TW405285B - High power diode end-pumped solid state laser and its manufacture method - Google Patents
High power diode end-pumped solid state laser and its manufacture method Download PDFInfo
- Publication number
- TW405285B TW405285B TW87119925A TW87119925A TW405285B TW 405285 B TW405285 B TW 405285B TW 87119925 A TW87119925 A TW 87119925A TW 87119925 A TW87119925 A TW 87119925A TW 405285 B TW405285 B TW 405285B
- Authority
- TW
- Taiwan
- Prior art keywords
- diode
- laser
- power
- excitation
- scope
- Prior art date
Links
Landscapes
- Lasers (AREA)
Abstract
Description
_405285__ 五、發明說明α) 發明領域 本發明係關於一種高功率二極體端面激發式固態雷射 (high power diode end-pumped sol id-state laser)裝 置,主要是一種利用低鉉離子濃度的釩酸類晶體 (neodymiura-doped vanadium-based crystals)所組成的 雷射。低鈥離子濃度的鈒酸類晶體具有較高的破裂限制 激發功率(fracture-limited pump power),可產生更高 的功率輸出。 發明背景說明 過去幾年’ 一些掺敍的鈒酸類晶禮(neodymium-doped vanadium-based crystals)已被視為二極體激發式固態雷 射的重要材料。釩酸類晶體包括釩酸釔(YV04)、釩酸l (0(1丫04)以及氟化釩酸勰(5]"5(¥04)3[(^8-¥六?)等晶體。比 起傳統的釔鋁榴石晶體(YAG),釩酸類晶體(vanadate)有 較高的增益截面(gain cross-section)、較低的臨界激 發功率(threshold)、較寬的吸收波帶(absorption b a n d w i d t h )等優點’並且由於此類晶體是異向晶體,因此 可產生線偏極化輸出’此特性可避免高功率時所發生的雙 折射效應。 雖然釩酸類晶體材料在二極體激發式固態雷射的設計 上有許多優點勝過傳統的YAG晶體,但這些材料的熱傳導_405285__ V. Description of the invention α) Field of the invention The present invention relates to a high power diode end-pumped sol id-state laser device, mainly a kind of vanadium using a low thorium ion concentration. Lasers composed of neodymiura-doped vanadium-based crystals. Low 'ion concentrations of osmic acid crystals have higher fracture-limited pump power, resulting in higher power output. BACKGROUND OF THE INVENTION In the past few years, some doped neodymium-doped vanadium-based crystals have been regarded as important materials for diode-excited solid-state lasers. The vanadate crystals include yttrium vanadate (YV04), vanadate l (0 (1 y04), and fluorinated vanadate fluoride (5) " 5 (¥ 04) 3 [(^ 8- ¥ six?)). Compared with traditional yttrium aluminum garnet crystal (YAG), vanadate crystals have higher gain cross-section, lower critical excitation power (threshold), and wider absorption band (absorption). bandwidth) and other advantages, and because this type of crystal is an anisotropic crystal, it can produce linearly polarized output. This feature can avoid the birefringence effect that occurs at high power. Although vanadate crystal materials are in a diode-excited solid state Laser design has many advantages over traditional YAG crystals, but the thermal conductivity of these materials
D:\Patent\pdl602. ptd 第4頁 A0&M5 五、發明說明(2) 係數較YAG晶體低很多,因此利用雷射二極體端面激發 時’在激發區域所產生的熱不易傳至外界。理論與實驗研 究結果顯示端面激發式固態雷射之最大輸出功率是受限於 雷射晶體因熱所產生的破裂(thermal fracture)。因此, 端面激發式固態雷射所能承受的最大激發功率可稱為「破 裂限制激發功率」。Tsunekane等人在IEEE J. Select. Topics Quantum Electron, vol. 3, 9 (1997)報導了摻 入1. 1 %鉉離子濃度的釩酸釔(γ V 〇4)的實驗結果,顯示了 1. 1% Nd:YV04的最高激發功率為13.5瓦。而另一方面, Tidwell 等人在 IEEE J. Quantum Electron.,vol. 28, 9 9 7 ( 1 9 9 2 )估計了 Nd : Y AG的破裂限制激發功率約為5 0 ~ 7 0 瓦。熱傳導係數低是造成釩酸類晶體的「破裂限制激發功 率」遠低於YAG的原因之一。然而熱傳導係數是晶體母材 的基本物理性質,無法改變。 除了熱傳導係數之外,端面激發式固態雷射的破裂限 制激發功率與晶體對激發光源的吸收係數(absorption c 〇 e f f i c i e n t)有密切的關聯性。雖然高吸收係數的晶體在 低功率操作容易有較高的TEMoo輸出斜效率,而且常被用 作短薄型單晶共振腔(short monolithic cavity)而產生 翠,縱模運轉,如Sasaki等人在Opt. Lett. vol. 16, 1665 (1991)所報導’但是高吸收係數會導致晶體内部有 大的溫度梯度,造成晶體的激發端面有大量的熱應力存 在。一般相信,熱應力所導致晶體的熱破裂是設計高功率 端面激發式固態雷射的主要技術瓶頸。換言之,高吸收係D: \ Patent \ pdl602. Ptd Page 4 A0 & M5 5. Explanation of the invention (2) The coefficient is much lower than that of the YAG crystal, so when the laser diode end face is used for excitation, the heat generated in the excitation area is not easily transmitted to the outside world. . Theoretical and experimental results show that the maximum output power of the end-excitation solid-state laser is limited by the thermal fracture of the laser crystal due to heat. Therefore, the maximum excitation power that end-face excited solid-state lasers can withstand can be referred to as "fracture-limited excitation power." Tsunekane et al. In IEEE J. Select. Topics Quantum Electron, vol. 3, 9 (1997) reported the experimental results of yttrium vanadate (γ V 〇4) doped with 1.1% erbium ion concentration, showing 1. The maximum excitation power of 1% Nd: YV04 is 13.5 watts. On the other hand, Tidwell et al. In IEEE J. Quantum Electron., Vol. 28, 9 97 (19 2 2) estimated that the Nd: Y AG's burst-limited excitation power is about 50 ~ 70 watts. The low thermal conductivity is one of the reasons that the “fracture limiting excitation power” of vanadate crystals is much lower than that of YAG. However, the thermal conductivity is the basic physical property of the crystal base material and cannot be changed. In addition to the thermal conductivity, the rupture-limiting excitation power of the end-excitation solid-state laser is closely related to the absorption coefficient of the crystal to the excitation light source (absorption co oe f f c i e n t). Although crystals with high absorption coefficients tend to have higher TEMoo output slope efficiency at low power operation, they are often used as short monolithic cavities to produce green and vertical mode operation, such as Sasaki et al. In Opt Lett. Vol. 16, 1665 (1991) reported 'but high absorption coefficients will cause large temperature gradients inside the crystal, resulting in a large amount of thermal stress on the excited end face of the crystal. It is generally believed that the thermal cracking of the crystal caused by thermal stress is the main technical bottleneck in the design of high-power end-face excited solid-state lasers. In other words, high absorption
D:\Patent\pdl602. ptd 第5頁 _ 4Π5285 _____ 五、發明說明(3) 數的雷射材料在高功率的操作時會有所限制。 在低功率激發時’ 一般為了有南的輸出效率,D: \ Patent \ pdl602. Ptd Page 5 _ 4Π5285 _____ 5. Description of the invention (3) The number of laser materials will be limited during high-power operation. In low-power excitation ’, it ’s generally for the South ’s output efficiency,
Nd: YV04所摻入的鈥離子濃度在〇· 5、3. 0%之間,通常是 1.0%。濃度1.0%的Nd:YV04在波長808-nm 的吸收係數是同 濃度YAG晶體的5倍之多。實驗結果顯示,濃度1.0%的 Nd .· YV04在單端激發的情況下’其破裂限制激發功率約為 15瓦,所對應之TEMoo的最高輸出功率約為7瓦。 以單端激發濃度1.0%的Nd:YV04之輸出結果對高功率 雷射作一標準,7瓦的TEMoo功率輸出可視為高功率雷射的 基準(benchmark)。因此任何二極體端面激發式固態雷射 能有7瓦以上的TEMoo輸出功率,以及40%以上的輸出斜效 率(optical slope efficiency),可稱為一高效率、高功 率的二極體端面激發式固態雷射。 近年來,有研究者利用擴散粘接式晶體(diffusi〇n bonded crystal)來提高「破裂限制激發功率」,而得出 更高的輸出功率。如Tsunekane等人在IEEE J. Select. Topics Quantum Electron, vol. 3, g (1997)報導了擴 散粘接式N d : Y V Ο*晶體的特性’他們將濃度1. %的n d : γ v h 與沒有摻入鈦離子濃度之Y V O4利用擴散粘接法接合。其結 果顯示’濃度1.1%的擴散枯接式Nd:YV〇4最高可耐約2〇 瓦的激發功率’得出約9瓦的1. 〇6微米雷射輸出。但擴散 粘接式Nd ·· YVO4晶體為了維持線偏極輸出,必須精確的對 準兩個晶體的光轴,在製程上複雜且不容易,在成本的考 量上也非最佳的方法。除了擴散點接式晶體外,雙端面激Nd: YV04 has an ion concentration of between 0.5 and 3.0%, usually 1.0%. The absorption coefficient of 1.0% Nd: YV04 at a wavelength of 808-nm is five times that of the same concentration YAG crystal. The experimental results show that Nd. · YV04 with a concentration of 1.0% under single-ended excitation has a rupture-limited excitation power of about 15 watts, and the corresponding maximum output power of TEMoo is about 7 watts. The output of Nd: YV04 with a single-ended excitation concentration of 1.0% is used as a standard for high-power lasers. The 7-watt TEMoo power output can be used as a benchmark for high-power lasers. Therefore, any diode end-excitation solid-state laser can have a TEMoo output power of more than 7 watts, and an output slope efficiency of more than 40%, which can be referred to as a high-efficiency, high-power end-face excitation of a diode. Solid-state laser. In recent years, some researchers have used diffusion bonded crystals to increase the "fracture-limiting excitation power" and obtain higher output power. For example, Tsunekane et al. In IEEE J. Select. Topics Quantum Electron, vol. 3, g (1997) reported the characteristics of diffusion bonded N d: YV 〇 * crystals' they will have a concentration of 1.% nd: γ vh and YV O4, which is not doped with a titanium ion concentration, is joined by a diffusion bonding method. The results show that 'diffusion dry-type Nd: YV04 with a concentration of 1.1% can withstand a maximum excitation power of about 20 watts', resulting in a laser output of 1.0 um of about 9 watts. However, in order to maintain the linear polar output, the diffusion bonded Nd · YVO4 crystal must accurately align the optical axes of the two crystals. The process is complicated and difficult, and the cost is not the best method. In addition to diffused point-contact crystals,
---405 撕-- 五、發明說明(4) 發是經常被採用得出大於10瓦的方法,如Nighan等人 在OSA Tech· Dig. Series, Washington DC, 17 (1995) 所發表的結果。然而’多端面激發的設計須要加入額外的 元件,為了得出最佳的輸出,通常要精密的對準,在工業 應用上有所限制。 由此可見,如何降低成本與製造的對準複雜度而得出 兩功率、高效率雷射’是目前設計二極體端面激發式固態 雷射的重要需求。如何將訊酸類晶體這種強吸收性材料以 單端面激發方式,得出大於10瓦的雷射輸出已成為重要 的開發主題,而此項設計的主要障礙在於激發時所引起的 熱破裂。 發明之簡要說明 鑑於目前技藝的困難點,本發明之目的係為設計一個 用摻鉉之釩酸類晶體所組裝的二極體端面激發式固態雷 射。可產生高效率、高功率、以及線偏極化雷射輸出。 本發明之進一目的在於設計一個用摻鈥之釩酸類晶體 所組裝的二極體端面激發式固態雷射。可有效操作在9開 闕模式,產生高效率、高功率、以及線偏極化脈沖雷射輪 出。 本發明的這些目的是由一高效率、高功率的二極體端 面激發式固態雷射系統所完成。此雷射系統包括一共振腔 鏡片、一輸出耦合鏡所組成的共振腔。而有一摻歛之銳酸--- 405 Tear-5. Description of the invention (4) Hair is often used to obtain a method greater than 10 watts, such as the result published by Nighan et al. In OSA Tech · Dig. Series, Washington DC, 17 (1995) . However, the design of multi-facet excitation requires the addition of additional components. In order to obtain the best output, precision alignment is usually required, which is limited in industrial applications. It can be seen that how to reduce the cost and the complexity of manufacturing alignment to obtain two-power, high-efficiency lasers' is an important requirement for the current design of diode-side excited solid-state lasers. How to use a single-end-excitation method of a strong-absorptive material such as an acid crystal to obtain a laser output of more than 10 watts has become an important development topic, and the main obstacle of this design is thermal cracking caused by excitation. Brief description of the invention In view of the difficulties of the current technology, the object of the present invention is to design a diode end-excitation solid-state laser assembled with erbium-doped vanadate crystals. Can produce high efficiency, high power, and linearly polarized laser output. A further object of the present invention is to design a diode-end-excited solid-state laser assembled with a vanadic acid-doped crystal. It can be effectively operated in 9K mode, producing high efficiency, high power, and linearly polarized pulsed laser wheels. These objects of the present invention are accomplished by a high-efficiency, high-power diode end-excitation solid-state laser system. The laser system includes a resonant cavity lens and a resonant cavity composed of an output coupling mirror. And there is an astringent sharp acid
D:\Patent\pdl602. ptd 4 Ο 5-2 B 5 五、發明說明(5) 類晶體,放置在共振腔中。使用摻鈥之釩酸類晶體的因素 在於其有較高的增益截面、較低的臨界激發功率、較寬的 吸收波帶等優點,而且可產生線偏極化輸出。 本發明的重要本體之一所用的雷射晶體為Nd .· YV04,為了 增加破裂限制激發功率,而得出更高的輸出功率,其鈥離 子濃度不高於0 . 5 %。習知的N d : Y V 04所摻入之鈥離子濃度 在0 . 5 - 3 . 0 %之間,通常是1 . 0 %。雖然本發明所用的是非習 用的離子濃度,但可有高效率、高功率的雷射輸出。舉一 實例,以鈥離子濃度0. 30%之Nd: YV04作為雷射晶體,其 「破裂限制激發功率」可超過27瓦,而在27瓦的激發功率 下,可得出16瓦以上的多模輸出,其中約有13瓦以上的 TEMoo輸出。 圖式之簡要說明 為說明本發明之其他目的及優點,現以下列較佳實施 例配合附圖之說明敘述如後,其中: 圖1 :所示為Nd : Y V04的「破裂限制激發功率」與其吸收係 數之倒數的關聯性之實驗結果。 圖2 :高功率二極體端面激發式固態雷射的說明圖,其中 利用一低鈥離子濃度的釩酸類晶體得出1 0瓦以上的輸出。 100… 雷射二極體陣列 102… 收光-聚光鏡組 101… 光纖或光纖束 103… 雷射晶體 104… 共振腔鏡 105… 輸出耦合鏡D: \ Patent \ pdl602. Ptd 4 Ο 5-2 B 5 5. Description of the invention (5) The crystal is placed in the resonance cavity. The reason for using vanadate-doped crystals is that they have the advantages of higher gain cross section, lower critical excitation power, wider absorption band, etc., and can produce linearly polarized output. The laser crystal used in one of the important bodies of the present invention is Nd. · YV04. In order to increase the rupture-limited excitation power, a higher output power is obtained, whose ion concentration is not higher than 0.5%. The conventional ionic concentration of N d: Y V 04 is between 0.5 and 3.0%, usually 1.0%. Although the present invention uses a non-conventional ion concentration, it has a high-efficiency, high-power laser output. As an example, using “Nd: YV04 with an ion concentration of 0.30%” as the laser crystal, its “fracture-limiting excitation power” can exceed 27 watts, and at an excitation power of 27 watts, more than 16 watts can be obtained Mode output, which has about 13 watts or more of TEMoo output. Brief description of the drawings In order to illustrate other objects and advantages of the present invention, the following preferred embodiments will be described below in conjunction with the description of the drawings, where: Figure 1: Nd: Y V04 shows the "fracture limiting excitation power" Experimental results of the correlation with the inverse of its absorption coefficient. Figure 2: An illustration of a high-power diode end-excitation solid-state laser, in which a vanadic acid crystal with a low 'ion concentration is used to obtain an output of more than 10 watts. 100… Laser diode array 102… Receiving-condensing lens group 101… Optical fiber or fiber bundle 103… Laser crystal 104… Resonant cavity mirror 105… Output coupling mirror
D:\Patent\pdl602. ptd 第8頁 五'發明說明(6) 1 0 6… Q開關 發明說明及專利說明 本發明是一種高功率、高效率的二極體端面激發式固 態雷射,此雷射共振腔的組成有一共振腔鏡及一輸出搞合 鏡,以及一低鉉離子濃度的奴酸類晶體°本發明的雷射有 下列特徵:單端端面激發時的輸出功率可大於瓦、輸出 效率在多模態時大於50% ’在TEMoo時大於40% ’所用的低 鈦離子濃度的釩酸類晶體’例如Nd:YV〇4 ’在0.卜0.49% 之間,主要在0.2~〇·4%。 T i dwe 1 1 等人在 1 EEE J · Quantum Electron.,vol. 28, 997 (1992),以及Cousins 在 IEEE J. QuantumD: \ Patent \ pdl602. Ptd Page 8 5'Invention description (6) 1 0 6… Q switch invention description and patent description The present invention is a high-power, high-efficiency diode end-excitation solid-state laser. The laser resonant cavity is composed of a resonant cavity mirror, an output coupling mirror, and a slave acid crystal with a low radon ion concentration. The laser of the present invention has the following characteristics: the output power when the single-ended end face is excited can be greater than watts, the output The efficiency is greater than 50% in the multi-modal state 'more than 40% in the TEMoo' low vanadic acid crystals having a low titanium ion concentration 'for example Nd: YV〇4' is between 0.4 and 0.49%, mainly between 0.2 ~ 〇 · 4%. T dwe 1 1 et al. 1 EEE J. Quantum Electron., Vol. 28, 997 (1992), and Cousins in IEEE J. Quantum
Electron., vol. 28, 1057 (1992)已報導建立一設計模 式分析二極體激發式Nd:Y AG雷射在熱破裂限制下的功率輸 出極限。然而’在這些研究文獻中並未考量吸收係數對 「破裂限制激發功率」的影響《實驗與理論分析顯示, 「破裂限制激發功率」與吸收係數成反比。而吸收係數是 正比於摻入晶體的離子濃度。因此降低奴酸類晶體的敍離 子濃度,可提尚「破裂限制激發功率」。由於釩酸類晶體 的吸收截面很大’所以對釩酸類晶體而言,有报大的範圍 可以降低摻斂的濃度’而有比Nd:YAG高的吸收係數及輸出 效率。 根據一般的邊緣冷卻情況,利用平面應力近似法Electron., Vol. 28, 1057 (1992) has reported the establishment of a design mode to analyze the power output limit of a diode-excited Nd: Y AG laser under thermal cracking limits. However, the effect of absorption coefficient on the "fracture-limited excitation power" has not been considered in these research literatures. "Experimental and theoretical analysis shows that" fracture-limited excitation power "is inversely proportional to the absorption coefficient. The absorption coefficient is proportional to the concentration of ions doped into the crystal. Therefore, lowering the ion concentration of anoic acid crystals can improve the "breaking limit excitation power". The vanadic acid crystal has a large absorption cross section, so for the vanadic acid crystal, there is a large range that can reduce the concentration of doping, and it has a higher absorption coefficient and output efficiency than Nd: YAG. Plane stress approximation based on general edge cooling
_405285_ 五、發明說明(7) (plane stress approximation),我們可以推導出一般化 的解析公式。此近似法的誤差已證明在1 0 %以内。利用平 面應力近似法考量一般端面激發的情況,「破裂限制激發 功率」Pabs,lim與晶體吸收係數α 1的關係可表成_405285_ V. Description of the invention (7) (plane stress approximation), we can derive a general analytical formula. The error of this approximation has been proven to be within 10%. The plane stress approximation method is used to consider the general end face excitation. The relationship between the "breaking limit excitation power" Pabs, lim and the crystal absorption coefficient α 1 can be expressed as
Pabs, lim = 4 7Γ R/ ( α ξ ) ( 1 ) 其中 fTM是熱負載比例(fractional thermal loading), 而且 R = (Kc amax)/( aTE) (2 是所謂的「熱衝擊參數」(thermal shock parameter)。 由式(2)可知「熱衝擊參數」與晶體材質的機械與熱性質 有關’其中ση3Χ是發生熱破裂時的最大應力(maximum stress),Ke 是熱傳係數(thermal conductivity),E是 楊氏模數(Young’s modulus),ατ是熱膨脹係數 (c o e f f i c i e n t o f t h e r m a 1 e x p a n s i ο η )。由式(1 )可看出 「熱衝擊參數」愈大的晶體,可以有愈高的「破裂限制激 發功率」。然而對一特定的晶體而言,「熱衝擊參數」是 晶體的基本特質,無法改變。另一方面,「破裂限制激發 功率」與吸收係數成反比。而吸收係數是正比於摻入晶體 的離子濃度。因此降低鈒酸類晶體的鈥離子濃度,可提高 ··「破裂限制激發功率」。 一般而言,雷射晶體對激發波長的吸收係數,α石, 與摻入的離子濃度之間的關係式可表為a=CNd,其中C為 一比例常數,正比於吸收截面(absorpti〇ri cross section),而化是摻入的離子濃度,其單位為atomic %。Pabs, lim = 4 7Γ R / (α ξ) (1) where fTM is the fractional thermal loading, and R = (Kc amax) / (aTE) (2 is the so-called “thermal shock parameter” From the equation (2), it can be known that the "thermal shock parameter" is related to the mechanical and thermal properties of the crystal material, where ση3χ is the maximum stress when thermal cracking occurs, and Ke is the thermal conductivity, E is Young's modulus, and ατ is the coefficient of thermal expansion (coefficient oftherma 1 expansi ο η). From the formula (1), we can see that the larger the "thermal shock parameter" is, the higher the "fracture limit excitation" can be. "Power". However, for a specific crystal, the "thermal shock parameter" is a basic property of the crystal and cannot be changed. On the other hand, the "fracture-limiting excitation power" is inversely proportional to the absorption coefficient. The absorption coefficient is proportional to the incorporation The ion concentration of the crystal. Therefore, lowering the ion concentration of the acetic acid crystals can increase the "fracture-limited excitation power." Generally speaking, laser The relationship between the long absorption coefficient, α stone, and the ion concentration can be expressed as a = CNd, where C is a proportional constant, which is proportional to the absorptiori cross section, and Ion concentration in atomic%.
Mam 五、發明說明(8) WNd:YV〇4而言,其C值約為20〜25 cm-1。而Nd:YAG的C值 |約為f 5 Cm 1 °比較之下,任何雷射晶體滿足C 220 cm 叮稱為強吸收性材料(strong absorption materials)。釩酸類晶體材料通常屬於強吸收性材料。要 降低強吸收性材料的吸收係數就必須降低摻入離子的濃 度。 圖1為由雷射二極體端面激發Nd: YV〇4晶體之實驗所得 出的「破裂限制激發功率」Pabs Hm與吸收係數之倒數α—1的 關聯性。如上述之理論分析結果,「破裂限制激發功率」 與吸收係數之間有反比的趨勢。在一般的雷射二極體端面 激發式固態雷射系統,輸入的激發功率必須大於20瓦左 右’才能產生10瓦以上的雷射輸出。由圖1可知,對 Nd : Υ V04晶體而言,晶體的吸收係數必須小於1 〇 cm—1才能 耐20瓦以上的激發功率。換言之,Nd·· YV04晶體的離子濃 度不能超過0.5 at.%,因此一般常用的1.0 at.% Nd:YV04 晶體無法得出1 0瓦的雷射輸出。本發明所用的低鉉離子濃 度的釩酸類晶體,例如Nd : YV04,鈥離子濃度在0.卜0. 49% 之間,主要在0 . 2〜0 . 4 %。 圖2為本發明之一實施例。參閱圖2,高功率二極艎激 發式固態雷射的組成有:一個雷射二極體陣列1 〇 〇,經光 纖101耦合輸出,由收光-聚光鏡組102將激發光束匯聚至 低鉉離子濃度的釩酸類晶體103。合適的雷射晶體103包括 (但不限定)Nd : YV04和Nd : GV04。雷射晶體的吸收係數在 2〜10 cnf1之間,主要約5 cnf1。一較佳晶體103是低鉉離子Mam V. Description of the invention (8) For WNd: YV〇4, its C value is about 20 ~ 25 cm-1. The C value of Nd: YAG is about f 5 Cm 1 °. In comparison, any laser crystal that meets C 220 cm is called a strong absorption material. Vanadic acid crystal materials are generally highly absorbing materials. To reduce the absorption coefficient of strongly absorbing materials, the concentration of doped ions must be reduced. Figure 1 shows the correlation between the "fracture-limited excitation power" Pabs Hm and the reciprocal of the absorption coefficient α-1 obtained from experiments of exciting the Nd: YV〇4 crystal by the laser diode end face. As the result of the above theoretical analysis, there is an inverse trend between the "fracture-limiting excitation power" and the absorption coefficient. In a general laser diode end-face excitation type solid-state laser system, the input excitation power must be greater than about 20 watts to produce a laser output of more than 10 watts. It can be seen from Fig. 1 that for Nd: 04V04 crystal, the absorption coefficient of the crystal must be less than 10 cm-1 to withstand the excitation power of more than 20 watts. In other words, the ion concentration of the Nd ·· YV04 crystal cannot exceed 0.5 at.%, So the commonly used 1.0 at.% Nd: YV04 crystal cannot obtain a laser output of 10 watts. The vanadic acid crystals of low hafnium ion concentration used in the present invention, such as Nd: YV04, have an ion concentration between 0.4 and 0.4%, mainly between 0.2 and 0.4%. FIG. 2 is an embodiment of the present invention. Referring to FIG. 2, the composition of the high-power diode-excited solid-state laser includes: a laser diode array 100, which is coupled and output through the optical fiber 101, and the excitation-condensing lens group 102 converges the excitation beam to the low chirp ion Concentration of vanadate crystals 103. Suitable laser crystals 103 include, but are not limited to, Nd: YV04 and Nd: GV04. The absorption coefficient of laser crystals is between 2 and 10 cnf1, mainly about 5 cnf1. A preferred crystal 103 is a low erbium ion
D:\Patent\pdl602. ptd 第11頁 405285 五、發明說明(9) 濃度的Nd:YV〇4,鈥離子濃度在〇.卜〇 49%之間,主要 在0.2-0.4%。雷射晶體的兩蠕面鍍上基頻光的抗反射膜。 雷射晶體外圍包上銦结’且安裝在銅座上,溫度可操作在 1 5 ~ 3 5 °C之間。本發明的雷射系統對此溫度範圍影響不 大。 共振腔的鏡104疋一凹面鏡,在入光面上針對雷射二 極體100放射的激發波長鍵有抗反射膜。並在第二面锻基 頻光波長的高反射膜和雷射二極體激發波長的增透膜。鏡 104的較佳曲率半徑是lm。在共振腔的鏡104與輸出耦合鏡 105之間的長度是可調整的,資以避免因晶體的熱透鏡效 應所造成的不穩定。輸出耦合鏡105鍍有基頻光高部份穿 透膜做為輸出。為了得出穩定的單模雷射,一適合的共振 腔長度範圍大約在2〜10cm,在實施例中大約是5cm。共振 腔另外還包含了一 Q開關1 0 6。 例如,用一最大輸出功率為30瓦的光纖麵合雷射二極 體,激發濃度〇.3at.%的Nd:YV04雷射晶體。Nd:YV04的兩 端面鍍上1064nm的抗反射膜。以0.5倍率及84 %的光學耦合 鏡組將激發光束匯聚到Nd : Y V04上。雷射晶體外圍包上銦 箔,且安裝在銅座上。溫度保持在2 0 °C左右。輸出耦合鏡 妁反射率為90 %。實驗結果顯示,30瓦的激發功率有16瓦 的雷射輸出,此輸出功率約為1.0 at.%的Nd:YV04晶體之 最大輸出功率的2.3倍。文獻顯示,16瓦的雷射輸出為目 前單端激發N d : Y V 04晶體的最高記錄。 熟習於本技藝之人士得任施匠思而為諸般修飾,然皆D: \ Patent \ pdl602. Ptd Page 11 405285 V. Description of the invention (9) The concentration of Nd: YV04, the ion concentration is between 0.049% and 0.2-0.4%. The two worm surfaces of the laser crystal are plated with anti-reflection films of fundamental frequency light. The laser crystal is covered with an indium junction 'and mounted on a copper base, and the temperature can be operated between 15 and 35 ° C. The laser system of the present invention has little effect on this temperature range. The mirror 104 of the resonant cavity is a concave mirror, and an anti-reflection film is provided on the light incident surface for the excitation wavelength key radiated by the laser diode 100. On the second side, a high-reflection film with a fundamental frequency light wavelength and an anti-reflection film with a laser diode excitation wavelength are forged. The preferred radius of curvature of the mirror 104 is lm. The length between the cavity mirror 104 and the output coupling mirror 105 is adjustable to avoid instability caused by the thermal lens effect of the crystal. The output coupling mirror 105 is plated with a transparent part of the high-frequency light as the output. In order to obtain a stable single-mode laser, a suitable cavity length ranges from about 2 to 10 cm, and in the embodiment is about 5 cm. The resonant cavity also contains a Q switch 106. For example, a 30-watt fiber-optic surface-coupled laser diode is used to excite a Nd: YV04 laser crystal with a concentration of 0.3 at.%. Both ends of Nd: YV04 are plated with anti-reflection films of 1064nm. The excitation beam was focused on the Nd: Y V04 with 0.5x and 84% optical coupling lens group. The laser crystal is covered with indium foil and mounted on a copper base. The temperature remains around 20 ° C. Output coupling mirror 妁 Reflectivity is 90%. Experimental results show that a 30-watt excitation power has a 16-watt laser output, and this output power is approximately 2.3 times the maximum output power of a 1.0 at.% Nd: YV04 crystal. The literature shows that the laser output of 16 watts is currently the highest record for a single-ended excited N d: Y V 04 crystal. Those who are familiar with this skill can use the artisan thinking to modify it, but
D:\Patent\pdl602. ptd 第12頁 五、發明說明(10) 不脫如附申請專利範圍所欲保護者 Ιϋϋ D:\Patent\pdl602. ptd 第13頁D: \ Patent \ pdl602. Ptd page 12 V. Description of the invention (10) It is better to protect the applicant than the scope of patent application attached Ιϋϋ D: \ Patent \ pdl602. Ptd page 13
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW87119925A TW405285B (en) | 1998-12-01 | 1998-12-01 | High power diode end-pumped solid state laser and its manufacture method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW87119925A TW405285B (en) | 1998-12-01 | 1998-12-01 | High power diode end-pumped solid state laser and its manufacture method |
Publications (1)
Publication Number | Publication Date |
---|---|
TW405285B true TW405285B (en) | 2000-09-11 |
Family
ID=21632142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW87119925A TW405285B (en) | 1998-12-01 | 1998-12-01 | High power diode end-pumped solid state laser and its manufacture method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW405285B (en) |
-
1998
- 1998-12-01 TW TW87119925A patent/TW405285B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen | Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture | |
Tsunekane et al. | Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry | |
US6785304B2 (en) | Waveguide device with mode control and pump light confinement and method of using same | |
JP4883503B2 (en) | Laser device using multi-path solid slab laser rod or nonlinear optical crystal | |
US20070297469A1 (en) | Cryogenically Cooled Solid State Lasers | |
EP3641081B1 (en) | Phonon band edge emission-based all solid state high power slab laser | |
US7463667B2 (en) | Solid-state laser and multi-pass resonator | |
JP2002057388A (en) | Solid-state laser oscillator | |
JPH10509562A (en) | Diode-pumped laser using crystals with strong thermal focus | |
Matthews et al. | A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP and SVAP | |
WO2007079661A1 (en) | A Nd:LuVO4 LASER HAVING A WAVELENGTH OF 916nm | |
US6646793B2 (en) | High gain laser amplifier | |
JP4047131B2 (en) | Solid state laser equipment | |
JP2000133863A (en) | Solid-state laser | |
US20020181534A1 (en) | Diode-pumped slab solid-state laser | |
JP2007299962A (en) | Thin disk laser device | |
TW405285B (en) | High power diode end-pumped solid state laser and its manufacture method | |
Yagi et al. | Side-pumped Nd3+: Y3Al5O12 composite ceramic laser | |
Chen et al. | High-power diode-end-pumped Nd: YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity | |
US6895152B2 (en) | Guided-mode laser apparatus with improved cladding structure and a method of fabricating thereof | |
Scheps et al. | End-pumped Nd: BEL laser performance | |
Tsunekane et al. | High-power, diode edge-pumped, single-crystal Yb: YAG/ceramic YAG composite microchip Yb: YAG laser for material processing | |
JP3091329B2 (en) | Solid laser equipment | |
JP2011146556A (en) | Semiconductor laser excitation solid-state laser device | |
Shen et al. | High-power diode-end-pumped slab composite Tm: YLF compact laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |