413 的0五、發明説明( 發明領域 A7 B7 本發明與—種發光二極體元件有關,特別是關於一 種具有抗反射層(anti-reflector)之面射型發光二極體 (surface emitting LED)元件。 發明背景: 近來’由於高亮度·及高可靠度自發性(spontaneous 發光二極體(light-emitting diodes, LED)被廣泛的運用 於戶外顯示器、交通號誌、光學資料通訊、及交通工具指 向發光元件上’使得高效率之發光二極體受到了極大的重 視。一般而言,發光二極體是藉著使用諸如液相磊晶 (liquid phase epitaxy,LPE)等相關磊晶(epitaxy)技術 在半導體底材上形成由p-n接面或p-i-n接面所構成之半 導二極體’以達到發光之目的。 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印^ 請參照第一圖,傳統習知技術卞之發光二極體往往 是使用雙重異質結構(double heterostructure)做為基 礎而形成的。典型的發光二極體包括一η傳導型砷化鉀底 材(Ga A s)10 ’在該砷化鉀底材1〇下則為一 ^傳導型電極 (elect rode )5>至於在該砷化鉀底材10上則形成—布拉格 反射層(distributed Bragg reflector, DBR)20,接著再 形成一雙異質結構於該布杻格反射層20上。其中,該雙異 本紙張尺度適用中國國家揉隼(CNS ) A4規格(2丨OX297公羞) 413960 A7 B7___ 五、發明説明() 質結構包括了一 η傳導型底限制層30(1 ower cladding layer),一未# 雜活性層 40(active layer), 以及一 p傳導型頂限制層50(upper cladding layer)。另 外,在該P傳導型頂限制層50上形成一 p傳導型窗口層 60(window layer),其中該p傳導型窗口層60具有較寬或 不直接(indirect)的能隙(energy gap)以及較高的傳導 性。至於在該P傳導型窗口層60之上,則形成一 p傳導型電 極70,以作為導電之用。 一般而言,對上述具有布拉格反射層 (distributed Bragg ref lector, DBR)之發光二極體而言 ,由活性層40所產生之發光,會朝著窗口層60的方向輻射 而使該發光二極雜發光。然而部份由活性層40所產生之發 光,會自活性層40朝布拉格反射層20輻射,再透過該布拉 格反射層20的反射作用,將光線反射回該活性層40並往窗 口層60的方向幅射形成發光。是以透過布拉格反射層20 的運用,可以有效提高該發光二極體之發光強度及發光效 率 & 此外 , 垂直空 腔面射 型雷射 (vert i ca1-cav i ty surface-emitting lasers, VCSELs) 以及 共振空 腔發光 二極體 (resonant-cavity light-emitting diodes ,RCLEDs)亦由於其具有高發光效率、及高光譜純度而廣 本紙張尺度適用中國國家標準(CNS ) A4現格(210 X 297公釐) ----.----1.----装------ I 訂·------絲 ' (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局Β工消費合作社印製 4i3_ A7 B7 五、發明説明() 經濟部智慧財產局員工消費合作社印製 泛的使用於各式光電元件中’並受到極大的重視。對上述 之垂直空腔面射型雷射及共振空腔發光二極體而言,其組 成結構往往具有一個與該發光元件垂直之共振腔,並且藉 著利用該共振腔使所產生的輻射光在空腔内進行振盘來 提高該發光元件之光譜純度及發光效率。是以相較於傳統 技術之邊緣發光(edge-emitting)元件具有相當多的好處 ,例如藉著縮小光電元件的尺寸可提高平面發先元件之積 集度。此外,透過共振空腔的運用,可製造遞光線效準極 佳之光纖元件,並應用於積體電路中作為光學連結。 垂直空腔面射型雷射(VCSELs)及共振空腔發光二 極體(RCLEDs)具有相當類似之元件結構,其中包含位於一 對鏡面堆積層之間的活性區域,且該活性區域可使用上述 的p-n接面或p-i-n接面來構成,並透過一流經該活性區域 之入射電流造成發光。接著形成頂部電極與底部電極於上 述鏡面堆積層對之上、下表面,以提供該發光元件作電性 連結》—般而言,可在頂部電極或底部電極上定義一十問 開口(central opening)’使該發光元件之輻射光透過該 中間開口發射出去’其中該轄射光之方向與活性區域相互 垂直。此外,由於該種發光元件所產生之發光會在鏡面堆 積層間形成震堡而產生同調光(coherent light)» 發明目的及概述 本紙張尺度適用中國國家榇準(CNS ) A4規格(210><297公嫠) (請先閱讀背面之注意事項再填寫本頁) -褽· 訂 A7 B7_ 五、發明説明() 本發明之目的在提供一種具有抗反射堆積層之高 效率發光二極體》 (請先閲讀背面之注意事項再填寫本頁) 本發明之另一目的為提供一種節省製程時間及成 本之高效率發光二極艘。 本發明之另一目的為提供一種具有極簡單結構之 高效率發光二極體。 經濟部智慧財產局員工消費合作社印製 本發明所提供之發光二極體至少包括:第一傳導型 半導體底材,第一電極形成於該半導體底材之下表面,以 及一布拉格反射層(DBR)形成於該半導體底材之上表面, 且該布拉格反射層為第一傳導型。其中,該布拉格反射層 包含了複數個子層,每一個子層之厚度為(2 η-1)人/4,其 中上述之η為正整數,Α·為該發光二極艘發光之波長。一 活性層形成於該布拉格反射層上,其中該活性層所產生之 發光即為該發光二極體之發光,接著一抗反射堆積層形成 於該活性層上,其中該抗反射堆積層為第二傳導型,且該 反射堆積層包含了複數個子層,每一個子層之厚度為(m + l) λ/2,其中上述之m為零或正整數’ λ為該活性層所產生 發光之波長。一窗口層形成於該抗反射堆積層上,且該窗 口層為第二傳導型,第二電極形成於該窗口層之上。 本發明具有許多優點,例如藉著運用具有高透光性 ----Jl 本紙浪尺度適用中國國家標準(CNS ) A4规格(2丨OX 297公釐) 經濟部智慧財產局員工消费合作社印製 413960 A7 _____B7__ 五、發明説明() 之抗反射堆積層可有效避免活性層所產生之發光在該活 性層與抗反射堆積層的接面發生反射現象,並使該發光完 全通過抗反射堆積層,而提高該發光二極體之發光效率。 此外,本發明提供一個極簡單之發光二極體結構,其中使 用反射堆積層及抗反射堆積層作為該發光二極體之限制 層’而有效簡化該發光二極體製程步驟,並降低該製程之 成本。最特別的是反射堆精層與抗反射堆積層交替形成之 子層所用之材料相同,僅藉著調整位於該反射堆積層與抗 反射堆積層中各子層之厚度來控制所需之反射率,是以可 有效的縮減製造成本且提高生產良率。 通式簡單説明: 藉由以下詳細之描述結合所附圖示,將可輕易的了 解上述内容及此項發明之諸多優點,其中: 第一圖為發光二極體元件之載面圏,顯示根據先前 技術所形成之發光二極體元件其結構。 第二圖為發光二極體元件之截面圈,顯7F根據本發 明所形成之發光二極體元件其結構。 第三圖為發光二極體元件之截面圖,顯示根據本發 明所形成之發光二極體元件其能隙結構。 第四圖為發光二極體元件之截面圖,顯示根據本發 明之另一實施例所形成的發光二極體元件其結構。 本紙張尺度適用中國國家橾率(CNS ) A4規格(210X297公釐) ----------家------訂'------絲 (請先閲靖背面之注意事項再填寫本頁} A7 B7 五、發明説明() 發明詳細銳.明: (請先閱讀背面之注意事項再填寫本頁) 本發明所提供之發光二極體其結構如第二圖所示,其 中該發光二極體100之結構包括一具有<100>晶向之η傳導 型砷化钟(GaAs)底材120,且該砰化押底材120之厚度最好 介於250至300μπι間。至於在該砷化鉀底材120上則形成一 反射堆積層(reflection stack)130,然後在該反射堆積 層130上形成一未摻雜磷化鋁鎵銦(AlGalnP)活性層 140(active layer)。其中,該未摻雜磷化鋁鎵銦(AlGalnP) 活性層1 4 0在一較佳實例中,可使用金屬有機氣相磊晶法 (metal organic vapor phase epitaxy, 經濟部智慧財產局員工消費合作杜印製 MOPVE)或低壓氣相蟲 3¾ 法(low pressure vapor phase epitaxial method, LPMOVPE)等相關技術形成於反射堆積 層130上,且該未摻雜磷化鋁鎵銦(AlGalnP)活性層140具 有之厚度大約為0.1至2μ(ηβ接著,再於該未摻雜磷化鋁 鎵銦活性層140上形成一抗反射堆積層(anti-reflection stack)150,用以提供由未摻雜填化鋁鎵銦 (AlGalnP)活性層140所產生之發光,使其完全通過該抗反 射堆積層150,而不至於在該未摻雜磷化鋁鎵銦活性層140 與抗反射堆積層150的接面發生反射現象。該抗反射堆積 層150亦可用以避免所製造之輻射光在未摻雜磷化鋁鎵銦 活性層1 4 0的上下接面間產生共振現象。此外,所形成之 反射堆積層130以及抗反射堆積層150並可使用作為該未 摻雜磷化鋁鎵銦(AlGalnP)活性層140之限制層 (cladding layer)。接著,一p型#雜窗ρ層160形成於該 本紙張尺度適用中國國家揉準{ CNS ) A4規格(210X297公釐) 413960 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 抗反射堆積層150之上,其中該窗口層160具有較寬或不直 接(indirect)的能隙(energy gap)以及較高的傳導性,且 所使用之材料可選擇磷化鉀CGaP)、磷砷化鉀(GaAsP)、或 珅化铭卸(AlGaAs)等等1然後,一覆蓋層(caplayer)170 形成於該窗口層160之上,以避免該窗口層曝露於大氣中 並產生氧化。再於該珅化鉀(GaAs)底材120之下表面形成 一 η傳導型電極110,並於該覆蓋層(cap layer)170之上表 面形成一 P傳導型電極180。其中,在較佳之實施例中,該η 傳導型電極110可使用AuGeNi材料形成,而ρ傳導型電極 180則可利用BeAu材料形成》 在一較佳實施例中,該反射堆積層1 3 0可使用金屬 有機氣相磊晶法(M0PVE)、金屬有機化學氣相沉積法 (MOCVD)或分子束蟲晶法(molecular beam epitaxy, 經濟部智慧財產局員工消費合作社印製 MBE)加以形成》其中,該反射堆積層130是由複數個η傳導 型砷化鋁子層(A1 As )132及η傳導型坤化鋁鎵子層 (AlGaAs) 134交替形成,並且每個子層的厚度皆為該發光 二極體100所產生發光波長之四分之一(或四分之一的整 數倍)。每個子層之厚度並可表示為(2η-1)λ/4,其令λ 如同上述,為該發光二極體100其活性層140所產生發光之 波長,η為正整數(如1、2 ... 5)。如同熟悉該項技術者所熟 知,上述反射堆積層130中之砷化鋁子層(A1As)132具有較 低的折射率,而砷化鋁鎵子層(AlGaAs)134則具有較高的 折射率。至於該反射堆積層1 3 0之能隙結構則如第三圈所 示,其中該反射堆積層130可視為由交替形成之寬能隙半 本紙張尺度逋用申國國家標準(CNS ) A4規格(210X297公釐) 經濟部智慧財產局員工消費合作社印製 413960 A7 __;_______B7 五、發明説明() ~~ ' — 導體子層132(即上述之砷化鋁子層)及窄能隙半導體子層 1 3 4 (即上述之砷化鋁鎵子層)所構成。 仍請參照第二圊,該抗反射堆積層〗5 〇與上述反射 堆積層130之結構相似。亦即該反射堆積層15〇同樣具有複 數個交替形成之p傳導型砷化鋁子層(A1As)152&p傳導型 神化紹鎵子層(AlGaAs)154,並且每個子層的厚度皆為該 發光二極體100所產生發光波長之二分之一。每個子層之 厚度並可表示為(111+1)又/2,其中又亦為該發光二極體1〇〇 其活性層140之發光波長,m為零或正整數(如〇、卜2.5) 。至於該k反射堆積層1 5 〇之能隙結構則如第三圖所示, 其中該反射堆積層150可視為由交替形成之寬能隙半導體 子層152(即上述之珅化鋁子層)及窄能隙半導體子層 1 5 4 (即上述之砷化鋁鎵子層)所構成。 一般而言,反射堆積層130及抗反射堆積層150其子 層的組成成份、寬能隙及窄能隙子層之數目以及子層之厚 度’皆可根據發光二極體1〇〇所產生發光之波長範圍加以 選擇’以便該發光二極體在進行發統操作時,可針對所需 之波長獲得最佳的發光效率。在上述實施例中,藉著控制 反射堆積層130内各子層(132及134)之厚度為(2η-1)Λ /4 可使該反射堆積層130獲得大於0.7之反射率。特別是對於 抗反射堆積層150而言,雖然其具有與該反射堆積層 同樣之子層’然而透過控制該抗反射堆積層150之各個子 層(152及154)之厚度為(m+i)A/2,可將該抗反射堆精層 150之反射率降為〇。至於位於該反射堆積層i30及抗反射 本紙張尺度適用中國國家標辛 ( CNS ) Λ4規格(21〇Χ25»7公釐) I ---------裝------訂------錄 (請先閲讀背面之注意事項再填寫本頁) A7 B7 413960 五、發明説明() 堆積層150中之砷化鋁子層(AlAs)及砷化鋁鎵子層 CAlGaAs)則可藉著在進行磊晶時交替變換各自的材料源 (source)並經由適當的磊晶製程交替形成。並且,藉著控 制引進材料源至該磊晶反應室内之時間,可調整砷化鋁子 層(AlAs)及砷化鋁鎵子層(A1GaAs)之厚度’以滿足反射堆 積層130及抗反射堆積層150所需。在一較佳實施例中,該 反射堆積層130大約具有20-30對交替形成之砷化鋁/砷化 鋁鎵交替層,並且該抗反射堆積層150亦具有約20-30對交 替形成之砷化鋁/砷化鋁鎵交替層。此外’反射堆積層13〇 及抗反射堆積層150亦可分別使用作為該發光二極體之底 限制層及頂限制層。 在上述之實施例中,該反射堆積層130及抗反射堆 積層150藉著利用砷化鋁/坤化鋁鎵之交替層,可調整反射 堆積層130及抗反射堆積層150之反射率。然而藉著選擇具 有適當折射率之材料,亦可獲得合適的反射堆積層130及 抗反射堆積層150,諸如可使用磷化鋁銦/磷化鋁鎵銦 '砷 化鎵/砷化鋁、或砷化鎵/砷化鋁鎵等適當之交替層皆可違 成控制反射率之效果。另外,在該底材120上進行該發光 二極體其各組合層之磊晶時,可利用適當的磊晶技術,諸 如金屬有機化學氣相沉積法(M0CVD)、分子束磊晶法(MPE) 、以及各式氣相轰晶(VPE)。在一較佳實施例中,該反射 堆積層130及抗反射堆積層150之神化铭/珅化銘鎵交替層 可使用上述之金屬有機氣相沉積法(M0CVD)加以形成。 請參照第四圖’在本發明之另一實施例中,則使用 本紙張又度適用中國國家標準(CNS ) A4規格(210X297公釐) --Γ.--rL-----裝------訂;------線 (請先閩讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 413960 A7 B7 五、發明説明() (請先聞讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作杜印製 多重量子井結構(multiple qUantum well structure)來 製造發光二極艎。其中’該發光二極體元件200包括一具 有< 1 0 0 >晶向之η傳導型砷化鉀底材2 2 〇,以及位於該砷化 鉀底材220上之η傳導型反射堆積層230。接著在該η傳導型 反射堆積層230上形成一多重量子井結構240,其中該多重 量子井結構240包含複數個交替形成之量子井層 (quantum well layers)及能障層(barrier layers)。至 於該多重量子井結構240之材料則可藉著改變磷化鋁鎵銦 令之鋁含量而獲得。對量子井層而言,其組成材料可為磷 化鋁鎵銦(AlxGaInP,x = 〇- 〇.5),而能障層之材料則可使用 磷化鋁鎵銦(AhGaInP,x = 〇.3-l),且量子井層及能障層皆 可使用金屬有機氣相磊晶法(MOPVE)形成,並且該量子井 層及能障層之厚度在一較佳實施例中分別為2 0及5 0 0埃。 接著,在該多重量子井結構240之上形成一 p傳導型抗反射 層250,並於該ρ傳導型抗反射層250上形成一 ρ傳導型窗口 層260»其中該p傳導型窗口層260可使用金屬有機氣相磊 晶法(M0PVE)或低壓金屬有機氣相磊晶法(LPM0PVE)加以 形成,並且具有較寬或不直接(indirect)之能隙 (energy gap)以及較高的傳導性。另外,該P傳導型窗口 層2 6 0所使用之材料可選擇磷化鉀(GaP)、磷砷化鉀(GaAsP) 、或砷化鋁鉀(AlGaAs)等等。然後’一覆蓋層 (cap lay er)270形成於該窗口層260之上’以避免該窗口 層曝露於大氣中並產生氧化。再於該砷化鉀(GaAs)底材 220之下表面形成一 η傳導型電極210’並於該覆蓋層 本紙張尺度適用中國國家標準(CNS y Α4说格(2丨ο X 297公釐) A7 B7 41396° 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) (CaPlayer)27〇之上表面形成—p傳導型電極28〇。其中, 在較佳之實施例中,該n傳導型電極21〇可使用以以…材料 形成,而P傳導型電極280則可利用BeAu材料形成。 本發明提供了許多超越先前技術之優點,例如,藉 著運用具有高透光性之抗反射堆積層可有效避免活性層 所產生之發光,在該活性廣與抗反射堆積層的接面發生反 射現象,並使該發光完全通過抗反射堆積層,而提高該發 光二極體之發光效率。此外,本發明提供一個極簡單之發 光二極體結構,其中使用反射堆積層及抗反射堆積層作為 該發光二極體之限制層,而有效簡化該發光二極體製程步 驟,並降低該製程之成本。最特別的是反射堆積層與抗反 射堆積廣交替形成之子層所用的材料相同,僅藉著調整位 於該反射堆積層與抗反射堆積層中各子層厚度來控制所 需之反射率,是以可有效的縮減製造成本且提高生產良率 〇 本發明雖以一較佳實例闡明如上,然其並非用以限 定本發明精神與發明實體’僅止於此一實施例爾。對熟悉 此領域技藝者’在不脫離本發明之精神與範圍内所作之修 改’均應包含在下述之申請專利範圍内。 經濟部智慧財產局員工消費合作社印製 本紙張尺度遴用中國國家標準(CNS ) A4規格(2丨0X2.97公釐) 12_0 of 413. Description of the invention (Field of invention A7 B7 The present invention relates to a light-emitting diode element, in particular to a surface emitting LED with an anti-reflector Background of the Invention: Recently, 'spontaneous light-emitting diodes (LEDs) are widely used for outdoor displays, traffic signs, optical data communications, and transportation due to their high brightness and high reliability. 'Pointing on the light-emitting element' has given great attention to high-efficiency light-emitting diodes. In general, light-emitting diodes use epitaxy such as liquid phase epitaxy (LPE) Technology to form a semiconducting diode composed of a pn junction or a pin junction on a semiconductor substrate to achieve the purpose of emitting light. (Please read the precautions on the back before filling this page.) Employees of the Intellectual Property Bureau of the Ministry of Economic Affairs Cooperative seal ^ Please refer to the first picture, the light-emitting diodes of the conventional technology are often formed using a double heterostructure as a basis A typical light-emitting diode includes a η-conducting potassium arsenide substrate (Ga A s) 10 ′ under the potassium arsenide substrate 10 is a ^ conductive electrode (elect rode) 5 > On the potassium arsenide substrate 10, a distributed Bragg reflector (DBR) 20 is formed, and then a double heterostructure is formed on the cloth reflective layer 20. The size of the double heterogeneous paper is suitable for the Chinese state.隼 (CNS) A4 specification (2 丨 OX297) 413960 A7 B7___ 5. Description of the invention () The mass structure includes a η conductive bottom constraining layer 30 (1 ower cladding layer), and a ## active active layer 40 (active layer), and a p-conducting top confinement layer 50. In addition, a p-conducting window layer 60 is formed on the p-conducting top constraining layer 50, where the p-conducting window layer is formed. 60 has a wider or indirect energy gap and higher conductivity. As for the P-conducting window layer 60, a p-conducting electrode 70 is formed for electrical conduction. In general, for the above-mentioned having a Bragg reflective layer (dist In the case of a light-emitting diode (DBR), the light generated by the active layer 40 will radiate toward the window layer 60 to cause the light-emitting diode to stray. However, part of the light generated by the active layer 40 will radiate from the active layer 40 toward the Bragg reflective layer 20, and then reflect through the reflection of the Bragg reflective layer 20 to reflect light back to the active layer 40 and toward the window layer 60. Radiation forms glow. By using the Bragg reflector 20, the luminous intensity and luminous efficiency of the light-emitting diode can be effectively improved. In addition, vertical cavity surface-emitting lasers (vert i ca1-cav i ty surface-emitting lasers, VCSELs) ) And resonant cavity-cavity light-emitting diodes (RCLEDs) are also widely used because of their high luminous efficiency and high spectral purity. This paper is compliant with Chinese National Standard (CNS) A4 (210 X 297 mm) ----.---- 1 .---- install ------ I order · ------ silk '(Please read the precautions on the back before filling this page) Printed by the Intellectual Property Bureau of the Ministry of Economics, B Industrial Consumer Cooperatives 4i3_ A7 B7 V. Description of the Invention () The Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economics, printed by the Consumer Cooperatives are widely used in various types of optoelectronic components, and have received great attention. For the above-mentioned vertical cavity surface-emitting lasers and resonant cavity light-emitting diodes, the composition structure often has a resonant cavity perpendicular to the light-emitting element, and the generated radiant light is made by using the resonant cavity A vibrating disk is performed in the cavity to improve the spectral purity and luminous efficiency of the light-emitting element. Compared with the traditional technology of edge-emitting (edge-emitting) elements have a lot of benefits, for example, by reducing the size of the optoelectronic element can increase the integration of the plane front-end components. In addition, through the use of resonant cavities, fiber optic components with excellent light transmission efficiency can be manufactured and used as integrated circuits in integrated circuits. Vertical cavity surface-emitting lasers (VCSELs) and resonant cavity light-emitting diodes (RCLEDs) have quite similar element structures, including active regions located between a pair of mirror-stacked layers, and the active regions can use the above Is formed by a pn junction or a pin junction, and emits light through an incident current passing through the active region. Next, a top electrode and a bottom electrode are formed on the upper and lower surfaces of the above-mentioned mirror-stacked layer pair to provide the light-emitting element for electrical connection. In general, a ten-point opening can be defined on the top electrode or the bottom electrode. ) 'Let the radiant light of the light-emitting element be emitted through the intermediate opening', wherein the direction of the emitted light and the active area are perpendicular to each other. In addition, coherent light is generated due to the luminescence generated by this kind of light-emitting element between mirror-stacked layers. »Purpose and summary This paper applies the Chinese National Standard (CNS) A4 standard (210 > < 297 g) (Please read the notes on the back before filling this page)-褽 · Order A7 B7_ V. Description of the invention () The purpose of the present invention is to provide a high-efficiency light-emitting diode with an anti-reflective stacked layer "( (Please read the precautions on the back before filling this page) Another object of the present invention is to provide a high-efficiency light-emitting diode ship that saves process time and cost. Another object of the present invention is to provide a highly efficient light emitting diode having a very simple structure. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the light-emitting diode provided by the present invention includes at least: a first conductive semiconductor substrate, a first electrode formed on a lower surface of the semiconductor substrate, and a Bragg reflective layer (DBR ) Is formed on the upper surface of the semiconductor substrate, and the Bragg reflective layer is a first conductive type. The Bragg reflection layer includes a plurality of sub-layers, and the thickness of each sub-layer is (2 η-1) person / 4, where η is a positive integer and A · is the wavelength of light emitted by the light-emitting diode. An active layer is formed on the Bragg reflection layer, wherein the light generated by the active layer is the light emission of the light-emitting diode, and then an anti-reflection stacking layer is formed on the active layer, wherein the anti-reflection stacking layer is the first Two-conduction type, and the reflective stacking layer includes a plurality of sub-layers, and the thickness of each sub-layer is (m + l) λ / 2, where m is zero or a positive integer 'λ is the light emission of the active layer wavelength. A window layer is formed on the anti-reflection stacking layer, the window layer is of a second conductivity type, and a second electrode is formed on the window layer. The present invention has many advantages, for example, by using a high light transmission-Jl paper wave scale is applicable to China National Standard (CNS) A4 specifications (2 丨 OX 297 mm) printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 413960 A7 _____B7__ 5. The anti-reflection stacking layer of the invention () can effectively prevent the light generated by the active layer from reflecting at the interface between the active layer and the anti-reflection stacking layer, and make the light completely pass through the anti-reflection stacking layer. The light-emitting efficiency of the light-emitting diode is improved. In addition, the present invention provides a very simple light-emitting diode structure, in which a reflective stacked layer and an anti-reflective stacked layer are used as the limiting layer of the light-emitting diode, thereby effectively simplifying the steps of the light-emitting diode system and reducing the manufacturing process. Cost. The most special is that the sub-layers formed by the reflective stack fine layer and the anti-reflective stacked layer are made of the same material. Only by adjusting the thickness of each sub-layer in the reflective stacked layer and the anti-reflective stacked layer, the required reflectance is controlled. It can effectively reduce manufacturing costs and improve production yield. Brief description of the general formula: The above-mentioned content and many advantages of this invention can be easily understood through the following detailed description combined with the attached drawings, where: The first figure is the loading surface of the light-emitting diode element. The structure of the light-emitting diode element formed by the prior art. The second figure is a section circle of the light-emitting diode element, showing the structure of the light-emitting diode element formed by 7F according to the present invention. The third figure is a cross-sectional view of the light emitting diode element, showing the energy gap structure of the light emitting diode element formed according to the present invention. The fourth figure is a cross-sectional view of a light-emitting diode element, showing the structure of a light-emitting diode element formed according to another embodiment of the present invention. This paper size applies to China National Standard (CNS) A4 specification (210X297 mm) ---------- Home ------ Order '------ Silk (please read the back of Jing first) Please note this page before filling in this page} A7 B7 V. Description of the invention () Details of the invention are clear. (Please read the notes on the back before filling this page) The structure of the light-emitting diode provided by the present invention is as shown in the second figure As shown, the structure of the light-emitting diode 100 includes a η-conducting arsenide bell (GaAs) substrate 120 having a crystal orientation of <100, and the thickness of the ping substrate 120 is preferably between 250 and 250. To 300 μm. As for the potassium arsenide substrate 120, a reflection stack 130 is formed, and then an undoped aluminum gallium indium phosphide (AlGalnP) active layer 140 is formed on the reflection stack 130. (active layer), wherein the undoped AlGalnP active layer 140 is in a preferred embodiment, and a metal organic vapor phase epitaxy can be used, wisdom of the Ministry of Economic Affairs Property Bureau employee consumer cooperation Du printed MOPVE) or low pressure vapor phase epitaxial method, LPMOVPE ) And other related technologies are formed on the reflective stacking layer 130, and the undoped aluminum gallium indium phosphide (AlGalnP) active layer 140 has a thickness of about 0.1 to 2 μ (ηβ, and then the undoped aluminum gallium phosphide) An anti-reflection stack 150 is formed on the indium active layer 140 to provide the light generated by the undoped AlGalnP active layer 140 so that it passes through the anti-reflection stack completely. Layer 150, so that no reflection occurs at the interface between the undoped aluminum gallium indium phosphide active layer 140 and the anti-reflection stacking layer 150. The anti-reflection stacking layer 150 can also be used to prevent the manufactured radiant light from being un-doped. A resonance phenomenon occurs between the upper and lower interfaces of the hetero-aluminum-gallium-indium phosphide active layer 140. In addition, the formed reflective stacking layer 130 and the anti-reflective stacking layer 150 can be used as the undoped aluminum-gallium indium phosphide (AlGalnP). ) The cladding layer of the active layer 140. Next, a p-type #Miscellaneous window layer 160 is formed on the paper standard applicable to the Chinese National Standard {CNS) A4 specification (210X297 mm) 413960 A7 B7 V. Invention Instructions () (Please read the notes on the back before (Fill in this page) on top of the anti-reflective stacking layer 150, wherein the window layer 160 has a wider or indirect energy gap and higher conductivity, and the material used can be selected from potassium phosphide CGaP), potassium arsenide (GaAsP), or AlGaAs, etc. 1 Then, a cap layer 170 is formed on the window layer 160 to prevent the window layer from being exposed to the atmosphere and Produces oxidation. An n-conducting electrode 110 is formed on the lower surface of the potassium sulfide (GaAs) substrate 120, and a P-conducting electrode 180 is formed on the upper surface of the cap layer 170. Among them, in a preferred embodiment, the n-conducting electrode 110 may be formed using AuGeNi material, and the p-conducting electrode 180 may be formed using BeAu material. In a preferred embodiment, the reflective stacking layer 130 may It was formed using metal organic vapor phase epitaxy (MOPVE), metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs). The reflective stacking layer 130 is alternately formed by a plurality of η-conducting aluminum arsenide sublayers (A1 As) 132 and η-conducting aluminum gallium sublayers (AlGaAs) 134, and the thickness of each sub-layer is A quarter (or an integral multiple of a quarter) of the wavelength of light emitted by the polar body 100. The thickness of each sublayer can be expressed as (2η-1) λ / 4. Let λ be the same as above. It is the wavelength of light emitted by the light emitting diode 100 and its active layer 140. η is a positive integer (such as 1, 2 ... 5). As is familiar to those skilled in the art, the aluminum arsenide sublayer (A1As) 132 in the reflective stacking layer 130 has a lower refractive index, and the aluminum gallium arsenide sublayer (AlGaAs) 134 has a higher refractive index. . As for the energy gap structure of the reflective stacking layer 130, as shown in the third circle, the reflective stacking layer 130 can be regarded as an alternately formed wide energy gap half-paper size, applying the National Standard of China (CNS) A4 (210X297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 413960 A7 __; _______B7 V. Description of the invention () ~~ '— Conductor sublayer 132 (ie, the above-mentioned aluminum arsenide sublayer) and narrow bandgap semiconductor sublayer The layer 1 3 4 (namely, the above-mentioned aluminum gallium arsenide sublayer). Still referring to the second aspect, the structure of the anti-reflection stacking layer 50 is similar to the structure of the above-mentioned reflection stacking layer 130. That is to say, the reflective stacking layer 15 also has a plurality of alternately formed p-conducting aluminum arsenide sublayers (A1As) 152 & p-conducting type anti-gallium sublayers (AlGaAs) 154. One-half of the wavelength of light emitted by the light-emitting diode 100. The thickness of each sublayer can be expressed as (111 + 1) and / 2, which is also the light emitting wavelength of the light emitting diode 100 and its active layer 140, and m is zero or a positive integer (such as 〇, Bu 2.5 ). As for the energy gap structure of the k reflective stacked layer 150, as shown in the third figure, the reflective stacked layer 150 can be regarded as a wide energy gap semiconductor sublayer 152 (ie, the above-mentioned aluminum halide sublayer) formed alternately. And a narrow energy gap semiconductor sublayer 154 (ie, the above-mentioned aluminum gallium arsenide sublayer). In general, the composition of the sub-layers of the reflective stacking layer 130 and the anti-reflective stacking layer 150, the number of wide and narrow energy gap sublayers, and the thickness of the sublayers can be generated according to the light emitting diode 100. The wavelength range of the light emission is selected so that the light-emitting diode can obtain the best light-emitting efficiency for the required wavelength when performing the system operation. In the above embodiment, by controlling the thickness of each sub-layer (132 and 134) in the reflective stacking layer 130 to be (2η-1) Λ / 4, the reflective stacking layer 130 can obtain a reflectance greater than 0.7. Especially for the anti-reflection stacking layer 150, although it has the same sublayer as the reflection stacking layer, the thickness of each sub-layer (152 and 154) of the anti-reflection stacking layer 150 is (m + i) A through controlling / 2, the reflectance of the anti-reflection stack fine layer 150 can be reduced to zero. As for the reflective stacking layer i30 and the anti-reflection standard, this paper applies the Chinese National Standard Xin (CNS) Λ4 specification (21〇 × 25 »7mm) I --------- Installation ------ Order ------ Record (Please read the precautions on the back before filling this page) A7 B7 413960 V. Description of the invention () Aluminum arsenide sublayer (AlAs) and aluminum gallium arsenide sublayer CAlGaAs in stacked layer 150 ) Can be formed by alternately changing the respective source of the material during the epitaxy and through an appropriate epitaxy process. In addition, by controlling the time for the introduction of the material source into the epitaxial reaction chamber, the thickness of the aluminum arsenide sublayer (AlAs) and aluminum gallium arsenide sublayer (A1GaAs) can be adjusted to meet the reflective stacking layer 130 and anti-reflective stacking. Required for layer 150. In a preferred embodiment, the reflective stacking layer 130 has about 20-30 pairs of alternately formed aluminum arsenide / aluminum arsenide layers, and the anti-reflective stacking layer 150 also has about 20-30 pairs of alternately formed layers. Aluminium arsenide / aluminum gallium arsenide layer. In addition, the 'reflection stacking layer 13o and the antireflection stacking layer 150 may be used as the bottom confinement layer and the top confinement layer of the light emitting diode, respectively. In the above embodiment, the reflectance of the reflective stacking layer 130 and the anti-reflective stacking layer 150 can be adjusted by using an alternating layer of aluminum arsenide / aluminum gallium. However, by selecting a material with an appropriate refractive index, a suitable reflective stacking layer 130 and an anti-reflective stacking layer 150 can also be obtained, such as indium aluminum phosphide / aluminum gallium indium phosphide, gallium arsenide / aluminum arsenide, or Appropriate alternating layers such as gallium arsenide / aluminum gallium arsenide can defeat the effect of controlling reflectivity. In addition, when performing the epitaxy of the combined layers of the light-emitting diode on the substrate 120, appropriate epitaxy techniques such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MPE) ), And various types of gas phase bombardment (VPE). In a preferred embodiment, the Al / Mg alternate layer of the reflective stacking layer 130 and the anti-reflective stacking layer 150 can be formed using the metal organic vapor deposition method (MOCVD) described above. Please refer to the fourth figure. In another embodiment of the present invention, the use of this paper is also applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) --Γ .-- rL ----- pack- ----- Order; ------ line (please read the notes on the back before filling this page) Printed by the Intellectual Property Bureau Employee Consumer Cooperative of the Ministry of Economic Affairs 413960 A7 B7 V. Description of the invention () (please first (Please read the notes on the back of this article and then fill out this page.) The consumer cooperation of the Intellectual Property Bureau of the Ministry of Economic Affairs has printed multiple qUantum well structures to produce light emitting diodes. Wherein, the light-emitting diode element 200 includes a η-conducting potassium arsenide substrate 2 2 0 having a crystal orientation of <1 0 0 and a η-conducting reflective stack on the potassium arsenide substrate 220. Layer 230. Next, a multiple quantum well structure 240 is formed on the n-conducting reflective stacking layer 230, wherein the multiple quantum well structure 240 includes a plurality of alternately formed quantum well layers and barrier layers. The material of the multiple quantum well structure 240 can be obtained by changing the aluminum content of aluminum gallium indium phosphide. For the quantum well layer, its composition material can be aluminum gallium indium phosphide (AlxGaInP, x = 0-0.5), and the material of the energy barrier layer can be aluminum gallium indium phosphide (AhGaInP, x = 〇. 3-l), and the quantum well layer and the energy barrier layer can both be formed using metal organic vapor phase epitaxy (MOPVE), and the thicknesses of the quantum well layer and the energy barrier layer are respectively 20 in a preferred embodiment. And 50 0 Angstroms. Next, a p-conductive anti-reflection layer 250 is formed on the multiple quantum well structure 240, and a p-conductive window layer 260 is formed on the p-conductive anti-reflection layer 250. The p-conductive window layer 260 may be It is formed using metal organic vapor phase epitaxy (MOPVE) or low pressure metal organic vapor phase epitaxy (LPMOPPVE), and has a wide or indirect energy gap and high conductivity. In addition, the material used for the P-conductive window layer 260 can be selected from potassium phosphide (GaP), potassium phosphorous arsenide (GaAsP), or potassium aluminum arsenide (AlGaAs). A 'cap layer 270' is then formed on the window layer 260 'to prevent the window layer from being exposed to the atmosphere and causing oxidation. Then, an η conductive electrode 210 'is formed on the lower surface of the potassium arsenide (GaAs) substrate 220, and the Chinese paper standard (CNS y Α4 said grid (2 丨 ο X 297 mm) is applied to the paper size of the cover layer. A7 B7 41396 ° 5. Description of the invention () (Please read the precautions on the back before filling in this page) (CaPlayer) 27〇 The top surface is formed with a p-conducting electrode 28. Among them, in a preferred embodiment, the The n-conducting electrode 21 can be used to be formed from a material, and the P-conducting electrode 280 can be formed from a BeAu material. The present invention provides many advantages over the prior art, for example, by using a high-transmittance resistance The reflective stacking layer can effectively avoid the luminescence generated by the active layer, and a reflection phenomenon occurs at the interface between the active wide and the antireflection stacking layer, and the light emission completely passes through the antireflection stacking layer, thereby improving the light emitting efficiency of the light emitting diode. In addition, the present invention provides a very simple light-emitting diode structure in which a reflective stacking layer and an anti-reflective stacking layer are used as the limiting layer of the light-emitting diode, thereby effectively simplifying the steps of the light-emitting diode system. And reduce the cost of the process. The most special is that the reflective stacking layer and the anti-reflection stacking sub-layers are formed from the same material. Only by adjusting the thickness of each sub-layer in the reflective stacking layer and the anti-reflection stacking layer. The reflectivity required for control is to effectively reduce the manufacturing cost and improve the production yield. Although the present invention is explained above with a preferred example, it is not intended to limit the spirit and the entity of the invention. Examples: Modifications made by those skilled in the art without departing from the spirit and scope of the present invention should be included in the scope of patent applications described below. The paper is produced by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. With China National Standard (CNS) A4 specification (2 丨 0X2.97 mm) 12_