TW402536B - Multi-tool positioning system - Google Patents

Multi-tool positioning system Download PDF

Info

Publication number
TW402536B
TW402536B TW086102974A TW86102974A TW402536B TW 402536 B TW402536 B TW 402536B TW 086102974 A TW086102974 A TW 086102974A TW 86102974 A TW86102974 A TW 86102974A TW 402536 B TW402536 B TW 402536B
Authority
TW
Taiwan
Prior art keywords
positioning
positioning device
slow
speed
patent application
Prior art date
Application number
TW086102974A
Other languages
Chinese (zh)
Inventor
Donald R Culter
Robert M Pailthorp
Mark A Unrath
Thomas W Richardson
Alan J Cable
Original Assignee
Electro Scient Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/728,619 external-priority patent/US5847960A/en
Application filed by Electro Scient Ind Inc filed Critical Electro Scient Ind Inc
Application granted granted Critical
Publication of TW402536B publication Critical patent/TW402536B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/39Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using a combination of the means covered by at least two of the preceding sub-groups G05B19/21, G05B19/27, and G05B19/33

Abstract

A multi-rate, multi-head positioner (150) receives and processes unpanelized positioning commands to actuate slow stages (56, 58) and multiple fast stages (154) that are mounted on one of the slow stages to simultaneously position multiple tools (156) relative to target locations (162) on multiple associated workpieces (152). Each of the fast stages is coupled to a fast stage signal processor (172) that provides corrected position data to each fast stage positioner to compensate for fast stage nonlinearities and workpiece placement, offset, rotation, and dimensional variations among the multiple workpieces. When cutting blind via holes in etched circuit boards (ECBs), improved throughput and process yield are achieved by making half of the tools ultraviolet (""UV"") lasers, which readily cut conductor and dielectric layer, and making the other half of the tools are infrared (""IR"") lasers, which readily cut only dielectric layers. The UV lasers are controlled to cut an upper conductor layer and a portion of an underlying dielectric layer, and the IR lasers are controlled to cut the remaining dielectric layer without cutting through or damaging a second underlying conductor layer. The throughput is increased by cutting conductor layers in unprocessed ECBs while concurrently cutting dielectric layers in ECBs that have already had their conductor layer cut. The process yield is increased by performing a workpiece calibration prior to each cutting step to account for any ECB placement, offset, rotation, and dimensional variations.

Description

Α7 Β7 五、發明説明(1 ) 發明領域: 本項發明是有關一種用於將序重”工具”(例如是雷 射光束或其他輻射光束)在多重相配合工件上相對於目標 位置面加Μ定位的裝置和方法,更特別是有闞於一種能夠 Μ—多重階段,多頭定位裝置來精確協調多重工具和相配 合目標位置之定位的糸統。 發明背景: 許多種不同的技術是應用工具在一工作之目標位置上 做精细加工,或是沈積模型或材料。舉例而言,微小尺寸 的鑽孔機可Μ被用來製成一個用於微小尺寸馬達的支架; 一個微小尺寸的打孔器可Μ被用來在一薄金靨板上打出孔 洞;雷射可以被用來藉细加工或是蝕刻金靥、水晶或非结 晶質樣本;Μ及雛子光束可Μ使用來將帶 電粒子植入至 積體電路中。所有上述之製程共同需求將適切的工具精確 。且快速地定位在工件上的目標位置處。 經濟部中央標準局員工消費合作社印裝 (請先聞讀背面之注意事項再填寫本頁) 在若干高生產量的製造應用方面,多重工具可同時相 對於多重相配合之工件而加以定位,用Μ改善處理中的生 產量和除低全部製造成本。一種上述之應用方式是採用一 個多主軸鑽孔機在多重電路板上鑽穿相同的孔洞組。此種 機器具有生產量,但是需要將多重工作精確地固定,且無 法補償工件之間的尺寸差異,同時經常因為更換鑽頭而必 須停機。 在相關的應用方面,採用先前技術之工作人員採用雷 -4- 本紙張尺度適用中國國家標牟(CNS ) Α4規格(210X297公釐) 403536 at B7 五、發明説明(>) 射來加工介於一多層電路板之上側層間的穿孔。此種機器 具有高精確度*且不需要更換鑽頭,但是無法產出如使用 多主袖鑽孔機所得到的高生產量。 此外,兩種已發生,但是對於協調介於工具與工件之 間相對運轉的相反需求存在。亦即是特點尺寸減少’導致 對於尺寸藉確度的需求増加,同時工件的全部尺寸亦增加 中。於是,施加於工具定位装置上的精確度,尺寸和速度 需求使得現有之定位系統的限度承受負擔。 典型之現有定位裝置的特徵為低速和長行程*或是高 速和短行程。例如是X-Y位移抬之低速和長行程定位裝 置的特徵為高定位精確度;而例如是電流計驅動光束偏向 裝置之高速、短行程定位裝置的特徵為偏向角度非線性。 經濟部中央標準局貝工消費合作社印製 (請先閲讀背面之注$項再填寫本頁) 在1985年7月30日提出之標題為”用於將一聚 焦光束定位於一積體電路上的方法和裝置”的第4,53 2,40 2號美國專利中描述了一棰用於長行程、高速定 位的解決方法,其中一個例如是電流計之高速、短行程定 位裝置(”快速定位裝置”)與一個例如是X-Y位移抬 之長行程,低速,但高精確度的定位裝置(”低速定位置 .裝置”)相结合。此二種定位裝置能夠結合短行程和高速 的運動與長行程和精確的運動,用以精確且快速地將一個 例如是雷射光束之工具定位於位在一工件(例如是一積體 電路或蝕刻電路板)上的目標位置。上述之二定位置的组 合運動首先將低速定位裝置移至一涸接近位於工件上之目 -5- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29*7公釐) 經濟部中央標準局員工消費合作杜印製 賴536_^_ 五、發明説明(\) 標位置處的已知位置,停止此低速定位裝置,然後將高速 定位裝置移至正確目標位置,停止此高定位裝置,使得工 具在目標位置上被操作,隨後重覆上述之步驟到下一個目 標位置。 然而*上述之定位方法具有嚴重的缺失。也就是所有 的啟始和停止動作會導致延誤,不適當地增加工具處理工 件所需要的時間。另外一項嚴重缺失亦會產生於電腦補助 工具機控制擋案或”資料庫”上,該控制檔案一般被用來 控制工具沿著工件移至一連串已預先設定的相標位置處。 此項缺失可Μ藉由一工件的雷射加工過程來加以說明 ,此工件例如是一種具有需要雷射光束整修之小特徵規劃 模型的樓體電路。倘若低速定位裝置能夠精確地將雷射光 束移動於模型之間而且高速定位裝置能夠快速導引雷射光 束至在每一個模型內需要整修的所有小特徵,該定位裝置 和雷射光束就可Κ有效地共同作動。 然而,倘若最大模型的尺寸超過高速定位裝置的運動 範圍時,用於將工具沿著工件加以定位的資料庫必須被” 格式化”成為每一個能夠在高速定位裝置之運動範圍的配 合的相銜接區段部份。Κ上所述之朝向增加尺寸藉確度和 較大工件的趨勢事實上保證了對於格式化資料庫的需求。 資料庫格式化的結果將相衝突之短行程、高速定位動作和 長行程。高精確度定位動作分配成為用於高速和低速定位 -6- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) ----------'--^-----^訂 L----^--竣 ί (請先閱讀背面之注$項再填寫本頁) 經濟部中央標準局貝工消费合作社印袋 4Q2536 at _B7_ 五、發明説明() 裝置的適宜運動指令。 舉例而言,圖1表示具有一電晶體和相關電子連接線 路之規則模型的部份積體電路1 0,此規則模型是Μ —個 被格式化資料庫定位的離子移植工具來加工處理。在此項 實例中,藉由將硼離子控制植入積體電路1 0之適宜Ρ — 頻道載體區域中,可以調整被挑選到之電晶體的起始電壓 值。即將被離子植入之載體區域函蓋一個比高速定裝置之 運墩範圍遢要大的區域。於是,低速定位裝置驅撖離子移 值工具於模型14 (圖形中以虛線來表示此模型)之原點 1 2與積體電路1 0保持在一直線上,随後高速定位裝會 執行在離子移植工具與積體電路10之間所需的相當短行 程運動,用Μ經由資料庫之指令來處理模型1 4之内的載 體區域。當模型1 4被處理完畢之後,低速定位置移動離 子移植工具於模型18之原點16處與積體電路10保持 在一直線上,隨後高速定位裝置會執行在離子移植工具與 積體電路1 ◦之間所需的相當短行程蓮動,用Κ經由資料 庫之指令來處理摸型18之內的載體區域。 Μ上所描述之處理步驟會重覆施行於個別不同模型2 2、26、30、34和38的原點20、24、28、 32和36,直到積體電路1 0已被全部處理完成。值得 注意的是一個連接墊4 0並未整個包括在入一單獨模型內 。在此項實例中,該連接墊和4 0不需要被離子移植加工 處理,而且為了格式化之目的亦可以被省略。 -7- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 -坡! 40S536 經濟部中央榡準局員工消費合作社印裝 ~—----- 五、發明説明 (Ο y I 1 1 由 於 工 具 的 運 動 是 Μ 增 加 之 方 式 被 執 行 t 將 工 具 行 進 Ί I 路 徑 區 隔 成 若 干 已 預 先 設 定 區 分 好 之 本 身 效 率 不 佳 之 小 運 /—V 1 I 請 1 | 動 指 示 巨 集 的 資 料 庫 格 式 化 最 好 也 僅 為 —· 效 率 不 佳 之 近 似 先 閲 1 1 最 佳 化 結 果 〇 •Ά 背 1 I 之 1 格 式 化 亦 依 賴 於 所 採 用 之 特 殊 定 位 裝 置 的 運 動 能 力 和 注 意 1 I 被 定 位 之 工 具 的 種 類 0 擧 例 而 言 9 指 定 給 積 體 電 路 1 0 的 事 項 再 1 1 模 型 必 須 依 昭 積 體 電 路 1 0 之 模 型 規 則 和 依 照 高 速 定 位 裝 填 寫 本 1 ί- 置 之 蓮 動 範 圍 與 指 定 給 離 子 移 植 工 具 之 特 定 S 標 位 置 而 頁 V_^ 被 描 述 於 資 料 庫 中 0 倘 若 工 具 種 類 更 換 就 需 要 不 同 種 類 1 I 的 定 位 裝 置 來 處 理 在 不 同 g 標 位 置 處 之 不 同 特 徴 〇 資 料 庫 1 1 I 本 身 可 能 亦 必 須 再 度 被 格 式 化 用 Μ 指 揮 新 的 定 位 裝 置 和 1 訂 工 具 〇 1 r 格 式 化 更 遷 需 要 在 一 資 料 庫 內 的 每 —" 個 格 子 於 工 件 内 1 | 與 鄰 接 之 格 子 邊 界 〇 在 積 體 電 路 1 0 的 實 例 中 倘 若 一 個 I 雷 射 光 束 取 代 離 子 移 植 X 具 被 用 來 處 理 連 接 墊 4 0 的 金 靨 1 線 化 由 於 連 接 墊 4 0 會 分 開 成 為 二 個 格 子 » 如 圖 1 所 示 之 格 式 化 就 不 適 宜 0 倘 若 工 件 包 括 不 規 模 型 ( 例 如 是 在 一 蝕 | 刻 電 路 板 上 鑽 孔 的 百 標 位 置 ) > 相 同 的 問 題 則 會 發 生 〇 某. 1 些 工 件 和 工 具 種 類 的 組 合 並 不 有 助 於 格 式 化 的 產 生 0 雖 然 I 1 I 模 型 所 在 位 置 的 尺 寸 距 離 大 於 特 殊 高 速 定 位 裝 置 之 運 動 範 1 圍 9 模 型 的 規 則 亦 可 重 覆 0 由 於 增 加 的 質 量 和 非 線 性 9 採 1 1 用 一 具 有 足 夠 大 運 動 範 圍 的 高 速 定 位 裝 置 可 能 會 降 低 生 產 I I 力 0 - 8- 1 1 1 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央標準局貝工消費合作社印製 A7 -4¾¾¾¾6---- 五、發明説明(G) 於是,需要的是一種用於將不同種類工具相對於不同 種類工件加κ精確定位,而且不需要一格式化工具行進路 徑資料庫的高生產量裝置和方法。 發明藺述: 於是,本項發明之目的是在提供一種用於自動和最佳 地分配資料庫定位指令給在一多重工具加工處理系統中之 多重定位裝置的改良裝置和方法。 本項發明的一項優點是提供一種用於同時在多重工件 上施行工具行進路徑操作,而不需要一格式化資料庫的装 置和方法。 本項發明的另外一項優點是提供一種用於改善採用一 多重速率定位糸統之多重同時工具行進路徑操作之精確度 和生產量的裝置和方法。 本項發明之多重速率定位系統從資料庫中接收非格式 化的定位指令,將指令轉換成為半正弦定位信號,然後將 該半正弦定位信號處理成為用於驅動個別不同低速定位裝 置和高速定位裝置到由資料庫所指定之目標位置處的低頻 與高頻定位信號。上述之低速定位裝置和高速定位裝置因 應一連串的定位指令資料而產生運動(不需要暫停)*同 時協調彼此間的個別不同運動位置,用Μ在由資料靡所界 定之目標位置上方產生暫時靜止的工具位置。此多重速率 定位糸統減少了對於高速定位裝置之運動範圍擴大的需求 ,同時提供了顯著地增加工具加工處理的生產量,而且不 -9 - 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 -線ί 經濟部中央標準局員工消費合作社印裝 A7 _B7_ 五、脅q ) 需要使用格式化資料庫。 上述之半正弦定位信號被區分為加速度和位置部份。 藉由將該位置部份通過一個具有一固定延遲和產生用於驅 動低速定位裝置之低頻位置和加速度部份的四階輪廓形狀 濾波器,可κ得到較高的工具加工處理生產量。未經濾波 過的位置和加速度部份會被延遲與固定延遲相同的數值, 用以產生用於驅動高速定位裝置的高頻位置和加速度部份 。由低速定位装置到進給通過輪廓形狀濾波器之高速階段 部份所產生之未反應現象所導致的低速定位裝置誤差可μ 藉由導引這些與進給相關之誤差至高速定位裝置,做為高 速定位裝置指令的一部份而得Μ修正。由慣性和與定位裝 置相配合之摩擦所導致的定位誤差可Μ藉由在能夠修正低 速和高速階段定位信號之回饋網路中比較真正的工具位置 與依照指令所得到的工具位置而得Μ修正。 如同上述之内容*本項發明之多重速率、多頭定位裝 置實施方案接收和處理未格式化的定位指令,用Μ驅動低 速定位裝置和被安裝於該低速定位裝置上的多重高速定位 裝置,並且將在多重相配合之工件上的多重工具同時相對 於相標位置加Κ定位。每一個高速定位裝置耦合一個用於 提供修正位置資料給每一個高速階段定位裝置的高速階段 號處理器,用Μ補償高速階段的非線性和在多重工件之間 的工件安置、分枝、旋轉和尺寸變異。 藉由採用一簞獨糸統用時處理多重工件,此種多重速 _ 1 〇 - 本紙張尺度適用中國國家梂準(CNS ) Α4規格(210X297公釐) (請先閲讀背面之注項再填寫本頁) 訂 -線 經濟部中央標準局負工消費合作社印製 A7 ^025¾^___B-1- 五、發明説明(Γ ) 率、多頭定位系統減少了工件加工處理的成本和改善工件 加工處理的生產量。此外’由於具有處理已被安置、分枝 、旋轉和尺寸變異之工作的能力’被處理過後之工作遭到 退貨的情況亦随之減少。 此種多變速率、多頡定位裝置的一項較佳實施方案是 在蝕刻電路板(” ECBS”)上切割出盲孔’同時改菩 生產量和製程良率。在此項實施方案中’有一半工具是預 備切割導體層和電介質層)的紫外線(” UV”)雷射, 以及另外一半工具是預備只切割電介質層的紅外線(” I R ”)雷射。該紫外線雷射被擯制用來切割一上側導體層 和部份位於下側之霄介質層,同時紅外線雷射被擯制用來 切割剩餘的電介質層,而且不會切割穿過或損壞到一位於 下側之第二導饉層。此種組合式雷射加工步驟具有一個用 於在蝕刻電路板上切割盲孔的較寬加工處理視窗。此外, 藉由切割在蝕刻電路板中導體層已被切割過的電介質層, 可以增加生產量。藉由在每一個切割步驟之前施行工件的 調校,用Μ補償任何蝕刻電路板的安置、分枝、旋轉和尺 寸變異,可Μ増加製程良率。 參考以下所附之圖形,本項發明之其他目的和優點可 以從較佳實施方案的隨後詳细描述內容中得知。 圖示說明: 圖1是依照先前技術定位裝置蓮動格式化架構之被格 式化Κ方便工具加工處理之積體電路工件的正視圖。 -1 1- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先聞讀背面之注意事項再填寫本頁) *?τ 螋! 經濟部中央標準局員工消費合作社印製 3536_^_ 五、發明説明(°l) 圖2是本項發明之多重階段雷射光束定位糸統的流圖 0 圖3 A和3 B是表示經由本項發明定位指令所加工處 理之涸別不同二區段和三區段定位裝置速度輪廓的時間對 速度圖形。 圖4是表示適用於本項發明之先前技術電流計驅動反 射鏡定位裝置的部份側視圖。 圖5是表示對應依照本項發明之定位信號之高速定位 裝置階段和低速定位装置階段之速度和位置的波形圖形。 圖6是表示本項發明之多頭雷射加工糸統的傾斜視圖 〇 圖7是包括在圖6中之多頭雷射加工系統中所採用之 多重高速階段信號處理器之數位信號處理系統的簡化電子 塊圖。 圖8是在圖7中之數位信號處理糸統中所採用之多重 高速階段信號處理器其中一個信號處理器的簡化電子方塊 圖。 較佳實施方案之詳细描述: 圖2表示一個具有依照本項發明之定位指令執行能力 的多重階段工具定位裝置系統50。定位裝置糸統50僅 藉由K下的實例來加Μ描述:其中有一個採用一數位信號 處理器(” D S Ρ ”) 5 2來控制一高速電流計定位裝置 階段5 4 1 ” (高速階段5 4 ”)的單頭、雷射孔洞切割 -12- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁) ,1Τ 逡ί A7 408536___b7_ 五、發明説明(ft) 系統,一個低速X軸位移階段56 (”低速階段56”) ,以及一個用於將雷射光束6 0導引至位在單一工作6 2 (例如是一個蝕刻電路板)上之目標位置處的低速Y軸位 移階段58 (”低速階段58”)。雖然定位裝置糸統5 0的構造是單一高速階段54被安裝於低速階段56上, 而且軍一工件6 2被安装於低速階段5 8上,其他種例如 是多重高速階段54被安裝於低速階段56上,同時多重 工件6 2被安裝於低速階段5 8上的不同工具定位系統構 造亦可Μ方便地採用本項發明。 經濟部中央標準局員工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 一個系統控制電腦6 3被用來處理儲存於一資料庫儲 存次糸統64中的工具行進路徑資料庫。此資料庫包含用 於在工件6 2上切割出孔洞和/或Κ雷射光束6 0加工出 輪廊形狀所需要的加工處理參數。此資料庫一般是使用一 種工具行進路徑產生程式(例如是位於美國俄勒崗州尤金 市之Cainex製造科技公司所生產的SMARTCAM軟體)來編譯 。条統控制電腦6 3傳送部份儲存資料庫至一雷射控制器 6 8,同時,該資料庫的位置控制部份則Μ—串資料方式 傳送至一變異位處理器7 0。此變異位處理器7 0將該串 資料解釋成為用於每一個沿著工件62之雷射光束60行 進路徑所意欲得到變化量的位置變異值(” d X和”和” d y ”)、速度變異值(” d v ”)和時間變異值(” d t”)部份。於是,雷射光束60的每一涸運動均被dx 、dy、dv和dt部份所界定,這痤dx、dy、cv -1 3- 本紙張尺度適用中國國家標準(CNS ) A4規格(21 OX297公釐) 經濟部中央標準局員工消費合作社印製 408536_^_ 五、發明説明(f I) 和d t部份則還會被一位置輪廓裝置92處理成為一半正 弦形狀定位信號。 雷射控制器6 8被由變異值處理器7 0所產生的定時 資料控制,此雷射控制器遢會受到一個依然一同步化技術 而將雷射7 6的發射與高速階段54和低速階段56、5 8的運動同步化的觸發處理過程之協調,上述之同步化技 術例如是在1 995年9月25日提出之已指定授予申請 案件受託人之”輻射光束位置和污染協調系統”的美國專 利第,5,4 5 3,5 9 4號所描述之內容。 變異值處理器7 0依照以下參考圖3A和3 B所描述 之較佳BAS I C語言信號處理步驟而能夠產生dx、d y、dv和d t等部份。 在施行名稱為” gen-move”的較佳處理步驟之前,用 於最大加速度(ainax)、最大速度(vmex)和最短時間( tmin)的限制數位會被加K定義。這些限制數值為由特殊 定位裝置硬體(高速或低速)所施加的物理硬體限制,上 述之定位裝置硬體因為對應一特殊定位指令而需要被移動 大部份的距離。舉例而言,倘若運動距離低於最大高速定 位裝置之運動範圍的25%,該限制數值就會設定為高速 定位裝置。否則該限制數值就會被設定為低速定位裝置。 用於高速階段54與低速階段5 6和5 8的限制數值分別 為: 高速 低速 -1 4 - 本紙張尺度適用中國國家橾準(CNS ) Α4规格(210X297公釐) (請先閲讀背面之注$項再填寫本頁) :、π 40S536 A7 B7 五、發明説明“>) v ffl a X (公尺/秒) 1 0.25 amax (g) 50 1 . 0 t in in (牽 /秒) 2 20 . 0 步驟gen-move計算一個定位裝置階段從任何啟始位置 各啟始速度依照二個蓮動區段或三個運動區段移至任何最 終位置.和最終速度所需要的dx、dy、dv和dt數值 Ο 任何蓮動區段的包括若干種半正弦形狀加速度區段( ”區段1”),固定速度區段(”區段2”)Μ及半正弦 形狀減速度區段(”區段3”)的組合。如同圈3Α之所 示,當定位指令足夠大到能導致定位裝置的速度到達十 Vmax或-Vmax,區段2就包括於區段1和區段3之間。否 則如囘圖3 B所示,一個執行中的二區段運動指令則僅包 括區段1和區段31區段2為0)。步驟gen-move通常是 依照(而且技術熟練的工作人員亦瞭解)Μ下的BASI C語言描述内容。 (請先閲讀背面之注意事項再填窝本頁) ί 經濟部中央樣準局員工消費合作社印黎 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 402536 五 、發明説明UjΑ7 Β7 V. Description of the invention (1) Field of the invention: This invention relates to a method for placing a sequence tool "tool" (such as a laser beam or other radiation beam) on a multi-matching workpiece with respect to the target position surface plus M. The positioning device and method are more particularly related to a system capable of M-multi-stage, multi-head positioning device to precisely coordinate the positioning of multiple tools and matching target positions. BACKGROUND OF THE INVENTION: Many different techniques are the use of tools to perform fine machining at a target location of a job, or to deposit models or materials. For example, a micro-sized drill can be used to make a bracket for a micro-sized motor; a micro-sized punch can be used to make a hole in a thin gold plate; a laser It can be used for fine processing or etching gold tincture, crystal or amorphous samples; M and young child beams can be used to implant charged particles into integrated circuits. All of the above processes share the need for the right tools and precision. And quickly positioned at the target position on the workpiece. Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling out this page) In terms of certain high-volume manufacturing applications, multiple tools can be positioned relative to multiple matching workpieces at the same time. Improves throughput during processing and reduces overall manufacturing costs. One such application is to use a multi-spindle drilling machine to drill through the same set of holes on multiple circuit boards. This type of machine has throughput, but it requires multiple jobs to be accurately fixed, and it cannot compensate for dimensional differences between workpieces, and often has to be stopped due to drill replacement. In terms of related applications, the staff using the previous technology uses Ray-4- This paper size is applicable to China National Standards (CNS) A4 specifications (210X297 mm) 403536 at B7 V. Description of the invention (>) Perforations between layers on the upper side of a multilayer circuit board. This type of machine has high accuracy * and does not require bit changes, but it cannot produce the high throughputs obtained with multi-master sleeve drills. In addition, two have occurred, but the opposite need exists to coordinate the relative movement between tools and workpieces. That is to say, the reduction of characteristic size 'leads to an increase in the demand for dimensional accuracy, and at the same time, the overall size of the workpiece also increases. As a result, the accuracy, size, and speed requirements imposed on the tool positioning device have burdened the limits of existing positioning systems. Typical existing positioning devices are characterized by low and long strokes * or high and short strokes. For example, the low-speed and long-stroke positioning devices of X-Y displacement lift are characterized by high positioning accuracy; and the high-speed, short-stroke positioning devices of galvanometer-driven beam deflection devices are characterized by non-linear deflection angles. Printed by the Central Standards Bureau of the Ministry of Economic Affairs, Shelley Consumer Cooperative (please read the note on the back before filling out this page) The title proposed on July 30, 1985 is "for positioning a focused beam on a integrated circuit US Patent No. 4,53 2,40 2 describes a solution for long-stroke, high-speed positioning, one of which is, for example, a high-speed, short-stroke positioning device for an ammeter ("quick positioning" Device ") is combined with a long-stroke, low-speed, but high-accuracy positioning device (" low-speed position-fixing device. ") Such as an XY displacement lift. These two positioning devices can combine short-stroke and high-speed movements with long-stroke and precise movements to accurately and quickly position a tool such as a laser beam on a workpiece (such as an integrated circuit or Etch the target position on the circuit board). The above-mentioned combined motion of the fixed position first moves the low-speed positioning device to a position close to the eye on the workpiece. -5- The paper size applies to the Chinese National Standard (CNS) A4 specification (210X29 * 7 mm). Central Bureau of Standards, Ministry of Economic Affairs Employee Consumption Cooperation Du Yinlai 536 _ ^ _ V. Description of the invention (\) Stop the low-speed positioning device at a known position at the target position, then move the high-speed positioning device to the correct target position, stop the high-speed positioning device, and make the tool Operate on the target position, and then repeat the above steps to the next target position. However * the above positioning methods have serious shortcomings. That is, all start and stop actions will cause delays and inappropriately increase the time required for the tool to process the part. Another serious deficiency will also arise from computer aided machine tool control files or "databases". This control file is generally used to control the movement of the tool along the workpiece to a series of pre-set reference positions. This deficiency can be explained by laser processing of a workpiece, such as a building circuit with a small feature planning model that requires laser beam repair. If the low-speed positioning device can accurately move the laser beam between the models and the high-speed positioning device can quickly guide the laser beam to all small features that need to be repaired in each model, the positioning device and the laser beam can be used. Act together effectively. However, if the size of the largest model exceeds the range of motion of the high-speed positioning device, the database used to position the tool along the workpiece must be "formatted" to be compatible with each other that can fit in the range of motion of the high-speed positioning device. Section section. The trend toward increasing size, accuracy, and larger artifacts as described on K actually guarantees the need for formatted databases. The results of database formatting will conflict with short strokes, high-speed positioning actions, and long strokes. High-accuracy positioning actions are assigned for high-speed and low-speed positioning. -6- This paper size applies the Chinese National Standard (CNS) Α4 specification (210X297 mm) ----------'-- ^ --- -^ Order L ---- ^-End (please read the note $ on the back before filling out this page) Printed bags 4Q2536 at _B7_ by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Suitable for exercise instructions. For example, FIG. 1 shows a partial integrated circuit 10 having a regular model of a transistor and related electronic connection lines. The regular model is M—an ion implantation tool positioned by a formatted database for processing. In this example, by implanting boron ion control into the appropriate P-channel carrier area of the integrated circuit 10, the initial voltage value of the selected transistor can be adjusted. The area of the carrier to be ion implanted covers a larger area than the range of the pier of the high-speed fixed device. Therefore, the low-speed positioning device drives the ion shift tool in model 14 (the model is represented by a dashed line in the figure) to keep the origin 12 and the integrated circuit 10 in a straight line, and then the high-speed positioning device will perform the ion implantation. For the relatively short-stroke movements required between the tool and the integrated circuit 10, the carrier region within the model 14 is processed using the instructions from the database via M. After the model 14 is processed, the low-speed fixed-position mobile ion implantation tool is kept in line with the integrated circuit 10 at the origin 16 of the model 18, and then the high-speed positioning device is executed between the ion implanted tool and the integrated circuit 1 ◦ The relatively short-stroke motion required between them is used to process the carrier area within the pattern 18 through the instructions of the database through K. The processing steps described on M will be repeatedly applied to the origins 20, 24, 28, 32, and 36 of the different models 2 2, 26, 30, 34, and 38, until the integrated circuit 10 has been completely processed. It is worth noting that a connection pad 40 is not entirely included in a separate model. In this example, the connection pad and 40 need not be processed by ion implantation, and can be omitted for formatting purposes. -7- This paper size applies Chinese National Standard (CNS) Α4 specification (210X 297 mm) (Please read the precautions on the back before filling this page) Order-Slope! 40S536 Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs of the People's Republic of China ~ ——---- V. Description of the invention (〇 y I 1 1 The tool movement is performed in the manner of M increase. T The tool travels into the I path. Some pre-set low-efficiency / low-efficiency / V 1 I please 1 | Please specify the format of the macro of the instruction macro. It is best to read about the poor efficiency. 1 1 Optimize the result. • Ά Back 1 I 1 Formatting also depends on the movement ability and attention of the special positioning device used 1 I Type of tool being positioned 0 For example 9 Assignment to integrated circuit 1 0 Matters 1 1 Model It is necessary to fill in this 1 according to the model rules of Zhao integrated circuit 1 0 and according to the high-speed positioning device. It is described in the database. 0 If the tool type is changed, a different type of 1 I positioning device is required to handle different characteristics at different g-mark positions. The database 1 1 I may also have to be formatted again with M to direct the new Positioning device and 1 ordering tool 〇1 r formatting changes need to be in each database— “quotes in the workpiece 1 | and the adjacent grid boundary 〇 In the example of the integrated circuit 1 0 if an I thunder The beam instead of the ion implantation X is used to process the gold pad 1 of the connection pad 4 0. The connection pad 4 0 will be separated into two grids. The formatting shown in Figure 1 is not suitable. 0 If the workpiece includes a non-scale Type (for example, a hundred mark position for drilling holes on an etched / etched circuit board) > The same problem will occur. Some combinations of workpieces and tools It does not help the generation of format 0. Although the size of the I 1 I model is greater than the range of movement of the special high-speed positioning device, the rule of the 9 model can also be repeated. 0 Due to the increased mass and non-linearity, 9 1 1 Using a high-speed positioning device with a sufficiently large range of motion may reduce the production force II-0- 8- 1 1 1 This paper size applies to China National Standard (CNS) A4 (210X297 mm). Printing A7 -4¾¾¾¾¾6 ---- V. Description of the Invention (G) Therefore, what is needed is a method for accurately positioning different kinds of tools relative to different kinds of workpieces and adding κ without the need for a formatting tool travel path database. High-throughput devices and methods. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an improved apparatus and method for automatically and optimally assigning database positioning instructions to a multiple positioning device in a multiple tool processing system. One advantage of this invention is to provide a device and method for performing tool travel path operations on multiple workpieces simultaneously without the need for a formatted database. Another advantage of this invention is to provide an apparatus and method for improving the accuracy and throughput of multiple simultaneous tool travel path operations using a multi-rate positioning system. The multi-rate positioning system of this invention receives unformatted positioning instructions from a database, converts the instructions into a half-sinusoidal positioning signal, and then processes the half-sinusoidal positioning signal to drive individual different low-speed positioning devices and high-speed positioning devices. Low-frequency and high-frequency positioning signals to the target position specified by the database. The above-mentioned low-speed positioning device and high-speed positioning device generate movement in response to a series of positioning instruction data (no need to pause) * At the same time, coordinate different individual movement positions between each other, and use Μ to generate a temporary static above the target position defined by the data. Tool location. This multi-rate positioning system reduces the need to expand the range of motion of high-speed positioning devices, while providing a significant increase in the throughput of tool processing, and not -9-This paper size applies Chinese National Standard (CNS) Α4 specifications ( 210X297 mm) (Please read the notes on the back before filling this page) Order-line ί Printed by the Consumers' Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs A7 _B7_ V. Threat q) A formatted database is required. The above-mentioned half-sinusoidal positioning signal is divided into acceleration and position parts. By passing the position portion through a fourth-order contour shape filter having a fixed delay and generating a low-frequency position and acceleration portion for driving the low-speed positioning device, a higher tool processing throughput can be obtained. The unfiltered position and acceleration parts will be delayed by the same value as the fixed delay to generate the high-frequency position and acceleration parts used to drive the high-speed positioning device. The low-speed positioning device error caused by the unreacted phenomenon from the low-speed positioning device to the feed through the high-speed part of the contour shape filter can be μ. By guiding these feed-related errors to the high-speed positioning device, as Part of the high-speed positioning device command was corrected. Positioning errors caused by inertia and friction with the positioning device can be corrected by comparing the actual tool position with the tool position obtained in accordance with the instructions in a feedback network capable of correcting the positioning signals at low and high speed stages. . As described above * The multi-rate, multi-head positioning device embodiment of this invention receives and processes unformatted positioning instructions, drives the low-speed positioning device and the multiple high-speed positioning device mounted on the low-speed positioning device with M, and Multiple tools on multiple matching workpieces are simultaneously positioned relative to the phase position plus K. Each high-speed positioning device is coupled with a high-speed stage number processor for providing correction position data to each high-speed stage positioning device. M is used to compensate for the non-linearity of the high-speed stage and workpiece placement, branching, rotation, and rotation between multiple workpieces. Size variation. By adopting a single system to process multiple workpieces, this multiple speed _ 1 〇-This paper size is applicable to China National Standard (CNS) Α4 size (210X297 mm) (Please read the note on the back before filling (This page) Printed by the Central Standards Bureau, Ministry of Economic Affairs, Central Bureau of Standards, Consumer Cooperatives, A7 ^ 025¾ ^ ___ B-1- V. Description of the invention (Γ) The rate and multi-head positioning system reduce the cost of workpiece processing and improve the performance of workpiece processing. Production. In addition, 'the ability to handle jobs that have been placed, branched, rotated, and dimensionally altered' has reduced the number of returns for jobs that have been processed. A preferred implementation of such a multi-rate, multi-position positioning device is to cut a blind hole 'on an etched circuit board ("ECBS") while changing the production volume and process yield. In this embodiment, 'half of the tools are ultraviolet ("UV") lasers prepared to cut the conductor and dielectric layers, and the other half are infrared ("IR") lasers prepared to cut only the dielectric layer. The ultraviolet laser is stamped to cut an upper conductor layer and a part of the lower dielectric layer, while the infrared laser is stamped to cut the remaining dielectric layer without cutting through or damaging it. A second guide layer on the lower side. This combined laser processing step has a wider processing window for cutting blind holes on an etched circuit board. In addition, by cutting the dielectric layer in which the conductor layer has been cut in the etched circuit board, the throughput can be increased. By performing workpiece adjustments before each cutting step, M can be used to compensate for any etched circuit board placement, branching, rotation, and dimensional variations, which can increase process yield. Other objects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments with reference to the accompanying drawings. Figure description: Figure 1 is a front view of an integrated circuit workpiece that is formatted KK for easy tool processing in accordance with the prior art positioning device lotus motion formatting architecture. -1 1- This paper size applies to Chinese National Standard (CNS) Α4 size (210X297 mm) (Please read the precautions on the back before filling this page) *? Τ 螋! Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 3536 _ ^ _ V. Description of the invention (° l) Figure 2 is a flow chart of the multi-stage laser beam positioning system of this invention. 0 Figures 3 A and 3 B The time-to-speed graph of the speed profile of the different two-segment and three-segment positioning devices processed by the positioning instruction of the invention. Fig. 4 is a partial side view showing a prior art galvanometer-driven mirror positioning device suitable for the present invention. Fig. 5 is a waveform diagram showing the speed and position of the high-speed positioning device phase and the low-speed positioning device phase corresponding to the positioning signal according to the present invention. FIG. 6 is an oblique view showing a multi-head laser processing system of the present invention. FIG. 7 is a simplified electronics of a digital signal processing system including multiple high-speed stage signal processors used in the multi-head laser processing system of FIG. 6. Block diagram. FIG. 8 is a simplified electronic block diagram of one of the multiple high-speed stage signal processors used in the digital signal processing system of FIG. 7. FIG. Detailed description of the preferred embodiment: Fig. 2 shows a multi-stage tool positioning device system 50 having a positioning instruction execution capability according to the present invention. The positioning device system 50 is only described by an example under K: one of them uses a digital signal processor ("DSP") 5 2 to control a high-speed galvanometer positioning device stage 5 4 1 "(high-speed stage 5 4 ”) single head, laser hole cutting -12- This paper size applies Chinese National Standard (CNS) A4 specification (210 × 297 mm) (Please read the precautions on the back before filling this page), 1Τ 逡 ί A7 408536___b7_ 5. Description of the invention (ft) system, a low-speed X-axis displacement stage 56 ("low-speed stage 56"), and a laser beam 60 for guiding the laser beam to a single position 6 2 (for example, an etching circuit Low-speed Y-axis displacement stage 58 ("low-speed stage 58") at the target position on the board). Although the structure of the positioning device system 50 is that a single high-speed stage 54 is installed on the low-speed stage 56 and a military workpiece 62 is installed on the low-speed stage 58, other types such as multiple high-speed stages 54 are installed on the low-speed stage At 56, the construction of different tool positioning systems where multiple workpieces 6 2 are installed at low speed stage 5 8 at the same time can also easily adopt this invention. Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs (please read the notes on the back before filling this page) A system control computer 6 3 is used to process the tool travel path database stored in a database storage subsystem 64 . This database contains the processing parameters required to cut holes in the workpiece 62 and / or the laser beam 60 to process the shape of the rim. This database is generally compiled using a tool travel path generation program (such as SMARTCAM software produced by Cainex Manufacturing Technology Company, Eugene, Oregon, USA). The system control computer 6 3 transmits a part of the stored database to a laser controller 6 8. At the same time, the position control part of the database is transmitted to a variable bit processor 70 by M-string data. The mutation processor 70 interprets the string of data into position variation values ("d X and" and "dy") and speed for each desired change along the path of the laser beam 60 along the workpiece 62. Variation ("dv") and time variation ("dt") sections. Therefore, each movement of the laser beam 60 is defined by the dx, dy, dv, and dt portions. The dx, dy, and cv -1 3- This paper is in accordance with the Chinese National Standard (CNS) A4 specification (21 OX297 mm) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 408536 _ ^ _ 5. The description of the invention (f I) and dt will also be processed by a position contour device 92 into a half sinusoidal positioning signal. The laser controller 68 is controlled by the timing data generated by the mutation value processor 70. This laser controller will be subject to a synchronization technology that will launch the laser 76 and the high-speed phase 54 and the low-speed phase. Coordination of the triggering process of the movement synchronization of 56 and 58. The above-mentioned synchronization technology is, for example, the "radiation beam position and pollution coordination system" which has been designated on September 25, 995 and has been designated to grant the trustee of the application. What is described in U.S. Patent No. 5,4 5 3,5 94. The variance value processor 70 can generate dx, d y, dv, and d t according to the preferred BAS I C language signal processing steps described below with reference to FIGS. 3A and 3B. Before performing the preferred processing step named "gen-move", the limiting digits for maximum acceleration (ainax), maximum speed (vmex), and minimum time (tmin) will be defined by adding K. These limit values are physical hardware restrictions imposed by the special positioning device hardware (high speed or low speed). The above positioning device hardware needs to be moved for most of the distance because it corresponds to a special positioning instruction. For example, if the movement distance is less than 25% of the movement range of the maximum high-speed positioning device, the limit value will be set to the high-speed positioning device. Otherwise, the limit value will be set as the low-speed positioning device. The limiting values for high-speed stage 54 and low-speed stage 5 6 and 5 8 are: High-speed and low-speed-1 4-This paper size applies to China National Standard (CNS) Α4 size (210X297 mm) (Please read the note on the back first $ Entry on this page) :, π 40S536 A7 B7 V. Description of the invention ">) v ffl a X (meter / second) 1 0.25 amax (g) 50 1. 0 t in in (second / second) 2 20.0 step gen-move calculates a positioning device stage from any starting position, each starting speed is moved to any final position according to two lotus motion sections or three motion sections. And dx, dy, Values of dv and dt. Any of the moving sections includes several types of semi-sinusoidal acceleration sections ("Section 1"), fixed speed sections ("Section 2"), and semi-sinusoidal deceleration sections (" Segment 3 "). As shown in circle 3A, when the positioning instruction is large enough to cause the speed of the positioning device to reach ten Vmax or -Vmax, segment 2 is included between segment 1 and segment 3. Otherwise, as shown in FIG. 3B, a two-segment motion instruction in execution includes only the first and the third areas. 2 is 0). The step gen-move is usually described in accordance with the BASI C language (also known to skilled staff). (Please read the notes on the back before filling in this page) ί Central Ministry of Economics Standards of the Consumer Bureau of the Bureau of Staff and Workers of India Co., Ltd. The paper size applies to the Chinese National Standard (CNS) Α4 specification (210 × 297 mm) 402536 V. Description of invention Uj

PROCEDURE gen一move (g&,h&): REMARK "g" and "h" are pointers into an indexed array of positions and velocities extracted from the database. xi=px(g&) ! initial x position !um yi=py(g&) ! initial y position xvi=vx(g&) ! initial x velocity !um/sec yvi=vy(g&) ! initial y velocity xf=px(h&) (final x position yf=py(h&) ! final y position xvf = vx(h&+1) ! final x velocity yvf+vy(h& +1) ! final y velocity REMARK Calculate the maximum (or minimum) absolute velocity for X and Y movement based on the total change in position, initial and final velocities, and the minimum movement time (limited to vmax). dx=xf-xi dy=yf-yi xvmax=dx/tmin-(xvi+xvf)/2 IF xvmax>vmax xvmax=vmax ENDIF IF xvmax < -vmax xvmax=-vmax ENDIF (請先聞讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製PROCEDURE gen_move (g &, h &): REMARK " g " and " h " are pointers into an indexed array of positions and velocities extracted from the database. Xi = px (g &)! Initial x position! Um yi = py (g &)! initial y position xvi = vx (g &)! initial x velocity! um / sec yvi = vy (g &)! initial y velocity xf = px (h &) (final x position yf = py (h &)! final y position xvf = vx (h & +1)! final x velocity yvf + vy (h & +1)! final y velocity REMARK Calculate the maximum (or minimum) absolute velocity for X and Y movement based on the total change in position, initial and final velocities, and the minimum movement time (limited to vmax). dx = xf-xi dy = yf-yi xvmax = dx / tmin- (xvi + xvf) / 2 IF xvmax > vmax xvmax = vmax ENDIF IF xvmax < -vmax xvmax = -vmax ENDIF (Please read the precautions on the back before filling this page) Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs

REMARK Assumes that dtl is employed. y vmax=dy/tmin-(y vi+y vf)/2 IF y vmax > vmax yvmax=vmax ENDIF dt3. If dtl and dt3 = tmin, maximum velocity -16- 本紙張尺度適用中國國家標率(CNS > A4規格(210 X 297公釐) A7 B7 402536 五、發明説明((+ )REMARK Assumes that dtl is employed. Y vmax = dy / tmin- (y vi + y vf) / 2 IF y vmax > vmax yvmax = vmax ENDIF dt3. If dtl and dt3 = tmin, maximum velocity -16- Applicable Chinese national standard (CNS > A4 specification (210 X 297 mm) A7 B7 402536 V. Description of invention ((+)

IF yvmax<-vmax yvmax=-vmax ENDIF (請先閲讀背面之注$項再填寫本頁) REMARK Calculate dt for segments 1 and 3, assuming three segments are required to execute this particular positioning command. kpo2=(PI/2)/amax dtl=MAX(tmin,ABS((xvmax-xvi)*kpo2),ABS((yvmax-yvi)*kpo2)) dt3=MAX(tmin,ABS((xvf-xvmax)*lq)〇2),ABS((yvf-yvmax)*kpo2)) REMARK Calculate dt2 for both the x and y axis (xdt2 and ydt2). If either result is positive, a constant velocity segment 2 is required. xd0 and ydt2 also determine a dominant axis, i.e., the axis that requires the most time to move at constant maximum velocity. IF xvmax>0IF yvmax < -vmax yvmax = -vmax ENDIF (Please read the note on the back before filling in this page) REMARK Calculate dt for segments 1 and 3, assuming three segments are required to execute this particular positioning command. Kpo2 = (PI / 2) / amax dtl = MAX (tmin, ABS ((xvmax-xvi) * kpo2), ABS ((yvmax-yvi) * kpo2)) dt3 = MAX (tmin, ABS ((xvf-xvmax) * lq) 〇2 ), ABS ((yvf-yvmax) * kpo2)) REMARK Calculate dt2 for both the x and y axis (xdt2 and ydt2). If either result is positive, a constant velocity segment 2 is required. Xd0 and ydt2 also determine a dominant axis, ie, the axis that requires the most time to move at constant maximum velocity. IF xvmax > 0

xdt2=(dx-((xvi+vmax) *dtl /2)-((xvf + vmax)*dt3/2))/vmax ELSE xdt2 = (dx-((xvi-vmax)*dtl/2)-((xvf-vmax)*dt3/2))/-vmax ENDIF IF y vmax >0 ydt2=(dy-((yvi+vmax)*dtl/2)-((yvf+vmax)*dt3/2))/vmaxxdt2 = (dx-((xvi + vmax) * dtl / 2)-((xvf + vmax) * dt3 / 2)) / vmax ELSE xdt2 = (dx-((xvi-vmax) * dtl / 2)-( (xvf-vmax) * dt3 / 2)) /-vmax ENDIF IF y vmax > 0 ydt2 = (dy-((yvi + vmax) * dtl / 2)-((yvf + vmax) * dt3 / 2)) / vmax

ELSE ydt2=(dy-((yvi-vmax)*dtl/2)-((yvf-vmax)*dt3/2))/-vmaxELSE ydt2 = (dy-((yvi-vmax) * dtl / 2)-((yvf-vmax) * dt3 / 2)) /-vmax

ENDIF IF xdt2>0 OR ydt2>0 !three segment movement REMARK Calculate dp,dv for each movement segment IF xdt2>ydt2 !X axis Primary dxl =(xvi+xvmax)*dtl/2 xdvl =xvmax-xvi dx2=((-xvi-xvmax)*dtl/2)+((-xvmax-xvf)*dt3/2)+dx xdv2=0 經濟部中央標準局員工消費合作社印裝 dx3=(xvmax+xvf)*dt3/2 xdv3=xvf-xvmax ydt2=xdt2 kb=l/(2*ydt2+dt3+dtl) dy 1 = ((yvi-y vf)*((dtl *dt3)/2+(dy+yvi*ydt2)*dtl)*kb ydvl =((-yvi-yvf)*dt3 +2*dy-2*yvi*(ydt2+dtl))*kb dy2=(2*dy-dtl *yvi-dt2*yvf)*ydt2*kb ydv2=0 dy3=((yvf-yvi)*((dt3*dtl)/2+(dy+ydt2*yvf)*dt3)*kb ydv3=((yvi+yvf)*dtl-2*dy+2*(dt3 +yd0)*yvf)*kb ELSE !Y primary axis -17- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央標準局員工消費合作社印製 402536 五、發明説明(ί^Γ) dyl =(yvi+yvmax)*dtl/2 ydvl =yvmax-xvi ' dy2=((-yvi-yvmax)*dtl/2)+((-yvmax-yvf)*dt3/2) +dy ydv2=0 dy3=(y vmax+y vf) *dt3 /2 ydv3 =yvf-yvmax xdt2=ydt2 kb=l/(2*xdt2+dt3+dtl) dxl=((xvi-xvf)*((dtl*dt3)/2+(dx+xvi*xdt2)*dtl)*kb xdvl=((-xvi-xvf)*dt3 +2*dx-2*xvi*(xdt2+dtl))*kb dx2=(2 *dx-dtl *xvi-dG *xvf) *xdt2 *kb xdv2=0ENDIF IF xdt2 > 0 OR ydt2 > 0! Three segment movement REMARK Calculate dp, dv for each movement segment IF xdt2 > ydt2! X axis Primary dxl = (xvi + xvmax) * dtl / 2 xdvl = xvmax-xvi dx2 = (( -xvi-xvmax) * dtl / 2) + ((-xvmax-xvf) * dt3 / 2) + dx xdv2 = 0 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs dx3 = (xvmax + xvf) * dt3 / 2 xdv3 = xvf-xvmax ydt2 = xdt2 kb = l / (2 * ydt2 + dt3 + dtl) dy 1 = ((yvi-y vf) * ((dtl * dt3) / 2 + (dy + yvi * ydt2) * dtl) * kb ydvl = ((-yvi-yvf) * dt3 + 2 * dy-2 * yvi * (ydt2 + dtl)) * kb dy2 = (2 * dy-dtl * yvi-dt2 * yvf) * ydt2 * kb ydv2 = 0 dy3 = ((yvf-yvi) * ((dt3 * dtl) / 2 + (dy + ydt2 * yvf) * dt3) * kb ydv3 = ((yvi + yvf) * dtl-2 * dy + 2 * ( dt3 + yd0) * yvf) * kb ELSE! Y primary axis -17- This paper size applies to China National Standard (CNS) A4 (210X297 mm) Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 402536 ί ^ Γ) dyl = (yvi + yvmax) * dtl / 2 ydvl = yvmax-xvi 'dy2 = ((-yvi-yvmax) * dtl / 2) + ((-yvmax-yvf) * dt3 / 2) + dy ydv2 = 0 dy3 = (y vmax + y vf) * dt3 / 2 ydv3 = yvf-yvmax xdt2 = ydt2 kb = l / (2 * xdt2 + dt3 + dtl) dxl = ((xvi-xvf) * ((dtl * dt3) / 2 + (dx + xvi * xdt2) * d tl) * kb xdvl = ((-xvi-xvf) * dt3 + 2 * dx-2 * xvi * (xdt2 + dtl)) * kb dx2 = (2 * dx-dtl * xvi-dG * xvf) * xdt2 * kb xdv2 = 0

dx3=((xvf-xvi)*((dt3 *dtl)/2+(dx+xdt2*xvf)*dt3)*kb xdv3=((xvi+xvf)*dtl-2*dx+2*(dt3 +xdt2)*xvf)*kb ENDIF ELSE !two segment movement REMARK Calculate dtx and dty to determine dt for segments 1 and 3. twomovetime (xvi,xvf,xi,xf,xdt) twomovetime (yvi,yvf,yi,yf,ydt) REMARK For two segment movement, dtl = dt3 = the larger of dtx or dty. dtl =MAX(xdt,ydt) dt3=dtldx3 = ((xvf-xvi) * ((dt3 * dtl) / 2 + (dx + xdt2 * xvf) * dt3) * kb xdv3 = ((xvi + xvf) * dtl-2 * dx + 2 * (dt3 + xdt2) * xvf) * kb ENDIF ELSE! two segment movement REMARK Calculate dtx and dty to determine dt for segments 1 and 3. twomovetime (xvi, xvf, xi, xf, xdt) twomovetime (yvi, yvf, yi, yf, ydt ) REMARK For two segment movement, dtl = dt3 = the larger of dtx or dty. Dtl = MAX (xdt, ydt) dt3 = dtl

REMARK Calculate dp and dv for segments 1 and 3. twosegmentmove xdt2=0 ydt2=0 dx2=0 dy2=0 xdv2=0 ydv2=0 ENDIFREMARK Calculate dp and dv for segments 1 and 3. twosegmentmove xdt2 = 0 ydt2 = 0 dx2 = 0 dy2 = 0 xdv2 = 0 ydv2 = 0 ENDIF

RETURN REMARK End of procedure gen move PROCEDURE twosegmentmove dx 1 = dx/2+xvi *dt 1 /4-xvf*dt 1 /4 xdvl =dx/dtl-3*xvi/2-xvf/2 dyl =dy/2+yvi*dtl/4-yvf*dtl/4 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨0 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 402536 A7 B7 五、發明説明(丨L) 經濟部中央標準局員工消費合作社印製RETURN REMARK End of procedure gen move PROCEDURE twosegmentmove dx 1 = dx / 2 + xvi * dt 1 / 4-xvf * dt 1/4 xdvl = dx / dtl-3 * xvi / 2-xvf / 2 dyl = dy / 2 + yvi * dtl / 4-yvf * dtl / 4 This paper size applies to Chinese National Standard (CNS) A4 (2 丨 0 X 297 mm) (Please read the precautions on the back before filling this page) Order 402536 A7 B7 5 , Description of invention (丨 L) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs

ydvl =dy/dtl-3*yvi/2-yvf/2 dx3 =dx/2-xvi*dt3/4+xvf*dt3/4 xdv3 = -dx/dt3 + xvi/2+3 *xvf/2 dy3 =dy/2-yvi*dt3/4+yvf*dt3/4 ydv3 = -dy/dt3 + y vi/2+3 *y vf/2 RETURN PROCEDURE twomovetime(vi,vf,ip,fp,VAR dt) LOCAL kl,k2,k3 dt=tmin kl=3*vi+vf kls=kr2 k2=(32/PI)*amax*(fp-ip) k3=PI/(8*amax) IF kls+k2>0 dt=MAX(dt,k3*(-kl +SQR(kls-k2))) ENDIF IF kls-k2>0 dt=MAX(dt,k3*(kl +SQR(kls-k2))) ENDIF kl=vi+3*vf kls=kr2 IF kls+k2>0 dt=MAX(dt,k3*(-kl +SQR(kls+k2))) ENDIF IF kls-k2 > 0 dt=MAX(dt,k3*(kl +SQR(kls-k2))) ENDIF RETURN -19- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂- A7 402536 B7 五、發明説明(1) (請先閲讀背面之注意事項再填寫本頁) 再一次參考圖2,由變異值處理器70產生的dx、 dy、dv和d t部份更進一步被位置輪鄹装置72加工 處理成為當資料庫下指令時,移動高速階段54與低速階 段5 6和5 8所需的半正弦定位信號。最理想之狀況是定 位裝置的加速度與驅動力成正比,而且驅動力本身與供塵 至一個例如是一線性或旋轉伺服馬達或是一電流計線圈之 定位装置驅動器的電流強度成正比。於是,由位置輪廓装 置7 2所產生的定位信號是一連串用於導致生成如圖3A 和3 B所示之運動的”全頻”半正弦形狀加速度導引定位 步驟。該全頻的頻寬僅約250Hz,此一頻寛大小足以 驅動一個典型的電流計驅動反射鏡定位裝置保持在其最大 頻率。 經濟部中央標準局員工消費合作社印製 數位信號處理器52K每秒大純1 0,000點之速 度藉由採用由變異值盧理器70產生之dx、dy、dv 和dt部份所生成的全頻定位信號即時數值被用來做為在 數位信號處理器5 2中執行之正弦數值產生程式的輸入變 力數。另外一方面* dx、dy、dv和dt部份可Μ被 用來定址和讀取儲存於與數位信號處理器5 2相結合之正 弦數值査詢表中的相配合之正弦波形數值。 结果產生的全頻定位信號具有由一輪廓形狀逋波器7 8所接收之加速度和位置部份,該輸廓形狀漶波器7 8具 有一固定的信號產生延犀和一個用於在信號處理器52中 補償此輪郾形狀《波器7 8之固定信號產生延遲現象的延 -2 0 * 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐)ydvl = dy / dtl-3 * yvi / 2-yvf / 2 dx3 = dx / 2-xvi * dt3 / 4 + xvf * dt3 / 4 xdv3 = -dx / dt3 + xvi / 2 + 3 * xvf / 2 dy3 = dy / 2-yvi * dt3 / 4 + yvf * dt3 / 4 ydv3 = -dy / dt3 + y vi / 2 + 3 * y vf / 2 RETURN PROCEDURE twomovetime (vi, vf, ip, fp, VAR dt) LOCAL kl , k2, k3 dt = tmin kl = 3 * vi + vf kls = kr2 k2 = (32 / PI) * amax * (fp-ip) k3 = PI / (8 * amax) IF kls + k2 > 0 dt = MAX (dt, k3 * (-kl + SQR (kls-k2))) ENDIF IF kls-k2 > 0 dt = MAX (dt, k3 * (kl + SQR (kls-k2)))) ENDIF kl = vi + 3 * vf kls = kr2 IF kls + k2 > 0 dt = MAX (dt, k3 * (-kl + SQR (kls + k2))) ENDIF IF kls-k2 > 0 dt = MAX (dt, k3 * (kl + SQR (kls-k2))) ENDIF RETURN -19- This paper size applies to Chinese National Standard (CNS) A4 (210X 297 mm) (Please read the notes on the back before filling this page) Order-A7 402536 B7 V. Description of the invention (1) (Please read the notes on the back before filling this page) Referring again to FIG. 2, the dx, dy, dv and dt parts generated by the variation value processor 70 are further processed by the position wheel device 72 The processing becomes the half-sinusoidal positioning signal required to move the high-speed phase 54 and the low-speed phases 56 and 58 when the database instructs. The ideal situation is that the acceleration of the positioning device is directly proportional to the driving force, and the driving force itself is directly proportional to the intensity of the current supplied to a positioning device driver such as a linear or rotary servo motor or a galvanometer coil. Thus, the positioning signal generated by the position contouring device 72 is a series of "full-frequency" half-sine-shaped acceleration-guided positioning steps used to cause the generation of motion as shown in Figs. 3A and 3B. The full frequency has a bandwidth of only about 250 Hz. This frequency band is large enough to drive a typical galvanometer to drive the mirror positioning device at its maximum frequency. Printed by the Consumer Standards Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs, a digital signal processor 52K at a speed of 10,000 points per second, generated by using the dx, dy, dv, and dt parts generated by the mutation value processor 70 The real-time value of the full-frequency positioning signal is used as the input variable force of the sinusoidal value generating program executed in the digital signal processor 52. On the other hand, * dx, dy, dv, and dt parts can be used to address and read the matching sine waveform values stored in the sine value lookup table combined with the digital signal processor 52. The resulting full-frequency positioning signal has the acceleration and position components received by a contour-shaped waver 7 8. The contour-shaped waver 7 8 has a fixed signal generation delay and a signal processing unit. The shape of the wheel in the device 52 is compensated by the delay of the fixed signal of the wave device 7 -2 0 * This paper size applies the Chinese National Standard (CNS) Α4 specification (210 × 297 mm)

___^__ 五、發明説明((<Γ) 犀元件79。舉例而言,延犀元件79會將由位置輪廓装 置7 2所產生的雷射觸發赈衡延遲,用K與高速階段54 和低速階段56、58的延遲運動保持一致。如同Μ下所 描述之内容,輪廓形狀濾波器7 8和延遲件7 9亦共同作 動,用Μ平穩地移動低速階段5 6和5 8超過平均位置輪 廊,同時限平均位置輪郾的加速度在土 1 s内,另外亦限 制高速階段5 4的定位運動在±10毫米内。 由輪鄹形狀濾波器7 8所接收的位置部份被用來產生 驅動低速階段5 6和5 8所需之過濾後位置指令資料。輪 廓形狀濾波器7 8本身Κ是一個如公式1所示之四階低通 漶波器為較適宜。 0) 在公式1中,ω為輪廊形狀逋波器78的自然或截止 頻率* €為了阻尼比例。等於每秒38强度和ξΚ等 於0,707為較逋宜。由於0,707的g值會產生一 個與輪廊形狀漶波器7 8之截止頻率ω維持線性的相位遲 延,因此0 * 707的ξ值被視為是臨界阻尼比例。該線 性相位遲延導致產生一個用於任何具有頻率值1高到自然頻 率之半正弦定位信號的固定時間延遲。對於公式1之濾波 -2 1- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) --Ί.-----^訂 L---^--一 - (請先閲讀背面之注$項再填寫本頁) 經濟部中央標準局員工消費合作社印製 A7 B7 408S36 五、發明説明(丨1) 器而言,時間延遲等於4 ξ / ω秒。 由於輪鄹形狀瀘波器7 8產生具有一相對於半正弦定 位信號位置部份之固定時間延遲的過漶後位置指令資料, 此固定時間延遲則會被延遲元件7 9補價掉。延遲元件7 9被適宜地設置於數位信號處理器5 2中*此延遲元件本 身則成為一用於將半正弦定位信號加速度和位置剖份從位 置輪郾裝置7 2傳送至高速階段54之信號處理元件的程 式化延遲,上述之高速階段信號處理元件的前面二個為加 法器80和82。於是,被導引至高速階段54之半正弦 定位信號與被導引至低速階段5 6和5 8的過濾後位置指 令在時間上保持同步。 從位置輪靡裝置7 2所產生的加速度部份亦被輪廓形 狀漶波器7 8加Κ過漶,用Μ提供溏後之加速度指令給加 法器8 0和一前授處理器94。藉由從全頻定位信號之加 速度部份中除去過漶後的加工速度指令,加法器80被用 來做為一高通濾波器,並形成一涸被輸送至一前授處理器 8 6的電流加速度前授信號。同樣地,從輪廊形狀漶波器 7 8傳送出來的過滤後位置指令和半正弦定位信號的受延 遲位置部份分別被輸送至加法器90和82,用K處理和 分別分配到低速階段56、58和高速階段54。一個罨 流漶波器9 7和一個伺服漶波器9 8是被用來保持高速階 段54和低速階段56、58檯定的傳統式迴路補償濾波 器。 -22- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) I訂 妗! 經濟部中央標準局員工消費合作社印袋 40S536 A7 __B7 五、發明説明(τΑ ) 輪廊形狀瀘波器7 8M串接二個或更多個具有臨界阻 尼比例的二階濾波器而皮被配量。當串接之濾波器的數目 增加到二個K上時,這些濾波器本身的截止頻率會增加大 約漶波器數目之平方根(例如二個滅波器之截止頻率為單 一漶波器之截止頻率的1·414倍)。兩個被串接的漶 波器Μ能夠提供良好之平順漶波效果,同時保持整個漶波 器之配置方式籣單為較適宜。 經由雙線性轉換*公式1所示之輪廊形狀濾波器的反 懕可W被表示為一不連續相等值。以下之公式2表示所產 生的數位轉換函數。___ ^ __ 5. Description of the invention (< Γ) Rhino element 79. For example, the rhino element 79 will delay the laser-triggered counterbalance delay generated by the position contour device 72, using K and the high-speed stage 54 and the low-speed The delay movements of stages 56 and 58 remain the same. As described below, the contour shape filter 7 8 and the delay member 7 9 also work together to move the low-speed stages 5 6 and 5 8 smoothly over the average position. At the same time, the acceleration of the average position of the wheel is limited to 1 s, and the positioning movement of the high-speed stage 5 4 is within ± 10 mm. The position received by the wheel shape filter 7 8 is used to generate the drive. The filtered position command data required for the low-speed stages 5 6 and 5 8. The contour shape filter 7 8 itself is a fourth-order low-pass wave filter as shown in Equation 1. It is more suitable. 0) In Equation 1, ω is the natural or cut-off frequency of the contour wave filter 78 * € for damping ratio. Equal to 38 intensities per second and ξK is equal to 0, 707 is more appropriate. Since the g value of 0,707 will cause a phase delay that is linear to the cut-off frequency ω of the rim shape wave filter 78, a ξ value of 0 * 707 is considered as the critical damping ratio. This linear phase delay results in a fixed time delay for any semi-sinusoidal positioning signal with a frequency value of 1 up to the natural frequency. For the filter of Formula 1-2 1- This paper size applies the Chinese National Standard (CNS) Α4 specification (210 × 297 mm) --Ί .----- ^ Order L --- ^-一-(Please read first Note the item on the back, please fill in this page.) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs, A7, B7, 408S36. 5. Description of the invention (丨 1), the time delay is equal to 4 ξ / ω seconds. Since the wheel shape wave wave generator 78 generates a post-position command data with a fixed time delay relative to the position portion of the half-sine positioning signal, the fixed time delay is compensated by the delay element 79. The delay element 79 is suitably set in the digital signal processor 5 2 * The delay element itself becomes a signal for transmitting the acceleration and position profile of the half-sine positioning signal from the position wheel device 7 2 to the high-speed stage 54 The stylized delay of the processing elements. The first two of the above-mentioned high-speed signal processing elements are adders 80 and 82. Thus, the half-sine positioning signal guided to the high-speed stage 54 is synchronized in time with the filtered position instructions guided to the low-speed stages 56 and 58. The acceleration part generated from the position rotation device 72 is also subjected to K by the contour shape waver 7 8, and the subsequent acceleration command is provided by M to the adder 80 and a pre-processor 94. The adder 80 is used as a high-pass filter by removing the processing speed instruction from the acceleration portion of the full-frequency positioning signal, and forms a current that is sent to a pre-processor 86. Pre-acceleration signal. Similarly, the filtered position command and the delayed position portion of the half-sinusoidal positioning signal transmitted from the rim shape wave filter 78 are sent to the adders 90 and 82, respectively, processed by K and assigned to the low-speed stage 56 respectively. , 58 and high-speed phase 54. A high-current wave filter 97 and a low-speed wave filter 98 are conventional loop compensation filters that are used to maintain the high-speed stage 54 and the low-speed stage 56 and 58 units. -22- This paper size applies to Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page) I order 妗! Printed bags for consumer cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs 40S536 A7 __B7 V. Description of the invention (τΑ) The rim shape wave waver 7 8M is connected in series with two or more second-order filters with a critical damping ratio and is metered. When the number of filters connected in series is increased to two K, the cut-off frequency of these filters themselves will increase by the square root of the number of chirpers (for example, the cut-off frequency of two detuners is the cut-off frequency of a single chirper). 1.414 times). Two series-connected wave wave generators M can provide good smooth wave wave effects, and at the same time, it is more appropriate to maintain the configuration of the whole wave wave filter. Through the bilinear transformation *, the inverse 轮 of the corridor shape filter shown in Equation 1 can be expressed as a discontinuous equal value. Equation 2 below shows the resulting digital conversion function.

Gz{z) = Az2+2z*lf ^2 + biz+b2f (2) (請先閲讀背面之注意事項再填寫本貢) Λ 經濟部中央棣準局員工消費合作社印製 Μ下之公式3和4表示在先前輸入值和输出值為已知 之狀況下·濾波器輸出值yk和wk的時域公式。 yk = wk+2wl[.,+wk.2-b1yk.rb2yk.2 wk = kCVk+aVn+V^-bjWk.j-biv^ 在公式3和4中之係數由以下公式5來決定 -23- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) ⑶ ⑷ 402536五、發明説明(·/!) A7 B7 k bl b2 ω2Τ2 Α+4ζΤω+Τ2(ύ2, -8+2Γ2ω2 4+4ζΓω + Γζω2 -4ζΤω + 4 + Γ2ω2 4+4ζΓω+Γ2ω2 (5) 經濟部中央標準局員工消費合作社印製 在公式5中,Τ為漶波器的取樣通期,ω為其截止頻 率,Μ及ί為其阻尼比例。 對於輪鄹形狀漶波器7 8而言,相較於數位信號處理 器52更新低速階段56和58之定位資料的1 0仟Η ζ 速度,該輪廊形狀濾波器的較佳截止頻率每秒3851度( 大約為6Hz)是非常低的頻率。倘若此輪鄹形狀漶波器 78Κ1 0仟Η ζ速率來更新低速階段的頻率,由於不連 鑛濾波器的極值移動接近軍位圖,該不連缰漶波器的偽數 會變得對進位誤差較為敏感。於是,上述之輪廓形狀濾波 器7 8Κ採用二個如圖3和圈4所示之二階漶波器來執行 為較適宜,用Μ降低漶波器公式的階數,而且維持該濾波 器的係數被合理控制。輪廓形狀漶波器7 8亦接收從位置 輪廓裝置7 2傳來的加速度指令和產生被輸送至伺服前授 處理器94與加法器80的過瀘後加速度指令。 所需之移動輪廓指令Κ採用1 0仟Η ζ的更新速度來 計算為較適宜,同時低速階段的加速度和真正(未接受指 令)位置從加法器80和82中刪減,用以分別生成高速 -24- 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) -1訂 經濟部中央標準局員工消費合作社印製 A7 _Β2__ 五、發明説明 階段的加速度和位置指令信號。 高速階段加速度指令信號是經由加法器8 0和前授處 理器8 6來處理,同時高速階段位置指令信號是經由加法 器8 2和電流漶波器9 7來處理。處理過後之高速階段信 號在一加法器84中被混合,然後被傳送至一電流計驅動 器 8 8 。 同樣地,低速階段之過濾後加速度指令是經由一前授 處理器94來處理,同時低速階段之過漶後位置指令是經 由加法器9 0和伺服漶波器9 8來處理。處理過後之低速 階段信號在一加法器9 2中被混合,然後被傳送至一線性 伺服馬達驅動器96。 電流計驅動器8 8提供偏向控制電流予在高速階段5 4中的一對反射鏡偏向電流計,而且伺服馬達驅動器9 6 提供控制電流予用於控制低速階段5 6和5 8之定位狀況 的媒性何服馬達。 圖4表示一種遘用於高速階段5 4之先前技術電流計 驅動反射鏡定位裝置X 100。電流計驅動器88 (画2 )在導體102上提供旋轉控制電流予K個別不同的X粬 和Y軸高速反應直流馬達1 04、1 06 *此二直流馬達 旋轉位於軸承1 08中之主軸1 07,用以選擇性地轉動 一組反射鏡1 1 0和1 1 2,使得雷射光束60偏向纆過 一任意透鏡114而照射到一個位於丌件62上的已預先 設定目標位置。 -25- 本紙張尺度適用中國國家標準(CNS ) A4規格(210x297公釐) --ί.-----irI.-----^1- 1 . (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印裂 4 Γ) S 5 3 6 Α7 Β7__ 五、發明説明(V7]) 另外一方面,一種例如是一壓電元件’ 一聲音線圈致 動器或其他限制角度之高速定位裝置的無軸承式運動定位 裝置可K被用來取代在定位裝置系統5 0中的電流計驅動 反射鏡定位裝置1 00。 同樣地參考圖2,另外種精確旋轉或線性定位裝置機 構可K取代用於驅動低速階段5 6和5 8的線性伺服馬達 。然而,在定位裝置系統50中,線性馬達K能夠反應低 速階段位置指令為較適宜。 低速階段位置指令與高速階段位置指令二種信號的混 合可K減少在工件6 2上介於雷射光束6 0的接受指令後 所得位置與真正位置之間的位置誤差。在加法器8 2中之 被延遲高速階段位置指令和在加法器9 0中之過漶後低速 階段位置指令表示用於導致階段54、56和58被適宜 定位所需的理想信號值。然而,例如是重力、摩擦、質量 Μ及在全頻定位信號由位置輪鄆装置7 2所產生之不準確 度等實際因素則在未被修改過的位置指令中尚未被考量。 藉由採用位置感測器1 20和1 22來偵測階段54 、56和58之真正位置,用Κ提供預測所得之位置回饋 資料予在數位處理器5 2中的加法器8 2和9 0來解決上 述之實際因素。值得注意的是在高速階段定位行進路徑上 的加法器82接數從上述之位置感測器120和122中 傳出來的位置回饋資料。位置感測器120和122可採 用Μ下眾人所熟知的種類:旋轉式電容板、線性和旋轉編 -26- 本紙張尺度逋用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁) ,1Τ A7 402536 __ B7 五、發明説明 碼器尺度,或是連用適空類比至數位和/或數位至類比轉 換技巧的干涉計運動偵測器。 (請先閲讀背面之注意事項再填寫本頁) 當m射光束60沿著工件62移動時,偵測得到的光 束位置連續地接受指令後所得的光束位置相比較,其中的 位置差異則表示是上述之實際因素導致產生定位誤差的角 度大小。實際上,高速階段54和低速階段56、58之 偵測所得的位置資料是由位置感測器120和122產生 的,而且從在加法器中9 0中的接受指令所得位置中刪減 此偵測所得之位置,用Μ產生在加法器9 2中與從前授處 理器94傳來之加速度資料相混合的位置差異資料。 圖5Μ圖形來表示高速階段54和低速階段56、5 8如何協調彼此與一具代表性之全頻定位信號128 (圈 形中Κ粗線表示)相對應的運動,此具代表性之全頻定位 信號在數位信號處理器5 2 (圖2)中被分成一高頻位置 經濟部中央標準局員工消費合作社印製 (” HFP”)信號部份130和一低頻位置(” LEP ”)信號部份1 32。其中高頻位置信號部份1 30代表 是全頻定位信號128之交流耦合,25到250Hz的 高通頻道部份,同時低頻位置信號部份1 3 2代表是全頻 定位信號1 28之直接耦合。0到25Hz的低通頻道部 份。 每一個在全頻定位信號1 28中的半正弦形狀定位步 髁(分別K附加字母如128A、128B、128C和 128D來表示)會導致在高頻位置信號130中產生相 本紙張尺度適用中國國家橾準(CMS > A4規格(210X297公釐〉 A7 B7 402536 五、發明説明 (請先閲讀背面之注^^項再填寫本頁) 對應的步驟(例如是130A、130B、130C和1 3 0 D )。在此項實例中,每一個定位步驟與相鄰接之定 位步驟相距大約1 0毫秒,但是倘若有任何時間的區隔, 則此時間區隔為工具行進路徑資料庫中之定時資料的函數 Ο 圖5更還進一步表示高速階段54和低速階段56、 5 8分別對應高頻位置信號部份1 3 0與低頻位置信號部 份1 32所得到的高速階段速度波形1 34及低速階段波 形 1 3 6。 " 每一個高頻位置信號部份130A、130B、13 OC和1 3 0 D特別包括導致高速階段54承受到正弦形 狀速度變化的加速度區段,此正弦形狀速度變化在圖形中 Μ相對應之高速速度波形脈衝1 34A、1 34B、1 3 4C和1 34來表示。高速速度波形1 34具有一個布密 度方向中轉換,且固定於大約每秒一 1 0 0毫米之数值大 小的基準線1 38。藉由混合加法器80和受延遲與過漶 後之加速度指令可Κ導致該基準線產生變化。 經濟部中央標準局員工消費合作社印製 高頻位置信號部份1 3 0亦表示高速階段54如何在 位置上對應每一個高速度脈衡134。在本項實例中所需 之尖峰高速階段定位位移大約為2 * 8毫米,此位移值恰 巧是在一低質置、電流計驅動反射鏡定位裝置的1 0毫米 線性範圍内。 低頻位置信號部份1 32亦表示低速階段56和58 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) A7 402536 _B7_ 五、發明説明(νί) 如何在位置上對應低速速度波形1 3 6,低速速度波形1 36在正速度方向中醆換,且固定於大約每秒+ 1 〇〇毫 米的數值大小。在此項實例中,低速階段的位置變化與時 間保持線性,使得低速階段5 6和5 8其中至少有一個不 會被中正移動。 全頻定位信號1 28亦表示從由波形1 32和1 30 分別代表之高速階段位置與低速階段位置組合在一起所生 成的淨位置。高原部份140Α、140Β、140C和 1 40D指示出1 0毫秒的時間週期,在此時間通期中, 甚至雖然所有的階段54、56和58均在移動中,協調 所得到的位置依然保持固定不動。從高原部份140C可 Κ清楚地得知:在此高原部份下方相互交叉的波形1 3 0 和1 3 2事實上具有相同數值,但是正負符號相反之斜率 。在高原部份140所對應之時間遇期中,雷射76被觸 發用來在工件6 2上加工孔洞。 以上所描述之協調所得定位方式對於例如雷射光束切 割孔洞的應用特別有利,此種利用雷射光束來切割孔洞的 加工方式需要沿著工具行進路徑,在目標位置之間快速移 動,並與在每一個目標位置上的暫停動作相结合,用Κ發 射雷射來切割孔洞,當然以上所描述之定位方式並不僅限 於此種應用方面。 圖6表示一個本項發明之多頭定位裝置150的實施 方案,其中多重工件152Α、152Β、152C、… -29- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部中央標準局員工消費合作社印製 働536 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(1) Ί 1 5 2 Ν 可 K 用 時 被 加 工 處 理 〇 ( 在 下 文 中 採 用 不 附 加 I 字 母 的 集 合 名 詞 來 代 表 多 重 X 具 9 例 如 : ,, 工 件 1 5 2 ,, 1 1 I ) 0 多 頭 定 位 裝 置 1 5 0 所 採 用 之 低 速 階 段 5 6 和 5 8 的 請 1 I 閲 I 構 造 使 得 工 件 1 5 2 被 夾 持 > 且 在 Y 軸 低 速 階 段 5 8 上 被 讀 背 1 I 1 | 承 載 $ 另 外 多 重 高 速 階 段 1 5 4 A 、 1 5 4 Β 1 5 4 C 之 1 注 1 9 … 1 5 4 N 則 在 X 軸 低 速 階 段 5 6 上 被 承 載 0 當 然 .患· 事 1 項 1 低 速 階 段 5 6 和 5 8 的 應 用 角 色 亦 可 K 互 換 〇 再 % 宣 J 當 承 載 於 低 速 階 段 5 6 上 之 高 速 階 段 1 5 4 的 數 百 增 本 頁 加 時 這 高 速 階 段 所 累 計 的 質 量 會 導 致 其 難 Κ 加 速 0 於 1 1 是 ΟΛ- 班 然 高 速 階 段 所 累 計 的 質 量 會 専 致 其 難 Μ 加 速 0 於 是 1 I 雖 狀 高 速 階 段 1 5 4 的 數 百 Ν 可 因 為 定 位 裝 置 種 類 和 1 訂 懕 用 方 式 的 不 同 而 .改 變 但 是 承 載 於 低 速 階 段 5 6 上 之 高 L 速 階 段 1 5 4 的 數 百 N Μ 是 限 制 在 4 K 内 為 較 適 宜 〇 1 1 每 一 個 工 件 1 5 2 均 具 有 與 其 相 配 合 的 加 工 工 具 雷 1 .射 1 5 6 A 1 5 6 B 1 5 6 C N … 1 5 6 Ν 藉 由 相 1 配 合 之 反 射 鏡 1 5 8 A V 1 5 8 B 1 5 8 C … ·> 1 5 -1 I 8 N 而 將 加 工 用 能 量 導 引 朝 向 相 配 合 之 高 速 階 段 1 5 4 A 1 Ί 1 5 4 B 1 5 4 C … 1 5 4 N 〇 高 速 階 段 1 5 4 .| 再 將 加 工 用 能 量 偏 斜 朝 向 位 於 相 配 合 之 工 件 1 5 2 上 之 加 1 I 工 範 圍 1 6 2 A 1 6 2 C … 1 6 2 N 中 事 實 上 為 2 0 1 I 毫 米 長 2 0 毫 米 寬 的 正 方 形 百 標 位 置 處 0 1. 攝 錄 影 櫬 1 6 0 A Λ 1 6 0 B 、 1 6 0 C … 1 6 丨 0 N 可 Μ 被 安 裝 於 低 速 階 段 5 6 上 t 用 Μ 観 察 相 配 合 之 笳 I - 30 - 1 1 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 40S536 A7 B7 經濟部中央標準局員工消費合作社印繁 五、發明説明(1 h I 範 圍 1 6 2 偵 測 工 件 1 5 2 是 否 對 齊 分 枝 、 旋 轉 和 尺 寸 變 異 9 及 瞄 準 和 對 焦 電 射 1 5 6 〇 在 較 佳 實 施 方 案 中 * 藉 由 每 個 雷 射 1 5 6 和 高 速 階 段 1 5 4 可 Μ 在 工 件 1 5 2 上 複 製 出 相 同 的 加 工 模 型 0 m *w\ 而 9 在 某 些 加 工 的 愿 用 方 面 , 加 工 模 型 的 變 異 則 必 須 要 將 該 模 型 與 在 工 件 幾 何 尺 寸 比 例 因 素 分 枝 旋 轉 扭 曲 之 間 的 變 化 相 匹 配 〇 另 外 亦 必 須 修 正 高 速 階 段 的 非 線 性 狀 況 和 ” a b b e 誤 差 ” ( 接 受 指 令 所 得 之 工 具 行 進 路 徑 位 置 無 法 與 偵 測 到 之 巨 標 位 置 相 差 的 角 度) 上 述 之 ” a b b e 誤 差 99 是 藉 由 在 位 於 低 速 階 段 5 8 上 之 工 件 1 5 2 中 間 安 裝 有 位 置 變 異 量 而 被 導 引 產 生 〇 不 同 於 先 前 技 術 之 夕 多 主 軸 鑽 孔 機 當 將 每 一 個 高 速 階 段 1 5 4 加 Μ 驅 動 時 t 參 考 圖 7 和 1^31 圓 8 所 描 述 之 内 容 多 頭 定 位 裝 置 1 5 0 藉 由 採 用 可 程 式 化 之 修 正 因 子 來 補 償 Μ 上 所 逑 的 變 異 狀 況 0 圓 7 表 示 多 重 速 率 定 位 裝 置 一 數 位 信 號 處 理 器 5 2 ( 圔 2 ) 如 何 被 用 來 協 調 多 重 高 速 階 段 1 5 4 與 低 速 階 段 5 6 、 5 8 之 間 的 定 位 狀 況 结 果 導 致 產 生 一 個 多 頭 信 號 處 理 器 1 7 0 0 使 用 與 數 位 信 號 處 理 器 5 2 相 類 似 之 方 式 9 多 頭 信 號 處 理 器 1 7 0 從 系 統 控 電 腦 6 3 中 接 收 到 d X d y d V 和 d t 部 份 這 些 d X Λ d y N d V 和 d t 部 份 随 後 再 被 位 置 輪 郾 裝 置 7 2 加 工 處 理 成 為 半 正 弦 定 位 信 號 0 數 位 信 號 處 理 器 1 7 0 亦 包 括 若 干 種 類 似 數 位 信 號 處 理 器 5 2 的 信 號 處 理 元 件 9 亦 即 是 輪 廊 形 狀 漶 波 器 7 8 Λ 琴 31 - (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(21 OX297公釐) 訂- 合 丨· 經濟部中央標準局員工消费合作社印製 40S536 at B7 五、發明説明(d ) 延遲元件79、前授處理器94、伺服驅動器96、低速 階段56,Μ及位置感測器1 22。由於圖7已被簡化, 所Μ僅有X軸低速階段5 6處理元件被表示出來。熟番本 項技術之工作人員可Κ了解到相對的Υ軸元件亦包含在内 僅有一個軍獨系統控制電腦6 3被需要用來驅動低速 階段56、58和Ν個高速階段1 54。每一個多重高速 階段信號處理器172Α、172Β、172C、…、1 7 2Ν從糸統控電腦6 3中接收到高速階段修正資料。Κ 此方式,每一個高速階段信號處理器1 72均會接收到高 速階段的位置指令和目前的低速階段位置資料,使得一每 一個被導引至一組共同之目標位置上的高速階段154可 Μ更進一步被特定的誤差修正資料來加Κ定位。 匪8表示一個具代表性之用於從數位信號處理器17 0接收高速和低速階段定位資料與從系統控制電腦63接 收修正資料的高速階段信號處理器1 72。此修正資料包 括被傳送至一幾何尺寸修正處理1 8 0之低速階段和工件 相關修正資料,Μ及被傳送至一高速階段修正處理器1 8 2之高速階段線性和比例因素修正資料。 上述之修正資料可以採用公式計算或是査表方式,然 而,幾何尺寸修正處理器1 80和高速階段修正處理器所 採用的修正資料Κ是依照已授予本項專利申請案件受託人 標題為”光束定位系統”的美國專利第4,94 1 ,08 -32- 本紙張尺度適用中國國家橾準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁) 、1Τ 經濟部中央標準局貝工消費合作社印製 402536 37Gz (z) = Az2 + 2z * lf ^ 2 + biz + b2f (2) (Please read the notes on the back before filling in this tribute) 4 represents the time domain formula of the filter output values yk and wk when the previous input value and output value are known. yk = wk + 2wl [., + wk.2-b1yk.rb2yk.2 wk = kCVk + aVn + V ^ -bjWk.j-biv ^ The coefficients in Equations 3 and 4 are determined by Equation 5-23- This paper scale applies Chinese National Standard (CNS) A4 specification (210X297 mm) ⑶ 402 536 V. Description of the invention (· /!) A7 B7 k bl b2 ω2Τ2 Α + 4ζΤω + Τ2 (ύ2, -8 + 2Γ2ω2 4 + 4ζΓω + Γζω2 -4ζΤω + 4 + Γ2ω2 4 + 4ζΓω + Γ2ω2 (5) Printed in Equation 5 by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs, where T is the sampling period of the wave filter, ω is its cut-off frequency, and M and ί are Its damping ratio. For the wheel-shaped wave shaper 7 8, compared with the 10 ° ζ speed of the digital signal processor 52 updating the positioning data of the low-speed phases 56 and 58, the wheel-shaped shape filter is better. The cut-off frequency is 3851 degrees per second (approximately 6Hz) is a very low frequency. If this round-shaped wave shaper 78K1 0 仟 Η ζ rate is used to update the frequency of the low-speed stage, the extreme value of the non-mining filter moves closer to the army. Bitmap, the pseudo-number of the unconnected wave filter will become more sensitive to carry errors. Therefore, the above-mentioned contour shape filter 7 8K It is more appropriate to use two second-order chirpers as shown in Figures 3 and 4. Use M to reduce the order of the chirper formula and maintain the coefficients of the filter to be reasonably controlled. Contour shape chirpers 7 8 also receives the acceleration command from the position contour device 72 and generates the post-acceleration command that is sent to the servo pre-processor 94 and the adder 80. The required movement contour command κ uses 10 0 ζ It is more appropriate to update the speed for calculation. At the same time, the acceleration and the real (unaccepted command) position of the low speed stage are deleted from the adders 80 and 82 to generate high speeds. -24- This paper standard applies Chinese National Standard (CNS) A4 Specifications (210 X 297 mm) (Please read the notes on the back before filling out this page) -1 Order printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs A7 _Β2__ V. Acceleration and position command signals during the description phase of the invention. High speed phase The acceleration command signal is processed by the adder 80 and the pre-processor 86, and at the same time, the position command signal of the high-speed stage is processed by the adder 82 and the current oscillator 97. After processing, The high-speed phase signals are mixed in an adder 84 and then transmitted to a galvanometer driver 88. Similarly, the filtered acceleration instruction of the low-speed phase is processed by a pre-processor 94, while the low-speed phase passes. The post position command is processed by the adder 90 and the servo waver 98. After processing, the low-speed phase signals are mixed in an adder 92, and then transmitted to a linear servo motor driver 96. The galvanometer driver 8 8 provides a bias control current to the pair of mirrors in the high-speed phase 5 4 and the servo motor driver 9 6 provides the control current to the medium used to control the positioning status of the low-speed phases 5 6 and 5 8. Sexuality serves the motor. Fig. 4 shows a prior art galvanometer driving mirror positioning device X 100 for high speed stage 54. A galvanometer driver 88 (picture 2) provides a rotation control current on the conductor 102 to K's different X 粬 and Y-axis high-speed response DC motors 1 04, 1 06 * The two DC motors rotate the main shaft 1 07 in the bearing 1 08 Is used to selectively rotate a group of mirrors 1 10 and 1 12 so that the laser beam 60 is deflected toward an arbitrary lens 114 and irradiates a preset target position on the workpiece 62. -25- This paper size applies to Chinese National Standard (CNS) A4 (210x297 mm) --ί .----- irI .----- ^ 1- 1. (Please read the precautions on the back first (Fill in this page) Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs 4 Γ) S 5 3 6 Α7 Β7__ V. Description of the Invention (V7)) On the other hand, a type such as a piezoelectric element, a voice coil actuator or Bearingless kinematic positioning devices of other high-speed positioning devices with limited angles can be used instead of galvanometer-driven mirror positioning devices 100 in the positioning device system 50. Referring also to FIG. 2, another precise rotary or linear positioning mechanism mechanism K may replace the linear servo motors used to drive the low-speed stages 56 and 58. However, in the positioning device system 50, it is preferable that the linear motor K can respond to the position command at a low speed stage. Mixing the two signals of the low-speed stage position command and the high-speed stage position command can reduce the position error between the actual position and the position obtained after the laser beam 60 receives the command on the workpiece 62. The delayed high-speed phase position instruction in the adder 82 and the low-speed phase position instruction after the delay in the adder 90 indicate the ideal signal values required to cause the phases 54, 56, and 58 to be properly positioned. However, practical factors such as gravity, friction, mass M, and the inaccuracy of the full-frequency positioning signal generated by the position wheel device 72 have not been considered in the unmodified position command. By using position sensors 1 20 and 1 22 to detect the true positions of stages 54, 56 and 58, K is used to provide predicted position feedback data to the adders 8 2 and 9 0 in the digital processor 5 2 To solve the above practical factors. It is worth noting that the adder 82 on the positioning travel path at the high speed stage receives position feedback data from the position sensors 120 and 122 described above. The position sensors 120 and 122 can be of a type well-known to everyone: rotary capacitor plate, linear and rotary -26- This paper size adopts China National Standard (CNS) Α4 specification (210 × 297 mm) (please first Read the notes on the back and fill in this page), 1T A7 402536 __ B7 V. Inventor code scale, or interferometer motion detector using air-to-space analog to digital and / or digital to analog conversion techniques. (Please read the precautions on the back before filling in this page) When the m-ray beam 60 moves along the workpiece 62, the detected beam positions are continuously compared to the beam positions obtained after receiving instructions, and the position difference indicates that The above practical factors lead to the angle of the positioning error. In fact, the position data detected in the high-speed stage 54 and the low-speed stages 56, 58 are generated by the position sensors 120 and 122, and this detection is deleted from the position obtained by the instruction received in 90 in the adder. The measured position is used to generate position difference data in the adder 92 which is mixed with acceleration data transmitted from the pre-processor 94. Figure 5M graphically shows how the high-speed phase 54 and the low-speed phases 56, 58 coordinate each other's movements corresponding to a representative full-frequency positioning signal 128 (indicated by the thick line κ in the circle). This representative full-frequency The positioning signal is divided into a high-frequency position in the digital signal processor 5 2 (Figure 2). The signal part 130 ("HFP") printed by the Ministry of Economic Affairs Central Standards Bureau Consumer Consumer Cooperative and a low-frequency position ("LEP") signal part Servings 1 to 32. The high-frequency position signal part 1 30 represents the AC coupling of the full-frequency positioning signal 128, the 25 to 250 Hz high-pass channel part, and the low-frequency position signal part 1 2 3 represents the direct coupling of the full-frequency positioning signal 1 28. Low-pass channel portion from 0 to 25 Hz. Each half-sine-shaped positioning step in the full-frequency positioning signal 1 28 (represented by K with additional letters such as 128A, 128B, 128C, and 128D) will result in a high-frequency position signal 130 corresponding to the paper size applicable to Chinese countries. Standard (CMS > A4 specifications (210X297 mm) A7 B7 402536 V. Description of the invention (please read the notes on the back ^^ before filling out this page) Corresponding steps (eg 130A, 130B, 130C and 1 3 0 D ). In this example, each positioning step is about 10 milliseconds away from adjacent positioning steps, but if there is any time interval, this time interval is the timing data in the tool travel path database. Function 0 Figure 5 further shows that the high-speed phase 54 and the low-speed phase 56, 5 8 correspond to the high-frequency position signal portion 1 3 0 and the low-frequency position signal portion 1 32 respectively, and the high-speed phase speed waveform 1 34 and the low-speed phase waveform obtained 1 3 6. " Each high-frequency position signal part 130A, 130B, 13 OC and 1 3 0 D includes in particular the acceleration section which causes the high-speed stage 54 to undergo a sinusoidal velocity change. This sinusoidal velocity variation The M corresponds to the high-speed velocity waveform pulses 1 34A, 1 34B, 1 3 4C, and 1 34. The high-speed velocity waveform 1 34 has a transition in the direction of the cloth density and is fixed at about 100 mm per second. The numerical reference line 1 38. The reference line can be changed by mixing the adder 80 and the acceleration instruction after being delayed and delayed. The high-frequency position signal part printed by the staff consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 3 0 also indicates how the high-speed stage 54 corresponds to each high-speed pulse balance 134 in position. The peak-speed stage positioning displacement required in this example is approximately 2 * 8 mm, which happens to be a low-quality, The galvanometer drives the mirror positioning device within a linear range of 10 mm. The low-frequency position signal part 1 32 also indicates the low-speed stage 56 and 58. This paper size applies to the Chinese National Standard (CNS) A4 specification (210 × 297 mm) A7 402536 _B7_ 5 2. Description of the invention (νί) How to correspond to the low-speed velocity waveform 1 3 6 in position, the low-speed velocity waveform 1 36 shifts in the positive velocity direction and is fixed at about +100 mm per second In this example, the position change in the low-speed phase is linear with time, so that at least one of the low-speed phases 5 6 and 5 8 will not be moved by the positive. The full-frequency positioning signal 1 28 also indicates that the waveform 1 The net positions generated by combining the high-speed stage position and the low-speed stage position respectively represented by 32 and 1 30. The plateau sections 140A, 140B, 140C, and 1 40D indicate a time period of 10 milliseconds. During this time period, even Although all stages 54, 56 and 58 are moving, the position obtained from coordination remains fixed. From the plateau part 140C, it is clear that the waveforms 1 3 0 and 1 2 2 that cross each other below the plateau part actually have the same value, but the slopes of positive and negative signs are opposite. During the time period corresponding to the plateau portion 140, the laser 76 is triggered to process a hole in the workpiece 62. The coordinated positioning method described above is particularly advantageous for applications such as laser beam cutting holes. This processing method using laser beams to cut holes needs to move along the tool's path, move quickly between target positions, and In combination with the pause action at each target position, a laser is used to cut the hole. Of course, the positioning method described above is not limited to this application. Fig. 6 shows an embodiment of the multi-head positioning device 150 of the present invention, in which multiple workpieces 152A, 152B, 152C, ... -29- This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read first Note on the back, please fill out this page again) Order printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 働 536 A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (1) Ί 1 5 2 Ν Available time Processed 0 (Hereinafter, a collective noun without an I letter is used to represent multiple X tools 9 For example:,, workpiece 1 2 5, 1 1 I) 0 Multi-speed positioning device 1 5 0 Low-speed stage 5 6 and The 5 1's 1 I read structure allows the workpiece 1 5 2 to be held > and read on the Y-axis low-speed stage 5 8 1 I 1 | bearing $ and multiple high-speed stages 1 5 4 A, 1 5 4 Β 1 5 4 C 1 Note 1 9… 1 5 4 N is in X The shaft is carried on the low-speed stage 5 6 0 Of course. Afflictions · Events 1 Item 1 The application roles of the low-speed stages 5 6 and 5 8 can also be interchanged by K. %% J X When carried on the high-speed stage 5 6 on the low-speed stage 1 5 4 Hundreds of increments of this page will add to the accumulated mass in this high-speed stage, which will cause it to be difficult to accelerate 0 to 1 1 is 0Λ- The mass accumulated in the Banran high-speed stage will cause it to be difficult to accelerate 0 so 1 I is high-speed Hundreds of N in stages 1 5 4 may vary depending on the type of positioning device and the method of ordering. 1 Hundreds of N in high-speed stages 1 5 4 carried on low-speed stages 5 6 are limited to 4 K. The inside is more suitable. 0 1 1 Each workpiece 15 2 has a processing tool mine 1 that matches it. Shoot 1 5 6 A 1 5 6 B 1 5 6 CN… 1 5 6 NR mirrors matched by phase 1 1 5 8 AV 1 5 8 B 1 5 8 C… > 1 5 -1 I 8 N and direct the processing energy towards the corresponding high-speed stage 1 5 4 A 1 Ί 1 5 4 B 1 5 4 C… 1 5 4 N 〇 High-speed stage 1 5 4. | Then deflection the processing energy toward the matched workpiece 1 5 2 plus 1 I. The working range 1 6 2 A 1 6 2 C… 1 6 2 N is actually 2 0 1 I mm long 20 mm wide square 100 mark position 0 1. Video recording 1 6 0 A Λ 1 6 0 B 、 1 6 0 C… 1 6 丨 0 N can be installed at low speed stage 5 6 t Μ Μ 相 相 笳 I-30-1 1 This paper size applies to China National Standard (CNS) A4 (210X297 mm) 40S536 A7 B7 Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Explanation (1 h I range 1 6 2 Detect whether the workpiece 1 5 2 is aligned with branches, rotation and dimensional variation 9 and aim and focus the radiography 1 5 6 〇 In the plan *, with each laser 15 6 and high-speed stage 15 4 can copy the same machining model 0 m * w \ on the workpiece 1 5 2 and 9 in some applications The variation of the model must match the change between the model and the branch rotation distortion of the workpiece geometrical scale factor. In addition, the non-linear conditions and "abbe error" of the high-speed stage must be corrected. The angle that cannot be detected from the position of the giant target) The above "abbe error 99" is induced by the position variation installed in the middle of the workpiece 1 5 2 at the low speed stage 5 8. Different from the prior art Multi-spindle drilling machine when driving each high-speed stage 1 5 4 plus Μ with reference to Figures 7 and 1 ^ 31 circle 8 as described in the multi-head positioning device 1 5 0 Programmable correction factors to compensate for the variation on M 0 0 Round 7 indicates how the multi-rate positioning device-digital signal processor 5 2 (圔 2) is used to coordinate multiple high-speed phases 1 5 4 and low-speed phases 5 6 As a result of the positioning condition between 5 and 5, a multi-head signal processor 1 7 0 0 is used in a similar manner to the digital signal processor 5 2 9 multi-head signal processor 1 7 0 received d from the system control computer 6 3 X dyd V and dt part of these d X Λ dy N d V and dt part is then processed by the position wheel device 7 2 processed into a semi-sinusoidal positioning signal 0 digital signal processor 1 7 0 also includes several similar digital The signal processing element 9 of the signal processor 5 2 is also the hull shape wave filter 7 8 Λ piano 31-(Please read the precautions on the back before filling this page) This paper size applies to Chinese national standards (CN S) A4 specification (21 OX297 mm) Order-Combine 丨 · Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 40S536 at B7 V. Description of the invention (d) Delay element 79, pre-processor 94, servo driver 96, low speed Phase 56, M and position sensor 122. Since FIG. 7 has been simplified, only the X-axis low-speed stage 56 processing elements are shown. Those skilled in this technology can understand that the relative stern axis components are also included. Only one military independent system control computer 63 is required to drive the low-speed phases 56, 58 and N high-speed phases 154. Each of the multiple high-speed stage signal processors 172A, 172B, 172C, ..., 172N receives the high-speed stage correction data from the system control computer 63. KK In this way, each high-speed stage signal processor 1 72 will receive the position command of the high-speed stage and the current low-speed stage position data, so that each one is guided to the high-speed stage 154 at a common set of target positions. M is further K-positioned by specific error correction data. Band 8 represents a representative high-speed stage signal processor 1 72 for receiving high-speed and low-speed stage positioning data from the digital signal processor 170 and receiving correction data from the system control computer 63. This correction data includes low-speed stage and workpiece-related correction data transmitted to a geometrical dimension correction process 180, and M and high-speed stage linear and scale factor correction data transmitted to a high-speed stage correction processor 182. The above-mentioned correction data can be calculated by formula or look-up table. However, the correction data used by the geometric size correction processor 180 and the high-speed stage correction processor K is based on the title of “Beam Positioning” given to the trustee of this patent application case. US Patent No. 4,94 1, 08 -32-System "This paper size applies to China National Standard (CNS) A4 specification (210 × 297 mm) (Please read the precautions on the back before filling this page), 1T Ministry of Economic Affairs Printed by the Central Standards Bureau Shellfish Consumer Cooperative 402 536 37

五、發明説明(W 2號(K下簡稱為”’ 0 8 2專利”)中所描述之公式計 算方式為較適宜。 高速階段線性和比例圓素誤差的相當固定,而且主要 是由高速階段1 54的個別不同特性來決定。於是,高速 階段修正處理器1 8 2僅需要相當小和不定期的修正資料 更改。舉例而言,如同’ 082專利所描述之内容,該修 正資料的產生負槓將每一個高速階段154導引至位於相 配合之調校目標上的至少1 3個調校點,一個反射式能量 偵測器感测介於受専引位置與正確目標位置之間的差異, 並且提供差異資料給系統控制電腦6 3,用K後鑛處理。 所得到的修正資料被傳送至和儲存於每一個高速階段修正 處理器182。另外由相配合攝影櫬1 60所感測到介於 受導引位置與正確目標位置間的任何誤差亦會被調校和補 償。於是,低速階段的線性和比例因素誤差亦相當固定, 而且不需要定期更改修正資料。 另外一方面,低速階段和與工件相關之誤差均相當具 有變化*而且主要是由在工件1 52之間的工件安置、分 枝、旋轉,Μ及尺寸變異來決定。於是,每當工件1 52 改變時,幾何尺寸修正處理器1 80需要更改相當大量的 修正資料。擧例而言,該修正資料的產生負責將低速階段 56、58和每一個高速階段1 54導引至至少二個(Μ 四個為較適宜)位於每一個相配合之工件152上均已預 定設定調校相標。這些調校目標例如是一個蝕刻電路板的 -33- 本紙張尺度適用中國國家標隼(CMS ) A4規格(2!OX297公釐) (請先閲讀背面之注意事項再填寫本頁) -f訂5. The formula described in the description of the invention (W 2 (K is abbreviated as "'0 8 2 patent") is more suitable. The linear and proportional circle errors in the high-speed stage are fairly fixed, and they are mainly caused by the high-speed stage. 1 54 are determined by individual different characteristics. Therefore, the high-speed stage correction processor 1 8 2 only requires relatively small and irregular correction data changes. For example, as described in the '082 patent, this correction data generates negative The lever guides each high-speed stage 154 to at least 13 calibration points on the matching calibration target, and a reflective energy detector senses the difference between the guided position and the correct target position , And provide the difference data to the system control computer 63, which is processed by K post-mine. The obtained correction data is transmitted to and stored in each high-speed stage correction processor 182. In addition, it is sensed by the matching photography 榇 160 Any errors between the guided position and the correct target position will also be adjusted and compensated. Therefore, the linear and proportional factor errors at the low speed stage are also quite fixed and do not require Modify the correction data on the other hand. On the other hand, the low-speed stage and the errors associated with the workpiece are quite variable *, and are mainly determined by workpiece placement, branching, rotation, M, and dimensional variation between workpieces 52. Therefore, Whenever the workpiece 1 52 changes, the geometric correction processor 1 80 needs to change a considerable amount of correction data. For example, the generation of the correction data is responsible for guiding the low-speed phases 56, 58 and each high-speed phase 1 54 to At least two (M and four are more suitable) are located on each matching workpiece 152. Calibration standards have been set. These calibration targets are, for example, an etched circuit board.隼 (CMS) A4 specification (2! OX297mm) (Please read the precautions on the back before filling this page) -fOrder

V 402536 A7 ______ B7 五、發明説明I ) 工孔洞或光蝕刻加工目標。每一個攝錄影機16 0偵拥I介於受導引位置與正確調校目檷位置之間的差異, 並供差異資料給系統控制電腦63,用以後黷處理。 所得到之用於每一個工件1 5 2的修正資料被傳送至和儲 存於相配合之幾何尺寸修正處理器180中。 對於每一個高速階段信號處理器1 72來說,用於Y W的修正過定位資料從修正處理器i 80和1 82傳送至 前授處理器86、電流驩動器88和高速階段1 54。位 置回饋資料由位置感測器120 (如圖2所示)產生,而 且在加法器1 84和84内混合在一起,用來修正。熟知 本項技術之工人員可Μ瞭解到相同程序亦可K應用到X細 的快速定位。 當修正資料被應用至高速階段1 24時,每一個高速 階段的定位範圍Κ是被限制於在其2 0 X 2 0毫米最大線 性定位範圍之内的18x18毫米範圍大小為較適宜。剰 餘的2毫米定位範圍則由Κ上所描述之修正狀況來使用。 以上的内容描述了用於每一個高速和低速定位裝置階 段之單向蓮動轴的信號處理方式。热知本項技術之工作人 員將可Μ很容易瞭解到如何複製該信號處理方式,用Κ協 調不同軸、不同階段和單獨或多重高速定位裝置的運動。 應用實例: 本項發明之典型應用方式是在多層蝕刻電路板上用雷 射切割例如是盲孔的孔洞。多層蝕刻電路板一般是經由記 本紙張尺度適用中國國家標準(CNS ) Α4规格(210Χ297公釐) ----------,------訂 L-----^ 1 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局貝工消費合作社印裝 A7 492536 B7 五、發明説明(iv) 錄、叠堆在一起、製成薄片和冲壓成為許多0♦05到0 ♦ 0 8毫米厚的電路板層等步驟而被製造。每一層的包含 不同的内部連接墊和導體模型,這些內部連结墊和導體模 型在加工處理遇後會組成一複雜的電子零件安裝和内部連 结組合。蝕刻電路板的零件和導體密度趲勢會連同積體電 路的零件和導體密度趲勢一起增加。於是,在蝕刻電路板 中之孔洞的定位精確定和尺寸公差亦K等比例增加。 上述之冲壓步驟會導致產生膨脹和尺寸變異,進而造 成在蝕刻霄路板之間發生比例因素和直交性的變異。此外 ,當多重蝕刻電路板(工件152)被附加至低速階段5 8時,夾持方式的變異亦會導致在蝕刻霣路板之間產生尺 寸旋轉和分枝誤差。另外,蝕刻電路板厚度的變異亦不利 於採用機械加工方式來鑽穿具有精確預先設定深度之孔洞 0 本項發明解決Μ上所描述之問題的方式如下:二個到 四個調校目檷被蝕刻在位於每一個蝕刻電路板上的預先設 定位置(以每一個角落有一個調校目標為較適宜)。攝錄 (請先閲讀背面之注意事項再填寫本頁) 1. ! 經濟部中央標準局員工消費合作社印製 目 6 於 6 三 校腦存 腦。 調電儲 電異 確制和 制變 正控至 控枝 與統送 統分 置糸傳 糸和 位給被給轉 的料科 料旋 到資資 資的 得異正 異間 所差修。差之 令供的中的板 指提到 ο 夠路 照且得 8 足電 依並所 1 供刻 於, 。器提蝕 介異理理標於 测差處處目介 偵的續正校正 ο 間後修調修 6 之以 寸個Μ 1 置用尺 一一 用 機位 ,何 , 影標 3 幾 3 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 402536 A7 B7 經濟部中央標準扃員工消費合作社印裝 "X、發明説明(ν;) 丨 1 個 a田 3H 校 目摞 提 供 足 夠 的 差 異 資 料 給 系 統 控 制 電 腦 6 3 用 1 I Μ 修 正 介於 蝕 刻 電 路 板 之 間 的 旋 轉 % 分 枝 Λ 比 例 因 素 和 直 1 | 交 性 變 異。 額 外 增 加 的 第 四 個 調 校 S 標 更 能 夠 用 於 修 正 在 請 先 1 1 閲 I 每 個 蝕刻 電 路 板 中 的 梯 形 扭 曲 現 象 0 讀 背 I I 蝕 刻電 路 板 厚 度 的 變 異 為 土 0 * 1 3 毫 米 ( 土 0 ♦ 0 之 注 1 1 0 5 时 )雷 射 作 用 場 深 度 0 意 事 1 項 1 由 於嚴 格 要 求 深 度 直 徑 9 Κ 及 定 位 公 差 9 對 於 任 何 再 填 % 孔 洞 加 工用 工 具 來 說 9 加 工 盲 孔 是 相 當 困 難 的 挑 mb 戦 0 此 乃 本 頁 •V 因 為 盲 孔一 般 是 被 加 工 穿 過 第 一 専 體 層 ( 例 如 是 銅 鋁 1 1 金 鎳 、銀 鈀 Λ 錫 和 鉛 ) » 穿 過 一 層 或 更 多 層 電 介 質 層 1 | ( 例 如 是聚 亞 醢 胺 、 F R _ 4 樹 脂 % 苯 環 丁 烯 雙 順 丁 烯 \ 訂 亞 醢 胺 三氮 畊 > 氰 酸 塩 酯 基 樹 脂 陶 瓷 ) 而 且 往 上 但 I 是 不 會 穿過 第 二 導 體 層 0 所 得 到 的 孔 洞 會 被 鍍 上 一 層 導 電 1 1 材 料 用K 與 第 一 和 第 二 導 體 層 接 通 0 1 1 再 一次 參 考 圈 6 多 頭 定 位 裝 置 1 5 0 的 構 造 是 一 個 1 数 巨 N 等於 偁 數 ( 例 如 是 2 4 或 6 但 以 是 4 為 較 適 宜 1 | ) 的 蝕 刻電 路 板 盲 孔 切 割 設 0 雷 射 1 5 6 A 和 1 5 6 C 為 丨 紫 外 線 雷射 ( 波 長 小 於 大 約 3 5 5 奈 米 ) 9 而 且 雷 射 1 5 6 B 和 15 6 N 為 紅 外 線 雷 射 ( 波 長 在 大 約 1 9 0 0 0 奈 1 米 到 大 約1 0 ) 0 0 0 奈 米 的 範 圍 内 » Μ 是 9 9 0 0 0 奈 1 米 為 較 適宜 ) 0 由 於 紫 外 線 雷 射 和 紅 外 線 雷 射 分 別 具 有 不 1 1. 1 同 的 波 長, 用 於 高 速 階 段 1 5 4 的 反 射 鏡 1 5 8 和 透 鏡 必 丨 須 要 適 合每 一 個 相 配 合 之 雷 射 的 波 長 大 小 0 1 - 36 - 1 1 本紙張尺度適用中國國家標準(CNS ) A4規格(21 OX 297公釐) 經濟部中央標準局員工消費合作社印製 A7 402536_b7_ 五、發明説明0十) 當紫外線雷射1 56a和1 56能夠Μ—適宜之方式 切割第一導歷層與電介質層。然而,雷射能量水準和脈衝 重覆速率必須精確控制*用Κ防止第二導體層產生無法接 受的損壊。此項结果導致生成一較窄的”加工處理視窗” 。於是,紫外線雷射1 56 a和1 56 c被控制用來切割 穿過第一導體層與部份電介質層,此加工程序則具有一較 寬的加工處理視窗。 紅外媒電射156B和156N具有一較寬的加工處 理視窗,用Μ切割穿過剰餘的電介質層,而且不會切割穿 過或損壞到第二導體層。然而,第一導體層必須已被預先 加工處理過。 蝕刻電路板盲孔的切割設備採用紫外線雷射156Α 和1 56C來切割穿過工件1 52Α和1 52C之第一導 賵層,另外,紅外線雷射1 56Β和1 56Ν被用來切割 穿過位於工件152Β和152Ν上之電介質層。 使用多頭定位裝置150依照睡隨之較佳加工程序來 切割盲孔。例如假設有八個蝕刻電路板皂工件批次(EC Bl、ECB2,…和EC380)已被處理過。其中導 體層Κ是飼,而且電介質以是F R — 4樹脂為較適宜。 將未被加工處理過之ECB1和ECB2安置於在工 件位置1 52Α和1 52C中的低速階段58上,用Μ分 別藉由紫外線雷射156Α和156C來處理。 執行如下所述之工件調校程序: -37- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 "丨· Α7 40^536 _Β7___ 五、發明説明(Ό 將低速階段56、58和高速階段1 54専引至位於 蝕刻電路板上的調校目標位置; (請先閲讀背面之注意事項再填寫本頁) 藉由攝錄影機1 60來偵測介於受導引位置與正確目 標位置之間的差異,並且將差異資料提供給糸統控制電腦 63,用Μ後黷處理;Κ及 將用於蝕刻電路板的修正資料儲存於相配合之高速階 段信號處理器172中。 將低速階段56、58和高速階段1 54定位至一組 已預先設定的目標位置,使得紫外線雷射1 56Α和1 5 6C能夠切割穿過在ECB1和ECB2上位於該組目檷 位置處的第一導體層。 再度.將已被加工處理過一半之ECB 1和ECB2安 置於在工件位置1 52Β和1 52Ν中的低速階段58上 ,用以分別藉由紅外媒S射156Β和156Ν來處理。 將未被加工處理過之ECB3和ECB4安置於在工 件位置1 52Α和1 52C中的低速階段58上,用Μ分 別藉由紫外線雷射1 56Α和1 56C來處理。 經濟部中央標準局員工消費合作社印製 執行工件調校程序。 將低速階段556、58和高速階段1 54定位,使 得紫外線雷射1 56Α和1 56C能夠切割穿過在ECB 3和ECB4上位於目標位置處的第一導體層,而紅外線 雷射1 5 6 Β和1 5 6 Ν則會同時切割穿過在E C Β 1和 ECB2上位於目標位置處的電介質層。 本紙張尺度適用中國國家橾準(CNS > Α4規格(210X297公釐) 49S536 A7 _B7_ 五、發明説明oL) 從低速階段58上卸下處理過之ECB1和ECB2 0 再將將已被加工處理過一半之ECB3和ECB4安置 於在工件位置1 52B和1 52N中的低速階段58上, 用K分別藉由紅外線雷射156B和156N來處理。 將來被加工處理過之E C B 5和E C B 6安置於在工 件位置1 52A和1 52C中的低速階段58上*用Μ分 別藉由紫外線霣射156Α和156C來處理。 執行工件調校程序。 將低速階段56、58和高速階段1 54定位,使得 紫外線1 56Α和1 56C能夠切割穿過在ECB5和Ε CB6上位於目檷位置處的第一導體層,而紅外線雷射1 56Β和1 56Ν則會同時切割穿過在ECB3和ECB 4上位於目標位置處的電介質層。 從低速階段58上卸下處理過之ECB3和ECB4 〇 經濟部中央標準局員工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 再度將已被加工處理過一半之ECB5和ECB6安 置於在工件位置152Β和152Ν中的低速階段58上 ,用Μ分別藉由紅外線雷射156Β和156Ν來處理。 將來被加工處理過之E C Β 7和E C Β 8安置於在工 件位置1 52Α和1 52C中的低速階段58上,用Κ分 別藉由紫外線雷射1 56Α和1 56C來處理。 執行工件調校程序。 ‘ -39- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210 X 297公釐) 402536 a? B7 五、發明説明(<)) 將低速階段56、58和高速階段1 54定位,使得 紫外線雷射156Α和156C能夠切割穿過在ECB7 和ECB8上位於目摞位置處的第一導體層,而紅外媒笛 射1 56Β和1 56Ν則會同時切割穿過在ECB5和Ε C Β6上位於目檷位置處的電介質層。 從低速階段58上卸下處理過之ECB5和ECB6 Ο 再度將已被加工處理過一半之ECB7和ECB8安 置於在工件位置152Β和152Ν中的低速階段58上 ,用Μ分別藉由紅外媒雷射1 56Β和1 56Ν來處理。 將來被加工處理過一半之ECB7和ECB8安置於 在工件位置1 52Α和1 52C中的低速階段58上,用 Κ分別藉由紫外線雷射156Β和156Ν來處理。 執行工件調校程序。 將低速階段56、58和高速階段1 54定位,使得 紫外線1 56Β和1 56Ν能夠切割穿過在ECB7和Ε C Β 8上位於目標位置處的電介質層。 經濟部中央標準局員工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 從低速階段58上卸下處理過之ECB7和ECB8 〇 八個工件上的盲孔切割程序則因此完成。此項加工程 序可Κ被用來同時處理不同數目的工件,而且批次數量亦 不限於八件,或是蝕刻電路。 紫外線雷射1 56Α和1 56C切割穿過導體層所需 -40- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) 402536 a? _B7_ 五、發明説明( 的時間通常要比紅外線電私156B和156N切割穿過 電介質層所需的時間暹要久。於是,較長的處理時間掌握 了加工處理的生產量多寡。由於在多重工具定位裝置1 5 0上之所有工具的目標位置實際上相同,不同的處理時間 可以藉由提供適宜的不同雷射能量水準和脈衝重覆速率給 紫外線雷射與紅外線雷射來使用而得到解決。 經濟部中央標準局員工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 在若干應用領域中霱要切割直徑尺寸大約為2 0 0微 米或更小的較大孔洞。由於紫外線雷射156A和156 C的光束直徑僅大約為20微米,多重工具定位裝置1 5 0必須導致該紫外線光束能夠沿著一螺旋狀或圓形路徑移 動,用以在一導SI層中切割出上述之較大孔洞,於是,切 割上述之較大孔洞需要等比例地花費較多時間。然而,紅 外線雷射1 56B和1 56N的光束直徑大約為400微 米,且約為紫外線雷射光束直徑尺寸的2 0倍。於是,當 穿過電介質層切割出該較大直徑的孔洞時,至少有部份紅 外線雷射光束將會遮蓋住整個孔洞,而紫外線雷射光束則 會依照螺旋狀或圓形路徑移動,用Μ在一導體層中切割出 一個孔洞。在上述之狀況下·紅外線雷射光束保持在目標 位置處有一段相當長的時間,同時不同的有效處理時間可 Κ再一次藉由提供適宜的不同雷射能董水準和脈衝重覆速 率給紫外線雷射與紅外線雷射來使用而得到解決。 倘若可Κ採用適宜的雷射能量,藉由應用適宜的能量 分配裝置,多重工件之間可以共同軍獨一個雷射。在本項 -4 1- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ 297公釐) 嗇⑽536 at _ _B7_ 五、發明説明(/() 發明中亦考慮到可κ採用波長可切換式雷射。 本項發明提供一種定位精確、定位速度、停櫬時間滅 少、非格式化工具行進路徑資料庫,K及高速階段蓮動範 圍縮小的改良式組合,用Μ大幅度改菩加工處理的生產量 ,而且減少由於尺寸和定位變異所導致的工件拒收狀況。 經濟部中央標準局員工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 熟知本項技術之工作人員將會得知部份本項發明可以 從上述之雷射光束精细加工實施方式中採用不同的方法來 施行。舉例而言,在軍獮或多頭構造中,相當多種類的工 具可Μ被高速定位裝置階段來移動,上述之工具例如是藉 细尺寸鑽頭、打孔器、雷射、雷射光束、輻射光束、粒子 光束、光束生成裝置、顯微鏡、透鏡、光學儀器和攝影機 。另外,許多種不同的定位裝置亦可Μ被使用於不同組合 中,不同的組合方式則可Μ從下列裝置中挑選出來:其中 包含電流計、轚音線圖、壓電能量轉換器、步進馬達,Μ 及導嫘紋定位裝置。數位信號處理器不需要完全是數位化 ,而且可Κ包含任何類比和數位次要電路的適宜組合。同 樣地,在此所描述之定位信號的輪廓形狀、頻譜的頻寬和 振幅大小,Μ及濾波器特徵可Κ全部加Κ變更,用以配合 其他型式定位應用的需求。 對於熟知本項技術之工作人員而言,在不偏離本項發 明之基本原理的狀況下,很顯然地可Μ針對Κ上所描述之 本項發明實施方案的詳细内容做修改*於是,本項發明的 範畴必須僅由皤後之申請專利範圍來決定。 -42- 本紙張尺度適用中國國家梯準(CNS )八4規格(210Χ297公釐)V 402536 A7 ______ B7 V. Description of the Invention I) The target of hole machining or photoetching. Each camcorder 160 detects the difference between the guided position and the correct adjusted target position, and provides the difference data to the system control computer 63 for later processing. The obtained correction data for each workpiece 152 is transmitted to and stored in the matching geometry correction processor 180. For each high-speed stage signal processor 1 72, the corrected over-positioning data for Y W is transmitted from the correction processors i 80 and 1 82 to the pre-processor 86, the current actuator 88, and the high-speed stage 154. The position feedback data is generated by the position sensor 120 (shown in FIG. 2), and mixed in the adders 1 84 and 84 for correction. Those who are familiar with this technology can understand that the same procedure can also be applied to X fine positioning. When the correction data is applied to the high-speed stage 1 to 24, the positioning range κ of each high-speed stage is limited to the 18x18 mm range which is within its maximum linear positioning range of 20 x 20 mm, which is more appropriate.余 The remaining 2 mm positioning range is used by the correction conditions described on K. The above description describes the signal processing method of one-way lotus axis for each high-speed and low-speed positioning device stage. Those who are keen on this technology will easily understand how to replicate this signal processing method, and use K to coordinate the motion of different axes, different stages, and single or multiple high-speed positioning devices. Application example: A typical application of this invention is to cut holes, such as blind holes, with a laser on a multilayer etched circuit board. Multi-layer etched circuit boards are generally adapted to the Chinese National Standard (CNS) A4 specification (210 × 297 mm) via the paper size of the notebook. ----------, ------ Order L ----- ^ 1 (Please read the precautions on the back before filling this page) Printed by the Central Standards Bureau of the Ministry of Economy, Shellfish Consumer Cooperatives, printed A7 492536 B7 V. Description of the invention (iv) Recorded, stacked together, made into thin sheets and stamped into many 0 ♦ 05 to 0 ♦ 0 8 mm thick circuit board layers are manufactured. Each layer contains different internal connection pads and conductor models. These internal connection pads and conductor models will form a complex combination of electronic component installation and internal connection after processing. The component and conductor density potentials of etched circuit boards increase along with the component and conductor density potentials of integrated circuits. As a result, the precise positioning of holes in the etched circuit board and the dimensional tolerance also increase proportionally. The above-mentioned stamping step will cause expansion and dimensional variation, which will cause variation in the proportionality factor and orthogonality between the etched road boards. In addition, when a multiple-etched circuit board (workpiece 152) is attached to the low-speed stage 58, variations in the clamping method will also cause size rotation and branching errors between the etched circuit boards. In addition, the variation in the thickness of the etched circuit board is not conducive to drilling through holes with a precise preset depth by mechanical processing. The method of this invention to solve the problem described in M is as follows: two to four adjustment eyes Etching is performed at a predetermined position on each etched circuit board (it is better to have a calibration target in each corner). Recording (Please read the notes on the back before filling out this page) 1.! Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs. Electricity storage, electricity storage, electricity storage, power generation, power generation, power generation, storage, power generation, storage and distribution, positive control, control, and distribution, system integration, transmission, transmission, and transfer of materials to the transferred materials are subject to differences. In the middle of the order, the board of directors mentioned that ο enough road photos and got 8 feet of electricity. The correction principle of the device is used to correct the correction of the visual detection at the measurement place. The post-repair adjustment is 6 inches. M 1 is set with a ruler and a machine is used. He, shadow 3 paper Standards are applicable to Chinese National Standard (CNS) A4 specifications (210X297 mm) 402536 A7 B7 Central Standards of the Ministry of Economic Affairs (printed by employee consumer cooperatives) " X, invention description (ν;) 丨 1 a field 3H school project 摞 provides enough The difference data was given to the system control computer 6 3 with 1 IM to correct the% rotation branch between the etched circuit boards, the scale factor and the straight 1 | cross variation. An additional fourth calibration S mark can be used to correct the trapezoidal distortion in each etched circuit board before reading. 1 Read back II The variation of the thickness of the etched circuit board is soil 0 * 1 3 mm ( Soil 0 ♦ 0 Note 1 1 0 5) Depth of laser action field 0 Meaning 1 Item 1 Due to strict requirements of depth diameter 9 K and positioning tolerance 9 For any refilling tools for hole processing 9 The processing of blind holes is Very difficult to pick mb 戦 0 This is the page • V because blind holes are generally processed through the first carcass layer (for example copper aluminum 1 1 gold nickel, silver palladium Λ tin and lead) »through one or more layers Layer dielectric layer 1 | (For example, polyimide, FR _ 4 resin% phenylcyclobutene dicis-butene \ thimidine triazine > cyanocyanate-based resin ceramics ) And upward but I will not pass through the second conductor layer 0. The hole obtained will be plated with a conductive layer 1 1 The material is connected to the first and second conductor layers with K 0 1 1 Again reference circle 6 long The structure of the positioning device 1 5 0 is an etched circuit board blind hole cutting set 1 with a number of 1 N equal to a number (for example, 2 4 or 6 but 4 is more suitable 1 |) 0 laser 1 5 6 A and 1 5 6 C is an ultraviolet laser (wavelength is less than about 3 5 5 nm) 9 and lasers 1 5 6 B and 15 6 N are infrared lasers (wavelength is about 1 9 0 0 0 nm to about 1 0 ) 0 0 0 nanometer range »Μ is 9 9 0 0 0 nanometer is more suitable) 0 because the ultraviolet laser and infrared laser have different wavelengths of 1.1, 1 for high-speed stage 1 5 4 mirrors 1 5 8 and lenses must be suitable for each matching laser wavelength 0 1- 36-1 1 This paper size applies to Chinese National Standard (CNS) A4 (21 OX 297 mm) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs A7 402536_b7_ V. Description of the invention 0x) When UV lasers 1 56a and 1 56 is able to cut the first calendar layer and the dielectric layer in a suitable manner. However, the laser energy level and pulse repetition rate must be precisely controlled * K is used to prevent unacceptable damage to the second conductor layer. This result resulted in a narrower "processing window". Therefore, the ultraviolet lasers 1 56 a and 1 56 c are controlled to cut through the first conductor layer and a part of the dielectric layer, and the processing program has a wider processing window. Infrared dielectric radios 156B and 156N have a wide processing window, cut through the remaining dielectric layer with M, and do not cut through or damage the second conductor layer. However, the first conductor layer must have been processed in advance. The cutting equipment for etching the blind holes of the circuit board uses ultraviolet lasers 156A and 156C to cut the first guide layer passing through the workpieces 52A and 152C. In addition, infrared lasers 156B and 156N are used to cut through Dielectric layers on workpieces 152B and 152N. The multi-head positioning device 150 is used to cut the blind hole in accordance with the preferred machining procedure. For example, suppose that eight batches of etched circuit board soap (EC Bl, ECB2, ..., and EC380) have been processed. Among them, the conductive layer K is feed, and the dielectric is F R-4 resin. The unprocessed ECB1 and ECB2 were placed on the low-speed stage 58 in the workpiece positions 1 52A and 1 52C, and were processed with M by ultraviolet lasers 156A and 156C, respectively. Perform the work piece adjustment procedure as follows: -37- This paper size applies to the Chinese National Standard (CNS) Α4 specification (210 × 297 mm) (Please read the precautions on the back before filling in this page) Order " 丨 · Α7 40 ^ 536 _Β7 ___ V. Description of the invention (Ό Introduce low-speed stages 56, 58 and high-speed stages 1 54 専 to the adjustment target position on the etched circuit board; (Please read the precautions on the back before filling out this page) The video recorder 1 60 detects the difference between the guided position and the correct target position, and provides the difference data to the system control computer 63, which is processed after M; K and the The correction data is stored in the matched high-speed phase signal processor 172. The low-speed phases 56, 58 and the high-speed phase 1 54 are positioned to a set of preset target positions, so that the ultraviolet lasers 1 56A and 1 5 6C can cut through Pass the first conductor layer on ECB1 and ECB2 at the position of this group. Once again, place the processed ECB 1 and ECB2 on the low-speed stage 58 in the workpiece positions 1 52B and 1 52N. To distinguish Processed by infrared media S 156B and 156N. Unprocessed ECB3 and ECB4 are placed on low-speed stage 58 in workpiece positions 1 52A and 1 52C, and UV lasers 1 56A and 1 are used respectively. 56C for processing. Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs to execute the workpiece adjustment procedure. Position the low-speed stages 556, 58 and the high-speed stage 1 54 so that the UV lasers 1 56A and 1 56C can be cut through the ECB 3 and The first conductor layer at the target position on ECB4, and the infrared lasers 1 56 Β and 1 6 Ν will cut through the dielectric layer at the target position on EC Β 1 and ECB2 at the same time. This paper standard applies China National Standard (CNS > A4 specification (210X297 mm) 49S536 A7 _B7_ V. Description of the invention oL) Unload the processed ECB1 and ECB2 from the low-speed stage 58 ECB4 is placed on the low-speed stage 58 in workpiece positions 1 52B and 1 52N, and is processed by K by infrared lasers 156B and 156N. ECB 5 and ECB 6 that will be processed in the future are placed on workpiece position 1 52A. And 1 52C The low-speed stage 58 * is processed by using UV radiation 156A and 156C, respectively. The workpiece adjustment procedure is performed. Position the low-speed stage 56, 58 and the high-speed stage 154 so that the UV 156A and 156C can cut through On ECB5 and E CB6, the first conductor layer is located at the eye position, and the infrared lasers 1 56B and 1 56N are simultaneously cut through the dielectric layer on the ECB 3 and ECB 4 at the target position. Remove the processed ECB3 and ECB4 from the low-speed stage 58 〇 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling this page). Place the processed ECB5 and ECB6 again At low speed stages 58 in workpiece positions 152B and 152N, M is processed by infrared lasers 156B and 156N, respectively. E C Β 7 and E C Β 8 that will be processed in the future are placed on the low-speed stage 58 in the workpiece positions 1 52A and 1 52C, and treated with K by UV lasers 1 56A and 1 56C, respectively. Perform the workpiece adjustment procedure. '-39- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 402536 a? B7 V. Description of the invention (<)) Position the low-speed phases 56, 58 and the high-speed phase 1 54 so that Ultraviolet lasers 156A and 156C can cut through the first conductor layer at the eye position on ECB7 and ECB8, while infrared media flutes 1 56B and 1 56N are cut through at the same time on ECB5 and Ε C Β6 Dielectric layer at the eye position. Remove the processed ECB5 and ECB6 from the low-speed stage 58. Place the ECB7 and ECB8 that have been processed halfway on the low-speed stage 58 in the workpiece positions 152B and 152N again, and use the M laser to infra-red 1 56B and 1 56N to process. ECB7 and ECB8, which have been processed halfway in the future, are placed on the low-speed stage 58 in workpiece positions 1 52A and 1 52C, and treated with K by UV lasers 156B and 156N, respectively. Perform the workpiece adjustment procedure. The low-speed phases 56, 58 and the high-speed phase 154 are positioned so that the ultraviolet rays 1 56B and 1 56N can cut through the dielectric layer at the target position on ECB7 and ECC 8. Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling this page). Remove the processed ECB7 and ECB8 from the low-speed stage 58. The blind hole cutting process on the eight workpieces is thus completed. This processing procedure can be used to process different numbers of workpieces simultaneously, and the number of batches is not limited to eight pieces, or etching circuits. Ultraviolet lasers 1 56A and 1 56C need to cut through the conductor layer -40- This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 402536 a? _B7_ V. The time of the invention is usually longer than It takes a long time for the infrared electric 156B and 156N to cut through the dielectric layer. Therefore, the longer processing time grasps the throughput of the processing. Because of the target of all tools on the multi-tool positioning device 150 The locations are actually the same, and different processing times can be solved by providing suitable different laser energy levels and pulse repetition rates for ultraviolet and infrared lasers. Printed by the Consumer Cooperative of the Central Standards Bureau, Ministry of Economic Affairs ( (Please read the precautions on the back before filling out this page) In some applications, it is necessary to cut larger holes with a diameter of about 200 microns or less. Because the ultraviolet laser beams 156A and 156 C have a beam diameter of only about 20 micron, multi-tool positioning device 150 must cause the ultraviolet beam to move along a spiral or circular path for use in a guided SI layer Cutting out the above-mentioned larger holes, so it takes more time to cut the above-mentioned larger holes. However, the beam diameters of the infrared lasers 1 56B and 1 56N are about 400 micrometers, and they are about the ultraviolet laser beam. 20 times the diameter. Therefore, when the larger diameter hole is cut through the dielectric layer, at least part of the infrared laser beam will cover the entire hole, while the ultraviolet laser beam will follow a spiral or The circular path moves, and a hole is cut in a conductive layer with M. Under the above conditions, the infrared laser beam remains at the target position for a considerable period of time, and different effective processing times can be borrowed again. It is solved by providing suitable different laser energy levels and pulse repetition rates for the use of ultraviolet and infrared lasers. If appropriate laser energy can be used, multiple workpieces can be applied by using appropriate energy distribution devices There can be a single laser between them. In this item-4 1- This paper size applies the Chinese National Standard (CNS) Α4 specification (210 × 297 mm) ⑽536 at _ _B7_ V. Description of the invention (/ () The invention also considers the use of wavelength-switchable lasers. This invention provides a positioning accuracy, positioning speed, reduced stopping time, and non-formatted tool travel path Database, an improved combination of narrowing the moving range of K and high-speed stages, using M to significantly change the production volume of processing, and reduce the rejection of workpieces due to size and positioning variations. Consumption by employees of the Central Standards Bureau of the Ministry of Economic Affairs Printed by a cooperative (please read the notes on the back before filling out this page) Staff who are familiar with this technology will know that some of this invention can be implemented by different methods from the above-mentioned laser beam fine machining implementation . For example, in military or multi-head structures, quite a few types of tools can be moved by the high-speed positioning device stage. The above tools are, for example, fine-sized drills, punches, lasers, laser beams, and radiation beams. , Particle beams, beam generators, microscopes, lenses, optical instruments and cameras. In addition, many different positioning devices can also be used in different combinations, and different combinations can be selected from the following devices: including galvanometers, phonograms, piezoelectric energy converters, stepping Motor, M and guide pattern positioning device. The digital signal processor need not be fully digitized, and may include any suitable combination of analog and digital secondary circuits. Similarly, the contour shape, frequency bandwidth, and amplitude of the positioning signal described herein, and M and filter characteristics can all be changed by adding K to match the needs of other types of positioning applications. For those who are familiar with this technology, it is obvious that the details of the embodiment of the invention described on K can be modified without departing from the basic principles of the invention *. The scope of an invention must be determined solely by the scope of subsequent patent applications. -42- This paper size is applicable to China National Standard for Ladder (CNS) 8-4 (210 × 297 mm)

Claims (1)

ff 經濟部央揉準局員工消費合作社印裝 1·一種用於對應一組從資料庫接收到之定位指令 而同時將多個工具相對於一組位在多涸相闞聯工件上之目 標位置處加Μ定位的裝置,其中包含: 一個慢速定位裝置台用Κ夾持多個相聯的工件及在多 個工具與多個相關聯工件之間產生大範圍相對運動; 多個快速定位装置台連接至慢速定位裝置台用Μ在多 個工具與多個相關聯工件之間產生小範圍相對運動; 一個信號處理器,其處理定位指令組Μ產生慢速和快 速運動控制信號; 一個慢速定位裝置驅動器,其對應慢速運動控制信號 在大範圍相對運動之内驅動慢速定位裝置台; 一個快速定位裝置驅動器,其對應快速運動控制信號 在小範圍相對運動之内驅動多個快速定位裝置台;Μ及 該信號處理器協調大範圍相對運動和小範圍相對連動 ,使得當慢速和快速定位裝置台同時移動中時,多個工具 能夠於已預先設定的時間週期相對於多個工件暫時停止。 2 ·如申請專利範圍第1項之裝置,其中工件為電路 板,Μ及多個工具為雷射光束,其在已預先設定的時間週 期中觸發雷射光束,用Μ在相關聯之電路板中切割出孔洞 〇 3 ·如申請專利範圍第2項之裝置,其中該等電路板 的厚度差異是由每一個雷射光束的場深度補償。 4 ·如申請專利範圍第1項之裝置,其中慢速定位裝 本紙張尺度逋用中國國家揉準(CNS ) A4規格(210X297公釐) 1^1 nn n^i I 衣 .(請先聞讀背面之注$項再填寫本頁) fPrinted by the Consumer Affairs Cooperative of the Central Bureau of the Ministry of Economic Affairs 1. A type of positioning instruction corresponding to a set of positioning instructions received from a database and simultaneously positioning multiple tools on a set of multiple connected workpieces A positioning device with M including: a slow positioning device table holding multiple associated workpieces with K and generating a large range of relative movement between multiple tools and multiple related workpieces; multiple fast positioning device tables Connected to the slow positioning device table uses M to generate a small range of relative motion between multiple tools and multiple associated workpieces; a signal processor that processes the positioning instruction set M to generate slow and fast motion control signals; a slow speed A positioning device driver that drives a slow positioning device table within a large range of relative motion corresponding to a slow motion control signal; a fast positioning device driver that drives multiple rapid positioning devices within a small range of relative motion corresponding to a rapid motion control signal Platform; M and the signal processor coordinate a large range of relative movement and a small range of relative linkage, so that when slow and fast positioning device When the table is moving at the same time, multiple tools can be temporarily stopped with respect to multiple workpieces at a preset time period. 2 · If the device in the scope of patent application is the first item, where the workpiece is a circuit board, M and multiple tools are laser beams, which trigger the laser beam in a preset time period, and use M to associate the circuit board Holes cut out in the middle 03. As in the device in the scope of patent application No. 2, wherein the thickness difference of these circuit boards is compensated by the field depth of each laser beam. 4 · If the device of the scope of patent application is the first item, in which the paper size of the slow-positioning paper is the size of China National Standard (CNS) A4 (210X297 mm) 1 ^ 1 nn n ^ i I clothing. (Please read first (Read the note on the back and fill in this page) f 經濟部央揉準局員工消費合作社印裝 1·一種用於對應一組從資料庫接收到之定位指令 而同時將多個工具相對於一組位在多涸相闞聯工件上之目 標位置處加Μ定位的裝置,其中包含: 一個慢速定位裝置台用Κ夾持多個相聯的工件及在多 個工具與多個相關聯工件之間產生大範圍相對運動; 多個快速定位装置台連接至慢速定位裝置台用Μ在多 個工具與多個相關聯工件之間產生小範圍相對運動; 一個信號處理器,其處理定位指令組Μ產生慢速和快 速運動控制信號; 一個慢速定位裝置驅動器,其對應慢速運動控制信號 在大範圍相對運動之内驅動慢速定位裝置台; 一個快速定位裝置驅動器,其對應快速運動控制信號 在小範圍相對運動之内驅動多個快速定位裝置台;Μ及 該信號處理器協調大範圍相對運動和小範圍相對連動 ,使得當慢速和快速定位裝置台同時移動中時,多個工具 能夠於已預先設定的時間週期相對於多個工件暫時停止。 2 ·如申請專利範圍第1項之裝置,其中工件為電路 板,Μ及多個工具為雷射光束,其在已預先設定的時間週 期中觸發雷射光束,用Μ在相關聯之電路板中切割出孔洞 〇 3 ·如申請專利範圍第2項之裝置,其中該等電路板 的厚度差異是由每一個雷射光束的場深度補償。 4 ·如申請專利範圍第1項之裝置,其中慢速定位裝 本紙張尺度逋用中國國家揉準(CNS ) A4規格(210X297公釐) 1^1 nn n^i I 衣 .(請先聞讀背面之注$項再填寫本頁) 402536 A8 B8 C8 D8 々、申請專利範圍 置台包括一個X袖位移台、一個γ袖位移台且多個快速定 位裝置台係被安置於X袖位移台上。 X請先閲讀背面之注意事項再填寫本頁) 5 .如申請專利範圍第4項之裝置,其中多個工件被 安置於Y軸位移台上。 6 .如申請專利範圍第1項之裝置,其中多個工件各 包括一組大抵相同的校準目標,且該裝置進一步包括: 一個感測器,其偵測不同組校準目標的定位來確認不 同組校準目標的定位誤差;以及 至少一個快速台信號處理器’其處理感測到之定位誤 差且修正小範圍相對運動來補償定位誤差*使得多個工具 能夠同時定位在多個相關聯工件上的目標位置組。 7 .如申請專利範圍第6項之装置,其中該感測器包 括至少一個攝錄影機。 8 ·如申請專利範圍第6項之裝置,其中該感測器感 測至少二個校準目標,而且定位誤差本身包括介於多個工 件之間的旋轉及偏移差異。 經濟部中央標準局員工消費合作社印策 9 ·如申請專利範圍第6項之裝置,其中該感測器感 测至少三個校準目標,而且定位誤差本身包括介於多個工 件之間的旋轉、偏移、比例因素和直交性差異。 1 〇 ·如申請專利範圍第6項之裝置,其中該感測器 感測至少四個校準目摞,而且定位誤差本身包括介於多個 工件之間的旋轉、偏移、比例因素、直交性和梯形扭曲差 異0 -2- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) Α8 402536 § 六、申請專利範圍 11·一種用於至少在大柢上相同之第一和第二電路 板上切割出一已預先設定孔洞模型的方法,每一個該電路 板本身則至少具有一第一導體層、一電介質層和一第二導 體層,包含: 產生至少分別具有第一和第二波長的第一和第二雷射 光束; 將電路板安置於一慢速定位裝置台上,用K在雷射光 束與電路板之間產生大範圍相對運動; 提供至少用於連接至一低速定位裝置台及在雷射光束 與相關聯電路板之間產生小範圍相對運動的第一和第二快 速定位裝置台;K及 協調大範圍相對運動和小範圍相對運動,使得第一雷 射光束在第一電路板之第一導體層中切割出已預先設定的 孔洞模型•而第二雷射光束側在第二電路板之電介質層中 切割出已領先設定的孔洞模型。 1 2 .如申請專利範圍第1 1項之方法,其進一步包 含: 經濟部中央標準局員工消費合作社印製 X請先閲讀背面之注意事項再填寫本頁) 依照已預先設定的孔洞模型,產生相對於電路板將雷 射加以定位所需的慢速和快速運動控制信號; 對應慢速運動控制信號在大範圍相對運動之内驅動慢 速定位裝置台;Μ及 對應快速運動控制信號在小範圍相對運動之內驅動快 速定位裝置台。 -3- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 402536 A8 B8 C8 D8 六、申請專利範圍 1 3 ·如申請專利範圍第1丨項之方法,其中慢速定 位装置台包括一個X軸位移台、一個γ軸位移台且多個快 速定位裝置台係被安置於X軸位移台上。 1 4 ·如申請專利範圍第1 3項之方法,其中該等電 路板被安置於Y軸位移台上。 1 5 ·如申請專利範圍第1 1項之方法,其中第一雷 射光束是由一紫外線雷射所產生,第二雷射光束則是由一 紅外線雷射所產生。 1 6 ·如申請專利範圍第1 1項之方法,其中第一波 長小於大約3 5 5毫微米,第二波長則在從大約1 ,〇 〇 0毫撤米到大約1 〇,〇〇〇毫微米的範圍內。 1 7 ·如申請專利範圍第1 1項之方法,其中協調步 驟會被執行,使得第一和第二雷射光束能夠同時分別切割 第一電路板與第一導體層和第二電路板的電介質層。 1 8 ·如申請專利範圍第1 1項之方法,進一步包括 確認每一個電路板均具有一組大抵相同的校準目標; 偵測不同組校準目標的定位目標Μ確認與每一個電路 板相闞聯之定位誤差; 處理偵測到的定位誤差;Μ及 修正小範圍相對運動來補償定位誤差,使得每一個雷 射光束能夠精確地定位於在一相闞聯之電路板上的已預先 設定的孔洞模型。 -4 - 本紙張尺度適用中國鬮家標準(CNS ) A4规格(210X297公釐) ^^1 1^1 ^^1 an In I^m m ^^1 HI /:-';.^、一 .(請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局貝工消費合作社印製Printed by the Consumer Affairs Cooperative of the Central Bureau of the Ministry of Economic Affairs 1. A type of positioning instruction corresponding to a set of positioning instructions received from a database and simultaneously positioning multiple tools on a set of multiple connected workpieces A positioning device with M including: a slow positioning device table holding multiple associated workpieces with K and generating a large range of relative movement between multiple tools and multiple related workpieces; multiple fast positioning device tables Connected to the slow positioning device table uses M to generate a small range of relative motion between multiple tools and multiple associated workpieces; a signal processor that processes the positioning instruction set M to generate slow and fast motion control signals; a slow speed A positioning device driver that drives a slow positioning device table within a large range of relative motion corresponding to a slow motion control signal; a fast positioning device driver that drives multiple rapid positioning devices within a small range of relative motion corresponding to a rapid motion control signal Platform; M and the signal processor coordinate a large range of relative movement and a small range of relative linkage, so that when slow and fast positioning device When the table is moving at the same time, multiple tools can be temporarily stopped with respect to multiple workpieces at a preset time period. 2 · If the device in the scope of patent application is the first item, where the workpiece is a circuit board, M and multiple tools are laser beams, which trigger the laser beam in a preset time period, and use M to associate the circuit board Holes cut out in the middle 03. As in the device in the scope of patent application No. 2, wherein the thickness difference of these circuit boards is compensated by the field depth of each laser beam. 4 · If the device of the scope of patent application is the first item, in which the paper size of the slow-positioning paper is the size of China National Standard (CNS) A4 (210X297 mm) 1 ^ 1 nn n ^ i I clothing. (Please read first Read the note on the back of the page and fill in this page) 402536 A8 B8 C8 D8 々, Patent application scope The table includes an X-sleeve stage, a γ-sleeve stage, and multiple rapid positioning device tables are placed on the X-sleeve stage. . (Please read the notes on the back before filling this page.) 5. If the device in the scope of patent application No. 4 is used, multiple workpieces are placed on the Y-axis stage. 6. The device according to item 1 of the scope of patent application, wherein each of the plurality of workpieces includes a group of calibration targets that are substantially the same, and the device further includes: a sensor that detects the positioning of different groups of calibration targets to confirm different groups Calibration target positioning error; and at least one fast stage signal processor 'which processes the sensed positioning error and corrects a small range of relative motion to compensate for the positioning error * enabling multiple tools to simultaneously target targets on multiple associated workpieces Location group. 7. The device according to item 6 of the patent application, wherein the sensor comprises at least one video camera. 8 · The device according to item 6 of the patent application, wherein the sensor senses at least two calibration targets, and the positioning error itself includes the difference in rotation and offset between multiple workpieces. Employees' Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs of the People's Republic of China 9 · For the device in the scope of patent application 6, the sensor senses at least three calibration targets, and the positioning error itself includes rotation between multiple workpieces, Offset, scale factor, and orthogonality differences. 1 〇. The device according to item 6 of the patent application scope, wherein the sensor senses at least four calibration targets, and the positioning error itself includes rotation, offset, proportionality, and orthogonality between multiple workpieces Differences from trapezoidal distortion 0 -2- This paper size applies to Chinese National Standard (CNS) A4 specification (210X297 mm) A8 402536 § 6. Application for patent scope 11. One for the first and second same at least A method for cutting a preset hole pattern on a circuit board, and each circuit board itself has at least a first conductor layer, a dielectric layer, and a second conductor layer, including: generating at least first and second conductor layers, respectively; Wavelengths of the first and second laser beams; placing the circuit board on a slow positioning device table, using K to generate a large range of relative movement between the laser beam and the circuit board; providing at least for connection to a low speed positioning Device table and first and second rapid positioning device tables that generate small range relative motion between laser beam and associated circuit board; K and coordinate large range relative motion and small range The relative movement causes the first laser beam to cut a preset hole model in the first conductor layer of the first circuit board, and the second laser beam side is cut to the lead in the dielectric layer of the second circuit board. Hole model. 1 2. If the method of item 11 in the scope of patent application, it further includes: Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs X Please read the notes on the back before filling this page) According to the preset hole model, Relative to the circuit board, the slow and fast motion control signals required for positioning the laser; The corresponding slow motion control signals drive the slow positioning device within a large range of relative motion; M and the corresponding fast motion control signals are in a small range Drive the rapid positioning device table within relative motion. -3- This paper size applies to Chinese National Standard (CNS) A4 specification (210 × 297 mm) 402536 A8 B8 C8 D8 VI. Application scope of patent 1 3 · If the method of the scope of patent application No. 1 丨, the slow positioning device table An X-axis stage, a γ-axis stage, and a plurality of rapid positioning device stages are arranged on the X-axis stage. 1 4 · The method according to item 13 of the patent application scope, wherein the circuit boards are placed on a Y-axis stage. 15 · The method according to item 11 of the patent application range, wherein the first laser beam is generated by an ultraviolet laser, and the second laser beam is generated by an infrared laser. 16 · The method according to item 11 of the patent application range, wherein the first wavelength is less than about 355 nm, and the second wavelength is from about 1,000 millimeters to about 10,000 millimeters. In the micrometer range. 1 7 · The method according to item 11 of the scope of patent application, wherein the coordination step is performed, so that the first and second laser beams can simultaneously cut the dielectric of the first circuit board, the first conductor layer, and the second circuit board, respectively. Floor. 18 · The method according to item 11 of the scope of patent application, further comprising confirming that each circuit board has a set of calibration targets that are substantially the same; detecting the positioning targets M of different sets of calibration targets and confirming the positioning of each circuit board in association with each other Errors; processing of detected positioning errors; M and correction of small-area relative motion to compensate for positioning errors, so that each laser beam can be accurately positioned on a pre-set hole model on a connected circuit board. -4-This paper size is in accordance with Chinese Standard (CNS) A4 (210X297mm) ^^ 1 1 ^ 1 ^^ 1 an In I ^ mm ^^ 1 HI /:-';.^, one. ( (Please read the notes on the back before filling out this page.) Printed by Shellfish Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs
TW086102974A 1996-10-10 1997-03-11 Multi-tool positioning system TW402536B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/728,619 US5847960A (en) 1995-03-20 1996-10-10 Multi-tool positioning system

Publications (1)

Publication Number Publication Date
TW402536B true TW402536B (en) 2000-08-21

Family

ID=24927587

Family Applications (1)

Application Number Title Priority Date Filing Date
TW086102974A TW402536B (en) 1996-10-10 1997-03-11 Multi-tool positioning system

Country Status (2)

Country Link
KR (1) KR100443549B1 (en)
TW (1) TW402536B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3183093A4 (en) * 2015-06-22 2018-11-07 Electro Scientific Industries, Inc. Multi-axis machine tool and methods of controlling the same
TWI703421B (en) * 2017-10-09 2020-09-01 德商賽柏&梅爾公司 Method for measuring position error, device for opening hole and its application

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680430B2 (en) * 2008-12-08 2014-03-25 Electro Scientific Industries, Inc. Controlling dynamic and thermal loads on laser beam positioning system to achieve high-throughput laser processing of workpiece features
NL2006804A (en) * 2010-06-24 2011-12-28 Asml Netherlands Bv Measurement system, method and lithographic apparatus.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2739533C2 (en) * 1977-09-02 1985-09-05 Dronsek, Max Günter, Dipl.-Ing., 8891 Klingen Device for adjusting the length of the work spindle on a numerically controlled machine tool
US5126648A (en) * 1990-03-22 1992-06-30 Megamation Incorporated High resolution piggyback linear motor design for placement systems and the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3183093A4 (en) * 2015-06-22 2018-11-07 Electro Scientific Industries, Inc. Multi-axis machine tool and methods of controlling the same
TWI703421B (en) * 2017-10-09 2020-09-01 德商賽柏&梅爾公司 Method for measuring position error, device for opening hole and its application

Also Published As

Publication number Publication date
KR100443549B1 (en) 2004-10-28
KR19990087538A (en) 1999-12-27

Similar Documents

Publication Publication Date Title
CA2247404C (en) Multi-tool positioning system
Bakshi EUV lithography
US7818073B2 (en) Method for obtaining improved feedforward data, a lithographic apparatus for carrying out the method and a device manufacturing method
US7049617B2 (en) Thickness measurement in an exposure device for exposure of a film with a hologram mask, exposure method and semiconductor device manufacturing method
CA2075026A1 (en) Method and apparatus for patterning an imaging member
TW402536B (en) Multi-tool positioning system
CN101171549A (en) Reticle alignment and overlay for multiple reticle process
CN106170727B (en) Lithographic equipment and device making method
Aarnoudse et al. Control-relevant neural networks for intelligent motion feedforward
CN108700661A (en) The positioning of image plane in radium-shine system of processing
JPS61269393A (en) Manufacture of printed circuit board and related new product
CN100476587C (en) Control system, lithographic apparatus, device manufacturing method and device manufactured thereby
JPS58101330U (en) Focus servo retraction device in optical equipment
TW535199B (en) On-the-fly beam path error correction for memory link processing
JPH07130634A (en) Aligner
JPS629632A (en) Projecting and exposing device
Falter Diamond turning of nonrotationally symmetric surfaces
CA2098844C (en) Method of cloning printed wiring boards
JPH0330415A (en) Electron beam lithography device
TWI302640B (en) Lithographic apparatus, device manufacturing method, and device manufacturing thereby
TWI834463B (en) Software, methods, and systems for determination of a local focus point
JPH02137217A (en) Method of projection exposure
JP2002361598A (en) Dynamic manipulation method for module position in optical system
Shinde et al. PCB fabrication unit for electronics circuit prototyping
Jensen High dynamic range optical devices and applications.

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent