TW411610B - Silicon controlled rectifier type electrostatic discharge protecting structure - Google Patents
Silicon controlled rectifier type electrostatic discharge protecting structure Download PDFInfo
- Publication number
- TW411610B TW411610B TW87118279A TW87118279A TW411610B TW 411610 B TW411610 B TW 411610B TW 87118279 A TW87118279 A TW 87118279A TW 87118279 A TW87118279 A TW 87118279A TW 411610 B TW411610 B TW 411610B
- Authority
- TW
- Taiwan
- Prior art keywords
- type
- doped region
- electrically connected
- type semiconductor
- region
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
__411610_ 五、發明說明(1) 本發明係有關於靜電放電保護技術,特別有關於一種 矽控整流型靜電放電保護結構。 在積體電路(ICs)的應用上,導體、半導體及絕緣層 等材料已被廣泛使用,而薄膜沈積(Thin Film Deposition)、微影製程(photolithography)、及餘刻程 序(etching)則為主要之半導體技術。 其中薄膜沈積,即是將上述各材料分層沈積於待製晶 圓(wafer)表面’而微影製程則是複製(repHcate)所欲形 成之元件或電路圖案’並透過钱刻步驟,將該些圖案轉移 至待製晶圓表面各層以形成内部半導體元件如電晶體或電 容等。此外為避免水氣、鹼金屬離子的侵入或機械性到 傷’必;ί頁另沈積一護層(passivation layer)以保護前述 積體電路結構,且尚須定義出作為輪出/入 (input/output)用之金屬銲墊(metal pad)區之範圍,並 以蝕刻步驟挖開護層,露出金屬銲墊表面,方能進行最後 之構裝(packaging)工作。 然而在前述所完成之半導體裝置中,靜電放電(ESD : electrostatic discharge)經常在乾燥環境下因碰觸帶靜 電體而自晶片之輸出/入塾(I/O pad)侵入,造成積體電路 損傷。 尤其在進入極大型積體電路(ULSI)世代以後,例如使 用0,25/im以下之深次微米製程所形成的半導體裝置,如 CMOS ICs ’其薄閘極氧化層(thin gate oxide)、短通道 (short channel length)、和淺接 S(shall〇w juncti〇n)__411610_ V. Description of the invention (1) The present invention relates to electrostatic discharge protection technology, and more particularly to a silicon controlled rectification type electrostatic discharge protection structure. In the application of integrated circuits (ICs), materials such as conductors, semiconductors and insulation layers have been widely used, while thin film deposition, photolithography, and etching are the main Semiconductor technology. The thin film deposition is to deposit the above materials on the wafer surface in layers, and the lithography process is to reproduce (repHcate) the element or circuit pattern to be formed. These patterns are transferred to various layers on the surface of the wafer to be formed to form internal semiconductor elements such as transistors or capacitors. In addition, in order to avoid the invasion of water vapor, alkali metal ions, or mechanical damage, it is necessary to deposit a passivation layer to protect the integrated circuit structure, and it must be defined as an input / output. / output), and the protective layer is excavated in an etching step to expose the surface of the metal pad before the final packaging can be performed. However, in the semiconductor devices completed as described above, electrostatic discharge (ESD) often invades from the I / O pads of the wafer due to contact with the electrostatic body in a dry environment, causing damage to the integrated circuit. Especially after entering the ultra large integrated circuit (ULSI) generation, for example, semiconductor devices formed using deep sub-micron processes below 0,25 / im, such as CMOS ICs' thin gate oxide, short gate oxide, short Channel (short channel length), and S (shall〇w juncti〇n)
C:\Prograra Files\Patent\0503-3874-E.ptd第 4 頁 411610C: \ Prograra Files \ Patent \ 0503-3874-E.ptd page 4 411610
等結構特徵,或者是淡摻雜(LDD)和金屬矽化物擴散 (sal icided diffusion)技術的運用,均嚴重衰減了電晶 體之抗ESD能力,且影響其對靜電放電之可靠度問題,例 ^,丽,製作之電晶體元件因具有容易破裂(rupture)之 薄開極氧化層(thin gate oxide) ’因此對高電壓放電 (high voltage discharges)極為敏感。 般靜電放電引起電子元件失效者可分為電壓型損傷 和電流型損傷,而依據人體模型,高靜電電壓可能源自於 人體碰觸到積體電路接腳,其可能產生超過2〇〇〇v之電荷、 並以較短時間l〇〇ns)之高電流脈衝型態出現;另依據機 器模型’高靜電電壓亦可能來自積體電接腳與不良接地 導體,如測試機台之接觸,其則能以更短時間〗〇ns)之 高電壓脈衝型態出現。 依人體模型設計靜電放電保護結構時,其ESD值需高 達200 0V,而若依機器模型設計靜電放電保護結構時,其 ESD值則約20 0V。 而依目前揭示之相關習知技術’如採用矽控整流器 (SCR :silicon controlled rectifier)作為靜電放電保 護電路之結構者’可以美國專利第5, 〇12, 317號為例,如 第1圖所示’半導體裝置一般具有内部電路2及一與之電性 連接之接合墊1 ’其中’於兩者之間可加入一矽控整流型 之靜電放電保護結構3。 首先依據第1圖’習知之矽控整流器通常是設置於一p 型半導體基底10上’而在P型半導體基底10的既定位置内Other structural features, or the application of lightly doped (LDD) and salicided diffusion technologies, have seriously weakened the ESD resistance of the transistor and affected its reliability against electrostatic discharge. Li, the fabricated transistor element is extremely sensitive to high voltage discharges because it has a thin gate oxide layer that is easily ruptured. Those who cause electronic component failure due to general electrostatic discharge can be divided into voltage-type damage and current-type damage. According to the human body model, high electrostatic voltage may originate from the human body touching the integrated circuit pins, which may generate more than 2000v. Electric charge, and it appears as a high-current pulse in a short time (100ns); in addition, according to the machine model, high electrostatic voltage may also come from the integrated electrical pins and poor ground conductors, such as the contact of the test machine, which Then it can appear as a high-voltage pulse pattern in a shorter time (0ns). When designing an electrostatic discharge protection structure based on a human body model, its ESD value needs to be as high as 200 0V, and when designing an electrostatic discharge protection structure based on a machine model, its ESD value is about 200 0V. And according to the related conventional technology disclosed so far, such as those using silicon controlled rectifier (SCR: silicon controlled rectifier) as the structure of the electrostatic discharge protection circuit, US Patent No. 5, 012, 317 is taken as an example, as shown in Figure 1. It shows that a semiconductor device generally has an internal circuit 2 and a bonding pad 1 which is electrically connected to the semiconductor device. Among them, a silicon controlled rectification type electrostatic discharge protection structure 3 can be added between the two. First, according to FIG. 1, the conventional silicon controlled rectifier is usually disposed on a p-type semiconductor substrate 10 and is located in a predetermined position of the P-type semiconductor substrate 10.
C:\Program Files\Patent\0503-3874-E,ptd第 5 頁 411610___ 五、發明制(3^ " ~~ ' 形成有一 N型井區u。在n型井區丨丨的範圍内,形成有—p 型摻雜區12和一N型摻雜區13 ;在P型半導體基底1〇内,則 形成有另一N型摻雜區14和另一 p型摻雜區15。其中,p型、 摻雜區12和N型摻雜區13係電性連接至一接合墊},此接合 墊1係作為輸出/入墊,以耦接至内部電路2,内部電路2表 示一易遭致靜電放電破壞的核心電路,故需矽控整流器的 保遵。而N型摻雜區14和P型摻雜區1 5則電性連接至一電位 郎點Vss ’§於一般操作模式(normal operation)下,此電 位節點Vss通常保持為接地電位。 依此’請配合第1圖並參閱第2圖,其中第2圖為第!圖 之等效電路。由於P型摻雜區12、N型井區U、以及p型半 導體基底1 0係建構一PNP寄生雙載子接面電晶體2〇之射 極、基極和集極。尺型井區H、p型半導體基底1〇、以及N 型摻雜區14則建構一NPN寄生雙載子接面電晶體21之集 極、基極和射極。另於圖示中,電阻22和23係分別代表N 型井區11和P型矽基底1〇的散佈電阻(spreading resistance) ° 當有相對Vss為正之靜電放電應力在接合墊1出現時,p 型摻雜區12與N型井區11呈順向偏壓,若此一靜電放電應 力高至足以使N型井區11和p型矽基底10間1^接面產生崩 潰’則P型矽基底1 〇與N型摻雜區1 4亦呈順向偏壓,故而導 通由接合墊1至Vss之放電路徑,藉以釋放接合墊1處之靜電 放電應力’避免内部電路2遭致靜電放電破壞。 由此可知,習知矽控整流器能否開啟以釋放接合墊1C: \ Program Files \ Patent \ 0503-3874-E, ptd page 5 411610___ V. Invention system (3 ^ " ~~ 'There is an N-type well area u. Within the range of the n-type well area 丨 丨, A p-type doped region 12 and an N-type doped region 13 are formed; within the P-type semiconductor substrate 10, another N-type doped region 14 and another p-type doped region 15 are formed. Among them, The p-type, doped region 12 and N-type doped region 13 are electrically connected to a bonding pad}. The bonding pad 1 is used as an output / input pad to be coupled to the internal circuit 2. The internal circuit 2 indicates a vulnerable The core circuit caused by electrostatic discharge needs the guarantee of silicon controlled rectifier. The N-type doped region 14 and the P-type doped region 15 are electrically connected to a potential point Vss' § in the normal operation mode (normal operation), this potential node Vss is usually maintained at the ground potential. Accordingly, please refer to FIG. 1 and refer to FIG. 2, where FIG. 2 is the equivalent circuit of FIG.! Because of the P-type doped regions 12, N The well region U and the p-type semiconductor substrate 10 are used to construct an emitter, base, and collector of a PNP parasitic junction carrier transistor 20. The ruled well region H and p-type semiconductor substrate 10 And the N-type doped region 14 constructs the collector, base, and emitter of an NPN parasitic junction junction transistor 21. In the figure, resistors 22 and 23 represent N-type well regions 11 and P, respectively. Spreading resistance of the Si substrate 10 ° ° When there is an electrostatic discharge stress positive to Vss on the bonding pad 1, the p-type doped region 12 and the N-type well region 11 are forward biased. The electrostatic discharge stress is high enough to cause the 1 ^ junction between the N-type well region 11 and the p-type silicon substrate 10 to collapse. Then the P-type silicon substrate 10 and the N-type doped region 14 are also forward biased, so they are turned on. The discharge path from the bonding pad 1 to Vss is used to release the electrostatic discharge stress at the bonding pad 1 to prevent the internal circuit 2 from being damaged by electrostatic discharge. From this, it is known whether the silicon controlled rectifier can be opened to release the bonding pad 1
C:\Prograra Files\Patent\0503-3874-E.pt(i第 6 頁 _411610 五、發明說明(4) · " 一 處靜電放電應力,係決定於N型井區丨丨和?型矽基底“間” 接面崩潰與否。但是,N型井區丨丨和卩型矽基底1〇之摻雜濃 度本來就相當低,故使矽控整流器崩潰之觸發電壓 (trigger voltage)大約必須達到3〇伏特以上。然而,以 0. 6〜0. 8微米CMOS製程中閘極氧化層厚度約介於15〇~2〇〇 埃間為例,内部電路2所採用之閘極氧化層在丨5〜2 〇伏特下 早已損壞,因此,習知矽控整流器並無法發揮靜電放電保 護的效果^ 為能降低觸發電壓,美國專利第5,465,189號案提出 一種低電壓觸發之矽控整流器,即如第3圖所示。除第1圖 所示結構外’低電壓觸發之矽控整流器尚包括一 N型摻雜 區1 6和一閘極結構1 7。其中’ n型摻雜區1 6係屬一濃摻雜 區’ 一部份形成於N型井區11内,一部份形成於p型矽基底 1 〇内’形成跨於N型井區11和P型矽基底1 〇間之PN接面。閘 極結構17則形成於N型摻雜區16和14間之基底10上,其中 閘極結構17由下而上包括一閘極介電層18和一閘極電極層 19,閘極介電層18緊鄰基底1〇 ’閘極電極層19形成於閘極 介電層18上,並連接至Vss。 請參照第4圖’所示即為第3圖之等效電路圖。第4圖 中’標號24代表由N型摻雜區16和14、N型摻雜區16和14間 之基底部份、以及閘極結構1 7等所建構之NM0S金氧半場效 電晶體。當有靜電放電效應發生時,藉由此金氧半場效電 晶體2 4汲極接面的崩潰,觸發整個矽控整流器的開啟導 通’故此靜電放電保護電路的觸發電壓便可降低為金氧半 HHI mrai C:\ProgramFiles\Patent\0503-3874-E.ptd第 7 頁 411610 五、發明說明(5) 場效電晶體24的崩潰電壓’ 一般為4至7伏特左古,但是, 以目前進展到0. 18微求以下之CMOS製程來看,閘極氧化層 厚度已降至32埃左右,故内部電路2所採用之閘極氧化層 仍然無法抵擋靜電放電電壓。 美國專利第5, 528, 1 88號案提出另一種低電星觸發之 石夕控整流器,即如第5圖所示。除第1圖所示結構外,低電 壓觸發之矽控整流器尚包括一NM0S電晶體25和一RC電路 32,在正常操作下’ NM0S電晶體25處於關閉狀態,然而當 一靜電電壓脈衝出現在接合墊1並循導電路徑侵入時,由 於電谷C快速耗合一超過電晶體25起始電壓vth之閘極電壓 Vg,使NM0S電晶體25處於導通狀態,加以其利用高電場之 熱載子效應,使電洞載子產生以作為矽控整流器3 電流Isub(供議寄生雙載子電晶體21之:極以基^ 此,可在低電壓下達到觸發矽控整流器3之目的。 有鑑於此’本發明之一目的為,選擇一矽控整流型之 靜電放電保護電路,其不需透過熱載子效應機制,並可直 接利用一電容(capacitor)來取代金氧半電晶體和Rc電 路’以於靜電放電侵入時迅速提供大量之基底電流藉此 在低電壓下即可產生導通矽控整流器所需之觸發電流值, 進而提昇抗ESD能力,避免内部電路元件損傷。 為達成上述目的’本發明提供一種矽控整流型靜電放 電保護結構,電性連接至接合墊,其包括一第二型半導體 層,形成於一第一型半導體層之一既定範圍。—第二型之 第一摻雜區和第一型之第一摻雜區則形成於第二型半導體C: \ Prograra Files \ Patent \ 0503-3874-E.pt (i page 6_411610 V. Description of the invention (4) · " An electrostatic discharge stress is determined by the N-type well area 丨 丨 and? The silicon substrate "interval" junction collapses or not. However, the doping concentration of the N-type well region and the 卩 -type silicon substrate 10 is already quite low, so the trigger voltage for the silicon controlled rectifier to collapse must be about Up to 30 volts or more. However, the gate oxide layer thickness in the 0.6-0.8 micron CMOS process is about 15-20 angstroms as an example. The gate oxide layer used in the internal circuit 2 is in丨 5 ~ 20 volts have already been damaged. Therefore, the conventional silicon controlled rectifier can not exert the effect of electrostatic discharge protection ^ In order to reduce the trigger voltage, US Patent No. 5,465,189 proposes a low voltage triggered silicon controlled rectifier, such as Figure 3. In addition to the structure shown in Figure 1, the low-voltage-triggered silicon-controlled rectifier also includes an N-type doped region 16 and a gate structure 17. Among them, the n-type doped region 16 is It is a heavily doped region 'Partly formed in the N-type well region 11 and partly formed in the p-type silicon substrate Within 10 ′, a PN junction is formed across the N-type well region 11 and the P-type silicon substrate 10. The gate structure 17 is formed on the substrate 10 between the N-type doped regions 16 and 14, where the gate structure 17 includes a gate dielectric layer 18 and a gate electrode layer 19 from bottom to top. The gate dielectric layer 18 is formed on the gate dielectric layer 18 adjacent to the substrate 10 ′, and is connected to the gate dielectric layer 18. Vss. Please refer to FIG. 4 for the equivalent circuit diagram of FIG. 3. The reference numeral 24 in FIG. 4 represents the base portion between the N-type doped regions 16 and 14, and the N-type doped regions 16 and 14. And NMOS semiconductor field-effect transistors built with gate structure 17 and so on. When the electrostatic discharge effect occurs, the breakdown of the drain interface of the metal-oxide half-effect transistor 2 4 triggers the entire silicon control. The rectifier is turned on and on, so the trigger voltage of the electrostatic discharge protection circuit can be reduced to HHI mrai C: \ ProgramFiles \ Patent \ 0503-3874-E.ptd page 7 411610 V. Description of the invention (5) Field effect power The breakdown voltage of crystal 24 'is generally 4 to 7 volts, but according to the current CMOS process that has progressed to 0.18 micron, the gate oxidation The layer thickness has been reduced to about 32 angstroms, so the gate oxide layer used in the internal circuit 2 still cannot withstand the electrostatic discharge voltage. US Patent No. 5, 528, 1 88 proposed another low electric star triggered stone evening rectifier That is, as shown in Figure 5. In addition to the structure shown in Figure 1, the low-voltage-triggered silicon-controlled rectifier also includes an NMOS transistor 25 and an RC circuit 32. Under normal operation, the 'NM0S transistor 25 is turned off. However, when an electrostatic voltage pulse appears on the bonding pad 1 and invades through the conductive path, the electric valley C quickly consumes a gate voltage Vg exceeding the initial voltage vth of the transistor 25, so that the NMOS transistor 25 is in an on state. In addition, it uses the hot carrier effect of the high electric field, so that the hole carrier is generated as a silicon controlled rectifier. The current Isub (for the parasitic bipolar transistor 21: based on the pole ^ Therefore, it can be triggered at low voltage. Purpose of silicon controlled rectifier 3. In view of this, one of the objectives of the present invention is to select a silicon controlled rectification type electrostatic discharge protection circuit, which does not need to pass through the hot carrier effect mechanism, and can directly use a capacitor to replace the metal-oxide semiconductor and the The Rc circuit is used to quickly provide a large amount of substrate current when electrostatic discharge invades, thereby generating the trigger current value required to turn on the silicon controlled rectifier at a low voltage, thereby improving the ESD resistance and avoiding damage to internal circuit components. To achieve the above object, the present invention provides a silicon controlled rectification type electrostatic discharge protection structure electrically connected to a bonding pad, which includes a second type semiconductor layer formed in a predetermined range of a first type semiconductor layer. —The first doped region of the second type and the first doped region of the first type are formed in the second type semiconductor
411610411610
五、發明說明(6) 層内,其電性連接至接合墊。另一方面,一第 丨^ 摻雜區和-第-型之第二摻雜區’係形成於第IS 層内,其電性連接至一電位節點。其巾 =牛導體 矽〒整流器’ 3外,利用一電容’其形成於第二型 層範圍,其亦電性連接至接合墊,用以當一 * ::能提供一電流以導通矽控整流器,進而釋放ϋ入 實施例中,第一型半導體層係作為基底,第 一沒+導體層則作為一井區,至於第一型可為一ρ型導 型態,而第二型可為N型導電型態。此外,電位節點一般 為接地節點,接合墊則用作一輸出/入墊其電性 内部電電容則可利用一第二型之第三摻雜區來作為一 接面電容’或以閘極絕緣層來形成隔離電容。- 為讓本發明之上述和其他目的'特徵、和優點能更明 顯易僅,下文特舉一較佳實施例,並配合所附圖 細說明如下: ~ _ 圖式之簡單說明: 第1圖係顯示習知矽控整流器製於一半導體基底内 剖面不意圖。 一 第2圖係顯示第1圖的等效電路圖。 第3圖係顯示習知低電壓觸發矽控整流器製於一半導 體基底内之剖面示意圖。 第4圖係顯示第3圖的等效電路圖。 第5圖係顯示習知低電壓觸發矽控整流器並聯一狀電5. Description of the invention (6) In the layer, it is electrically connected to the bonding pad. On the other hand, a first doped region and a -type-second doped region 'are formed in the IS layer, and are electrically connected to a potential node. Its towel = cow conductor silicon rectifier '3, using a capacitor' It is formed in the range of the second type layer, and it is also electrically connected to the bonding pad, when a * :: can provide a current to turn on the silicon controlled rectifier In the embodiment, the first type semiconductor layer is used as the substrate, and the first + conductor layer is used as a well region. As for the first type, it can be a ρ-type conduction type, and the second type can be N Type conductive type. In addition, the potential node is generally a ground node, and the bonding pad is used as an output / input pad. The electrical internal capacitance can use a second type of third doped region as a junction capacitor 'or gate insulation. Layer to form the isolation capacitor. -In order to make the features and advantages of the above and other objects of the present invention more obvious and easy, the following is a detailed description of a preferred embodiment and the accompanying drawings as follows: ~ _ Brief description of the drawings: Figure 1 It is shown that the conventional silicon-controlled rectifier is not intended to be fabricated on an internal profile of a semiconductor substrate. -Figure 2 shows the equivalent circuit diagram of Figure 1. Fig. 3 is a schematic cross-sectional view showing a conventional low-voltage-triggered silicon controlled rectifier fabricated in a half-conductor substrate. Figure 4 shows the equivalent circuit diagram of Figure 3. Figure 5 shows a conventional low-voltage triggered silicon controlled rectifier connected in parallel.
4ί1β1〇 五、發明說明(7) ---' 路之示意圖。 第6圖係顯示根據本發明一較佳實施例製於一半導 基底内之剖面示意圖。 第7圖係顯示第6圖的等效電路圖。 第8A至8C圖係顯示根據第7圖之基底電流對ESD電壓 關係曲線圖。 符號說明: 卜接合墊;2〜内部電路;3〜矽控整流器;1〇〜p型半導 體基底;114型井區;12〜P型摻雜區;13〜N型摻雜區; 14〜N型摻雜區;15〜P型摻雜區;1δ〜Ν型摻雜區;17〜閘極 結構,18〜閘極介電層;19〜閘極電極層;20〜ΡΝΡ寄生雙栽 子接面電晶體;21〜ΝΡΝ寄生雙載子接面電晶體;22、23〜 電阻;24、25〜金氧半場效電晶體;32~RC電路;6〇〜ρ型半 導體基底;61〜Ν型井區;62〜Ρ型摻雜區型摻雜區; 64〜Ν型摻雜區;65~Ρ型摻雜區;66~Ν型摻雜區;70~ΡΝΡ寄 生雙載子接面電晶體;71〜ΝΡΝ寄生雙載子接面電晶體; 72、73〜電阻;電容〜cj。 實施例 請參閱第6圖,其顯示本發明之一實施例中,利用具 有電容之矽控整流型靜電放電保護電路來避免ESD損傷之 半導體結構示意圖。 首先依據第6圖,所示為根據本發明一較佳實施例製 於一半導體基底内的剖面示意圖。根據本發明之靜電放電 保護電路通常是設置於一 P型半導體層60上,而在p型半導4ί1β1〇 V. Description of the invention (7) --- 'Schematic diagram of the road. FIG. 6 is a schematic cross-sectional view of a semi-conductive substrate made according to a preferred embodiment of the present invention. FIG. 7 is an equivalent circuit diagram of FIG. 6. Figures 8A to 8C are graphs showing the relationship between substrate current and ESD voltage according to Figure 7. Explanation of symbols: Bu bonding pad; 2 ~ internal circuit; 3 ~ silicon controlled rectifier; 10 ~ p type semiconductor substrate; 114 type well area; 12 ~ P type doped area; 13 ~ N type doped area; 14 ~ N 15 ~ P-type doped region; 1δ ~ N-type doped region; 17 ~ gate structure, 18 ~ gate dielectric layer; 19 ~ gate electrode layer; 20 ~ PNP parasitic double junction Surface transistor; 21 ~ NPN parasitic bipolar junction transistor; 22, 23 ~ resistance; 24, 25 ~ metal-oxide half field effect transistor; 32 ~ RC circuit; 60 ~ ρ type semiconductor substrate; 61 ~ N type Well region; 62 ~ P type doped region type doped region; 64 ~ N type doped region; 65 ~ P type doped region; 66 ~ N type doped region; 70 ~ PNP parasitic junction carrier transistor 71 ~ NPN parasitic bipolar junction transistor; 72, 73 ~ resistance; capacitance ~ cj. Embodiment Please refer to FIG. 6, which illustrates a schematic diagram of a semiconductor structure for avoiding ESD damage by using a silicon controlled rectification type electrostatic discharge protection circuit with a capacitor in an embodiment of the present invention. First, according to FIG. 6, a schematic cross-sectional view of a semiconductor substrate according to a preferred embodiment of the present invention is shown. The electrostatic discharge protection circuit according to the present invention is usually disposed on a P-type semiconductor layer 60, and
C:\PrograroFiles\Patent\0503-3874-E.ptd第 1〇 頁 <11610 五、發明說明(8) ' — 體60的既疋位置上形成有—n型半導體層μ,故於p型半導 體60和N型半導體層61間开)成一 pN接面67。譬如,p型半導 广咖可以是P型矽基底,而N型半導體層61則是形成於基 底内之一N型井區。在N型井區61的範圍内’形成有一第一 型摻雜區62和第一p型摻雜區63。在p型半導體基底6〇 内則开>成有第二N型摻雜區64和第二P型摻雜區65。第一 P型摻雜區63和第一N型摻雜區62係電性連接至接合墊j ’ 此接合墊1係作為輸出/入墊,以耦接至内部電路2σ,其中 内。Is電路2為一易遭致靜電放電破壞的核心電路第二ν型 摻雜區64和第二ρ型掺雜區65則電性連接至一電位接點 Vss ’ s於一般操作模式(n〇rmai 〇{)erat i〇-n)下此電位接 點Vss通常是為接地電位。 此外,一第三N型摻雜區66形成於P型半導體基底6〇 内’例如在本實施例為鄰近PN接面67型摻雜區64之 間其與第一 N型摻雜區62和第一 P型摻雜區63電性連接至 接合墊1。 而依據刖述結構,並參閱第7圖’第—ρ型摻雜區μ、 N型井區61、以及P型半導體基底60等,分別建構得一垂直 PNP寄生雙載子接面電晶體7〇之射極、基極和集極。N型井 區61、ρ型半導體基底60、以及第二n型摻雜區64等,分別 建構得一水平NPN寄生雙載子接面電晶體71之集極、基極 和射極。1^型摻雜區66在此可作為一接面電容Cj(juncti〇n capacitor)。第7圖所示即為第6圖之等效電路,圖示中, 電阻72、73分別代表N型丼區61和P型半導體基底6〇的散佈C: \ PrograroFiles \ Patent \ 0503-3874-E.ptd page 10 < 11610 V. Description of the invention (8) '-An n-type semiconductor layer μ is formed on the existing position of the body 60, so it is p-type The semiconductor 60 is separated from the N-type semiconductor layer 61) to form a pN junction 67. For example, the p-type semiconductor can be a P-type silicon substrate, and the N-type semiconductor layer 61 is an N-type well region formed in the substrate. A first type doped region 62 and a first p-type doped region 63 are formed within the range of the N-type well region 61 '. In the p-type semiconductor substrate 60, a second N-type doped region 64 and a second P-type doped region 65 are formed. The first P-type doped region 63 and the first N-type doped region 62 are electrically connected to the bonding pad j '. The bonding pad 1 is used as an output / input pad to be coupled to the internal circuit 2σ, wherein The Is circuit 2 is a core circuit that is easily damaged by electrostatic discharge. The second v-type doped region 64 and the second p-type doped region 65 are electrically connected to a potential contact Vss's in a general operating mode (n. The potential contact Vss under rmai 〇 {) erat i〇-n) is usually a ground potential. In addition, a third N-type doped region 66 is formed in the P-type semiconductor substrate 60. For example, the third N-type doped region 66 and the first N-type doped region 62 and The first P-type doped region 63 is electrically connected to the bonding pad 1. According to the description of the structure, and referring to FIG. 7'-p-type doped region μ, N-type well region 61, and P-type semiconductor substrate 60, etc., a vertical PNP parasitic junction junction transistor 7 is constructed respectively. 〇 the emitter, base and collector. The N-type well region 61, the p-type semiconductor substrate 60, and the second n-type doped region 64 are constructed as a collector, a base, and an emitter of a horizontal NPN parasitic junction junction transistor 71, respectively. The 1 ^ -type doped region 66 can be used as a junction capacitor Cj (junction capacitor). Figure 7 shows the equivalent circuit of Figure 6. In the figure, the resistors 72 and 73 respectively represent the distribution of the N-type 丼 region 61 and the P-type semiconductor substrate 60.
C:\ProgramFiles\Patent\0503-3874-E.ptd 第 11 頁C: \ ProgramFiles \ Patent \ 0503-3874-E.ptd page 11
411610 五、發明說明(9) 電阻。 當有相對Vss為正之靜電放電應力在接合墊1出現時, 因為第二N型摻雜區66與P型半導體基底60係作為一接面電 容’而靜電放電應力的特性為一高頻信號,因此,依據下 式可知電容:411610 V. Description of the invention (9) Resistance. When an electrostatic discharge stress with a positive Vss occurs at the bonding pad 1, because the second N-type doped region 66 and the P-type semiconductor substrate 60 are used as a junction capacitor, the characteristic of the electrostatic discharge stress is a high-frequency signal. Therefore, the capacitance can be known according to the following formula:
Cj-dQ/dt 故在極短時間内,透過電容Cj將可迅速產生一股大之 基底電流Isub予P型半導體基底60,用以驅動水平NpN寄生 雙載子接面電晶體71之基極接面’使其與垂直pNp寄生雙 載子接面電晶體70形成一正回饋路徑,進而使矽控整流器 導通’並在接合墊1至\^5間形成一導引電流路徑,藉以釋 放接合墊1處之靜電放電應力,避免内部電路2遭致靜電放 電破壞。故此靜電放電保護電路的觸發電壓可大幅降低到 約1. 2伏特以下。 接著,以人體模型測試機台(HBM)對—模擬本實施例 之靜電保護電路之NMOS電晶體進行測試,請參閱第8A至眈 圖,其中,橫抽代表時間(ns),縱轴分別代表電麼(v)和 電流(A),且其分別代表在5〇ν、ιοον和200V之靜電電壓 (ESD)下’人體模型測試機台(hbm)所施加之電壓(實線部 分)對基底電流I sub(虛線部分)之特性曲線圖。 由第8A圖可知,在50V之靜電電壓(ESD)下,短時間内 即有基底電流Isub產生’同時很快地,透過電容,基底電 流I sub以線性方式提升,但由於此時基底電流丨sub仍不足 以使石夕控整流器SCR導通(turn on),因此直到電壓升至接Cj-dQ / dt Therefore, in a very short time, a large substrate current Isub can be quickly generated through the capacitor Cj to the P-type semiconductor substrate 60 to drive the base of the horizontal NpN parasitic junction junction transistor 71. The junction 'causes it to form a positive feedback path with the vertical pNp parasitic bipolar junction transistor 70, thereby turning on the silicon controlled rectifier' and forming a conducting current path between the bonding pads 1 to \ 5, thereby releasing the junction The electrostatic discharge stress at the pad 1 prevents the internal circuit 2 from being damaged by the electrostatic discharge. Therefore, the trigger voltage of the electrostatic discharge protection circuit can be greatly reduced to about 1.2 volts or less. Next, the human body model test machine (HBM) is used to test the NMOS transistor that simulates the electrostatic protection circuit of this embodiment. Please refer to Figures 8A to 眈, where the horizontal drawing represents time (ns) and the vertical axis represents Electricity (v) and current (A), which respectively represent the voltage (solid part) applied to the human body model testing machine (hbm) under the electrostatic voltage (ESD) of 5〇ν, ιοον, and 200V to the substrate The characteristic curve of the current I sub (the dotted line). From Figure 8A, it can be seen that under the electrostatic voltage (ESD) of 50V, a substrate current Isub is generated in a short time. At the same time, the substrate current I sub increases linearly through the capacitor. sub is still not enough to turn on the SCR rectifier SCR, so until the voltage rises to
C:\ProgramFiles\Patent\0503-3874-E,ptd第 12 頁 411610 五'發明說明(10) 面電壓值(junction breakdown voltage)時,才造成基底 電流Isub之大量增加,進而使矽控整流器SCR導通,並在 接合墊1至Vss間形成一導引電流路徑,藉以釋放接合墊1處 之靜電放電應力’避免内部電路2遭致靜電放電破壞。同 理,在第8B圖之100V靜電電壓(ESD)下亦然,但由於基底 電流I sub係在更短的區間内上昇,故足以在接面崩潰電壓 產生之前就使矽控整流器SCR導通。至於第8C圖之2〇〇V靜 電電壓(ESD)之狀態,則由於此高靜電電壓更使基底電流 I sub急速增加,故一旦有靜電侵入,矽控整流器SCR立g 導通,所以電流和電壓幾乎同步以線性方式提升,因此, 依據本實施例不但可以在較小之ESD電壓下,於更短時 内觸發矽控整流器,避免内部電路損傷,同時亦不' a 外形成電晶體和RC電路* 要額 本發明中所應用之物質 者’其能由各種具恰當特性 如,電容除以接面電容為例 式來形成隔離電容。 材料,並不限於實施例所引述 之物質和形成方法所置換’例 ,另可以形成閘極絕緣層之方 雖然本發明已以一較佳實施例揭露如铁 以限定本發明,任何熟習此技藝者,在不 並非用 神和範圍内,當可做些許之更動與潤飾,因 明之精 護範圍當視後附之申請專利範圍所界定者為準。發明之保C: \ ProgramFiles \ Patent \ 0503-3874-E, ptd page 12 411610 Five 'invention description (10) Only when the surface breakdown voltage value (junction breakdown voltage), a large increase in the substrate current Isub, so that the silicon controlled rectifier SCR It is turned on, and a guiding current path is formed between the bonding pads 1 and Vss, thereby releasing the electrostatic discharge stress at the bonding pads 1 to prevent the internal circuit 2 from being damaged by the electrostatic discharge. Similarly, the same applies to the 100V electrostatic voltage (ESD) in Fig. 8B, but because the substrate current I sub rises in a shorter interval, it is sufficient to turn on the silicon controlled rectifier SCR before the junction breakdown voltage occurs. As for the state of 2000V electrostatic voltage (ESD) in Fig. 8C, since this high electrostatic voltage further increases the substrate current I sub rapidly, once the static electricity invades, the silicon-controlled rectifier SCR stands to conduct, so the current and voltage Almost synchronously improves in a linear manner. Therefore, according to this embodiment, not only can the silicon controlled rectifier be triggered in a shorter time under a smaller ESD voltage, avoiding damage to the internal circuit, but also without forming a transistor and an RC circuit. * The amount of material used in the present invention is that it can form an isolation capacitor from various capacitors with appropriate characteristics such as the capacitance divided by the junction capacitance. The materials are not limited to the materials and forming methods cited in the examples, and the gate insulation layer can also be formed. Although the present invention has been disclosed with a preferred embodiment such as iron to limit the present invention, anyone familiar with this technique In addition, within the scope of not using God and scope, it can be modified and retouched slightly, because the scope of protection of the Ming should be defined by the scope of the attached patent application. Invention guarantee
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW87118279A TW411610B (en) | 1998-11-03 | 1998-11-03 | Silicon controlled rectifier type electrostatic discharge protecting structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW87118279A TW411610B (en) | 1998-11-03 | 1998-11-03 | Silicon controlled rectifier type electrostatic discharge protecting structure |
Publications (1)
Publication Number | Publication Date |
---|---|
TW411610B true TW411610B (en) | 2000-11-11 |
Family
ID=21631870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW87118279A TW411610B (en) | 1998-11-03 | 1998-11-03 | Silicon controlled rectifier type electrostatic discharge protecting structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW411610B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI485835B (en) * | 2012-10-03 | 2015-05-21 | Macronix Int Co Ltd | Electrostatic discharge protection device |
-
1998
- 1998-11-03 TW TW87118279A patent/TW411610B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI485835B (en) * | 2012-10-03 | 2015-05-21 | Macronix Int Co Ltd | Electrostatic discharge protection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5242675B2 (en) | ESD protection circuit with reduced trigger voltage | |
US7986011B2 (en) | Electrostatic discharge protection device | |
US6710990B2 (en) | Low voltage breakdown element for ESD trigger device | |
US8102001B2 (en) | Initial-on SCR device for on-chip ESD protection | |
US8044457B2 (en) | Transient over-voltage clamp | |
JP4017187B2 (en) | Electrostatic discharge protection circuit | |
US20070040222A1 (en) | Method and apparatus for improved ESD performance | |
US6566715B1 (en) | Substrate-triggered technique for on-chip ESD protection circuit | |
US20030042498A1 (en) | Method of forming a substrate-triggered SCR device in CMOS technology | |
JP4467629B2 (en) | Guard wall structure for ESD protection | |
US6576959B2 (en) | Device and method of low voltage SCR protection for high voltage failsafe ESD applications | |
US8129788B1 (en) | Capacitor triggered silicon controlled rectifier | |
JP3573674B2 (en) | I / O protection device for semiconductor integrated circuit and its protection method | |
US20070228412A1 (en) | Low voltage triggering silicon controlled rectifier and circuit thereof | |
US6764892B2 (en) | Device and method of low voltage SCR protection for high voltage failsafe ESD applications | |
US20100084711A1 (en) | Electrostatic discharge projection semiconductor device and method for manufacturing the same | |
US10431578B2 (en) | Electrostatic discharge (ESD) protection device and method for operating an ESD protection device | |
US20100109076A1 (en) | Structures for electrostatic discharge protection | |
US6949806B2 (en) | Electrostatic discharge protection structure for deep sub-micron gate oxide | |
TW411610B (en) | Silicon controlled rectifier type electrostatic discharge protecting structure | |
US9478531B2 (en) | Semiconductor device comprising an ESD protection device, an ESD protection circuitry, an integrated circuit and a method of manufacturing a semiconductor device | |
TW201010043A (en) | ESD protection device | |
US6781204B1 (en) | Spreading the power dissipation in MOS transistors for improved ESD protection | |
KR100815956B1 (en) | Method of Manufacturing Gate Contact of Semiconductor Device | |
Duvvury et al. | ESD issues for advanced CMOS technologies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |