗人感覺是「輕鬆」的運動強度時,並不能獲得 期待的訓練效果。 因此,爲了提高全身持久力進行持續性運動時,被檢 驗人的血中乳酸濃度須低領域的運動強度,考慮在被檢驗 人感覺「略爲嚴苛」的運動強度下進行爲佳。如上述之運 動強度是相當於圖中的點A。 ^各 I 訂I - I I I 線 (計1閱^卄而之注"事項再41,;?本荇) 本紙張尺度適用中國國家標準(CNS ) A4現格(210X297公犮) -100 - 經滴部中决標聿局WS工消费合作社印繁 A? 1 4 16 8 41 B7五、發明说明(98 ) 實際上,以使用最高氧攝取量爲相對強度表示相當於 血中乳酸濃度開始上升點A的運動強度時•可獲知大約爲 5 0 % V。2 m a X /WT,也可以藉此獲知該値可適當作爲提 高全身持久力進行訓練的運動強度之用。 因此,相當於點A的運動強度即所謂考量運動時被檢 驗人肉體上.精神上的運動強度,而構成進行提高全身持 久力用之訓練時指標的運動強度。 但是,在直接求得點A時*在運動時必須持續測定血 中乳酸濃度。而此在實際問題上極爲困難= 有鑑於上述,本案發明人乃著眼於乳酸濃度的上升點 附近使被檢驗人的脈搏數與間距互相同步者。如習知技術 所記載,只須使用運動時的脈動數與間距即可顯示運動強 度。 因此,判定被檢驗人脈動數與間距一致的地點,求得 該地點的運動強度,藉此可間接求得相當於點A的運動強 度。此外,告知此運動強度|提供進行提高全身持久力用 之訓練時的適當指標。 又,被檢驗人的運動強度是藉著告知從被檢驗人脈動 數與間距一致的地點離開量,藉此提供綜合考量被檢驗人 肉體上.精神上體力之定量化運動指標》 並且,藉著告知消除被檢驗人脈動數與間距差的方向 之運動指示,可使被檢驗人的運動強度容易達到提高全身 持久力所須的運動強度。 I I I I 訂 -I.^ (^1阽^1':-<面之;1念fJrs再^s 本頁) 本紙乐尺度適用中國國家標準< CNS ) Λ4規彳μ 210X 297公犮) -101 - a? J 4 16 8 4 1 B7 五、發明説明(99 ) 2 — 3 :第1實施形態 首先,針對第1實施形態之運動指標測定裝置說明如 下《本實施形態相關之運動指標測定裝置是根據上述原理 ,第1是告知以形成被檢驗人的脈動數與跑步間距大致相 同的運動強度爲目標之運動指標,第2是顯示告知與該等 運動指標表示實際進行運動時的運動強度之運動強度間相 差程度的指標*第3是告知消除被檢驗人脈動數與間距的 差之方向的運動指示。 2 — 3 — 1 :功能構成 訂 首先,針對本發明相關之運動指標裝置的功能構成說 明如下。圖4 2是表示其功能構成之方塊圖。 :部中夾样^局只工消費合作枉印^ 該圖中,脈波檢測部2 1 0 1爲檢測被檢驗人脈波波 型的感測器。根據脈波檢測部2 1 0 1檢測之脈波波型信 號是藉A/D轉換部2 1 0 2轉換爲數位信號’並且藉 FFT處理部1 0 3進行FFT (高速傅立葉轉換)處理 ,藉該等處理結果求得脈動數。此外’原來所須要的是心 脈動數,即單位時間之心臓脈動數’而心脈動數即等於脈 動數,因此可間接求得所求得的脈動數’因此’脈波檢測 部2 1 0 1也可以是直接檢測心脈動之構成。 另一方面,體動檢測部2 1 1 1係檢測被檢驗人運動 的體動之感測器,例如爲加速度感測器等所構成。該體動 檢測部2111之體動信號係與脈波波型相同’藉A/D 轉換部2 1 1 2轉換爲數位信號,並且藉17 FT處理部 -102- 本紙乐尺度速用中國國家炫# ( CNS ) Λ4^枋< 2I0X297公犛)Next, as a means for notifying the sense of smell, the device is provided with a spouting mechanism such as a fragrance, and the content of the notification is associated with the fragrance in advance, so as to form a fragrance that can emit the corresponding content of the notification. In addition, it is preferable to use a micro-pump or the like for a spouting mechanism such as a micro pump. I 1-8-7: Modifications of the pulse wave detection means In each of the above-mentioned embodiments, the pulse wave detection sensor unit 1 3 has been described. 0 is taken as an example to explain an example of the pulse wave detection means f 1, but the present invention is not limited to this, as long as it can detect the pulse. 1 — 8 — 7 — 1: Detection method 1 — 8 — 7-1-1: Transmitted light method For example, the pulse wave detection sensor unit 1 3 0 uses reflected light, but it is also possible to use transmitted light By. However, the wavelength range is from 700 nm to --------- U ------ II ------ ^ {诮 Notes on the back of the fluorine reading and then fill in this page) The dimensions are stated in Chinese National Standard (CNS) A4 specifications (2 丨 0X297 mm) -88- il.M '-^ hJ in the crotch, k-bamboo ii 卬 ti A7 J' 416841 B7 V. Description of the invention The light under (S6) tends not to penetrate the fingers easily. Therefore, when penetrating light is used, light with a wavelength of 600 nm to 100 nm can be irradiated from the light-emitting portion, and the irradiation light can be transmitted in the order of tissues and blood vessel tissues, and the change in the light amount of the penetrating light can be detected. . The penetrating light system absorbs the hemoglobin in the blood, and the pulse wave pattern can be detected by the change in the light amount of the penetrating light. At this time, the light emitting part is preferably an InGaAs-based (indium-gallium-arsenic) or GaAs (gallium-arsenic) laser light-emitting diode. However, external light with a wavelength of 600 nm to 1000 nm easily penetrates the tissue. As described above, once the light receiving part receives external light incident, it will cause degradation of the pulse wave signal. Therefore, polarized laser light is irradiated from the light emitting section, and the transmitted light is subjected to polarization filtering to form the light receiving section of the light receiving section. This makes it possible to detect the pulse wave signal without being affected by external light and with a good S / N ratio. At this time, as shown in FIG. 32 (a), the light emitting section 230 is provided on the fixed side of the fixing member 1 4 5 and the light receiving section 2 3 1 is provided on the clock body side. The light irradiated by the light-emitting portion 2000 passes through the blood vessel 143, passes through the radius 232 and the ulna 233, and reaches the light-receiving portion 231. In addition, when penetrating light is used, the irradiated light must penetrate the tissue, so once the tissue absorption is considered, the wavelength of the light is preferably 60 nm to 100 nm, and the same figure (b) is ears. Take the detection site as an example. The gripping members 2 3 4 and the gripping members 2 3 5 are formed by a spring 2 3 7 and can rotate around a shaft 2 3 6. Further, the holding member 2 34 and the holding member 2 3 5 are provided with a light emitting portion 2 3 0 and a light receiving portion 2 3 1. When using this pulse wave detection section, the holding member 2 3 4 and the holding member 2 3 5 holding ear III nn II 11 order IIM {诮 read the precautions on the back first and then fill in this page> This paper size is applicable to China National Building Standard (CNS) A4 (210 × 2ί »7 mm) -89- A7! 4 1 6 8 4 1 B7 V. Description of the invention (87) The pulse wave is detected. When using reflected light, the pulse wave pattern M Μ can also be detected from the fingertips shown in the same figure (C). 1 1 8 — 7_1-2: Pressure sensor method Secondly, an example of detecting the pulse wave pattern by the pressure sensor is described below. Fig. 33 (a) is a perspective view showing an external configuration of a pulse wave diagnosis apparatus using a pressure sensor. As shown in the figure, a pair of bands 144 '144 are provided in the pulse wave diagnostic apparatus 1, and elastic rubbers 1 3 1 of a pressure sensor 1 3 0 a are protruded from a fixed side of a fixing member 145 on one side thereof. The belt 1 4 4 with fixing parts 1 4 4 forms a FPC (Flexible Printed Circuit) substrate structure that is covered with a soft plastic and can supply detection signals generated by the pressure sensor 1 3 0 (details are omitted in the illustration) ). In use, as shown in FIG. 33 (b), the elastic rubber 1 3 1 provided on the fixing member 1 4 5 is positioned near the radial artery 1 4 3 and the watch 1 4 6 is wound around the subject On the left wrist 1 4 7 "Therefore, pulse wave can be detected steadily. In addition, there is no difference between this winding and the use state of a normal watch. As described above, the elastic rubber 1 3 1-once being pushed near the radial artery 1 4 3 of the examinee, the blood flow variation (ie pulse wave) of the artery can be transmitted to the pressure sensing through the elastic rubber 1 3 1 Device 1 3 0 a, pressure sensor 1 3 0 a can be this 1-8-7 for blood pressure detection — 2: use mode 1 — 8 — 7 — 2 — 1: glasses type I t I n ^ n I n I n ^ {Please read the notes on the back before filling this page) This paper uses the Chinese national standard (CNS > A4 size (210X297 mm) -90- A " sv / JhJ " ^ " " ^ rF ^ A7 11 4 1 6 8 4 1 ____B7___ V. Description of the Invention (88) Second, the use of the combination of the photoelectric pulse wave sensor and glasses will be described as follows. In the form, it has a structure that is assembled at the same time as the display device used as a means for user notification. Therefore, the functions of the display device other than the pulse wave detection unit will be described together. Figure 34 shows the device to which the pulse wave detection unit is connected. A perspective view β of the state mounted on the glasses is shown in the figure. The system of the device is divided into a body 7 5 a and a body 7 5 b, and are respectively installed on the frames of the glasses, so that the bodies are conductively connected to each other by embedding the internal wires of the frame 7 6. The body 7 5 a is provided with a display control circuit, and the lens 7 7 of the body 7 5 a On the side, a liquid crystal panel 7 8 is fully installed. At one end of the side, a mirror 7 9 is fixed at a predetermined angle. A liquid crystal panel 7 8 with a light source (not shown) is assembled on the body 7 5 a. I driving circuit * and a circuit for making display data. The light emitted from the light source is reflected by the liquid crystal panel 7 8 by the mirror 7 9 and is projected onto the lens 7 7 of the glasses. Furthermore, a device is assembled on the body 7 5 b There are various types of keys on the main part of the main part. The functions of these keys 80 and 81 are different depending on the device. In addition, the LED ED 3 2 and the phototransistor 3 constituting the photoelectric pulse wave sensor. 3 (refer to FIG. 3) are built in the gaskets 8 2 and 8 3, and can be used to fix the gaskets 82 and 83 to the ears. These gaskets 82 and 83 are formed by using the wires 84, 8 drawn from the body 75b. 84 and conductive connection. 1 — 8 — 7 — 2 — 2: Necklace type, followed by the description of photoelectric Type pulse wave sensor is transformed into a necklace type (诮 read the precautions on the back first and then 4 pages on this page) The size of the paper is applicable to China National Standard (CNS) A4 specification (210X25 * 7mm) -91-at J 416641 B7 V. Description of the invention (89) The appearance is as follows " and, for example, it may be considered to make the whole device constitute the necklace shown in FIG. In the figure, 1601 is a sensor pad and is made of a sponge-like cushioning material or the like. The sensor pad 1 6 0 1 is equipped with a sensor unit for pulse wave detection 1 3 0 «when hanging a necklace on the neck 'sensor unit for pulse wave detection 1 3 0 Pulse wave can be measured by contacting the skin on the back of the neck. In the same figure, the main part of the device is mounted on a box body 16 2 with a hollow portion similar to a brooch. In addition to the LED or photodiode for communication, if necessary, the box body 16 On the back side of 0 2 are provided key switches (not shown) for various settings. In addition, the pulse wave detection unit 110 and the case body 16 2 are respectively connected to the lock 1 60 3 * and are conductively connected via wires (not shown) embedded in the lock 1 60 3. 1 — 8 — 7 — 2 — 3: Card type Also, for other types of examples, consider the card type shown in Figure 36. The card-type device is contained in the left chest pocket of the examinee. The pulse wave detection unit of this form is constituted by a piezoelectric microphone 130 b provided on the surface of the card, and can detect the agitation of the examinee and detect the pulse number with respect to the surface of the examinee's skin. Also | 2 0 8 is a notification unit that notifies a warning sound or pulse by sound. When the pulse wave detection unit is constituted by a microphone or the like as described above, the notification unit 208 will detect the sound when a warning sound or sound is emitted, so that the CPU provided inside the device must pay attention to prevent the cause The piezoelectric microphone 1 3 0 b causes a process for detecting the number of pulsations. (" Read the precautions on the back before filling in this page)% '* This paper size applies to Chinese National Standard {CNS) A4 specification (2 丨 0X297 mm) -92- i 416841 A7 t __B7____ 5. Description of the invention ( 90) 1_8-7_2-4: Pedometer type In addition, for other examples, consider the pedometer type shown in Figure 3 7 (a) " The device body of the pedometer 1 9 0 0 is as shown in the figure ( As shown in b), it is installed on the belt of the examinee. The sensor unit 130 for detecting pulse waves in this form is the same as the watch type shown in FIG. 2 and is mounted between the base of the index finger of the left hand of the subject and the second finger joint. At this time, it is better to sew the outer thread 1 2 0 connecting the device body 1 900 and the pulse wave detection sensor unit 1 30 so as not to hinder the movement of the examinee. 1 — 8 — 8: Modification of the first wavelet conversion section 10A In the second embodiment described above, the first wavelet conversion section 10A may be configured as shown in FIG. 38. In FIG. 38, when the body motion wave type T is supplied to the amplitude detection circuit 225, the amplitude QPP can be detected. The amplitude QPP is compared with the reference QREF by a comparator 2 2 6. The comparator 2 2 6 can generate a low level during a period in which the amplitude ρP is higher than the reference RR E F, and a period of time when the amplitude RP P is lower than the reference RR E F can generate a high level control signal. This control signal indicates the presence or absence of body movement. The low level period has body motion, and the high level period does not specifically move. In this case, the reference 値 R E F system can be used to determine in advance whether or not body motion can be determined. Secondly, the gate circuit 2 2 7 provides the gate to the pulse wave type M. 于 according to the control signal. Specifically, during the period when the control signal is at a high level, the pulse wave type M 于 can be supplied to the paper size刖 China's national standard (CNS > A4 now (210X297 mm) 93 A7! 4 16 8 41 _ B7____ V. Description of the invention (90 damping filter • On the other hand, the control signal is not in the low level period) The pulse wave type MH is supplied to the damping vibration filter 1 0 1. Thereby, a person who can shield the pulse wave shape is formed during a period of body movement. At this time, since the Q of the high damping oscillation filter 1 0 1 is set Alas, even when the supply of the pulse wave pattern MH is stopped for a certain period of time, it can continue to output a sine wave β that continues to output the waveform before the stop. Therefore, even when there is body motion, the period of the pulse wave pattern MH can be calculated. Those who can perform wavelet conversions accordingly. 1-8-9: Examples of using wavelet conversion results to obtain various information of living organisms In each of the above-mentioned embodiments, the wavelet type MH may be subjected to wavelet conversion. Use this to determine the pulse image ', but you can also use the The conversion result of wavelet transformation for information. 1—8_9 — 1: Judgment of relaxation degree. For example, the degree of relaxation can be detected by analyzing the pulse wave pattern or the ECG wave pattern. 0 In the electrocardiogram, a pulsating R wave is followed The time interval of the pulsating R wave is called the RR interval. The RR interval is the number of indicators of the body's autonomic nerve function. Figure 3 9 shows the pulsation of the electrocardiogram and the RR interval obtained from these pulsating wave patterns. ° It can be seen in the same figure that based on the analysis of the measurement results of the electrocardiogram, it can be obtained that only 1 ^ interval is changed over time. On the other hand, the blood pressure measured by the radial artery and other parts is contracted by -94- ( " Read the precautions on the back of the page before reading this page) This paper is standard and Chinese National Standard (CNS) A4 specification (2 丨 0 × 297 mm) a? ί 4 16 8 4 1 _________B7 .____ 5. Description of the invention ( 92) The pulsation changes of the blood pressure in the period and the diastolic blood pressure are defined, and they correspond to the changes in the RR interval of the electrocardiogram. Figure 40 shows the relationship between the electrocardiogram and blood pressure. And expansion Blood pressure is measured as the maximum pressure of the arterial pressure at each RR interval, and the minimum pressure displayed immediately before the maximum pressure. By performing spectral analysis of these heart pulse fluctuations and blood pressure fluctuations, it can be composed of waves of multiple frequencies. These changes can be divided into three types of change components shown below: ① HF (High Frequency) components of the uniform change in breathing. ② LF (Low Frequency) components that change in a period of about 10 seconds · ϊ Ο The tendency to change the frequency below the measurement limit (Trend) * The RR interval between adjacent pulses and pulse waves can be obtained by measuring the pulse waves separately, and the discrete 値 of the RR interval can be compensated by appropriate methods (for example, 3 times) Spline interpolation) (see Figure 39). In addition, the interpolated curve is subjected to F FT processing for spectral analysis | formation, and the above-mentioned variable component can be taken out as a peak chirp on the frequency axis. Fig. 41 (a) shows the waveforms of the measured RR interval fluctuations and the waveforms of the respective fluctuation components when the fluctuations are decomposed into three frequencies. Fig. 41 (b) is a result of spectrum analysis with respect to a variation pattern of the RR interval shown in Fig. 41 (a). In the figure, it can be seen that, for example, when quiet, peak ridges can be displayed at two frequencies around 0.07 Hz and around 0.25 Η z, the former being the LF component and the latter being the H F component. In addition, since the trend component is below the measurement limit, it cannot be read from the figure. I ni I n. «. E {対 Read the precautions on the reverse side of this page first, and then copy this page) The paper size is in the standard of the store (CNS) A4 size (2 丨 Ox 297 mm) -95- In the crotch, ^ ii. ^-^ H disappeared in Hezhu 311 Yinlai A7 / 4) 684] B7 'V. Description of the invention (93) The LF component indicates the tension of the sympathetic nerve. Increases tension (or excitement). On the other hand, the H F component indicates the degree of tension of the parasympathetic nerve. The larger the amplitude of the component, the more relaxed (or quiet) it is. The amplitudes of the L F component and the H F component are individual differences. Therefore, when considering this, the amplitude ratio “L F / HF” of the L F component and the HF component is extremely useful in estimating the tension of the test subject. From the above-mentioned LF and HF components, it can be known that the larger the "LF / HF", the higher the tension, and the smaller the "LF / HF", the lower the tension and the relaxed appearance. On the other hand, in the measurement of a predetermined time, the RR50 is the absolute value of the pulse interval corresponding to the RR interval of two consecutive pulses defined by the number of fluctuations of 50 microseconds or more. It can be learned that the larger the R R 50 0 is, the more the test subject is quiet, and the smaller the RR 50 0 is, the test subject is an excited state. Therefore, the above-mentioned L F and HF may be calculated by wavelet-converted ECG or pulse wave patterns, and the degree of relaxation may be calculated therefrom. Since the electrocardiogram or pulse wave pattern rises sharply with each pulsation, when the wavelet transforms the electrocardiogram or pulse wave pattern, a large high-domain frequency component is formed in the rising part. Therefore, the RR interval can also be obtained from the fluctuation of the high-domain frequency component, and the RR 50 can be calculated from this to detect the degree of relaxation. 1 — 8-9 — 2: Doze off Prevention of traffic accidents caused by drowsiness in driving cars and other vehicles in recent years -------------------- ix ------ 0 { Zhong first read the precautions on the back, then Eqiao page) The paper size is applicable to the Chinese standard (CNS) A4 size (210X297mm) -96- * ''] in the middle of the silt c ^ XJ.h η'φ 4 'bamboo ^ 1 printed st I 416841 A7' __ _B7 V. Description of the invention (94) Frequently issued. Therefore, in order to prevent the above-mentioned accidents, various devices have been created in the past. One example is a device mounted on a steering wheel. In the device described above, the conductor is pasted on the left and right of the steering wheel in advance, so that both hands of the driver can constantly contact this conductor to measure the resistance of the human body (driver). When the driver is dozing off, when the hand is away from the steering wheel, the electrical resistance between conductors will change. Therefore, this phenomenon can be regarded as dozing off and a warning sound to the driver can prevent the accident from happening. Other examples include fluctuations in pulsation obtained by measuring the electrocardiogram of the driver, and changes in the breath of the driver. However, in the method of sticking the conductor to the steering wheel as described above, the driver cannot properly monitor the vehicle when driving with only one hand or driving with gloves. In addition, the method of capturing pulsation changes or breathing changes requires not only a large-scale device, but also is extremely uncomfortable for everyday drivers. Therefore, it is also possible to analyze the arousal level of the human body by analyzing the results of the pulse wave conversion, and detect the state of doze ". The doze prevention device using wavelet conversion is based on the presence of pulse wave information and the human body. Based on the correlation between the arousal levels, the doze state of the human body is detected. At this time, several measured quantities obtained by the pulse wave are used as indicators for judging the human body's arousal state. Specific examples thereof use L F, HF, “LF / HF”, and RR50. According to the above-mentioned correlation, with deeper sleepiness, the state of the living body becomes quieter, and by sleepiness, for example, the sleepiness of R 5 0 gradually increases. Therefore • Detecting changes in these indicators can detect doze. --------- Installation ------ Order (count the notes on the back first and then fill in this page) This paper size is applicable to CNS A4 specification (210X297mm) ) -97- f 416841 _____B7___ V. Description of the invention (95) 2. Chapter 2 2 — 1: When a person who is generally engaged in exercise (inspected person) can know the intensity of exercise at that moment, he can exercise according to the exercise prescription Or, you can use physical transformation in various sports. ”Although there are various ways to display the intensity of exercise, it can be generally divided into the efficiency of such sports, or the absolute method of displaying the number of sports, such as the distance between sports, and the use of Relative expression methods such as pulsation number, and 3 methods combining these +. On the other hand, even if the intensity of exercise is not calculated, some subjective evaluations (such as "stringent" or "easy", etc.) may occur during exercise. Therefore, the testee can judge the exercise intensity at the moment based on his subjective evaluation, and various trainings can be carried out very generally. For example, you can improve the maximum oxygen intake when you exercise continuously with less severe and mentally more than enough intensity ("The amount of exercise required for physical fitness" by the Ministry of Health, Labour and Welfare): Shinzo Fujimoto: Health Science No. 32 Vol. 3 No. 190). As mentioned above, a certain intensity of exercise is often performed for various trainings * but the intensity of the exercise at this time is obtained from the subjective evaluation described above. However, the physical intensity of the exercise obtained from the subjective evaluation does not consider physical strength, so Not a proper assessment. Originally, the exercise intensity displayed by the above method was removed from the relative expression, and only the physical exercise intensity of the testee at that moment was expressed in a quantitative formula, and the physical and mental physical strength of the testee was not comprehensively considered. I nn! I i 11 (" Read the precautions on the back before filling out this page) This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm) 98-A7 41684 1 B7 V. Description of the invention (96) In addition, the relative indication of exercise intensity is that even if physical strength of the examinee is considered, it does not take into account the physical strength of the examinee. Therefore, even when using the obtained exercise intensity as an exercise index for exercise, the physical strength and mental strength of the person under test are not directly connected, which may cause the exercise intensity to be too strong, or the contrary to be too weak. Failure to achieve training effects and other inappropriate situations. As mentioned above, in Chapter 2, the first is to comprehensively consider the physical and mental strength of the person being tested during exercise, to provide the intensity of training required to improve the measurement of endurance of the whole body, and to inform the exercise of exercise Index measuring device. The second is to provide an exercise index measuring device that can comprehensively consider the physical and mental strength of the person being examined and report the index of the stunned exercise to the exercise intensity of the examinee. The second is to comprehensively consider the physical and mental strength of the person being tested during exercise, and provide the training intensity that can be easily used to improve the endurance of the whole body. 2-2: Theoretical basis Before explaining the implementation form of Chapter 2, the following explains the theoretical basis of the theoretical basis. First, in order to effectively use the index of exercise intensity of the dynamometer, the present inventor performed experiments using various data on the stepwise change of the running speed of the test subject, and based on the results of this experiment, see FIG. 4 and 4 as described below. I! — Install I 11 i I Μ {诮 Read the precautions on the back before filling this page) The paper size is appropriate; η Chinese National Standard (CNS) Α4 size (210 X 297 mm) -99- Warp " : Department-in-Ministry Cooperation between Local Workers and Consumers 枉 416841 A7 B7 Five 'Invention Explanation (97) The same figure (a) is the relationship between the running speed and the number of pulses of the first running and the second running The relationship between speed and running distance is shown in the same figure. As shown in the figure, it can be known that the number of pulses and the running distance of the examinee increase with the running speed. The same figure (b) is a graph showing the running speed and the subjective exercise intensity of the test subject when running in the stadium. Among them, the subjective exercise intensity is the point at which the subjective feeling is recorded when the subject is running at their speed. As shown in Figure 4-5, the more the setting feels "severe", the more it increases. As shown in Figure 44 (b), as the running speed increases, the number of points of subjective exercise intensity is increased, and it can be known that the degree to which the test subject feels "harsh" is higher. Secondly, the same graph (c) is a graph showing the relationship between the running speed of the running field and the lactic acid concentration in the blood obtained by the ear blood collection method. As shown in the figure, it can be known that the lactic acid concentration in the blood of the test subject starts to rise sharply near the point A. As is generally known, lactic acid is a fatigue substance. Once this concentration is increased, it will form and cannot continue with a certain intensity. motion. On the contrary, if it is only for continuous exercise, it is only necessary to exercise in a field with a low lactic acid concentration. On the other hand, even when the exercise intensity with a low lactic acid concentration is suppressed, as long as the test person feels that the exercise intensity is “relaxed”, the expected training effect cannot be obtained. Therefore, in order to improve the endurance of the whole body and perform continuous exercise, the tester's blood lactate concentration must be low in exercise intensity. It is better to consider the tester to exercise at a "slightly severe" exercise intensity. The intensity of motion as described above is equivalent to point A in the figure. ^ Each I-III line is ordered by each I (note 1 and read the note " item 41,;? This note) This paper size applies the Chinese National Standard (CNS) A4 spot (210X297) 犮 -100- The final award of the Ministry of Distillery Bureau WS Industrial Consumer Cooperatives Co., Ltd. India Fan A? 1 4 16 8 41 B7 V. Description of the invention (98) Actually, using the highest oxygen intake as the relative intensity indicates that the equivalent of the starting point of the increase in blood lactic acid concentration The exercise intensity of A can be found to be approximately 50% V. 2 m a X / WT can also be used to learn that the pupa can be used as an exercise intensity to improve the endurance of the whole body. Therefore, the exercise intensity corresponding to point A is the so-called exercise intensity of the physical and mental strength of the person being examined during exercise, and constitutes the exercise intensity index for training for improving the endurance of the whole body. However, when the point A is obtained directly * the blood lactic acid concentration must be continuously measured during exercise. This is extremely difficult in practical terms. In view of the above, the inventor of this case focused on the person whose pulse number and interval were synchronized with each other near the rising point of lactic acid concentration. As described in the conventional technique, the intensity of the exercise can be displayed using only the number of pulses and the distance during the exercise. Therefore, the place where the number of pulsations of the test subject is consistent with the distance is determined, and the exercise intensity of the place is obtained, thereby obtaining the exercise intensity equivalent to the point A indirectly. In addition, inform this exercise intensity | Provide appropriate indicators for training to improve endurance throughout the body. In addition, the exercise intensity of the test subject is informed by the amount of departure from the test subject's pulsation and distance consistent with the distance, thereby providing a comprehensive consideration of the physical body of the test subject. Inform the exercise instructions to eliminate the direction of the test person's pulsation and distance difference, which can make the test person's exercise intensity easily reach the exercise intensity required to improve the endurance of the whole body. IIII Order-I. ^ (^ 1 阽 ^ 1 ':-< face to face; 1 read fJrs and then ^ s on this page) This paper music scale is applicable to Chinese National Standards < CNS) Λ4 Regulations μ 210X 297 Gong)- 101-a? J 4 16 8 4 1 B7 V. Description of the invention (99) 2-3: First embodiment First, the exercise index measuring device of the first embodiment will be described as follows "The exercise index measuring device related to this embodiment It is based on the above principle. The first is to inform the exercise index that aims to form the exercise intensity of the subject's pulse number and the running distance. The second is to display and inform the exercise intensity when the exercise index actually shows the exercise. The third index of the degree of difference between exercise intensity is an exercise instruction that tells the direction to eliminate the difference between the number of pulses and the distance of the test subject. 2 — 3 — 1: Functional Configuration Order First, the functional configuration of the exercise index device related to the present invention is explained as follows. Fig. 42 is a block diagram showing its functional configuration. : Clip sample in the ministry ^ Bureau only consumes cooperative cooperation seal ^ In this figure, the pulse wave detection section 2 1 0 1 is a sensor that detects the pulse wave pattern of the person under test. The pulse wave signal detected by the pulse wave detection section 2 1 0 1 is converted into a digital signal by the A / D conversion section 2 1 2 and the FFT processing section 1 3 performs FFT (high-speed Fourier transform) processing. The number of pulsations was obtained from these processing results. In addition, 'the original need is the number of heart pulses, that is, the number of heart beats per unit time', and the number of heart pulses is equal to the number of pulses, so the obtained number of pulses can be obtained indirectly. Therefore, the pulse wave detection unit 2 1 0 1 It may also be a constitution that directly detects the heart pulse. On the other hand, the body motion detection unit 2 1 1 1 is a sensor for detecting a body motion of a test subject, and is constituted by, for example, an acceleration sensor. The body motion detection unit 2111 has the same body motion signal as the pulse wave pattern. It is converted into a digital signal by the A / D conversion unit 2 1 1 2 and 17 FT processing unit -102. # (CNS) Λ4 ^ 枋 < 2I0X297 公 牦)
a7 ' 4 168 4 T _____Β7^__ 五、發明説明(1。。) 1 1 3進行F F Τ處理,藉該等處理結果求得運動間距。 即,本發明之運動雖是以預定週期進行之具有節律性反復 運動,但係求得在該反復運動每單位時間內所進行次數。 例如,跑步運動時,求得單位時間的步數(跑步間距)’ 又游泳運動時則是求得單位時間的划動數° *裝. 另外,第3記憶部2 1 2 1是將所求得之脈動數及運 動間距的組與時間經過,及其運動強度等同時記億。判定 部1 2 2是從第3記憶部2 1 2 1的內容判定脈搏數及運 動間距互相一致的點,而以對應該等點的運動間距作爲目 標値輸出。 再者,圖42中的判定部2122雖是從第3記憶部 ,1Τ 2 1 2 1之記憶內容判定脈搏數及運動間距互相一致的點 ,但是不僅限於此,也可以經常比較其兩者,檢測其一致 點之構成。又,判定部2 1 2 2雖是對應脈動數及運動間 距互相一致的點之運動間距,但也可以輸出脈搏數或兩者 之構成者。 經滴部中央忭丨局νκΐ,消费合作社印餐 另一方面,第2記憶部2 1 3 1是除了被檢驗人的體 重之外,並記憶上述反復運動之一次移動量等。例如跑步 運動時,則是記憶步幅(stride ),又,游泳運動時則是記 憶1行程的距離。 開關2 1 3 2是以判定部2 1 2 2之目標値爲運動間 距(輸入端子),或者選擇FFT處理部2 11 3所求得 現時刻的運動間距(輸入端子b )之任一側者,其選擇是 藉控制部2 1 6 0來指示β 本紙乐尺度適用中國國家標牟(CNS 枯(210Χ 297公焓) -103- Α? ,Γ 41684! B7五、發明説明(1Q1 ) 運動強度運算部2 1 3 3是從運動間距、反復運動的 1次移動量及體重運算其運動強度。因此|於開關 2 1 3 2選擇輸入端子a時,除了可求得目標之運動強度 之外,只要選擇輸入端子b時,即可求得被檢驗人實際運 動時的運動強度。其中,以被檢驗人進行的運動型態進行 跑步運動時,跑步速度是將被檢驗人的跑步間距乘以步幅 求得,因此運動強度可從跑步速度及被檢驗人的體重求得 〇 此外,運動強度也可以使用脈搏數表現的方法*因此 運動強度運算部2 1 3 3並非以跑步間距,而是輸入 F F T處理部2 1 0 3所求得的脈動數進行運動強度運算 之構成亦可β又,運動爲跑步時•可以跑步間距與步幅乘 積之跑步速度,或跑步速度與脈動數的乘積、間距與脈動 數的乘積、步幅與步幅的乘積作爲運動強度,因此運動強 度運算部2 1 3 3也可以運算該等之構成者。 其次*第1記憶部2 1 3 4在選擇輸入端子a時,將 運動強度運算部2 1 3 3所求得的運動強度,即目標運動 強度與顯示所求得月日的數據同時予以記憶· 又,比較部2 1 4 1是在後述之第4功能實行時,求 得FFT2 1 0 3所求得的脈動數與FFT處理部 2 1 1 3所求得之運動間.距的差,並且該差係求得占據該 等脈動數或間距的程度,而對應該程度進行分級者。 另一方面,比較部2 1 4 1係於後述之第5功能實行 時,將F FT2 1 0 3所求得的脈搏數與F FT處理部 II^私 „ _ ^ 1 A {^^"•^背而之注^事項^珀巧本頁) 本纸張尺度適用令固國家標準(CNS ) /\4規枯(2】0Χ297';Η〜) -104- 經"-部中央螵苹局只工消费合作社印装 Λ7 4 16841 ____ B?五、發明説明(102) 2 1 1 3所求得的運動間距比較,求得消除兩者差用的運 動指示者。 其中,兩者差爲零時,即兩者一致時,於現時刻中被 檢驗人可持續之運動強度,而可以目標之運動強度進行運 動之意。因此,於第4功能中,比較部2 1 4 1所求得的 程度是顯示現時刻的運動強度相對於目標之運動強度間不 同的程度,又,第5功能中所求得之運動指示係形成接近 作爲目標之運動強度用的指標。 告知部2 1 5 1主要是從第1記憶部2 1 3 4的記憶 內容、第3記億部2121的記憶內容、運動強度運算部 2 1 3 3的運算結果1及比較部2 1 4 1的比較結果進行 其次之告知者•即,告知部2 1 5 1具備:顯示所求得脈 動數及運動間距的組,並對應附記時間經過的第1功能; 告知.顯示目標之運動強度的第2功能;顯示現時刻中被 檢驗人進行之運動強度的第3功能:告知.顯示現時刻之 運動強度相對於目標運動強度間的差異程度之第4功能: 相對於現時刻之運動強度而告知接近目標運動強度用的指 示之第5功能:及,顯示第2功能所求得運動強度隨曰月 位準時間經過的同時之進展程度的第6功能。 又,控制部2 1 6 0係可控制各部之動作者。 2 - 3 — 2 :電氣之構成 其次,針對可實現圖4 2表示之功能構成用電氣構成 說明如下《 東· 本紙伕疋度適用中國國家樣準(CNS > Λ4忧枯(210X2W公犮) -105- 經泛部中央標準局只'工消费合作社印*4 A7 Γ 416841 Β7 ' 五、發明説明(1t)3) 圖4 3是表示其構成之方瑰圖》 圖中,CPU2201係可根據記憶於ROM 2 2 0 2的基本程式進行經由匯流排B之各部的控制•或 各種處理的實行.運算等,係相當於圖4 2之F F處理部 2103、21 1 3、判定部212 2、運動強度運算部 2133、比較部2141及控制部2160。 RAM2 2 0 3是對應賦予運動開始後的時間經過而 記憶所求得脈動數及運動間距組的同時,於C P U 2 2 0 1控制中可暫時記憶所使用之各種數據,例如被檢 驗人的體重,或步幅等數據 > 係相當於圖4 2之第1記憶 部2 1 3 4、第2記憶部2 1 3 1及第3記億部2 1 2 1 〇 感測器介面2 2 0 4是將脈波檢測部2 1 0 1及體動 檢測部2111的各模擬輸出信號分別以預定的間隔抽樣 之,轉換爲數位信號後輸出者,係相當於圖4 2之A/D 轉換部2102、2112。 另一方面,計時電路2 2 0 5除了一般的計時功能之 外,具有在每一預先設定的時間間隔內相對於C P U 2 2 0 1送出中斷信號的功能· 操作部2 2 0 6係可選擇.設定被檢驗人的體重’或 步幅等的輸入或各種功能.(mode)者’藉由後述之種種按 鍵開關所構成。 顯示部2 2 1 0係藉C PU 2 2 0 1的控制顯示各種 資訊者,例如藉L C D (液晶顯示面板)等所構成。警報 本紙张尺度適用中國國家標準(CNS > Λ4悅枋(210X2<?7公犮) -裝 I 416841 A7 | B7 經泸部中央代4··局只4消贤合作社印製 五、發明説明) 部2 0 8是利用C PU2 2 0 1的控制產生警報聲,藉以 告知被檢驗人之各種狀態的變化。該等顯示部2 2 1 0及 警報部2208是相當於圖42之告知部2151。 又,I/O介面2209具有後述之LED及光敏電 阻,可進行外部機器與資訊的傳遞者。 2 — 3_3 :外觀構成 本實施形態之相關運動指標測定裝置可針對其外觀而 考量種種的態樣,但最好是在被檢驗人進行運動時不致意 識其裝著的狀態爲佳。因此,運動指標測定裝置的外觀是 與第1章說明之脈波診斷裝置相同(參閱圖2)。此時, 上述第1〜第6之各功能係實行圖2表示手錶之一功能》 此外,上述之脈波檢測部2 1 0 1係構成爲圖2表示之脈 波檢測用感測器單元130。 圖2中,於裝置本體1 1 0的表面•並將按鍵開關 1 1 6、1 1 7分別設置在顯示部2 1 0下側、上側。其 中,按鍵開關1 1 7於時刻、日期、體重及步幅値的修正 時逐一上推使用設定値》另一方面,按鍵開關1 1 6係於 時刻、日期、體重及步幅値的修正時逐一下推使用設定値 Q 又,圖4 6是表示從連接部7 0卸下連接器螺絲8 0 之外観構成圖。如圖所示,在連接部7 0內部除了與纜線 120的連接端子505、506之外,並設有LED 5 0 7及光電晶體5 0 8,形成可與外部機器進行光通訊 κ1閱请背而之"悉争,r,4JAv,:J本石) 裝· 本紙張尺度適用中國因家標準(CNS ΜβΑ格< 210χ2ί»7.公荩) -107- 經浇部中戎標"-局只工消费合作社印繁 A7 i 416841, A7 〆 £7__ 五、發明説明(1Q5 ) 者。即,該等L E D 5 Ο 7及光電晶體5 Ο 8係構成圇2 之I/0介面的一部份。 此外,不作爲外觀顯示的元件,例如將c P u 2 2 01,體動檢測部2111 '感測器介面2204 1 警報器2 2 0 8等係內設於裝置本體1 1 ◦ 0 2 — 3_4 :外部機器 其次,雖無關於本實施形態之運動指標測定裝置|但 針對與本裝_置進行資訊傳遞之外部機器參閱圖4 7說明如 下。如圖所示,外部機器爲機器本體6 0 0、顯示器 601 1鍵盤602 *印表機603等所構成,除以下點 外皆與一般之個人電腦相同》 亦即,機器本體6 0 0係爲了傳送接收光信號之數據 ,而內設有未圖示之送訊控制部及收訊控制部所構成的介 面,其中,送訊控制部具有傳送光信號用的LED604 ,另一方面收訊控制部則是具有可接收光訊號用之光電晶 體605 »該等LED604、光電晶體605分別使用 與運動指標測定裝置之裝置本體110的LED503、 光電晶體6 0 5相同或者近似特性者。在此,最好是近紅 外線型(例如中心波長爲940nm者)。並且,使用近 紅外線型時,在機器本體.6 0 0前面設置遮斷可視光用之 可視光遮蔽用濾光器而形成光通訊用通訊窗6 0 6。 如上述,運動指標測定裝置之裝置本體1 1 0與外部 機器是形成可利用光通訊互相進行資訊的傳受。此外,針 ^紙张尺度適用中园國家標卑(CNS ) ΛΜΚΑ { 210X297公# ) - 108- il I I) i i I —I— I ;i、1T11 I I! A (許1間"竹而之"-&亨巧再^^本刃) A7 / 4 16841 B7 經漪部中央抒EP-局只工消於合作社印¾ 五、發明説明() 對其資訊傳受內容中的動作說明如下。 2 - 3 — 5 :動作 其次,針對本實施形態相關之運動指標測定裝置的動 作說明如下。 如上述,由於裝置本體1 1 0具有種種的功能,因此 針對其動作分別說明該等之功能。且,爲方便說明起見1 雖是以跑步運動作爲被檢驗人進行的運動說明之,但是本 發明之主旨不僅限於此。 2 — 3 — 5—1 :第1功能 首先,針對實行第1功能(即,針對所求得之脈動數 及跑步間距組合•對應賦予時間經過而顯示的功能)時的 動作說明如下。 被檢驗人操作按鍵開關111 ,設定實行第1功能用 之模式時,圖43之CPU2201 (圖42之控制部 2 1 6 0 )於實行圖4 8表示之基礎處理)①之後,隨之 定期實行圖4 9表示之中斷處理①。 首先,參閱圖4 8說明基礎處理①的處理內容之。步 驟Sa 1中,CPU220 1是經由感測器介面2204 輸入藉體動檢測部2 1 1 1所檢測之體動信號|將此施以 F F T處理,可判別被檢驗人開始實際的跑步運動。並且 ,CPU220 1 —旦判別出未開始運動時,使處理順序 再次回到步驟S a 1。即,被檢驗人開始運動爲止,處理 I n I I ' I I (1 n : 訂 n 111 1 本紙張尺度適用中國國家標準(CNS>/V^〇V ( 2丨0乂2<>7公» ) -109- A7 B7a7 '4 168 4 T _____ Β7 ^ __ 5. Description of the invention (1.) 1 1 3 Perform F F TT processing, and use these processing results to obtain the motion distance. That is, although the exercise of the present invention is a rhythmic repetitive exercise performed in a predetermined cycle, the number of repetitions per unit time is determined. For example, during running exercise, the number of steps per unit time (running interval) is obtained. 'During swimming exercise, the number of strokes per unit time is obtained. * Equipment. In addition, the third memory unit 2 1 2 1 The number of obtained pulsations and the distance between movements and the passage of time, as well as the intensity of their movements, are also recorded in billions. The judging unit 1 2 2 judges the points where the pulse number and the movement interval are consistent with each other from the content of the third memory unit 2 1 2 1 and outputs the movement interval corresponding to these points as a target. Furthermore, although the determination unit 2122 in FIG. 42 determines the points where the pulse number and the exercise distance are consistent with each other from the memory contents of the 3T 2 1 2 1, it is not limited to this, and the two can be often compared. Check the composition of the points of agreement. The determination unit 2 1 2 2 is a motion interval corresponding to a point at which the pulsation number and the motion interval coincide with each other, but may output a pulse number or a combination of both. The central part of the Jingdi Department 局 丨 Bureau νκΐ, the consumer cooperative prints the meal. On the other hand, the second memory section 2 1 3 1 stores the movement amount of the repetitive exercise in addition to the body weight of the testee. For example, stride is memorized during running, and distance of 1 stroke is memorized during swimming. Switch 2 1 3 2 uses either the target distance of the determination unit 2 1 2 2 as the movement distance (input terminal), or selects either side of the current movement distance (input terminal b) obtained by the FFT processing unit 2 11 3 , Its choice is to use the control unit 2 1 6 0 to indicate that the β paper scale is applicable to the Chinese national standard (CNS dry (210 × 297 enthalpy) -103- Α?, Γ 41684! B7 V. Description of the invention (1Q1) exercise intensity The calculation unit 2 1 3 3 calculates the exercise intensity from the movement distance, the amount of movement of the repetitive exercise and the weight. Therefore, when the input terminal a is selected by the switch 2 1 3 2, in addition to obtaining the target exercise intensity, As long as the input terminal b is selected, the exercise intensity of the examinee during the actual exercise can be obtained. Among them, when running in the exercise type performed by the examinee, the running speed is the distance between the examinee's running distance and the step. The exercise intensity can be obtained from the running speed and the weight of the test person. In addition, the exercise intensity can also be expressed by the number of pulses *. Therefore, the exercise intensity calculation unit 2 1 3 3 is not based on the running distance, but input FFT processing section 2 The structure of exercise intensity calculation of the number of pulses obtained by 1 0 3 can also be β. When the exercise is running • The running speed can be the product of the running distance and the stride, or the product of the running speed and the number of pulses, The product, the product of the stride, and the stride are taken as the exercise intensity. Therefore, the exercise intensity calculation unit 2 1 3 3 can also calculate these components. Secondly, when the first storage unit 2 1 3 4 selects the input terminal a, it will exercise. The exercise intensity obtained by the intensity calculation unit 2 1 3 3, that is, the target exercise intensity and the data showing the obtained day and month are memorized at the same time. Also, the comparison unit 2 1 4 1 calculates the The difference between the number of pulsations obtained by FFT2 1 0 3 and the motion obtained by the FFT processing section 2 1 1 3 is obtained, and the difference is the degree of occupying the number of pulsations or distances, and the corresponding degree On the other hand, the comparison section 2 1 4 1 is the pulse number obtained by F FT2 1 0 3 and the F FT processing section II ^ 私 „_ ^ 1 A { ^^ " • ^ Behind the scenes ^ Matters ^ Po Qiao page) This paper size is applicable to Linggu country Standard (CNS) / \ 4 gauge (2) 0 × 297 '; Η ~) -104- Economic "-Printed by the Ministry of Economy and Social Affairs Bureau, only Consumer Cooperatives Λ7 4 16841 ____ B? V. Description of the Invention (102) 2 Compare the movement distances obtained from 1 1 to 3 to find the movement indicator for eliminating the difference between them. Among them, when the difference between the two is zero, that is, when the two are consistent, the current person's sustainable exercise intensity at the moment , And you can exercise with the intensity of the target. Therefore, in the fourth function, the degree obtained by the comparison section 2 1 4 1 is to display the degree of difference between the current exercise intensity and the target exercise intensity, and the exercise instruction system obtained in the fifth function Form an index for approaching the intensity of exercise as a target. The notification unit 2 1 5 1 is mainly from the memory content of the first memory unit 2 1 3 4, the memory content of the third memory unit 2121, the calculation result 1 of the exercise intensity calculation unit 2 1 3 3, and the comparison unit 2 1 4 1 The result of the comparison is followed by the notification. That is, the notification unit 2 1 5 1 has the first function of displaying the set of the obtained pulsation number and motion interval, and corresponding to the elapsed time; the notification. 2 functions; the third function that displays the exercise intensity performed by the test subject at the present moment: notification. The fourth function that displays the degree of difference between the current exercise intensity and the target exercise intensity: the fourth function: notification with respect to the current exercise intensity The fifth function of the instruction for approaching the target exercise intensity: and the sixth function of displaying the degree of progress of the exercise intensity obtained by the second function as the month level time elapses. The control unit 2 160 is a person who can control the operation of each unit. 2-3 — 2: Electrical composition Secondly, the electrical composition for realizing the functional composition shown in Figure 4 2 can be explained as follows: "East · Paper Paper Applicable to Chinese National Standards (CNS > Λ4 Worry (210X2W)" -105- Via the Central Standards Bureau of the Ministry of Foreign Affairs of the People's Republic of China, only 'Industrial and Consumer Cooperatives' Seal * 4 A7 Γ 416841 Β7' V. Description of the Invention (1t) 3) Figure 4 3 is a square diagram showing its composition. The basic program stored in the ROM 2 2 0 2 is used to control or execute various processes and operations of each part of the bus B. The calculation and the like are equivalent to the FF processing units 2103 and 21 1 3 in FIG. 4 2 and the determination unit 2212. The exercise intensity calculation unit 2133, the comparison unit 2141, and the control unit 2160. RAM2 2 0 3 is used to memorize the number of pulses and the distance between movements corresponding to the time elapsed after the start of exercise. At the same time, it can temporarily store various data used in the control of CPU 2 2 1, such as the weight of the person being tested. , Or data such as stride > are equivalent to the first memory section 2 1 3 4, the second memory section 2 1 3 1 and the third memory section 2 1 2 1 〇 sensor interface 2 2 0 4 is a sample of each of the analog output signals of the pulse wave detection section 2 101 and the body movement detection section 2111 at predetermined intervals and converted into digital signals and output, which is equivalent to the A / D conversion section of FIG. 4 2102, 2112. On the other hand, in addition to the general timing function, the timer circuit 2 2 5 has the function of sending an interrupt signal to the CPU 2 2 0 1 at every preset time interval. The operating unit 2 2 6 is optional. The input of setting the weight of the person to be tested, the stride, and various functions. The "mode" person is constituted by various key switches described later. The display unit 2 2 0 is configured to display various information under the control of the CPU 2 2 0 1. For example, the display unit 2 1 0 is constituted by an LCD (liquid crystal display panel). This paper size applies the Chinese national standard (CNS > Λ4 Yue 枋 (210X2 <? 7 male))-installed I 416841 A7 | B7 Printed by the central government of the Ministry 4 ·· Bureau only 4 printed by Xiaoxian Cooperatives 5. Description of the invention ) Department 2 0 8 uses the control of C PU 2 2 1 to generate an alarm sound to inform the inspected person of various state changes. The display section 2 2 10 and the alarm section 2208 are equivalent to the notification section 2151 of FIG. 42. In addition, the I / O interface 2209 has an LED and a photoresistor described later, and can be used for transmitting external equipment and information. 2 — 3_3: Appearance composition The relevant exercise index measuring device of this embodiment can consider various appearances according to its appearance, but it is better that the examinee does not notice the state of his or her appearance when exercising. Therefore, the appearance of the exercise index measuring device is the same as that of the pulse wave diagnostic device described in Chapter 1 (see Fig. 2). At this time, each of the first to sixth functions described above implements one of the functions of the watch shown in FIG. 2. In addition, the above-mentioned pulse wave detection unit 2 1 0 1 is configured as the pulse wave detection sensor unit 130 shown in FIG. 2. . In FIG. 2, on the surface of the device body 110, key switches 1 1 6 and 1 1 7 are respectively disposed on the lower side and the upper side of the display portion 2 10. Among them, the key switch 1 1 7 is used to push up the use setting one by one when correcting the time, date, weight and stride 値. On the other hand, the key switch 1 1 6 is used to correct the time, date, weight and stride 値. Push the use setting 値 Q one by one. Fig. 46 is a diagram showing the structure of the connector screw 80 after removing it from the connecting portion 70. As shown in the figure, in addition to the connection terminals 505 and 506 of the cable 120 inside the connection portion 70, an LED 507 and a photoelectric crystal 508 are provided to form optical communication with external devices. Behind the back "quote, r, 4JAv,: J Benshi) Packing · The paper size is applicable to Chinese standards (CNS ΜβΑ 格 & 210x2ί» 7. 公 荩) -107- Zhong Rong Biao of the Ministry of Economics " -The bureau only works at the Consumer Cooperatives A7 i 416841, A7 〆 £ 7__ 5. Those who explained the invention (1Q5). That is, the L E D 5 0 7 and the photoelectric crystal 5 0 8 form part of the I / 0 interface of 囵 2. In addition, the components that are not displayed on the exterior are, for example, c P u 2 2 01, body motion detection unit 2111 'sensor interface 2204 1 alarm 2 2 0 8 etc., which are built in the device body 1 1 ◦ 0 2 — 3_4 : External device Secondly, although there is no exercise index measuring device related to this embodiment |, the external device that performs information transmission with this device will be described with reference to Figs. As shown in the figure, the external machine is composed of the machine body 600, the display 6011, the keyboard 602, and the printer 603. It is the same as a general personal computer except for the following points. That is, the machine body 600 is designed for Transmits and receives data of optical signals, and has an interface composed of a transmission control section and a reception control section (not shown). Among them, the transmission control section has an LED 604 for transmitting optical signals, and the reception control section It has a photoelectric crystal 605 for receiving light signals. The LED 604 and the photoelectric crystal 605 use the same or similar characteristics as the LED 503 and the photoelectric crystal 605 of the device body 110 of the motion index measuring device, respectively. Here, a near infrared line type (for example, a center wavelength of 940 nm) is preferred. In addition, when using a near-infrared type, a filter for blocking visible light is provided in front of the main body of the device, and a communication window for optical communication is formed. As described above, the device body 110 of the exercise index measuring device and the external device form information transmission and reception with each other through optical communication. In addition, the paper size is applicable to the National Park Standards (CNS) ΛΜΚΑ {210X297 公 #)-108- il II) ii I —I— I; i, 1T11 II! A (Xu 1 Room " "-& Heng Qiao again ^^ this blade) A7 / 4 16841 B7 Jing Yi Ministry said that EP-Bureau only disappeared in the cooperative seal Ⅴ 5. Description of the invention () The action in the content of its information transmission and reception is described below . 2-3 — 5: Operation Next, the operation of the exercise index measuring device according to this embodiment will be described below. As described above, since the device main body 110 has various functions, the functions thereof will be described separately for their operations. In addition, for the sake of convenience, although the running exercise is described as a test subject, the gist of the present invention is not limited to this. 2 — 3 — 5-1: First function First, the operation when the first function (that is, the combination of the obtained number of pulses and the running distance and the function corresponding to the passage of time) is performed is described below. When the examinee operates the key switch 111 to set the mode for implementing the first function, the CPU 2201 (control unit 2 1 6 0 in FIG. 42) of FIG. 43 executes the basic processing shown in FIG. 4 8), and then executes it periodically. Figure 4 9 shows the interrupt processing ①. First, the processing contents of the basic processing ① will be described with reference to FIGS. In step Sa1, the CPU 2201 inputs the body motion signal detected by the body motion detection unit 2 1 1 1 via the sensor interface 2204. This is subjected to F F T processing, and it can be determined that the testee starts the actual running exercise. When the CPU 220 1 determines that the movement has not started, it returns the processing sequence to step S a 1 again. That is, until the subject starts to exercise, I n II 'II (1 n: order n 111 1 This paper size applies the Chinese national standard (CNS > / V ^ 〇V (2 丨 0 乂 2 < > 7 public » ) -109- A7 B7
4 1664I 經老部中央螵車局貝工消费合作社印^ 107五、發明説明() 順序是處於步驟S a 1中待機的狀態。實際上,當被檢驗 人開始跑步運動時,CPU2201係於步驟Sa2中* 淸除暫存器η之値爲零後,於步驟S a 3中許可中斷處理 ①的實行後,完成該等基礎處理①。其中,中斷處理①是 藉時鐘電路2 2 0 5之中斷信號,例如每一分鐘定期實行 的處理。 如上述,於基礎處理①中,設定實行第1功能用的模 式,且被檢驗人開始實際跑步運動後,形成可容許中斷處 理①的定期賓行·> 其次,參閱圖4 9說明中斷處理①的處理內容如下。 首先,步驟Sa 1 1中的CPU220 1僅係將暫存器η 增加「1」。暫存器η係於上述步驟S a 2中淸除爲零, 因此,其內容是當被檢驗人運動開始之後*顯示實行中斷 處理①的次數。又,該中斷處理①是以一定間隔實行,因 此暫存器η可間接顯示運動開始後的時間經過。 又,步驟Sa 12中的CPU2201是經由感測器 介面2 2 0 4讀取脈波檢測部2 1 0 1所檢測的脈波信號 之後,施以F F T處理,而求得被檢驗人的脈動數,即脈 搏數〔脈動/分鐘〕。隨後步驟Sal 3中的CPU 2 2 0 1是經由感測器介面2 2 0 4讀取體動檢測部 1 1 1所檢測的體動信號之後,施以F F T處理而求得被 檢驗人的跑步間距。其中,被檢驗人運動時,檢測出隨著 該等運動規律性之波譜,因此可特定波譜藉此求得運動間 距(此時,跑步間距)。 (誌51間^.背*之注*|項再^.:?;:-本万) -裝 -14. i姝- 本纸張尺度適用t國囷家標車(CNS )/\4規格<210X297公总) -1Ί0- A7 ,1' 416841 ____B7 五、發明説明(1Q8 ) 此外,步驟s a 1 4中的CPU2 2 0 1是以求得的 脈搏數與跑步間距成對而對應現時刻之暫存器η的値記憶 在RAM2203中·因此,RAM2203於實行各個 中斷處理①時,形成可累積記億所檢測之脈動數及跑步間 距。 其次,步驟Sa 15中的CPU2201是從RAM 2 2 0 3讀取所有記憶的脈動數與跑步間距,在步驟S a 1 6中,相對於顯示部2 2 1 0以讀出的脈動數與跑步間 距爲y軸,以對應之暫存器η的値爲X軸而予以描繪,控 制可進行2維顯示者。將此顯示之一例表示於圖5 6中。 如上述,暫存器η之値係表示運動開始後的時間經過,因 此可藉上述表示將運動開始後之脈動數及跑步間距的如何 變化顯示在顯示部2 2 1 0上。因此,被檢驗人可獲悉自 己的脈動數及跑步間距是如何的變動/但是*以運動指標 測定裝置之形態作爲圖2表示的手錶型時,必然地會限定 了顯示部2 1 0的顯示能力*因此,如後述將讀出的資訊 傳送至外部機器,而以其形成可解析側爲佳。一旦實行步 驟Sa 1 5的顯示處理時,CPU220 1具備次回的實 行,而完成此次的中斷處理。 藉著上述之基礎處理①及中斷處理①的實行,可藉圖 4 3的內部構成等値實行以圖4 2表示的功能構成所實行 之第1功能,即使第3記億部1 2 1所記億之脈動數與跑 步間距對應運動開始後時間經過而顯示之功能。 (閱讀背而之注意事項再填Μ本頁) 1 ♦ 本紙浓尺度璉圯中KK家標枣(C,NS ) 規格< 210Χ297公嫠) -111 - A7 J 4 16 8 4 1 B7 -J MV An 五、發明説明() 2—3—5_2:第2功能 其次,針對實行第2功能(即顯示目標之運動強度的 功能)時的動作說明如下。 被檢驗人操作按鍵開關1 1 1,一旦設定實行第2功 能用的模式時,圖4 3之C P U 2 2 0 1係實行圖5 0所 示之基礎處理②,隨後定期地實行圖5 1表示之中斷處理 ②。 最初,參閱圖5 0說明基礎處理©的處理內容如下》 該基礎處理0係於顯示目標之運動強度時設定前提資訊, 許可中斷處理0者,詳細而言是以下步驟S b 1〜S b 9 所構成β 首先,CPU2201係於步驟Sb 1中,例如實行 在RAM2 2 0 3中確保所須的領域,或淸除該等領域等 的初期設定處理。 其次,CPU2201係於步驟Sb2是判別反復運 動一次的移動量,或是否將被檢驗人的體重等資料設定在 RAM2 2 0 3。本實施形態的運動爲跑步運動,因此 C P U 2 2 0 1可判別是否已設定被檢驗人步幅及體重資 料。本實施形態中,首先實行第2的功能時,RAM 22 0 3中並未設定任何的資料,因此進行步驟S t) 2的 判別6 設定有上述資料時,CPU220 1於步驟Sb3中 ,從RAM2 2 0 3讀取該等設定資料而顯示在顯示部 2 1 0的同時*.在其次的步驟S b 4中’以留言顯示促使 (tistwi#背而之·;ί^.事項再 本頁) 裝. 訂 • 112- A7 .1 4 16841 B7 五、發明説明(11Q) 被檢驗人是否選擇變更該等値。 被檢驗人進行不變更的指示時,CPU2201在步 驟S b 5中,以上述資料作爲既定値而再設定於RAM 2 2 0 3 中。 另一方面,上述資料未設定於RAM2 2 0 3時,或 者進行上述資料變更的指示時,CPU2201於步驟 S b 6中,可判別是否輸入上述資料,如未輸入時再次使 處理順序回到步驟S b 6。即,至輸入被檢驗人的步幅· 體重爲止,處理順序是在步驟S b 6中呈待機的狀態。並 且一旦輸入.變更該等資料時,CPU2201於步驟 S b 7中將該等値設定於RAM2 2 0 3之中。 於此,變更步幅等資料的指示是,例如被檢驗人可操 作按鍵開關1 1 1,將裝置本體1 1 0的動作模式設定爲 輸入.變更模式。又,未變更的指示則是被檢驗人可能未 於預定時間操作按鍵開關1 1 1等》此外,步幅等資料之 變更.輸入的方法有,例如被檢驗人設定變更.輸入模式 ,並且利用按鍵開關514設定變更.輸入對象之步幅或 體重任一方之後,藉按鍵開關1 1 1或者1 1 6使形成該 等對象的値可逐一提前或延遲等。 而一旦將被檢驗人的步幅或體重相關的資料等設定於 RAM2203時,於步驟Sb8中的CPU2201是 與基礎處理①的步驟S a 1相同,判別被檢驗人之實際開 始運動,當判別出未開始運動時,處理順序再次回到步驟 S b 8。即,至被檢驗人開始運動爲止,處理順序是在步 (計"閱請背而之:¾¾事項再蟥巧本頁) 本紙烺尺度进用中程囚家標冷.((:NS > Λ4現格(210Χ297公釐) -113- A7 ί. 4 16841 Β7 五、發明说明(111) 驟S b 8中呈待機狀態》實際上,被檢驗人一旦開始運動 時,CPU2201於步驟Sb9中,許可中斷處理0的 實行之後,完成該等基礎處理0的實行。其中,中斷處理 0是藉時鐘電路2 0 5的中斷信號,例如每兩分鐘定期實 行的處理。 如上述,一旦實行基礎處理0時,設定運動強度運算 所須的資料,同時設定可實行第2功能用的模式,且被檢 驗人一旦開始實際的運動時,形成中斷處理0之定期實行 的許可。 其次,參閱圖5 1說明中斷處理0的處理內容如下· 首先,CPU2201於步驟Sbll中,求得被檢 驗人的脈搏數〔次數/分鐘〕。其次,在步驟Sb 12中 ,求得被檢驗人的跑步間距〔次/分鐘〕。該點是與中斷 處理①的步驟Sa 12、13相同。隨後,CPU 2201於步驟Sbll,將RAM2203中所記憶之 被檢驗人的步幅乘以前步驟所檢測的跑步間距,算出被檢 驗人的跑步速度* 次外,CPU2201於步驟Sbl4中,使所檢測 之脈搏數與跑步間距對應其跑步速度而記憶在RAM 2 2 0 3 中。 又,第2功能是以脈搏數與跑步間距一致點的運動強 度作爲目標値而顯示的功能,但此時,脈搏數與跑步間距 如未能在不同跑步中求得兩點以上時,則無法判定一致的 點。 ---------U------1T------0 ίιίίι閱讀背而之注意事項再填巧本頁) 本纸張尺度述州中囚®家標??-((,NS ) Λ4洗格(210X297公釐) -114- λ7 "1684; B7 五、發明説明(m ) 有鑑於此,CPU2201於步驟S b 1 5中’必須 以至少記億兩組以上的脈搏數與跑步間距的同時’該等跑 步速度非同一値爲條件來實行以下步驟s b 1 6〜s b 2 2的處理。 即,步驟S b 1 5的判別結果爲「Y e s」時’ CPU2201於步驟Sb 1 6中,第1是讀出所有記億 在RAM2 2 0中的脈搏數與跑步間距。第2是求得對應 跑步速度的脈搏數的回歸直線’同樣地,可求得對應跑步 速度之跑步間距的回歸直線。第3是判定脈搏數的回歸直 線與跑步速度之回歸直線的交點,可求得脈搏數與跑步間 距同步的點》 再者,考慮測定誤差時*不一定必須要交點,在—致 點的檢測中,脈搏數及跑步間距的差在1 0%的範圍時, 可視兩者爲相同。 其次,CPU2201係求得對應所求得之跑步間距 (步驟Sbl7),並控制警報部2208產生作爲運動 指標之對應其跑步間距的警報聲(步驟S b 1 8 )。例如 ,警報聲可以如「嗶.嗶.嗶」等對應跑步間距之頻率者 。又•此時,不僅限於顯示,可以藉聲音合成或譬報聲的 強弱等種種態樣來告知之構成。 又,CPU220 1是求得對應所求得的跑步速度( 步驟Sbl9),運算對應其跑步速度之運動強度(步驟 Sb20)。此一運算也可以於該等跑步速度上乘以記憶 在RAM2 2 0 3之被檢驗人的體重來求得,也可以藉跑 本紙張尺度適用中因囚家榡彳(rNS ) Λ4規格(2丨Ox 297公釐) -115- —--------裝—— *-· 線 Α7 ί 4 16 8 4 1 B7五、發明説明(113 ) 步運動與運動強度的關係求得。 並且,CPU220 1是將所求得的運動強度對應其 跑步運動的日期而記憶在RAM2 2 0 3內(步驟S b 21),以所求得的運動強度爲目標之運動指標而以顯示 部2210表示之(步驟Sb22) 〇 如上述所求得的運動強度是脈搏數與跑步間距同步點 的値,其係形成進行提高全身持久力用之運動時的指標β 其中,如步驟S b 2 0 —旦以被檢驗人的物理運動強度求 得運動強度時,可獲得其跑步運動之絕對強度,因此可有 效地進行各種比較。但是,對於被檢驗人而言,藉警報部 2208表示跑步間距(或者脈搏數),在運動中可直覺 地容易判別出目標之運動強度。即,對於被檢驗人而言, 隨著感覺所顯示的指標進行運動時,可達成目標的運動, 因此而較爲有效。 如上述,於中斷處理0中,如上述可構成告知.顯示 作爲運動指標之跑步間距、物理性運動強度雙方的構成。 另外,運動指標也可以脈搏數,或選擇該等而告知. 顯示任一之構成亦可。 其中*以脈搏數與跑步間距雙方作爲運動指標而告知 時·被檢驗人爲了增減跑步運動的強度,而以運動指標告 知之脈搏數爲優先目標,自律控制跑步速度的方法’及以 運動指標告知之跑步速度爲優先目標而告知的結果,可獲 得兩種控制脈搏數的方法。 又,以跑步運動時,運動速度可使用跑步間距與步幅 本纸汰尺度ii凡屮SK家標?t ( CNS ) Λ4規枯(2!0X297公f ) -116- Α7 ί 4 16841 A 7 .. _____B7 五、發明説明(114 ) (誚先閱讀背而之注态事項再功3本页) 乘積的跑步速度,或跑步速度與脈搏數的乘積、間距與脈 搏數的乘積、步幅與脈搏數的乘積,而以該等作爲運動指 標予以告知.顯示之構成亦可。如上述之運動指標由於是 可進行效率良好之跑步^用指標*因此可以此爲目標値使被 檢驗人跑步即可。 而且,步驟Sb22的處理後,或者步驟Sb15的 判別結果爲「No」時,CPU220 1係準備其次的實 行而中止此次的中斷處理②。 再者,該中斷處理0是每隔一定時間實行,此時會增 加記憶在RAM2 2 0 3的脈搏數與間距。因此,將跑步 速度至少分爲兩階段時,會有步驟S b 1 5的判別結果形 成「Ye s」的機會而可告知.顯示運動指標。 藉著上述基礎處理①及中斷處理①的實行,於圖4 2 中,開關2 1 3 2具有藉選擇輸入端子a的功能構成而實 行的第2功能,即顯示目標運動強度的功能係形成可藉著 圖4 3表示的內部構成等效實行。 2-3-5-3:第3功能 其次,針對實行第3功能(即*顯示被檢驗人實際進 行運動強度的功能)時的動作說明如下。 被檢驗人操作開關111 ,設定實行第3功能用的模 式時,圖4 3的C PU2 2 0 1在實行基礎處理③之後, 可定期實行圖5 2表示之中斷處理③。並且,.此時的基礎 處理③是與圖5 0之基礎處理②相同內容。 氺纸ίΛ尺戾过&中囚囚家標.々(('NS ) Λ4規格(2】0Χ 297公爱) -117 - A7 1 4 16641 __B7 五、發明説明(115 ) 即,基礎處理③除了設定運動強度運算時所須的資料 之外,設定實行第3功能用的模式,且被檢驗人一旦開始 實際運動時,許可中斷處理③的定期實行處理》 於此,省略基礎處理③的說明|並參閱圖5 2說明中 斷處理③的處理內容如下。 首先,CPU 2201於步驟Sc 1 1中,求得被檢 驗人的脈搏數〔次數/分鐘〕,隨之在步驟Sc 12中, 求得被檢驗人的跑步間距[次數/分鐘〕。在該點中是與 中斷處理①的步驟Sal2、13相同。 隨後,CPU2201在步驟Scl3中,將記憶於 RA M 2 2 0 3之被檢驗人的步幅乘以前步驟所檢測之跑 步間距運算求得被檢驗人的跑步速度。此一運算是與先前 的步驟S b 2 0相同e 又,CPU2201在步驟Sb21中,是藉顯示部 2 1 0顯示所求得的運動強度"如上述所顯示之運動強度 是針對被檢驗人實際進行的跑步運動而以中斷處理③的實 行時刻求得者。即,顯示被檢驗人實際進行跑步運動的強 度。逋且,該中斷處理③的實行間隔是形成運動強度的抽 樣間隔。 藉著上述之基礎處理③及中斷處理③的實行,於圖 4 2中,開關1 3 2係形成以選擇輸入端子b的功能構成 而實行得第3功能,即顯示作爲目標的運動強度之功能, 而可藉圖4 3表示之內部構成等效實行者。 {对先閱讀背而之注意事項再,ί!ί>0本页) 裝. 訂 本紙汰尺度i+ί州中S K家標1 ( C'NS > Λ4規格(2】Ο X 297公釐) -118· A7 丨 4 16 8 4! __ B7 五、發明説明(116 ) 2-3 — 5-4 :第4功能 其次,針對實行第4功能(即,被檢驗人進行運動的 強度,但是可相對於目標運動強度顯示不同程度差異的功 能)時的動作說明如下。 被檢驗人操作開關111,設定實行第4功能用的模 式時,圖4 3的CPU2 2 0 1在實行圖5 3表示之基礎 處理④之後,可定期實行圖5 4表示之中斷處理④。並且 ,該基礎處理④是從圖4 8表示的基礎處理①排除步驟 S a 2的內容" 即,實行第4功能時的基礎處理④係設定實行該等功 能用的模式,且被檢驗人一但開始實際的跑步運動時,許 可中斷處理④的定期實行之處理- 其次,參閱圖5 4針對中斷處理④的處理內容說明如 下。 首先,CPU2201於步驟Sdl 1中*求得被檢 驗人的脈搏數〔次數/分鐘〕,隨之在步驟Sdl2中, 求得被檢驗人的跑步間距〔次數/分鐘〕。在該點中是與 中斷處理①的步驟Sa 12、13相同•隨後的步騾Sd 13中,CPU2201從所求得的脈搏數與跑步間距以 下式算出程度G。 程度G =(脈搏數-跑步間距)/跑步間距 此外,步驟Sdl4中,CPU2201將對應程度 本紙乐尺廋这用中S K家標瑋((’NS yΛ4規格(210〆297公釐) -119 . ' 11 11 I I. . 訂 1 I ! I n^ {詞^閱請背而之注意事^再本S > A7 ' 4 16 8 4 1 B7 五、發明说明(117 ) G値的顯示於顯示部顯示之後,準備下次的實行而中止此 次的中斷處理④β 於此所求得的程度G是表示脈搏數與跑步間距差佔據 跑步間距的比例,其値愈接近零時,該時刻之運動強度是 表示進行提高持久力用之訓練時的適當強度。又’程度G 的符號爲負時,該時刻之運動強度是表示進行該等訓練時 爲低時,而程度G的符號爲正時,則該時刻之運動強度是 表示進行高的訓練6 因此,顯示部2 2 1 0的顯示內容是例如圖5 7所示 ,最好可以直覺判定程度G的符號與其値的大小爲佳。因 此被檢驗人將現時刻的運動強度(跑步速度)與進行提高 持久力之訓練時的強度比較即可知是否爲適當値,如爲適 當値時,爲了獲得該等訓練強度時,可定量獲知所必須之 運動強度的增減程度。 此外,圖5 7表示之顯示例中,上箭頭是促使強度的 增加,下箭頭是促使強度的減少,箭頭數是顯示增減的程 度。又,此時不僅限於顯示,也可以藉聲音合成,或警報 聲的強弱等種種態樣來告知之構成。 如上述基礎處理④及中斷處理④的實行,藉圖4 2顯 示的功能構成實行之第4功能,即告知.顯示現時刻的運 動強度對於目標之運動強度不同程度的功能,但是藉圖 4 3之內部構成可等效且定期地實行者》 2-3-5 — 5 ·第 5 功能 本紙張又度说用中^围家標泠((’NS ) Λ4現格(210X297公犮) -120- n I I I n n. u I n n M (爿先閱讀背*之注意事項再續“V:本頁) A7 > 4 16 8 41 B7 五、發明説明(118) 其次,針對實行第5功能(即,告知相對於現時刻運 動強度接近運動強度用指示的功能)時的動作說明如下。 被輪驗人操作按鍵開關111 ,設定實行第5功能用 的模式時,圖4 3之CPU2 2 0 1在實行基礎處理⑤之 後,可定期實行圖5 5表示之中斷處理⑤。並且1此時之 基礎處理係與圖5 3顯示之基礎處理④同一內容。 即,實行第5功能時之基礎處理⑤爲1設定實行該等 功能用的模式|且被檢驗人開始實際的跑步運動時,許可 中斷處理⑤之定期實行的處理。 其次·針對中斷處理⑤的處理內容參閱圖5 5說明如 下。4 1664I Printed by the Shell Department Consumer Cooperatives of the Central Ministry of Vehicles of the Old Ministry ^ 107 V. Description of the invention () The sequence is in the standby state in step S a 1. In fact, when the examinee starts running, the CPU2201 is in step Sa2 * (after the register η is zero), and after the execution of the permission interruption processing ① in step Sa 3, the basic processing is completed. ①. Among them, the interrupt processing ① is an interrupt signal borrowed from the clock circuit 2 205, for example, a process that is performed periodically every minute. As described above, in the basic processing ①, a mode for performing the first function is set, and after the test subject starts the actual running exercise, the regular interruption of the allowable interruption processing ① is formed. ≫ Next, the interruption processing will be described with reference to FIGS. ① The processing content is as follows. First, the CPU 220 1 in step Sa 1 1 merely increases the register η by "1". The register η is divided into zero in step S a 2 above. Therefore, the content of the register η indicates that the number of times the interruption process ① is performed after the movement of the examinee starts. The interrupt processing ① is performed at regular intervals, so that the register η can indirectly display the time elapsed since the start of the movement. In addition, the CPU 2201 in step Sa 12 reads the pulse wave signal detected by the pulse wave detection section 2 1 0 1 through the sensor interface 2 2 0 4 and performs FFT processing to obtain the number of pulses of the test subject. , Which is the pulse number [pulsation / minute]. In the subsequent step Sal 3, the CPU 2 2 0 1 reads the body motion signal detected by the body motion detection unit 1 1 1 through the sensor interface 2 2 0 4 and applies FFT processing to obtain the running of the examinee. spacing. Among them, when the examinee is exercising, the spectrum following the regularity of these movements is detected, so the specific interval can be used to obtain the exercise interval (in this case, the running interval). (51 51 ^ .back * note * | item again ^.:?;:-Benwan) -pack -14. I 姝-This paper size is applicable to national standard car (CNS) / \ 4 specifications < 210X297 total) -1Ί0- A7, 1 '416841 ____B7 V. Description of the invention (1Q8) In addition, the CPU2 2 0 1 in step sa 1 4 corresponds to the current time with the obtained pulse number and running distance in pairs. The memory of the temporary register η is stored in the RAM 2203. Therefore, when the RAM 2203 executes each interruption process ①, it can form a cumulative number of detected pulses and running distance. Next, the CPU 2201 in step Sa 15 reads the total number of pulsations and the running distance from the RAM 2 2 0 3. In step S a 16, the number of pulsations and the running are read out with respect to the display portion 2 2 10. The pitch is plotted on the y-axis, and the 値 of the corresponding register η is plotted on the X-axis, and the two-dimensional display can be controlled. An example of this display is shown in FIG. As described above, the register η indicates that the time has elapsed since the start of the exercise. Therefore, the above display can be used to display the changes in the number of pulses and running distance after the start of the exercise on the display section 2 2 10. Therefore, the testee can learn how his pulse number and running distance change. However, when the form of the exercise index measuring device is used as the watch type shown in FIG. 2, the display capacity of the display section 2 10 is bound to be limited. * Therefore, it is better to transmit the read-out information to an external device as described later, and to form a resolvable side. When the display processing of step Sa 1 5 is executed, the CPU 220 1 has the next execution and completes the interrupt processing this time. With the implementation of the above-mentioned basic processing ① and interrupt processing ①, the first function performed by the functional configuration shown in FIG. 4 can be implemented by the internal structure of FIG. 4 3, etc. The function of recording the pulsation count and running distance corresponding to the time elapsed after the start of exercise. (Please read the precautions on the back and fill in this page) 1 ♦ The paper's thick scale KK KK family standard date (C, NS) specifications < 210 × 297 males) -111-A7 J 4 16 8 4 1 B7 -J MV An V. Description of the Invention (2) 3—5_2: Second function Secondly, the operation when the second function (that is, the function of displaying the target's exercise intensity) is implemented is described below. The examinee operates the key switch 1 1 1 and once the mode for executing the second function is set, the CPU 2 2 0 1 of FIG. 4 executes the basic processing shown in FIG. 50 ②, and then executes FIG. 5 1 periodically. Interrupt processing ②. Initially, referring to FIG. 5, the processing content of the basic processing © is as follows. The basic processing 0 is to set the prerequisite information when displaying the exercise intensity of the target, and to allow the processing to be interrupted. The details are the following steps S b 1 to S b 9 Composition β First, the CPU 2201 is executed in step Sb1. For example, the CPU 2201 executes an initial setting process for securing a required area in the RAM 2 203, or eliminating the area. Next, the CPU 2201 determines in step Sb2 whether the movement amount of the repetitive movement is performed once, or whether data such as the weight of the person to be tested is set in the RAM 2 203. The exercise of this embodiment is a running exercise, so C P U 2 2 0 1 can determine whether the stride and weight information of the test subject has been set. In this embodiment, when the second function is first implemented, no data is set in the RAM 22 0 3, so the determination in step S t) 2 is performed. 6 When the above data is set, the CPU 220 1 performs a step Sb 3 from the RAM 2 2 0 3 Read the setting data and display it on the display 2 1 0 *. In the next step S b 4 'prompt by message display (tistwi # backward ;; ^. Matters on this page) Binding. Order • 112- A7 .1 4 16841 B7 V. Description of the invention (11Q) Whether the examinee chooses to change the certificate. When the examinee instructs not to change, the CPU 2201 sets the above-mentioned data as the predetermined data in step S b 5 and sets it in the RAM 2 2 0 3 again. On the other hand, when the above-mentioned data is not set in the RAM 2 203 or when the above-mentioned data change instruction is given, the CPU 2201 can determine whether to input the above-mentioned data in step S b 6. If not, the processing sequence is returned to the step again. S b 6. That is, until the stride and weight of the test subject are input, the processing sequence is in a standby state in step S b 6. And once inputting and changing such data, the CPU 2201 sets the data to RAM 2 203 in step S b 7. Here, the instruction for changing the stride and other data is, for example, the inspected person can operate the key switch 1 1 1 to set the operation mode of the device main body 1 1 0 to the input / change mode. In addition, the unchanged instruction is that the testee may not operate the key switch 1 1 1 etc. at a predetermined time. In addition, the information such as the stride length is changed. The input method is, for example, the testee setting is changed. Enter the mode and use The setting of the key switch 514 is changed. After inputting either the stride or the weight of the object, the key switch 1 1 1 or 1 1 6 can be used to advance or delay the formation of the objects one by one. Once the data such as the stride or weight of the test subject is set in the RAM 2203, the CPU 2201 in step Sb8 is the same as the step S a 1 of the basic process ①, and it is determined that the test subject actually starts to move. When the movement has not started, the processing sequence returns to step S b 8 again. That is, until the testee starts to exercise, the processing order is in the step (calculate " please read the other way: ¾¾ Matters, and then rewrite this page) The paper scale is used in the mid-range prisoner's standard cold. ((: NS & gt Λ4 is present (210 × 297 mm) -113- A7 ί. 4 16841 Β7 V. Description of the invention (111) Standby in step S b 8 "In fact, once the testee starts exercising, the CPU 2201 is in step Sb9 After the execution of the interrupt processing 0 is permitted, the implementation of such basic processing 0 is completed. Among them, the interrupt processing 0 is an interrupt signal borrowed from the clock circuit 205, for example, the processing is performed periodically every two minutes. As described above, once the basic processing is performed At 0, the data required for exercise intensity calculation is set, and the mode for implementing the second function is set. At the same time, when the testee starts the actual exercise, the permission to interrupt the regular execution of 0 is formed. Next, refer to Figure 5 1 The processing content of the interrupt processing 0 is as follows. First, in step Sbll, the CPU 2201 obtains the number of pulses of the examinee [times / minute]. Second, in step Sb 12, obtains the interval of the examinee's running [times / minutes] minute This point is the same as steps Sa 12, 13 of the interrupt processing ①. Then, in step Sbll, the CPU 2201 multiplies the stride of the examinee stored in the RAM 2203 by the running distance detected in the previous step to calculate the examinee's Running speed * times, the CPU 2201 stores the detected pulse number and running distance in RAM 2 2 0 3 in step Sbl4. The second function is based on the point where the pulse number is consistent with the running distance. The exercise intensity is displayed as a target, but at this time, if the pulse rate and running distance cannot be obtained in two or more points in different runs, the same point cannot be determined. --------- U ------ 1T ------ 0 ίιίίι read the back of the note and fill in this page) this paper scale states state prisoner ® family logo ??-((, NS) Λ4 wash grid ( 210X297 mm) -114- λ7 "1684; B7 V. Description of the Invention (m) In view of this, CPU2201 in step S b 1 5 'must record at least 100 million sets of pulse numbers and the running distance at the same time' The following steps sb 1 6 to sb 2 2 are executed under the condition that the running speeds are not the same. When the discrimination result of step S b 1 5 is "Yes", in step Sb 16 of the CPU 2201, the first is to read all the pulse numbers and running distances recorded in the RAM 2 2 0. The second is to obtain the corresponding running The return straight line of the number of pulses of the speed is similar. The return straight line of the running distance corresponding to the running speed can be obtained. The third is to determine the intersection of the return line of the pulse number and the return straight line of the running speed. Synchronized points "Furthermore, it is not necessary to intersect when considering the measurement error. In the detection of the same point, when the difference between the pulse number and the running distance is in the range of 10%, the two can be regarded as the same. Next, the CPU 2201 obtains a running distance corresponding to the obtained running distance (step Sbl7), and controls the alarm unit 2208 to generate an alarm sound corresponding to the running distance as an exercise index (step Sb 1 8). For example, the alarm sound can be "beep. Beep." Such as the frequency corresponding to the running distance. Also, at this time, it is not limited to display, and it can be informed by various forms such as sound synthesis or the strength of the announcement. The CPU 220 1 obtains the running speed corresponding to the obtained running speed (step Sbl9), and calculates the exercise intensity corresponding to the running speed (step Sb20). This calculation can also be obtained by multiplying the running speed by the weight of the test person memorized in RAM2 2 0 3, or by running the paper on the paper because the prisoner ’s family (rNS) Λ4 specification (2 丨Ox 297 mm) -115- —-------- load—— *-· Line A7 ί 4 16 8 4 1 B7 V. Description of the invention (113) The relationship between step exercise and exercise intensity is obtained. In addition, the CPU 220 1 stores the obtained exercise intensity in the RAM 2 203 corresponding to the date of the running exercise (step S b 21), and uses the obtained exercise intensity as the target of the exercise index and displays the display portion 2210 It is shown (step Sb22). The exercise intensity obtained as above is 値, which is the synchronization point of the pulse number and the running distance, and it forms the index β when performing exercise for improving the endurance of the whole body. Among them, as in step S b 2 0 — Once the exercise intensity is obtained from the physical exercise intensity of the examinee, the absolute intensity of the running exercise can be obtained, so various comparisons can be effectively performed. However, for the test subject, the running distance (or pulse number) is indicated by the alarm unit 2208, and the target's exercise intensity can be easily and intuitively determined during exercise. That is, it is more effective for the test subject to achieve a target exercise when exercising with the index displayed by the sensation. As described above, in the interrupt processing 0, as described above, it is possible to inform and display the configurations of both the running distance and the physical exercise intensity as the exercise index. In addition, the exercise index can also be pulsed, or selected and notified. Any one of the configurations can be displayed. Among them, * when both the pulse number and running distance are used as the exercise index to be notified. • In order to increase or decrease the intensity of the running exercise, the test subject takes the pulse number notified by the exercise index as the priority target, and controls the running speed autonomously. Informing the running speed is the result of prioritizing the goal, there are two ways to control the pulse rate. Also, when running, the running speed can use the running distance and stride of the paper. 屮 家 SK family standard? T (CNS) Λ4 gauge (2! 0X297 public f) -116- Α7 ί 4 16841 A 7 .. _____B7 V. Description of the invention (114) (read the note on the back first and then work on this page) The running speed of the product, or the product of the running speed and the pulse number, the product of the interval and the pulse number, the stride and The product of the number of pulses, and these are used as exercise indicators to inform. The structure of the display may also be used. The above-mentioned exercise index can be used as an efficient running ^ use index *, so it can be used as the goal to make the examinee run. After the processing in step Sb22 or the determination result in step Sb15 is "No", the CPU 220 1 prepares for the next execution and suspends the interrupt processing ②. In addition, the interrupt processing 0 is executed at regular intervals, and at this time, the pulse number and pitch stored in the RAM 2 203 are increased. Therefore, when the running speed is divided into at least two stages, there is a chance that the judgment result of step S b 1 5 will form "Ye s" and the exercise index will be displayed. By implementing the basic processing ① and the interrupt processing ① described above, in FIG. 4 2, the switch 2 1 3 2 has a second function implemented by selecting the functional configuration of the input terminal a, that is, a function that displays the target exercise intensity. Equivalent implementation is performed by the internal structure shown in FIG. 43. 2-3-5-3: Third function Next, the operation when the third function (that is, the function of displaying the actual exercise intensity of the test subject) is performed is described below. When the examinee operates the switch 111 to set the mode for implementing the third function, CPU2 2 0 1 in FIG. 4 can perform the interrupt processing ③ shown in FIG. 5 periodically after performing the basic processing ③. The basic processing ③ at this time is the same as the basic processing ② in FIG. 50.氺 纸 ίΛ Ruler & Prisoner's House Logo. 々 (('NS) Λ4 Specification (2) 0 × 297 Public Love) -117-A7 1 4 16641 __B7 V. Description of the Invention (115) That is, basic processing In addition to setting the data required for exercise intensity calculation, a mode for implementing the third function is set, and once the examinee starts the actual exercise, it is permitted to interrupt the processing ③ regular execution processing "Here, the explanation of the basic processing ③ is omitted here The processing content of the interrupt processing ③ is also described with reference to FIG. 5 2. First, the CPU 2201 obtains the pulse number [times / minute] of the examinee in step Sc 1 1, and then in step Sc 12, obtains The running distance [times / minute] of the testee. At this point, it is the same as steps Sal2 and 13 of the interrupt processing ①. Then, in step Scl3, the CPU 2201 stores the test results of the testee in RA M 2 2 0 3 The stride multiplied by the running distance detected in the previous step is used to obtain the running speed of the testee. This operation is the same as the previous step S b 2 0. Also, in step Sb21, the CPU 2201 displays the display by the display portion 2 1 0. The obtained exercise intensity " is as shown above The exercise intensity is obtained from the execution time of the interruption process ③ for the running exercise actually performed by the test subject. That is, the intensity of the actual exercise run by the test subject is displayed. Moreover, the execution interval of the interruption process ③ is formed. Sampling interval of exercise intensity. With the implementation of the above-mentioned basic processing ③ and interrupt processing ③, in FIG. 4, the switch 1 3 2 is formed to select the functional configuration of the input terminal b and implement the third function, which is displayed as The function of the target's exercise intensity can be equivalent to the internal performer shown in Figure 4 3. {Read the precautions for the back first, ί! Ί > 0 page) Binding. Booklet scale i + ί State SK House Standard 1 (C'NS > Λ4 specifications (2) 〇 X 297 mm) -118 · A7 丨 4 16 8 4! __ B7 V. Description of the invention (116) 2-3 — 5-4: The fourth function is followed by the operation when the fourth function is performed (that is, a function in which the test subject performs exercise, but can display different degrees of difference with respect to the target exercise intensity). The test subject operates the switch 111 to set the execution. In the fourth function mode, 4 3 CPU2 2 0 1 After the basic processing ④ shown in FIG. 5 3 is executed, the interrupt processing ④ shown in FIG. 5 4 may be periodically executed. The basic processing ④ is the basic processing ① shown in FIG. The content of a 2 " That is, the basic processing when the fourth function is implemented ④ is a processing mode set to implement these functions, and when the testee starts the actual running exercise, it is permitted to interrupt the processing ④ regular execution processing- Next, referring to FIG. 5, the processing contents of the interrupt processing ④ are described as follows. First, the CPU 2201 obtains the pulse number [number / minute] of the examinee in step Sdl1 *, and then in step Sdl2, obtains the interval [time / minute] of the examinee's running. At this point, it is the same as steps Sa 12 and 13 of the interrupt processing ①. In the following step Sd 13, the CPU 2201 calculates the degree G from the obtained pulse number and running distance by the following formula. Degree G = (pulse number-running distance) / running distance In addition, in step Sdl4, the CPU2201 will correspond to the degree of the paper ruler, which is used in the SK family standard Wei (('NS yΛ4 specifications (210〆297 mm) -119. '11 11 I I.. Order 1 I! I n ^ {Word ^ Please read the back ^ Reprint S > A7' 4 16 8 4 1 B7 V. Description of the invention (117) G 値 is shown in After displaying on the display, it is ready to execute the next interruption and suspend the interruption process. ④ β The degree G obtained here is the ratio of the difference between the pulse number and the running interval to the running interval. Exercise intensity is the appropriate intensity when training for increasing endurance. Also, when the sign of degree G is negative, the intensity of exercise at this moment indicates when the training is low and the sign of degree G is positive Then, the exercise intensity at this moment indicates that a high training 6 is performed. Therefore, the display content of the display section 2 2 10 is shown in FIG. 5 for example. It is better to intuitively determine the sign of the degree G and its size. The testee will compare the current exercise intensity (running speed) and performance In comparison with the intensity during high endurance training, you can know whether it is appropriate. If it is appropriate, in order to obtain such training intensity, you can quantitatively know the degree of increase and decrease in exercise intensity. In addition, Figure 5 7 shows In the display example, the up arrow is used to increase the intensity, the down arrow is used to increase the intensity, and the number of arrows is used to indicate the degree of increase or decrease. Also, at this time, it is not limited to the display, but can also be synthesized by sound or the strength of the alarm sound. According to the form of the notification. As the implementation of the above-mentioned basic processing ④ and interruption processing ④, the fourth function implemented by the functional configuration shown in Figure 4 2 is notification. It shows that the current exercise intensity varies with the target's exercise intensity to varying degrees. Function, but it can be implemented equivalently and regularly by the internal structure of Figure 4 3 "2-3-5 — 5 · 5th Function This paper is again used in middle ^ Wai Jiabiao Ling (('NS) Λ4) (210X297) 120 -120- n III n n. U I nn M (爿 Please read the notes on the back * before continuing “V: This page) A7 > 4 16 8 41 B7 V. Description of the invention (118) Second , For the implementation of the 5th function (ie, inform The operation when the exercise intensity is close to the current exercise intensity indication function is explained below. When the person who is checked operates the key switch 111 to set the fifth function mode, CPU2 2 0 1 in Fig. 4 is based on the implementation. After the processing ⑤, the interrupt processing ⑤ shown in FIG. 5 and 5 can be performed periodically. 1 The basic processing at this time is the same as the basic processing ④ shown in FIG. 5 3. That is, the basic processing ⑤ when the fifth function is executed is set to 1. The mode for implementing these functions | and when the testee starts the actual running exercise, it is permitted to interrupt the processing ⑤ regularly executed processing. Secondly, the processing contents of interrupt processing ⑤ will be described with reference to Fig. 5 and 5 as follows.
:c"斗屮-V:J?^妁-b;-1"灸合仃"印 V 先閱讀背而之注念事項再填巧本S ) 首先,CPU2201在步驟Se 1 1中*求得被檢 驗人的脈搏數〔次數/分鐘〕後•隨之在步驟S e 1 2中 求得被檢驗人的跑步間距〔步數/分鐘〕。在該點是與中 斷處理①的步驟Sa 12、13相同。其次的步驟Se 1 3中C P U 2 2 0 1是比較求得的脈搏數與跑步間距。 且CPU2201的脈搏數小於跑步間距時,在步驟Se 1 4中將應上升的間距的指示顯示在顯示部2 1 0上,又 脈搏數與間距大致相同時,在步驟S e 1 5中,將維持其 跑步狀態的指示顯示在顯示部2 1 0中,另一方面脈搏數 大於間距時,在步驟S e 1 6中將縮小步幅的指示顯示在 顯示部2 1 0之後,準備其次的實行而中止此次的中斷處 理⑤。 另’脈搏數較間距小時1可參閱圖4 4 ( a )獲知在 本纸滚尺度这用中囚氏家標今(f'NS )以吡格(210X 297公釐) -121 - A7 4 1684 \ __B7 五、發明説明(119 ) 進行提高全身持久力用之訓練時係形成低跑步速度時。因 此,必須對被檢驗人進行催促使其跑步速度提升的告知, 但是,—旦促使其跑步間距上升的指示時,會導致2種擴 大步幅所須的指示。 相反地,脈搏數大於跑步間距時|可參閱同圖獲知在 進行提升全身持久力用的訓練是在跑步速度高時。因此, 必須對被檢驗人進行催促使其跑步速度降低的告知,但是 ,一旦促使其跑步間距降低的指示時,會導致2種縮小步 幅所須的指_不。 如上述,根據一般跑步運動的特性檢討之下,擴大步 幅時,雖會提升跑步速度,但是會開始產生肌肉疲勞之外 ,會有脈搏數下降的傾向。又,使跑步間距上升時*會有 隨著使脈搏數上升的傾向》 此外,也可以參閱同圖獲知,以跑步速度高之領域的 跑步間距與跑步速度的速度上升時比較,並未有多大的變 化。此係於跑步速度低之領域中,跑步速度的提升雖主要 是藉跑步間距的上升來進行,但係表示跑步速度高之領域 中,主要藉步幅的擴大來進行。再者,跑步速度低領域的 脈搏數與跑步間距的上升比較時,其變動劇烈。 如以上的結果,本實施形態中,當脈搏數小於跑步間 距時,進行使跑步間距上升的指示,不致產生肌肉疲勞而 可獲得對於被檢驗人之跑步速度的提升,另一方面’當脈 搏數大於跑步間距時,進行使跑步間距縮小的指示’使脈 搏數持續下降而可獲得跑步速度的降低。 I .l· n^i 4^n ϋ^ν ^^^^1 ΛΤ7 Ί 知 ("先w请背而之注态事項再:本頁} :r:-':'lr-vJ':v4^1un7;,';^<tiv"f,,v 本纸&尺度这州中K fi!家標卑i (’NS ) Λ4規格{ 210X 297公龙) -122· t !; ^16 841 A7 B7 五、發明説明(12£)) 此外,脈搏數與跑步間距大致相同時,可以對應其跑 步速度之運動強度作爲進行持續性運動用之訓練強度而予 以適當顯示,因此可進行維持其跑步狀態所須的指示。此 時,脈搏數與跑步間距只要考慮其測定誤差,可不須是相 同者,兩者的差例如在± 1 0%的範圍內,即可視該兩者 爲相同者。 又,當兩者的差極端的大時,可不須依據本實施狀態 的判斷,只要賦予跑步間距及步幅雙方變化的指示即可。 如上述,藉著基礎處理⑤及中斷處理⑤的實行,使圖 4 2表示之功能構成而實行的第5功能,即相對於現時刻 的運動強度,告知接近目標運動強度用的指示之功能,以 圖4 3表示之內部構成形成可等效且定期地實行。因此, 被檢驗人隨著實行第5功能的指示內容,進行跑步運動時 ,可容易達成目標之運動強度,即進行持續運動時最適當 的強度。 2 — 3 — 5 - 6 :第6功能 其次,針對實行第6功能(即|藉第2功能所求得之 運動強度隨著日期位準的時間經過而顯示進展程度的功能 )時的動作說明如下。 被檢驗人操作按鍵開關111,設定實行第6功能用 的模式時*圖43之CPU220 1第1是讀出上述步驟 5 b 2 1所記憶的所有運動強度,第2是對於顯示部將所 讀出的運動強度描繪於y軸,對應的日期描繪於X軸,而 木紙仄尺度埤州中家標彳((、NS ) Λ4規格(2丨0X297公嫠) -123 - B; 4 1684!五、發明説明(121 ) 控制使其進行二維顯示。 於此所表示之運動強度是當進行其跑步時,使脈搏數 與跑步間距同步的値,而以此作爲運動指標的値,隨著訓 練的累積而具有以日期位準變動的性質。因此,如上述其 運動強度一旦對應日期顯示時•可隨著時間推移而得知被 檢驗人訓練的效果。 此外,上述之說明中,第1〜第6功能雖是分別構成 各別地實行,但是被檢驗人在開始運動之後,對於第1〜 第6的功能可作所有或選擇性的實行*也可以以該等實行 的結果作爲被檢驗人選擇實行的構成。尤其是第4及第5 功能的處理內容近似,最好是同時實行爲佳》2-3-5-7 :通訊功能 其次針對圖4 7表示之外部機器及進行通訊而進行 各種資料的傳送時的動作,說明本實施形態相關之運動指 標測定裝置如下* 首先,與外部機器進行通訊時,被檢驗人從裝置本體 1 10的連接部70卸下連接件80,露出LED507 及光電晶體5 0 8而與外部機器的通訊窗6 0 6相對。 以下是分別說明傳送資料至外部機器的傅送功能,及 從外部機器接收資料的收訊功能。2 - 3-5 — 7 - 1 :傳送功能 於此狀態中,被檢驗人操作按鍵1 1 1,設定實行傳 ---------^------ΐτ------0 (^^閱靖背而之注意事項再填巧本頁} 本紙乐尺度这州中闽囡家標肀(厂咕以4規格(2丨0'/ 297公釐) •124- ^:Γί·Γ·屮^:^;v-^w n if A合 Mi.i印 at i 4 1684 1 __B7 五、發明説明(122) 送功能用的模式時,圖4 3的CPU2 2 0 1是將實行第 1功能時步驟S a 1 4中所記憶的資料,即是將對應跑步 運動開始後的時間經過之脈搏數與跑步間距的資料•經由 I /0介面2 2 0 9 *及外部機器的光介面傳送至機器本 體 500« 可利用 I rDA ( Infraed Data Association )方 式等作爲上述之光通訊規程。 如上述,從裝置本體1 1 0進行送訊時,外部機器可 將被檢驗人的脈搏數及跑步間距在開始後如何地變化,不 僅對於被檢驗人,並客觀地告知指導人或醫生等第三者* 同時也可以儲存或解析該等資料。 2 — 3_5_7_2 '·收訊功能 另一方面*外部機器中,隨著時間的經過而設定跑步 運動的目標値,例如跑步間距等。本實施形態有關之運動 指標測定裝置是接收外部機器所設定的目標値,被檢驗人 即以此作爲開始跑步運動時的目標値使用。 詳細而言,使L E D 5 0 7及光電晶體5 0 8與外部 機器的通訊窗6 0 6相對的狀態下,被檢驗人操作按鍵開 關1 1 1,設定實行收訊功能用的模式時,圖43之 CPU2 2 0 1係經由I/O介面22 0 9及外部機器的 光介面對於外部機器傳送顯示數據要求的信號。接收此之 外部機器本體6 0 0是經由外部機器的光介面與I / 〇介 面2 2 0 9傳送形成設定目標値的資料。 另一方面,在裝置本體1 1 0側接收形成目標値之資 本纸浓尺度途;Π中KS家標肀(〔、NS ) /V»规格(210乂 297公楚) -125- ‘It訂 ..¾. (計先開讀背*之>i意亨項再功艿本頁) A7 B7 416841 "--4-+々"^而忍 l:'-;,;iy'tc""v 五、發明説明(123 ) 料時,CPU2 2 0 1是將接收的資料一旦記憶在RAM 2 2 0 3中,當被檢驗人開始實際的跑步時,讀出對應跑 步開始後時間經過的目標値而告知被檢驗人。此時•目標 値爲跑步間距時,針對告知之目標値與跑步運動之實際跑 步間距間的相差程度,而如第4功能所示以等級顯示之。 藉此,被檢驗人於長期間進行運動時,仍可以所設定 的跑步間距進行跑步運動,可有效地運用在訓練或競赛中 的體能調整。 根據上述本實施形態有關之運動指標測定裝置係可實 行第1〜第6功能與通訊功能者。尤其是,藉著第2功能 的實行可針對進行提高全身持久力用運動時的指標所須的 運動強度,可綜合考量運動時被檢驗人肉體上.精神上體 力而求得,又,實行第4功能可定童求得現時刻之運動強 度相對於提高全身持久力時用所須運動強度間差異的程度 *並且藉著第5功能的實行可使現時刻的運動強度接近作 爲目標之運動強度用的指示。 其中,第2功能中所求得之運動指標一旦藉著物理指 標與生理指標的乘積告知跑步速度與脈搏數的乘積,或跑 步間距與脈搏數的乘積、步幅與脈搏數的乘積等的構成時 ,也可以綜合性評估物理指標與生理指標。具體而言,即 使以相同時間相同行程到達目標時,會因爲身體狀態而使 生理指標產生變化,因此與物理指標進行綜合評估。即, 可將生理指標與物理指標形成一個新的指標而加以評估* (誚1閱讀背而之注意事項再蛾朽本頁} 裝 ·=* 線. 本纸張尺度ii州中KS家橾苹< ('NS)八4规格(210X297公釐) -126- A7 i 4 16 6 41 _ B7__ 五、發明説明(124 ) 2—3—6:其他形態 上述之實施形態中,雖是以手錶構造作爲運動指標測 動裝置的形態,但是本發明不僅限於此。例如,第1章說 明之眼鏡式(參閱圖34)、項鍊式(參閱圖35)、卡 片式(參閱圖3 6 )或者計步器式(參閱圖3 7 )皆可。 2 — 3 — 7 :顯示舆告知之態樣 再者’上述之實施形態雖是分別藉顯示部2 2 1 0顯 示第1〜第5功能的實行結果之構成,但是本發明不僅限 於此。即不僅限於視覺上的顯示,而可藉種種態樣告知者 β因此本發明之告知是表示訴諸於五感之意。例如,可以 訴諸目標之跑步間距•及脈動數等觸覺告知之構成,或者 也可以將告知結果訴諸於聲音合成音覺的告知構成。 2 — 4 :第2實施彤態 ^ 其次,說明本發明之第2實施形態如下。 一般在跑步運動中提高間距時*該等跑步運動的步幅 多少會因爲個人差而可能稍有短縮。 但是,上述之第1實施形態中,不論間距的變動爲何 ,步幅是由於使用設定在RAM2 2 0 3的値,因此形成 —定値,可不須考慮上述跑步運動的特性》因此,在該點 中,第1實施形態具有容易形成關於步幅之運算結果不正 確的缺點。 因此,第2實施形態是預先將所求得的顯示間距與步 本纸&尺度通州中SK家標嗲((’NS ) Λ4坭格(210X297公釐) · 127 - A7 1 4 166 4 1 ____B7 * _ 五、發明说明(125 ) 幅修正係數關係的圖表預先加以記憶,另一方面在跑步運 動中使用步幅進行運算時,從圖表讀出對應該時刻間距的 步幅修ι£係數,同時乘以所設定的步幅後予以修正而可解 決上述的缺點6 如上述,第2實施形態有關之運動指標測定裝置的構 成係形成圖5 8所示•係形成於圖4 2表示之構成上外加 圖表2 1 3 5及修正部2 1 3 6所構成。其中,圖表 2 1 3 5是預先記億間距與步幅修正係數,輸出對應 FFT處理部2113所求得間距之步幅修正係數者,修 正部2 1 3 6是在第2記億部1 3 1所記憶的步幅上乘以 F F T處理部2 1 1 3所輸出的步幅修正係數,並將步幅 配合間距予以修正者。 再者,圖表2 1 3 5係相當於圖4 3之RAM 2203,且修正部2136則是相當於CPU2201 的構成,因此在圖4 3可不須實質地外加構成元件。 又,針對記億在圖表2 1 3 5的間距與步幅修正係數 的特性檢討如下,一般如圖5 9實線所示,係形成隨著間 距的增加而使得步幅的修正係數逐漸形成小於「1」値。 此外,圖中基準間距係該等跑步運動之步幅形成輸入時的 步幅(基準步幅)時之間距。 但是,間距與步幅之修正係數的關係是根據各個被檢 驗人而有明顯不同,因此實際上是以同圖虛線所示*有配 合被檢驗人本身的特性編輯圖5 9中實線表示之實線的必 要》 I 11 ( n — 11 Μ (#尤閱讀外1&之注悉亨項再"3本頁) 本纸乐尺度迖川中KPi;家標i?. ( rNS ) Λ4規栝(_ 210x297公漦) -128- A7 _ B7 五、發明説明(126 ) 此一編輯功能係如以下進行。 首先,第1是被檢驗人實測出相對於基準間距,例如 以每1 0%階段式地增加間距時的步幅*並求得與基準步 幅比較時形成的比例。第2是被檢驗人例如使用按鍵開關 1 1 1〜1 1 4將該等比例與相對於基準間距的比例輸入 於裝置本體1 1 0者。 如上述,CPU220 1可進行以下的動作。即* CPU2201可描繪所輸入的間距比例與步幅的比例, 同時予以該等描圖之間內插,例如*求得圖5 9中之虛線 表示的特性,將此予以圖表化而預先保持在RAM 2203的預定領域內。: c " Doo-V: J? ^ 妁 -b; -1 " Moxibustion " Ink V First read the memorandum and then fill out the book S) First, the CPU2201 * in step Se 1 1 * After obtaining the number of pulses of the testee [number / minute] • Then, in step S 12, the running distance [number of steps / minute] of the testee is obtained. This point is the same as steps Sa 12, 13 of the interrupt processing ①. C P U 2 2 0 1 in the next step Se 1 3 is to compare the obtained pulse number with the running distance. When the pulse number of the CPU 2201 is smaller than the running distance, an indication of the interval to be increased is displayed on the display section 2 10 in step Se 1 4 and when the pulse number and the interval are approximately the same, in step S e 1 5 The instructions for maintaining the running state are displayed on the display section 2 10. On the other hand, if the pulse number is greater than the interval, the step reduction instruction is displayed on the display section 2 10 in step S e 16 and preparation is made for the next implementation. The interruption processing ⑤ is suspended. In addition, the pulse number is smaller than the interval 1 can refer to Figure 4 4 (a) It is known that in the paper roll scale, the prisoner's family model (f'NS) is Pig (210X 297 mm) -121-A7 4 1684 \ __B7 V. Description of the Invention (119) When training for improving the endurance of the whole body is performed at a low running speed. Therefore, the testee must be notified to promote the increase of his running speed. However, once the instruction to promote his running distance is increased, it will result in 2 kinds of instructions required to increase the stride. Conversely, when the pulse number is greater than the running interval | refer to the same figure for the training to improve the endurance of the whole body when the running speed is high. Therefore, the testee must be notified to urge him to reduce his running speed. However, once the instruction to promote his running distance is reduced, it will result in 2 kinds of instructions required to reduce the pace. As mentioned above, according to the review of the characteristics of general running sports, although increasing the stride speed will increase the running speed, but in addition to muscle fatigue, the pulse rate will tend to decrease. In addition, when the running distance is increased *, it tends to increase with the number of pulses. Also, referring to the same figure, it can be seen that the running distance in the area with high running speed is not much compared with the time when the running speed increases. The change. This is in the field of low running speed. Although the increase of running speed is mainly achieved by the increase of running distance, it is indicated that in the field of high running speed, it is mainly performed by expanding the stride. In addition, when the number of pulses in a low-speed running area is compared with an increase in the running distance, the number of pulses varies drastically. As the above results, in the present embodiment, when the pulse number is smaller than the running distance, an instruction to increase the running distance is given, without causing muscle fatigue, and an increase in the running speed of the test subject can be obtained. If the running distance is larger than the running distance, an instruction to reduce the running distance is given, so that the number of pulses can be continuously decreased to reduce the running speed. I .l · n ^ i 4 ^ n ϋ ^ ν ^^^^ 1 ΛΤ7 知 知 (" Please note the following matters again: this page): r:-':' lr-vJ ': v4 ^ 1un7;, '; ^ < tiv " f ,, v Paper & scale K fi! Family standard in this state i (' NS) Λ4 specification {210X 297 male dragon) -122 · t!; ^ 16 841 A7 B7 V. Description of the invention (12 £)) In addition, when the pulse rate is approximately the same as the running distance, the exercise intensity corresponding to the running speed can be appropriately displayed as the training intensity for continuous exercise, so it can be maintained. An indication of its running status. At this time, the pulse number and running distance need not be the same as long as the measurement error is taken into consideration. For example, if the difference between the two is within ± 10%, the two can be regarded as the same. In addition, when the difference between the two is extremely large, it is not necessary to judge based on the status of the implementation, and it is only necessary to give an instruction to change both the running distance and the stride. As described above, by implementing the basic processing ⑤ and the interrupt processing ⑤, the fifth function implemented by the functional configuration shown in FIG. 42 is the function of notifying the instruction for approaching the target exercise intensity with respect to the current exercise intensity. The internal formation shown in Fig. 43 can be performed equivalently and regularly. Therefore, according to the instruction content of the fifth function, the test subject can easily achieve the target exercise intensity when running, that is, the most appropriate intensity when performing continuous exercise. 2 — 3 — 5-6: 6th function Secondly, the operation description when the 6th function (that is, the function that shows the degree of progress of the exercise intensity obtained by the 2nd function as the date level elapses) is described as follows. When the examinee operates the key switch 111 to set the mode for performing the sixth function * CPU220 of FIG. 43 1 The first is to read out all the exercise intensity memorized in step 5 b 2 1 above, and the second is to read the readings from the display section. The intensity of the exercise is depicted on the y-axis, and the corresponding date is depicted on the X-axis, and the wooden paper scales of the Luzhou family standard 彳 ((, NS) Λ4 size (2 丨 0X297 public 嫠) -123-B; 4 1684! V. Description of the invention (121) The control is performed to display two-dimensionally. The exercise intensity shown here is the 値 that synchronizes the pulse number with the running distance when performing its running, and uses this as the 指标 of the exercise index. The accumulation of training has the property of changing by the date level. Therefore, as described above, once the exercise intensity is displayed corresponding to the date, the effect of the training of the testee can be known over time. In addition, in the above description, the first Although the 6th function is implemented separately, the testee can perform all or selective implementation of the 1st to 6th functions after starting the exercise. * The results of such executions can also be tested. Construct In particular, the processing contents of the 4th and 5th functions are similar, and it is better to implement them at the same time. "2-3-5-7: The communication function is used to transfer various data to the external device shown in Figure 4 and communication. The operation at this time explains the sports index measuring device related to this embodiment as follows. * First, when communicating with an external device, the test subject removes the connecting piece 80 from the connecting portion 70 of the device body 10, and exposes the LED 507 and the photonic crystal 50. 8 is opposite to the communication window 6 0 6 of the external device. The following is a description of the function of transmitting data to the external device and the function of receiving data from the external device. 2-3-5 — 7-1: Transmission function In this state, the examinee operates the key 1 1 1 to set the execution transmission --------- ^ ------ ΐτ ------ 0 (^^ Please read carefully Please fill in the details on this page} This paper is a scale of the standard of this state in the middle of Fujian and Fujian (Factory Gu with 4 specifications (2 丨 0 '/ 297 mm) • 124- ^: Γί · Γ · 屮 ^: ^; v- ^ wn if A 合 Mi.i 印 at i 4 1684 1 __B7 V. Description of the invention (122) In the mode for sending functions, CPU2 2 0 1 in Figure 4 3 is the step when the first function will be implemented The data stored in S a 1 4 is the data of the number of pulses and running distance corresponding to the elapsed time after the start of the running exercise. • It is transmitted to the machine body through the I / 0 interface 2 2 0 9 * and the optical interface of the external machine. 500 «can use the IrDA (Infraed Data Association) method, etc. as the above-mentioned optical communication procedures. As mentioned above, when transmitting from the device body 110, the external device can check the pulse number and running distance of the testee after the start How to change, not only for the testee, but also objectively inform the third party, such as the instructor or doctor *. At the same time, such information can be stored or analyzed. 2 — 3_5_7_2 '· Receiving function * On the other hand, in the external device, the running target, such as the running distance, is set as time passes. The exercise index measuring device related to this embodiment receives a target set by an external device, and the test subject uses it as a target set when starting a running exercise. Specifically, in a state where the LED 5 0 7 and the photo crystal 5 0 8 are opposed to the communication window 6 0 6 of the external device, the test person operates the key switch 1 1 1 to set the mode for implementing the receiving function. The CPU2 2 0 1 of 43 is a signal for transmitting data to external devices via the I / O interface 22 0 9 and the optical interface of the external device. The external device body 6 0 0 receiving this is transmitting the data forming the setting target volume through the optical interface and the I / 〇 interface 2 2 0 of the external device. On the other hand, on the 110 side of the device body, the capital paper forming the target volume is received; the KS family standard volume ([, NS) / V »specifications (210-297 cm) -125- .. ¾. (Counting the first reading of the back * of the meaning of Yi Heng Xiang, and then making a contribution to this page) A7 B7 416841 "-4- + 々 " ^ 而 忍 l: '-;,; iy'tc " " v V. Description of the invention (123) When the data is expected, the CPU2 2 0 1 will once store the received data in the RAM 2 2 0 3, when the testee starts the actual running, read the corresponding time after the start of running The passing target is then notified to the examinee. At this time, when the target 値 is the running distance, the difference between the notified target 値 and the actual running distance of the running exercise is displayed in levels as shown in the fourth function. With this, the testee can still run at a set running distance when exercising for a long period of time, which can be effectively used for physical fitness adjustment during training or competition. The exercise index measuring device according to the above-mentioned embodiment is capable of performing the first to sixth functions and the communication function. In particular, through the implementation of the second function, the exercise intensity required for the index for improving the endurance of the whole body can be comprehensively taken into consideration for the physical strength of the person being tested during exercise. The function can determine the degree of difference between the current exercise intensity and the required exercise intensity when improving the endurance of the whole body *. By implementing the fifth function, the current exercise intensity can approach the target exercise intensity. With instructions. Among them, once the exercise index obtained in the second function is informed by the product of the physical index and the physiological index, the product of the running speed and the pulse number, or the product of the running distance and the pulse number, the product of the stride and the pulse number, etc. At the same time, physical indicators and physiological indicators can be comprehensively evaluated. Specifically, even when the target is reached at the same time and the same journey, physiological indicators will change due to physical conditions, so comprehensive evaluation will be performed with physical indicators. That is, the physiological index and the physical index can be evaluated as a new index * (诮 1 Read the precautions on this page and then reprint this page} Install the * = line. This paper is in size ii. < ('NS) Eight-four specifications (210X297 mm) -126- A7 i 4 16 6 41 _ B7__ V. Description of the invention (124) 2-3-6: Other forms In the above embodiment, although it is a watch The structure is a form of a movement index measuring device, but the present invention is not limited to this. For example, the glasses type (see FIG. 34), the necklace type (see FIG. 35), the card type (see FIG. 36), or the calculator described in Chapter 1. Pedestrian type (see Figure 3 7) can be used. 2 — 3 — 7: Display of the notification mode, and the above-mentioned embodiment, although the implementation of the first to fifth functions are displayed by the display section 2 2 1 0 The structure of the results, but the present invention is not limited to this. That is, it is not limited to visual display, but can inform the β by various aspects. Therefore, the notification of the present invention means to appeal to the five senses. For example, you can resort to the goal of running Structure of tactile notification such as pitch and pulsation, or the result of notification The notification structure is appealed to the sound synthesis. 2-4: The second embodiment is as follows ^ Second, the second embodiment of the present invention will be described as follows. Generally, when the distance is increased during a running exercise, how much is the running pace of these running exercises It may be slightly shortened due to personal differences. However, regardless of the change in the pitch in the first embodiment described above, the stride is formed by using the chirp set in RAM2 2 0 3, so it is formed-fixed, and the above-mentioned running may not be considered. Therefore, in this point, the first embodiment has the disadvantage that it is easy to form an incorrect calculation result about the stride. Therefore, in the second embodiment, the obtained display pitch and the step paper are preset. Standard Tongzhou SK family standard (('NS) Λ4 grid (210X297 mm) · 127-A7 1 4 166 4 1 ____B7 * _ V. Description of the invention (125) A graph of the relationship of correction coefficients is stored in advance, and On the one hand, when using the stride for calculations in running, read the step correction factor corresponding to the time interval from the chart, and multiply it by the set stride to correct it. This can solve the above disadvantages. 6 As described above, the configuration of the exercise index measuring device according to the second embodiment is as shown in FIG. 58. • It is formed on the structure shown in FIG. 4 with a chart 2 1 3 5 and a correction section 2 1 3 6. Among them, the graph 2 1 3 5 indicates the pitch and step correction coefficients in advance, and outputs the step correction coefficients corresponding to the pitches obtained by the FFT processing section 2113. The correction section 2 1 3 6 is in the second record section 1 3 The stride stored in 1 is multiplied by the stride correction coefficient output by the FFT processing section 2 1 1 3, and the stride is adjusted in accordance with the pitch. In addition, the graph 2 1 3 5 is equivalent to the RAM 2203 of FIG. 43 and the correction unit 2136 is equivalent to the structure of the CPU 2201. Therefore, it is not necessary to physically add a component in FIG. 4 3. In addition, the characteristics of the pitch and the step correction factor recorded in the graph 2 1 35 are reviewed below. Generally, as shown in the solid line in Figure 59, the correction factor of the step is gradually formed as the pitch increases. "1" 値. In addition, the reference distance in the figure is the distance between the steps when these running exercises form the input step (reference step). However, the relationship between the distance and the correction factor of the stride is significantly different according to each testee, so it is actually shown by the dashed line in the same figure * with the characteristics of the testee's own editing. Necessity of the solid line "I 11 (n — 11 Μ (# YOU READ OUT 1 & Note on Heng Xiang Zai " 3 pages) This paper is a music scale Kawagawa KPi; family standard i ?. (rNS) Λ4 rules (_ 210x297 public 128) -128- A7 _ B7 V. Description of the invention (126) The editing function is as follows. First, the first is the actual distance measured by the examinee relative to the reference distance, for example, at every 10% stage. Increasing the step size at the interval * and finding the ratio when compared with the reference step. The second is the test person, for example, using a key switch 1 1 1 to 1 1 4 to compare the ratio to the ratio to the reference interval. Entered in the device body 1 10. As mentioned above, the CPU220 1 can perform the following actions. That is, * the CPU2201 can draw the entered pitch ratio and step ratio, and interpolate between these drawings, such as * The characteristics indicated by the dashed lines in Fig. 5 and 9 are graphically preserved in advance. Within a predetermined field of the RAM 2203.
實際上被檢驗人在進行跑步運動,使用記億在RAM 2 2 0 3的步幅運算時,CPU2 2 0 1是求得第1檢測 之間距與基準間距比較時所形成的比例,第2是從該等圖 表讀出求得對應該等比例之步幅修正係數,第3係於 RAM2 2 0 3所讀出之基準步幅上乘以該等係數*而修 正對應間距之步幅,第4係於運動強度運算中使用修正之 步幅者· 如上述,圖5 8表示之功能構成可利用圖4 3表示之 內部構成形成可等效實行者》 根據上述之第2實施形態,即使在跑步運動中變動其 間距時仍可修正其步幅,並且,其修正可配合被檢驗人的 特性而進行,因此可更爲正確地進行使用步幅的運算β 此外|被檢驗人在進行跑步運動時•修正後的步幅與 {分1閱請背而之注总事項再功.>5本页) 裝 本紙张尺度试WfKK家標肀(('NS ) Λ4規格(210Χ297公楚> -129-In fact, when the testee is running, using the stride calculation of RAM 2 2 0 3 in the memory, CPU 2 2 0 1 is to obtain the ratio formed when the first detection distance is compared with the reference distance. The second is Read from these charts to find the step correction coefficient corresponding to the proportion. The third is to multiply the reference step read from RAM2 2 3 by the coefficients * to modify the corresponding step. The fourth is Those who use a modified stride in the calculation of exercise intensity · As mentioned above, the functional structure shown in Figure 5 8 can be used to form an equivalent performer using the internal structure shown in Figure 43. According to the second embodiment described above, even in running sports If the pitch is changed in the middle, the stride can still be corrected, and the correction can be performed in accordance with the characteristics of the examinee. Therefore, the calculation using the stride can be performed more accurately. Β In addition | When the examinee is running? The amended stride and {read 1 point, please note the general matters and work again. ≫ 5 pages) Install the paper size test WfKK house standard 肀 (('NS) Λ4 specifications (210 × 297) > -129 -
416S4I A7 B7 五、發明説明(127 ) 該時刻的脈搏數與跑步間距互相結合,且對應跑步開始後 的時間經過予以記億。即,第1實施形態之第1功能是在 該第2實施形態中,加上跑步開始後的脈搏數與跑步間距 而形成顯示修正後之步幅的功能。並且,在傳送功能中也 可以將修正後的步幅傳送至外部機氣。又,以外部機器作 爲跑步運動的目標値,也可以對應時間經過設定步幅,收 訊功能中,則是接收該鄧設定步幅的資料,使被檢驗人可 以此作爲實際跑步運動開始時的目標値使用。 又,步幅的修正除了藉上述修正的方法外,例如也可 以考慮按下按鍵開關1 1 1、1 1 6,以手動輸入步幅增 減的方法。 此外,圖表2 1 3 5的記億內容並非對應跑步間距之 修正係數,也可以是其步幅者。 2_4 - 1 :第2實施形態之變形 上述之第2實施形態是對應跑步運動之間距而修正步 幅之構成者,但是步幅不僅是跑步運動的間距,也可以考 慮對應脈搏數而變動者》 如上述,與表2 1 3 5相同,也可以使用預先記億脈 搏數與步幅修正係數的關係之圖表的構成。 又,步幅之修正在考慮間距與脈搏數兩者時,也可以 兩者差値(參數)作爲記憶步幅修正係數之構成而使表二 維化者。此時,圖5 8中的虛線①所示,形成將F FT處 理部2 1 0 3所求得的脈搏數作爲二維化表2 1 3 5的差 n - - n - Hr---— +r"--I T _ _ . :1 If . .. n {i*·;先w讀背而之li意亨Ifi'再敁ft?本页) 本纸沾尺度述圯中阁囤家椋夺{ (.’NS ) Λ4規格(2!0乂297公弟) -130- A7 ! 416841 B7 * 五、發明説明(128 ) 値而供應之構成。 ----------裝-- "先閱請背兩之注"亨邛再功·-?本I ) 2 — 5 :第2章之變形例 上述之第1及第2實施形態中·被檢驗人雖是進行跑 步運動,但是本發明不僅限於此*例如游泳運動時,對應 步幅而輸入划動的移動距離,對應間距而檢測出每單位的 划動數時可獲得相同的效果•又,以台的升降爲運動時, 也可以輸入每1次的上升量檢測每單位時間的升降段數, 獲得相同的效果。亦即,本發明包含日常生活中一般所進 行的動作運動,而在一定節律下進行規律性的所有運動之 中,可提供與脈搏數及運動間距同步運動而構成新的運動 指標者。 2 — 6 :實施形態的效果 根據如以上說明第2章有關的運動指標測定裝置,係 綜合考量運動時被檢驗人之肉體上.精神上體力的運動強 度,而提供可獲得進行提高全身持久力用訓練時之指標的 運動強度。 並且可以根據時間的推移而獲得被檢驗人之運動結果 的變動程度者。 此外,並可獲悉被檢驗人實際進行之運動強度" 將現時刻被檢驗人的運動強度與進行持續性運動時的 訓練強度比較,獲知是否適當,如不適當時,也可以在進 行持續性運動時訓練強度時,定量獲得應增減之運動強度 本紙張尺度1¾州中1¾¾家樣净.(ΓΝ5 ) Λ4現格(21〇'乂297公釐1 - 131 - 41684Ϊ A7 · B7五、發明説明(129) 値。 再者,也可以容易達成進行持續性運動時的訓練強度 »於跑步運動時,對應跑步間距或脈搏數而修正步幅•因 此可更正確的運算結果。 藉外部機器與資料的傳送與接收 > 可於外部機器解析 測定結果,並可精密地設定目標値者· 3 .第3章 3 - 1 :槪要 客觀地測定跑步或重量訓練等運動強度之方法有第3 章說明之測定血液中乳酸濃度的方法爲一般所熟知。而此 一方法係著眼於乳酸爲疲勞物質•可判定乳酸濃度高時的 運動強度大。 於此•在運動中之訓練人本身如可獲知運動強度時, 即可便於進行健康管理與科學的訓練方式。但是,在測定 乳酸濃度時,必須採取血液調査其濃度,因此於持續的運 動中不能進行測定》 有鑑於此,本案發明人乃針對顯示運動強度的指標經 ί 過多方檢討後,發現呼吸波型與運動強度間緊密的關係。 τ] 此時,應如何測定呼吸波型乃構成重要的問題。 t 首先,測定呈安定狀態之被檢驗人呼吸波型的方法是 I 在胸部或腹部縷繞帶子後測定伸縮狀態。一般是將熱電耦 t 放入鼻孔中以計測其電阻値變動等的方法,但是對於進行 ί ν 日常健康管理之被檢驗人或進行訓練之被檢驗人而言,該 本紙浓尺度適用中Κ Κ家標瑋.(('阽)八4坭格(210/297公犮) 「132 · ---------^------1T----:--^ {誚先閱讀背面之注*亨項再M\t.-J本頁) A7 丨 4 1 6 8 4 1 _ B7 五、發明説明(13Q ) 等的裝著極令人厭煩而不便。 又,一旦解析安靜狀態之被檢驗人的心電圖之R - R 週期的起伏頻率成份時,存在有相當於呼吸數的成份。脈 波是與心電鄘同步,因此在脈波週期(或脈波振幅)的起 伏頻率成份中同樣含有相當於呼吸波型的成份》 因此,藉由上述成份的抽出,可根據心電或脈波測定 呼吸波型的裝置爲一般所熟知。例如,日本專利特開昭 6 2 — 2 2 6 2 7中,係揭示測定一連續之脈搏間隔,測 定該等脈搏間隔的變化週期,而藉該等變化週期的倒數算 出呼吸數的技術。又,日專利實開平4_5 1 9 1 2中, 係揭示根據心電波型之R-R間隔的變動週期或脈波波型 之峰値包絡線的起伏來檢測第1呼吸數,檢測被檢驗人的 腹部表面的往復運動而檢測出第2呼吸數,記錄·顯示第 1及第2呼吸數中較低側的技術。又,日本專利實開平4 -1 3 6 2 0 7中,係揭示根據脈波波型振幅的起伏週期 推定呼吸數,同時算出脈波波型的平均値(低頻率成份的 膨脹),並使用該平均値傾度較小時的數據而降低膨脹或 噪音影響的技術。另外,日本專利特開平6-1 4 2 0 8 2中,係揭示將逐一求得之被檢驗人的脈搏數 乘以最高血壓値,而根據該成法値的脈動週期算出呼吸數 的技術。又,曰本專利實公平6 - 2 2 3 2 5中,係揭示 根據連結脈波峰値的曲線鰾化週期來決定生體的呼吸數之 技術。 但是,被檢驗人在運動中時,心電波型上會重叠筋電 本紙乐尺度速州中 K 囚(標 t ( TNS ) Λ4*^ ( 210 X 297-^-^ ) - 133 - ' ---------¾------iT------,^ {对先閱讀背而之注^事項再^1;!;本丌) "έΓΙ4·、"·^:?^ 二消於合仍幻印5···- A7 I 4 1 6 8 4^j —_ B7 五、發明説明(131 ) 波型,脈波上重叠有體動成份。由於該等成份之位準可能 高於相當呼吸波型的成份,因此會導致錯誤算出脈波波型 的問題》 因此*第3章中是提供可從脈波波型抽出呼吸成份, 並據以簡單檢測運動強度之運動強度檢測裝置· 3 _ 2 :理論性根據 增加運動強度時,會加骨格筋的氧消耗量,因此會增 加呼吸數》因此,運動強度與呼吸波型的關係是如圖6 0 所示》並且,同圖中,縱軸之+方向是表示吸入*另一方 向是表示排出。同圖(a )是表示安靜時(運動強度X 1 )的呼吸波型,圖(b )是表示運動強度X2的呼吸波型 ,圖(c)是表示運動強度X3的呼吸波型,圖(d)是 表示運動強度X4的呼吸波型,運動強度X 1〜X4係形 成以下的關係。 X1<X2<X3<X4 圖中,在安靜時吸入時間較排出時間長,但是隨著運 動強度的增強會減小吸入時間與排出時間的差,並隨著呼 吸波型逐漸接近正弦波時,更使得運動強度增強而會導致 造成呼吸波型大幅地混亂。 如上述,呼吸波型接近正弦波是意味著降低相對於基 本波成份的諧坡成份。尤其是運動強度在未超越某一界限 I— I IΑ*^I I n 本紙氓尺度边州屮KH家標卒(rNS ) Λ4規袼(2丨0X297公釐) • 134- 4 1 68417 A7 B7 五、發明説明(132 ) 時,呼吸波型是從鋸齒狀波變化爲正弦波,因此隨著運動 強度的增加會形成逐漸減少第3諧波成份。 因此•藉著頻率解析呼吸波型時可獲得運動強度的指 標。 本發明人係著眼於該點而從脈波波型抽出呼吸成份後 ,藉對此之頻率解析而可檢測出運動強度。 3 _ 3 :功能構成 其次,說明本實施形態相關之運動強度檢測裝置的功 能如下。圖6 1爲本實施形態相關之運動強度檢測裝置的 功能方塊圖。圖中| f 3 1是脈波檢測手段,可從生體的 檢測位置檢測脈波波型。例如,相當於光學式脈波感測器 或壓力感測器等。又,f 3 2爲體動檢測手段,係檢測顯 示生物體動之體動波型》例如•相當於加速度感測器。 又,f 3 3爲體動除去手段,係根據體動波型產生脈 波波型中的體動成份,而從脈波波型除去體動成份產生體 動除去脈波波型。具體而言,是對於體動波型施以適當波 型處理,將此從脈波波型上減去,或者可分別解析脈波波 型的頻譜與體動波型的頻譜,從脈波波型的頻譜除去與體 動波型的頻譜相同的頻率,藉此可產生體動除去波型。 又| f 3 4爲呼吸成份抽出手段•可根據體動除去脈 波波型抽出呼吸成份。該呼吸成份抽出手段f 3 4具備, 例如對於體動除去脈波波型施以子波轉換,而產生體動除 去脈波解析數據的子波轉換部,及從體動除去脈波解析數 I n I— —i ϋ n n n I— f 漆· (对先^:讀背而之注意事項再項巧本頁) :r:;"·何屮々·ν··ίν·^θ T. ^ 本紙乐尺度这用中KS家標啤(rNS ) Λ4規格(2iO'/ 297公釐) -135- at i 4 16 8 4 1 B7 ^ 五、發明説明(133 ) 據除去與脈波成份相當的頻率成份而產生呼吸波型解析數 據,對於該等呼吸波型解析數據施以逆子波轉換後,產生 作爲上述呼吸成份的呼吸波型之呼吸波型產生部即可。又 ,f 3 5爲運動強度產生手段*根據呼吸成份抽出手段所 抽出的呼吸成份,算出運動強度。此時,運動強度是根據 對於所抽出的呼吸成份施以頻率解析所獲得的頻率成份比 例算出運動強度。 3 - 4 :第1實施形態 3 — 4 — 1 :第1實施形態之構成 參閱圖式說明第3章之第1實施形態有關的運動強度 檢測裝置3的構成如下。 3-4 一 1 — 1 :第1實施形態的外觀構成 ^'3""'屮"'^"^爻1,^"合代^印" 運動強度檢測裝置3的外觀構成是與第1章所說明的 脈波診斷裝置相同(參閱圖2 )。即,運動強度檢測裝置 3大致爲具有手錶構造的裝置本體110:連接該裝置本 體1 10的纜線120 ;及,設於該纜線120前端側之 脈波檢測用感測器單元1 3 0所構成。 又,具有脈檢測手段f 3 1功能的脈波檢測用感測器 1 3 0的電路構成是與第1章說明之脈波診斷裝置相同( 參閱圖3 )。 3 — 4— 1 - 2 :第1實施形態之電氣構成 本紙張尺度诚州中SS家桴肀(C’NS ) Λ衫見格(210X297公釐> -136- at 1 41684ί ____Β7五、發明説明(134 ) 其次,圖6 2是表示第1實施形態之電氣構成。圖中 ,3 1 0爲脈波檢測部,相當於上述脈波檢測用感測器單 元1 3 0。藉脈波檢測部3 1 0可檢測表示脈動大小的脈 波波型MH。又,3 1 1爲體動檢測部,例如是藉加速度 感測器所構成,設置在錶殼2 0 0的內部。藉此可檢測出 利用跑步時手臂的振動等顯示產生體動之體動波型TH。 又,3 12是對於體動波型施以一定之波型處理的波 型處理部,3 1 3爲體動除去部。進行波型處理可於體動 除去部3 13中正確地除去體動成份之用。因此,以 MH t表示脈波波型MH中的體動成份,以MH·表示真 實脈波成份(體動除去脈波波型)時,形成MH = MH t + Μ Η 1 。體動波型丁 Η例如以其作爲手臂振動加速度而 檢測,但是血流是受到血管與組織等影響,因此體動成份 MH t係形成使體動波型Τ Η鈍化者•因此,波型處理部 3 1 2是以適當的低通濾波器所構成。並且,低通濾波器 的形式或係數是以實驗所獲得的値算出。藉此可從體動波 型求得體動成份MH t。又*體動除去部3 1 3是從脈波 波型MH減去體動成份MHt ,而產生體動除去脈波波型 Μ Η * 。 其次* 3 14爲呼吸成份抽出部,而爲CPU (中央 運算處理裝置)及A/D轉換器等所構成。該等的例中, 體動除去脈波波型MH’是利用A/D轉換器從模擬信號 轉換爲數位信號之後,作爲體動除去脈波數據儲存 於C P U內》呼吸成份抽出部3 1 4是對體動除去脈波數 (計1"^背16之注杏事項再"-$冬頁) 本紙汰尺廋这川中家標瑋((-NS ) Λ4現格(2丨0X297公釐) -137- _b; .1 416641 五、發明説明(135) 據ΜΗ’施以FFT處理,進行頻率解析。 圖63是對體動除去脈波數據ΜΗ’施以FFT處理 結果的簡化模式圖。該圖中•低頻領域L F之最大峰値頻 率爲呼吸成份之基本波頻率Fvl,而高頻領域HF之最 大峰値頻率爲脈波之基本波頻率Fm 1 又,圖6 4是圖 6 3之低頻領域L F的擴大圖。圖中,可知呼吸成份是其 基本波頻率Fvl與諧波Fv2、Fv3、Fv4 ..所 構成。該例中,呼吸成份抽出部3 1 4首先對體動除去脈 波波型MH’施以FFT處理,特定最大峰値頻率。由於 形成最大脈波之基本波成份,因此可特定Fm 1爲最大峰 値頻率。隨後,在低於Fm 1之頻率領域中,特定最大峰 値頻率。較脈波成份低域之頻率成份是對應呼吸成份,因 此可在此特定呼吸成份之基本頻率F v 1。隨後,呼吸成 份抽出部3 1 4可檢測F v 1之位準L 1及其高調波頻率 Fv2'Fv3'Fv4..的位準 L2、L3、L4° 此外,該例中,高調波頻率係限定小於F m 1者。如形成 Fm 1以上時,爲使脈波成份存在假設Fm 1爲F v 1的 整數倍時,則不能分離呼吸成份。 其次,315爲評估部,爲CPU及ROM所構成。 CPU是根據呼吸成份抽出部3 1 4所檢測之L 1、L2 、L3、L4 . ·算出呼吸波型的變形率K «具體而言, 可根據以下算出式算出變形率K。 K = CL22 + L32 + L42. . ) 1/2/Ll ---------^------ΐτ-------^ (対先閱讀背面之注意事項再硝艿本頁) 本紙張尺度 1¾ { CNS ) ( 2!ΟΧ 297^¾ ) - 138 - 416641 A7 _ _B7 五、發明説明(136) 但是,如上述在安靜時,吸入時間較排出時間長,但 是隨著運動強度X的增大,吸入時間與排出時間的差會逐 漸減小,呼吸波型會逐漸接近正弦波,並且形成大的運動 強度X時,會使呼吸波型大幅度地造成混亂。即,只要運 動強度X不超過某一界限時,形成大的運動強度時,會使 相對於基本波成份的髙調波成份比比例降低。又,運動強 度X—旦超過界限時,會急劇地增大相對於基本波成份之 高調波成份的比例。此係於呼吸波型的變形率K與運動強 度X形成一定的關係,隨著運動強度X的增大而減小變形 率K時,即表示運動強度X超過某界限時會使變形率K急 增。因此,預先求得變形率K與運動強度X的關係時,可 從變形率κ求得運動強度X。416S4I A7 B7 V. Description of the invention (127) The pulse number and running distance at this moment are combined with each other, and the time elapsed since the start of running is counted as 100 million. That is, the first function of the first embodiment is a function of displaying the corrected stride by adding the pulse number and the running interval after the start of running in the second embodiment. In addition, in the transmission function, the corrected stride can be transmitted to an external machine. In addition, the external device is used as the target of the running exercise, and the set pace can be passed according to the time. In the receiving function, the data of the set pace of Deng is received, so that the examinee can use this as the start of the actual running exercise. Target 値 use. Moreover, in addition to the method for correcting the stride, for example, a method of manually inputting the increase or decrease of the stride may be considered by pressing the key switches 1 1 1 and 1 1 6. In addition, the content of 100 million in the graph 2 1 3 5 is not the correction factor corresponding to the running distance, but also the stride. 2_4-1: Modification of the second embodiment The above-mentioned second embodiment is a constitution that corrects the stride according to the distance between running exercises, but the stride is not only the distance between running exercises, but it can also be considered in accordance with the number of pulses. As described above, as in Table 2 1 3 5, a structure in which a graph in which the relationship between the pulse rate and the step correction coefficient is recorded in advance may be used. In addition, when considering both the pitch and the pulse number for the correction of the stride, the difference between the two (parameters) can be used as a structure for memorizing the stride correction coefficient to make the table two-dimensional. At this time, as shown by the dotted line ① in FIG. 5, the pulse number obtained by the F FT processing unit 2 1 3 is formed as a difference n--n-Hr of the two-dimensionalized table 2 1 3 5 ----- + r "-IT _ _.: 1 If. .. n {i * ·; first read the back and then lie if it is Ifi 'and then ft? this page) This paper is attached to the paper and described in the Chinese cabinet. To win {(.'NS) Λ4 specifications (2! 0 乂 297 brothers) -130- A7! 416841 B7 * V. Description of invention (128) 値 and supply. ---------- Equipment-" Please read the note of the two before reading " Heng Yi, and then work again--this book I) 2-5: Modification of Chapter 2 In the second embodiment, although the subject is running, the present invention is not limited to this. For example, when swimming, the stroke distance is input in accordance with the stride, and the stroke number per unit may be detected in accordance with the distance. The same effect is obtained. • When the platform is raised or lowered, the number of steps per unit time can be detected by inputting the amount of ascending once to obtain the same effect. That is, the present invention includes action movements generally performed in daily life, and among all sports performed regularly under a certain rhythm, a new exercise index can be provided by synchronizing exercise with the pulse number and exercise interval. 2-6: Effect of the embodiment According to the exercise index measuring device described in Chapter 2 of the above description, the physical strength of the person being examined during exercise is comprehensively considered, and the physical strength of the physical strength is provided, and the endurance of the whole body can be improved. Use the index of exercise intensity during training. And can obtain the degree of change of the test results of the testees according to the passage of time. In addition, you can learn the actual exercise intensity of the test subject " Compare the exercise intensity of the test subject at the moment with the training intensity when performing continuous exercise and learn whether it is appropriate, and if not, you can also perform continuous exercise At the time of training intensity, quantitatively obtain the exercise intensity that should be increased or decreased. The paper size is 1¾ in the state and 1¾¾ in the sample. (ΓΝ5) Λ4 is present (21〇 '乂 297mm 1-131-41684Ϊ A7 · B7 V. Description of the invention (129) 値. Furthermore, it is also easy to achieve the training intensity when performing continuous exercise »In running exercise, the stride is adjusted according to the running distance or the pulse number • Therefore, the calculation result can be more accurate. Borrow external equipment and data Transmitting and Receiving> Analyze the measurement results on an external device and set the target precisely. 3. Chapter 3 3-1: There are methods to objectively measure the intensity of exercise such as running or weight training. Chapter 3 The method for measuring the concentration of lactic acid in blood is generally known. This method focuses on lactic acid as a fatigue substance. It can be determined that the exercise intensity is high when the lactic acid concentration is high. • If the person training during the exercise can know the intensity of the exercise, it will be convenient for health management and scientific training. However, when measuring the concentration of lactic acid, blood must be used to investigate the concentration, so it cannot be performed during continuous exercise. In view of this, the inventor of this case has reviewed the indicators showing exercise intensity and found that there is a close relationship between the respiratory wave pattern and exercise intensity. Τ] At this time, how to measure the respiratory wave pattern is important First, the method of measuring the respiratory wave pattern of a test subject in a stable state is to measure the expansion and contraction state after the chest or abdomen is wrapped around a band. Generally, a thermocouple t is placed in the nostril to measure its resistance and change. Method, but for those who carry out daily health management or those who undergo training, the paper ’s thick scales are suitable for KK family standard. (('阽) 八 4 坭 格 (210/297 公公犮) 「132 · --------- ^ ------ 1T ----:-^ (诮 Read the note on the back * Heng Xiang then M \ t.-J this page) A7 丨 4 1 6 8 4 1 _ B7 V. Description of the invention (13Q), etc. It is annoying and inconvenient. Once the R-R period fluctuation frequency component of the electrocardiogram of the test subject in the quiet state is analyzed, there is a component equivalent to the number of breaths. The pulse wave is synchronized with the ECG pulse, so the pulse The fluctuation frequency component of the wave period (or pulse wave amplitude) also contains a component equivalent to the respiratory wave pattern. Therefore, by extracting the above components, a device that can measure the respiratory wave pattern based on the electrocardiogram or pulse wave is generally known. For example, Japanese Patent Laid-Open No. Sho 6 2-2 2 6 2 7 discloses a technique for measuring a continuous pulse interval, measuring a period of change in the pulse interval, and calculating the number of breaths by inverse of the period of the change. In addition, Japanese Patent Shikaihei 4_5 1 9 1 2 discloses the detection of the first breath number based on the fluctuation period of the RR interval of the electrocardiographic wave pattern or the fluctuation of the peak / envelope of the pulse wave pattern, and the abdomen of the test subject. A technique in which the second respiration number is detected by reciprocating the surface, and the lower side of the first and second respiration numbers is recorded and displayed. Also, in Japanese Patent Shikaihei 4 -1 3 6 2 0 7, it is disclosed that the number of respirations is estimated based on the fluctuation period of the pulse wave amplitude, and the mean chirp (low-frequency component expansion) of the pulse wave shape is calculated and used. This technique is used to reduce the effects of dilatation or noise when the average tilt is small. In addition, Japanese Patent Laid-Open No. 6-1 4 2 0 8 2 discloses a technique of multiplying the number of pulses of a test subject obtained one by one by the highest blood pressure 値 and calculating the number of breaths based on the pulse cycle of the method. In Japanese Patent Application Publication No. 6-2 2 3 2 5, there is disclosed a technique for determining the number of respirations of a living body based on the cycle of the curve that connects the peaks of the pulse wave. However, when the examinee is in motion, the electrocardiogram wave shape will overlap with the prisoner's paper and the scale of Kaku (standard t (TNS) Λ4 * ^ (210 X 297-^-^)-133-'- ------- ¾ ------ iT ------, ^ (Notes to read first and then ^ matters, then ^ 1;!; Ben 丌) " έΓΙ4 ·, " · ^:? ^ Second elimination Yuhe still magic print 5 ... A7 I 4 1 6 8 4 ^ j —_ B7 V. Description of the invention (131) Wave shape, body motion component superimposed on the pulse wave. Since the level of these components may be higher than that of the equivalent respiratory wave shape, it will lead to the problem of erroneous calculation of the pulse wave shape. "Therefore * Chapter 3 provides the extraction of respiratory components from the pulse wave shape. Exercise intensity detection device that simply detects exercise intensity · 3 _ 2: Theoretically, when the exercise intensity is increased, the oxygen consumption of the bones and tendons will increase, so the number of breaths will be increased. Therefore, the relationship between exercise intensity and breathing pattern is as shown in the figure It is shown in 60. Moreover, in the same figure, the + direction of the vertical axis indicates suction * and the other direction indicates discharge. The same figure (a) shows the breathing waveform at rest (exercise intensity X 1), the figure (b) shows the breathing pattern at the exercise intensity X2, and the figure (c) is the breathing pattern at the exercise intensity X3. d) is a breathing wave pattern showing exercise intensity X4, and exercise intensity X1 to X4 have the following relationship. X1 < X2 < X3 < X4 In the figure, the inhalation time is longer than the discharge time when it is quiet, but as the intensity of exercise increases, the difference between the inhalation time and the discharge time is reduced, and as the breathing pattern gradually approaches a sine wave, Moreover, the exercise intensity is enhanced and the respiratory wave pattern is greatly disturbed. As described above, a breathing pattern close to a sine wave means that the harmonic slope component relative to the fundamental wave component is reduced. In particular, the intensity of the exercise has not exceeded a certain limit I— I IAA * ^ II n The scale of the paper, the border state, KH family standard (rNS), Λ4 gauge (2 丨 0X297 mm) • 134- 4 1 68417 A7 B7 5 In the description of the invention (132), the breathing wave pattern is changed from a sawtooth wave to a sine wave, so as the exercise intensity increases, a third harmonic component is gradually reduced. Therefore • An index of exercise intensity can be obtained when analyzing the breathing pattern by frequency. The present inventors focused on this point and extracted the respiratory component from the pulse wave pattern, and then analyzed the frequency to detect the exercise intensity. 3_3: Functional Configuration Next, the functions of the exercise intensity detecting device according to this embodiment will be described below. FIG. 61 is a functional block diagram of the exercise intensity detecting device according to the embodiment. In the figure, f 3 1 is a pulse wave detection method, which can detect the pulse wave pattern from the detection position of the living body. For example, it is equivalent to an optical pulse wave sensor or a pressure sensor. In addition, f 3 2 is a body motion detection means, which detects a body motion wave pattern that displays a biological motion. For example, it is equivalent to an acceleration sensor. In addition, f 3 3 is a body motion removing means, which generates body motion components in the pulse wave pattern according to the body motion wave pattern, and removes the body motion components from the pulse wave pattern to generate the body motion removal pulse wave pattern. Specifically, the body wave pattern is subjected to an appropriate wave shape process, and this is subtracted from the pulse wave pattern, or the spectrum of the pulse wave pattern and the spectrum of the body wave pattern can be analyzed separately from the pulse wave. The frequency spectrum of the mode is removed at the same frequency as the frequency spectrum of the body motion mode, thereby generating the body motion removal mode. F 3 4 is a means for extracting respiratory components. • Breath components can be extracted based on body movements to remove pulse wave patterns. This breathing component extraction means f 3 4 includes, for example, a wavelet conversion unit that performs wavelet conversion on a body motion removal pulse wave pattern to generate body motion removal pulse wave analysis data, and a pulse wave analysis number I from body motion removal. n I— —i ϋ nnn I— f Lacquer · (to the first ^: read the back and the precautions to reiterate this page): r:; " · He 屮 々 · ν ·· ίν · ^ θ T. ^ This paper scale is used in the KS family standard beer (rNS) Λ4 specification (2iO '/ 297 mm) -135- at i 4 16 8 4 1 B7 ^ V. Description of the invention (133) According to the removal, it is equivalent to the pulse wave component Frequency component is used to generate respiratory pattern analysis data. After applying inverse wavelet transform to the respiratory pattern analysis data, a respiratory pattern generating section that generates the respiratory pattern as the respiratory component may be used. In addition, f 3 5 is a means for generating exercise intensity * and calculates the exercise intensity based on the breathing components extracted by the breathing component extraction means. At this time, the exercise intensity is calculated based on the frequency component ratio obtained by applying frequency analysis to the extracted respiratory components. 3-4: First Embodiment 3-4-1: Structure of First Embodiment Referring to the drawings, the structure of the exercise intensity detecting device 3 according to the first embodiment of Chapter 3 is as follows. 3-4 1-1: Appearance of the first embodiment ^ '3 " "' 屮 " '^ " ^ 爻 1, ^ " 合 代 ^ 印 " Appearance of the exercise intensity detection device 3 It is the same as the pulse wave diagnostic device described in Chapter 1 (see Figure 2). That is, the exercise intensity detection device 3 is roughly a device body 110 having a watch structure: a cable 120 connected to the device body 1 10; and a pulse wave detection sensor unit 1 3 0 provided at the front end side of the cable 120. Made up. The circuit configuration of the pulse wave detection sensor 130 having a function of the pulse detection means f 31 is the same as that of the pulse wave diagnosis device described in Chapter 1 (see FIG. 3). 3 — 4— 1-2: Electrical composition of the first embodiment This paper scale SS furniture (C'NS) in Chengzhou (210X297 mm) -136- at 1 41684ί ____ Β7 V. Invention Explanation (134) Next, Fig. 62 shows the electrical configuration of the first embodiment. In the figure, 3 1 0 is a pulse wave detection unit, which corresponds to the above-mentioned pulse wave detection sensor unit 130. The pulse wave detection The section 3 1 0 can detect a pulse wave pattern MH indicating the magnitude of the pulsation. In addition, 3 1 1 is a body motion detection section. For example, it is composed of an acceleration sensor and is installed inside the watch case 2 0. Detects the body motion wave pattern TH that generates body motion due to the vibration of the arm during running, etc. Also, 3 12 is a wave shape processing unit that applies a certain wave shape process to the body motion wave pattern, and 3 1 3 is body motion removal. The wave shape processing can be used to remove the body movement components in the body movement removing portion 3 13 correctly. Therefore, the body movement component in the pulse wave type MH is represented by MH t, and the true pulse wave component is represented by MH · ( When the body motion removes the pulse wave pattern), MH = MH t + Μ Η 1 is formed. For example, the body motion wave pattern is used as the arm vibration acceleration. The detection, but the blood flow is affected by blood vessels and tissues, so the body motion component MH t is formed to passivate the body motion wave pattern 因此. Therefore, the wave shape processing unit 3 1 2 is an appropriate low-pass filter. Structure. The form or coefficient of the low-pass filter is calculated from the 获得 obtained from the experiment. From this, the body motion component MH t can be obtained from the body motion wave pattern. Also, the body motion removal section 3 1 3 is a pulse wave. Type MH subtracts the body motion component MHt to generate body motion and remove the pulse wave type M Μ *. Secondly, * 3 14 is a breathing component extraction section, and is composed of a CPU (Central Processing Unit) and an A / D converter. In these examples, the body movement removal pulse wave type MH 'is converted from an analog signal to a digital signal by an A / D converter and stored in the CPU as body movement removal pulse wave data. Breath component extraction unit 3 1 4 is the number of pulses removed from body movements (counting 1 " ^ 16 note on apricot matters again "-$ winter page) This paper is a ruler of this family in the Sichuan standard ((-NS) Λ4 is present (2 丨 0X297) (Centimeter) -137- _b; .1 416641 V. Description of the invention (135) FFT processing is performed according to M 'to perform frequency analysis. Figure 63 It is a simplified model diagram of the result of FFT processing on the body motion-removed pulse wave data MΗ '. In this figure, the maximum peak frequency of LF in the low frequency range is the fundamental wave frequency Fvl of the respiratory component, and the maximum peak of HF in the high frequency range The frequency is the fundamental wave frequency Fm 1 of the pulse wave, and Fig. 64 is an enlarged view of the low-frequency range LF of Fig. 63. In the figure, it can be seen that the breathing component is its fundamental wave frequency Fvl and harmonics Fv2, Fv3, Fv4 ... Make up. In this example, the respiratory component extraction unit 3 1 4 first performs FFT processing on the body motion-removing pulse wave pattern MH 'to specify the maximum peak chirp frequency. Since the fundamental wave component that forms the maximum pulse wave, Fm 1 can be specified as the maximum peak chirp frequency. Subsequently, in the frequency range below Fm 1, the maximum peak chirp frequency is specified. The frequency component in the lower range than the pulse wave component corresponds to the respiratory component, so the basic frequency F v 1 of the specific respiratory component can be specified here. Subsequently, the breathing component extraction portion 3 1 4 can detect the level L 1 of F v 1 and the levels L 2, L 3, and L 4 of the high-frequency wave F F 2. Limited to less than F m 1. If Fm 1 or more is formed, it is impossible to separate the respiratory components if Fm 1 is an integer multiple of F v 1 for the existence of pulse wave components. Next, 315 is an evaluation unit, which is composed of a CPU and a ROM. The CPU is based on L1, L2, L3, and L4 detected by the breathing component extraction unit 3 1 4. · Calculating the deformation rate K of the breathing pattern «Specifically, the deformation rate K can be calculated by the following calculation formula. K = CL22 + L32 + L42..) 1/2 / Ll --------- ^ ------ ΐτ ------- ^ (対 Read the precautions on the back first and then艿 This page) The paper size 1¾ {CNS) (2! 〇Χ 297 ^ ¾)-138-416641 A7 _ _B7 V. Description of the invention (136) However, as mentioned above, the inhalation time is longer than the discharge time, but it varies with With the increase of exercise intensity X, the difference between the inhalation time and the discharge time will gradually decrease, and the breathing wave pattern will gradually approach a sine wave, and when a large exercise intensity X is formed, the breathing wave pattern will greatly cause confusion. That is, as long as the exercise intensity X does not exceed a certain limit, when a large exercise intensity is formed, the ratio of the chirped wave component to the fundamental wave component is reduced. In addition, when the exercise intensity X exceeds the limit, the ratio of the high-frequency component to the fundamental component increases sharply. This is because the deformation rate K of the breathing wave form a certain relationship with the exercise intensity X. When the deformation rate K decreases as the exercise intensity X increases, it means that the exercise rate X exceeds a certain limit and the deformation rate K is sharp. increase. Therefore, when the relationship between the deformation rate K and the exercise intensity X is obtained in advance, the exercise intensity X can be obtained from the deformation rate?.
其次,ROM內係對應撓曲率K而儲存有運動強度X 。因此,以撓曲率K爲位址而存取在ROM時可算出運動 強度。此係意味著R 0M具有運動強度圖表的功能。並且 ,運動強度X也可施以5階段、3階段等的等級。此時, 只須以預定的階段數表示儲存在R 0M的運動強度X即可 〇 其次· 3 1 6爲顯示部,此係相當於上述的液晶顯示 裝置2 1 0。顯示部3 1 6可以運動強度X爲數値而予以 顯示’或者可以使用點顯示領域之棒形圖表等顯示。又, 於評估部3 1 6中,對於運動強度X施以等級處理時,也 可以顯示對應其階段之文字或記號等顯示之。例如,設對 本紙乐尺度述川中國S家標彳(ΓΝϋ)Λ4規将(210X297公® ) - 139- -^1T^ {討1閱請背而之注意事項再頊3本頁) ","-r 屮"^^^及-7消於"仍社印 ^ A7 .r 416841 Β7 五、發明説明(137 ) 應步行時的運動強度爲XI、對應慢跑時的運動強度爲 X 2、對應短距離跑步時的運動強度爲X 3、運動強度過 大對健康造成障礙之運動強度爲X4時,顯示X 1爲「輕 度運動」、X2爲「中度運動」、X3爲「強度運動」、 X 4爲「危險運動」等訊息。且,可以顯示對應圖6 5表 示之表情圖的運動強度X - 3 — 4 - 2 :第1實施形態的動作 其次,參閱圖式說明第1實施形態的動作如下。圖 6 6是表示第1實施形態之動作流程圖。圖中,係說明停 止狀態之被檢驗人開始跑步*隨著提高速度時之一例的說 明。首先,被檢驗人操作按鍵開關1 1 1〜1 1 5 (參閱 圖3)設定運動強度測定模式時(步驟S1),可藉脈波 檢測部310檢測脈波波型MH(步驟S2)。 其次,體動檢測部3 1 1 —旦檢測出顯示被檢驗人體 動之體動波型TH(步驟S3)時,波型處理部312對 於體動波型TH施以波型處理(步驟s 4)。該波型處理 是將上述的體動波型TH轉換爲脈波波型MH中的體動成 份MH t予以處理,因此從脈波波型MH減去體動成份 MH t時,體動除去部3 1 3可產生體動除去脈波波型 Μ Η,(步驟 S 5 ) » 另外’呼吸成份抽出部313是對體動除去脈波波型 ΜΗ’施以FFT進行頻率解析。並根據該解析結果,從 體動除去脈波波型ΜΗ,的各頻率成份中特定最大峰値頻 ---------¾— (对先閱讀背Vg之注意事项4填.r·:?本頁) ,11 丨 本纸张尺度试用中因因家栉枣(nvs > Λ4規格(210X297公漦) -140- A7 4 1684 1 B7五、發明説明(138) 率(步驟S6)。此時,可特定脈波成份的基本頻率 Fml。之後的呼吸成份抽出部313可藉著未滿Fml 的最大峰値頻率的特定,檢測出呼吸成份的基本波頻率 Fvl(步驟S7)。其次,呼吸成份抽出部313係算 出呼吸頻率成份。具體而言|藉著整數倍之基本波頻率 Fvl可檢測各諧波頻率Fv2、Fv3、Fv4. ·, 可求得分別對應基本波頻率F v 1與各個諧波頻率F v 2 、Fv3、Fv4..的位準L1、L2、L3'L4. 〇 其次|評估部3 1 5是根據呼吸頻率成份L 1、L2 、L3、L4 . ·算出呼吸頻率成份的撓曲率K (步驟 S9)。上述變形率K與運動強度X的關係是預先儲存在 ROM中,因此可根據變形率K存取ROM,藉此可求得 運動強度X (步驟S 1 〇 )。隨後將運動強度X顯示於顯 示部3 1 6,藉此可將運動強度X告知被檢驗人。 如上述•第1實施形態中,利用體動檢測部3 1 1及 波型處理部312產生重疊在脈波波型MH上的體動成份 MH t ,由於此一除去因此呼吸成抽出部3 1 4即使在運 動中也可以抽出呼吸成份。又,由於是根據呼吸成份之變 形率K算出運動強度X,因此不會造成被檢驗人的負擔, 並可簡單告知運動強度X者。 3_5 :第2實施形態之構成 參閱圖式說明本發明第2實施形態有關之運動強度檢 I 111 I V I n n n n n Ί I I— ^ {誚先聞讀背.¾之注意事項再填ffi?本頁) 本紙乐尺度洎坩中SS家標彳(ΓΝ5; ) Λ4規格(210X297公釐) -141 - /::乐部屮-^«ii-/JhJT.iii资合 社印 $ at I. 4 16841 B7 五、發明说明(伽) 測裝置如下。第2實施形態相關之運動強度檢測裝置3的 外觀構成係與第1實施形態相同。又,第2實施形態相關 之運動強度檢測裝置3的電氣構成除呼吸成份抽出部 3 1 4及評估部3 1 5的內部構成外,皆與圖6 2表示之 第1實施形態有關之運動強度檢測裝置3相同"針對呼吸 成份抽出部3 1 4及評估部3 1 5說明如下。 圖6 7是表示第2實施形態有關之呼吸成份抽出部 3 1 4及評估部3 1 5內部構成之方塊圖。首先,呼吸成 份抽出部31 4是由子波轉換部3 2 0、呼吸成份產生部 3 2 1及逆子波轉換部322所構成。 3 — 5 — 1 — 1 :子波轉換部 波轉換部3 2 0是對於體動除去部3 1 3所輸出的體 動除去脈波波型ΜΗ’施以習知之子波轉換,而產生體動 除去脈波解析數據MKD。 其中,子波轉換係以第1章說明之式1定義之,子波 轉換部3 2 0係構成可以式1運算者。子波轉換部3 2 0 的主要部係與圖5表示之基本函數展開部W相同之構成。 但是,此時可以體動除去脈波波型ΜΗ’代替脈波數據 MD來供應藉A/D轉換器所獲得的體動除去脈波數據 Μ Η '- 該例中,體動除去脈波解析數據MKD是分割OH ζ 〜0·5Ηζ、〇.5Ηζ 〜1.0Hz、1.0Hz 〜1.5 Hz 、1.5Hz 〜2·0Ηζ 、2.0Hz 〜2.5Hz 、 本紙张尺度这用中因國家標鼙(「NS > Λ4規格(210X29V公f ) -142- ---------裝------訂------4 (If.it閱讀背面之注意事項再4巧表頁j A7 ί 4 1 6 8 4 1 Β7五、發明説明(14〇) 2.5Hz 〜3.0Hz、3.0Hz 〜3·5Ηζ、3.5Hz 〜4.0Hz 等頻率領域而輸出者。 ί 3 — 5_1 - 2:呼吸成份產生部 其次,呼吸成份產生部3 2 1是在各頻率領域比較體 動成份脈波解析數據MKD,特定具有最大能源成份的領 域,除去以上的頻率成份而產生呼吸波型解析數據VKD 。除去具有最大能源成份之頻率領域以上是由於具有最大 能源成份的頻率領域上存在有脈波成份之基本波頻率成份 。在此將體動除去脈波解析數據MKD設定如圖6 8所表 示時,在各期間t 1〜t 8中,可將圖6 9斜線所表示領 域特定爲最大能源領域成份。此時,斜線表示之領域以上 的高域頻率領域係置換爲「〇」,產生作爲呼吸波型解析 數據VKD之圖7 0顯示的數據。 3 _ 5 — 1 — 3 :逆子波轉換部 其次·逆子波轉換部3 2 2是與子波轉換部3 2 0形 成互補的關係。因此,運算第1章說明的式2,產生呼吸 波型數據VD,對此施以A/D轉換而輸出呼吸波型 〇 如上述,呼吸成份抽出部3 1 4是根據體動除去脈波 數據MH’抽出呼吸波型VH。其次,評估部315爲零 交叉比較器3 2 3、負荷比檢測部3 2 4及運動強度圖表 3 2 5所構成。 i紙张尺度1¾用中阈15家標呤((7«>/\4規格(210/ 297公釐} . -143 -" n 1-1 - - - - «— i f I 士-I - HI m . - ------ I TJ I I I— - n I .. . (-¾先閱讀背1¾之注意事項再M巧本頁) Α7 ί 4 16 8 41 B7五、發明説明(141) 3 — 5_1 — 4 :零交差比較器 首先,複製比較儀3 2 3係如圖7 1表示之電容器C 及運算放大器Ο Ρ所構成。電容器C的値是設定爲可充份 通過之呼吸波型VH。運算放大器Ο Ρ係將呼吸波型VH 與零位準比較而產生矩形波型S,但是經由電容器C將呼 吸波型VH供應至運算放大器OP I因此矩形波型S是以 呼吸波型VH的平均値位準作爲臨界値進行波型整型。 但是,如上述|人的呼吸是隨著運動強度X的增大, 而消除吸入時間與排出時間的差。因此,隨著運動強度X 的增大,可使矩形波型S的負荷比接近5 0%。 3 — 5 — 1 — 5:負荷比檢測部 其次,負荷比檢測部3 2 4的電路圖是以圖7 2,且 其時間流程是以圖7 3分別表示之。時鐘信號CK (參閱 圖7 3 ( a ))是分別供應於閘2 4 1、2 4 2 —側的輸 入。又,閘2 4 1另一側之輸入是供應矩形波型(參閱圖 7 3 ( b )),閘2 4 2之另一側輸入則是藉反相器 240供應反轉之矩形波型。其中,可藉各個閘241、 2 4 2限制時鐘信號CK,因此閘2 4 1之輸出信號僅在 高位準的期間使圖7 3 ( c )表示的矩形波型S通過時鐘 信號CK。另一方面,閘2 4 2的輸出信號則僅在低位準 的期間使圖73 (d)表示的矩形波型S通過時鐘信號 C K « 本紙任尺度述 ( TNS ) ( 210X297^f ) . 144 - " ---------^------ΐτ------/β. (却先閱讀背而之注意事項再填寫本頁) r 416841 A7 ___B7___ 五、發明説明(142) 各閘2 4 1、2 4 2的輸出信號是分別供應於計數器 243、244,因此計數器243的計算値C1是表示 矩形波型S的高位準期間,計算器2 4 4的計算値C 2是 表示矩形波型S的低位準期間。 並且,除法器2 4 5是算出C 1/C 2,將此作爲負 荷比輸出。此外,圖7 3表示之時刻T中實行除法運算, 且計數器243、244係隨其瞬間後進行重設。 此例之除法結果D R係於高位準期間C 1 /低位準期 間C 2 1因此隨著運動強度X的增大,其運算結果DR接 近「1」。但是,運動強度X增大以致超過某一界限時, 會造成呼吸波型大幅地紊亂,因此如上述之運動強度X時 ,會產生劇烈之運算結果DR的變化。又,相反地,一般 之運動強度X的領域中,不致造成呼吸波型之負荷比的急 劇變化。如以下說明之構成係可藉著運算結果DR之連續 性•換言之負荷比之連續性的檢測,可特定運動強度X之 界限値X m a X。 運算結果DR係供應記憶於記憶體2 4 6中》並且, 記憶內容會在每輸出其次的運算結果時更新。減法器 2 4 7係於現在的運算結果DR減去前一之運算結果 DR’時,比較器248可判定減算結果ADR是否在預 先所定的範圍內。具體而言,是判定是否可滿足以下所示 之式。Next, the ROM stores the exercise intensity X corresponding to the deflection K. Therefore, when the ROM is accessed using the deflection K as the address, the exercise intensity can be calculated. This system means that R 0M has the function of exercise intensity chart. In addition, the exercise intensity X may be given a level such as 5 steps or 3 steps. At this time, it is only necessary to express the exercise intensity X stored in R 0M in a predetermined number of stages. Secondly, 3 16 is a display portion, which is equivalent to the above-mentioned liquid crystal display device 2 10. The display section 3 1 6 may display the exercise intensity X as a number, or may use a bar graph or the like in the dot display area. In addition, in the evaluation unit 3 1 6, when the exercise intensity X is graded, characters or symbols corresponding to the stage may be displayed and displayed. For example, let ’s set the standard of the Chinese paper 述 (ΓΝϋ) Λ4 ruler (210X297) ®-139--^ 1T ^ {Please read the precautions on the back of the page and then 顼 3 pages) " , &-quot; -r 屮 " ^^^ &-7 disappeared " still printed by the company ^ A7 .r 416841 Β7 V. Description of the invention (137) The intensity of exercise when walking should be XI, and the intensity of exercise corresponding to jogging is X 2. The corresponding exercise intensity for short-distance running is X 3. When the exercise intensity is too high and the exercise intensity caused obstacles to health is X4, X 1 is displayed as "light exercise", X2 is "moderate exercise", and X3 is " "Strength exercise", X 4 is "dangerous exercise" and other messages. Furthermore, the exercise intensity X-3-4-2 corresponding to the expression map shown in Fig. 65 can be displayed: Operation of the first embodiment Next, the operation of the first embodiment will be described with reference to the drawings. Fig. 66 is a flowchart showing the operation of the first embodiment. In the figure, it is an example of a case where a test subject in a stopped state starts running * as the speed increases. First, when the examinee operates the key switches 1 1 1 to 1 1 5 (see FIG. 3) to set the exercise intensity measurement mode (step S1), the pulse wave pattern MH can be detected by the pulse wave detection unit 310 (step S2). Next, the body motion detection unit 3 1 1-when the body motion wave pattern TH showing the movement of the human body under test is detected (step S3), the wave shape processing unit 312 applies a wave shape process to the body motion wave pattern TH (step s 4) ). This waveform processing is to convert the body motion waveform TH described above into the body motion component MH t in the pulse wave shape MH, and therefore, when the body motion component MH t is subtracted from the pulse wave shape MH, the body motion removing section 3 1 3 can generate a body motion-removed pulse wave pattern MW (step S 5) »In addition, the 'breath component extraction unit 313 performs FFT on the body motion-removed pulse wave pattern MW' for frequency analysis. And based on the analysis result, remove the pulse wave type MΗ from the body motion, and specify the maximum peak frequency in each frequency component --------- ¾— (fill in the precautions for reading Vg first 4) · :? This page), 11 丨 In the paper scale trials due to Yinjiajia jujube (nvs > Λ4 size (210X297) 漦 -140- A7 4 1684 1 B7 V. Description of the invention (138) rate (step S6) At this time, the basic frequency Fml of the pulse wave component can be specified. The subsequent breathing component extraction unit 313 can detect the basic wave frequency Fvl of the breathing component by specifying the maximum peak frequency below Fml (step S7). Next The breathing component extraction unit 313 calculates the breathing frequency component. Specifically | By using the fundamental wave frequency Fvl which is an integer multiple, each harmonic frequency Fv2, Fv3, Fv4 can be detected. ·, Corresponding to the fundamental wave frequency Fv 1 Levels L1, L2, L3'L4. With the respective harmonic frequencies Fv2, Fv3, Fv4 .... Secondly, the evaluation unit 3 1 5 is based on the respiratory frequency components L1, L2, L3, L4. The deflection rate K of the frequency component (step S9). The relationship between the above-mentioned deformation rate K and exercise intensity X is stored in the ROM in advance, so The shape rate K accesses the ROM to obtain the exercise intensity X (step S 1 〇). Subsequently, the exercise intensity X is displayed on the display portion 3 1 6 to thereby inform the examinee of the exercise intensity X. As described above • In the first embodiment, the body motion detection unit 3 1 1 and the wave shape processing unit 312 generate a body motion component MH t superimposed on the pulse wave shape MH. Since this is removed, the breath becomes the extraction portion 3 1 4 Breathing components can also be extracted during exercise. In addition, because the exercise intensity X is calculated based on the deformation rate K of the breathing component, it does not cause a burden on the testee, and can easily inform the exercise intensity X. 3_5: The second embodiment Refer to the diagram to explain the structure of the exercise intensity check I 111 IVI nnnnn Ί II— ^ {诮 first read and read the back. ¾ notes before filling in this page) paper scale 洎Mark (ΓΝ5;) Λ4 specification (210X297 mm) -141-/ :: Club 乐-^ «ii- / JhJT.iii Printed by Ziyinshe at $ I. 4 16841 B7 V. Description of the invention (Ga) Test The device is as follows. The appearance configuration of the exercise intensity detecting device 3 according to the second embodiment is the same as that of the first embodiment. The electrical configuration of the exercise intensity detection device 3 according to the second embodiment is the same as that of the first embodiment shown in FIG. 6 except for the internal components of the respiratory component extraction section 3 1 4 and the evaluation section 3 1 5. The detection device 3 is the same. The breathing component extraction section 3 1 4 and the evaluation section 3 1 5 are described below. Fig. 67 is a block diagram showing the internal configuration of the respiratory component extraction section 3 1 4 and the evaluation section 3 1 5 according to the second embodiment. First, the respiratory component extraction section 314 is composed of a wavelet conversion section 3 2 0, a respiratory component generation section 3 2 1 and an inverse wavelet conversion section 322. 3 — 5 — 1 — 1: The wavelet conversion section The wave conversion section 3 2 0 generates a body wave by applying a conventional wavelet transform to the body motion removing pulse wave pattern M ′ ′ output from the body motion removing section 3 1 3. Dynamically remove the pulse wave analysis data MKD. Among them, the wavelet conversion is defined by Equation 1 described in Chapter 1, and the wavelet conversion unit 3 2 0 is configured as an operator capable of Expression 1. The main part of the wavelet conversion section 3 2 0 has the same configuration as the basic function expansion section W shown in FIG. 5. However, in this case, instead of the pulse wave data MD, the body motion removing pulse wave type MΗ ′ may be used to supply the body movement removing pulse wave data MΗ ′ obtained by the A / D converter.-In this example, the body movement removing pulse wave analysis The data MKD is divided into OH ζ ~ 0.5 · ζ, 0.5 Ηζ ~ 1.0Hz, 1.0Hz ~ 1.5 Hz, 1.5Hz ~ 2 · 0Ηζ, 2.0Hz ~ 2.5Hz, and this paper scale is based on national standards ("NS > Λ4 specification (210X29V male f) -142- --------- install -------- order ------ 4 (If.it read the precautions on the back and then 4 sheets j A7 ί 4 1 6 8 4 1 Β7 V. Description of the invention (14〇) Outputs in the frequency range of 2.5 Hz to 3.0 Hz, 3.0 Hz to 3.5 Hz, 3.5 Hz to 4.0 Hz, etc. ί 3 — 5_1-2: Respiratory component generating section Next, the respiratory component generating section 321 compares the body motion component pulse wave analysis data MKD in each frequency domain, and specifies the area with the largest energy component. The above-mentioned frequency components are removed to generate the respiratory wave shape analysis data VKD. The removal of the frequency domain with the largest energy component is due to the existence of the fundamental wave frequency component of the pulse wave component in the frequency domain with the largest energy component. When the body motion removal pulse wave analysis data MKD is set as shown in FIG. 6, in each period t 1 to t 8, the area indicated by the slanted line in FIG. 6 can be specified as the largest energy field component. At this time, the area indicated by the slanted line The above high-domain frequency domain is replaced with "0" to generate the data shown in Fig. 70 as the respiratory waveform analysis data VKD. 3 _ 5 — 1 — 3: Inverse wavelet conversion unit followed by inverse wavelet conversion unit 3 2 2 It has a complementary relationship with the wavelet conversion unit 3 2 0. Therefore, the expression 2 described in Chapter 1 is calculated to generate the respiratory waveform data VD, and A / D conversion is performed to output the respiratory waveform. As described above, the breathing The component extraction unit 3 1 4 extracts the respiratory wave pattern VH based on the body motion removal pulse wave data MH '. Next, the evaluation unit 315 is a zero-crossing comparator 3 2 3, the load ratio detection unit 3 2 4 and the exercise intensity chart 3 2 5 Composition. I Paper scale 1¾ uses 15 thresholds in the middle threshold ((7 «> / \ 4 size (210 / 297mm). -143-" n 1-1----« — if I士 -I-HI m.------- I TJ III—-n I ... DESCRIPTION invention (141) 3 - 5_1 --4: Zero cross comparator First, copy-based comparator 323 of FIG. 71 indicates an operational amplifier and a capacitor C o [rho] constituted. Capacitor C 値 is a breathing wave pattern VH which is set to pass sufficiently. The operational amplifier 0 P compares the breathing waveform VH with the zero level to generate a rectangular waveform S, but the breathing waveform VH is supplied to the operational amplifier OP I via the capacitor C. Therefore, the rectangular waveform S is an average of the breathing waveform VH Waveform shaping is performed as the critical waveshape. However, as described above, the breath of a person eliminates the difference between the inhalation time and the discharge time as the exercise intensity X increases. Therefore, as the exercise intensity X increases, the load ratio of the rectangular wave shape S can be approached 50%. 3 — 5 — 1 — 5: Load ratio detection section Secondly, the circuit diagram of the load ratio detection section 3 2 4 is shown in FIG. 7 and its time flow is shown in FIG. 7 respectively. The clock signal CK (see Fig. 7 3 (a)) is input to the two sides of the gates 2 4 1 and 2 4 2 respectively. In addition, the input on the other side of the gate 2 4 1 is a rectangular wave pattern (see FIG. 7 3 (b)), and the input on the other side of the gate 2 4 2 is an inverted rectangular wave pattern supplied by the inverter 240. Among them, the clock signal CK can be limited by each of the gates 241, 2 4 2. Therefore, the output signal of the gate 2 4 1 passes the rectangular signal S shown in FIG. 7 3 (c) through the clock signal CK only during a high period. On the other hand, the output signal of the gate 2 4 2 passes the rectangular wave pattern S shown in FIG. 73 (d) through the clock signal CK only during the low level period. 144-Dimensions (TNS) (210X297 ^ f). 144- " --------- ^ ------ ΐτ ------ / β. (However, please read the precautions before filling in this page) r 416841 A7 ___B7___ 5. Description of the invention (142) The output signals of the gates 2 4 1 and 2 4 2 are respectively supplied to the counters 243 and 244. Therefore, the calculation of the counter 243 値 C1 is a period representing the high level of the rectangular waveform S, and the calculation of the calculator 2 4 4 値C 2 is a low level period representing the rectangular wave pattern S. The divider 2 4 5 calculates C 1 / C 2 and outputs this as a load ratio. In addition, a division operation is performed at time T shown in FIG. 73, and the counters 243 and 244 are reset after the instant. The division result D R in this example is in the high level period C 1 / low level period C 2 1. Therefore, as the exercise intensity X increases, the calculation result DR approaches “1”. However, when the exercise intensity X increases to exceed a certain limit, the breathing pattern will be greatly disturbed. Therefore, when the exercise intensity X is as described above, a drastic change in the calculation result DR will occur. On the contrary, in the field of general exercise intensity X, no sudden change in the load ratio of the breathing pattern is caused. The structure described below can be used to determine the continuity of the calculation result DR, in other words, the continuity of the load ratio, to specify the limit of exercise intensity X 値 X m a X. The calculation result DR is stored in the memory 2 4 6 ", and the memory content will be updated every time the next calculation result is output. When the subtracter 2 4 7 is the current operation result DR minus the previous operation result DR ', the comparator 248 can determine whether the subtraction result ADR is within a predetermined range. Specifically, it is determined whether the formula shown below can be satisfied.
+ K>DR>-K 本纸浓尺川中國國家標蹲{ (,NS ) Λ4規格(2]〇X297公楚) -145- — 裝 i n n I ^ (^先聞婧背而之注意事項再功艿本頁) 416841 A7 B7 五、發明説明(143 其中,+ K、一 K是設定可判定運動強度X超過界限 値Xm a X時,呼吸波型的負荷比的連續性是否會消除》 滿足上述式時,判定爲一般之運動強度而比較器 2 4 8之輸出信號係形成高位準。另一方面,不能滿足上 述式時,判定爲一般運動強度而比較器2 4 8之輸出信號 係形成低位準。 合成器2 4 9是當比較器2 4 8的輸出信號爲高位準 時,輸出運算結果DR,另一方面,當比較器248之輸 出信號爲低位準時則不能獲得運算結果D R,例如輸出「 0」値。 先 閱 背 項 再 I裝 頁 訂 -5 - 1 - :運動強度表 其次《運動強度圖表325(參閱圖67)是以 R 0M等所構成,其中係對應運算結果D R而儲存運動強 度X。因此,參照運算結果DR存取於運動強度圖表 3 2 5時,可求得運動強度X。又,輸入未取得運算結果 D R之値•例如「〇」時,形成可輸出界限値Xm a X者 藉此,可從脈波波型抽出呼吸波型,而從其負荷比求 得運動強度X » 3-5_2:第2實施形態之動作 其次,參閱圖式說明第2實施形態的動作如下。圖 本紙张尺座进用中®囚家標卑(C'NS ) Λ4规格(210Χ 297公犮) -146- A7 ί 416841 __Β7 ___五、發明説明(144 ) 7 4是第2實施形態有關之運動強度檢測裝置3的流程圖 .。圖中,步驟S 1〜步驟S 5的處理是與圖6 6表示之第 1實施形態的動作相同,從脈波波型除去體動波型 < 可產 生體動除去脈波波型Μ Η ’ 。 隨後,藉子波轉換部3 2 0對於體動除去脈波波型 ΜΗ’施以子波轉換處理,產生體動除去脈波解析數據 Μ K D。 該體動除去脈波解析數據MKD中包含脈波成份與呼 吸成份,但是脈波成份存在於較呼吸成份高的領域內,且 脈波成份的能源大於呼吸成份的能源。因此,呼吸成份產 生部3 2 1將體動除去脈波解析數據MKD的最大能源頻 率領域以上置換爲「0」,而產生呼吸波型數據VKD( 步驟S 2 1 )。 其次,逆子波轉換部3 2 2是對呼吸波型數據VKD 施以逆子波轉換產生呼吸波型VH時,零交叉比較器 3 2 3是以呼吸波型V Η之其平均値位準比較而產生矩形 波型S。之後負荷比檢測部3 2 4可檢測出矩形波型S之 負荷比(步驟S23) * 其次,運動強度圖表3 2 5參照負荷比檢測部3 2 4 的輸出數據求得運動強度X時(步驟S24),顯示部 3 1 6係顯示運動強度X (步驟S 2 5 )。藉此可將運動 強度X告知被檢驗人。 如上述,第2實施形態可藉體動檢測部3 1 1及波型 處理部3 1 2產生重疊於脈波波型ΜΗ的體動成份MH t I *—. I ,唯^参 I~ t I n n ^ (对先閱讀背面之ii意事項再iAv·:?本頁) 本紙乐尺度这用中!4^家招4M〔'NS ) Λ4規格(210X 297公釐) -147- AV 丨 4 16841 B7 淖部中-νΛ'.·(*ίΐ-^Γ.>ίτ,消灼合ii' 印;^ 五、發明说明(145) ,由於此一除去,因此呼吸成份抽出部3 1 4即使在運動 中仍可以使用子波轉換抽出呼吸波型。又’可根據呼吸波 型之負荷比算出運動強度X,因此不會造成被袷驗人的負 擔,且可簡單地告知運動強度X β 3—6:第3實施形態 3 — 6 — 1 :第3實施形態之構成 參閱圖式說明本發明第3實施形態相關之運動強度檢 測裝置3的構成圖如下。第3實施形態相關的運動強度檢 測裝置3之外觀構成是與第1實施形態相同。又,第3實 施形態有關之運動強度檢測裝置3的電氣構成是除了 F FT處理體動除去後的點外,與圖6 2表示之第1實施 形態相關之運動強度檢測裝置3相同。 圖7 5是表示第3實施形態相關之運動強度檢測裝置 3的構成之方塊圖如下。圖中,30、3 1爲第1FFT 處理部、第2FFT處理部,藉CPU等所構成》第1 F F T處理部3 3 0是對脈波波型MH施以F F T處理而 產生脈波解析數據MFD。又,第2 FFT處理部3 3 1 是對體動波型TH施以F F T處理而產生體動解析數據 T F D。 其次,體動除去部3 13除去脈波解析數據M F D的 各光譜頻率成份中,對應體動解析數據TFD各光譜頻率 之光譜頻率成份,產生體動除去解析數據MKD。該體動 除去解析數據MKD中,低頻域頻率領域之最大峰値頻率 本紙乐尺度读用中K S家標埤((’NS ) Λ4規格< 210Χ 297公f ) - 148 - n n I I m n I . I _ I I I _ I— T n _ n n n —r V? A_^ {对先閱讀背面之注意事項再續‘r':T本頁) A7 J 416841 B7______五 '發明説明(146 ) 爲呼吸成份的基本波頻率Fvl ,高頻域頻率領域之最大 峰値頻率爲脈波的基本頻率Fml。 ! 3 — 6 — 2 :第3實施形態的動作 其次,參閱圖式說明第3實施形態相關之運動強度檢 測裝置3的動作如下》圖7 6是表示第3實施形態有關之 運動強度檢測裝置3的動作流程圖。 首先,一旦將裝置本體設定於運動強度測定模式時( 步驟s 1 ) ·時,脈波檢測部3 1 0可檢測出脈波波型MH 。隨後,第1 F FT處理部3 3 0係對於脈波波型施以 FFT處理,產生脈波解析數據MFD(步驟S32)。 另一方面,體動檢測部3 1 1—旦檢測出顯示被檢驗人體 動的體動波型TH時,第2 F FT處理部3 3 1對於體動 波型TH施以FFT處理而產生體動解析數據TFD » 其次,體動除去部3 1 3是從脈波解析數據MFD除 去體動成份後產生體動除去脈波解析數據MKD。圖7 7 是針對脈波解析數據MFD、體動解析數據TFD及體動 除去脈波解析數據MKD的關係,表示其中一例之圖。藉 該圖說明體動除去動作如下。首先,圖77(a)是表示 脈波解析數據MFD的內容,圖7 7 ( b )是表示體動解 析數據TFD的內容。該例中*體動除去部3 1 3是根據 體動解析數據VFD,特定圖77(b)表示之波譜頻率 F t 1〜F t 6。隨後,體動除去部3 1 3除去脈波解析 數據MFD的各波譜頻率成份中,對應波譜頻率F t 1〜 I I - m - I - - I- — - - r I _ I -I 1 - - - -I--- T 1^1 I--- :1 i 令 i 知 (誚先w讀背面之注意事項再"巧本頁} 本紙张尺度適用屮囷囚家標肀(CNS > Λ4規格(210X297公釐) -149- ίΊ 1' 416841 , Α7 . _Β7 _____五、發明说明(147) F t 6之波譜頻率成份而產生圖7 7 ( c )所示之體動除 去解析數據MKD » 但是,體動波型TH,例如雖是檢測手臂振動之加速 度等,但是血液會受到血管或組織的影響,因此使脈波解 析數據MF D的體動成份與體動解析數據TF D不會一致 。具體而言,如圖77 (b)與圖77 (a)所示’對應 光譜頻率F t 1〜F t 6的各個波譜頻率成份係於脈波解 析數據MF D與體動解析數據T F D不同。因此’該例中 ,並非從脈波解析數據MF D減去體動解析數據T F D, 而是除去對應波譜頻率F t 1〜F t 6之波譜頻率成份。 藉此可充份除去體動成份者。 其次,呼吸成份抽出部3 1 3可根據體動除去脈波解 析數據MKD來特定最大峰値頻率(步驟S3 5)。此時 可特定脈波成份之基本頻率Fml。隨後,藉第1實施形 態進行圖6 6說明之步驟S 7〜步驟S 1 1的處理,於顯 示部3 1 6中顯示運動強度X ^ 如上述,第3實施形態是分別對於脈波波型MH及體 動波型TH施以F F T處理而除去體動成份,因此可省略 第1實施形態說明之波型處理部3 1 2。藉此,呼吸成份 抽出部3 1 4在運動中仍可抽出呼吸成份。並根據呼吸成 份之變形率K可以評估部3 1 5算出運動強度X,因此不 致造成被檢驗人的負擔,並可簡單告知運動強度X。 3 — 7 :第4實施形態 1 I -I - — - H I 夫^---m . .1 n. m n τ ___ I I --. . - . ^^1 ΛΤ I 相 (τί先閱讀背面之>i意事項再功巧本茛) 本紙張尺度诎用中囡S家標$ WS ) Λ4規格{ 210X 2Ή公釐) -150- ^ 416841 A7 ^ 1 B7___ 五、發明说明(148) 上述第1〜第3實施形態中,爲了除去體動而使用體 動檢測部3 1 0檢測體動波型,可據以從脈波波型MH的 頻率成份除去體動成份,但是第4實施形態係不使用體動 檢測部310除去體動成份者。 3_7 — 1 :第4實施形之整體構成 參閱圖式說明第4實施形態相關之運動強度檢測裝置 3的構成如下。第4實施形態有關之運動強度檢測裝置3 的外觀構成是與第1實施形態相同。又,圖7 8是表示第 4實施形態相關之運動強度檢測裝置3的電氣構成。且, 與圖7 5表示之構成相同的構成上賦予相同的符號。 圖7 8中,與圖7 5表示第3實施形態之運動強度檢 測裝置3的不同構成爲設置體動檢測部311及第2的 F FT處理部3 3 1之點,及可設置脈波成份除去部 3 1 4,與設置變更呼吸成份抽出部3 1 3的內部構成之 呼吸成份抽出部3 1 3’以代替體動除去部3 1 3之點。 並針對其不同點說明如下。 3 — 7 — 1 一 1 :脈波成份除去部 其次’脈波成份除去部313’是以低通濾波器所構 成’從脈波解析數據MF D除去脈波成份,產生脈波成份 除去解析數據MD’ 。於此,低通濾波器之截止頻率是選 擇若干低於脈波成份之基本波頻率。其理由爲體動成份的 基本波頻率及呼吸成份的基本波頻率低於脈波成份的基本 本纸张尺度適用中ΗΚ家標4* ( (:NS ) Λ4規格(210X297公釐) -151 - 1^------·5Τ-------線 (邻先聞讀背而之注^^項再填巧本頁) A7 J' 416841 __B7 五、發明説明(149) 波頻率之故《具體而言,是設定若干低於安靜時所測定之 脈波成份的截止頻率。 例如,當脈波解析數據MFD與低通濾波器之截止頻 率f c形成圖7 9的關係時,脈波成份除去解析數據 MD’係形成如圖8 0所示者。 3_7_1_2:呼吸成份抽出部 其次,呼吸成份抽出部313’是從脈波成份除去解 析數據MD’抽出呼吸成份,藉CPU等所構成。圖81 是表示呼吸成份抽出部313’的詳細功能構成之方塊圖 〇 圖中,波譜抽出部3 4 0是從脈波成份除去解析數據 MD*的各波譜頻率中抽出成組的2個波譜頻率,將較低 之波譜頻率輸出基本頻率圖表341 ,同時將高的波譜頻 率輸出於差分檢測部3 4 2。 例如,脈波成份除去解析數據MD’如圖80所示時 ,從波譜頻率f1〜f14中抽出任意之成組的波譜頻率 。此時,所抽出之波譜頻率的組數僅有91° 又,波譜頻率組爲f 1與f 3時,可將ί 1輸出於基本頻 率圖表341,將ί3輸出於差分檢測部342中。 其次,基本頻率圖表3 4 1是以ROM等所構成’於 其中使其對應呼吸成份之基本波頻率f m 1而預先儲存有 體動成份之基本波頻率F t 1。該基本頻率圖表3 4 1的 內容爲實測値所構成。 -装------11------.% (Isitw请背1FJ之ii意事項再填β本頁) 本纸队尺度適州中园®家標埤((,NS ) Λ4規格(210X 297公犮> •152- Γ 416841 A7 · ____ B7 五、發明説明(150 ) 本發明人等或設定基本頻率圖表3 4 1的數據,或對 於被檢驗人階段式地變化其跑步速度而實測跑步間距與呼 吸數的關係。圖8 2是表示其結果者。跑步間距爲每單位 時間的步數。該例中,脈波檢測部3 1 0 (脈波檢測用感 測器單元1 3 0 )係裝著於圖3表示之指頭的根部,因此 藉此存在於所檢測之脈波波型MH中的體動成份爲手臂的 擺動所左右。手臂的擺動與跑步間距的關係會因爲強力的 擺動與緩慢地擺動而有所不同,但是一般是對於2間距形 成一次的手臂擺動。又,一次手臂擺動的週期是相當於體 動波型的1週期。因此,設定跑步間距(步數/分鐘)爲 P,呼吸數(次數/分鐘)爲V時,體動成份之基本頻率 F t 1、呼吸成份的基本頻率Fvl是藉由跑步間距P及 呼吸數V而以下式表示之。+ K > DR > -K This paper thick ruler Chuan Chinese national standard squat {(, NS) Λ4 specifications (2) 〇297297 Chu -145- — install inn I ^ (^ first heard the precautions of Jing Jing then (This page) 416841 A7 B7 V. Description of the invention (143 Among them, + K and -K are set to determine whether the exercise intensity X exceeds the limit 値 Xm a X, will the continuity of the load ratio of the respiratory wave pattern be eliminated? In the above formula, it is judged to be a general exercise intensity and the output signal of the comparator 2 48 is formed to a high level. On the other hand, when the above formula is not satisfied, it is determined to be a general exercise intensity and the output signal of the comparator 2 4 8 is formed The low level. The synthesizer 2 4 9 outputs the operation result DR when the output signal of the comparator 2 4 8 is the high level. On the other hand, the operation result DR cannot be obtained when the output signal of the comparator 248 is the low level, such as output "0" 値. Read the back item first and then bind it -5-1-: Exercise intensity table Secondly, "Exercise intensity chart 325 (see Figure 67) is composed of R 0M, etc., which is stored in correspondence with the calculation result DR. Exercise intensity X. Therefore, refer to the calculation result DR to access When the exercise intensity chart is 3 2 5, exercise intensity X can be obtained. In addition, if the input of the calculation result DR is not obtained, for example, when “0”, the output limit 値 Xm a X is formed. Extract the breathing pattern, and obtain the exercise intensity X from its load ratio »3-5_2: The second embodiment operates as follows. The operation of the second embodiment is described with reference to the drawings. The paper ruler seat in use® Family standard (C'NS) Λ4 specifications (210 × 297 gong) -146- A7 ί 416841 __Β7 ___ V. Description of the invention (144) 7 4 is a flowchart of the exercise intensity detection device 3 related to the second embodiment. In the figure, the processing of steps S 1 to S 5 is the same as the operation of the first embodiment shown in FIG. 6 to remove the body wave shape from the pulse wave shape < can generate the body movement and remove the pulse wave shape M Η '. Then, the wavelet conversion unit 320 performs wavelet conversion processing on the body motion removal pulse wave type MΗ' to generate body motion removal pulse wave analysis data M KD. The body motion removal pulse wave analysis data MKD Contains pulse wave components and respiratory components, but pulse wave components exist in In the field, and the energy of the pulse wave component is greater than the energy of the breathing component. Therefore, the breathing component generating unit 3 2 1 replaces the body energy to remove the pulse energy analysis data MKD from the maximum energy frequency area or higher to "0" to generate a breathing wave pattern. The data VKD (step S 2 1). Next, when the inverse wavelet conversion unit 3 2 2 performs inverse wavelet conversion on the breathing waveform data VKD to generate the breathing waveform VH, the zero-crossing comparator 3 2 3 uses the breathing waveform V The comparison of the average 値 levels produces a rectangular wave shape S. After that, the load ratio detection unit 3 2 4 can detect the load ratio of the rectangular waveform S (step S23). * Next, when the exercise intensity chart 3 2 5 refers to the output data of the load ratio detection unit 3 2 4 to obtain the exercise intensity X (step S24), the display unit 3 1 6 displays the exercise intensity X (step S 2 5). In this way, the examinee can be notified of the exercise intensity X. As described above, in the second embodiment, the body motion detection unit 3 1 1 and the wave shape processing unit 3 1 2 can generate a body motion component MH t I * —. I that overlaps with the pulse wave shape MΗ, and only 参 Refer to I ~ t I nn ^ (Read the ii meanings on the back first, then iAv · :? This page) This paper music scale is in use! 4 ^ 家 招 4M 〔'NS〕 4 specifications (210X 297mm) -147- AV 丨 4 16841 B7-νΛ '. · (* Ίΐ- ^ Γ. ≫ ίτ, decontamination ii' seal; ^ 5. Description of the invention (145), because this one is removed, the breathing component extraction section 3 1 4 You can use the wavelet transform to extract the breathing pattern even during exercise. You can also calculate the exercise intensity X based on the load ratio of the breathing pattern, so it will not cause a burden on the person being tested, and you can simply tell the exercise intensity X β 3-6: The third embodiment 3-6-1: The structure of the third embodiment The structure of the exercise intensity detection device 3 according to the third embodiment of the present invention will be described with reference to the drawings. The exercise intensity according to the third embodiment is as follows. The external configuration of the detection device 3 is the same as that of the first embodiment. The electrical configuration of the exercise intensity detection device 3 according to the third embodiment is The F FT processed body motion is the same as the exercise intensity detecting device 3 according to the first embodiment shown in FIG. 6 except for the points after the body motion is removed. FIG. 7 shows the structure of the exercise intensity detecting device 3 according to the third embodiment. The block diagram is as follows. In the figure, 30 and 31 are the first FFT processing unit and the second FFT processing unit, which are constructed by the CPU and the like. The first FFT processing unit 3 3 0 is to generate the pulse by applying FFT processing to the pulse wave pattern MH. The wave analysis data MFD. The second FFT processing unit 3 3 1 generates body motion analysis data TFD by applying FFT processing to the body motion wave pattern TH. Next, the body motion removal unit 3 13 removes each of the pulse wave analysis data MFD. Among the spectral frequency components, corresponding to the spectral frequency components of the TFD spectral frequencies of the body motion analysis data, body motion removal analysis data MKD is generated. In the body motion removal analysis data MKD, the maximum peak frequency in the low frequency domain frequency range is read on paper Chinese KS house standard 埤 (('NS) Λ4 specifications < 210 × 297 male f)-148-nn II mn I. I _ III _ I— T n _ nnn —r V? A_ ^ {Note on the back of the first reading Matters continued 'r': T this page) A7 J 416841 B7______ five 'invention theory Ming (146) is the fundamental wave frequency Fvl of the respiratory component, and the maximum peak frequency in the high-frequency domain is the fundamental frequency Fml of the pulse wave. 3 — 6 — 2: Operation of the third embodiment Secondly, the operation of the exercise intensity detection device 3 according to the third embodiment will be described with reference to the drawings. FIG. 7 6 shows the exercise intensity detection device 3 according to the third embodiment. Flow chart. First, when the apparatus body is set to the exercise intensity measurement mode (step s 1), the pulse wave detection unit 3 1 0 can detect the pulse wave pattern MH. Subsequently, the first F FT processing unit 330 performs FFT processing on the pulse wave pattern to generate pulse wave analysis data MFD (step S32). On the other hand, when the body motion detection unit 3 1 1 detects a body motion wave pattern TH that indicates the movement of the human body under test, the second F FT processing unit 3 3 1 applies FFT processing to the body motion wave pattern TH to generate a body. Motion analysis data TFD »Next, the body motion removal unit 3 1 3 generates body motion removal pulse wave analysis data MKD after removing body motion components from the pulse wave analysis data MFD. FIG. 7 is a diagram showing an example of the relationship between the pulse wave analysis data MFD, the body movement analysis data TFD, and the body movement removal pulse wave analysis data MKD. The figure illustrates the body motion removing operation as follows. First, Fig. 77 (a) shows the contents of the pulse wave analysis data MFD, and Fig. 7 7 (b) shows the contents of the body motion analysis data TFD. In this example, the body movement removing unit 3 1 3 specifies the spectral frequencies F t 1 to F t 6 shown in Fig. 77 (b) based on the body movement analysis data VFD. Subsequently, the body motion removing unit 3 1 3 removes the spectral frequency components of the pulse wave analysis data MFD from the corresponding spectral frequencies F t 1 to II-m-I--I- —--r I _ I -I 1-- --I --- T 1 ^ 1 I ---: 1 i Let i know (诮 read the precautions on the back before reading this page) The paper size applies to the “prisoner ’s standard” (CNS > Λ4 specification (210X297mm) -149- ίΊ 1 '416841, Α7. _B7 _____ V. Description of the invention (147) The spectral frequency component of F t 6 produces the body movement analysis data shown in Figure 7 7 (c) MKD »However, although the body motion wave type TH detects, for example, the acceleration of arm vibrations, the blood is affected by blood vessels or tissues. Therefore, the body motion component of the pulse wave analysis data MF D and the body motion analysis data TFD do not Specifically, as shown in Fig. 77 (b) and Fig. 77 (a), the respective spectral frequency components corresponding to the spectral frequencies F t 1 to F t 6 are derived from the pulse wave analysis data MF D and body motion analysis data. TFD is different. Therefore, in this example, instead of subtracting the body motion analysis data TFD from the pulse wave analysis data MFD, the spectra corresponding to the spectral frequencies F t 1 to F t 6 are removed In this way, the body motion component can be sufficiently removed. Second, the respiratory component extraction section 3 1 3 can specify the maximum peak frequency based on the body motion removal pulse wave analysis data MKD (step S3 5). At this time, the pulse can be specified. The fundamental frequency Fml of the wave component. Subsequently, the processing of steps S7 to S11 described in FIG. 6 through the first embodiment is performed, and the exercise intensity X is displayed on the display portion 3 1 6 as described above, the third embodiment The FM processing is performed on the pulse wave type MH and the body motion wave type TH to remove the body motion component, so the wave shape processing section 3 1 2 described in the first embodiment can be omitted. With this, the breathing component extraction section 3 1 4 The breathing component can still be taken out during exercise. And according to the deformation rate K of the breathing component, the evaluation unit 3 1 5 can calculate the exercise intensity X, so it will not cause a burden on the examinee, and can simply inform the exercise intensity X. 3 — 7: Fourth Embodiment 1 I -I---HI husband ^ --- m. .1 n. Mn τ ___ II-..-. ^^ 1 Phase I (τίRead the back of > i) Thanks again for this buttercup) This paper size is used in the Chinese standard S family standard $ WS) Λ4 size {210X 2Ή mm) -150- ^ 416841 A7 ^ 1 B7___ 5. Description of the invention (148) In the first to third embodiments described above, the body motion detection section 3 1 0 is used to detect body motion to detect the body motion wave pattern, and the pulse wave pattern MH can be used for this purpose. Although the body frequency component is removed from the frequency component, the fourth embodiment does not use the body motion detection unit 310 to remove the body motion component. 3_7 — 1: Overall configuration of the fourth embodiment The structure of the exercise intensity detection device 3 according to the fourth embodiment will be described with reference to the drawings. The appearance configuration of the exercise intensity detecting device 3 according to the fourth embodiment is the same as that of the first embodiment. Fig. 78 shows the electrical configuration of the exercise intensity detecting device 3 according to the fourth embodiment. The same components as those shown in Fig. 75 are given the same reference numerals. In FIG. 78, the structure different from the exercise intensity detecting device 3 of the third embodiment shown in FIG. 7 is that a body motion detecting section 311 and a second F FT processing section 3 31 are provided, and a pulse wave component can be provided. The removal section 3 1 4 is provided with a respiratory component extraction section 3 1 3 ′ that changes the internal structure of the respiratory component extraction section 3 1 3 in place of the body motion removal section 3 1 3. The differences are explained below. 3 — 7 — 1-1: Pulse wave component removing section Secondly, the "pulse wave component removing section 313" is constituted by a low-pass filter. The pulse wave component is removed from the pulse wave analysis data MF D, and the pulse wave component removal analysis data is generated. MD '. Here, the cut-off frequency of the low-pass filter is to select some fundamental wave frequencies that are lower than the pulse wave components. The reason is that the basic wave frequency of the body movement component and the basic wave frequency of the respiratory component are lower than the basic wave pulse component. This paper is applicable to the standard ΗKK family standard 4 * ((: NS) Λ4 specification (210X297 mm) -151-1 ^ ------ · 5Τ ------- line (near the first to read the note ^^ item and then fill in this page) A7 J '416841 __B7 V. Description of the invention (149) Wave frequency Therefore, "Specifically, it is to set a number of cutoff frequencies lower than those of the pulse wave components measured at quiet time. For example, when the pulse wave analysis data MFD and the cut-off frequency fc of the low-pass filter form the relationship shown in Fig. 7.9, the pulse wave The component removal analysis data MD 'is formed as shown in Fig. 80. 3_7_1_2: Respiratory component extraction section Next, the respiratory component extraction section 313' extracts the respiratory component from the pulse wave component analysis data MD 'and extracts the respiratory component, and is constituted by the CPU and the like. FIG. 81 is a block diagram showing the detailed functional configuration of the breathing component extraction section 313 ′. In the figure, the spectrum extraction section 3 4 0 is a group of two spectral frequencies extracted from each spectral frequency of the pulse wave component analysis data MD *. , Output the lower spectrum frequency to the basic frequency graph 341, and at the same time, the higher wave The spectral frequency is output to the differential detection unit 3 4 2. For example, when the pulse wave component analysis data MD 'is shown in FIG. 80, arbitrary grouped spectral frequencies are extracted from the spectral frequencies f1 to f14. At this time, the extracted frequency The number of spectral frequency groups is only 91 °. When the spectral frequency groups are f 1 and f 3, ί 1 can be output to the basic frequency graph 341, and ί 3 can be output to the difference detection unit 342. Next, the basic frequency graph 3 4 1 is constituted by ROM or the like, in which the fundamental wave frequency fm 1 corresponding to the respiratory component is stored, and the fundamental wave frequency F t 1 of the body motion component is stored in advance. The content of the fundamental frequency chart 3 4 1 is constituted by actual measurement. -Install ------ 11 ------.% (Isitw please fill in the 1FJ ii intentions and fill in the β page) This paper team standard Shizhou Zhongyuan® Family Standard 埤 ((, NS) Λ4 specifications (210X 297 public 犮 > • 152- Γ 416841 A7 · ____ B7 V. Description of the invention (150) The inventor or the like sets the data of the basic frequency chart 3 4 1 or changes it step by step for the testee The relationship between the measured running distance and the number of breaths is measured by the running speed. Figure 8 2 shows the results. The running distance is per single The number of steps in the bit time. In this example, the pulse wave detection unit 3 1 0 (pulse wave detection sensor unit 1 3 0) is attached to the root of the finger shown in FIG. The body motion component in pulse wave type MH is dominated by the swing of the arm. The relationship between the swing of the arm and the running distance is different due to the strong swing and the slow swing, but it is generally for the swing of the arm that is formed once at 2 intervals . The period of one arm swing is equivalent to one period of a body motion waveform. Therefore, when the running distance (steps / minutes) is set to P and the number of breaths (times / minutes) is set to V, the basic frequency of the body movement component F t 1 and the basic frequency of the breathing component Fvl are obtained by the running distance P and the number of breaths. V is expressed by the following formula.
Ftl=P/(60.2) 、Fvl=V/60 使用上述式轉換圖8 2表示之圖表時,可獲得體動成 份之基本頻率F t 1與呼吸成份之基本頻率F v 1的關係 。此係以圖圖8 3表示。基本頻率圖表4 1的內容係例如 表示於圖8 3者。 其次1差分檢測部3 4 2是檢測從波譜抽出部3 4 0 所輸出的另一測波譜頻率及自基本頻率圖表41所輸出之 頻率的差分。假設藉波譜抽出部3 4 0所抽出的波譜頻率 組爲體動成份的基本頻率F t 1與呼吸成份的基本頻率 4、紙乐尺度ii 家椋冷{ CNS ) Mim ( 2i〇X297^^ ) - 153 - I -裝 I I I I [訂 I I I l ! —版 {計先閱讀背而之注意事項再楨巧本頁) A7 !' 4 1 684ί B7 五、發明説明(151)Ftl = P / (60.2), Fvl = V / 60 When the above formula is used to convert the graph shown in Figure 8 2, the relationship between the basic frequency F t 1 of the body movement component and the basic frequency F v 1 of the respiratory component can be obtained. This is shown in Figure 8-3. The contents of the basic frequency chart 41 are shown in FIG. 83, for example. Next, the 1 difference detection unit 3 4 2 detects the difference between another measured spectrum frequency output from the spectrum extraction unit 3 4 0 and the frequency output from the basic frequency table 41. It is assumed that the spectral frequency set extracted by the spectrum extracting section 3 4 0 is the basic frequency of the body motion component F t 1 and the basic frequency of the respiratory component 4. The paper music scale ii Jia Xun cold {CNS) Mim (2i〇X297 ^^) -153-I-装 IIII [Order III l! —Edition {count the precautions before reading this page and then copy this page) A7! '4 1 684ί B7 V. Description of the Invention (151)
Fv 1時,可對基本頻率圖表4 1供應Fv 1而輸出 Ft 1,因此使差分檢測部342的輸出形成「Oj 。另 一方面!,藉波譜抽出部3 4 0所抽出的波譜頻率組爲 Fvl與F(但是Fvl<F)時,差分檢測部342的 輸出形成「1 F_Ftl丨」。因此,形成差分檢測部 3 4 2的輸出爲最小之波譜頻率的組時形成F t 1、 F v 1 ° 其次,比較部3 4 3係於波譜抽出部3 4 0所輸出之 每一波譜頻率的組與差分檢測部3 4 2的輸出比較,將其 値特定爲最小的組,而輸出構成該等組之波譜頻率的較低 側。此時,特定的組爲F t 2、Fvl,或者由於Ft 1 F v 1的關係 > 因此從比較部輸出呼吸成份的基本波頻率 F v 1。_ 其次,高調波頻率產生部3 4 4使呼吸成份的基本波 頻率Fvl整數倍,產生Fv2、Fv3、Fv4. ·, 以對應該等之各位準LI、L2、L3、L4 . ·作爲呼 吸成份輸出11 如上述,所產生的呼吸成份係供應於第1實施形態所 說明的評估部3 1 5中,根據變形率K產生運動強度X, 將此顯示於顯示部3 1 6中。 如上述,根據本實施形態,由於是著眼於體動成份的 基本頻率F t 1與呼吸成份的基本頻率F v 1的關係,而 以呼吸成份抽出部3 1 4’分離體動成份與呼吸成份,因 此即使不使用體動檢測部311、第2FFT處理部 本紙张尺度適用中國國家檍蜱(rNS ) Λ4現格(210Χ 297公漦) --------i------ίτ------4 (¾先閱讀背面之注意事項再填巧本頁} 1_""4""'?ΐ^ρ τι 消扎合1社印4;个 -154- A7 ! 4 16 8 41 _____B7 '______五、發明説明(152 ) 3 3 1等也可以根據呼吸成份求得運動強度X。藉此可獲 得精巧、輕量化,提供可方便被檢驗人使用之運動強度檢 測裝置3。 3- 8 :第3章之變形例 本發明不僅限於上述之實施形態,也可進行以下的各 種變形。 3 — 8 — 1 :根據脈搏數之濾除 運動強度X增大時,會增加骨格筋的氧消耗童,因此 會使呼吸數與脈搏數增加。其中,呼吸數與脈搏數是形成 一定的關係。圖8 4是表示跑步時呼吸數與脈搏數之一例 圖。第1〜第4實施形態之呼吸成份抽出部314中|也 可以脈搏數相關而進行濾除處理。 具體而言,預先設定儲存呼吸數與脈搏數關係的圖表 ,首先,利用此一圖表從脈搏數(6 0/ f m 1 )求得所 推定的呼吸數(60/Fvl)。並且使用以推定之呼吸 成份的基本波頻率爲中心頻率之帶通濾波器,抽出呼吸成 份的基本頻率F v 1。並且,此時的濾除處理可以數位式 進行。 藉此,可更爲正確地抽出呼吸成份。V 3-8—2:著眼於第3次諧波成份Fv3之運動強 度X的算出 I -I I I * ⑽^— I I 訂— I —*^ (锖先閱讀背面之注意事項再堵巧本页) 本紙張尺廋適用屮因K家梓绛(> Λ4現格(210X297公嫠} -155- A7 B7 416841 五、發明説明(153) 上述之第1實施形態中,第3次高調波成份F V 3係 顯示呼吸波型特徵之最佳表示,因此可著眼於基本波頻率 Fvl之第3次諧波成份Fv3,求得運動強度X。此時 ,呼吸成份抽出部314抽出基本波頻率Fv1與第3次 諧波成份Fv 3。評估部3 1 5是從對應該等的位準L 1 、L3算出L3/L2,並參閱預先儲存有L3/L1與 運動強度X關係的運動強度表而求得運動強度X。藉此時 使不算出變形率K也可以簡單地進行運算處理,其結果可 高速處理…並可減輕c P U的負荷。 3 - 8 — 3 :第1實施形態之頻率解析的手法 上述之第1實施形態中,雖是利用F FT進行頻率解 析,但是本發明不僅限於此,只要進行頻率解析時不論使 用任何的手法皆可,例如可利用子波轉換·子波轉換雖可 在短時間內進行頻率解析,但是短時間內會形成粗糙的頻 率解析《因此,可採某程度時間長度的解析時間爲一單位 (時間分解能)時,可將頻率領域細分者。 (諳尤閱讀背而之注^^項再蛾巧本頁) •*f-r~. XT1 訂 "'x-si十"^^^πτ:ν·;ί;^":ίΓ"印*''本 -156- __B7 / 416841五、發明説明(154) 器)之橫向濾波器構成即可。但是’人的脈搏數在4 0〜 2 0 0的範圍,脈波波型MH的基本波頻率是對應生體的 狀態而時刻在變動。此時,只要與基本波頻率同步,形成 可變之分割帶域即可獲得追隨動態生體狀態的資料。因此 ,以供應至橫向濾波器的時鐘作爲脈波波型時,也可以因 應分割帶域彤成可變者。 又*也可以濾波器組構成逆子波轉換部2 2。此時, 濾波器組可使用例如第1章說明之圖31所示者。又,高 域濾波器2 Α與低域濾波器2 Β係於其內部以包含延遲元 件(D雙穩態多諧振盪器)之橫向濾波器構成即可。 3 — 8 — 5 :告知手段之變形例 又,於上述各實施形態中,雖已說明以顯示部3 1 6 作爲告知手段之一例,但是已如第1章之「1 一 8 — 6 : 告知手段之其他例」的說明,當然也可予以變形者。 3 — 8 — 6 :使用形態的變形例 上述之實施形態中,運動強度檢測裝置的形態雖是手 錶構造,但本發明不僅限於此,例如也可以第1章所說明 之眼鏡式(參閱圖34)、項鍊式(參閱圖35)、卡片 型(參閱圖3 6 )或者步數計型(參閱圖3 7)等 3 - 8 - 7 :脈波檢測手段之變形例 又’上述之各實施形態中,雖以脈波檢測用感測單元 . I 1 ^ I Ί ί'% (讀先閱請背面之注意事項再填β本頁) 本紙乐尺度这川中KR家掠.中(rNS ) Λ4規格(2】0X 297公楚) -157- ___B77 !,4 16841五、發明説明(155) 1 3 0作爲脈波檢測手段f 1爲其一例說明之,但是本發 明不僅限於此,只要可檢測出脈動者不論爲何者皆可。 例如’第1章之「1 — 8_7-1 :檢測方式」所說 明,也可以藉著透光方式或者壓力感測方式檢測脈波者。 4 .第4章 4 — 1 :槪要 心臟主要爲心肌組織所構成的肌肉性器官,是以一定 的律動收縮將血液從大動脈送出。心臟分爲位於上部之心 房與位於下部位置的心室。心房與心室是藉著心房中隔及 心室中隔,分割成左右。心房與心室同樣規律地重覆其收 縮.擴張,但是其時期稍有偏離。在心房收縮時,使心室 擴張,使心房的血液推開房室閥而流入心室內。此時,關 閉動脈閥可防止大動脈的血液流入心室內。 相反地,擴張心房從靜脈吸入血液時使心室收縮而將 血液送出大動脈。此時|房室閥是從心室側上推,但是使 形成在房室閥與心室壁間的鍵肌形成緊張的狀態,使閥不 致逆轉。當心室收縮時,動脈閥被推壓於動脈壁使血液流 通。此時,大動脈擴張而可儲存從心室壓出之部份的血液 〇 其次,當心室擴張的期間,大動脈會隨之收縮而將所 儲存的血液朝著末稍輸出。因此,未從心室送出血液的期 間,大動脈同樣可經常地使血液流動。 如上述的心臟,雖是將以大動脈送出血液,但是利用 n (~, ~ I I I n I n I Hr 1 n I ^ (¾先閱讀背面之注意事項再填巧本頁) 本紙张尺度適州中®阈家標跨(CNS > Λ4規格(210X29·?公f ) -158- A7 ί 4 16 8 4 1 Β7 五、發明説明(156 ) 其一次收縮所送出的血液量即稱爲一次排出量。其單位爲 升。又,一次排出量SV與心脈動數HR (次數/分鐘) 的乘積係稱爲心排出量C 〇。心排出童C 0是表示從心臟 送出1分鐘左右的血液量’其單位爲升/分鐘《 如又心臓疾病時,心肌組織的機能會降低而不能大量 送出血液,因此會降低一次排出量S V及排出量C ◦。另 一方面,如累機訓練的運動選手’當運動強度增大時會使 一次排出量S V與排出量c 0增大。而如上述之一次排出 量s V與排·出量C 0即可反映出心臟機能的良否,因此多 以此作爲心機能評估時的指標。 又,本案發明人之一的上馬場和夫醫生是以心臟移植 者與健康人分別以坐姿、仰臥姿勢、站立姿勢等實測其心 脈動數HR ' —次排出量SV »圖8 5是表示該測定結果 〇 如圖所示,健康人的心脈動數HR是形成對應各姿勢 之負荷,在最高負荷的站立姿勢時是形成最高値。如上述 ,心脈動數HR是對應心臟所送出血液流而產生變化,因 此也可將該時刻稱爲心肌所要求的收縮力指標。 但是,如圖所示之心臟移植人的心脈動數HR不論各 姿勢爲何皆形成一定。且,此一現象會由於高齡等而有顯 著心機能的降低,心脈動必須依賴健康器的人亦同。如上 述,對於不能對應心臓送出的血液量控制心臓脈動數的人 而言,當然脈動數會造成心肌所要求之收縮力的不足。 相對於此,一次排出量SV與排出量C0不僅對於健 ϋ張尺度ilil1,中因囚家標iu’NS > Λ4规柏"7 2丨0X297公釐) -159- ---------裝------訂------線 (对先閱讀背面之注*事項再楨巧本页) ,1' 416841 A7 B7_ 五、發明説明(157) 康人,對於心臟移植人同樣會有與健康人心脈動數HR相 同的變化特性。因此,不僅是健康人,對於如心臟移植人 不能控制心脈動數H R的人而言,可獲知以心機能作爲評 估指標乃極有用之事實。 在測量心排出量C 0時,首先必須測量一次排出量 S V。而直接測量的方法可利用心臟導管測定心臓的內壓 ,從其測定結果算出一次排出量S V。 又,其它的方法有在上臂部裝設扣帶測定動脈血壓, 而從其脈波波型算出一次排出量S V的收縮期面積法。圖 8 6是表示一般的脈波波型。脈波波型是以末稍部測定心 臟收縮·擴張所產生之血液流的脈動,因此在其波型形狀 上會反映心臟的脈動。圖中的ED是稱爲驅出期間,即對 應1次心脈動中從心臟流出血液的時間。收縮期面積法是 將驅出期間E D與對應該期間的脈波波型的血壓値積分後 算出其面積S,將此乘以係數K s ν,藉此算出一次排出 量SV。此時,心排出量C0可以下式算出。When Fv 1, Fv 1 can be supplied to the basic frequency chart 4 1 and Ft 1 can be output. Therefore, the output of the differential detection section 342 is formed as "Oj. On the other hand, the spectral frequency group extracted by the spectrum extraction section 3 4 0 is When Fvl and F (but Fvl < F), the output of the difference detection unit 342 forms "1 F_Ftl". Therefore, F t 1 and F v 1 ° are formed when the group whose output of the differential detection section 3 4 2 is the smallest is formed. Second, the comparison section 3 4 3 is connected to each spectrum frequency output by the spectrum extraction section 3 4 0. The group of is compared with the output of the differential detection section 3 4 2, and it is specified as the smallest group, and the lower side of the spectral frequency constituting these groups is output. At this time, the specific group is F t 2, Fvl, or because of the relationship of Ft 1 F v 1 > the fundamental wave frequency F v 1 of the respiratory component is output from the comparison section. _ Second, the high-frequency generator 3 4 4 generates an integral multiple of the fundamental wave frequency Fvl of the respiratory component to generate Fv2, Fv3, and Fv4. · To correspond to each of these standards, LI, L2, L3, and L4. · As a respiratory component Output 11 As described above, the generated respiratory component is supplied to the evaluation unit 3 1 5 described in the first embodiment, and the exercise intensity X is generated based on the deformation rate K, and this is displayed on the display unit 3 1 6. As described above, according to this embodiment, since the relationship between the fundamental frequency F t 1 of the body movement component and the fundamental frequency F v 1 of the breathing component is focused on, the breathing component extraction portion 3 1 4 'separates the body movement component and the breathing component. Therefore, even if the body motion detection section 311 and the second FFT processing section are not used, the Chinese paper tick (rNS) Λ4 grid (210 × 297 mm) is applicable for this paper size. -------- i ------ ίτ ------ 4 (¾Read the precautions on the back before filling out this page} 1_ " " 4 " " '? ΐ ^ ρ τι Eliminate the seal 1 company seal 4; -154- A7! 4 16 8 41 _____B7 '______ V. Description of the invention (152) 3 3 1 etc. You can also obtain exercise intensity X based on breathing components. This allows you to obtain a compact, lightweight, and convenient exercise intensity test that can be used by the testee. Device 3. 3- 8: Modifications of Chapter 3 The present invention is not limited to the above-mentioned embodiments, and can be modified as follows. 3 — 8 — 1: When the exercise intensity X is increased by filtering according to the pulse number, Increasing the oxygen consumption of skeletal tendons will increase the number of breaths and pulses. Among them, the number of breaths and pulses is formed There is a certain relationship. Fig. 84 is an example of the number of breaths and the pulse number during running. The breathing component extraction unit 314 of the first to fourth embodiments may also perform the filtering process in relation to the number of pulses. Specifically, A graph that stores the relationship between the number of breaths and the number of pulses is set in advance. First, use this graph to obtain the estimated number of breaths (60 / Fvl) from the number of pulses (60 / fm 1). And use the basic of the estimated respiratory components A band-pass filter with the wave frequency at the center frequency extracts the fundamental frequency F v 1 of the respiratory component. In addition, the filtering process at this time can be performed digitally. With this, the respiratory component can be more accurately extracted. V 3-8 —2: Focusing on the calculation of the exercise intensity X of the third harmonic component Fv3 I -III * ⑽ ^ — II Order — I — * ^ (锖 Please read the precautions on the back before blocking this page) The paper size Applicable Quine K Family Azusa (> Λ4 present (210X297 male)} -155- A7 B7 416841 V. Description of the invention (153) In the first embodiment described above, the third high-frequency component FV 3 shows breathing The best representation of the waveform characteristics, so you can focus on the fundamental frequency The third harmonic component Fv3 of Fvl is used to obtain the exercise intensity X. At this time, the breathing component extraction section 314 extracts the fundamental wave frequency Fv1 and the third harmonic component Fv 3. The evaluation section 3 1 5 The levels L1 and L3 are used to calculate L3 / L2, and the exercise intensity X is obtained by referring to an exercise intensity table in which the relationship between L3 / L1 and the exercise intensity X is stored in advance. In this case, the calculation processing can be easily performed without calculating the deformation rate K, and the result can be processed at high speed ... and the load on c P U can be reduced. 3-8 — 3: Method of frequency analysis in the first embodiment In the first embodiment described above, although frequency analysis is performed using F FT, the present invention is not limited to this, as long as frequency analysis is performed regardless of any method Yes, for example, wavelet transform and wavelet transform can be used to perform frequency analysis in a short time, but rough frequency analysis will be formed in a short time. Therefore, a certain length of analysis time can be used as a unit (time resolution energy ), You can subdivide the frequency domain. (You especially read the note ^^ item again on this page) • * fr ~. XT1 Order " 'x-si 十 " ^^^ πτ: ν ·; ί; ^ ": ΓΓ " * '' B-156- __B7 / 416841 V. Invention description (154) device) Transverse filter configuration is sufficient. However, the number of pulses of a person is in the range of 40 to 200, and the fundamental wave frequency of the pulse wave type MH is constantly changing according to the state of the living body. At this time, as long as the frequency of the fundamental wave is synchronized and a variable segmentation band is formed, data can be obtained to follow the dynamic biological state. Therefore, when the clock supplied to the transversal filter is used as the pulse wave pattern, it can be changed to a variable one in response to the division band. It is also possible to configure the inverse wavelet conversion unit 2 2 with a filter bank. In this case, the filter bank may use, for example, the one shown in FIG. 31 described in Chapter 1. The high-domain filter 2A and the low-domain filter 2B may be constituted by transversal filters including a delay element (D bistable multivibrator). 3 — 8 — 5: Modifications of notification means In each of the above embodiments, the display unit 3 1 6 has been described as an example of the notification means, but it has already been described as "1-8-6: Notification in Chapter 1". Of course, the description of "Other Examples of Means" can also be modified. 3 — 8 — 6: Modification of the use form In the above-mentioned embodiment, although the form of the exercise intensity detection device is a watch structure, the present invention is not limited to this. For example, the glasses type described in Chapter 1 (see FIG. 34) ), Necklace type (see Figure 35), card type (see Figure 36), or pedometer type (see Figure 3 7), etc. 3-8-7: Modifications of the pulse wave detection means and each of the above embodiments Although it is a sensing unit for pulse wave detection, I 1 ^ I Ί ί '% (Read the first note, please read the notes on the back, and then fill in the β page.) (2) 0X 297 Gongchu) -157- ___B77 !, 4 16841 V. Description of the Invention (155) 1 3 0 is described as an example of the pulse wave detection means f 1, but the present invention is not limited to this, as long as it can be detected The pulsator can be whatever. For example, “1 — 8_7-1: Detection Method” in Chapter 1 explains that you can also detect pulse waves by light transmission or pressure sensing. 4. Chapter 4 4-1: Requirement The heart is a muscular organ composed mainly of myocardial tissue, and it sends blood out of the aorta with a certain rhythmic contraction. The heart is divided into the upper atrium and the lower ventricle. The atrium and ventricle are divided into left and right by the atrium and ventricle. The atrium repeats its contraction and expansion similarly to the ventricle, but its period slightly deviates. When the atria are contracted, the ventricles are dilated, and the blood in the atrium is pushed open the atrioventricular valve and flows into the ventricle. At this time, closing the arterial valve prevents blood from the aorta from flowing into the ventricle. Conversely, when the dilated atrial draws blood from a vein, it contracts the ventricle and sends the blood out of the aorta. At this time, the atrioventricular valve is pushed up from the ventricular side, but the key muscle formed between the atrioventricular valve and the ventricular wall is in a tense state, so that the valve is not reversed. When the ventricle contracts, the arterial valve is pushed against the wall of the artery to allow blood to flow. At this time, the aorta is dilated to store the part of the blood that is extruded from the ventricle. Secondly, during the dilatation of the ventricle, the aorta will contract accordingly, and the stored blood will be output towards the end. Therefore, the aorta also allows blood to flow frequently while blood is not being delivered from the ventricle. The heart, as described above, will send blood through the aorta, but using n (~, ~ III n I n I Hr 1 n I ^ (¾ Read the precautions on the back before filling out this page) ® Threshold Family Standard Cross (CNS > Λ4 specification (210X29 ·? Male f) -158- A7 ί 4 16 8 4 1 Β7 V. Description of the invention (156) The amount of blood sent by a contraction is called a single discharge The unit is liter. Furthermore, the product of the primary discharge volume SV and the number of cardiac pulses HR (times / minute) is called the cardiac output volume C. The cardiac output child C 0 is the volume of blood sent from the heart for about 1 minute. Its unit is liters / minute. "If the heart disease is reduced, the function of the myocardial tissue will be reduced and a large amount of blood cannot be sent. Therefore, the primary discharge SV and the discharge C will be reduced. On the other hand, such as the athlete training for exhaustion training ' When the exercise intensity increases, the primary discharge volume SV and the discharge volume c 0 increase. As described above, the primary discharge volume s V and the discharge volume C 0 can reflect the good or bad heart function. An index at the time of evaluation of the cardiac function. Dr. Hefu measured the heart pulse number HR '-the number of discharges SV using a heart transplanter and a healthy person in sitting, supine, and standing postures, respectively. Figure 8 5 shows the measurement results. The number of cardiac pulses HR is the load corresponding to each posture, and it is the highest when standing in the highest load. As described above, the number of cardiac pulses HR changes according to the blood flow sent by the heart, so this time can also be called The index of contractile force required by the myocardium. However, as shown in the figure, the number of heart pulses HR of a heart transplanter is constant regardless of each posture. Moreover, this phenomenon may cause a significant decrease in cardiac function due to aging, etc. The same is true for people who must rely on a healthy device. As mentioned above, for those who cannot control the pulsatile count of palpitations in response to the amount of blood sent by the palpitations, of course, the pulsatile count will cause the contractile force required by the heart muscle to be insufficient. SV and discharge C0 are not only for the health-care Zhang scale ilil1, the middle-in-house prisoner's standard iu'NS > Λ4 gauge Bai " 7 2 丨 0X297 mm) -159- --------- install- ---- order ------ line ( (Read the note on the back * Matters before this page), 1 '416841 A7 B7_ V. Description of the invention (157) Kang people will also have the same change characteristics as the heart pulse number HR in healthy people. Not only healthy people, but also people who cannot control the heart rate HR, such as a heart transplant, can know the fact that cardiac function is used as an evaluation index. When measuring cardiac output C 0, we must first measure the output SV. In the direct measurement method, the internal pressure of the palpitations can be measured using a cardiac catheter, and the primary discharge SV can be calculated from the measurement results. Another method is a systolic area method in which a buckle is attached to the upper arm to measure the arterial blood pressure, and the primary discharge S V is calculated from the pulse wave pattern. Fig. 86 shows a general pulse wave pattern. The pulse wave pattern measures the pulsation of the blood flow caused by the contraction and expansion of the heart at the peripheral part. Therefore, the shape of the pulse wave reflects the pulse of the heart. The ED in the figure is called the expulsion period, that is, the time during which blood flows from the heart during one heart pulse. The systolic area method is to calculate the area S by integrating the ED during the expulsion period with the blood pressure of the pulse wave pattern corresponding to that period, and multiply this by the coefficient K s ν to calculate the primary discharge SV. At this time, the cardiac output C0 can be calculated by the following formula.
CO=S*Ksv*HR 但是,一次排出量S V與排出量C 0是作爲上述心機 能的評估指標之用,因此只要可獲知跑步等運動中的一次 排出量S V或心排出量C 0時,即可進行科學式的訓練。 又,患有心贓病的病患會在曰常的勞動中會降低心機能, 而有陷於危險狀態的場合。如上述的場合中,爲了減少一 本紙张尺度適用中國阀家標蹲{ rNS > Λ4规格(210X297公釐) -160- FI — 111 I I -v-a 11 级 (邻先閱讀背面之注意事項再填ftT本頁〕 ·:-.;κ部-&-,vi!.=t-rJv:iJt.'.l.-;),^At;5ril^«0·? ^ ,416841 五、發明説明(彳58〉 次排出量SV或心排出量C0,而可在勞動中獲得一次排 出量SV或心排出量C0時,即可有效地進行病患的健康 管理。! 但是,藉心臟導管測定心臟內壓的方法中,被檢驗人 是以安靜狀態爲前提,因此不能量測運動中或日常生活中 連續之一次排出量SV或心排出量C0。 又使用扣帶的場合,必須覆蓋大部份之上臂部,會對 被檢驗人造成極大的負擔。此外,在運動中或曰常生活中 被檢驗人移動其臂部時,會由於其體動使血液流受到影響 ,而使得在脈波波型上重疊體動成份。因此,在運動中或 曰常生活不能測量連續性的一次排出量S V與心排出量 C 0 〇 在此,第4章中,針對在運動中或日常生活連續檢測 心排出量C 0之心排出量檢測裝置I及連續檢測一次排出 量S V之一次排出量檢測裝置說明如下。並根據一次排出 量S V與心排出量c 0,合倂說明評估心機能之心機能診 斷裝置如下。 4 - 2 :心排出童檢測裝置及心機能診斷裝置 首先,參閱圖式說明心排出量檢測裝置及使用此之心 機能診斷裝置。 4 — 2 — 1 :機能構成 首先,參閱圖式說明使用心排出量檢測裝置之心臓機 本紙张尺度读用中s S家樣增(rNS ) /\4規格(210X 297公釐) -161- ----------裝-- (閲讀背面之注意事項再填艿本I) ,11 線 A7 ! 416841 A 7 · _______ B7五、發明説明(159) 能診斷裝置的機能如下》圖8 7是使用心排出量檢測裝置 之心臟機能診斷裝置的機能方塊圖。圖中* f 4 1爲脈波 檢測手段,其可檢測脈波波型者。脈波波型是例如以光學 式感測器檢測指尖部或指根等末稍部的血流所獲得。 ί 4 2爲體動檢測手段,其可檢測體動而輸出體動波型者 。藉此可檢測人的運動。 其次,f 4 3爲體動除去手段,係根據體動波型產生 脈波波型中的體動成份,從脈波波型除去上述體動成份而 產生體動除去脈波波型。藉此即使在運動中,仍可產生不 受體動影響的脈波波型。 再者,f 4 4爲心脈動數檢測手段,其係根據體動除 去脈波波型檢測心脈動數者。又,f 4 5爲驅出期間檢測 手段,是根據體動除去脈波波型檢測心臟驅出期間而驅 出期間即是心臟一次收縮將血液從大動脈送出的期間。在 此,更詳細說明驅出期間如下。 圖8 8是表示心電波型、大動脈血壓波型及末稍部之 脈波波型的關係圖。圖中,SW爲心電波型,Ml 1是從 心臟流出瞬間後之大動脈血壓波型,MH 2爲末稍部之一 般的脈波波型《該圖中,可忽略隨著血液流動所造成的時 間延遲。驅出期間E D,嚴格來說是形成大動脈血壓波型 MH1之大動脈閥開放時刻t 1與大動脈閥關閉時刻t 2 的時間間隔,在安靜時大約2 8 Om s左右。大動脈的關 閉是由於心室的收縮所造成,因此此一時間間隔是大致與 心室收縮期的時間(Sysolic Time ) —致。但是,末稍部之 本紙張尺度適W+SK家標冷.(CNS ) Λ4規格{ 210X 297公楚) _ -ifiO . ' I "[ — — — ——— ^I I I I I 訂— I I I __ fM (詞先閱讀背面之注意事項再蛾苟本頁) Γ 416841 A7 ___ B7 五、發明説明(160) 脈波波型ΜΗ 2的開槽N 2是稱爲開槽N 2,是藉大動脈 閥封閉所產生。因此,從脈波波型MH以至峰値P 4爲止 的時間間隔即相當於驅出期間E D。 又,脈波波型會有個人差異,且即使同一人也會因爲 身體狀況等而會產生波型形狀的變化。因此,末稍部的脈 波波型MH 2係如MH 3所示,會使峰値P 1與峰値P 3 重疊,而致不會產生開槽N 1的場合。此時,驅出期間 E D同樣是形成最小峰値Ρ 〇至峰値ρ 4的時間間隔》 但是,從脈波波型ΜΗ 2的最小峰値Ρ 〇至開槽Ν 1 之峰値Ρ 2爲止的期間係稱之爲估計的收縮時間( Estimated Time ),亦有以此時間間隔作爲驅出期間E D的 學說。但無論如何,該等期間是屬代表心臟收縮期間値的 見解並無違誤。 藉此,該說明書中所使用之驅出期間ED不僅限於嚴 格之驅出期間(Ejection Duration ),並包含心室收縮期的 時間(Sysolic Time )及估計的收縮時間(Estimated Time ),前進至以下說明。具體而言,驅出期間ED是把握最 小峰値E D至最大峰値Ρ 1之後所產生之第1或第2所產 生之負峰値P2、P4爲止的期間。 其次,f 4 6爲心排出量檢測手段,係可檢測心排出 量者。例如,根據驅出期間中之體動除去脈波波型算出一 次排出量S V ’將此一次排出量S V乘以心脈動數,可算 出心排出量C 0。 其次’ ί 4 7爲評估手段,係根據心排出量評估心機 本纸张尺度进州中阐囤家標碑{ (’NS ) Λ4規格(210X 297公釐) -163- (誚先閱讀背而之注1^項再填寫本頁) 訂 A7 !" 4 16841 — B7 五、發明説明(161 ) 能的狀態。即,心機能的評估是藉著心臟所送出之1分鐘 的血液量加以評估。又,f 4 8爲告知手段,係告知評估 結果者藉此,可告知被檢驗人或第三者之醫生等的被檢 驗人的心機能。 其次,ί 4 9爲判定手段,其可根據體動除取手段判 定體動的有無•不含體動時則控制停止體動除去手段f 3 的動作。藉此,可減少隨體動除去處理所須的運算。 4 _ 2 - 2 :第1實施形態 第1實施形態至第7實施形態是有關使用心排出量檢 測裝置之心機能診斷裝置者,第8實施形態至第1 4實施 形態則是有關使用一次排出量檢測裝置之心機能診斷裝置 者。 4一2_2_1:第1實施形態之構成 參閱圖式說明利用本發明τ實施形態有關之心排出量 檢測裝置的心機能診斷裝置之構成如下。 4_2—2—1_1:第1實施形態之外觀構成 該例之心機能診斷裝置4 2的外觀構成是與第1章說 明之脈波診斷裝置1相同(參閱圖2 )。即,心機能診斷 裝置4 2大致爲具有手錶構造之裝置本體1 1 〇 ;連接該 裝置本體120的纜線120;及,設置在該纜線120 前端側之脈波檢測用感測器單元1 3 0所構成。 ----------装------訂------故 (ΐί先閱讀背而之注意ί項再域艿本艽) #.---7-¾ 却 t->:代淖而^:^消贤合印ΐ·;.ϊ·. 本纸张尺度滴川中SS家標彳(C+'NS ) Λ4規格(210X297公f > • 164 - J' 4 16841 A7 B7 五、發明説明(162) 又,具有脈波檢測手段f 4 1機能之脈波檢測用感測 器單元13 0的電路構成也與第1章說明之脈波診斷裝置 1相同《參閱圖3 )。 4-2 — 2 — 1 — 2 :第1實施形態之電氣構成 其次,參閱圖8 9說明心機能診斷裝置如下。圖8 9 是表示心機能診斷裝匱之電氣構成的方塊圖。 心機能診斷裝置4 2是以下的部份所構成。脈波檢測 用感測器單元1 3 0可檢測脈波波型MH而輸出至體動除 去部4 1 1。加速度感測器1 3 0. ’係以體動作爲加速度 檢測後產生體動波型TH。波型處理部4 1 0可於體動除 去部4 1 1中正確地除去體動成份,因此可對體動波型 TH施以波型處理。 在此,以MH t表示脈波波型MH中的體動成份,並 以MH’表示真脈波成份(體動除去脈波波型)時,形成 MH = MH t + MH'。體動波型ΤΗ係檢測出手臂擺動 之加速度,但是血流受到血管或組織的影響,因此體動成 份MH t會使體動波型ΤΗ鈍化。因此,波型處理部 4 1 0可從實際的測定數據來決定。 其次,體動除去部4 1 1是從脈波波型MH減去波型 處理部4 1 0的輸出波型MH t ,產生體動除去脈波波型 Μ Η'。體動除去脈波波型Μ Η’是藉由未圖示之A /D 轉換器轉換爲數位信號,而供應於心脈動數檢測部4 1 2 與驅出期間檢測部4 1 3 » ffl 中 Κ15 家椋卑{ CNS ) ( 2!0X 297^# ) - 165 - " ~ 「II I ϋ ! -"訂 I II.—-線 (請先聞讀背而之汶意事項再填巧本茛) at ( 4 16841 _ B7 __ 五、發明説明(163) 但是,不僅沒有體動,且如使得體動除去部4 1 1動 作進行體動除去時,由於加速度感測器1 3 0’的噪音| 會使得體動除去部4 1 1之輸出信號的SN比劣化。且, 由於體動除去的動作而耗費電力=因此,本實施形態中, 設置判定部411’ 《而判定部411’是根據體動波型 TH判定有無體動而產生控制信號C »具體而言,藉著臨 界値與體動波型TH的比較而判定。該臨界値是考量加速 度感測器130’的噪音位準,而可預先判定體動的有無 。此外,控制信號C顯示沒有體動時,停止波型處理部 4 1 0與體動除去部4 1 1的動作。此時,脈波波型MH 可直接從體動除去部4 1 1輸出。藉此可改善體動除去部 4 1 1輸出信號之SN比,且可降低裝置的消耗電力。 其次,心脈動數檢測部4 1 2與驅出期間4 1 3是根 據體動除去脈波波型MH’檢測出心脈動數HR與驅出期 間ED。本實施形態中,藉著體動除去脈波波型MH’之 振幅位準的解析,可求得心脈動數HR與驅出期間ED。 心脈動數檢測部412與驅出期間413可抽出特定 體動除去脈波波型MH’的形狀之波型參數。此時,波型 參數係與第1章參照圖2 5所說明者相同。心脈動數檢測 部4 1 2與驅出期間4 1 3爲了算出波型參數,抽出上述 極大點或極小點中與該等各點相關之所謂「峰値資料」的 資料。並且,峰値資料係與第1章參照圖27,及圖28 所說明者相同。 心脈動數檢測部4 1 2與驅出期間4 1 3是以第1章 本紙乐尺度適用中κ囷家標.if ( (’NS ) Λ4規格(2i〇x297公釐) -166 · ' ---------—u------1τ------·% (^先閱请.背而之"意事項再填艿本頁) I 416841 A7 ' _ _ B7________ 五、發明説明(164) 說明之圖2 6中表示的點電腦系統所構成。但是’可以輸 入體動除去脈波波型MH’代替體動分離脈波波型TMH 。此時|,峰値資料記憶體2 0 5中儲存有圖2 8表示之峰 値資料。 其次,說明微電腦1 8 1控制下的心脈動數檢測部 4 1 2與驅出期間4 1 3的動作如下。且,第1章說明之 (a )波型及其峰値資料的採取,(b)脈波波型的分割 處理,(c)波型參數的抽出於該例中亦同,因此省略其 說明。 (d )根據波型參數之脈動數的算出 作爲波型參數算出之時間t e (參閱圖2 5 )是一脈動 的時間。微電腦1 8 1可根據時間t6算出6 Ο/t 6 ’求 得心脈動數。 (e )根據波型參數之驅出期間的算出 微電腦1 8 1係存取於其內部之緩衝記憶體內,根據 波型參數特定一心脈動中的最小峰値Pm i η及最大峰値 Pmax。例如,圖6表示之波型中,將Ρ0特定爲最小 峰値Pm i η,以P 1特定爲最大峰値Pma X。 其次,最大峰値Pma X之後特定第1或第2出現的 負峰値(開槽)。該例中,特定第2出現之負峰値時,例 如圖6表示之波型時,將Ρ 4特定爲負峰値。並且,以最 小峰値Pm i η至負峰値Ρ 4爲止的時間作爲驅出期間 ---------矣------ΪΤ------^ (讳先閱讀flfj之注意事項再域巧本頁) 本纸張尺度试汛中因囤家標蜱((’NS ) Λ4現格(210X297公釐} -167- A7 J" 4 1 684 1 ___B7 五、發明説明(165) ED算出。例如,圖25表示之波型是以期間t 4作爲驅 j 出期間E D輸出口 如上述,可算出心脈動數HR與驅出期間ED。 其次,圖8 9表示之一次排出量算出部4 1 4是根據 體動除去脈波波型MH’與驅出期間ED特定驅出期間 ED中的體動除去脈波波型MH’ ,並算出其面積S。具 體而言’依序加上驅出期間E D中各個抽樣之體動除去脈 波波型ΜΗ’ ’藉此可積分體動除去脈波波型Μ Η,而算 出面積S —並且’將面積S乘以係數常數K s ν,可算出 一次排出量S V。即,一次心排出量S V可以下式算出。CO = S * Ksv * HR However, the primary discharge volume SV and the discharge volume C 0 are used as the evaluation index of the above cardiac function. Therefore, as long as the primary discharge volume SV or the cardiac discharge volume C 0 in sports such as running can be known, You can perform scientific training. In addition, patients suffering from cardiopulmonary disease will reduce cardiac function during routine labor, and may be in danger. In the occasions mentioned above, in order to reduce the size of a paper, the Chinese valve family standard squat {rNS > Λ4 size (210X297 mm) -160- FI — 111 II -va 11 level (Read the precautions on the back before filling ftT page] ·:-.; κ 部-&-, vi!. = t-rJv: iJt. '. l .-;), ^ At; 5ril ^ «0 ·? ^, 416841 V. Description of the invention (彳 58) When the secondary discharge SV or cardiac output C0 is obtained in labor, and the primary discharge SV or cardiac output C0 can be obtained in labor, the patient's health management can be effectively performed. However, the heart is measured by a cardiac catheter In the method of internal pressure, the person being tested is premised on the state of quietness, and therefore the continuous discharge SV or cardiac output C0 during exercise or daily life is not measured. When using a buckle, most of them must be covered The upper arm will cause a great burden to the examinee. In addition, when the examinee moves his arm during exercise or daily life, the blood flow will be affected due to his body movement, which will cause the pulse wave The body movement component is superimposed on the type. Therefore, the continuous discharge SV cannot be measured during exercise or daily life. Cardiac output C 0 〇 Here, in Chapter 4, the cardiac output detection device I that continuously detects the cardiac output C 0 during exercise or daily life and the primary discharge detection device that continuously detects the primary discharge SV are described below. Based on the primary output SV and cardiac output c 0, we will explain the cardiac function diagnostic device for evaluating cardiac function as follows. 4-2: Cardiac ejection detection device and cardiac function diagnostic device First, refer to the drawings to explain the cardiac output Detection device and heart function diagnosis device using the same. 4 — 2 — 1: Function constitution First, refer to the drawings to explain the heart card machine using the cardiac output detection device. This paper is used to read the paper scale. S S home sample increase (rNS) / \ 4 specifications (210X 297 mm) -161- ---------- install-(read the notes on the back and fill in the transcript I), 11 line A7! 416841 A 7 · _______ B7 V. Invention Explanation (159) The function of the diagnostic device is as follows: "Figure 8 7 is a functional block diagram of a cardiac function diagnostic device using a cardiac output detection device. * F 4 1 in the figure is a pulse wave detection means, which can detect the pulse wave pattern The pulse wave pattern is, for example, an optical sense It is obtained by detecting the blood flow at the tip of the fingertips or the roots of fingers. Ί 4 2 is a body movement detection means that can detect body movements and output body wave patterns. This can detect people's movements. Second, f 4 3 is a body motion removing method, which generates body motion components in the pulse wave pattern according to the body motion wave pattern, and removes the body motion components from the pulse wave pattern to generate the body motion removal pulse wave pattern. During exercise, pulse wave patterns that are not affected by motion can still be generated. In addition, f 4 4 is a means for detecting the number of cardiac pulses, which is a method for detecting the number of cardiac pulses by removing the pulse wave pattern based on body motion. In addition, f 4 5 is a means for detecting an expulsion period, and detects a period of cardiac expulsion based on a body wave removal pulse wave pattern. The expulsion period is a period in which the heart contracts once and sends blood out of the aorta. Here, the drive-out period is explained in more detail as follows. Fig. 88 is a diagram showing the relationship between the electrocardiogram wave pattern, the aortic blood pressure wave pattern, and the peripheral wave wave pattern. In the figure, SW is the ECG waveform, Ml 1 is the aortic blood pressure waveform immediately after it flows out of the heart, and MH 2 is the general pulse waveform at the end. "In this figure, it can be ignored due to blood flow. time delay. During the expulsion period E D, strictly speaking, the time interval between the opening time t 1 of the aortic valve and the closing time t 2 of the aortic blood pressure waveform MH1 is about 2 8 Om s when it is quiet. The closing of the aorta is caused by the contraction of the ventricle, so this time interval is approximately the same as the systolic time of the ventricle (Sysolic Time). However, the paper size of the last part is suitable for the W + SK family standard. (CNS) Λ4 specification {210X 297 Gongchu) _ -ifiO. 'I " [— — — ——— ^ IIIII Order — III __ fM (Read the precautions on the back of the word before going to this page) Γ 416841 A7 ___ B7 V. Description of the invention (160) The slotted N 2 of the pulse wave type MΗ 2 is called slotted N 2 and is closed by the aortic valve Produced. Therefore, the time interval from the pulse wave pattern MH to the peak 値 P 4 corresponds to the drive-out period E D. In addition, the pulse wave pattern varies from person to person, and even the same person may change the shape of the waveform due to physical conditions and the like. Therefore, as shown in MH 3, the pulse wave pattern MH 2 at the end portion causes peak 値 P 1 and peak 値 P 3 to overlap, so that the slot N 1 does not occur. At this time, the drive-out period ED is also the time interval from the formation of the minimum peak ρ0 to the peak ρ4. However, from the minimum peak ρ0 of the pulse wave pattern MZ 2 to the peak ρ2 of the slot N1 The period is called the estimated contracted time (Estimated Time), and there is a theory of using this time interval as the ED period. In any case, there is nothing wrong with the idea that these periods represent a period of systole. Therefore, the expulsion period ED used in this specification is not limited to a strict ejection period (Ejection Duration), and includes the ventricular systolic time (Sysolic Time) and the estimated systolic time (Estimated Time). Proceed to the following description . Specifically, the expulsion period ED is a period from when the minimum peak ED is obtained to the first or second negative peaks P2 and P4 generated after the maximum peak PD1. Secondly, f 4 6 is a means for detecting cardiac output, which can detect cardiac output. For example, the one-time discharge volume S V ′ is calculated from the body motion-removing pulse wave pattern during the drive-out period, and the one-time discharge volume S V is multiplied by the number of cardiac pulses to calculate the cardiac discharge volume C 0. Secondly, ί 4 7 is an evaluation method, which is based on the cardiac output to evaluate the physical and paper size of the paper into the state. {('NS) Λ4 specification (210X 297 mm) -163- (诮 read first Note 1 ^ Please fill in this page again.) Order A7! &Quot; 4 16841-B7 V. State of invention (161). That is, the evaluation of cardiac function is based on the amount of blood delivered by the heart for 1 minute. In addition, f 4 8 is a notification means, which informs the results of the assessment, and can inform the examinee or the third party's doctor, etc. of the cardiac function. Secondly, ί 4 9 is a determining means, which can determine the presence or absence of body movement based on the body movement removing means. When the body movement is not included, the operation of stopping the body movement removing means f 3 is controlled. Thereby, it is possible to reduce the calculation required for the follow-up movement removal processing. 4 _ 2-2: The first embodiment The first to seventh embodiments are related to a cardiac function diagnostic device using a cardiac output detection device, and the eighth to fourteenth embodiments are related to the use of a single discharge The heart function diagnostic device of the volume detection device. 4-1 2_2_1: Structure of the first embodiment The structure of a cardiac function diagnostic device using a cardiac output detection device according to a τ embodiment of the present invention will be described with reference to the drawings. 4_2-2—1_1: Appearance and configuration of the first embodiment The appearance and configuration of the cardiac function diagnostic device 4 2 of this example are the same as those of the pulse wave diagnostic device 1 described in Chapter 1 (see FIG. 2). That is, the cardiac function diagnosing device 42 is roughly a device body 1 1 with a watch structure; a cable 120 connected to the device body 120; and a pulse wave detection sensor unit 1 provided at the front end side of the cable 120. 3 0. ---------- Equipment ------ Order ------ So (ΐί first read the back and pay attention to the item and then the domain 艿 本 艽) # .--- 7-¾ but t- >: on behalf of 淖 and ^: ^ 消 贤 合 印 ΐ ·; .ϊ ·. This paper size Dichuan Chuan SS family standard 彳 (C + 'NS) Λ4 specifications (210X297 male f > • 164-J' 4 16841 A7 B7 V. Description of the invention (162) In addition, the circuit configuration of the pulse wave detection sensor unit 13 0 having the function of the pulse wave detection means f 4 1 is also the same as that of the pulse wave diagnosis device 1 described in Chapter 1. image 3 ). 4-2 — 2 — 1 — 2: Electrical configuration of the first embodiment Next, a cardiac function diagnostic device will be described with reference to FIGS. Figure 8 9 is a block diagram showing the electrical configuration of the cardiac function diagnostic equipment. The cardiac function diagnostic device 42 is composed of the following parts. Pulse wave detection sensor unit 130 can detect pulse wave pattern MH and output it to body movement removing section 4 1 1. The acceleration sensor 1 3 0. ′ uses a body motion as acceleration to generate a body motion wave type TH. The wave shape processing section 4 1 1 can accurately remove the body motion component in the body motion removing section 4 1 1, and thus can perform wave shape processing on the body motion wave TH. Here, when MH t represents the body motion component in the pulse wave type MH, and MH ′ represents the true pulse wave component (body motion removes the pulse wave shape), MH = MH t + MH 'is formed. The body motion wave type TQ detects the acceleration of the arm swing, but the blood flow is affected by blood vessels or tissues. Therefore, the body motion component MH t will passivate the body motion type T wave. Therefore, the wave shape processing unit 410 can be determined from actual measurement data. Next, the body motion removing section 4 1 1 subtracts the output waveform MH t of the waveform processing section 4 10 from the pulse wave pattern MH, and generates a body motion removing pulse wave pattern MH ′ ′. The body motion-removing pulse wave pattern MΗ ′ is converted into a digital signal by an A / D converter (not shown), and is supplied to the cardiac pulsation number detecting section 4 1 2 and the drive-out period detecting section 4 1 3 »ffl Κ15 Family Yibei (CNS) (2! 0X 297 ^ #)-165-" ~ "II I ϋ!-&Quot; Order I II .—- line This buttercup) at (4 16841 _ B7 __ V. Description of the invention (163) However, not only is there no body movement, but if the body movement removing section 4 1 1 is moved for body movement removal, the acceleration sensor 1 3 0 ' The noise | will degrade the SN ratio of the output signal of the body motion removing unit 4 1 1. In addition, the power consumption due to the body motion removing operation = therefore, in this embodiment, a determination unit 411 'is provided, and the determination unit 411' The control signal C is generated based on the presence or absence of body motion based on the body motion wave TH. Specifically, the determination is made by comparing the threshold 値 with the body motion wave TH. The threshold 値 is the noise level considering the acceleration sensor 130 '. It is possible to determine the presence or absence of body motion in advance. In addition, when the control signal C indicates that there is no body motion, the wave shape processing unit 4 10 and the body motion are stopped. The operation of the removal section 4 1 1. At this time, the pulse wave type MH can be directly output from the body movement removal section 4 1 1. This can improve the SN ratio of the output signal of the body movement removal section 4 1 1 and reduce the device's Power consumption. Next, the heart pulsation number detecting unit 4 1 2 and the drive-out period 4 1 3 detect the heart pulsation number HR and the drive-out period ED based on the body motion removal pulse wave pattern MH '. In this embodiment, by using Analysis of the amplitude level of the body motion-removing pulse wave pattern MH 'can obtain the number of cardiac pulses HR and the ED period. The heart-pulse number detection unit 412 and the ejection period 413 can extract a specific body motion to remove the pulse wave pattern. Waveform parameters of the shape of MH '. At this time, the waveform parameters are the same as those described in Chapter 1 with reference to FIG. 25. The cardiac pulsation number detecting unit 4 1 2 and the drive-out period 4 1 3 are used to calculate the wave shape parameters. Extract the data of the so-called "peak peak data" related to each of the above maximum points or minimum points. The peak peak data is the same as that described in Chapter 1 with reference to Fig. 27 and Fig. 28. Cardiac pulsation detection The part 4 1 2 and the expulsion period 4 1 3 are based on the κ 囷 family standard in Chapter 1 of the paper music scale. If (('NS) Λ4 Grid (2i〇x297 mm) -166 · '---------— u ------ 1τ ------ ·% (^ Please read first. Behind it " (Fill in this page again) I 416841 A7 '_ _ B7________ V. Description of the invention (164) The point computer system shown in Figure 2 and 6 of the description of the invention. However,' You can input body movement to remove the pulse wave type MH 'instead of the body Dynamic separation of pulse wave type TMH. At this time, the peak data shown in Figure 2 8 is stored in the peak data memory 2 05. Next, the operations of the cardiac pulsation number detecting section 4 1 2 and the drive-out period 4 1 3 under the control of the microcomputer 1 8 1 will be described below. In addition, (a) the use of the waveform and its peak data explained in Chapter 1, (b) the division of the pulse waveform, and (c) the extraction of the waveform parameters are the same in this example, so the description is omitted. . (d) Calculation of the number of pulsations based on the waveform parameters The time t e (see Figure 25) calculated as the waveform parameters is the time of one pulsation. The microcomputer 1 8 1 can calculate 6 Ο / t 6 ′ from the time t6 to obtain the number of heart pulses. (e) Calculation of the drive-out period based on the wave shape parameters. The microcomputer 1 8 1 accesses the internal buffer memory, and specifies the minimum peak 値 Pm i η and the maximum peak 値 Pmax in the heart pulse according to the wave shape parameters. For example, in the wave form shown in FIG. 6, P0 is specified as the smallest peak 値 Pm i η, and P1 is specified as the largest peak 値 Pma X. Secondly, the largest peak 値 Pma X is the specific negative peak 出现 (grooved) that appears first or second. In this example, when the second negative peak 出现 appears, for example, when the waveform shown in FIG. 6 is used, P 4 is specified as the negative peak 値. In addition, the time from the minimum peak 値 Pm i η to the negative peak 値 P 4 is taken as the expulsion period -------------------- ΪΤ -------- ^ (read first (Notes for flfj are on this page again.) Due to the house ticks (('NS) Λ4 is now (210X297 mm) -167- A7 J " 4 1 684 1 ___B7 in the paper scale test flood. (165) ED calculation. For example, the waveform shown in FIG. 25 uses the period t 4 as the ED output port during the driving period. As described above, the heart pulse number HR and the driving period ED can be calculated. Next, FIG. The discharge amount calculation unit 4 1 4 calculates the area S by removing the pulse wave pattern MH 'from the body motion during the drive-out period ED and the specific drive period ED, and calculates its area S. Specifically,' Sequentially add the body motion of each sample in the ED during the expulsion period to remove the pulse wave pattern MΗ '', thereby integrating the body motion to remove the pulse wave pattern MΗ, and calculate the area S — and 'multiply the area S by the coefficient constant K s ν can calculate the primary discharge SV. That is, the primary cardiac discharge SV can be calculated by the following formula.
SV — Ksv*S 其次’心排出量算出部415是將心脈動數HR乘以 一次排出量S V ’藉此算出心排出量C 0。即,心排出量 C ◦可以下式算出。SV — Ksv * S Next, the cardiac output calculation unit 415 calculates the cardiac output C 0 by multiplying the number of cardiac pulses HR by the primary output S S ′. That is, the cardiac output C ◦ can be calculated by the following formula.
C〇 = Ksv*S*HR 此外’心排出量C 0的算出,也可以依序加上每分鐘 的一次心排出量S V而算出心排出量C 0。 其次’評估部4 1 6爲記憶體1 6 1及比較器1 6 2 所構成’根據心排出量C 0可評估心機能而產生評估指標 X °記憶體1 6 1內儲存有利用心排出量C 0之分級的臨 ---------U------訂------^ (对先問讀背IFJ之注意事項再功艿本頁) 本縣尺度刺巾㈣料,(rNS ),職格(仙χ297公楚) -168- ____B7 五、發明説明(166) 界値。臨界値是對應分級數而設定,但是該例中,係設定 R1、R2作爲臨界値。該臨界値R1、R2也可以預先 加以記億者,或者也可以醫生或教練所設定者。 又,比較器1 6 2與心排出量C0及臨界値R 1、 R2比較,可產生評估指標X。該例中,藉CO<R 1產 生評估指標XI,並以R1SC0<R2產生評估指標 X2,以R2SC0產生評估指標X3 »其中評估指標 X 1〜X 3係由於使用於該心機能診斷裝置4 2的方法而 產生不同的涵意。例如,使用於運動訓練時,係形成維持 適當運動強度的尺度,監視心臓病患者基準之心機能時, 形成顯示恢復程度的基準。 其次,顯示部4 1 7爲圖2表示之液晶顯示裝置 2 1 0等所構成,其中顯示有心排出量C 0、評估指標X 或對應評估指標X之訊息等。並且,顯示之態樣爲表情圖 、文字、記號等》藉此可告知被檢驗人心機能的評估結果 0 例如,在跑步中使用該心機能診斷裝置4 2時,藉著 教練設定臨界値R 1、R 2時,告知被檢驗人可保持適當 之心排出量C 0。此時,將評估指標X 1以「提高步調」 ,評估指標X 2以「維持步調」,評估指標X 3以「降低 步調」等訊息顯示在顯示部4 1 7即可》 4_2 — 3 :第2實施形態 其次說明第2實施形態有關之心機能診斷裝置如下* I I —I— I I I I n n n i n M (^先閱讀背面之注意事項再楨i:1;本頁) 本紙怅尺度適H]中KK家標隼(C_NS ) Λ4^格(2丨0X297公釐) -169- 五、發明説明(167) A7 B7 4 1 6841 4 一 2 — 3 — 1 :第2實施形態之構成 f 1·第2實施形態之構成 圖9 0爲第2實施形態有關之心機能診斷裝置4 2的 方塊圖。第2實施形態是使用與第1實施形態相同之加速 度感測器130’及波型處理部410而檢測體動成份 MHt ’但是與第1實施形態說明之體動除去及利用子波 轉換進行心脈動數及驅出期間之檢測等的點不同。並且, 第2實施形態之外觀構成是與圖2表示之第1實施形態的 外觀構成相同。 4-2-3-1-1 :第 第2子波轉換部及 .·» 部 攻 ίίί f: 合 Μ 印 第1、第2頻率修正部 圖90中,420爲第1子波轉換部,係對於脈波檢 測用感測器單元1 3 0所輸出的脈波波型MH施以習知的 子波轉換,產生脈波解析數據MKD。又’ 4 2 2爲第子 波轉換,係對於加速度感測器1 3 0’所輸出的體動波型 MH t施以習知的子波轉換而產生體動解析數據TKD。 此時,第1子波轉換部4 2 0及第2子波轉換部4 2 2係 構成可以第1章說明之式1運算者。該等的主要部是與圖 5表示之基本函數展開部W相同的構成。此時’以心脈動 單位進行子波轉換,產生脈波解析數據MKD。該例中’ 脈波解析數據MKD係分割成〜〇·5ΗΖ、0.5 Hz 〜1.0Hz、1.0Η2 〜1.5Hz、1.5Hz 〜 I n I n I n n i ! ^ (誚先閱讀背而之注意事項再項艿本頁) 木紙張尺度通坩中KK孓標( (,NS ) Λ4規格(2!0X297公釐} -170-C0 = Ksv * S * HR In addition, the calculation of the cardiac output C 0 may be performed by sequentially adding the cardiac output S V once per minute to calculate the cardiac output C 0. Secondly, the “evaluation unit 4 1 6 is composed of a memory 16 1 and a comparator 1 6 2”. An evaluation index can be generated based on the cardiac output C 0 to evaluate the cardiac function. X ° Memory 1 6 1 stores the used cardiac output. C 0 Graded Pro --------- U ------ Order ------ ^ (For the IFJ, please read the precautions before reading this page) Towel material, (rNS), professional character (x297), -168- ____B7 V. Description of the invention (166) Boundary. The critical threshold is set according to the number of classifications, but in this example, R1 and R2 are set as critical thresholds. The thresholds R1 and R2 may be memorized in advance, or may be set by a doctor or a coach. In addition, the comparator 1 62 can generate an evaluation index X by comparing it with the cardiac output C0 and the threshold values 値 R1, R2. In this example, CO &R; 1 is used to generate the evaluation index XI, R1SC0 < R2 is used to generate the evaluation index X2, and R2SC0 is used to generate the evaluation index X3. The evaluation index X 1 ~ X 3 is used in the cardiac function diagnostic device 4 2 Methods have different meanings. For example, when used in sports training, it is used to form a scale to maintain proper exercise intensity and to monitor the heart function of patients with palpitations. It is used to form a benchmark that shows the degree of recovery. Next, the display section 4 1 7 is composed of a liquid crystal display device 2 10 and the like as shown in FIG. 2, and displays a cardiac output C 0, an evaluation index X, or a message corresponding to the evaluation index X. In addition, the displayed state is an emoticon, text, symbol, etc. ", so as to inform the test result of the cardiac function of the testee. For example, when using the cardiac function diagnostic device 4 during running, set the threshold 値 R 1 by the coach. When R 2, inform the examinee that proper heart discharge C 0 can be maintained. At this time, the evaluation index X 1 is displayed as “increasing pace”, the evaluation index X 2 is displayed as “maintaining pace”, and the evaluation index X 3 is displayed as “decreasing pace” on the display section 4 1 7. 4_2 — 3: 2 Implementation Modes Next, the cardiac function diagnostic device related to the second embodiment will be described as follows: II —I— IIII nnnin M (^ Read the precautions on the back first, and then 桢 i: 1; this page) The standard of this paper is H] Standard (C_NS) Λ4 ^ grid (2 丨 0297mm) -169- V. Description of the invention (167) A7 B7 4 1 6841 4 1 2 — 3 — 1: Structure of the second embodiment f 1 · Second implementation Configuration of the Form FIG. 90 is a block diagram of a cardiac function diagnostic device 42 according to the second embodiment. In the second embodiment, the body motion component MHt 'is detected using the acceleration sensor 130 ′ and the wave shape processing unit 410 which are the same as those in the first embodiment. Points such as the number of pulsations and detection during the drive-out period are different. The appearance configuration of the second embodiment is the same as the appearance configuration of the first embodiment shown in FIG. 2. 4-2-3-1-1: The second wavelet conversion unit and the unit of attack. F: Combine the first and second frequency correction units. In FIG. 90, 420 is the first wavelet conversion unit. The pulse wave pattern MH output from the pulse wave detection sensor unit 130 is subjected to a conventional wavelet conversion to generate pulse wave analysis data MKD. Also, "4 2 2" is the first wavelet conversion, and the body motion waveform type MH t output from the acceleration sensor 1 3 0 'is subjected to a conventional wavelet conversion to generate body motion analysis data TKD. At this time, the first wavelet conversion unit 4 2 0 and the second wavelet conversion unit 4 2 2 constitute an operator capable of formula 1 described in Chapter 1. These main parts have the same configuration as the basic function expansion part W shown in FIG. 5. At this time ', the wavelet conversion is performed in the unit of cardiac pulsation to generate pulse wave analysis data MKD. In this example, the pulse wave analysis data MKD is divided into ~ 〇 · 5ΗZ, 0.5 Hz ~ 1.0Hz, 1.0Η2 ~ 1.5Hz, 1.5Hz ~ I n I n I nni! ^ (诮 Read the precautions before reading Item (this page) KK standard ((, NS) Λ4 specification (2! 0X297mm) -170-
f;-;"ir屮-ν"·;?·^π Τ,消矜合奵"印’H A7 1' 4 1 684 1_________B7 五、發明説明(168) 2.0Hz、2.0Hz 〜2.5Hz、2.5Hz 〜3.0Hz 、3.0112〜3.5112、3.5112〜4.0112等頻率領 域輸出 其次,4 2 1爲第1頻率修正部,係對於脈波解析數 據MKD進行頻率修正。上述式1中雖有對應頻率之「1 /a 1/2」的項,但是在不同頻率領域間比較數據時,必 須修正該項的影響。第1頻率修正部4 2 1係爲此而設者 ,於子波轉換數據WD乘以係數a 1/2,產生脈波修正數 據ΜKD’ 。藉此,根據對應之各頻率可施予使每一頻率 之動力密度一定的修正。又,4 2 3爲第2頻率修正部, 係與第1頻率修正部4 2 1相同施以頻率修正,而從體動 解析數據TKD產生體動修正數據TKD’ 。 圖9 1係顯示於脈波波型ΜΗ部份期間之脈波解析數 據MKD。此外,該例中,與第1章說明之圖8比較,可 將時間軸的比例予以細分化。 圖9 1中,期間Τ係於峰値Ρ4的附近,脈波解析數 據Μ K D是將期間Τ分割爲8個時間間隔所得。但是,於 子波轉換中,頻率分解能與時間分解能係形成調整的關係 ,因此只要犧牲頻率分解能時,即可以較短的時間間隔獲 得脈波解析數據。 如上述,所產生的脈波解析數據MKD與體動解析數 據TKD是藉著第1、第2頻率修正部421、423施 以頻率修正,而可作爲脈波修正數據MKD’ 、體動修正 數據Τ K D ’輸出。 分先閱讀背fi之注意事項再楨巧本頁) 裝- 木紙張尺度遠川中家標嘈(rNS ) Λ4規格(210X297公釐) -171 - at * 4 16 8 41 ____Β7 五、發明説明(169) 4 — 2 - 3 — 1 — 2 :體動除去部 其次,體動除去部4 1 1是從脈波修正數據MKD’ 減去體動修正數據TKD’後產生體動除去脈波數據 Μ K D "。針對該點具體說明如下。而在以下說明中,設 定使用者以手將杯子上舉後,將其恢復原來的位置的場合 。此時,藉脈波檢測用感測單元1 3 0檢測出圖1 6 ( a )表示之脈波波型ΜΗ,又,同時藉波型處理部4 1 0檢 測出圖16(b)表示之體動波型MHt者。 其中,體動波型MH t是從時刻T 1開始增加,時刻 T 2形成正的峰値,隨後依序減少,在時刻T 2通過位準 ◦,而在時刻T 3達到負的峰値,於時刻T 4恢復位準0 。但是,體動波型T Η係藉加速度感測器2 1所檢測出, 因此時刻Τ 3是對應使用者之杯子的最大上舉時刻|時刻 Τ 1是對應上舉開始時刻,又,時刻Τ4是對應上舉停止 時刻。因此,時刻Τ 1至時刻Τ4爲止的期間是體動存在 的期間。並且,圖16 (c)是表示不具體動時的脈波波 型ΜΗ’ 。又,該例中,脈波波型ΜΗ的基本波頻率係形 成1 . 3 Η ζ者。 如上述,圖17是期間Tc (參閱圖16)之脈波修 正數據MKD’ ,圖18爲期間Tc之體動修正數據 TKD’ 。圖中,可獲知體動波型TH中,在O.OHz〜 1 .0 Η ζ的頻率領域中存在有較大位準的頻率成份。脈波 修正數據MKD’與體動修正數據TKD’ 一旦供應於體 (#先閱讀背西之注意事項再填艿本頁) I---n 訂 本紙张尺度邊用中因&家標净(rNS )厶4说格(2〗0Χ297公釐) -172 - -•'-'-^屮次打"^爲 1;消於 Anfiif印’欠 _3; J 4 16841 五、發明説明(170) 動除去部41 1時,體動除去部4 1 1是從脈波修正數據 MKD·減去體動修正數據TKD·而產生除去圖19表 示之體動成份的體動除去脈波數據MKD” 。藉此*即使 具有體動時仍可消除其影響。 4 — 2 — 3-1 — 3 :判定部 其次,判定部4 1 1’與預定之體動波型TH的臨界 値比較,產生顯示體動有無的控制信號C,將此供應至波 型處理部41 0、第2子波轉換部4 2 2及第2頻率修正 部4 2 3。藉此在沒有體動的場合,可停止波型處理部 4 1 0、第2子波轉換部4 2 2及第2頻率修正部4 2 3 的各個動作,獲得運算處理時間的減少、消耗電力的降低 及S N比的提升β 4 — 2 - 3 — 1 — 4 :心脈動數檢測部 其次,心脈動數檢測部4 1 2是根據體動除去脈波數 據Μ K D ”算出心脈動數。此時,心脈動數檢測部4 1 2 係根據體動除去脈波數據MKD”特定一脈動中之最大峰 値Pmax。脈波波型ΜΗ’的最大峰値Pmax中會形 成大的高域頻率成份,因此可預先決定對應高域頻率成份 的臨界値,將體動除去脈波數據MKD”與臨界値比較可 特定最大峰値Pma X。並且求得某一最大峰値pma x 與次大峰値Pm a x間的時間間隔τ,從6 Ο/T算出心 脈動數H R。 本紙张歧@削1賴纟:料.(ΓΜ5 ) Λ4規格(210X 297公楚) 「173 - 'f;-; " ir 屮 -ν " · ?? ^ π Τ, eliminate the combination " print 'H A7 1' 4 1 684 1_________B7 V. Description of the invention (168) 2.0Hz, 2.0Hz ~ 2.5Hz , 2.5Hz to 3.0Hz, 3.0112 to 3.5112, 3.5112 to 4.0112 and other output in the frequency domain. 4 21 is the first frequency correction unit, which performs frequency correction on the pulse wave analysis data MKD. Although there is a term of "1 / a 1/2" corresponding to the frequency in the above formula 1, when comparing data between different frequency domains, the influence of this term must be corrected. The first frequency correction unit 4 2 1 is designed for this purpose, and multiplies the wavelet conversion data WD by a coefficient a 1/2 to generate the pulse wave correction data MKD '. Thereby, according to the corresponding frequencies, a correction can be made to make the power density of each frequency constant. In addition, 4 2 3 is a second frequency correction unit, which performs frequency correction in the same manner as the first frequency correction unit 4 2 1 and generates body motion correction data TKD 'from the body motion analysis data TKD. Fig. 9 shows the pulse wave analysis data MKD during the period of the pulse wave type MZ. In this example, the time axis ratio can be subdivided in comparison with FIG. 8 described in Chapter 1. In Fig. 91, the period T is near the peak QP4, and the pulse wave analysis data M K D is obtained by dividing the period T into 8 time intervals. However, in the wavelet conversion, the frequency decomposition energy and the time decomposition energy system form an adjusted relationship. Therefore, as long as the frequency decomposition energy is sacrificed, the pulse wave analysis data can be obtained in a short time interval. As described above, the generated pulse wave analysis data MKD and body motion analysis data TKD are frequency corrected by the first and second frequency correction sections 421 and 423, and can be used as the pulse wave correction data MKD 'and body motion correction data Τ KD 'output. Read the precautions for the back fi first, and then copy this page) Installation-Wooden paper scale Yuan Chuan Jiao Noise (rNS) Λ4 size (210X297 mm) -171-at * 4 16 8 41 ____ Β7 V. Description of the invention (169 ) 4 — 2-3 — 1 — 2: body movement removal unit Second, body movement removal unit 4 1 1 is the body movement removal pulse wave data M KD after subtracting the body movement correction data TKD 'from the pulse wave correction data MKD'. ". This point is specifically described below. In the following description, the user is set to raise the cup with his hand and return it to its original position. At this time, the pulse wave detection mode 130 shown in FIG. 16 (a) is detected by the pulse wave detection sensing unit 130, and the waveform shown in FIG. 16 (b) is detected by the wave shape processing unit 4 1 0 at the same time. Body motion type MHt. Among them, the body motion waveform MH t increases from time T 1, and forms a positive peak 形成 at time T 2, and then decreases in order, passes the level ◦ at time T 2, and reaches a negative peak 时刻 at time T 3. The level 0 is restored at time T 4. However, the body motion waveform T is detected by the acceleration sensor 21, so time T3 is the maximum lifting time corresponding to the user's cup | time T1 is the corresponding lifting start time, and time T4 It corresponds to the lifting stop time. Therefore, the period from time T1 to time T4 is the period during which the body movement exists. Fig. 16 (c) shows a pulse wave pattern M '' when the movement is not specific. In this example, the fundamental wave frequency of the pulse wave type MΗ is formed as 1.3 者 ζ. As described above, Fig. 17 is the pulse wave correction data MKD 'during the period Tc (see Fig. 16), and Fig. 18 is the body motion correction data TKD' during the period Tc. In the figure, it can be known that in the body motion wave type TH, there is a relatively high-level frequency component in the frequency range of O.OHz to 1.0 Η ζ. Pulse wave correction data MKD 'and body motion correction data TKD' once supplied to the body (#Read the precautions for back west first and then fill out this page) (RNS) 厶 4 case (2〗 0 × 297 mm) -172--• '-'- ^ 屮 次 打 " ^ is 1; eliminated by Anfiif printed' ow_3; J 4 16841 5. Invention Description ( 170) When the motion removal unit 41 1 is used, the body motion removal unit 4 1 1 subtracts the body motion correction data TKD · from the pulse wave correction data MKD · to generate the body motion removal pulse wave data MKD which removes the body motion components shown in FIG. 19 ". * * Even if the body motion is present, its influence can be eliminated. 4 — 2 — 3-1 — 3: The judgment unit is next, and the judgment unit 4 1 1 ′ is compared with the critical threshold 预定 of the predetermined body motion wave pattern TH, resulting in The control signal C indicating the presence or absence of body movement is supplied to the wave shape processing unit 4110, the second wavelet conversion unit 4 2 2 and the second frequency correction unit 4 2 3. This allows the body to stop when there is no body movement. Each operation of the waveform processing unit 4 1 0, the second wavelet conversion unit 4 2 2 and the second frequency correction unit 4 2 3 can reduce the calculation processing time, the power consumption, and the SN ratio. Ascending β 4 — 2-3 — 1 — 4: Heart pulsation number detection unit Next, the heart pulsation number detection unit 4 1 2 calculates the heart pulsation number based on the body motion-removed pulse wave data M K D ”. At this time, the heart pulsation number detecting unit 4 1 2 removes the pulse wave data MKD ”based on body motion to specify the maximum peak 値 Pmax in a pulse. The maximum peak 値 Pmax of the pulse wave type MΗ ′ forms a large high-domain frequency. Therefore, the critical value corresponding to the high-domain frequency component can be determined in advance, and the maximum peak value Pma X can be specified by comparing the body motion removal pulse wave data MKD with the critical value. Then, the time interval τ between a certain maximum peak 値 pma x and the next-largest peak 値 Pm a x is obtained, and the number of heart pulsations H R is calculated from 60 / T. This paper is different @ 切 1 赖 纟: 料. (ΓΜ5) Λ4 size (210X 297 Gongchu) "173-'
If— I I I - f I I I I 訂— I i^ (邻先閱讀背而之注意事項再Ji5?i本頁)If— I I I-f I I I I Order— I i ^ (Read the precautions first, then Ji5? I this page)
,-"·-·屮"Jflv-^ml.iftAA";p'1印 V Α7 ί 416841 A 7 __ B7 五、發明説明(171) 4 — 2 — 3 — 1 - 5 :驅出期間檢測部 其次,驅出期間檢測部4 1 3也可以與第1實施形態 相同的構成,但於該例中,是根據體動除去脈波數據 1^1^0”特定最小峰値?]11丨11,同時在最大峰値?1113 X之後特定第2出現之負峰値P4(開槽)。此時,以對 應最小峰値Pm i η之頻率成份及對應峰値p 4之頻率成 份作爲臨界値而予以預先記億,將該等臨界値與體動除去 脈波數據MKD”比較,可特定最小峰値Pm i η與峰値 Ρ 4而以該等之間的時間間隔作爲驅出期間E D算出。 4 — 2 — 3 - 1 — 6 : —次排出量算出部,-" ·-· 屮 " Jflv- ^ ml.iftAA " p'1 印 V Α7 ί 416841 A 7 __ B7 V. Description of the invention (171) 4 — 2 — 3 — 1-5: During the drive-out period Detection unit Next, the detection period 4 1 3 during the drive-out period may have the same configuration as that of the first embodiment, but in this example, the pulse wave data 1 ^ 1 ^ 0 is removed based on body motion. “Specific minimum peak value 値?] 11丨 11, at the same time, after the maximum peak 値? 1113 X, the second negative peak 値 P4 (slotted) appears. At this time, the frequency component corresponding to the minimum peak 値 Pm i η and the frequency component corresponding to the peak 値 p 4 are taken as The critical threshold is recorded in 100 million. Comparing these critical thresholds with the body motion-removed pulse wave data MKD, the minimum peak Pm i η and the peak QP 4 can be specified, and the time interval between these can be used as the driving period. ED calculated. 4 — 2 — 3-1 — 6: —Discharge calculation unit
其次,一次排出量算出部4 1 4是加上驅出期間E D 之各頻率領域的體動除去脈波數據MKD” ,求得該等期 間之能源量E,而據此運算收縮期面積S。 但是,從最小峰値Pm i η至峰値P4的脈波波型是 形成陡峻的山狀波型•因此包含其中的頻率成份幾乎皆是 屬高頻領域。因此,低域頻率領域(例如ΟΗζ〜1Hz )的體動除去脈波數據MKD”可考慮爲噪音成份》如上 述,並非加上驅出期間E D的全頻率領域的體動除去脈波 數據MKD”僅加上其一部份求得能源量E亦可。 例如,如圖9 2所示· 一旦獲得體動除去脈波數據 MKD”時,ΟΗζ〜1Hz的頻率領域的噪音成份較多 ,因此僅加上ΟΗζ〜1Hz之頻率領域的體動除去脈波 --- - - - n - ^ I - - n n K I τ I____ _ 瞧 i i- ui ,vd 髮 (請先閱讀背而之11意亨項再M朽本頁) 五、發明說明(172 ) .數據Μ K D,,即可。以Μ η 脈波數據Mkd” ,可以次 Ε at .^ 41684^ B7 m表示各頻率領域的體動除去 式表示此時的能源量E。Next, the primary discharge calculation unit 4 1 4 adds the body motion-removed pulse wave data MKD ”in each frequency range of the drive-out period ED to obtain the energy amount E during these periods, and calculates the systole area S accordingly. However, the pulse wave pattern from the smallest peak 値 Pm i η to the peak 値 P4 forms a steep mountain-like waveform. Therefore, almost all frequency components included therein belong to the high-frequency domain. Therefore, the low-domain frequency domain (such as ΟΗζ ~ 1Hz) The body motion-removed pulse wave data MKD "can be considered as a noise component" as described above, and the body motion-removed pulse wave data MKD "in the full frequency range of the ED during the drive-out period is not added, and only a part of it is obtained The amount of energy E is also acceptable. For example, as shown in Figure 92. Once the body motion removal pulse wave data MKD is obtained, there is a lot of noise components in the frequency range of 0Ηζ to 1Hz, so only the frequency range of 0Ηζ to 1Hz is added. Remove pulse by body movement ------n-^ I--nn KI τ I____ _ Look at i i- ui, vd hair Explanation (172). Data M KD, can be. With the M η pulse wave data Mkd ”, the energy removal E at this time can be expressed as E at. ^ 41684 ^ B7 m.
Mnm 其次,以次式算出一次排出量S V。Mnm Next, the primary discharge amount S V is calculated by the following equation.
SV = Ksv*SSV = Ksv * S
= Ksv 氺 Ke 氺 E 其中’ K e爲能源量E與面積S間的轉換係數。 如上述之第2實施形態中,利用子波轉換可算出收縮 期面積S ’因此可持續除去脈波波型的噪音成份,求得— 次排出量SV,可藉此正確地算出心排出量C0。 4 ~ 2 — 4 :第3實施形態 上述之第2實施形態爲了利用子波轉換進行頻率解析 ’而使用第1子波轉換部4 2 0、第1頻率修正部4 2 1 、第2子波轉換部422、第2頻率修正部423。相對 於此,第3實施形態則是省略第2子波轉換部4 2 2、第 2頻率修正部4 2 3,此係與第2實施形態不同》 圖9 3是第3實施形態有關之心機能診斷裝置4 2的 方塊圖。圖中,藉體動除去部4 1 1產生除去體動除去成 計先閱讀背IFJ之注意事項再蛸寫本Η ) ’裝· •1Τ 本紙張尺度诚州中國囚家摞??((’!\'5)从規格(2】0乂297公釐) -175- -176- A7 > 4 16 841 B7 五、發明説明(173) 份之體動除去脈波波型MH’時,第1子波轉換部420 對於體動除去脈波波型MH’施以子波轉換。第1頻率修 正部4 2 1是對第1子波轉換部4 1 6的輸出施以頻率修 正而產生體動除去脈波數據MKD” 。 此時,第1頻率修正部4 2 1的輸出係與圖9 0表示 之體動除去部4 1 1的輸出等效。即,子波轉換爲線形, 因此也可以改變處理的順序,·因此可以模擬信號進行體動 除去後進行子波轉換時(第3實施形態),可根據子波轉 換之脈波修正數據MKD’及體動修正數據TKD’進行 體動除去(第2實施形態),因此而等價。 此外,判定部4 1 1 ’係與第1實施形態相同,又心 脈動數檢測部4 1 2、驅出期間檢測部4 1 3、一次排出 量算出部4 1 4、心排出量算出部4 1 5、評估部4 1 6 及顯示部4 1 7是與第2實施形態相同,省略其說明。 如上述,第3實施形態中,即使省略第2子波轉換部 422、第2頻率修正部423時,仍可算出心排出量 C 0,因此可以更簡單的構成來診斷心機能狀態。 4— 2 — 5 :第4實施形態 第1〜第3實施形態中,利用加速度感測器1 3 0檢 測體動成份ΤΗ,並比較脈波波型ΜΗ與體動波型ΤΗ, 可消除包含在脈波波型ΜΗ的體動成份,算出心脈動數 HR與驅出期間E D,而根據該等診斷出心機能的狀態。 但是’形成必須具加速度感測器1 3 〇及波型處理部 4、紙張尺度鴻川中同囤家標肀((-NS ) ( 210X297^-^ ) I I I — I I . -^^1 I I I I n . .~^ {1ί先閱讀fve之注意事項再硝艿本頁) :,jiw小,v'y?Tr r h二消介合们社印ΐ 五、發明説明(174) 4 1 0等而形成複雜之構造。第4實施形態是有鑑於該點 所硏創而成,可以其簡單構成提供即使有體動時,仍可芷 確診斷心機能狀態之心機能診斷裝置4 2者。 圖4 9是第4實施形態有關之心機能診斷裝置42的 方塊圖,其中除了省略加速度感測器1 3 0、波型處理部 4 1 0、第2子波轉換部422及第2頻率修正部423 及體動除去部4 1 1的內部構成以外,皆與圖9 0表示之 第2實施形態有關的心機能診斷裝置4 2相同。說明其不 同點如下。' 體動除去部411是從脈波修正數據MKD’分離除 去體動成份而產生體動分離脈波數據TBD。其中,體動 除去部411係利用下述之體動性質者。 體動是由於手臂上下擺動或跑步時手臂的擺動鄧所產 生,但是日常生活中,幾乎不會產生人體瞬間的移動。因 此,日常生活中體動波型TH的頻率成份並不高,一般皆 在◦ Η z〜1 Η z的範圍。此時,脈波波型MH的基本波 頻率大多在1 Η ζ〜2Η ζ的範圍。因此,在日常生活中 ,體動波型ΤΗ的頻率成份皆是在脈波波型ΜΗ之基本波 頻率的低頻率領域。 另一方面,慢跑等的運動中,由於手臂擺動等的影響 ,會稍微提高體動波型ΤΗ的頻率成份,但對應運動量而 增加心脈動數而同時會提高脈波波型ΜΗ的基本波頻率》 因此,即使在運動中,體動波型ΤΗ的頻率成份一般是在 低於脈波波型ΜΗ之基本波頻率的頻率領域。 n H 1 —- H I ϋ ! .,—士c'、 ________I _1 _ τ «^1___n. n n HI θν 、v-贷 {对先w讀fii之注意事項再读(巧本瓦) 木紙張尺度说用屮ΚΚ家標埤(rNS > Λ4現格(210Χ297公嫠) -177- Α7 Γ 416841 __B7 - 五、發明説明(175 ) 體動除去部411是著眼於該點而分離體動成份•係 構成可忽略低於脈波波型MH之基本波成份的頻率領域。 此時,在高於脈波波型Μ Η之基本波成份的頻率領域內存 在有體動成份時會降低心機能的檢測精度。但是,如上述 體動成份在低於脈波波型ΜΗ之基本波成份之頻率領域的 或然率較高 > 因此可以高精度診斷心機能的狀態。 圖9 5爲體動除去部4 1 1之詳細方塊圖。波型整形 部4 3 0 1是對脈波波型ΜΗ施以波型整形,而可產生與 脈波波型Μ_Η同步之重設脈衝。計數器3 0 2是計測未圖 示之時鐘脈衝,藉上述重設脈衝重設計算値。又,平均値 算出電路3 0 3可算出計數器3 0 2之計算値的平均値。 此時,平均値算出電路3 0 3是對應於脈波波型ΜΗ的平 均週期=因此,參照平均至時可檢測脈波波型ΜΗ的基本 波頻率。 其次,置換電路3 0 4是根據上述平均値來特定包含 脈波波型ΜΗ的基本波頻率。例如,上述平均値顯示 0.7 1秒時,基本波頻率形成1.4Hz,因此所特定之 頻率領域係形成1Hz〜1.5Ηζ·>隨後,置換電路 3 0 4是針對未滿特定領域之頻率領域,以^ 0」置換脈 波修正數據MKD'而產生體動分離脈波數據TBD。藉 此,可忽略低於脈波波型MH的基本波頻率之頻率領域成 份》此時,與體動成份會同時將脈波成份置換成「0j , 但是脈波波型ΜΗ的特徵部份會存在高於基本波頻率的頻 率領域內,因此即使置換爲「0」也幾乎不對脈波波型造 本纸依尺度述 + ( f'NS } { 2]〇X297^f ) . -j7g - .I I l I i 11 ^ 《对先閱讀背而之注意事項再項巧本!) a? ‘丨 4 ]684ί Β7 五、發明説明(176) 成影響。 例如,藉脈波檢測用感測單元1 3 0檢測圖1 6 ( a )表示之脈波波型ΜΗ (基本波頻率 1.3Hz)時,期 間Tc的蒎波修正數據MKD’係形成圖17所示者。此 時,藉置換電路1 9 4所特定的頻率領域係形成l.OH z 〜1.5Hz,因此,形成置換對象之頻率領域是形成對應 0.5Hz 〜1.0Hz 之 Ma 1 2 〜Ma 8 2 及對應 OHz 〜0.5Hz之Ma 1 1〜Ma81。因此,將脈波修正數 據MKD’的數據Ma 1 2〜Ma 82、Ma 1 1〜 Ma81置換爲「0」,而產生圖96表示之體動除去脈 波數據Μ K D ” 。 根據上述所產生的體動除去脈波數據MKD” ,圖 9 4表示之心脈動數檢測部4 1 2與驅出期間檢測部 4 1 3可分別檢測出心脈動數H R及驅出期間E D。 根據上述第4實施形態,體動成份係巧妙地利用存在 低於脈波波型ΜΗ的基本波頻率成份之頻率領域較高或然 率的體動性質以除去體動成份。因此,可省略第1〜第3 實施形態所必備之加速度感測器1 3 0及波型處理部 410等構成|且此時的體動同時也可以正確地診斷心機 能狀態。 4_2_6:第5實施形態 第5實施形態是關於第1實施形態說明之一次排出量 算出部4 1 4的變形例,其他的構成部份是與第1實施形 --------•裝-- (部先閱讀背而之注意事一?再項巧本頁) 訂 -丨線 '本纸烺尺廋述川中固囤家標蜱((、NS Μ4規格< 210X 297公楚—) • 179- A7 f 4 1634Ϊ ____ B7 · 五、發明説明(177 ) 態相同。第5實施形態之一次排出量算出部4 1 4具有以 下的態樣。 j 4—2-6—1:第1態樣 首先,第1態樣中是從驅出期間ED之體動除去脈波 波型MH’的各峰値P1〜P4的血壓値與該等的發生時 刻算出一次排出量S V。例如,體動除去脈波波型MH’ 係如圖2 5所示者,以P 0至P 4的期間作爲驅出期間 ED時|可以下式算出一次排出量SV »= Ksv 氺 Ke 氺 E where ‘K e is the conversion coefficient between the energy amount E and the area S. As in the second embodiment described above, the systolic area S 'can be calculated by wavelet conversion. Therefore, the pulse wave pattern noise component can be continuously removed to obtain the -time discharge volume SV, which can accurately calculate the cardiac output C0. . 4 to 2-4: Third Embodiment In the second embodiment described above, the first wavelet conversion section 4 2 0, the first frequency correction section 4 2 1, and the second wavelet are used for frequency analysis by wavelet conversion. The conversion unit 422 and the second frequency correction unit 423. In contrast, in the third embodiment, the second wavelet conversion section 4 2 2 and the second frequency correction section 4 2 3 are omitted, which is different from the second embodiment. Fig. 9 3 is the heart of the third embodiment Block diagram of the functional diagnostic device 42. In the figure, the body movement removal unit 4 1 1 generates the body movement removal and removal plan. Read the precautions of the IFJ before copying the script '' 装 '·· 1T This paper is a standard Chengzhou Chinese prisoner 摞 摞 (('! \ '5) From the specification (2) 0 乂 297 mm) -175- -176- A7 > 4 16 841 B7 V. Description of the invention (173) When removing the pulse wave type MH', the first The wavelet conversion unit 420 performs wavelet conversion on the body motion excluding the pulse wave type MH '. The first frequency correction unit 41 2 applies frequency correction to the output of the first wavelet conversion unit 4 1 6 to generate body motion. Remove the pulse wave data MKD ". At this time, the output of the first frequency correction section 4 2 1 is equivalent to the output of the body motion removing section 4 1 1 shown in FIG. 90. That is, the wavelet is converted into a linear shape, so it is also possible Changing the order of processing, so that when wavelet conversion is performed after the body signal is removed from the analog signal (third embodiment), the body movement can be removed based on the wavelet correction data MKD 'and the body movement correction data TKD'. (Second Embodiment) Therefore, it is equivalent. In addition, the determination unit 4 1 1 ′ is the same as the first embodiment, and the pulsation number detection unit 4 1 2. Expulsion period detection unit 4 1 3. Primary discharge calculation unit 4 1 4. Cardiac discharge calculation unit 4 1 5. Evaluation unit 4 1 6 and display unit 4 1 7 are the same as the second embodiment. As described above, in the third embodiment, even when the second wavelet conversion section 422 and the second frequency correction section 423 are omitted, the cardiac output C 0 can be calculated, so that a simpler structure can be used to diagnose cardiac function. 4-2-5: In the first to third embodiments of the fourth embodiment, the acceleration sensor 130 is used to detect the body motion component TQ, and the pulse wave pattern MQ and the body motion wave pattern TQ are compared. The body motion components included in the pulse wave pattern MΗ are eliminated, the heart pulse number HR and the ED during the expulsion are calculated, and the state of the cardiac function is diagnosed based on these. However, the formation must have an acceleration sensor 1 30 and a wave pattern. Processing Department 4. Paper Standard Hongchuan Zhongtong House Mark 肀 ((-NS) (210X297 ^-^) III — II.-^^ 1 IIII n.. ~ ^ {1ί Read the precautions of fve first and then copy the transcript (Page):, jiw small, v'y? Tr rh Digestive Mediators' Seals 5. The Invention Description (174) 4 1 0 etc. to form a complex structure. Part 4 This embodiment is created in view of this point, and can provide a cardiac function diagnosis device 42 that can accurately diagnose the cardiac function state even when there is a body movement in a simple structure. Fig. 4 9 is related to the fourth embodiment A block diagram of the heart function diagnostic device 42 except for omitting the acceleration sensor 130, the waveform processing section 4 10, the second wavelet conversion section 422, the second frequency correction section 423, and the body motion removing section 41. Except for the internal structure of 1, it is the same as the cardiac function diagnostic device 42 according to the second embodiment shown in FIG. 90. The differences are explained below. The body motion removing unit 411 separates and removes body motion components from the pulse wave correction data MKD 'to generate body motion separation pulse wave data TBD. Among them, the body motion removing section 411 is a person using the following body motion properties. Body movements are caused by the arm swinging up or down during running or running, but in daily life, almost no instantaneous movement of the human body occurs. Therefore, the frequency component of body motion wave TH in daily life is not high, and it is generally in the range of ◦ Η z to 1 Η z. At this time, the fundamental wave frequency of the pulse wave type MH is often in the range of 1 Η ζ to 2 Η ζ. Therefore, in daily life, the frequency components of the body motion wave type TQ are all in the low frequency range of the basic wave frequency of the pulse wave type MQ. On the other hand, in sports such as jogging, the frequency component of the body wave shape TQ will be slightly increased due to the effects of arm swings, etc. However, the number of heart pulses will increase according to the amount of exercise and the basic wave frequency of the pulse wave shape MQ will also be increased 》 Therefore, even in motion, the frequency component of the body motion wave type T is generally in the frequency range lower than the fundamental wave frequency of the pulse wave type M. n H 1 —- HI ϋ!., — Shi c ', ________I _1 _ τ «^ 1 ___ n. nn HI θν, v-loan {For the precautions of reading fii before reading (Qiaobenwa) Wood paper scale says屮 ΚΚΚ 家 埤 (rNS > Λ4 is present (210 × 297 male) -177- Α7 Γ 416841 __B7-V. Description of the invention (175) The body movement removing section 411 is focused on this point to separate the body movement components. It constitutes a frequency range that is negligible below the basic wave component of the pulse wave type MH. At this time, when there is a body motion component in the frequency range higher than the basic wave component of the pulse wave type MH, the detection of cardiac function is reduced Accuracy. However, as the above-mentioned body motion component has a higher probability in the frequency range lower than the basic wave component of the pulse wave type MΗ, it is possible to diagnose the state of cardiac function with high accuracy. Figure 9 5 shows the body motion removal section 4 1 Detailed block diagram of 1. The wave shape shaping unit 4 3 0 1 is a wave shape shaping of the pulse wave shape MΗ, and can generate a reset pulse synchronized with the pulse wave shape M_Η. The counter 3 0 2 is a measurement not shown. The clock pulse shown in the figure is redesigned by the reset pulse described above. The average clock calculation circuit 3 0 3 can be calculated. The average 値 of the counter 302 is calculated. At this time, the average 値 calculation circuit 303 is an average period corresponding to the pulse wave type MΗ = Therefore, the basic wave frequency of the pulse wave type MΗ can be detected by referring to the average time. Secondly, the replacement circuit 304 specifies the fundamental wave frequency including the pulse wave type MW based on the average chirp. For example, when the average chirp shows 0.7 1 second, the fundamental wave frequency forms 1.4Hz, so the specified frequency range The system is formed from 1 Hz to 1.5; ζ. ≫ Subsequently, the replacement circuit 3 0 4 replaces the pulse wave correction data MKD ′ with ^ 0 ″ for the frequency field that is not full of a specific field to generate body motion separated pulse wave data TBD. Ignore the frequency domain component lower than the basic wave frequency of the pulse wave type MH "At this time, the pulse wave component will be replaced with" 0j "at the same time as the body movement component, but the characteristic part of the pulse wave type MH will be higher than In the frequency domain of the fundamental wave frequency, even if it is replaced with "0", it is almost impossible to describe the pulse wave type paper according to the standard + (f'NS} {2] 〇X297 ^ f). -J7g-.II l I i 11 ^ "Precautions for reading first and then for a clever copy ) A? 'Shu 4] 684ί Β7 V. invention is described in (176) to impact. For example, when the pulse wave detection sensing unit 130 detects the pulse wave pattern MΗ (basic wave frequency 1.3 Hz) shown in FIG. 16 (a), the wave correction data MKD 'of the period Tc is formed as shown in FIG. Show. At this time, the specific frequency domain specified by the replacement circuit 194 is 1.OH z to 1.5 Hz. Therefore, the frequency domain that forms the replacement object is to form Ma 1 2 to Ma 8 2 and corresponding to 0.5 Hz to 1.0 Hz. Ma 1 1 to Ma 81 from 0 Hz to 0.5 Hz. Therefore, the data Ma 1 2 to Ma 82 and Ma 1 1 to Ma 81 of the pulse wave correction data MKD ′ are replaced with “0”, and the body motion removing pulse wave data M KD shown in FIG. 96 is generated. The body motion removes the pulse wave data MKD ", and the heart pulsation number detecting unit 4 1 2 and the expelling period detecting unit 4 1 3 shown in FIG. 9 can detect the cardiac pulsation number HR and the expelling period ED, respectively. According to the fourth embodiment described above, the body motion component is a clever use of a body motion property having a higher probability in the frequency range than the fundamental wave frequency component of the pulse wave type MW to remove the body motion component. Therefore, the acceleration sensor 130 and the wave shape processing unit 410, which are necessary for the first to third embodiments, can be omitted. Also, the body motion at this time can also accurately diagnose the cardiac function state. 4_2_6: Fifth Embodiment The fifth embodiment is a modification of the primary discharge amount calculation unit 4 1 4 described in the first embodiment. The other components are the same as the first embodiment -------- • Equipment-(read the first note of the back and then reiterate this page) Order-丨 Line 'this paper 烺 Ruler describes Sichuan Zhonggu store house ticks ((, NS Μ4 specifications &210; 297 Gongchu — ) • 179- A7 f 4 1634Ϊ ____ B7 · V. Description of the invention (177) The state is the same. The primary discharge calculation unit 4 1 4 of the fifth embodiment has the following state. J 4-2-6-1: the first 1 aspect First, in the first aspect, the peaks of the pulse wave pattern MH '(the blood pressure of P1 to P4) and the time of occurrence of these are calculated from the body motion of the ED during the expelling period. When the body motion removes the pulse wave type MH 'is shown in Fig. 25, when the period P0 to P4 is used as the drive-out period ED | The primary discharge amount SV can be calculated by the following formula »
SV = Ksv*S =K s v * f 1 (U,t2,t3,t4,yl,y2,y3,y4) 該例是以直線近似算出收縮期面積S,並據此算出一 次排出量S V。因此,對於驅出期間E D所有的抽樣是與 加上體動除去脈波波型MH’算出面積S的方法比較,可 減少運算量。 4 — 2 — 6-2 :第2態樣 其次,第2態樣是從驅出期間ED及心脈動數HR求 得一次排出量。其中係可自心脈動數HR算出收縮期面積 法之收縮期面積S。 脈波波型MH中即使個人差或同一人也存在有個人內 差’可藉多數之實測數據的測量特定某心脈動數hr之脈 ^------iT-------0 {許先閱讀背而之注"事項再填巧本頁) 本紙乐尺廋Μ用中阄茂家標嗱(CNS ) AAim ( 210 x 297^^ ) -180: ab] r 416841 五、發明説明(178) 波波型ΜΗ的大致形狀。此外’一旦特定脈波波型ΜΗ時 ,可求得對應驅出期間ED的面積S。 圖9 7是第2態樣有關之一次排出量檢測部4 1 4的 方塊圖。4 1 4 0爲一次排出量表,其中,使心臟驅出期 間E D與心脈動數HR互相對應而儲存在收縮期面積S內 。該一次排出量表4 1 4 0爲設在各個心脈動數HR的複 數個表TB1、TB2、 ·..TBn所構成,各表 TB1、TB2、 · _ TBn中儲存有對應驅出期間 E D的收縮期面積S。並且,該等表的內容是藉多數實測 表所產生。又,4 1 4 1是設於一次排出量表4 1 40後 段的乘法器,乘以係數K s v與收縮期面積S可算出一次 排出量S V。 藉上述之構成,驅出期間E D與心脈動數HR —旦供 應於一次排出量表1 4 0時,一次排出量檢測部4 1 4可 特定對應心脈動數HR之一表TB。隨後從該表TB讀出 對應驅出期間ED的收縮期面積S時,乘法器4 1 4 1可 算出一次排出量SV。 如上述,第2態樣可僅從驅出期間E D與心脈動數 HR算出一次排出量SV,因此可以簡單的構成在短時間 中求得一次排出量SV。 此外,在上述各表TB1、TB2、 .··ΤΒη中 預先儲存對應驅出期間ED的一次排出量SV,可省略乘 法器4 1 4 1。此時,只須以S K s v代替收縮期面積 S預先儲存在各表TB1、TB2、 .··ΤΒη中即可 本紙张尺度制巾訓家料(TNS } ( 210X 297^^ ) 「181 - '—' I— I n n —裝 訂*~ I I 级 ("1閱讀背而之注意事項再:本莨) "系部屮""'-^,,只丁-;,';沁合^:社印"‘ ΑΊ J 4 16841 __ Β7 五、發明説明(179) 另外,上述之各表ΤΒ1、ΤΒ2、. ·ΤΒη中 預先儲存對應驅出期間E D之心脈動量C 0,可從驅出期 間ED與心脈動數直接求得心排出量C0。圖9 8是表示 心排出量表4140’之圖。此時,只須以S*Ksv* HR代替收縮期面積S預先儲存於各表TB 1、TB2、 ,Τ Β η中即可。 4 — 2 — 7 :第6實施形態 上述之第1〜第5實施形態之心機能診斷裝置係可運 用收縮期面積法,可乘以驅出期間E D之脈波波型面S的 係數K s ν算出一次排出量SV。其中,係數Ks ν嚴格 而言,根據被檢驗人而有所不同。因此,在正確算出一次 排出量S V時,最好可修正以收縮期面積法所獲得之一次 排出量S V。 如上述,第6實施形態中,圖88、90、93及 9 4表示之第1〜第5實施形態之一次排出量算出部 4 1 4與心排出量算出部4 1 5之間,設置一次排出量修 正部4 2 4可進行一次排出量S V的修正。 圖9 9爲本實施形態有關之一次排出量修正部4 2 4 的方塊圖。圖中表示之一次排出量修正部4 2 4爲算出修 正係數ΚΗ之修正係數算出部4 2 4 0 :記憶修正係數Κ Η之修正係數記憶體4 2 4 1及乘法部4 2 4 2所構成。 修正係數算出部4 2 4 0是藉熱色素稀釋法等從外部 本紙if、尺度这川中Κ國家標彳(rNS )" 乂4規格(210 X 297公梦-) -182 - - I I I - - I 1— I . 1 士^ ---- n :1· .. . . _ T m--I__I . TjV-*—I 胡 ("尤閱讀背而之注意事項4"·^?本页) pr"·好屮戎J?:(,v--?p' τ;'·ίί;轧 A":ir·^印f A7 I 4 〗6S 4 n __B7 1_ 五、發明説明(180) 機器供應精密測量之基準一次排出量sv,同時形成可供 應一次排出量算出部4 1 4所算出的一次排出量s v。修 正係數算出部4 2 4 0爲除法器所構成,當被檢驗人操作 操作鍵形成校正模式時,以SV r/S V作爲修正係數 KH算出。算出之修正係數KH係記憶於修正係數記憶體 4 2 4 1內,於一般測定模式中讀出而使用。乘法部 4 2 4 2是將一次排出量S V乘以修正係數KH,產生修 正後的一次排出量SVh。 根據上述之本實施形態,於校正模式中算出修正係數 KH,並在一般的測定模式中使用修正係數KH算出一次 排出量SVh,因此可求得更精密之心排出量C0。 又,本實施形態之心機能診斷裝置4 2,例如可運用 於醫院內的健康管理,或復健中的健康管理。更具體而言 ,在心臟病患者等手術後藉熱色素稀釋法正確地測量基準 一次排出量SVr,同時可以攜帶式心機能診斷裝置42 測量一次排出量S V。並且,預先記憶該等測量結果所算 出的修正係數KH,在一般的測定模式中利用修正係數 K Η求得精密的心排出量C 0。藉此使病患可於復健恢復 正常的過程下,接受正確心排出量C 0所測得的心機能診 斷。 4 _ 2 _ 8 :第7實施形態 第7實施形態中,構成評估指標X的基準之臨界値係 對應體表面積成可變者,除了評估部4 1 6之構成外’皆 本紙仏尺度述Jfl中阁闽家標埤.{ CNS ) A4im ( 2I0x297^f ) . -|Q3 - ' i 1 i ! , ΐ^—-訂 i 1111# (計先聞讀背而之注意事項再蟥巧本頁) A7 I 4ΐββ4ί B7 五、發明说明(181 ) 與第1〜第6實施形態之構成相同。以下,說明不同點之 評估部4 1 6。 圖1 0 0爲第7實施形態有關之評估部4 1 6的方塊 圖。4 1 6爲體表面積算出部’其中係形成輸入體動W ( kg)與身高H ( cm)者,據此可算出體表面積TS。 該例中,以所謂之杜波依斯公式習知之實驗式算出體表面 積T S。該實驗式係表示如下。 T S=W0 425xH°'725x 7 1 . 8 4 其次,4161爲臨界値表,其中,使體表面積TS 與心脈動數對應而儲存產生評估指標X用之臨界値R1、 尺2。臨界値表4161是複數個表丁61’ 、TB2’ 、· ·ΤΒ η’所構成,各表中係對應心脈動數HR而儲 存有臨界値Rl、R2。又,一旦供應體表面積TS時, 從各表中形成可選擇對應體表面積T S之一表。因此,參 照該臨界値表4161可獲得對應體表面積TS與心脈動 數HR之臨界値R1、R2 ^ 其次,162爲比較部,可比較臨界値Rl、R2與 心排出量C 0產生評估指標X。 如上述,藉體表面積T S形成可變之臨界値R 1、 R 2的理由如下。通常,體表面積T S大的人具體型大且 心排出量C 0多,而相反地體表面積T S小的人則具有體 型小且心排出量C 0少的傾向。因此,以同一臨界値R 1 -184· 木紙张尺度過用中^^家棋苹((,1^)/\4规格(210><297公釐) :ij ,¾ 部-5-^·ν?'··ι·ΪΆ『ρν,消於合 ίίτ.ίι印欠 A7.^ 4 16641 __B7 五、發明说明(182 ) 、R 2評估兩者的心排出量C 0時,在進行對應各人的心 機能評估上困難,其必須藉由對應體表面積T S之評估指 標X的使用,進行對應各人體型的心機能評估》 又,對應心脈動數HR形成可變之臨界値R 1、R2 的理由如下。進行跑步等的運動時,骨格肌會消耗大量的 氧,因此會使心脈動數H R增加,而增加心排出量C〇。 換言之,對應運動強度使心脈動數HR及心排出量C〇形 成可變者。因此,使用對應心脈動數HR的評估指標X, 即使被檢驗人之運動強度發生變化時仍可連續評估心機能 〇 因此,使用本實施形態之心機能診斷裝置4 2時,可 對應被檢驗人的體型或動態變化之心脈動數HR,自動變 更臨界値R 1、R2,藉此可在日常生活中形成可連續評 估心機能者1 2 3 4 5 6 7 8 誚先閱請背面之注意事項再蛾巧本頁) -裝-SV = Ksv * S = K s v * f 1 (U, t2, t3, t4, yl, y2, y3, y4) This example uses a straight line approximation to calculate the contraction area S, and then calculates the single discharge SV based on this. Therefore, compared with the method of calculating the area S by adding the body motion to remove the pulse wave pattern MH 'for all the samples of E D during the drive-out period, the amount of calculation can be reduced. 4 — 2 — 6-2: Second aspect Secondly, the second aspect is to obtain the primary discharge from the ED and the cardiac pulse number HR during the expulsion period. Among them, the systolic area S can be calculated from the heart pulse number HR. In the pulse wave pattern MH, even if there is a personal difference or the same person, there is a personal difference. 'Most measured data can be used to measure the pulse number of a certain heart pulse hr ^ ------ iT ------- 0 (Xu first read the back note & fill in this page before filling in this page) The paper ruler used in this paper (CNS) AAim (210 x 297 ^^) -180: ab] r 416841 5. DESCRIPTION OF THE INVENTION (178) The general shape of the wave pattern MZ. In addition, once the pulse wave pattern MΗ is specified, the area S corresponding to the ED during the drive-out period can be obtained. Fig. 97 is a block diagram of the primary discharge amount detecting section 4 1 4 according to the second aspect. 4 1 4 0 is a one-time discharge scale, in which the E D and the heart pulse number HR are corresponding to each other during the cardiac expulsion period and are stored in the systolic area S. The one-time discharge volume table 4 1 4 0 is composed of a plurality of tables TB1, TB2, ···· TBn provided at the respective pulsation counts HR. Each table TB1, TB2, · _TBn stores the corresponding ED during the drive-out period Systolic area S. In addition, the contents of these tables are generated by most actual measurement tables. In addition, 4 1 4 1 is a multiplier provided at the later stage of the primary discharge volume table 4 1 40, and the primary discharge volume S V can be calculated by multiplying the coefficient K s v and the systolic area S. With the above configuration, when the discharge period E D and the cardiac pulsation number HR are supplied to the primary discharge rate table 140, the primary discharge detection unit 4 1 4 can specify a table TB corresponding to one of the cardiac pulsation number HR. When the systolic area S corresponding to the expulsion period ED is read from the table TB, the multiplier 4 1 4 1 can calculate the primary discharge amount SV. As described above, in the second aspect, the primary discharge amount SV can be calculated only from the drive-out period E D and the number of cardiac pulses HR. Therefore, the simple discharge amount SV can be obtained in a short time. In addition, in each of the above tables TB1, TB2,... TBn, the primary discharge amount SV corresponding to the drive-out period ED is stored in advance, and the multiplier 4 1 4 1 can be omitted. At this time, only SK sv needs to be stored in advance in each of the tables TB1, TB2,... TBn instead of the systolic area S, and the paper scale towel training materials (TNS) (210X 297 ^^) "181-' — 'I— I nn —Binding * ~ Class II (" 1 Notes for reading the back: this book) " 系 部 屮 " "'-^ ,, 丁丁-;, '; 秦 合^: Social seal " ΑΊ J 4 16841 __ Β7 V. Description of the invention (179) In addition, the above tables TB1, TB2,. · TBn previously store the cardiac pulsation amount C 0 corresponding to the ED during the drive-out period, which can be obtained from During the expulsion period, the cardiac output C0 is directly obtained from the ED and the cardiac pulsation number. Fig. 98 is a graph showing the cardiac output table 4140 '. At this time, only S * Ksv * HR is used in place of the systolic area S to be stored in each Tables TB 1, TB2, and TB η may be used. 4 — 2 — 7: Sixth embodiment The cardiac function diagnostic device of the first to fifth embodiments described above can use the systolic area method, which can be multiplied by the drive. The coefficient K s ν of the pulse wave profile surface S of the ED during the discharge period is used to calculate the primary discharge SV. Among them, the coefficient Ks ν is strictly different depending on the testee. Therefore, it is calculated correctly In the case of the primary discharge amount SV, it is preferable to correct the primary discharge amount SV obtained by the contraction area method. As described above, in the sixth embodiment, the first to fifth embodiments shown in FIGS. 88, 90, 93, and 94 are shown. Between the primary discharge calculation unit 4 1 4 and the cardiac discharge calculation unit 4 1 5, a single discharge correction unit 4 2 4 is provided to correct the single discharge SV. Fig. 9 9 shows a single discharge according to this embodiment. A block diagram of the amount correction section 4 2 4. The one-time discharge amount correction section 4 2 4 shown in the figure is a correction coefficient calculation section 4 2 4 for calculating the correction coefficient κΗ. The correction coefficient memory 4 2 4 stores the correction coefficient κ Η. 1 and the multiplication unit 4 2 4 2. The correction coefficient calculation unit 4 2 4 0 is from the outside of the paper if using the thermal dye dilution method, etc. The national standard 川 (rNS) " 乂 4 standard (210 X 297) Gongmeng-) -182--III--I 1— I. 1 person ^ ---- n: 1 · .... _ T m--I__I. TjV-* — I Hu And the matters needing attention 4 " · ^? This page) pr " · 好 屮 荣 J? :(, v-? P 'τ;' · ίί; rolling A ": ir · ^ 印 f A7 I 4 〖6S 4 n __B7 1_ V. Description of the invention (180 ) The machine supplies a reference primary discharge amount sv for precise measurement, and forms a primary discharge amount sv calculated by the available primary discharge amount calculation unit 4 1 4. The correction coefficient calculation unit 4 2 4 0 is composed of a divider. When a test subject operates an operation key to form a correction mode, SV r / S V is used as the correction coefficient KH to calculate. The calculated correction coefficient KH is stored in the correction coefficient memory 4 2 4 1 and is read out and used in the general measurement mode. The multiplication unit 4 2 4 2 multiplies the primary discharge amount S V by the correction coefficient KH to generate a corrected primary discharge amount SVh. According to the present embodiment described above, the correction coefficient KH is calculated in the correction mode, and the primary discharge amount SVh is calculated using the correction coefficient KH in the general measurement mode. Therefore, a more precise heart discharge amount C0 can be obtained. The cardiac function diagnostic device 42 according to this embodiment can be used, for example, for health management in a hospital or for health management during rehabilitation. More specifically, the reference primary discharge SVr can be accurately measured by a thermopigmentation dilution method after a cardiac patient or the like, and the portable cardiac function diagnostic device 42 can measure the primary discharge SV at the same time. Then, the correction coefficient KH calculated by the measurement results is memorized in advance, and the precise cardiac output C 0 is obtained by using the correction coefficient K 中 in a general measurement mode. In this way, the patient can receive a diagnosis of the cardiac function measured by the correct cardiac output C 0 while the rehabilitation is normal. 4 _ 2 _ 8: Seventh Embodiment In the seventh embodiment, the critical area that constitutes the basis of the evaluation index X corresponds to a variable body surface area. Except for the structure of the evaluation unit 4 1 '6, it is described on paper. Jfl Zhongge Minjia Biao 埤. {CNS) A4im (2I0x297 ^ f).-| Q3-'i 1 i!, Ϊ́ ^ —- 订 i 1111 # ) A7 I 4ΐββ4ί B7 5. Description of the Invention (181) The structure is the same as that of the first to sixth embodiments. In the following, the evaluation section 4 1 6 that is different is described. FIG. 10 is a block diagram of an evaluation unit 416 according to the seventh embodiment. 4 1 6 is a body surface area calculation unit ′, in which a body movement W (kg) and a height H (cm) are input, and the body surface area TS can be calculated based thereon. In this example, the body surface area T S is calculated by an experimental formula known as the so-called Du Bois formula. This experimental formula is shown below. T S = W0 425xH ° '725x 7 1. 8 4 Secondly, 4161 is a critical threshold table, in which the body surface area TS corresponds to the number of cardiac pulses and the critical threshold R1 and ruler 2 for generating the evaluation index X are stored. The critical table 4161 is composed of a plurality of tables 61 ', TB2', and · TB η '. Each table stores critical tables R1 and R2 corresponding to the number of cardiac pulses HR. When the body surface area TS is supplied, one of the tables corresponding to the body surface area TS can be selected from the tables. Therefore, by referring to the criticality table 4161, the criticality corresponding to the body surface area TS and the cardiac pulsation number HR can be obtained. R1, R2 ^ Second, 162 is a comparison unit, which can compare the criticality R1, R2 and cardiac output C 0 to generate an evaluation index X . As described above, the reason why the borrow surface area T S forms a variable critical 値 R 1, R 2 is as follows. Generally, a person with a large body surface area T S has a large specific type and a large cardiac output C 0, whereas a person with a small body surface area T S tends to have a small body shape and a small cardiac output C 0. Therefore, at the same critical 値 R 1 -184 · wood paper size used ^^ 家 棋 Apple ((, 1 ^) / \ 4 size (210 > &297; mm): ij, ¾ Department-5- ^ · Ν? '·· ι · ΪΆ 『ρν, 消 于 合 ίίτ.ί Yin Yin A7. ^ 4 16641 __B7 V. Description of the invention (182), R 2 Evaluate the cardiac output C 0 of both, during Corresponding to the evaluation of each person's cardiac function, it is necessary to use the evaluation index X corresponding to the body surface area TS to perform the cardiac function evaluation corresponding to each body type. Also, the variable heart rate HR forms a critical threshold R 1 The reasons for R2 are as follows. During exercise such as running, skeletal muscle consumes a large amount of oxygen, which increases the number of heart pulses HR and increases the cardiac output C0. In other words, the number of heart pulses HR and the heart are increased according to the intensity of exercise. The amount of discharge C0 becomes variable. Therefore, using the evaluation index X corresponding to the number of cardiac pulses HR, the cardiac function can be continuously evaluated even when the exercise intensity of the test subject changes. Therefore, the cardiac function diagnostic device of this embodiment is used At 4 o'clock, it can correspond to the pulsation number HR of the examinee's body shape or dynamic changes. Becomes more critical Zhi R 1, R2, whereby the matter can be formed continuously assess effort Mighty 12345678 insults back surface of the first reading Please note that in daily life moth clever re-page) - mounted -
*1T ^ 1 一 3 : —次排出量檢測裝置及心機能診斷裝置 2 4一3—1:機能構成 3 首先,參照圖式說明使用一次排出量檢測裝置之心機 4 能診斷裝置的機能如下。圖1 0 1是使用一次排出量檢測 5 裝置之心機能診斷裝置的機能方塊圖。圖中,f 5 1爲脈 6 波檢測手段,其可檢測脈波波型。脈波波型是例如以光學 式感測器檢測指尖部或手指指根等末梢部的血流所獲得。 7 f 5 2爲體動檢測手段,可檢測體動而輸出體動波型。藉 此可檢測人的移動。 8 本紙仄尺度试 W 中 Η K 家標肀(C'NS } ( 210X297^·^ ) . 1«5 - ί-·Γ·.::;Γ._ίίΓ-δ-··ί·行 nii;f AS5ST 私印 f r 416841 A1 ' _____B7__ 五、發明説明(183) 其次,f 5 3是體動除去手段,係根據體動波型產生 脈波波型中的體動成份•從脈波波型除去上述體動成份而 產生體動除去脈波波型。因此,即使在運動中仍可產生不 受體動影響的脈波波型。 其次,f 5 4爲判定手段,係根據體動波型的位準變 化判定體動的有無,當沒有體動時|可控制停止體動除去 手段f 5 3的動作。藉此可降低隨體動除去處理所須的運 算。 再者,f 5 5爲驅出期間檢測手段,其係根據體動除 去脈波波型檢測心臟驅出期間·驅出期間即心臟一次收縮 將血液送出大動脈的期間。並且,驅出期間E D的意義內 容中不僅表不上述嚴格之驅出期間(Ejection Duration ), 更包含心室收縮期間的時間(Sysolic Time )及估計的收縮 時間(Estimated Sysolic Time )。 其次,f 5 6爲一次排出量檢測手段,係根據驅出期 間中體動除去脈波波型算出一次排出量S V。 另外,f 5 7爲評估手段’係根據一次排出量評估心 機能之狀態者。即,心機能的評估是以心臟的一次收縮, 藉其所送出的血液量加以評估。又,f 5 8爲告知手段, 其可告知評估結果。藉此,被檢驗人或第三者之醫生可獲 知被檢驗人的心機能。 4 一 3 — 2 :第8實施形態 參閱圖式說明使用一次排出量檢測裝置之心機能診斷 本紙乐尺度这用中^內家.樣碑(('1^),\4规核(2】0)< 297公釐} ----------^ί------ΐτ------,^ (ίΐ先閱讀背IF;之注意事項再填巧本R )* 1T ^ 1 1-3: —Second discharge detection device and cardiac function diagnostic device 2 4—3-1—Functional configuration 3 First, the function of the cardiac function using the primary discharge detection device 4 is described below with reference to the drawings. Fig. 101 is a functional block diagram of a cardiac function diagnostic device using a single discharge detection device. In the figure, f 5 1 is a pulse 6 wave detection means, which can detect the pulse wave pattern. The pulse wave pattern is obtained, for example, by detecting the blood flow at a peripheral part of a fingertip or a fingertip with an optical sensor. 7 f 5 2 is a body motion detection method, which can detect body motion and output a body motion waveform. This allows the movement of people to be detected. 8 paper scale test W Chinese Η K family mark C (C'NS) (210X297 ^ · ^). 1 «5-ί- · Γ ·. ::; Γ._ίίΓ-δ- ·· ί · 行 nii; f AS5ST Private seal fr 416841 A1 '_____B7__ V. Description of the Invention (183) Secondly, f 5 3 is a body motion removal method, which generates body motion components in the pulse wave pattern according to the body wave pattern. • Removed from the pulse wave pattern The above-mentioned body motion components cause body motion to remove the pulse wave pattern. Therefore, even during exercise, pulse wave patterns that are not affected by the motion can still be generated. Secondly, f 5 4 is a determination method based on the body motion wave pattern. The level change determines the presence or absence of body movement. When there is no body movement, the operation of stopping the body movement removal means f 5 3 can be controlled. This can reduce the calculation required for the body movement removal process. Furthermore, f 5 5 is the driving force. The detection method for the ejection period is based on the removal of the pulse wave pattern based on the body movement. The cardiac ejection period and the ejection period are the periods during which the heart contracts once and sends blood out of the aorta. In addition, the meaning of ED during the ejection period not only expresses the above strictness. The ejection duration (Ejection Duration) further includes the time (sysolic time) and estimate Estimated Sysolic Time. Secondly, f 5 6 is a measure of the amount of discharge, which is based on the body movement to remove the pulse wave pattern during the drive-out period SV. In addition, f 5 7 is the means of assessment. Those who evaluate the state of cardiac function based on a single discharge. That is, the cardiac function is evaluated by the contraction of the heart by the amount of blood sent by it. In addition, f 5 8 is a means of notification, which can inform the evaluation result. Therefore, the examinee or a third-party doctor can know the examinee's cardiac function. 4-1 3-2: 8th embodiment Refer to the drawings to explain the use of the primary discharge detection device to diagnose the function of the paper. ^ 内 家 .sample stele (('1 ^), \ 4 gauge (2) 0) < 297 mm} ---------- ^ ί ------ ΐτ --- ---, ^ (ίΐRead the IF first; note the notes before filling in R)
-dj rA· IP T- MW ί 416841 Α7 __________Β7 五、發明説明(184) ~~ 裝置4 3的構成如下。此外,該例中的心機能診斷裝置 43是與「4 — 2」說明之第1章脈波診斷裝置丄相同的 外觀構成。 圖1 0 2是表示心機能診斷裝置4 3的電氣構成方塊 圖。圖中表示之心機能診斷裝置4 3與圖8 9表示之心機 能診斷裝置4 2的不同是設置變化率算出部4 1 5,來代 替心排出量算出部4 1 5。 變化率算出部415’爲平均値算出部4151與比 較部4 1 5 2所構成,可算出一次排出量SV的變化率 SV’ 。平均値算出部4151可算出一次排出量SV之 平均値S V a。例如,第η次所檢測之一次排出量以 SVn表示時,檢測一次排出量以SVn之時刻的平均値 S V a可以是測良開始所有的平均値,或者是下式所賦予 的移動平均。 SVa=(SVn-m+l + SVn-m+2 + 〜+SVn-l+SVn)/m 例如,m=6 0時,可算出約1分鐘的平均。-dj rA · IP T- MW 416841 Α7 __________ Β7 V. Description of the invention (184) ~~ The structure of the device 43 is as follows. In addition, the cardiac function diagnostic device 43 in this example has the same external configuration as the first chapter pulse wave diagnostic device 说明 described in "4-2". Fig. 102 is a block diagram showing the electrical configuration of the cardiac function diagnostic device 43. The difference between the cardiac function diagnostic device 43 shown in the figure and the cardiac function diagnostic device 42 shown in FIG. 8 is that a change rate calculation unit 4 1 5 is provided instead of the cardiac output calculation unit 4 1 5. The rate-of-change calculation unit 415 'is composed of an average value calculation unit 4151 and a comparison unit 4 1 5 2 and can calculate a rate of change SV' of the primary discharge amount SV. The average volume calculation unit 4151 can calculate the average volume SV a of the primary discharge amount SV. For example, when the discharge amount detected at the η-th time is represented by SVn, the average value at the time when the discharge amount is detected at SVn 値 S Va may be the average 値 at the beginning of the measurement, or a moving average given by the following formula. SVa = (SVn-m + l + SVn-m + 2 + to + SVn-l + SVn) / m For example, when m = 60, an average of about one minute can be calculated.
其次,比較部4152可運算SV/SVa ,算出一 次排出量變化率SV’ 。但是,每一心脈動的呼吸數一般 在4次以內,又,可獲知一次排出量SV是與呼吸同部而 變動》因此,爲了消除因呼吸所產生的變動,是將k次之 一次排出量S V加上後平均,也可以從該平均値與SV a 算出一次排出量變化率SV’ 。此時,只須選擇m>kS ----------#------iT------·φ ("'"閱讀背面之注意事項4>/!艿本頁) 本紙張X度中家標华(('NS ) Λ4规格(210'X 297公楚) -187 - AJk 部屮j'.^;?^h 二消佟合 ΐρί!'印4;々 Α7 4 16 8 4! Β7 五、發明説明(185) 4即可。 其次,評估部416爲記憶體161與比較器162 所構成,係根據變化率S V ’評估心機能而產生評估指標 X »記憶體係將變化率S之延遲所使用的臨界値與心脈動 數H R對應而加以儲存。可從記憶體讀出對應檢測時之心 脈動數HR的臨界値。臨界値是對應分級數而設定者,但 是該例中,是設定R 1、R2爲臨界値。該臨界値R 1、 R 2也可以在製品出貨時即以預先記憶其中,或者醫生或 訓練人員可於訓練開始前始加以適當設定者。 又,比較器162係比較一次排出量變化率SV’與 臨界値Rl、R2而產生評估指標X。該例中,以SV< R1產生評估指標XI,以R1SSV<R2產生評估指 標X2,以R2SSV產生評估指標X3。其中,XI〜 X 3係根據該心機能診斷裝置的使用方法而有不同的含意 。例如,使用於運動訓練時,形成可維持適當運動強度的 尺度,心臟病患者之復健中,監視心機能時可形成恢復程 度的尺度。 其次|顯示部417爲上述液晶顯示裝置210等所 構成,其中係顯示一次排出量S V、評估指標X或對應評 估指標X之訊息。此外,顯示之態樣爲表情圖、文字、記 號等。藉此可將心機能評估結果告知被檢驗人。 例如,跑步中使用該心機能診斷裝置4 3時,訓練人 員設定臨界値R 1、R 2,藉此可告知被檢驗人保持適當 的一次排出量SV p此時’以評估指標X 1爲「提高步調 本紙烺尺度珣用中段阀家棉肀((,NS } Λ4規格UlOx 297公笔) -188- --------1裝-- (誚先閱讀背而之注意事項再功寫本頁) 丁 --° v. VIV d^J.'w 工,;π费々< Μίι-印;„十 Α7 Γ 41684! A 7 B7 五、發明説明(186) j 、以評估指標X2爲「維持步調j 、以評估指標X3爲 「降低步調」等訊息文顯示於顯示部4 1 7即可。 但是,自立訓練法又稱爲集中式自己鬆弛法,藉著緊 張的消除,可有助於健康增進與健康的恢復爲—般所知者 。其中,是以放鬆神精的狀態爲主題。但是,即使有放鬆 的意識,但可能爲其所吸引而陷入更爲緊張的狀態》 如上述可獲知自己的精神狀態時,可有效地進行訓練 。因此,上述之一次排出量變化率SV’是構成顯示放鬆 程度的指標。即,一次排出量變化率S V ’小時,精神是 形成接近安定放鬆的狀態》 如上述,也可以將臨界値R 1 ' R 2設定在可判定放 鬆的程度。例如,藉自立訓練法醫生對於臨界値R 1、 R 2的設定,可告知被檢驗人的精神狀態。此時,以評估 指標XI爲「非常放鬆」、以評估指標X2爲「維持此一 狀態」、以評估指標X 3爲「放鬆心情,想像著舒暢的感 覺」等訊息文顯示於顯示部即可。 4 一 3 — 3 :第9實施形態 其次說明第9實施形態有關的心機能診斷裝置4 3如 下。圖1 0 3爲第9實施形態相關之心機能診斷裝置4 3 的方塊圖。第9實施形態雖是使用與第8實施形態相同之 加速度感測器1 3 0及波型處理部4 1 0檢測出體動成份 MHt ,但是與第8實施形態說明之體動除去,及利用波 轉換進行心脈動數與驅出期間之檢測點不同》即,對應圖 木紙汰尺度这州屮同囚家榡呤(rNS ) Λ4規格(210x297公漦} -189 - ---------象— {1A先閱請背而之;i意事項再硝巧本頁) 訂 線 )416841 A7 __ B7 五、發明説明(187 ) 9 0說明之第2實施形態者,與圖9 0相同之構成即賦予 相同的符號》 例中,體動除去部4 1 1是從脈波波型MH所獲得之 脈波修正數據MKD’減去體動波型TH所獲得的體動修 正數據TKD’ ,藉此產生體動除去脈波數據MKD” 。 並且,根據體動除去脈波數據MKD”可進行一次排出量 S V等的算出。 因此,與第8實施形態相同,可持續除去體動的影響 •利用波轉換算出收縮期面積S,藉此可算出一次排出量 SV,可獲得正確之一次排出量SV。其結果,可以正確 地評估心機能者。 4-3 — 4 :第10實施形態 上述之第9實施形態是藉波轉換進行頻率解析。因此 係使用第1子波轉換部420、第1頻率修正部421、 第2子波轉換部4 2 2、第2頻率修正部4 2 3 »相對於 此,第1 0實施形態於省略第2子波轉換部422、第2 頻率修正部4 2 3之點與第9實施形態不同。即,第1 〇 實施形態是對應於上述之第3實施形態(參閱圖9 3 )。 圖1 0 4爲第1 0實施形態有關之心機能診斷裝置 4 3的方塊圖。圖中,藉體動除去部4 1 1產生除去體動 成份後的體動除去脈波波型MH’時,第1子波轉換部 420是對體動除去脈波波型MH’施以子波轉換。第1 頻率修正部4 2 1則是對第1波轉換部4 1 6的輸出施以 本纸张尺度试州中K S家標呤{ C'NS ) Λ4^ ( 210x297^# ) :伽. - I— I n i 1 I u 从 (兑1閱请背而之注意事項再蛾s本莨) at / 4 16841 ____ B7___五、發明説明(188) 子波轉換而產生體動除去脈波數據MKD” · 如上述,第1 0實施形態中,即使與第3實施形態相 同省略第2波轉換部422'第2頻率修正部423時, 仍可算出一次排出量SV或一次排出量變化率SV’ ,因 此可以簡單的構成診斷心機能狀態。 4-3 — 5 :第1 1實施形態 第8〜第1 0實施形態中,是藉加速器感測器1 3 0 檢測體動波型TH,將脈波波型MH與體動波型TH比較 ,可消除包含於脈波波型MH之頻率成份的體動成份 > 算 出心脈動數HR與驅出期間ED,而可根據該等診斷心機 能狀態。但是,必須具加速器感測器1 3 0及波型處理部 4 1 0等,形成複雜之構成。第1 1實施形態是有鑑於該 點所硏創而成者,是以簡單的構成|提供即使具有體動仍 可正確診斷心機能狀態之心機能診斷裝置者。即,第1 1 實施彤態係對應上述之第4實施形態者》 圖1 0 5爲第1 1實施形態有關之心機能診斷裝置 4 3的方塊圖。該心機能診斷裝置4 3中除了加速度感測 器130’ '判定部411’ 、波型處理部410、第2 波轉換部4 2 2及第2頻率修正部4 2 3的點及體動除去 部4 1 1之內部構成外,與圓1 0 3表示之第9實施形態 有關的心機能診斷裝置4 3相同。 該例之體動除去部411是與第4實施形態之體動除 去部411相同的構成。即,第11實施形態之體動除去 — I — i !| n 訂. 線 <誚尤閱讀背而之注意事項再"巧本頁) 本紙尺度邊用中K S家榇肀((’NS ) Λ4規格(210 X 297公« ) -191 - A7 f 4 16841 B7 五、發明説明(189) 部411,體動波型ΤΗ的頻率成份是著眼低於脈波波型 ΜΗ之基本波頻率的頻率領域之點,從脈波修正數據 MKD?分離除去體動成份而產生體動除去脈波數據 Μ K D ” 。 因此,可省略第8〜第1 0實施形態必要之加速度感 測器1 3 0及波型處理部4 1 0等構成,並即使存在有體 動時仍可正確地診斷心機能狀態者。 4 — 3 — 6 :第12實施形態 第12實施形態是有關第8實施形態說明之一次排出 量算出部4 1 4的變形例,其他構成部份是與第8實施形 態相同。第1 2實施形態之一次排出量算出部4 1 4具有 以下的態樣。 4 — 3_6 — 1 :第1態樣 首先,第1態樣中,是從驅出期間ED的體動除去脈 波波型ΜΗ’各峰値Ρ1〜Ρ4之血壓値及該等發生時刻 算出一次排出量S V。體動除去脈波波型ΜΗ’係表示於 圖6者,以Ρ0至Ρ4的期間作爲驅出期間E D時,可以 下式算出一次排出量SV < S V = Ksv* S ------ = Ksv* f 1 (tl, t2, U uyi.y2,y3.y4) —Ksv* It I *yi+(t 2-i j) * (y !-|-y2)-|. (y2+y 3) + U 4~ 13) (y3+y4))/2 4一、紙笊尺中囷K家捃今((_NS ) Λ4规格(2】0>< 297公釐} . ^2 - - -訂 線 ("1聞讀背而之:;1恁事,ft再:本頁) 又 f A Η #: A7 B7 I* 4 16841 五、發明説明(190 ) 該例是以直線近似算出收縮期面積S,可據此算出一 次排出量S V。 因此,針對驅出期間E D的所有抽樣,與加上體動除 去脈波波型MH’算出面積S的方法比較,可刪減運算量 。該點係與第5實施形態之第1態樣相同(參閱4-2-6 - 1 )。 4 — 3 — 6 - 2 :第2態樣 首先,針對構成第2態樣前提之驅出期間ED與脈波 波型ΜΗ的關係說明如下。該點係運用於各種醫學上的硏 究’但是「Disparities Between Arotic and Perpheral Pulse Pressures Induced by Upright Exercise and Vasomotor Changes in Man. Circulation, VOL XXVII,June 1968」係將 患有心臟病人的運動強度與橈骨動脈波型的關係記載於圖 106中。同圖中,運動強度增大時,依照(a)—(b )—(c ) — ( d )的順序使骨動脈的脈波波型發生變化 。圖中,可獲知運動強度增大時收縮期血壓Pm a X會逐 渐增大,同時會縮短驅出期間E D。另一方面,可獲知擴 張期血壓Pm i η即使增加運動強度也不致有多大變動。 即,對應運動強度,使脈波波型的形狀動態變化,雖之可 使一次排出量SV變動者。 其中,圖1 0 7是以模式表示圖1 0 6所示之骨動脈 之脈波波型ΜΗ的形狀。圖107(a)是處於安靜狀態 的人之脈波波型MH的典型例,其波形型狀即稱爲平脈· 4、纸仄尺度珀用中国囚家樣準(i—NS ) Λ4規格(210X 297公釐> ----------裝------訂------Μ (誚汔閱讀背而之注悉事項再iA(;li本頁) -193- A7 i 4 16 8 41 B7 五、發明説明(191) 具有明確呈現重叠脈動前波(Tidalwave )之點的特徵♦該 重疊脈動前波是藉著心臓所送出的血液使大動脈彈性擴大 及以末梢反射波的相互關係所產生· 具平脈的人於進行運動時,脈波波型的形狀是如同圖 (a )—同圖(b)—同圖(c )所示依序地變化。即, 隨著運動強度的增加,會使重叠脈動前波的明確度隨之喪 失,變化成稱爲滑脈的波型形狀》換言之,對應運動強度 的變化使脈波波型的波型形狀變化,隨著使收縮期面積S 發生變化者。 又,同圖(a)〜(c)中,驅出時間ED是隨運動 強度的增加使波型形狀產生變化時,可獲之雖ED 1 — E D 2 — E D 3順序逐渐減少。此係增加運動強度時,從 大動脈閥的開放至封閉爲止的時間間隔隨著縮短,形成主 波與末梢反射波接近而導致重叠脈動前波消失的起因《因 此,驅出時間E D是與心臟收縮·擴張動作有著密切的關 係,因此可獲得形成特定脈波波型形狀的指標。 如上述之驅出時間E D是形成特定脈波波型形狀的基 礎,但是同圖(a)〜(c)表示之收縮期血壓Pma X 與擴張期血壓Pm i η的差也可以形成表示各脈波波型 ΜΗ 1〜ΜΗ 3大小的指標。又,收縮期面積S係如圖 3 6所示,可以相當於交流量之面積S 1 (以下,稱交流 面積)與相當於直流量的面積S 2 (以下,稱直流面積) 兩者的和表示。其中,直流面稹S2形成Pm i nxED ,另一方面,交流面積S 1是對應Pma x - Pm i η及 -194- 本纸艮尺度迖+ 家標碲{ CNS ) Λ4規枋(210X297公釐) :c、;ps,·中次^·#---1^资合:^ S 4 1 6 8 4 Γ A7 . 1 _____B7 五、發明説明(似) E D而決定。 其中,第2態樣係根據收縮期血壓Pma X '擴張期 血壓Pmi η及驅出期間ED,算出收縮期面積S,並根 據該算出結果求得一次排出量SV。 圖1 0 8爲第2態樣有關之一次排出量檢測部4 1 4 的方塊圖。4 1 4 1爲減法器,從收縮期血壓Pma X減 去擴張期血壓Pm i η。其中,收縮期血壓Pma X係體 動除去脈波波型之峰値P 1的血壓數據,擴張期血壓 P tn i η係體動除去脈波波型之峰値P 〇的血壓數據。又 1 4 1 4 2爲收縮期面積表,其中係對應心臟驅出期間 ED與Pma X — Pm i η而儲存有交流面積S 1。該縮 期面積表4 1 4 2是對應Pma X - Pm i η所設置之複 數個表ΤΒ1、ΤΒ2、 , .ΤΒη等構成,各個表 ΤΒ1,ΤΒ2、‘ . ΤΒη中儲存有對應驅出期間ED 的交流面積(參閱圖8 6 )。並且該等表的內容是由多數 的實測數據所產生。 又,4 1 4 3爲乘法器,將驅出期間ED乘以擴張期 血壓Pmi η,輸出直流面積S2 (參閱圖86)。又, 4 1 4 4爲加法器,是將交流面積S 1加上直流面積S 2 而產生收縮期面積S。又,4145爲乘法器,係將係數 K s ν乘以收縮期面積S而算出一次排出量SV » 藉上述之構成,可將驅出期間ED及Pma X — m i η供應於收縮期面積表4 1 4 1時,可特定對應 Pma x_m i η之一張表ΤΒ。之後從該表ΤΒ讀出對 本紙依尺度这;彳]中囡國家標净(('1>;5}/以規格(210乂297公漦) -195-Next, the comparison unit 4152 can calculate SV / SVa to calculate the primary discharge rate SV '. However, the number of breaths per cardiac pulse is generally within 4 times, and it can be known that the one-time discharge SV changes in the same part as the breath. Therefore, in order to eliminate the change caused by breathing, the k-time discharge SV After adding the average, the primary discharge change rate SV ′ can also be calculated from the average 値 and SV a. At this time, just select m > kS ---------- # ------ iT ------ · φ (" '" Read the notes on the back 4 > /!艿 This page) X-degree Chinese standard Chinese paper (('NS) Λ4 size (210'X 297 Gongchu) -187-AJk 部 屮 j'. ^;? ^ H 二 消 佟 合 ΐρί! '印 4 々Α7 4 16 8 4! Β7 V. Invention description (185) 4 is sufficient. Secondly, the evaluation unit 416 is composed of the memory 161 and the comparator 162, and the evaluation index X is generated based on the change rate SV 'to evaluate the cardiac function. »The memory system stores the critical threshold used for the delay of the rate of change S in correspondence with the number of cardiac pulses HR. The critical threshold corresponding to the number of cardiac pulses HR at the time of detection can be read from the memory. The setter, but in this example, R 1 and R 2 are set as critical thresholds. The critical thresholds R 1 and R 2 can also be stored in advance when the product is shipped, or the doctor or trainer can start before the training starts. The comparator 162 compares the change rate SV 'of the discharge volume with the thresholds 値 R1 and R2 to generate the evaluation index X. In this example, the evaluation index XI is generated by SV < R1, and R1SSV < R2 The health evaluation index X2 is generated by R2SSV. Among them, XI ~ X3 have different meanings according to the usage method of the cardiac function diagnostic device. For example, when used in sports training, it forms a scale that can maintain proper exercise intensity. In the rehabilitation of patients with heart disease, the degree of recovery can be formed when the cardiac function is monitored. Secondly, the display section 417 is composed of the above-mentioned liquid crystal display device 210 and the like, and displays the discharge amount SV, the evaluation index X, or the corresponding evaluation index. The message of X. In addition, the displayed forms are emoticons, text, marks, etc. This can inform the testee of the result of the cardiac function evaluation. For example, when using the cardiac function diagnostic device 43 during running, the trainer sets the threshold値 R 1 and R 2 to inform the examinee to maintain an appropriate primary discharge SV p. At this time, take the evaluation index X 1 as "improve the size of the paper, and use a mid-range valve cotton 肀 ((, NS} Λ 4 Specifications UlOx 297 male pen) -188- -------- 1 pack-(诮 read the precautions before writing this page) Ding-° v. VIV d ^ J.'w , Π 费 々 < Μίι- 印 ; „十 Α7 Γ 41684! A 7 B7 V. Description of the invention (186) j, with the evaluation index X2 as "maintaining pace j" and evaluation index X3 as "decreasing pace" are displayed on the display section 4 1 7. However, independent training The method is also known as the centralized self-relaxation method, which can help to improve health and restore health by the elimination of tension. The theme is to relax the spirit. However, even if you have a relaxed consciousness, you may be attracted to a more tense state. ”As mentioned above, you can effectively train yourself when you know your mental state. Therefore, the above-mentioned rate of change in primary discharge SV 'is an index constituting the degree of relaxation. In other words, when the rate of change in the primary discharge amount S V 'is small, the spirit is in a state of near-stability and relaxation. As described above, the threshold 値 R 1 ′ R 2 may be set to a level at which the looseness can be determined. For example, by setting the thresholds 値 R 1 and R 2 by a self-reliance training doctor, the mental state of the examinee can be informed. At this time, the evaluation index XI is "very relaxed", the evaluation index X2 is "maintained in this state", and the evaluation index X 3 is "relaxed, imagining a feeling of relaxation" and so on. . 4-1 3-3: Ninth Embodiment Next, a cardiac function diagnostic device 4 according to the ninth embodiment will be described below. Fig. 103 is a block diagram of a cardiac function diagnostic device 43 according to a ninth embodiment. Although the ninth embodiment detects the body motion component MHt using the same acceleration sensor 130 and the wave shape processing unit 4 10 as those in the eighth embodiment, it removes and uses the body motion described in the eighth embodiment. The number of cardiac pulsations during wave conversion is different from the detection point during the expulsion period. That is, the state corresponding to the map and paper scale is the same as the prisoner's purine (rNS) Λ4 size (210x297). -189------- --- Like— {1A Please read it first; please refer to this page for further details) Order line) 416841 A7 __ B7 V. Description of the invention (187) 9 0 The second embodiment of the description, and Figure 9 0 The same structure is given the same symbol. In the example, the body motion removing unit 4 1 1 is the body motion correction data obtained by subtracting the body motion pattern TH from the pulse wave correction data MKD 'obtained from the pulse wave pattern MH. TKD ', thereby generating the body motion-removed pulse wave data MKD ". Further, based on the body motion-removed pulse wave data MKD", calculation of the discharge amount SV and the like can be performed once. Therefore, as in the eighth embodiment, the influence of body motion can be continuously removed. • The systolic area S can be calculated by wave conversion, thereby calculating the primary discharge amount SV, and obtaining the correct primary discharge amount SV. As a result, it is possible to correctly evaluate the cardiac function person. 4-3 — 4: Tenth Embodiment The ninth embodiment described above performs frequency analysis by wave conversion. Therefore, the first wavelet conversion section 420, the first frequency correction section 421, the second wavelet conversion section 4 2 2, and the second frequency correction section 4 2 3 are used. In contrast, the tenth embodiment is omitted from the second embodiment. The wavelet conversion unit 422 and the second frequency correction unit 4 2 3 are different from the ninth embodiment. That is, the tenth embodiment corresponds to the third embodiment described above (see FIG. 9 3). Fig. 104 is a block diagram of a cardiac function diagnostic device 43 according to the tenth embodiment. In the figure, when the body motion removing section 4 1 1 generates a body motion removing pulse wave pattern MH ′ after removing the body motion components, the first wavelet conversion section 420 applies a sub-wave to the body motion removing pulse wave pattern MH ′. Wave conversion. The first frequency correction unit 4 2 1 is to apply the KS family standard (C'NS) Λ4 ^ (210x297 ^ #) in the state of this paper to the output of the first wave conversion unit 4 1 6: Gamma.-I — I ni 1 I u From (please refer to the precautionary note for 1), at / 4 16841 ____ B7___ V. Description of the invention (188) The body wave is generated by wavelet conversion to remove the pulse wave data MKD ” · As described above, in the tenth embodiment, even when the second wave conversion section 422 'and the second frequency correction section 423 are omitted as in the third embodiment, the primary discharge amount SV or the primary discharge amount change rate SV' can be calculated. Therefore, the cardiac function can be diagnosed with a simple configuration. 4-3 — 5: In the 11th and 8th to 10th embodiments, the body motion wave type TH is detected by the accelerator sensor 130 and the pulse wave is detected. The comparison of the wave pattern MH and the body wave pattern TH can eliminate the body motion component of the frequency component included in the pulse wave pattern MH > Calculate the number of heart pulses HR and the ED during the expulsion, and the heart function can be diagnosed based on these. However, it is necessary to have an accelerator sensor 130 and a wave shape processing unit 4 10, etc., to form a complicated structure. The eleventh embodiment is based on this point. The original creator has a simple structure | provided a cardiac function diagnostic device that can accurately diagnose the cardiac function state even when the body is in motion. That is, the first 11th embodiment corresponds to the fourth embodiment described above. " 1 0 5 is a block diagram of a cardiac function diagnostic device 43 according to the eleventh embodiment. The cardiac function diagnostic device 43 includes the acceleration sensor 130 ′, the determination section 411 ′, the waveform processing section 410, and the second The points of the wave conversion section 4 2 2 and the second frequency correction section 4 2 3 and the internal motion removal section 4 1 1 are the same as the cardiac function diagnostic device 43 according to the ninth embodiment indicated by the circle 103. The body motion removing section 411 of this example has the same configuration as the body motion removing section 411 of the fourth embodiment. That is, the body motion removing section of the eleventh embodiment — I — i! | N Order. Line < Chiyou Reading Note from the back " clever page) KS furniture in the side of the paper size (('NS) Λ4 specifications (210 X 297 male «) -191-A7 f 4 16841 B7 V. Description of the invention (189) Section 411, the frequency component of the body motion wave type TQ is focused on the frequency range lower than the fundamental wave frequency of the pulse wave type MQ. Point, separating and removing body motion components from the pulse wave correction data MKD? To generate body motion removing pulse wave data M KD ". Therefore, the acceleration sensor 130 and the wave pattern necessary for the eighth to tenth embodiments can be omitted. The processing unit 410 is configured to accurately diagnose a cardiac function state even when there is body movement. 4 — 3 — 6: Twelfth Embodiment The twelfth embodiment is a modification of the primary discharge amount calculation unit 4 1 4 described in the eighth embodiment. The other components are the same as the eighth embodiment. The primary discharge amount calculation unit 4 1 4 of the twelfth embodiment has the following aspects. 4 — 3_6 — 1: First aspect First, in the first aspect, the blood pressure of each peak (P1 ~ P4) of the pulse wave pattern Μ ′ ′ is removed from the body motion of the ED during the drive-out period and the occurrence time is calculated once. Discharge amount SV. The body motion-removing pulse wave pattern M ′ ′ is shown in FIG. 6. When the period P0 to P4 is used as the drive-out period ED, the primary discharge amount SV < SV = Ksv * S ------ = Ksv * f 1 (tl, t2, U uyi.y2, y3.y4) —Ksv * It I * yi + (t 2-ij) * (y!-| -Y2)-|. (Y2 + y 3) + U 4 ~ 13) (y3 + y4)) / 2 4 I. Paper House Ruler K Family House Today ((_NS) Λ4 Specification (2) 0 > < 297 mm}. ^ 2---Order Line (" 1 read and read back:; 1 恁 事, ft re: page) again f A Η #: A7 B7 I * 4 16841 V. Description of the invention (190) This example uses a straight line approximation to calculate the contraction period The area S can be used to calculate a single discharge SV. Therefore, compared with the method of calculating the area S by adding the body movement to remove the pulse wave pattern MH 'for all samples during the ED, the amount of calculation can be reduced. It is the same as the first aspect of the fifth embodiment (see 4-2-6-1). 4 — 3 — 6-2: The second aspect First, the ED and The relationship of the pulse wave pattern MΗ is explained below. This point is applied to various medical studies' but "Disparities Between Arotic and Perphe ral Pulse Pressures Induced by Upright Exercise and Vasomotor Changes in Man. Circulation, VOL XXVII, June 1968 "records the relationship between exercise intensity and radial arterial wave shape in people with heart disease in Figure 106. In the same figure, the increase in exercise intensity When it is large, the pulse wave patterns of the bone arteries are changed in the order of (a)-(b)-(c)-(d). In the figure, it can be seen that the systolic blood pressure Pm a X will gradually increase when the exercise intensity increases. Increasing and shortening the ED during the expulsion period. On the other hand, it can be seen that the blood pressure Pm i η during the dilatation period does not change much even if the exercise intensity is increased. That is, the shape of the pulse wave pattern is dynamically changed according to the exercise intensity. It can make the primary discharge SV fluctuate. Among them, Fig. 107 shows the shape of the osseous arterial pulse wave pattern MZ shown in Fig. 106 in a pattern. Fig. 107 (a) shows a person in a quiet state. A typical example of the pulse wave pattern MH, its waveform shape is called Pingmai. 4. The paper scale is used in China (i-NS) Λ4 size (210X 297 mm > ------) ---- install ------ order ------ Μ (诮 汔 read the notes on the back and then iA (; (li this page) -193- A7 i 4 16 8 41 B7 V. Description of the invention (191) It has the characteristics of clearly presenting the overlapping pulsatile wave (Tidalwave) ♦ The overlapping pulsatile wave is caused by the blood sent by the palpitations The expansion of the aorta elasticity and the correlation between the peripheral reflected waves. When a person with a flat pulse is exercising, the shape of the pulse wave pattern is as shown in Figure (a)-Figure (b)-Figure (c). Sequentially changed. That is, as the intensity of the exercise increases, the clarity of the overlapping pulsatile waves is lost and changes into a wave shape called a Hua mai. In other words, the shape of the pulse wave shape changes in response to the change in exercise intensity. , With the change in the systolic area S. Also, in the same figures (a) to (c), when the drive-out time ED changes the wave shape as the intensity of the movement increases, it can be obtained that although the order of ED 1-E D 2-E D 3 gradually decreases. When this system increases the intensity of exercise, the time interval from the opening to the closing of the aortic valve decreases with the formation of the main wave and the peripheral reflected wave that cause the overlapping pulse wave to disappear. Therefore, the ejection time ED is due to contraction of the heart. · The expansion action is closely related, so it is possible to obtain an index forming a specific pulse wave shape. As described above, the expulsion time ED is the basis for forming a specific pulse wave shape, but the difference between the systolic blood pressure Pma X and the dilated blood pressure Pm i η shown in the same diagrams (a) to (c) can also be used to represent each pulse. Wave size MΗ1 ~ MΗ3 size index. The area S during the contraction period is shown in FIG. 36, and may be the sum of the area S 1 (hereinafter, referred to as the AC area) equivalent to the AC quantity and the area S 2 (hereinafter, referred to as the DC area) equivalent to the DC quantity. Means. Among them, the DC surface 稹 S2 forms Pm i nxED, on the other hand, the AC area S 1 is corresponding to Pma x-Pm i η and -194- paper scale 迖 + house-type tellurium {CNS) 枋 4 gauge (210X297 mm) ): C,; ps, · Medium times ^ · # --- 1 ^ Cooperation: ^ S 4 1 6 8 4 Γ A7. 1 _____B7 V. Description of the invention (like) ED. Among them, the second aspect is to calculate the systolic area S based on the systolic blood pressure Pma X 'expansion blood pressure Pmi η and the expulsion period ED, and to obtain a primary discharge SV based on the calculation result. FIG. 108 is a block diagram of the primary discharge amount detecting section 4 1 4 related to the second aspect. 4 1 4 1 is a subtractor, which subtracts the diastolic blood pressure Pm i η from the systolic blood pressure Pma X. Among them, the systolic blood pressure Pma X is the blood pressure data of the body motion removed pulse wave pattern peak 値 P 1, and the dilated blood pressure P tn i η is the blood pressure data of the pulse motion wave peak 动 P 0. 1 4 1 4 2 is the systolic area table, in which the AC area S 1 is stored corresponding to ED and Pma X — Pm i η during cardiac expulsion. The contraction area table 4 1 4 2 is composed of a plurality of tables TB1, TB2, .TBN, etc. which are set corresponding to Pma X-Pm i η. Each table TB1, TB2, '. TBη stores a corresponding drive-out period ED AC area (see Figure 8 6). And the contents of these tables are generated from most of the measured data. Furthermore, 4 1 4 3 is a multiplier, which multiplies the ED during the drive-out period by the dilated blood pressure Pmi η to output a DC area S2 (see FIG. 86). In addition, 4 1 4 4 is an adder, which is a contraction period area S generated by adding an AC area S 1 to a DC area S 2. In addition, 4145 is a multiplier, which multiplies the coefficient K s ν by the contraction area S to calculate the primary discharge amount SV. »With the above-mentioned configuration, the drive-out period ED and Pma X — mi η can be supplied to the contraction area. Table 4 At 1 4 1, a table TB corresponding to Pma x_m i η may be specified. Then read from the table TB on the paper according to the standard; 彳] in the national standard net (('1 >; 5} / in specifications (210 乂 297)) -195-
In I"v . I 11 n M 先聞讀背而之注意事項再禎.;!^本頁) A7 " 416841 A7 ______ B7 五、發明説明(193) 應驅出期間ED的交流面積S 1時,於加法器4 1 4 4中 ,運算交流面積S 1與直流面積S 2的和,並對應其結果 產生一灰排出量SV。In I " v. I 11 n M ^ This page) A7 " 416841 A7 ______ B7 V. Description of the invention (193) When the AC area S 1 of ED should be driven out, calculate the sum of the AC area S 1 and the DC area S 2 in the adder 4 1 4 4 And, corresponding to the result, an ash discharge amount SV is generated.
如上述,第2之態樣是根據收縮期血壓Pma X、擴 張期血壓Pm i η及驅出期間ED可求得一次排出量SV ,因此可以簡單構成於短時間內求得一次排出量SV β 再者,上述之各表ΤΒ1、ΤΒ2 . · ΤΒη是對應 Pm a X - m i η的値而設置複數個,但僅設置一代表性 者,以Pm a X — in i η修正由該等所獲得的交流面積 S 1,而可作爲收縮期面積表1 4 2的輸出。 4一3—6_3:第3態樣 其次,說明第3態樣有關之一次排出量檢測部4 1 4 如下β圖1 0 9爲第3態樣之一次排出量檢測部4 1 4的 方塊圖,除了設有血壓記憶體4 1 4 6的點之外,與圖 1 0 8表示第2態樣之一次排出量檢測部4 1 4相同。其 中,血壓記憶體4 1 4 6中預先儲存有對應心脈動數HR 之收縮期血壓Pma X及擴張期血壓Pm i η。於血壓記 億體4 1 4 6儲存數據時,可將心機能診斷裝置4 3設定 於預備模式,使被檢驗人可進行心脈動數HR變化之適當 的運動《如此,對應運動強度使被檢驗人的心脈動數HR 變化的同時,可對應於此而使得收縮期血壓Pma X與擴 張期血壓Pm i η發生變化。血壓記億體4 146可將此 時所獲得的收縮期血壓Pma X與擴張期血壓Pm i η對 -196- 本紙佐尺度ii州中内民家標今.(C,NS ) Λ4規格(210X297公Μ ) 七·.-"•中,ν^>;τ^π 1;'·ί,;^"βΐ!ίρν at ' 416841 __B7 五、發明说明(194 ) 應心脈動數HR而予以儲存。 另一方面,於一次排出量S V的測定模式中,將所計 測之心脈動數HR供應於血壓記憶體4 1 4 6時,可形成 輸出收縮期血壓Pm a X及擴張期血壓Pm i η者。 因此,例中之一次排出量檢測部4 1 4中供應心脈動 數HR時,可求得收縮期血壓pm a X與擴張期血壓 Pmi η者。並且,與上述第2態樣相同,可根據該等値 與驅出期間ED運算一次排出量SV。 4 一 3 — 6 — 4 :第4態樣 上述之第3態樣中,是藉對應心脈動數HR、收縮期 血壓Pma X及擴張期血壓Pm i η,而以一次排出量檢 測部4 1 4的輸入作爲心脈動數HR與驅出期間ED。其 中一次排出量S V是以心脈動數HR與驅出期間E D爲變 數的函數表示之意》第4態樣是有鑑於該點所硏創者,係 以更簡易之構成算出一次排出量S V爲目的者。 第4態樣之一次排出量檢測部4 1 4是與圖9 7表示 者相同。此時,將驅出期間E D與心脈動數HR供應於一 次排出量表4 1 4 7時,一次排出量檢測部4 1 4可特定 對應心脈動數HR之1表TB。之後從該表TB讀出對應 驅出期間ED之收縮期面積S時,乘法器4 1 4 1可運算 一次排出量S V。 如上述,第4態樣中,由於只須自驅出期間ED與心 脈動數HR算出一次排出量SV,因此可在短時間內以簡 4、紙张尺度鸿^中RS家標肀(c’NS ) Λ4規格(210><297公楚"1 . 1〇7 -~~" ' I K I > I ^ I n Φ· {邻先閏讀f而之注意事項再"巧本頁) 中·ν""·"ΰί ^印:^ I 41684Ϊ. A7 ________B7_ 五、發明説明(195) 單的構成及可求得一次排出量S V。此外,於上述各表 ΤΒ.1、ΤΒ2、. ·ΤΒη中儲存對應驅出期間ED之 —次排出量SV時,可省略乘法器4141。此時,可將 S*Ksv儲存在各表ΤΒ1、ΤΒ2、 .·ΤΒη中以 代替收縮片積S » 4一3-7:第13實施形態 上述第8〜第1 2實施形態之心機能診斷裝置4 3可 運用收縮期面積法,而乘以驅出期間E D之脈波波型面積 S的係數K s ν算出一次排出量SV。在此,係數Ks V 嚴格而言是根據被檢驗人而有所不同》因此,爲了正確算 出一次排出量SV,最好是修正收縮期面積法所獲得的一 次排出量S V » 其中,第13之實施形態中,圖102、103、 1 0 4及1 0 5表示之第8〜第1 2實施形態的一次排出 量算出部4 14與變化率算出部41 5’之間,設置第6 實施形態說明之一次排出量修正部4 2 4,可進行一次排 出量SV之修正者(參閱圖9 9) » 即,與圖6實施形態相同,一次排出量修正部4 2 4 可產生修正後的一次排出量SVh » 根據上述之本實施形態,於校正模式中算出修正係數 KH,並在一般的測定模式中利用修正係數KH算出修正 後的一次排出量S V h,因此可更正確地評估心機能者。 n n m - I If m - . t If I T (I n n m -I. c^之閱讀背而之,注悉事項再^巧本否) 本纸浓尺度巾KS家栳卒((,NS ) /\4現輅{ 210X 297公漦) -198 - A7 4)6841 B7五、發明説明(196) 4一3—8:第14實施形態 第14實施形態是使構成評估指標X基準的臨界値對 應體表面積爲可變者,除評估部4 1 6之構成外,皆與第 8〜第13實施形態之構成相同》即,第14實施形態係 與第7實施形態對應者。 圖110爲第14實施形態之評估部416’的方塊 圖。該評估部416’與圖100表示之第7實施形態的 評估部416不同的是以一次排出量變化率SV’代替心 排出量CO輸入比較部162內。 該評估部416’中,體表面積算出部4160是根 據體重W (Kg)與身高H ( cm)算出體表面積TS。 並且將體表面積T S供應於臨界値表1 6 1時,從各表中 可選擇對應體表面積T S之1表。所選擇的表中使之對應 心脈動數HR儲存臨界値R 1、R 2。另一方面臨界値表 1 6 1係形成可輸入測定時之臨界値R 1,R2,因此可 獲得對應測定時之心脈動數HR的臨界値R 1、R 2。之 後,比較部4162係比較臨界値R1、R2與一次排出 量變化率SV’而產生評估指標X。 因此•使用實施形態之心機能診斷裝置4 3時,可對 應被檢驗人的體型或動態變化之心脈動數HR,自動變更 臨界値R 1、R 2,藉此可在曰常生活中連續地評估新機 能者》 4 — 4 :變形例 ---------裝------訂------腺 {"1"讀疗而之注意事邛再功巧本Κ ) 本纸乐尺度述用中家標導() Λ4規格(210Χ297公茇) -199- a7 .f,416841 __B7五、發明説明(197) 本發明當然不僅限於上述之實施形態者,例如可進行 以下的各種變形。 / 4 - 4 — 1 :頻率修正部的省略上述之第2〜第4實 施形態,或第9〜第1 1實施形態中,在不同頻率領域比 較能源時是使用第1頻率修正部4 2 1或第2頻率修正部 4 2 3,將修正結果與臨界値比較可求得最大峰値 Pm a X等•此時以臨界値本身考慮作爲頻率修正之用而 可省略各頻率修正部。 4 — 4 一 2 :濾波器組的運用例 上述第2〜第4實施形態,及第9〜第1 1實施形態 中,雖實行子波轉換,但也可以使用濾波器組進行子波轉 換。濾波器組是例如使用第1章說明之圖3 0所表示者。 4 — 4 一 3 :體動除去部4 1 1的變形例 也可以第4實施形態說明之子波轉換進行上述第1實 施形態或第8實施形態之體動除去部4 1 1。此時,對除 去體動後的子波施以第1章說明第2式表示之逆子波轉換 而進行波型的再合成,根據再合成之脈波波型算出心脈動 數H R與驅出期間E D即可。又,逆子波係使用逆濾波器 組之構成即可。此時,逆子波轉換部也可以圖3 1表示之 濾波器組構成。 ----------^------1τ------^ {"先W讀背而之注意事項再坫g本頁) -200- Γ 416841 Α7 , Β7 五、發明説明(198) 4_4一4:告知手段的變形例 又,上述之各實施形態中,雖是說明以顯示部417 作爲告知手段之一例,但是如第1章之「1 — 8 - 6 :告 知手段之其他例」說明,當然也可以使之變形》 4 — 4 一 5 :使用形態之變形例 上述之實施形態中,心機能診斷裝置的形態雖是手鏔 構造,但本發明不僅限於此β例如,也可以如第1章說明 之眼鏡式(參閱圖34)、項鍊式(參閱圖3 5)、卡式 (參閱圖36)或者是計步器式(參閱圖37)。 4 - 4 一 6 :脈波檢測手段的變形例 又*上述之各實施形態中,雖已舉脈波檢測用感測器 單元1 3 0作爲脈波檢測手段f 1之一例說明,但是本發 明不僅限於此,只要可檢測出脈動不論何者皆可: 例如,第1章「1 — 8 — 7 — 1 :檢測方式」之說明 ,也可以藉穿透光方式或壓力感測方式檢測脈波。 4_4_7:心脈動數HR的算出方法 於上述第1實施形態及第8實施形態中可利用F F T 求得心脈動數H R ^此時,心脈動數H R係測定基本頻率 f ,算出f · 6 0即可。 4 一 4 一 8 :個人資料庫的運用 本纸仄尺度適州中KS家標卒(T^S ) A4*見格(210X297公犮) _201 - --------·'"------iT------4 {^讣而之泣态事項再磧8本哲) A7 B7 416θ4} 五、發明説明(199) 上述之各實施形態中,也可以對應心脈動數HR設置 儲存心排出量C 0及一次排出量S V的個人資料庫。此時 ,在個人資料庫中自動預先儲存心排出量C 0及一次排出 量SV,操作操鍵時,將過去的儲存心排出量C0或一次 排出量S V顯示在顯示部4 1 7上,使被檢驗人可獲知心 排出量C 0與一次排出量S V的傾向。例如,進行跑步等 訓練時,可藉此一步幅獲知步幅效果·>又,心朦病患者在 復健的場合,可藉步幅獲知心機能恢復的程度- 4_4_9:加速度感測器130’及體動除去部 411的省略 上述之各實施形態中,係可於安靜時算出心排出量 C ◦及一次排出量SV,且由於沒有體動,因此可以不須 使用檢測體動波型的加速度感測器1 3 0 ^ (體動檢測手 段),及從脈波波型除去體動成份而產生體動除去脈波波 型MH’的體動除去部411*此時,使用第5實施形態 所記載之一次排出量算出部4 1 4時,可減少運算步驟而 可獲得處理時間的縮短與消耗電力的降低= 4一4一10:修正係數TH之其他算出例 上述之第6實施形態與第1 3實施形態中•係根據精 密計測之基準一次排出量S V r *及一次排出量算出部 4 1 4所算出的一次排出量SV,算出修正係數KH »並 且,雖將此記憶於修正係數記憶體2 4 1內,但是也可以 (^先閱請背而之注"事項再翊巧本頁) ='# 部 屮 t il 消 f- 合 % 本紙仄尺度違ilHKP』客標肀(CNS ) Λ4規格(2丨0;<297公蝥> -202-As described above, the second aspect is that the primary discharge volume SV can be obtained based on the systolic blood pressure Pma X, the dilated blood pressure Pm i η, and the ED period. Therefore, the simple discharge structure SV β can be obtained in a short time. Furthermore, each of the above tables TB1, TB2. · TBn is set to correspond to m of Pm a X-mi η, but only one representative is set, and Pm a X-in i η is corrected to obtain from these The AC area S 1 can be used as the output of the systolic area table 1 4 2. 4-1 3-6_3: The third aspect is followed by a description of the primary discharge detection unit 4 1 4 related to the third aspect. The following β FIG. 1 0 9 is a block diagram of the primary discharge detection unit 4 1 4 of the third aspect. Except that the blood pressure memory 4 1 4 6 is provided, it is the same as the primary discharge detection unit 4 1 4 of the second aspect shown in FIG. 108. Among them, the blood pressure memory 4 1 4 6 previously stores systolic blood pressure Pma X and dilated blood pressure Pm i η corresponding to the number of heart pulses HR. When the blood pressure is recorded in the body 4 1 4 6, the cardiac function diagnostic device 43 can be set to the standby mode, so that the test subject can perform appropriate exercise for the change of the heart pulse number HR. At the same time as the change in the number of heart pulses HR, the systolic blood pressure Pma X and the dilated blood pressure Pm i η can be changed accordingly. The blood pressure recorder is 146. The systolic blood pressure Pma X and the dilated blood pressure Pm i η obtained at this time can be compared to -196- this paper and the standard ii state and domestic folks. (C, NS) Λ4 size (210X297) Μ) VII -.- " • 中 , ν ^ >; τ ^ π 1; '· ί,; ^ " βΐ! Ίρν at' 416841 __B7 V. Description of the invention (194) It should be given according to the number of heart pulses HR Save. On the other hand, in the measurement mode of the primary discharge SV, when the measured cardiac pulsation number HR is supplied to the blood pressure memory 4 1 4 6, a person who can output the systolic blood pressure Pm a X and the dilated blood pressure Pm i η can be formed. . Therefore, when the heart rate HR is supplied to the primary discharge detection unit 4 1 4 in the example, the systolic blood pressure pm a X and the dilated blood pressure Pmi η can be obtained. In addition, as in the second aspect described above, the discharge amount SV can be calculated once based on these values and the ED period. 4 1 3 — 6 — 4: Fourth aspect In the third aspect described above, a single discharge volume detection unit 4 1 is used to correspond to the number of heart pulses HR, systolic blood pressure Pma X, and dilated blood pressure Pm i η. An input of 4 is used as the number of cardiac pulses HR and ED during the expulsion. One of the discharges SV is expressed as a function of the number of cardiac pulses HR and ED during the expulsion. The fourth aspect is that in view of the creators of this point, a simpler structure is used to calculate the discharge SV as Purpose. The primary discharge amount detecting section 4 1 4 in the fourth aspect is the same as that shown in Fig. 97. At this time, when the drive-out period E D and the cardiac pulsation number HR are supplied to the primary discharge rate table 4 1 4 7, the primary discharge amount detection unit 4 1 4 can specify a table TB corresponding to the cardiac pulse number HR. When the contraction area S corresponding to the drive-out period ED is read from the table TB thereafter, the multiplier 4 1 4 1 can calculate the discharge amount S V once. As described above, in the fourth aspect, since the discharge volume SV only needs to be calculated once from the ED and the heart pulse number HR during the drive-out period, it can be used in a short time according to the RS family standard 家 (c 'NS) Λ4 specification (210 > < 297 公 楚 " 1. 1〇7-~~ "' IKI > I ^ I n Φ · {Neighbor first read the f and the precautions " smart book Page) · ν " " · " ΰ 印: ^ I 41684Ϊ. A7 ________B7_ 5. Description of the invention (195) The structure of the sheet and the primary discharge SV can be obtained. In addition, the multiplier 4141 may be omitted when the discharge amount SV corresponding to the drive-out period ED is stored in the above tables TB.1, TB2,... At this time, S * Ksv may be stored in each of the tables TB1, TB2, ..TBn instead of the contraction sheet product S »4-3-7: 13th embodiment The cardiac function diagnosis of the 8th to 12th embodiments described above The device 43 can use the systolic area method to multiply the coefficient K s ν of the pulse wave area S of the ED during the expelling period to calculate the primary discharge SV. Here, the coefficient Ks V is strictly different depending on the test subject. Therefore, in order to correctly calculate the primary discharge SV, it is best to modify the primary discharge SV obtained by the systolic area method »Among them, the 13th In the embodiment, a sixth embodiment is provided between the primary discharge amount calculation unit 414 and the change rate calculation unit 41 5 'of the eighth to twelfth embodiments shown in Figs. 102, 103, 104, and 105. The one-time discharge amount correction section 4 2 4 described can perform one-time discharge amount SV correction (see FIG. 9 9). That is, the same as the embodiment of FIG. 6, the one-time discharge amount correction section 4 2 4 can generate a corrected one time. Discharge volume SVh »According to the above-mentioned embodiment, the correction coefficient KH is calculated in the correction mode, and the corrected primary discharge volume SV h is calculated using the correction coefficient KH in the general measurement mode. Therefore, it is possible to evaluate the cardiac function more accurately. . nnm-I If m-. t If IT (I nnm -I. c ^ is read in reverse, note the matter again ^ clever this is not) This paper thick scale towel KS family 栳 die ((, NS) / \ 4 The current {210X 297 males) -198-A7 4) 6841 B7 V. Description of the invention (196) 4-1 3-8: Fourteenth embodiment The fourteenth embodiment is a critical surface corresponding to the evaluation index X, which corresponds to the body surface area. Those who are variable are the same as those in the eighth to thirteenth embodiments except for the configuration of the evaluation unit 4 1 6. That is, the fourteenth embodiment corresponds to the seventh embodiment. Fig. 110 is a block diagram of an evaluation unit 416 'of the fourteenth embodiment. This evaluation unit 416 'is different from the evaluation unit 416 of the seventh embodiment shown in Fig. 100 in that the cardiac output CO is input to the comparison unit 162 instead of the cardiac output CO in the primary discharge rate SV'. In this evaluation unit 416 ', the body surface area calculation unit 4160 calculates the body surface area TS based on the weight W (Kg) and the height H (cm). In addition, when the body surface area T S is supplied to the critical value (Table 1), a table corresponding to the body surface area T S can be selected from each table. The selected table corresponds to the cardiac pulsation number HR and stores the thresholds 値 R 1 and R 2. On the other hand, the critical values (Table 1 and 6) form critical values R 1 and R 2 which can be input during measurement, so critical values R 1 and R 2 corresponding to the number of heart pulses HR during measurement can be obtained. After that, the comparison unit 4162 generates the evaluation index X by comparing the critical values 値 R1, R2 and the rate of change in the primary discharge SV '. Therefore, when using the heart function diagnostic device 43 according to the embodiment, it can automatically change the thresholds 値 R 1 and R 2 according to the body shape of the test subject or the dynamically changing heart pulse number HR, thereby enabling continuous continuous life. "Evaluating New Functional Persons" 4-4: Variations ----------------------------- Gland {" 1 " Careful attention to reading the therapy This K) This paper music scale uses the Chinese standard () 4 specifications (210 × 297 gong) -199- a7 .f, 416841 __B7 V. Description of the invention (197) Of course, the present invention is not limited to those described above, such as The following various modifications are possible. / 4-4 — 1: The omission of the frequency correction section in the second to fourth embodiments, or the ninth to eleventh embodiments, the first frequency correction section 4 2 1 is used when comparing energy in different frequency domains. Or the second frequency correction unit 4 2 3 can compare the correction result with the critical value to obtain the maximum peak value Pm a X, etc. • In this case, the critical value itself can be considered as a frequency correction, and each frequency correction portion can be omitted. 4 — 4 — 2: Example of using filter bank In the second to fourth embodiments and the ninth to eleventh embodiments, although wavelet conversion is performed, wavelet conversion may be performed using a filter bank. The filter bank is, for example, as shown in FIG. 30 described in Chapter 1. 4 — 4 — 3: Modification of body movement removing unit 4 1 1 The body movement removing unit 4 1 1 of the above-mentioned first embodiment or the eighth embodiment may be performed by wavelet conversion described in the fourth embodiment. At this time, the inverse wavelet transform expressed in Chapter 1 and the second wave form is applied to the wavelet after removing body motion to resynthesize the wave pattern, and the heart pulse number HR and the expulsion period are calculated based on the resynthesized pulse wave pattern. Just ED. The inverse wavelet may be configured using an inverse filter bank. In this case, the inverse wavelet conversion section may be configured as a filter bank as shown in FIG. ---------- ^ ------ 1τ ------ ^ {" First read the precautions before reading this page) -200- Γ 416841 Α7, Β7 V. Description of the invention (198) 4_4-14: Modifications of notification means In the above-mentioned embodiments, the display portion 417 is used as an example of the notification means, but as described in Chapter 1 "1-8-6 "Other examples of means of notification" "Description, of course, it can be modified." 4-4-5: In the above-mentioned embodiment, although the form of the cardiac function diagnostic device is a hand structure, the present invention is not limited to this. This β may be, for example, the glasses type (see FIG. 34), the necklace type (see FIG. 3), the card type (see FIG. 36), or the pedometer type (see FIG. 37) described in Chapter 1. 4-4-6: Modifications of pulse wave detection means * In each of the above embodiments, the pulse wave detection sensor unit 130 has been described as an example of the pulse wave detection means f 1, but the present invention It is not limited to this, as long as the pulsation can be detected. For example, as described in Chapter 1 "1 — 8 — 7 — 1: Detection Method", the pulse wave can also be detected by the penetrating light method or the pressure sensing method. 4_4_7: Method for calculating the number of cardiac pulses HR In the above-mentioned first and eighth embodiments, the number of cardiac pulses HR can be obtained using FFT. ^ At this time, the number of cardiac pulses HR is the basic frequency f, and f · 6 0 is calculated. can. 4 4 4 8: Use of personal database. Standards of the KS family in Shizhou (T ^ S) A4 * See grid (210X297) 犮 _201--------- '" ------ iT ------ 4 {^ 讣 And the Weeping Matters: 8 more philosophers) A7 B7 416θ4} V. Description of the Invention (199) In each of the above embodiments, you can also correspond to the heart The number of pulses HR sets a personal database that stores cardiac output C 0 and primary discharge SV. At this time, the cardiac discharge volume C 0 and the primary discharge volume SV are automatically stored in advance in the personal database. When the key operation is performed, the past stored cardiac discharge volume C0 or the primary discharge volume SV is displayed on the display portion 4 1 7 so that The examinee can know the tendency of the cardiac discharge C 0 and the primary discharge SV. For example, when training, such as running, you can use this step to learn the effect of stride. ≫ In the case of rehabilitation of patients with hazy heart disease, you can use the stride to learn the degree of recovery of cardiac function-4_4_9: Acceleration sensor 130 'And the omission of the body movement removing unit 411 in the above embodiments, the cardiac output C and the primary discharge SV can be calculated at the time of quietness, and since there is no body movement, it is not necessary to use the body movement detection mode. Acceleration sensor 1 3 0 ^ (body movement detection means), and body movement removing unit 411 that removes body movement components from the pulse wave pattern to generate the body movement and remove the pulse wave pattern MH '* At this time, the fifth implementation is used In the case of the primary discharge amount calculation unit 4 1 4 described in the aspect, the number of calculation steps can be reduced to obtain a reduction in processing time and a reduction in power consumption = 4 to 4 to 10: Other calculation examples of the correction factor TH. The sixth embodiment described above. According to the 13th embodiment, the correction coefficient KH is calculated based on the primary discharge amount SV r * based on the precision measurement and the primary discharge amount SV calculated by the primary discharge amount calculation unit 4 1 4. Coefficient memory 2 4 1 Yes, please (^ Please read the back note " I will repeat this page) = '# 部 屮 t il 消 f- 合% The paper size is in violation of ilHKP "guest standard (CNS) Λ4 specification (2 丨0; < 297 public bus > -202-
:^--7 屮次 dΐ;··ίβ^"妁.ίι印 V A7 J' 4)6δ4/; ___ B7 五、發明说明(200 ) 將此修正係數TH對應心脈動數HR而記憶在修正係數記 憶體2 4 1內》此時,在一般的測定模式中讀出對應心脈 動數HR的修正係數TH,可藉此算出更精密的心排出童 C 0。 又,並非針對一次排出量SV算出修正係數KH,而 是算出對應心脈動數HR之心排出量C 0。此時,將外部 機器所精密測定之基準心排出量C 0 ’ ,及心排出量算出 部415所算出的心排出量供應於修正係數算出部 4 2 4 0,將其中所產生的修正係數KH與心脈動數對應 而儲存在修正係數記憶體4 2 4 1即可。並且,在一般的 測定模式中對應該時刻心脈動數H R從修正係數記憶體 4 2 4 1讀出修正係數ΚΗ時,也可以藉乘法器4 2 4 2 乘以心排出量C 0,獲得修正心排出量C Ο者。 〔圖式之簡單說明〕 圖1是表示第1章脈波診斷裝置之機能構成的機能方 塊圖。 圖2是表示同章之同實施形態相關的脈波診斷裝置之 外觀構成透視圖。 圖3爲同章之同實施形態相關之脈波檢測用感測器單 元1 3 0的電路圖。 圖4是表示同章之同實施形態相關的脈波診斷裝置之 電氣構成方塊圖。 圖5爲同章之同實施形態相關之子波轉換部1〇的方 <計先聞讀背Λ之注总事邛再ί/ιί:11本頁) — .1Τ - 本纸浓足度试用中氐戌雾椋辛ί CNS ) Λ4規格(2丨0X297公釐) • 203- B7 ? 416841五、發明説明(201 ) 塊圖》 圖6爲同章之同實施形態相關之波型整形部1〇〇的 方塊圖Α 圖7爲同章之同實施形態相關之子波轉換部1〇的動 作說明用之計時圖。 圖8係表示於同章之同實施形態中* 1次心脈動所產 生的脈波解析數據MKD之圖。 圖9爲同章的同實施形態相關之脈像數據產生部12 的方塊圖》· 圖10是表示儲存於同章之同實施形態記憶體中的脈 波修正數據MKD’平均値之圖。 圖11是表示同章之同實施形態中弦脈代表性之波型 與平均値的關係圖。 圖12是表示同章之同實施形態中平脈代表性之波型 與平均値的關係圖* 圖13是表示同章之同實施形態中滑脈代表性之波型 與平均値的關係圖。 圖14爲同章的同實施形態相關之脈像數據產生部 12之其他構成例的方塊圖· 圖15爲同章第2實施形態相關之脈波診斷裝置的方 塊圖》 圖16爲說明同章同實施形態相關之脈波診斷裝置動 作用的計時圖。 圖1 7係表示於同章之同實施形態中,期間T c之脈 (^讀背而之:;ί·念事項再填巧本荇) 裝 Η1Τ 本紙佐尺度鸿州中家標準((、NS ) 故格(2]〇;<297公犛) •204· ^"-'Γ^- 1ν^":ν·"π 了-!,-少么 .^印.^^ r 416641五、發明説明(202 ) 波修正數據Μ K D /之圖* 圖1 8係表示於同章之同實施形態中’期間1* c之體 動修正數據TKD >之圖。 圖1 9係表示於同章之同實施形態中’除去體動成份 之脈波修正數據MKD^之圖° 圖2 0爲同章第3實施形態相關之脈波診斷裝置的方 塊圖。 圖21爲同章第4實施形態相關之脈波診斷裝置的方 塊圖* 圖2 2爲同章之同實施形態相關之體動分離部1 9的 詳細方塊圖。 圖2 3是表示同章之同實施形態相關的體動分離脈波 數據丁 BD之一例圖。 圖2 4爲同章第5實施形態相關之脈波診斷裝置之方 塊圖。 圖2 5是表示同章之同實施形態1脈動量的體動分離 脈波波型TMH之一例圖。 圖2 6是表示同章之同實施形態的脈像判定部2 2之 構成方塊圖。 圖2 7爲同章之同實施形態相關的脈波波型之一例圖 〇 圖2 8是表示同章之同實施形態相關的峰値資訊內容 之圖。 圖2 9爲說明同章同實施形態的動作用之流程圖。 — II 名裝 I I I I I 訂 I ^ (对先閱讀背而之注意事項再^T本頁} 本紙ίίυ:·度进川中SS家捃呤(('NS ) Λ4規格(210X297公犮) -205-: ^-7 屮 次 dΐ; ·· ίβ ^ " 妁 .ίιV A7 J '4) 6δ4 /; ___ B7 V. Description of the invention (200) This correction factor TH is stored in correspondence with the number of heart pulses HR Correction coefficient memory 2 4 1> At this time, the correction coefficient TH corresponding to the cardiac pulsation number HR is read out in a general measurement mode, so that a more precise cardiac ejection child C 0 can be calculated. In addition, the correction coefficient KH is not calculated for the primary discharge amount SV, but the cardiac discharge amount C 0 corresponding to the cardiac pulse number HR is calculated. At this time, the reference cardiac output C 0 ′ precisely measured by an external device and the cardiac output calculated by the cardiac output calculation unit 415 are supplied to the correction coefficient calculation unit 4 2 4 0, and the correction coefficient KH generated therein is supplied. Corresponding to the number of heart pulses, it may be stored in the correction coefficient memory 4 2 4 1. In addition, in the general measurement mode, when the number of cardiac pulses HR is read from the correction coefficient memory 4 2 4 1 at the corresponding time, the correction can be obtained by multiplying the cardiac output C 0 by the multiplier 4 2 4 2. Cardiac output C 0. [Brief Description of the Drawings] FIG. 1 is a functional block diagram showing the functional configuration of the first chapter pulse wave diagnostic device. Fig. 2 is a perspective view showing the external appearance of a pulse wave diagnosing device related to the same embodiment in the same chapter. Fig. 3 is a circuit diagram of a pulse wave detection sensor unit 130 in the same chapter and the same embodiment. Fig. 4 is a block diagram showing the electrical configuration of a pulse wave diagnosing device according to the embodiment in the same chapter. Fig. 5 shows the method of the wavelet conversion unit 10 related to the same chapter in the same chapter < General note of first reading and reading back ΛNotes 邛 / ιί: 11 pages) — .1Τ-trial of the fullness of this paper中 氐 戌 雾 椋 辛 ί CNS) Λ4 specifications (2 丨 0X297 mm) • 203- B7? 416841 V. Description of the invention (201) Block diagram "Figure 6 shows the corrugation shaping unit 1 related to the same embodiment in the same chapter. Block diagram A of 〇〇 FIG. 7 is a timing chart for explaining the operation of the wavelet conversion unit 10 related to the same chapter and embodiment. Fig. 8 is a diagram showing the pulse wave analysis data MKD generated by a * heart beat in the same embodiment in the same chapter. Fig. 9 is a block diagram of the pulse image data generating unit 12 related to the same embodiment in the same chapter. Fig. 10 is a graph showing the average value of the pulse wave correction data MKD 'stored in the memory of the same embodiment in the same chapter. Fig. 11 is a graph showing the relationship between the typical wave pattern and the mean chirp of the chord pulse in the same embodiment in the same chapter. Fig. 12 is a graph showing the relationship between the waveform of the Ping mai representative and the average chirp in the same embodiment of the same chapter * Fig. 13 is a graph showing the relationship between the waveform and the mean pulsation of the Hua pulse in the same embodiment of the same chapter. Fig. 14 is a block diagram of another configuration example of the pulse image data generating unit 12 related to the same embodiment in the same chapter. Fig. 15 is a block diagram of the pulse wave diagnosis apparatus related to the second embodiment in the same chapter. Timing chart for operation of the pulse wave diagnosis apparatus according to the embodiment. Figure 17 shows the veins of T c in the same implementation form in the same chapter (^ read it in reverse :; read the matter and then fill in the book) and install 1T paper with the standard Hongzhou Zhongjia Standard ((,, NS) The old case (2) 〇; < 297 public 牦) • 204 · ^ "-'Γ ^-1ν ^ ": ν · " π-!,-Less? ^ 印. ^^ r 416641 V. Description of the invention (202) Diagram of wave correction data M KD / Fig. 18 is a diagram showing the body movement correction data TKD > in the period "1 * c" in the same embodiment of the same chapter. Fig. 1 9 Shown in the same embodiment of the same chapter in the same embodiment, the figure of the pulse wave correction data MKD ^ with the body motion component removed. Figure 20 is a block diagram of a pulse wave diagnosis device related to the third embodiment of the same chapter. Fig. 21 is the first chapter of the same chapter. 4Block diagram of the pulse wave diagnosis device related to the embodiment * Fig. 2 2 is a detailed block diagram of the body movement separation unit 19 related to the same embodiment in the same chapter. Fig. 2 3 shows the body related to the same embodiment in the same chapter. An example of dynamic separation of pulse wave data BD. Fig. 24 is a block diagram of a pulse wave diagnosis device related to the fifth embodiment of the same chapter. Fig. 25 is a body movement separation showing the pulsation amount of the same embodiment 1 of the same chapter. An example of a pulse wave pattern TMH. Fig. 26 is a block diagram showing a configuration of a pulse image determination unit 22 in the same embodiment of the same chapter. Fig. 27 is an example of pulse wave patterns related to the same embodiment in the same chapter. Figure 0 Figure 28 is a diagram showing the content of the peak information related to the same embodiment in the same chapter. Figure 29 is a flowchart illustrating the operation of the same chapter and the same embodiment. — II name IIIIII order I ^ (for the first Read the note on the back and then ^ T this page} This paper ίίυ: · Du Jinchuan SS Jiapixin (('NS) Λ4 specifications (210X297) 犮 -205-
:·'·ϋ·Αϊ:ϊς:"印 V · 4 1 6841 五、發明説明(203 ) 圖3 0係於同章之變形例中,表示以濾波器組構成子 波轉換時之例的方塊圖。 圖3 1係於同章之變形例中,表示以濾波器組構成逆 子波轉換時之例的方塊圖。 圖3 2是表示同章變形例相關之穿透光方式的脈波感 測器之例圖。 圖3 3是表示於同章變形例中,使用壓力感測器之脈 波診斷裝置的外觀構成透視圖。 圖3 4是表示於同章變形例中,將光電式脈波感測器 應用於眼鏡例之圖。 圖3 5是表示於同章變形例中,將光電式脈波感測器 應用於項鍊例之圖》 圖3 6是表示於同章變形例中,將光電式脈波感測器 應用於卡之例圖。 圖3 7是表示於同章變形例中,將光電式脈波感測器 應用於步行器之例圖。 圖3 8是表示同章變形例之第1子波轉換部1 0Α的 構成方塊圖。 圖3 9係於同章變形例中表示心電圖的心脈動與該等 心脈動波型所獲得之R R間隔者。 圖4 0是表示同章變形例中心電圖與血壓的關係圖》 圖41中,(a)是表示測定後脈波之RR間隔的變 動波型,及將該變動波型分解爲上述3個頻率成份時之各 變動成份的波型圖。(b)是相對於(a)表示之RR間 本纸张尺度適州中R s ( rNS > Mi兄格(210X 297公f ) - 206 - I I 11 — *A1^! I n n 11 ^ In 11 n 1^11 {誚1閱請背而之注总事項再功‘^本^) A7 ! 416841 B7 .^1 dl ^ 1- ^ ,J^ An 五、發明説明(204 ) 1 1 隔之變動波型的波 譜 分析結果 0 1 ! 1 圖4 2是表 示 第 2 章 之 第 1 實 施形 態 相 關 之 運動 指 標 1 f 測定裝置 的機能構成方塊圖 〇 1 1 圖4 3是表 示 同 章 同 裝 置 之 電 氣構 成 方塊 圖 〇 1 I 圖4 4是表 示形成以 同 章 之 運 動指標 測 定 裝 置爲 刖 提 请 背 ι6 1 I 的實驗結果圖。 •ψ ;ΐ ¢- 1 1 f 圖4 5是說 明 主觀 運 動強度 之 附點數 用 的 ΓΒΊ 圖 〇 事 項 再 I i 圖4 6是表 示 同 章 同 運 動 指 標 測定 裝 置 之 外 觀構 成 圖 η 本 η i 裝 1 圖4 7是表 示 同 章 的 同 運 動指 標測 定 裝 置 與進行各 種 1 1 I 資訊傳收之外部機 器 的構 成 圖 〇 1 1 | 圖4 8是表 示 實 行 同 章 的 同 運 動指 標 測 定 裝 置之 基 礎 1 訂 處理①的流程圖 〇 1 1 圖4 9是表 示 實 行 同 章 的 同 運 動指 標 測 定 裝 置之 中 斷 1 1 處理①的流程圖 0 1 1 圖5 0是表 示 實 行 同 章 的 同 運 動指 標 測 定 裝 置之 基 礎 1 處理©或③的流 程 圖 α 1 1 I 圖5 1是表 示 實 行 同 章 的 同 運 動指 標 測 定 裝 置之 中 斷 1 1 處理0的 流程圖 0 1 1 圖5 2是表 示 實 行 同 運 動 指標 測定 裝 置 之 中 斷處理③ 1 I 的流程圖 1 1 I 圖5 3是表 示 實 行 同 章 的 同 運 動指 標 測 定 裝 置之 基 礎 1 1 處理④或⑤的流程 圖 0 1 1 圖5 4是表 示 實 行 同 章 的 同 運 動指 標 測 定 裝 置之 中 斷 1 ! 1 本紙依尺度iMl巾园g家標卒(rNS ) Λ4規格(2!OX29?公釐) -207- ^.-.rfr.vyv ν.·ν.^Θ.1¾价合 d 印;^ a? ί 4!6θ4ί ______Β7 _五、發明説明(205 ) 處理④的流程圖。 圖5 5是表示實行同章的同運動指標測定裝置之中斷 處理⑤的流程圖》 圖5 6是表示實行同章同運動指標測定裝置的顯示部 所表示之一例圖》 圖5 7是表示實行同章同運動指標測定裝置的顯示部 所表示之一例圖。 圖5 8是表示同章的第2實施形態相關之運動指標測 定裝置的機能構成方塊圖。 圖5 9是表示同章同實施形態的表內容之圖。 圖6 0係於第3章中,表示運動強度與呼吸波型之關 係圖。 圖61爲同章實施形態相關之運動強度檢測裝置的機 能方塊圖β 圖6 2是表示同章第1實施形態相關之運動強度檢測 裝置的電氣構成方塊圖. 圖63是表示同章中,於體動除去脈波數據ΜΗ’施 以F F Τ處理之結果圖。 圖6 4爲圖6 3之低頻領域L F之擴大圖。 圖6 5是表示同章同實施形態顯示部之一態樣表情圖 〇 圖6 6是表示同章同實施形態相關之運動強度檢測裝 置的動作方塊圖。 圖6 7是表示同章第2實施形態相關之呼吸成份抽出 1 裝------訂------MV {1ί先閱讀背而之注*事項再杧艿本Κ ) 本纸依尺度迖州f ΚΕΪ;標卑(rNS > Λ4規格{ 2丨0X297公爱) -208- A7 ί 4 1 68 4 ί Β7 '五、發明説明(206 ) 部及評恬部的內部構成方塊圖· 圖6 8是表示同章同實施形態相關之體動除去脈波解 析數據MKD之一例圖》 圖6 9是表示圖6 8表示之體動除去脈波解析數據 MKD的最大能源領域圖。 圖7 0是表示同章同實施形態相關之呼吸波型解析數 據VKD之一例圖。 圖71爲同章同實施形態相關之零交叉比較器的電路 圖。 圖7 2爲同章同實施形態相關之負荷比檢測部之電路 圖。 圖7 3爲同章同實施形態相關之負荷比檢測部的計時 圖之電路圖。 圖7 4是表示同章同實施形態相關之運動強度檢測裝 置的動作流程圖》 圖7 5是表示同章第3實施形態相關之運動強度檢測 裝置電氣構成方塊圖》 圖7 6是表示同章同實施形態相關之運動強度檢測裝 置的動作流程圖。 圖7 7係針對同章同實施形態相關之脈波解析數據 MFD、體動解析數據TFD及體動除去脈波解析數據 MKD的關係,表示其一例之圖。 圖7 8是表示同章第4實施形態相關之運動強度檢測 裝置電氣構成方塊圖。 本紙乐尺度沩用中家標嗥(rNS ) Λ4規格ΠΙΟΧ297公茇) -209 - {钎之間讀背而之"悉事^'4項巧本頁) »-° Μ A7 i 416841 ____B7五、發明説明(207 ) 圖7 9是表示同章同實施形態相關之脈波解析數據 MFD與截止頻率f c關係之一例圖》 圖8 0是表示同章同實施形態相關之脈波成份除去解 析數據MD’之一例圖。 圖81是表示同章同實施形態相關之呼吸成份抽出部 1 3 ’的詳細構成方塊圖。 圖8 2係表示於同章同實施形態中,實測跑步間距與 呼吸數關係的結果之圖。 圖8 3係表示於同章同實施形態中,表示體動成份的 基本頻率F t 1與呼吸成份之基本頻率F v 1的關係圖表 〇 圖8 4是表示同章呼吸數與脈動數之關係圖。 圖8 5係於第4章中,針對心臟移植者與健康人顯示 隨姿勢的變更而顯示一次排出量的變化圖。 圖8 6爲說明同章收縮面積法之圖。 圖8 7係於同章中,表示使用心排出量檢測裝置之心 機能診斷裝置的機能構成之機能方塊圖。 圖8 8係於同章中,表示心電波型、大動脈血壓波型 及末梢部之動脈波型的關係圖= 圖8 9是表示同章第1實施形態相關之心機能診斷裝 置的電氣構成方塊圖。 圖9 0是表示同章第施形態相關之心機能診斷裝 置的電氣構成方塊圖。 圖9 1係針動同章同實施形態相關之脈波波型的部份 ·"------訂------Μ' 閔讳背而之"意事項再JAft?本頁) 本紙乐处度进用中S S家桴卒(('NS ) Λ4規格(2丨ΟΧ 2町公釐) -210- B7 I 416841 打崁部中·ί:^';ί"Μ π消丨合乃打印象 五、發明説明 ,2D8 J 1 1 期間 * 顯示 脈 波解析數據 之 圖 〇 1 1 圖 9 2 爲 同 章 同 實 施形 態 中*說 明一 次排出量算 出部 1 1 的動 作 用之 ΓΒ1 圖 0 I 1 圖 9 3 爲 同 章 第 3 實 施形態相關 之心 機能診斷裝 置 之 ίΐ 先 閜 1 讀 1 方塊 pB~f 圖 〇 背 而 t I 圖 9 4 爲 同 章 第 4 實 施形態相關 之心 機能診斷裝 置 之 之 意 1 1 I 方塊 圖 0 事 項 1 1 圖 9 5 爲 同 章 同 實 施形 態 相關之 體動 除去部4 1 1 的 % 1 裝 詳細 方塊圖 '0 个 *w> I 1 圖 9 6 爲 同 章 同 實 施形 態 相關之體動除去脈波數據 1 j Μ Κ D ,,之 —' 例 圖 〇 1 1 I 圖 9 7 是 表 示 同 章 第 5 實 施形態 相關 之一次排出 里 算 1 訂 出部 的 構成 方塊 圖 〇 ί 1 圖 9 8 是 表 示 同 章 同 實 施 形態相 關之 心排出量表 的 方 1 l lsti ΤΕΟ 塊圖 6 1 j 圖 9 9 是 表 示 同 章 第 6 實 施形態 相關之一次排出 量 修 線 I 正部 4 2 4 的 方塊 圖 〇 1 1 圖 10 0 是 表 示 同 章 第 7 實施形 態相 關之評估部 1 t 4 1 6 的方塊 圖 〇 1 I 圖 10 1 係於 同 章 中 9 表 示使用 一次排出量檢測 裝 置 1 I 之心 馈 能診 斷 裝 置 的 機 能 構 成 之機能 方塊 圖 1 ! | 圖 10 2 是 表 示 同 章 同 實 施形態相關 之心機能診 斷 裝 1 1 置的 電 氣構 成 方塊圖 〇 1 1 圖 10 3 是 表 示 同 章 第 9 實施形 態相 關之心機能 診 斷 1 1 1: · '· ΫΑΑ: ϊς: " Indian V · 4 1 6841 V. Description of the Invention (203) Figure 30 is a modification of the same chapter, showing an example when a filter bank is used to form a wavelet transform. Block diagram. Fig. 31 is a block diagram showing an example when the inverse wavelet transform is constituted by a filter bank in the modification of the same chapter. Fig. 32 is a diagram showing an example of a pulse wave sensor of a penetrating light method according to a modification of the chapter. Fig. 33 is a perspective view showing an external configuration of a pulse wave diagnosis apparatus using a pressure sensor in a modification of the same chapter. Fig. 34 is a diagram showing an example in which a photoelectric pulse wave sensor is applied to glasses in a modification of the same chapter. Fig. 35 is a diagram showing an example of applying a photoelectric pulse wave sensor to a necklace in a modification of the same chapter. Fig. 36 is a diagram showing an application of a photoelectric pulse sensor to a card in a modification of the same chapter. Example diagram. Fig. 37 is a diagram showing an example in which a photoelectric pulse wave sensor is applied to a walker in a modification of the same chapter. Fig. 38 is a block diagram showing a configuration of a first wavelet conversion unit 10A according to a modification of the same chapter. Fig. 39 shows the cardiogram of the electrocardiogram and the RR interval obtained by the cardiogram patterns in the modification of the same chapter. Fig. 40 is a diagram showing the relationship between the central electrogram and blood pressure in a modification of the same chapter. In Fig. 41, (a) is a variation pattern showing the RR interval of the pulse wave after measurement, and the variation pattern is decomposed into the above three frequencies. Wave pattern of each component when the component is changed. (B) is relative to R s (rNS > Mi brother (210X 297 male f)-206-II 11-* A1 ^! I nn 11 ^ In 11 n 1 ^ 11 {诮 1 Please read the back and note the general matters again ^^^^ A7! 416841 B7. ^ 1 dl ^ 1- ^, J ^ An V. Description of the invention (204) 1 1 Waveform spectrum analysis results 0 1! 1 Figure 4 2 shows the movement index 1 f related to the first embodiment of Chapter 2 f The functional block diagram of the measuring device 〇 1 1 Figure 4 3 shows the electrical performance of the same device in the same chapter Composition block diagram 〇1 I FIG. 44 is a diagram showing an experimental result obtained by using a sports index measuring device of the same chapter as a drawing. • ψ; ΐ ¢-1 1 f Figure 4 5 is a ΓΒ 用 for explaining the number of points attached to the subjective exercise intensity. Figure 1 Figure 4 7 shows the structure of the same exercise index measurement device and the external device for various 1 1 I information transmission. 0 1 1 | Figure 4 8 shows the basis of the same exercise index measurement device 1 Order processing ① flowchart 〇1 1 Figure 4 9 shows the interruption of the same exercise index measurement device performing the same chapter 1 1 Processing ① flowchart 0 1 1 Figure 50 0 shows the same exercise index measurement device performing the same chapter Basics 1 Flow chart of processing © or ③ α 1 1 I Figure 5 1 shows the interruption of the same exercise index measurement device for the same chapter 1 1 Process 0 flowchart 0 1 1 Figure 5 2 shows the execution of the same exercise index measurement Device interrupt processing ③ 1 I Flowchart 1 1 I Figure 5 3 shows the basics of the same exercise index measurement device implementing the same chapter 1 1 Process ④ or ⑤ 0 0 1 1 Figure 5 4 shows the interruption of the same exercise index measurement device implementing the same chapter 1! 1 This paper is printed according to the standard iMl towel g standard (rNS) Λ4 specification (2! OX29? Mm) -207- ^ .-. Rfr.vyv ν. · Ν. ^ Θ. ^ a? ί 4! 6θ4ί ______ Β7 _Fifth, the description of the invention (205) Flow chart of processing ④. Fig. 5 is a flowchart showing the interruption processing of the same exercise index measurement device for the same chapter. Fig. 5 is an example of the display section of the same exercise index measurement device for the same chapter. An example shown in the display section of the same chapter and same exercise index measuring device. Fig. 58 is a block diagram showing a functional configuration of an exercise index measuring device related to the second embodiment of the same chapter. Fig. 59 is a diagram showing the contents of a table in the same chapter and embodiment. Figure 60 is in Chapter 3 and shows the relationship between exercise intensity and breathing pattern. Fig. 61 is a functional block diagram of the exercise intensity detection device related to the embodiment of the same chapter β Fig. 62 is a block diagram showing the electrical structure of the exercise intensity detection device related to the first embodiment of the same chapter. Fig. 63 is an illustration of the same chapter in the The result of the body motion removal pulse wave data MV ′ treated with FF T. FIG. 64 is an enlarged view of the low frequency range L F in FIG. 63. Fig. 65 is a block diagram showing one aspect of the display section of the same chapter and embodiment. Fig. 65 is a block diagram showing the operation of the exercise intensity detection device related to the same chapter and embodiment. Figure 6 7 shows the extraction of the respiratory components related to the second embodiment of the chapter 1 pack -------- order ---- MV {1ί read the back note * matters before copying this paper) paper According to the standard, Chenzhou f ΚΕΪ; standard humble (rNS > Λ4 specifications {2 丨 0X297 public love) -208- A7 ί 4 1 68 4 ί Β7 'V. The description of the invention (206) and the internal evaluation block Fig. 68 shows an example of the analysis data of the body motion removing pulse wave MKD in the same chapter and the same embodiment. "Fig. 69 is a diagram showing the maximum energy field of the body motion removing pulse wave analysis data MKD shown in Fig. 68. Fig. 70 is a diagram showing an example of the breathing waveform analysis data VKD related to the same chapter and embodiment. Figure 71 is a circuit diagram of a zero-crossing comparator related to the same chapter and embodiment. Fig. 72 is a circuit diagram of a load ratio detecting unit related to the same chapter and embodiment. Fig. 73 is a circuit diagram of a timing chart of a load ratio detecting section related to the same chapter and embodiment. Fig. 74 is a flowchart showing the operation of the exercise intensity detection device related to the same embodiment in the same chapter. Fig. 75 is a block diagram showing the electrical structure of the exercise intensity detection device related to the third embodiment in the same chapter. Operation flowchart of the exercise intensity detecting device according to the embodiment. FIG. 7 is a diagram showing an example of the relationship between the pulse wave analysis data MFD, body motion analysis data TFD, and body motion removal pulse wave analysis data MKD in the same chapter and embodiment. Fig. 78 is a block diagram showing the electrical configuration of the exercise intensity detecting device according to the fourth embodiment of the chapter. Chinese paper standard (rNS) 纸 4 size ΠΙΟΧ297 公 茇) -209-{Read between the back and back; " Information ^ '4 items on this page) »-° Μ A7 i 416841 ____B7 Explanation of the invention (207) Fig. 79 is an example showing the relationship between the pulse wave analysis data MFD and the cutoff frequency fc related to the same chapter and implementation form "Fig. 80 is the analysis data to remove the pulse wave component related to the same chapter and implementation form An example of MD '. Fig. 81 is a block diagram showing the detailed structure of a breathing component extraction unit 1 3 'according to the same chapter and embodiment. Fig. 8 is a graph showing the results of measuring the relationship between the running distance and the number of breaths in the same chapter and embodiment. Figure 8 shows the relationship between the basic frequency F t 1 of the body movement component and the basic frequency F v 1 of the breathing component in the same chapter and the same embodiment. Figure 8 4 shows the relationship between the breathing number and the pulsation number in the same chapter. Illustration. Figure 8-5 shows the change in the primary discharge rate with changes in posture for heart transplanters and healthy people. Figure 86 is a diagram illustrating the shrinkage area method of the same chapter. Fig. 87 is a functional block diagram of the functional constitution of a cardiac function diagnostic device using a cardiac output detection device in the same chapter. Figure 8 shows the relationship between the ECG waveform, the aortic blood pressure waveform, and the peripheral arterial waveform in the same chapter. Figure 89 shows the electrical configuration block of the cardiac function diagnostic device related to the first embodiment of the chapter. Illustration. Fig. 90 is a block diagram showing the electrical configuration of a cardiac function diagnostic device related to the embodiment of the chapter. Figure 9 The part of the pulse wave pattern of the 1st chapter in the same chapter and related to the implementation shape (On this page) SS family members who are in active use of this paper (('NS) Λ4 specification (2 丨 〇 2 2 mm) -210- B7 I 416841 In the hiccup department · ί: ^'; ί " Μ π Consumption is printed as shown in the fifth, description of the invention, during the 2D8 J 1 1 period * The pulse wave analysis data is displayed. 0 1 1 Fig. 9 2 is in the same chapter and the same embodiment * It is used to explain the operation of the primary discharge calculation unit 1 1 ΓΒ1 Fig. 0 I 1 Fig. 9 3 is the heart function diagnosis device related to the third embodiment of the same chapter First read 1 block 1 pB ~ f Fig. 0 t t Fig. 9 4 is related to the fourth embodiment of the same chapter The meaning of the heart function diagnostic device 1 1 I Block diagram 0 Matters 1 1 Figure 9 5 is the body movement removal section 4 1 1 related to the same chapter and implementation form 1 1 Detailed block diagram '0 pieces * w > I 1 figure 9 6 Same form and same implementation Relevant body movements to remove the pulse wave data 1 j Μ κ D, of the-'example figure 〇 1 1 I Figure 9 7 is a block diagram showing the structure of the ordering unit in the first discharge according to the fifth embodiment of the chapter. ί 1 Fig. 9 8 shows the formula of the heart discharge scale related to the same chapter and the embodiment 1 lsti ΤΟ block diagram 6 1 j Fig. 9 9 shows the first discharge repair line I related to the sixth embodiment of the chapter Block diagram of 4 2 4 〇 1 1 FIG. 10 0 is a block diagram showing the evaluation section 1 t 4 1 6 related to the seventh embodiment in the same chapter 〇 1 I FIG. 10 1 is in the same chapter 9 indicates that a discharge detection is used once The functional block diagram of the function configuration of the heart-feed diagnostic device for device 1 I 1 | | Figure 10 2 is the block diagram of the electrical configuration of the heart-function diagnostic device 1 1 device related to the same chapter and embodiment 〇1 1 Figure 10 3 is Indicates the diagnosis of cardiac function related to the ninth embodiment of the chapter 1 1 1
Ns Γ 標 家 s κ 中 用 Ji 1¾ 尺 本 祕 -211 - at ! 4 Γ684Γ ________ B7 ,五、發明説明(209 ) 裝置的電氣構成之方塊圖。 圖1 0 4是表示同章第1 〇實施形態相關之心機能診 斷裝置的方塊圖。 圖1 0 5是表示同章第1 1實施形態相關之心機能診 斷裝置的方塊圖》 圖1 0 6是表示對應同章運動強度之脈波波型的波型 形狀圖。 圖1 0 7是以模式表示對應同章運動強度之脈波波型 的波型形狀圖。 圖1 0 8是表示同章第1 2實施形態的第2態樣相關 之一次排出量算出部的構成方塊圖。 圖1 0 9是表示同章同實施形態之第3態樣相關之一 次排出量算出部的構成方塊圖。 圖1 1 0爲同章第1 4實施形態相關之評估部1 6的 方塊圖。 - n n I IF n u I r '*^>.—^——1— T mnn^s. .,r 4V i 务 -'邛先閱請背面之-意事邛再硪巧本頁) ^.,:-;部中--ϊ';;?7^^_-^ΐ·,,>ί·;贽合;ίτ-ΐ-印韋 本錄尺度( (,NS ) Λ4规格(2丨0x297公廣) -212-Ns Γ In the standard s κ, Ji 1¾ ruler -211-at! 4 Γ684Γ ________ B7, V. Description of the invention (209) Block diagram of the electrical structure of the device. Fig. 104 is a block diagram showing a cardiac function diagnostic device related to the tenth embodiment of the chapter. Fig. 105 is a block diagram showing a cardiac function diagnosis device related to the eleventh embodiment of the chapter. Fig. 106 is a waveform diagram showing a pulse wave pattern corresponding to the exercise intensity of the chapter. Fig. 107 is a wave shape diagram showing the pulse wave patterns corresponding to the exercise intensity of the same chapter in a pattern. Fig. 108 is a block diagram showing the configuration of a primary discharge amount calculation unit related to the second aspect of the twelfth embodiment of the chapter. Fig. 10 is a block diagram showing a configuration of a primary discharge amount calculation unit related to the third aspect of the same chapter and embodiment. Fig. 110 is a block diagram of the evaluation unit 16 related to the implementation form of the fourteenth chapter. -nn I IF nu I r '* ^ > .— ^ —— 1— T mnn ^ s.., r 4V i Service-' 邛 Please read the back-Issue 邛 and then this page) ^. ,:-; Ministry--ϊ ';;? 7 ^^ _- ^ ΐ · ,, > ί ·; 贽 合; ίτ-ΐ-Inveraby's book scale ((, NS) Λ4 specification (2 丨 0x297 public Canton) -212-
Claims (1)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9028168A JPH10216293A (en) | 1997-02-12 | 1997-02-12 | Instrument for measuring exercise index |
JP05963297A JP3747552B2 (en) | 1997-03-13 | 1997-03-13 | Pulse wave diagnostic device |
JP23007597A JP3728895B2 (en) | 1997-08-26 | 1997-08-26 | Exercise intensity detector |
JP27550097A JP3858379B2 (en) | 1997-10-08 | 1997-10-08 | Cardiac output detection device and cardiac function diagnosis device |
JP30133297A JP3870514B2 (en) | 1997-10-31 | 1997-10-31 | Stroke volume detection device and cardiac function diagnosis device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW416841B true TW416841B (en) | 2001-01-01 |
Family
ID=27521007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW87109953A TW416841B (en) | 1997-02-12 | 1998-06-20 | Pulse diagnosis system, pulse data generation method, motion indicator detection, motion strength detection, heart extrusion capacity detection, once extrusion capacity detection, heart function diagnostic method and apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW416841B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI619471B (en) * | 2015-10-14 | 2018-04-01 | 京瓷股份有限公司 | Measuring device and measuring method |
-
1998
- 1998-06-20 TW TW87109953A patent/TW416841B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI619471B (en) * | 2015-10-14 | 2018-04-01 | 京瓷股份有限公司 | Measuring device and measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6361501B1 (en) | Pulse wave diagnosing device | |
CN105852846B (en) | Apparatus, system and method for testing heart motion function | |
Laborde et al. | Heart rate variability and cardiac vagal tone in psychophysiological research–recommendations for experiment planning, data analysis, and data reporting | |
Huynh et al. | VitaMon: measuring heart rate variability using smartphone front camera | |
EP0841034B1 (en) | Arrhythmia detector | |
JP4096376B2 (en) | Relaxation instruction equipment | |
IL259830A (en) | Methods and apparatuses for assessment and management of hemodynamic status | |
WO2019173237A1 (en) | Systems, devices, and methods for tracking and analyzing subject motion during a medical imaging scan and/or therapeutic procedure | |
JP6602248B2 (en) | Electronic blood pressure monitor | |
Allen et al. | Photoplethysmography (PPG): state-of-the-art methods and applications | |
JP3747552B2 (en) | Pulse wave diagnostic device | |
Cao et al. | Guard your heart silently: Continuous electrocardiogram waveform monitoring with wrist-worn motion sensor | |
JP3870514B2 (en) | Stroke volume detection device and cardiac function diagnosis device | |
JPH10179528A (en) | Pulse analysis device | |
JP3666188B2 (en) | Cardiac function diagnostic device | |
US11439347B2 (en) | Portable dehydration monitoring system | |
TW416841B (en) | Pulse diagnosis system, pulse data generation method, motion indicator detection, motion strength detection, heart extrusion capacity detection, once extrusion capacity detection, heart function diagnostic method and apparatus | |
JP3858379B2 (en) | Cardiac output detection device and cardiac function diagnosis device | |
Paliwal et al. | Real time heart rate detection and heart rate variability calculation | |
CN106343994A (en) | Heart rate detecting method and system | |
Pestritu et al. | Method for measuring the heart rate through fingertip using a low-end video camera and its application in self care | |
Delgado-Gonzalo et al. | Physical activity | |
Blazek | Skin Perfusion Studies: Historical Notes and Modern Measuring Strategies Using Non-invasive Photoplethysmographic Sensor Concepts | |
Silva | HeartBallet–Cardiovascular correlates of movement biomechanics in ballet | |
Souza | Heart Rate Estimation During Physical Exercise Using Wrist-Type Ppg Sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |