TW408376B - Method for manufacturing metal oxide semiconductor - Google Patents

Method for manufacturing metal oxide semiconductor Download PDF

Info

Publication number
TW408376B
TW408376B TW88104795A TW88104795A TW408376B TW 408376 B TW408376 B TW 408376B TW 88104795 A TW88104795 A TW 88104795A TW 88104795 A TW88104795 A TW 88104795A TW 408376 B TW408376 B TW 408376B
Authority
TW
Taiwan
Prior art keywords
gate electrode
substrate
dielectric layer
metal
layer
Prior art date
Application number
TW88104795A
Other languages
Chinese (zh)
Inventor
Jung-Shiung Li
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW88104795A priority Critical patent/TW408376B/en
Application granted granted Critical
Publication of TW408376B publication Critical patent/TW408376B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

A method for manufacturing metal oxide semiconductor provides a substrate and forms a gate electrode on the substrate, and further forms a first doped area on the lateral sides of the gate electrode on the substrate, and then forms a dielectric layer on the sides of the gate electrode in the substrate. Use the spacer as the mask to patterning the dielectric layer, and then continue to remove the spacer. The exposed dielectric layer serves as the protective layer at the corner of the gate electrode and the first doped area; then, form a metal silicide layer on the exposed surface of the first doped area and the gate electrode.

Description

經濟部中央標準局員工消費合作社印製 408376 44S2twf.d〇c/006 A7 B7 五、發明説明(/) 本發明是有關於一種金氧半電晶體的製造方法,且特 別是有關於一種於自行對準金屬矽化物製程(Self-aligned Silicide Process ; 簡稱 Salicide Process) .中 可避免窄線效應(Narrow Line Effect)之金氧半電晶體 的製造方法。 隨著複晶矽閘極電極尺寸的日漸縮小,在進行自動對 準金屬矽化物製程時,會產生窄線效應,特別是以矽化鈦 (TiSn)金屬更爲嚴重。所謂窄線效應係由於閘極電極尺 寸太小,在複晶矽閘極電極上之金屬矽化物的成長會因金 屬矽化物與複晶矽接觸的應力(Stress)太大,或是成核 位置(NucleationSite)太少,造成TiSid$ X比例有所 改變,導致金屬矽化物薄膜品質不佳,致使片電阻增加, 而影響閘極電極操作的效能。 因此,本發明提供一種金氧半電晶體的製造方法,包 括:提供一基底,其上已形成閘極電極,且閘極電極兩側 的基底中已形成第一摻雜區;接著於閘極電極兩旁的基底 上形成介電層,並於閘極電極側壁形成間隙壁,再以間隙 壁爲罩幕,將介電層圖案化。續剝除間隙壁,以暴露出介 電層做爲閘極電極和第一摻雜區轉角處的保護層,之後進 行自行對準金屬矽化物製程,以於第一摻雜區和閘極電極 所暴露出的表面形成金屬矽化物層。 依照本發明的一較佳實施例,其中在剝除間隙壁之 前,更包括以間隙壁和閘極電極爲罩幕,進行植入製程, 以於基底中形成第二摻雜區,而第二摻雜區和第一摻雜區 3 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) Μ規格(210X297公釐) 408376 4482twf.d〇c/006 ^ B7 經濟部中央標準局貝工消費合作社印製 五、發明説明(l) 構成源極/汲極區。其中介電層的材質不同於間隙壁的材 質,而金屬矽化物層的材質包括矽化鈦。 由於本發明在進行自行對準金屬矽化物的製程中,部 份閘極電極的側壁亦與金屬發生矽化反應,因此增加矽化 金屬成核的空間,故可以避免窄線效應。而閘極電極和摻 雜區轉角處的保護層,可以避免閘極電極和摻雜區之間短 路的情況發生。再者,由於本發明之閘極電極表面的金屬 矽化物,不僅形成於其上表面,其部份側壁亦有金屬矽化 物形成,故可以有效降低閘極電極的電阻。 爲讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉較佳實施例,並配合所附圖式,.作詳細 說明如下: 圖式之簡單說明: 第1A圖至第1D圖係繪示根據本發明較佳實施例之一 種金氧半電晶體的製造流程剖面圖。 其中,各圖標號與構件名稱之關係如下: 100 ··基底 104 :閘極氧化層 106 :複晶矽閘極電極 102、114 :摻雜區 122 :源極/汲極區 108、108a、108b :介電層 120 :厚度 110 :間隙壁 4 - : *---0¾-- (請先聞讀背面之注$項再填寫本頁) 、τ 本紙張尺度適用中國國家梯準(CNS ) A4^ ( 210X297公釐) A7 B7 408376 4482twf.doc/006 五、發明説明(i) U6a、116b :金屬矽化物層 實施例 第1A圖至第id圖所示,爲根據本發明一較佳實施例 之一種金氧半電晶體的製造流程剖面圖。 首先請參照第1A圖,提供一棊底1〇〇 ’比如是半導體 矽基底,於基底1〇〇上依序形成己完成圖案化之閘極氧化 層104和複晶矽閘極電極106,再以複晶矽閘極電極1〇6 爲離子植入罩幕,以於複晶砂閘極電極106兩側下方的基 底100中形成摻雜區102,比如裹較低濃度的摻雜區’所 摻雜的離子端看欲形成之金氧半電晶體爲N型或P型而 定。之後,於複晶砂聞極電極1〇6上形成一層已平坦化的 介電層108,其平坦化的方法比如晏化學機械硏磨法,其 材質比如是氧化矽。 接著請參照第1B圖,剝除部份介電層108 ’至其剩餘 的厚度120約爲1500埃至3000埃,以形成如圖示之介電 層108a,其剝除的方法比如是非等向性的回蝕刻製程。續 於複晶砍閘極電極106的側壁形成間隙壁丨10,其材質須 異於介電層108a,間隙壁110的材質比如是氮化矽。 接著請參照第1C圖,以複晶矽閘極電極106和間隙 壁110爲罩幕,蝕刻介電層l〇8a,以形成如圖所示之介電 層108b,再以複晶矽閘極電極106和間隙壁110爲離子植 入罩幕,於基底1〇〇中形成摻雜區114,比如是較高濃度 的摻雜區,所摻雜的離子同於摻雜區102。其中摻雜區102 和114即爲源極/汲極區122。 5 本紙張尺度適用中國國家棣準(CNS ) A4规格(2〗〇X297公釐) -----.J— -Ί---裝------訂------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局貝工消費合作杜印製 4482twt;doc/〇〇6 408376 A7 B7 經濟部中央樣準局貝工消費合作社印製 五、發明説明(y ) . 接著靖參照第ID圖,剝除間隙壁no,其方法比如是 用濕蝕刻法,所使用的蝕刻劑比如是熱磷酸。接著進行自 行對準金屬矽化物製程,其方法比如是於整個基底100結 構表面形成一層金屬層,較佳的是鈦金屬,之後在氮氣的 環境下,於攝氏約650至750度之間進行快速熱製程,使 鈦金屬與矽原子反應’之後移除未反應的鈦金屬,於是鈦 金屬與複晶矽閘極電極106接觸的區域反應形成金屬矽化 物層116a,同時於與源極/汲極122接觸的區域反應形成 金屬矽化物層116b,矽化金屬層116a和116b之較佳的材 質是砂化鈦。另外,複晶砂聞極電極106和源極/汲極區 122轉角處之介電層l〇8b的存在,於上述之自行對準矽化 物製程期間,可以避免複晶矽閘極電極106和源極/汲極 區丨22之間的短路。 在此實施例之閘極電極106的材質係以複晶矽爲例, 然本發明之閘極電極106的材質並不局限於此,非晶矽的 材質亦可以適用,亦可以是任何含矽成份的材質。 由於本發明在進行自行對準金屬矽化物的製程中,閘 極電極106參與反應的區域不只像習知只局限於其上表 面’部份閘極電極106的側壁亦參與反應,因此增加矽化 金屬成核的空間,故可以有效避免窄線效應,因而降低閘 極電;極的電阻,且提高金屬矽化物薄膜的品質,進而提高 閘極電極的操作效能。 本發明的特徵如下: 1.由於本發明在進行自行對準金屬矽化物的製程 6 本紙張適用中囷固家椟準(CNS) A4^ (21()>:297公簸) -----νιΊ_---裝------訂------線 (請先閲讀背面之注11^項再填寫本頁) 408376 4482twf.doc/006 A7 B7 五、發明説明(Γ) 中,部份閘極電極的側壁亦參與和金屬的矽化反應,因此 增加金屬矽化物成核的空間,故可以避免窄線效應。 2.在不造成閘極電極和源極/汲極區之間短路的情況 下,本發明之閘極電極表面的金屬矽化物,不僅彤成於其 上表面,其部份側壁亦有金屬矽化物形成,故可以有效降 低閘極電極的電阻,以提高資料傳輸的速度。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍內,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者爲準。 ---Τ--Ί--1.---裝------訂------線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局貞工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐)Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 408376 44S2twf.d0c / 006 A7 B7 V. Description of the Invention (/) The present invention relates to a method for manufacturing a gold-oxygen semi-transistor, and in particular to A method for manufacturing a metal-oxygen semi-transistor in a self-aligned silicide process (Salicide Process) for avoiding the narrow line effect. As the size of the polycrystalline silicon gate electrode becomes smaller and smaller, a narrow line effect will occur in the process of automatically aligning metal silicide, especially with titanium silicide (TiSn) metal. The so-called narrow line effect is because the size of the gate electrode is too small, the growth of the metal silicide on the polycrystalline silicon gate electrode will be due to the stress (Stress) between the metal silicide and the polycrystalline silicon being too large, or the nucleation location. (NucleationSite) is too small, resulting in a change in the TiSid $ X ratio, resulting in poor quality of the metal silicide film, resulting in an increase in sheet resistance and affecting the efficiency of the gate electrode operation. Therefore, the present invention provides a method for manufacturing a metal-oxide semiconductor transistor, comprising: providing a substrate on which a gate electrode has been formed; and a first doped region has been formed in the substrate on both sides of the gate electrode; A dielectric layer is formed on the substrate on both sides of the electrode, and a gap wall is formed on the side wall of the gate electrode. Then, the gap layer is used as a cover to pattern the dielectric layer. Continue stripping the gap wall to expose the dielectric layer as the gate electrode and the protective layer at the corner of the first doped region, and then perform a self-aligned metal silicide process for the first doped region and the gate electrode. A metal silicide layer is formed on the exposed surface. According to a preferred embodiment of the present invention, before peeling off the spacer wall, the method further includes using the spacer wall and the gate electrode as a mask to perform an implantation process to form a second doped region in the substrate, and the second Doped region and the first doped region 3 (Please read the notes on the back before filling this page) This paper size is applicable to Chinese National Standard (CNS) M specification (210X297 mm) 408376 4482twf.d〇c / 006 ^ B7 Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the Invention (l) Form the source / drain region. The material of the dielectric layer is different from that of the spacer, and the material of the metal silicide layer includes titanium silicide. Since the present invention performs the process of self-aligning metal silicide, the sidewalls of some of the gate electrodes also undergo silicidation with the metal, so the space for nucleation of the silicide metal is increased, so the narrow line effect can be avoided. The protective layer at the corners of the gate electrode and the doped region can prevent a short circuit between the gate electrode and the doped region. In addition, since the metal silicide on the surface of the gate electrode of the present invention is not only formed on the upper surface thereof, but also part of the sidewall is also formed with metal silicide, the resistance of the gate electrode can be effectively reduced. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, preferred embodiments are described below in conjunction with the accompanying drawings. The detailed description is as follows: Brief description of the drawings: FIG. 1A Figures 1 to 1D are cross-sectional views showing a manufacturing process of a metal-oxide semiconductor transistor according to a preferred embodiment of the present invention. Among them, the relationship between each icon number and the component name is as follows: 100 ·· substrate 104: gate oxide layer 106: polycrystalline silicon gate electrode 102, 114: doped region 122: source / drain region 108, 108a, 108b : Dielectric layer 120: Thickness 110: Spacer 4-: * --- 0¾-- (Please read the note on the back side before filling in this page), τ This paper size applies to China National Standards (CNS) A4 ^ (210X297 mm) A7 B7 408376 4482twf.doc / 006 V. Description of the invention (i) U6a, 116b: Examples of metal silicide layers shown in Figures 1A to 1D are a preferred embodiment according to the present invention A cross-sectional view of the manufacturing process of a metal-oxide semiconductor. First, please refer to FIG. 1A, provide a substrate 100 ′ such as a semiconductor silicon substrate, and sequentially form a patterned gate oxide layer 104 and a polycrystalline silicon gate electrode 106 on the substrate 100, and then The polycrystalline silicon gate electrode 106 is used as an ion implantation mask to form a doped region 102 in the substrate 100 below both sides of the polycrystalline sand gate electrode 106, such as a doped region with a lower concentration. The doped ionic end depends on whether the metal-oxide semi-transistor to be formed is N-type or P-type. Thereafter, a flattened dielectric layer 108 is formed on the polycrystalline sand electrode 106. The planarization method is, for example, a chemical mechanical honing method, and the material is, for example, silicon oxide. Next, referring to FIG. 1B, a portion of the dielectric layer 108 'is stripped to a remaining thickness 120 of about 1500 angstroms to about 3,000 angstroms to form a dielectric layer 108a as shown in the figure. Etching process. Continued from the side wall of the polycrystalline gate electrode 106 is a spacer 10, which is made of a material different from the dielectric layer 108a. The material of the spacer 110 is, for example, silicon nitride. Next, referring to FIG. 1C, using the polycrystalline silicon gate electrode 106 and the spacer 110 as a mask, the dielectric layer 108a is etched to form a dielectric layer 108b as shown in the figure, and then the polycrystalline silicon gate is used. The electrode 106 and the spacer 110 are ion implantation masks, and a doped region 114 is formed in the substrate 100, for example, a doped region with a higher concentration, and the doped ions are the same as the doped region 102. The doped regions 102 and 114 are the source / drain regions 122. 5 This paper size is applicable to China National Standards (CNS) A4 specifications (2〗 〇297297 mm) -----. J— -Ί --- installation ------ order ------ line (Please read the notes on the back before filling out this page) Printed by the Central Bureau of Standards of the Ministry of Economic Affairs for the printing of shellfish, 4482 twt; doc / 〇〇6 408376 A7 B7 Explanation (y). Next, referring to the figure ID, peel off the spacer no. The method is, for example, wet etching, and the etchant used is, for example, hot phosphoric acid. Next, a self-aligned metal silicide process is performed. The method is, for example, forming a metal layer on the surface of the entire substrate 100 structure, preferably titanium, and then quickly performing a nitrogen atmosphere at a temperature of about 650 to 750 degrees Celsius. The thermal process removes unreacted titanium after reacting the titanium metal with silicon atoms, so the area where the titanium metal contacts the polycrystalline silicon gate electrode 106 reacts to form a metal silicide layer 116a, and at the same time it contacts the source / drain The area in contact with 122 reacts to form a metal silicide layer 116b. The preferred material for the silicide metal layers 116a and 116b is titanium sand. In addition, the presence of the dielectric layer 108b at the corners of the polycrystalline sand electrode 106 and the source / drain region 122 prevents the polycrystalline silicon gate electrode 106 and the polycrystalline silicon gate electrode 106 and A short circuit between the source / drain regions. In this embodiment, the material of the gate electrode 106 is polycrystalline silicon. However, the material of the gate electrode 106 of the present invention is not limited to this. The material of the amorphous silicon can also be applied, and it can be any silicon-containing material. Material of ingredients. Since the present invention performs the process of self-aligning metal silicide, the area where the gate electrode 106 participates in the reaction is not limited to the upper surface of the gate electrode 106 as it is conventionally known. Part of the side wall of the gate electrode 106 also participates in the reaction, so silicide metal is added. The nucleation space can effectively avoid the narrow line effect, thereby reducing the gate resistance and electrode resistance, and improving the quality of the metal silicide film, thereby improving the operating efficiency of the gate electrode. The features of the present invention are as follows: 1. Because the present invention is in the process of self-aligning metal silicide 6 The paper is suitable for use in China (CNS) A4 ^ (21 () >: 297mm) --- --νιΊ _---- install ------ order ------ line (please read Note 11 ^ on the back before filling this page) 408376 4482twf.doc / 006 A7 B7 V. Description of the invention (Γ ), Part of the side wall of the gate electrode also participates in the silicidation reaction with the metal, so the space for metal silicide nucleation is increased, so the narrow line effect can be avoided. 2. Without causing a short circuit between the gate electrode and the source / drain region, the metal silicide on the surface of the gate electrode of the present invention is not only formed on the upper surface, but also part of the side wall is also metal silicided. Material formation, so the resistance of the gate electrode can be effectively reduced to increase the speed of data transmission. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make various modifications and retouches without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be determined by the scope of the attached patent application. --- T--Ί--1 .--- install ------ order ------ line (please read the precautions on the back before filling out this page) The paper size printed by the cooperative applies the Chinese National Standard (CNS) Α4 specification (210 × 297 mm)

Claims (1)

經濟部中央標準局員工消費合作社印製 408376 Α8It D8 六、申請專利範圍 1. 一種金氧半電晶體的製造包括: 提供一基底,該基底上已形成一閘極電極,且該閘極 電極兩側的該基底中已形成一第一摻雜區; 於該閘極電極兩旁的該基底上形成一介電層; 於該閘極電極側壁形成一間隙壁; 以該間隙壁爲罩幕,將該介電層圖案化; 以該間隙壁和該閘極電極爲罩幕,以於該基底中形成 一第二摻雜區,該第二摻雜區和該第一摻雜區構成一源極 /汲極區; 剝除該間隙壁;以及 於該源極/汲極區和該閘極電極所暴露出的表面形成 一金屬矽化物層。 2. 如申請專利範圍第1項所述之金氧半電晶體的製 造方法,其中該介電層的材質不同於該間隙壁的材質。 3. 如申請專利範圍第2項所述之金氧半電晶體的製 造方法,其中該介電層的材質包括氧化矽,該間隙壁的材 質包括氮化矽。 4. 如申請專利範圍第1項所述之金氧半電晶體的製 造方法,其中該金屬矽化物層的材質包括矽化鈦。 5. 如申請專利範圍第1項所述之金氧半電晶體的製 造方法,其中於該閘極電極兩旁的該基底上形成該介電層 的方法,包括:於該閘極電極上形成已平坦化的一層介電 材質;以及進行一回蝕刻製程。 6. —種金氧半電晶體的製造方法,包括= - .― 8 ------------^------1T------' ^ (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐) 406376 A8 B8 4482twf.d〇c/006 D8 六、申請專利範圍 提供一基底,該基底上已形成一閘極電極,且該閘極 電極兩側的該基底中已形成一第一摻雜區; 於該聞極電極和該基底的轉角處,形成一介電層;以 及 分別於該第一摻雜區和該閘極電極所暴露出的表面 形成一第一和第二金屬矽化物層,該閘極電極和該基底的 轉角處之該介電層,可避免該第一金屬矽化物層和該第二 金屬矽化物層之間的短路。 7. 如申請專利範圍第6項所述之金氧半電晶體的製 造方法,其中該第一和第二金屬矽化物層的材質包括矽化 鈦。 8. 如申請專利範圍第6項所述之金氧半電晶體的製 造方法,其中於該閘極電極和該基底的轉角處形成該介電 層的方法,包括:於該閘極電極兩旁的該基底上形成一層 介電材質層;於該閘極電極側壁形成一間隙壁;以及以該 間隙壁爲罩幕,將該層介電材質層圖案化,以形成該介電 --:---------裝------訂-------減 (請先聞讀背面之注意事項再填寫本瓦) 經濟部中央標準局員工消費合作社印製 9 本紙張尺度適用中國國家樣準(CNS ) A4说格(210X297公釐)Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 408376 Α8It D8 VI. Application for patent scope 1. The manufacture of a metal oxide semiconductor transistor includes: providing a substrate on which a gate electrode has been formed, and the gate electrode is two A first doped region has been formed in the substrate on the side; a dielectric layer is formed on the substrate on both sides of the gate electrode; a gap wall is formed on the side wall of the gate electrode; using the gap wall as a cover, Patterning the dielectric layer; using the spacer and the gate electrode as a cover to form a second doped region in the substrate, the second doped region and the first doped region forming a source electrode / Drain region; stripping the spacer; and forming a metal silicide layer on the exposed surface of the source / drain region and the gate electrode. 2. The method for manufacturing a metal-oxide semiconductor as described in item 1 of the scope of the patent application, wherein the material of the dielectric layer is different from the material of the spacer. 3. The manufacturing method of the gold-oxygen semi-transistor described in item 2 of the scope of patent application, wherein the material of the dielectric layer includes silicon oxide, and the material of the spacer includes silicon nitride. 4. The method for manufacturing a gold-oxygen semi-transistor as described in item 1 of the patent application scope, wherein the material of the metal silicide layer includes titanium silicide. 5. The method for manufacturing a gold-oxygen semi-transistor as described in item 1 of the scope of patent application, wherein the method of forming the dielectric layer on the substrate on both sides of the gate electrode includes: forming a dielectric layer on the gate electrode. A planarized layer of dielectric material; and an etch process. 6. —A kind of metal-oxygen semi-transistor manufacturing method, including =-.― 8 ------------ ^ ------ 1T ------ '^ (Please first Read the notes on the back and fill in this page) This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) 406376 A8 B8 4482twf.d〇c / 006 D8 6. The scope of patent application provides a substrate, which is A gate electrode has been formed thereon, and a first doped region has been formed in the substrate on both sides of the gate electrode; a dielectric layer is formed at the corner of the smell electrode and the substrate; The first doped region and the surface exposed by the gate electrode form a first and a second metal silicide layer. The gate electrode and the dielectric layer at the corner of the substrate can prevent the first metal from silicidation. A short circuit between the object layer and the second metal silicide layer. 7. The method for manufacturing a metal oxysemiconductor as described in item 6 of the patent application, wherein the material of the first and second metal silicide layers includes titanium silicide. 8. The method for manufacturing a metal-oxide semiconductor as described in item 6 of the scope of patent application, wherein the method of forming the dielectric layer at the corners of the gate electrode and the substrate includes: A dielectric material layer is formed on the substrate; a gap wall is formed on the side wall of the gate electrode; and the dielectric material layer is patterned with the gap wall as a cover to form the dielectric-:- ------- Installation ------ Order ------- minus (please read the notes on the back before filling in this tile) 9 papers printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs Standards apply to China National Standard (CNS) A4 grid (210X297 mm)
TW88104795A 1999-03-26 1999-03-26 Method for manufacturing metal oxide semiconductor TW408376B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88104795A TW408376B (en) 1999-03-26 1999-03-26 Method for manufacturing metal oxide semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88104795A TW408376B (en) 1999-03-26 1999-03-26 Method for manufacturing metal oxide semiconductor

Publications (1)

Publication Number Publication Date
TW408376B true TW408376B (en) 2000-10-11

Family

ID=21640100

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88104795A TW408376B (en) 1999-03-26 1999-03-26 Method for manufacturing metal oxide semiconductor

Country Status (1)

Country Link
TW (1) TW408376B (en)

Similar Documents

Publication Publication Date Title
TW492186B (en) Semiconductor device and process for producing the same
TW392308B (en) Method of making metal oxide semiconductor (MOS) in IC
TW439190B (en) Fabrication of semiconductor device having shallow junctions
TW455945B (en) Semiconductor device and manufacturing method thereof
TW400561B (en) The manufacturing method of the self-aligned salicide
TW419755B (en) Manufacturing method of T-shaped gate of integrated circuit
TW413887B (en) Method for forming trench-type power metal oxide semiconductor field effect transistor
TW432505B (en) Manufacturing method of gate
TW388104B (en) Structure and fabricating method of self-aligned contact
TW501236B (en) Method of fabricating a MOS transistor using a self-aligned silicide technique
TW403946B (en) Metal-oxide semiconductor structure and manufacture method thereof
TW408376B (en) Method for manufacturing metal oxide semiconductor
TW487976B (en) Method of fabricating a transistor
JP2002198523A5 (en) Manufacturing method of semiconductor integrated circuit equipment
TW466700B (en) Manufacturing method of salicide
TW405164B (en) Method for manufacturing self-aligned silicide
TW530342B (en) Formation method of self-aligned silicide using dual spacer
TW400579B (en) Method for manufacturing semiconductor device with titanium nitride
TW451313B (en) Manufacturing method of gate electrode sidewall silicide
TW410385B (en) Method of manufacturing a semiconductor device
TW425611B (en) Manufacturing method of gate conduction structure
TW523817B (en) Semiconductor device and method of manufacturing the same
TW408377B (en) Method for manufacturing semiconductor devices
TW462115B (en) Fabrication method of salicide
TWI220768B (en) Method of forming a gate and method of forming a contact window

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees