TW396271B - Scanning evanescent electro-magnetic microscope - Google Patents

Scanning evanescent electro-magnetic microscope Download PDF

Info

Publication number
TW396271B
TW396271B TW87117103A TW87117103A TW396271B TW 396271 B TW396271 B TW 396271B TW 87117103 A TW87117103 A TW 87117103A TW 87117103 A TW87117103 A TW 87117103A TW 396271 B TW396271 B TW 396271B
Authority
TW
Taiwan
Prior art keywords
probe
sample
frequency
tip
microscope
Prior art date
Application number
TW87117103A
Other languages
Chinese (zh)
Inventor
Xiao-Dong Xiang
Chen Gao
Original Assignee
Univ California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/158,037 external-priority patent/US6173604B1/en
Application filed by Univ California filed Critical Univ California
Application granted granted Critical
Publication of TW396271B publication Critical patent/TW396271B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

A novel scanning microscope is describe that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

Description

修 Μ ,: 修 Μ ,: 經濟部智慧財產局員工消費合作社印製 五、發明說明([1) 護組件延伸出同軸電纜部份,否則同軸電纜將是開放於外 的。參照圖1和2 ’ 一種新的電氣傳導保護組件16設置於 探針尖端20所延伸的末端,使得其外部邊緣連接到外部的 同軸保護層17和其內部邊緣的環狀物’或圍繞物’而探針 尖端並無電氣地短路到它。傳導用的保護組件1要適當地 細薄,於Ιμηι的層級,以避免引起過量的損失。其實際上 較佳地提供一個低損失的絕緣體,如藍寶石。實質上,外 部保護1^_置於絕緣體的末端部份16的周圍’卻具有一個 空孔或洞孔22,探針可以延伸出此洞孔,而不須電氣地短 路到其保護層。其洞孔傳統爲圓形的,但並不一定是要圓 形的。此洞孔較小於同軸電纜和用來產生瞬逝波的一個共 振器。方便的是,絕緣體的末端部份形成一個趨近垂直於 探針部份的直線之平面,只要探針的靈敏度保持在可接受 的程度和避免Q値因數的衰減,無論如何一個漸尖的表面 可以延長外部保護層和探針之間的一部分距離。其Q値因 數乃是一個品質因數;相等於共振器中的總能量和從共振 器散逸的能量之比率(EtcHal/Edissipated)。Q値因數爲一個空腔 的幾何形狀之函數,而使空腔內壁漸尖可能會減低Q値因 數(如同減低靈敏度),對任何一個已指定的所要量測而言 ,此情況並不被接受。 如圖1和2所示,一個削尖的金屬尖端20,其乃是依 照本發明所實行的一個類似點狀的瞬逝波發射器和一個檢 波器,延伸出一個在空腔10末端障壁16的圓筒狀空孔或 洞孔22,如以下更詳細的描述。樣本80已架置妥當且直 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公髮) (請先閱讀背面之注意事項再填寫本頁)Repair M: Repair M: Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention ([1) The protective component extends out of the coaxial cable, otherwise the coaxial cable will be open to the outside. 1 and 2 ′ A new electrical conduction protection assembly 16 is provided at the end of the probe tip 20 extension such that its outer edge is connected to the outer coaxial protective layer 17 and the ring 'or surround' of its inner edge. The probe tip is not electrically shorted to it. The conductive protection component 1 should be appropriately thin, at a level of 1 μm to avoid causing excessive losses. It is actually better to provide a low loss insulator such as sapphire. In essence, the outer protection 1 ^ _ is placed around the end portion 16 of the insulator, but has a hole or hole 22, and the probe can extend out of this hole without having to be electrically shorted to its protective layer. The holes are traditionally round, but they do not have to be round. This hole is smaller than the coaxial cable and a resonator used to generate evanescent waves. Conveniently, the end portion of the insulator forms a plane approaching a straight line perpendicular to the probe portion, as long as the sensitivity of the probe is maintained at an acceptable level and the Q factor is not attenuated, no matter what a tapered surface Part of the distance between the outer protective layer and the probe can be extended. Its Q factor is a figure of merit; it is equal to the ratio of the total energy in the resonator to the energy dissipated from the resonator (EtcHal / Edissipated). The Q 値 factor is a function of the geometry of the cavity, and tapering the interior wall of the cavity may reduce the Q 値 factor (like reducing sensitivity), which is not the case for any specified required measurement. accept. As shown in FIGS. 1 and 2, a sharpened metal tip 20 is a point-like evanescent wave transmitter and a detector implemented in accordance with the present invention, extending a barrier 16 at the end of the cavity 10 The cylindrical hollow or hole 22 is described in more detail below. Sample 80 has been placed properly and the paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297). (Please read the precautions on the back before filling this page)

經濟部中央榡準局員工消費合作衽印製 A7 B7 ------ -------- 五、發明説明(/ ) 本發明爲美國政府所贊助,在美國能源局和加州大學 之間的合約書第DEAC03-76SF00098號之下,藉由勞倫斯 柏克萊實驗室(Lawrence Berkeley Laboratory)的操作所完成 。本發明美國政府可以擁有無可置疑的權力。 此爲序號08/717 ’ 321,存檔於1996年9月20日並 且於此參照合倂的申請案之延續部份。 發明之背景 發明之頜域 本發明一般而言,係有關於掃描探針藏微鏡的檢測, 而更特別的是有關於掃描瞬逝近場微波和電磁光譜學。 相關先前技術之說明 掃描探針型式的顯微鏡已經典型地使用來產生一個取 樣材料的視覺影像。根據探針尖端所量測到的參數,所得 到的影像可以反映出其樣本材料一些不同的電或磁之任何 一個特性。例如其尖端可以爲電子的隧行、原子力、傳播 或瞬逝電磁波的合倂和折射、或其他的參數成像。其尖端 可以觸碰樣本或高於樣本一個短的距離來使用。掃描探針 .顯微鏡詳盡的討論發表於R. Wiesendanger所作、康橋大學 1994年所出版的,’掃描探針顯微鏡學以及光譜學:方法與 應用”中。改善掃描探針顯微鏡(SMPs)的成果幾乎完全集中 於提高它們的解析度和靈敏度。儘管通常所公認的,得到 定量的資料來組合其影像的細部是令人相當滿意的5兩個 的技術難關卻已經妨礙了此類儀器的發展。 首先’顯微鏡檢測信號’如從SMPs所得到的’通常 — 3 (請先閱讀背面之注意事項 UP寫· 本頁) 訂 本紙張尺度適用中國國家標準(CNS〉A4規格(210XM7公釐) { A7 B7 :修正 補充 五、發明說明(I i) 共振器的高度爲λ/4的整數倍即是ηλ/4,其中η爲一· 個整數。如果其共振器爲一種開放式的共振器,則η爲一 個偶整數;如果共振器爲一種封閉的共振器,則η爲一個 奇整數。 替代共振器的同軸雷纜之功用 共振器能夠以一個標準同軸電纜來代替。圖16顯示所· 發明的探針尖端之1個實施例,其中的探針尖端使用傳統 同軸電纜替代一個共振器。一個電磁能量來源1傳送電磁 能量到其電纜上。同軸電纜具有一個環繞絕緣體組件44和 中心傳導性組件48的外部保護組件52。中心傳導性組件 延伸突出同軸電纜的末端,而削爲尖端或細微的削尖尖端 60則附於其上。在電纜同軸部份的末端,一個薄金屬末端. 障壁46附於絕緣體上,其絕緣體則置於保護層52和中心 導體48之間。末端障壁的厚度乃是受位於共振器末端的傳 導性末端障壁16之相同的考量所支配。位於同軸電纜末端 的末端障壁46,具有一個足夠大小的洞孔以允許中心電纜 48通過末端障壁46,而使中心探針能無電氣地短路到其末 端障壁上。 所發明之包含一個同軸電纜的探針.,另外具有一個位 於末端障壁46和來源1之間的直接耦合器11。直接耦合 器43_耦>合來源的電磁波到電纜上。電磁波沿著電纜傳下至 末端,並且藉由其末端的壁障反射回去。探針的尖端54以 及所掃描的樣本之間的交互作用則修正反射波的特性。反 射波藉由直接耦合器連接到一個檢波器50中,並且藉 18 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -裝--------訂---------. 經濟部智慧財產局員工消費合作杜印製 經濟部中央標準局員工消費合作衽印製 A7 ___ B7 五、發明説明(> ) 爲材料的局部解剖圖和物理特性所組成的函數。分離它們 至少需要量測兩個獨立的信號。例如,在掃描隧行顯微鏡 檢測的使用中,隧行電流爲狀態密度和尖端到樣本距離兩 者的函數。最近所發展的一種掃描近場光學顯微鏡能夠測 量光學信號,例如發光的光譜或折射的光學刻度,除了剪 力之外;同時可以用來判斷尖端和樣本之間的距離。 再者,爲了獲得有關物質樣本成像的定量資訊,必須 解出在尖端和樣本的區域中複雜的電磁場方程式。此工作 的回顧詳述於Rep. Prog. Phys·,1996年第657卷,其乃是 C. Girard和A. Dereux所作。雖然基於有限元件分析的數 値方法已經用來解出近場光學顯微鏡尖端周圍場的分佈, 其數値方法包含複雜的計算程序,例如在實際的邊界條件 下以一個波長或更小的尺度解馬克斯威爾(Maxwell)方程式 ’在例行性的應用上是不實用的。由於顯微鏡需要操作在 一個截止頻率之下,因而遭受導波管嚴重的衰減,典型爲 10 3 至 10 6 的孩減(R.F. Soohoo,_ J· Appl_ Phys. 33 : 1276, 1962 ; E.A. Ash and G. Nichols,Nature,237 : 510,1972) ’對過去所完成的工作而言此問題已是難以瞭解的了。在 洞孔或錐形導波管探針中,解析度直線的改良導致靈敏度 指數的減少。M. Fee,S· Chu,and T.W. Hansch,藉由使 用一個具有減小截面的傳輸線探針而改善了靈敏度和解析 度至微米的程度(Fee,.M· et al ,Optics Commun,63 : 219,1998)。無論如何,在解析度方面進一步的改善仍然 伴隨著傳輸線嚴重的衰減。傳輸線探針尖端周圍的無屏蔽 本紙張尺度適用中國國家標準(CNS )八4規格(2丨〇><297公釐) ,(請先閲讀背面之注意事項本頁) --1. f.....- kmmmf 訂 A7 B7 :#ι£ {-I補t 本~〇月"£ 五、發明說明(q)Printed by A7 B7, Consumer Co-operation of the Central Bureau of Standards, Ministry of Economic Affairs ------ -------- V. Description of the Invention (/) This invention is sponsored by the US Government and is sponsored by the US Energy Agency and the University of California Under the contract No. DEAC03-76SF00098, it is completed by the operation of Lawrence Berkeley Laboratory. The United States Government may have unquestionable rights in this invention. This is serial number 08/717 '321, filed on September 20, 1996 and referred to the continuation of the combined application. Background of the invention The jaw field of the invention Generally speaking, the present invention relates to the detection of a scanning probe hidden micromirror, and more particularly to scanning evanescent near-field microwave and electromagnetic spectroscopy. DESCRIPTION OF RELATED PRIOR ART Scanning probe type microscopes have typically been used to produce a visual image of a sampled material. According to the parameters measured by the probe tip, the image obtained can reflect any of the different electrical or magnetic characteristics of the sample material. For example, its tip may be imaging of electron tunneling, atomic force, coupling or refraction of propagating or evanescent electromagnetic waves, or other parameters. The tip can be used by touching the sample or a short distance above the sample. Scanning probes. A thorough discussion of microscopy was published by R. Wiesendanger and published by Cambridge University in 1994, 'Scanning Probe Microscopy and Spectroscopy: Methods and Applications'. The results of improved scanning probe microscopes (SMPs) are almost Fully focused on improving their resolution and sensitivity. Although it is generally accepted that obtaining quantitative data to combine the details of their images is quite satisfactory.5 Two technical difficulties have hindered the development of such instruments. First of all 'Microscope detection signal' as obtained from SMPs' Normally — 3 (Please read the precautions on the back and write on this page first) The size of the paper used in this edition applies to Chinese national standards (CNS> A4 specifications (210XM7 mm) {A7 B7 : Amendment Supplement V. Invention Description (I i) The height of the resonator is an integer multiple of λ / 4, which is ηλ / 4, where η is an integer. If the resonator is an open resonator, then η Is an even integer; if the resonator is a closed resonator, η is an odd integer. The function of a coaxial cable instead of a resonator The resonator can be used with a standard Axis cable instead. Figure 16 shows an embodiment of the inventive probe tip, in which the probe tip uses a conventional coaxial cable instead of a resonator. An electromagnetic energy source 1 transmits electromagnetic energy to its cable. Coaxial cable There is an outer protective component 52 surrounding the insulator component 44 and the central conductive component 48. The central conductive component extends beyond the end of the coaxial cable, and a sharpened or slightly sharpened tip 60 is attached to it. At the coaxial portion of the cable The end of the barrier is a thin metal end. The barrier 46 is attached to the insulator, and the insulator is placed between the protective layer 52 and the central conductor 48. The thickness of the terminal barrier is the same as that of the conductive terminal barrier 16 at the end of the resonator. Dominated by considerations. The end barrier 46 at the end of the coaxial cable has a hole of sufficient size to allow the center cable 48 to pass through the end barrier 46 so that the center probe can be electrically shorted to its end barrier. Contains a coaxial cable probe. It also has a direct coupler 11 between the end barrier 46 and source 1. Connect the coupler 43_coupled electromagnetic wave from the source to the cable. The electromagnetic wave travels down the cable to the end and is reflected back by the barrier at the end. The interaction between the tip 54 of the probe and the scanned sample The effect is to modify the characteristics of the reflected wave. The reflected wave is connected to a detector 50 through a direct coupler, and 18 paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (please read the back first) Please pay attention to this page before filling in this page)-Install -------- Order ---------. Consumption Cooperation of Employees of Intellectual Property Bureau of the Ministry of Economic Affairs System A7 ___ B7 5. The invention description (>) is a function of the material's local anatomy and physical characteristics. Separating them requires measuring at least two independent signals. For example, in the use of a scanning tunneling microscope, the tunneling current is a function of both the state density and the tip-to-sample distance. A recently developed scanning near-field optical microscope is capable of measuring optical signals, such as the optical spectrum of luminescence or the optical scale of refraction, in addition to shear; it can also be used to determine the distance between the tip and the sample. Furthermore, in order to obtain quantitative information about the imaging of a substance sample, it is necessary to solve the complex electromagnetic field equations at the tip and the sample area. A review of this work is detailed in Rep. Prog. Phys., Vol. 657, 1996, by C. Girard and A. Dereux. Although numerical methods based on finite element analysis have been used to solve the field distribution around the tip of a near-field optical microscope, their numerical methods include complex calculation procedures, such as solving at a wavelength or smaller scale under actual boundary conditions. The Maxwell equation 'is not practical for routine applications. Because the microscope needs to be operated below a cut-off frequency, it suffers severe attenuation of the waveguide, typically a subtraction of 10 3 to 10 6 (RF Soohoo, _ J. Appl_ Phys. 33: 1276, 1962; EA Ash and G (Nichols, Nature, 237: 510, 1972) 'This issue is difficult to understand with regard to the work done in the past. In hole or tapered waveguide probes, the improvement in the resolution straight line results in a decrease in the sensitivity index. M. Fee, S. Chu, and TW Hansch, improved sensitivity and resolution to the micron level by using a transmission line probe with a reduced cross section (Fee, .M. Et al, Optics Commun, 63: 219 , 1998). In any case, further improvements in resolution are still accompanied by severe attenuation of the transmission line. Unshielded around the tip of the transmission line probe This paper is sized to the Chinese National Standard (CNS) 8-4 specification (2 丨 〇 < 297 mm), (please read the precautions on the back page first) .....- kmmmf order A7 B7: # ι £ {-I 补 T 本 ~ 〇 月 " £ V. Description of the invention (q)

於距離的控制。爲了減少背景亮度的效應,我們提出史瓦 丁柴爾德(Schwartzchild)透鏡的使用,其具有一個黑暗的中 心區域以用來減少散射的背景。另外,可以使用一種縱向 的高頻振動來減少遠場背景效應。這種高頻振動應該只將 光學信號的成份檢測出來,其光學信號的變化遍及小長度 的尺度。這種方法考慮一個高解析度SEMM的尖端-樣本 分離程度之控制,其SEMM的高解析度遍及結合樣本電氣 特性伺時量測的基座之一個寬廣範圍Z 尖端-樣本距離也可以藉由頻率偏移的差異量測來調節 。振動樣本的位置,例如設置一個壓電組件於樣本之下, 會導致共振頻率和其諧波的改變。這些改變的測量則是使 用,例如,自保持放大器。共振頻率的改變將具有比顯微 鏡信號較急遽的距離從屬,而能夠用於距離的控制。對距 離從屬類似一功率定律的頻率偏移而言,在空腔高頻振動 的頻率下,f;的變化將逆向改變另外一個尖端-樣本分離程 度的因數。容許同時量測樣本特性和局部解剖圖,如果此 一縱向的高頻振動較尖端-樣本分離程度爲小,則所取得的 信號總變化將是小的。 頻率偏移和諧波強度無關於介電常數和尖端-樣本距離 g的函數,而引出兩個獨立的方程式: ㈣e,g) (2〇) 邱上 =f2(e,g) dS U (21) 49 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝·! ------訂--------- 經濟部智慧財產局員工消費合作社印製 經濟部中央標準局員工消費合作衽印製 A7 _ B7___________. 五、發明説明(4) 遠場波傳播組件嚴重地限制了顯微鏡的解析度’並且特別 地干擾定量分析的行使。 具有能爲低於微米的特寫成像,以及另外能夠爲影像 特寫的物理性質行使定量測量之掃描探針顯微鏡’將有高 度的需求。 發明槪蔓 本發明包含一個近場掃描瞬逝波顯微鏡’其中的掃描 探針顯微鏡的探針尖端主要發出一個瞬逝波’而且其中的 干涉傳播波的放射減到最小。傳播波具有低解析度同時瞬 逝波具有高解析度。此一特性對定量測量而言乃是極難的 ,其中只有近場瞬逝波模組化。一個高解析度影像的產生 乃是藉由使用一個新穎的瞬逝波探針於所發明的顯微鏡上 掃描一個樣本所得到的。再者,本發明的顯微鏡提供從量 測的資料所計算而得的複數阻抗値’且其複數阻抗値有關 .於所解析的影像特徵。複數阻抗,包含介電常數、損失正 切函數和導電係數,能以具有絕緣體至超導體之特性範圍 的材質來測得。 本發明的顯微鏡能夠以低於微米的解析度來定量測量 介電特性和表面電阻値。藉由追蹤一個連接到尖端的共振 同軸空腔之共振頻率(fr)和品質因數(Q),來量測樣本的電 氣特性。SEMM的一個實施例包含一個槪略操作在IGhZ 的頻率(fr),且連接到一個鋒利尖端的λ/4同軸共振器,而 其中的鋒利尖端乃是從一個狹窄的洞孔所突出的。當探針 尖端接近一個樣本時,和Q會偏移。本發明的顯微鏡能 ______5 _For distance control. To reduce the effect of background brightness, we propose the use of Schwartzchild lenses, which have a dark center region to reduce the background of scattering. In addition, a longitudinal high-frequency vibration can be used to reduce far-field background effects. This high-frequency vibration should only detect the components of the optical signal, and its optical signal changes over a small length scale. This method considers the control of the tip-sample separation of a high-resolution SEMM. The high-resolution of the SEMM extends across a wide range of Z-tip-sample distances of the base combined with the electrical characteristics of the sample. The offset difference is measured to adjust. The location of a vibrating sample, such as placing a piezoelectric component under the sample, will cause the resonant frequency and its harmonics to change. These changes are measured using, for example, self-holding amplifiers. Changes in the resonance frequency will have a sharper distance dependency than the microscope signal and can be used for distance control. For a frequency offset from a slave similar to a power law, a change in f; at the frequency of the cavity's high-frequency vibrations will reversely change the other tip-sample separation factor. It is allowed to measure the sample characteristics and local anatomy at the same time. If the longitudinal high-frequency vibration is smaller than the tip-sample separation degree, the total change of the obtained signal will be small. Frequency offset and harmonic intensity are independent of the dielectric constant and tip-sample distance g, but two independent equations are derived: 引 e, g) (2〇) Qiu Shang = f2 (e, g) dS U (21) 49 This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) Loading ·! ------ Order ------- -Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs, printed A7 _ B7___________. V. Description of the invention (4) The far-field wave propagation component severely limits the resolution of the microscope 'and especially Ground interference quantitative exercise. There is a high demand for a scanning probe microscope ' that is capable of imaging close-ups below a micron and additionally capable of performing quantitative measurements on the physical properties of the close-up of the image. Invention of the invention The invention includes a near-field scanning evanescent wave microscope 'in which the probe tip of the probe microscope mainly emits an evanescent wave' and the emission of interference propagation waves therein is minimized. The propagating wave has a low resolution and the evanescent wave has a high resolution. This characteristic is extremely difficult for quantitative measurement, of which only the near-field evanescent wave is modularized. A high-resolution image was generated by scanning a sample on the invented microscope using a novel evanescent wave probe. Furthermore, the microscope of the present invention provides a complex impedance 値 'calculated from the measured data, and the complex impedance 値 is related to the image characteristics analyzed. Complex impedance, including dielectric constant, loss tangent function, and conductivity coefficient, can be measured from materials with characteristics ranging from insulators to superconductors. The microscope of the present invention enables quantitative measurement of dielectric characteristics and surface resistance 値 with a resolution lower than micrometers. The electrical characteristics of the sample are measured by tracking the resonance frequency (fr) and quality factor (Q) of a resonant coaxial cavity connected to the tip. An embodiment of the SEMM includes a λ / 4 coaxial resonator that operates at a frequency (fr) that is approximately IGhZ and is connected to a sharp tip, where the sharp tip protrudes from a narrow hole. When the probe tip approaches a sample, the sum Q shifts. The microscope of the present invention can ______5 _

^^尺^^適用中國國家標準(CNS > A4規格(21QX297公H (請先閱讀背面之注意事項#寫本頁) 訂^^ 尺 ^^ Applicable to Chinese national standards (CNS > A4 specifications (21QX297 male H (please read the precautions on the back first # write this page)

五、發明說明(Hi) 其中f,.描述於之前的方程式5中。將方程式5帶入方 程式2〇中,Af=fr-f〇。另外,方程式5中的分母f|以心替 代,由於數量相對的大小,而對其結果將會有〜個非^微 小的影響。方程式5則解出fV並用作方程式20。方程式21 爲對g的一次微分。同時解出方程式20和21以得到介電 常數,ε,和間隙距離’ g。 做例證之實施例的說明以及本發明的最佳模式並不打 算限制本發明的範疇。在不需偏離後附的申請專利範圍真 正的精神和範圍之下可以使用種種的修改、架構以及等效 裝置。 〔元件符號〕 (請先閱讀背面之注意事項再填寫本頁) Μ 經濟部智慧財產局員工消費合作社印製 10 微波空腔 1 2 環線輸入 14 環線輸出 16 末端障壁 17 保護組件 18 中心金屬導體 19 漸尖的末端 2〇 削尖的金屬尖端 2 1 藍寶石圓盤 2 2 洞孔 3 0 產生器 3 1 接點 50 ----訂---------------------- -—^ -n n - 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) 經濟部中央標準局員工消费合作社印装 A7 B7 五、發明説明(f) 夠將所量測到的和Q偏移轉換成其樣本的電氣參數。由 於以其相當紐小的尖端半徑來判斷場分佈的程度,所以此 一顯微鏡能夠具有低於微米的解析度。對於非傳導性的樣 本而言,探針尖端和樣本兩者之間的交互作用乃是憑藉樣 本近處的介電常數和正切損失函數而定的。對於金屬的樣 本而言,其交互作用則視樣本的表面電阻値而定。 不是包含一個共振器便是包含一個傳統同軸主體的探 針本身,乃是顯微鏡的發明特點之一個關鍵所在。探針尖 端一個重要而新穎的特點爲一個具有洞孔的傳導性末端障 壁,同軸電纜或共振器的中心傳導組件延伸出其障壁的洞 孔而不需短路到其障壁。本發明的顯微鏡另一個特點的调 鍵爲計算所規劃的組件來轉換所量測到的共振頻率(或反射 的電磁波)之改變,和所量測到的品質因數之改變成爲其樣 本的定量電氣參數。本發明的顯微鏡另一個重要的特點爲 一種當樣本的量測掃描執行時用來保持尖端和樣本兩者之 間固定的間距之方法。 圖式簡單說明 圖1爲一個包含成像瞬逝近場顯微鏡系統的種種組件 1之示意圖。 圖2爲一個包含定量瞬逝近場顯微鏡系統的種種組^牛 之示意圖。— 圖3顯示一個接觸探針尖端的粗厚樣本之影像電蓮及 佈。.其虫._,q.n .系列表示在尖端的電荷分佈;qn’系列表示非傳導性樣 6 ___---_ 、τ (請先閲讀背面之注意事項UP寫本頁}5. Description of the invention (Hi) where f ,. is described in the previous equation 5. Bring equation 5 into equation 20, Af = fr-f0. In addition, the denominator f | in Equation 5 is replaced by the heart. Due to the relative size of the number, its result will have a non-negligible effect. Equation 5 solves fV and uses it as Equation 20. Equation 21 is a derivative of g. Equations 20 and 21 are solved at the same time to obtain the dielectric constant, ε, and the gap distance 'g. The description of the exemplifying embodiments and the best mode of the invention are not intended to limit the scope of the invention. Various modifications, structures, and equivalent devices can be used without departing from the true spirit and scope of the attached patent application. [Element Symbol] (Please read the precautions on the back before filling this page) Μ Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 10 Microwave cavity 1 2 Loop line input 14 Loop line output 16 Terminal barrier 17 Protection component 18 Center metal conductor 19 Sharpened tip 20 Sharpened metal tip 2 1 Sapphire disc 2 2 Hole 3 0 Generator 3 1 Contact 50 ---- Order ---------------- ------ -— ^ -nn-This paper size is applicable to China National Standard (CNS) A4 (210x297 mm) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (f) The measured sum Q offset is converted into the electrical parameters of its sample. Since the extent of the field distribution is judged by its rather small tip radius, this microscope can have a resolution below micron. For non-conductive samples, the interaction between the probe tip and the sample is determined by the dielectric constant and tangent loss function near the sample. For metallic samples, the interaction depends on the surface resistance of the sample. The inclusion of either a resonator or a probe with a conventional coaxial body is a key feature of the invention's invention. An important and novel feature of the probe tip is a conductive end barrier with a hole. The central conductive component of a coaxial cable or resonator extends out of the hole of the barrier without shorting to the barrier. The key of another characteristic of the microscope of the present invention is to calculate the planned components to convert the change of the measured resonance frequency (or reflected electromagnetic wave) and the change of the measured figure of merit into the quantitative electrical characteristics of the sample parameter. Another important feature of the microscope of the present invention is a method for maintaining a fixed distance between the tip and the sample when a measurement scan of the sample is performed. Brief Description of the Drawings Figure 1 is a schematic diagram of various components 1 including an imaging evanescent near-field microscope system. FIG. 2 is a schematic diagram of various groups including a quantitative evanescent near-field microscope system. — Figure 3 shows an image of a thick sample touching the tip of a probe. . 其 虫 ._, q.n. Series represent the charge distribution at the tip; qn ’series represent non-conductive samples 6 ___---_, τ (Please read the precautions on the back first to write this page)

本紙張尺度適用中國國家標準(CNS ) A4規格(2丨0X297公釐) A7 B7This paper size applies to China National Standard (CNS) A4 (2 丨 0X297mm) A7 B7

丨修正 丨補I 本竑年 五、發明說明 同軸接線 3 4 二極體 4 0 檢波器 4 2 直接耦合器 4 3 直接耦合器 4 4 絕緣體組件 4 6 金屬末端障壁 4 8 中心導體 5 0 資料獲取單元 5 2 外部保護組件 5 4 ' 探針的尖端 6 0 電腦 7 0 影像顯示器 8 0 樣本 9 0 步進的機構 10 0 控制器 (請先閱讀背面之注意事項再填寫本頁) 裝 '---訂i -------f.rl> /Γ. '· 經濟部智慧財產局員工消費合作社印製 51 本紙張尺度適用中國國家標準(CNS)A4規格(2〗0 x 297公釐) 經濟部中央標準局員工消費合作社印製 . -:A7 B7 五、發明説明(f ) 本的極化效用;以及qn’^ qn在樣本部逍實I塞1。 ____ .一.一一 —..· 圖4顯示一個具有間隙架構的影像=電荷m間嚴 乃是介於接觸探針尖端和粗厚樣本兩者之間。1號qn、qZ 和qn’’與圖3中的意義相同。 圖5爲一個座標圖,顯示所量測並且所設置的共振頻 率爲距離之函數,而其距離乃是探針尖端和氧化鎂(Mgp) 單晶體樣本兩者之間的距離。 圖6顯示尖端-樣本架構的影像電荷之分佈,其虫樣本 包含一個設於厚層基座(ε2)之上的麗膜_【§1)二_以_及屋霞二姻 設於探針尖端和其薄膜表面兩者之間的間隙(g)於其中。符 號qn、qn’和qn’ ’與圖3中的意義相同。奏示尖端的 場所感應的非傳導性薄膜之極化效用。q.n” g列表示來自i 化基座的薄膜之上的反應。表示來自極化基遠画 - ...............--................................................. 尖端之上的反應,而qn’’”’系列表示qn’’’所引起的非傳導 性薄膜之極化作用等等。此分析類似於光學中的三鏡系統 〇 眉7顯笊SEMM的本質空間解析度,其爲介電常數的 一個函數,其以尖端半徑,R〇,爲單位。 圖8顯示探針尖端和傳導II;漾本間的尖端-樣本交互作 用之多重圖像電荷分析。 圖9爲探針近處所環繞的傳導性材質之表面磁場分佈 〇 圖10顯示對不同的探針尖端半徑而言,探針近處所環 繞的傳導性材質表面磁場之半徑分佈,a〇。 ---- -7_____ 本紙浪尺度適用中國國家操隼(CNs ) A4規格(210X297公釐) J—---:-------- (請先閲讀背面之注意事項寫本頁)丨 Correction 丨 Supplement I This year, the fifth invention description Coaxial wiring 3 4 Diode 4 0 Detector 4 2 Direct coupler 4 3 Direct coupler 4 4 Insulator assembly 4 6 Metal terminal barrier 4 8 Center conductor 5 0 Data acquisition Unit 5 2 External protective component 5 4 'Probe tip 6 0 Computer 7 0 Image display 8 0 Sample 9 0 Stepping mechanism 10 0 Controller (Please read the precautions on the back before filling this page) -Order i ------- f.rl > / Γ. '· Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 51 This paper size applies to the Chinese National Standard (CNS) A4 specification (2) 0 x 297 mm ) Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs.-: A7 B7 V. Description of the invention (f) Polarized utility of the book; and qn '^ qn in the sample department. ____. A.a.a ..... Figure 4 shows an image with a gap structure = the charge m is strictly between the contact probe tip and the thick sample. Nos. Qn, qZ and qn '' have the same meanings as in FIG. Figure 5 is a graph showing the measured and set resonance frequency as a function of distance, and the distance is the distance between the probe tip and the magnesium oxide (Mgp) single crystal sample. Figure 6 shows the distribution of the image charge of the tip-sample structure. The worm sample includes a Lime _ [§1) 二 _ 以 _ and a yaxia second marriage set on the probe on a thick base (ε2). The gap (g) between the tip and its film surface is in it. The symbols qn, qn ', and qn' 'have the same meanings as in FIG. 3. Demonstrates the polarizing effect of non-conductive films that are sensitive to the location. Column "qn" g represents the reaction on the film from the i-based base. It represents the far-distance drawing from the polarized base-...............--........ ............................... response above the tip, and qn ' The "" 'series indicates the polarization effect of non-conductive films caused by qn' '' and so on. This analysis is similar to the three-mirror system in optics. Brow 7 shows the essential spatial resolution of the SEMM, which is a function of the dielectric constant, with the tip radius, R0, as the unit. Figure 8 shows the multiple image charge analysis of the tip-sample interaction between probe tip and conduction II; Yangben. Figure 9 shows the surface magnetic field distribution of the conductive material around the probe. Figure 10 shows the radius distribution of the magnetic field on the surface of the conductive material around the probe for different probe tip radii, a〇. ---- -7 _____ The scale of this paper is applicable to China's national operations (CNs) A4 specification (210X297 mm) J — ---: -------- (Please read the precautions on the back to write this page)

n -1 I ' A7 __^__ B7____._ 五、發明説明(‘) 圖11顯示從SEMM信號所量測的資料點(三角形ifi 最佳的計算曲線,其爲探針尖端與一個銅質樣本之間·的閭-隙之函數,其乃是使用共振頻率方程式12所計算的。· 圖12顯示從SEMM信號i量皿的直料點(三角形)和一 最佳的計算曲線,其爲探針尖端與一個銅質樣本之間的聞+ 隙之函數,其乃是使用品質因.數方程式19所計算的。 圖13顯示五種不同a〇値的傳導性材置表面磁場分佈 之空間頻譜。 圖14顯示在一個傳導性樣本的功率散逸,S,爲a〇Jl —個面數,其中ao爲間隙距離對探钍尖端半徑的比率, 圖15顯示在左邊具有週期性極化範圍的LiNb03樣本 "·· 圖形。在右邊的圖像則是同時得到的一次諧波圖像,其中. 樣本·探針幾何.圖形所導致的影響已經排餘。這些圖像乃是 •使'用所潑明.的回授控鄭組件來控制樣本到尖端的距離所得 到的。 圖16顯示一個本發明的探針尖端之實施例,其探針尖 端包含一個替代共振器的同軸電纜。 圖Π顯示對一個已知的金屬而言頻率的變化—,爲一個. 間隙距離的函數,此曲線對間隙凰艇整制器的校正迪線而 言是有用的。 圖18顯示使用SEMM來使得傳導性銀質部分成像而_ 得到的結果,其銀質部分乃是具有不同高度但固定導電係 數的部分。 '圖I9顯示使甩SEMM來使得傳導性金屬部分成像庸 本紙張尺^(CNS__「A4g (210x2^^)------ (請先閲讀背面之注意事項τn -1 I 'A7 __ ^ __ B7 ____._ 5. Description of the invention (') Figure 11 shows the data points measured from the SEMM signal (the best calculation curve for the triangle ifi, which is the probe tip and a copper sample The function of 闾 -gap between is calculated using the resonance frequency equation 12. Figure 12 shows the straight material point (triangle) from the SEMM signal i measuring dish and an optimal calculation curve. The function of the scent + gap between the tip of a needle and a copper sample is calculated using the figure of merit equation 19. Figure 13 shows the spatial spectrum of the magnetic field distribution on the surface of five different types of conductive materials. Figure 14 shows the power dissipation in a conductive sample, S, a is the number of faces, where ao is the ratio of the gap distance to the probe tip radius, and Figure 15 shows LiNb03 with a periodic polarization range on the left. Sample " · graphs. The images on the right are the first harmonic images obtained at the same time. Among them, the effects of the sample · probe geometry · graphs have been eliminated. These images are used by Po Ming. Feedback control Zheng component to control the distance from the sample to the tip The result. Figure 16 shows an embodiment of the probe tip of the present invention, the probe tip of which contains a coaxial cable instead of a resonator. Figure Π shows the frequency change for a known metal-is a. This curve is a function of the gap distance. This curve is useful for correcting the diline of the gap regulator. Figure 18 shows the results obtained by imaging the conductive silver portion using SEMM. The silver portion has Different height but fixed conductivity coefficient. 'Figure I9 shows the use of SEMM to make the conductive metal part image ^ (CNS __ 「A4g (210x2 ^^) -------- (Please read the note on the back first Matter τ

It I ^!本頁)It I ^! This page)

、1T 經濟部中夬標準局員工消費合作社印製 經濟部中央標準扃員工消費合作社印製 Λ7 B7 五、發明説明(γ) 得到的結果,其金屬部分乃是具有不同高度和-不同導電係 數的部分。 發明詳細說明_ 本發明部份描述於共同審理序號08/717 ’ 321的申請 書中,以及描述於 Appl. Phys. Lett· ’ 68 ’ 3506(1996)其中 的T. Wei和X.-D Xiang所作之至少一個實施例。在非傳導 性材質大約l〇〇nm的影像解析度已經以大約1(Τ3的靈敏度 實現了。 本發明改善掃描瞬逝電磁顯微鏡的視覺影像解析度’ 並且延伸其使用至定量顯微鏡檢測必不可少的同時測量上 。其顯微鏡乃是指一個SEMM和其替代物而言’而SEMM 最初是指掃描瞬逝微波顯微鏡而言’由於其顯微鏡並不受 限於微波的領域,所以指”掃描瞬逝電磁顯微鏡”而言。使 用SEMM,定量顯微鏡檢測能夠以低於微米的解析度來得 到非傳導性、強電性和傳導性材質複數的電氣阻抗。 SEMM的使用並不受限於微波領域。更確切地說,所發明 的顯微鏡之電磁頻率乃是受限於高端上所量測的樣本之電 子移動率(即是材質的離子體頻率),以及受限於低端上的 探針尖端共振洞孔部份之實際物理尺寸。對一個銅製的樣 本而言,從電磁頻譜的紅外線領域到微波領域的頻率範圍 可以使用於掃描瞬逝波顯微鏡。如果共振由一個具有連接 到同軸保護組件的末端障壁之同軸電纜所替代,則量測頻 率的低端必須是d.c.。 爲了解此發明對檢閱瞬逝波顯微鏡檢測的一些基本物 9 本紙張又度適用十國國家標準(CNS〉Λ4規格(210 X 297公釐) ί請先閱讀背面之注意事項Λ寫本頁} Γ 訂 經濟部中央標準局員工消費合作社印製 Λ7 ______________ B7___^_ 五、發明説明(g ) 理觀念是有所幫助的。在本文中的瞬逝波乃是指以虛數波 動向量所表示的電磁波,而不是指來自散逸的。實際上, 瞬逝電磁波爲古典禁帶區域中之量子力學電子波的光子等 效物(在一個屏壁之內)。在電磁波的遠場描述中,選取希 爾博特(Hilbert)空間的一組正交特徵函數來當作平面波, 而其波動向量爲滿足赫爾姆霍茲(Helmholtz)方程式的任何 一個實數(因此,這些平面波爲傳播波)。任何一個傳播波(例 如,一個來自點來源的傳播球面波)可以延展爲這些平面波的疊 力口。波動向量的大小根據馬克斯威爾(Maxwell)方程式而全然由 頻率和速度來決定,即 k=27i(sp/c)1/2=27ia=(kx2+ky2+kz2)1/2。 對傳播波而言,kx、1^和kz爲實數,因而必須較小於k値( 在自由空間中k=kQ)。這些波只有在λ的層級才具有解像能 力。無論如何,這些波不能用來重建,例如一個球面波, 其波前具有小於波長λ的半徑。一組適用而完整的希爾博特 空間應該包含數個平面波,且其波動向量爲任意滿足馬克 斯威爾方程式的複數,以建立如此的一個球面波。由於允 許虛數向量,所以構成要素(kx、ky和kz)可以爲任意値而 仍能滿足馬克斯威爾方程式。在此橫向因素kr=(kx2+ky2)1/2 較大於k値的”平面波”將具有較高的橫向解像能力(在l/kr 的層級)。無論如何,由於它們必須具有虛數成份kz來滿 足馬克斯威爾方程式,所以這些波爲”瞬逝”的並且不能傳 播遠大於一個波長λ。不同的瞬逝波顯微鏡檢測方法使用不 同的工具來得到強的瞬逝波,以及瞬逝波和所檢視之物質 兩者間的強交互作用。例如,以Γ(«λ)爲半徑投入波源的 _10__1T printed by the China Consumers' Cooperatives of the Ministry of Economic Affairs and the Central Consumer Standards Cooperative Bureau of the Ministry of Economic Affairs and printed by the Consumer ’s Consumers Cooperative Association Λ7 B7 5. The results of the invention (γ) show that the metal parts have different heights and different conductivity coefficients. section. Detailed Description of the Invention_ Part of the present invention is described in the co-examination application No. 08/717 '321 and T. Wei and X.-D Xiang described in Appl. Phys. Lett ·' 68 '3506 (1996) Made at least one embodiment. An image resolution of approximately 100 nm in a non-conductive material has been achieved with a sensitivity of approximately 1.0 (T3). The present invention improves the visual image resolution of a scanning evanescent electromagnetic microscope 'and extends its use to a quantitative microscope detection essential Simultaneous measurement. Its microscope refers to a SEMM and its substitutes, and “SEMM originally refers to a scanning evanescent microwave microscope.” Because its microscope is not limited to the field of microwaves, it refers to “scanning evanescent "Electromagnetic microscopy". Using SEMM, quantitative microscopy can obtain multiple electrical impedances of non-conductive, ferroelectric, and conductive materials at resolutions below micron. The use of SEMM is not limited to the microwave field. More precisely In other words, the electromagnetic frequency of the invented microscope is limited by the electron mobility of the sample measured at the high end (that is, the material's ion body frequency), and by the probe tip resonance hole at the low end. Part of the actual physical size. For a copper sample, the frequency range from infrared to microwave in the electromagnetic spectrum can be used Scanning evanescent microscope. If the resonance is replaced by a coaxial cable with an end barrier connected to a coaxial protective component, the low end of the measurement frequency must be dc. To understand some of the basics of this invention for reviewing the evanescent microscope inspection Property 9 This paper is again applicable to the ten national standards (CNS> Λ4 specification (210 X 297 mm) ί Please read the notes on the back Λ write this page} Γ Order printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economy Λ7 ______________ B7 ___ ^ _ 5. The invention concept (g) is helpful. The evanescent wave in this article refers to the electromagnetic wave represented by the imaginary wave vector, not from the dissipation. In fact, the evanescent electromagnetic wave Is the photon equivalent of the quantum mechanical electron wave in the classical band gap region (within a screen wall). In the far-field description of the electromagnetic wave, a set of orthogonal characteristic functions in Hilbert space is selected to As plane waves, and its wave vector is any real number that satisfies the Helmholtz equation (thus, these plane waves are propagating waves). A broadcast wave (for example, a propagating spherical wave from a point source) can be extended to the superposition of these plane waves. The magnitude of the wave vector is determined entirely by frequency and velocity according to the Maxwell equation, that is, k = 27i ( sp / c) 1/2 = 27ia = (kx2 + ky2 + kz2) 1/2. For propagating waves, kx, 1 ^, and kz are real numbers and must be smaller than k 于 (k = in free space kQ). These waves can only be resolved at the level of λ. In any case, these waves cannot be used for reconstruction, such as a spherical wave, whose wavefront has a radius smaller than the wavelength λ. A set of applicable and complete Hiab The special space should contain several plane waves, and its wave vector is an arbitrary complex number that satisfies Maxwell's equation to establish such a spherical wave. Because imaginary vectors are allowed, the constituent elements (kx, ky, and kz) can be arbitrary 値 and still satisfy the Maxwell equation. Here the horizontal factor kr = (kx2 + ky2) 1/2 "plane waves" larger than k 値 will have a higher horizontal resolution (at the level of 1 / kr). In any case, since they must have an imaginary component kz to satisfy the Maxwell equations, these waves are "ephemeral" and cannot propagate much larger than a wavelength λ. Different evanescent wave microscope inspection methods use different tools to obtain strong evanescent waves and the strong interaction between the evanescent wave and the substance being examined. For example, _10__ with a radius of Γ («λ)

i紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公H (請先閲讀背面之注意事項本頁) 衣. 訂 經濟部中央標準局員工消费合作社印裝 .' A 7 _ B7 一. " —.' . . 五、發明説明(7 ) 金屬球狀體或尖端將產生瞬逝波(以形成在金屬表面上並滿 足邊界條件的一個球面波),其波動向量的範圍達kr〜1/r而 解像能力達〜r。由於因極化效應而減小了有效的尖端半徑 ,尖端和樣本(具有高而有效的介電常數)之間的交互作用 可以進一步地增加高kr因素和解析度。由於這些波在自由 空間中衰減超過一個r的距離,所以其樣本必須置於尖端 的r範圍之內以得到強的交互作用。要注意的是,由於在 傳導性材質中的ke=2Tcae其値相當大於自由空間中的値’ 所以在傳導性材質中這些波並不需是瞬逝的。 所發明的掃描瞬逝顯微鏡使用一個瞬逝波來使其表面 以高解析度成像,並且用來達到影像中詳細解析的複數電 氣阻抗之定量量測。所發明的儀器使用尖端周圍的瞬逝波 和所要掃描的樣本之間的近場交互作用。 圖1顯示所發明的近場顯微鏡系統,其系統使用包含 一個微波共振器之新穎的瞬逝探針架構,共振器則如所繪 的微波空腔10,其具有電氣地連接到空腔1〇的產生器30 用來供應一個輸入信號,其信號經由一個同軸接線32至空 腔上一個所連接的環線輸入12。空腔10 —個所連接的環 線輸出14經由第二個同軸接線42連接到一個檢波器4〇。 檢波器40,依次地提供輸出信號到一個資料獲取單元50 ° 來自資料獲取單元50的資料,之後則輸入一個電腦60中 ,電腦60將其資料轉換成一種看得見的影像傳至連接電腦 60的影像顯示器70。除了連接的環圈或調諧的迴路之外的 其他機構可以用來耦合往返於共振空腔的能量’如詳細地 —__ ·_11______ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 7 4--rI-^-----J! .(請先閲讀背面之注意事項寫本頁) 訂· 經濟部中央標準局員工消費合作社印製 Α7 Β7 五、發明説明(l〇) 描述於D· M. Pozar所作的,,微波工程”一書之中’(愛迪生-威廉出版公司(Addison-Wesley),紐約’ 1990)。 尖端的結構· 最佳習知技術的探針尖端其中之一包含一個開路端同 軸電纜,同軸電纜包括一個被絕緣體所環繞並且封於外部 屏壁中的中心導線。這種尖端型式產生一個近場瞬逝波和 一個遠場瞬逝波;近場瞬逝波在衰減而導致高解析度的量 測之前,其傳播不能大於幾個波長(λ)。由於干擾近場瞬逝 波,傳播波並不是所要的。爲了將傳播波最小化’硏究人 員試圖使用具有小之又小的直徑之同軸電纜’但其結果是 大量的能量損失,以及需要困難的物理架構才能避免保護 層和成爲問題的中心線之間的電氣損壞。由於在傳統同軸 電纜線設計上實際的限制,此發明者發展一種將中心線削 尖並延伸出保護層一段距離的結構,或者一個削尖的尖端 機械地和電氣地連接到中心線。當左邊的洞孔能夠允許遠 場傳播波傳達到樣本並且支配近場傳播波時,爲了將探針 削尖端和外部保護端之間所產生的任何電磁場最小化’則 將一個額外發明的保護組件附加到同軸電纜的底部邊緣。 另外,此發明者增加一個直接設置於探針尖端附近或之上 的共振器,使其能以較佳的效率和靈敏度來產生並檢測出 瞬逝波,儘管其共振器對每一個應用而言並不是必須的。 所發明的SEMM尖端限制傳播波的產生以使得其能夠 有效地達到高解析度的瞬逝波量測。發明來限制遠場傳播 波產生的尖端之一個特點爲一個傳導性的保護組件,其保 12 本紙張又度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項寫本頁) 、1Τi Paper size applies Chinese National Standard (CNS) Α4 specification (210 × 297 male H (please read the note on the back page first). Clothing. Order printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. A 7 _ B7 I. " —. '.. 5. Description of the invention (7) A metallic spheroid or tip will produce an evanescent wave (to form a spherical wave on the metal surface and meet the boundary conditions), and its wave vector ranges from kr ~ 1 / r and the resolution is up to ~ r. Since the effective tip radius is reduced due to the polarization effect, the interaction between the tip and the sample (with a high and effective dielectric constant) can further increase the high-kr factor and resolution Because these waves attenuate more than a distance of r in free space, their samples must be placed within the r range of the tip to get a strong interaction. It should be noted that since ke = 2Tcae in the conductive material Its 値 is considerably larger than 値 in free space, so these waves need not be evanescent in a conductive material. The invented scanning ephemeral microscope uses an evanescent wave to image its surface at high resolution, and In order to achieve the detailed measurement of the complex electrical impedance quantitative analysis in the image. The invented instrument uses the near-field interaction between the evanescent wave around the tip and the sample to be scanned. Figure 1 shows the invented near-field microscope system, The system uses a novel evanescent probe architecture including a microwave resonator. The resonator is a microwave cavity 10 as shown, which has a generator 30 electrically connected to the cavity 10 for supplying an input signal. Its signal goes through a coaxial connection 32 to a connected loop line input 12 on the cavity. Cavity 10-A connected loop line output 14 is connected to a detector 40 via a second coaxial line 42. The detector 40, in turn Provide the output signal to a data acquisition unit 50 ° The data from the data acquisition unit 50 is then input to a computer 60, which converts its data into a visible image and transmits it to an image display 70 connected to the computer 60. Except Mechanisms other than connected loops or tuned loops can be used to couple energy to and from the resonant cavity 'as detailed —__ · _11 ______ Paper size applies Chinese National Standard (CNS) A4 (210X297 mm) 7 4--rI-^ ----- J!. (Please read the precautions on the back to write this page) Order · Central Bureau of Standards, Ministry of Economic Affairs Printed by Employee Consumer Cooperatives A7 B7 V. Invention Description (10) is described in D. M. Pozar, "Microwave Engineering" "In a Book" (Addison-Wesley, New York, 1990) Structure of the Tip · One of the best-known probe tips contains an open-ended coaxial cable. The coaxial cable includes a center wire surrounded by an insulator and enclosed in an external screen wall. This cutting-edge version produces a near-field evanescent wave and a far-field evanescent wave; the near-field evanescent wave must not propagate more than a few wavelengths (λ) until it is attenuated and a high-resolution measurement is made. Propagating waves are not desirable because they interfere with near-field evanescent waves. In order to minimize the propagation wave 'investigators try to use coaxial cables with small and small diameters' but the result is a large amount of energy loss and a difficult physical architecture is needed to avoid between the protective layer and the problematic centerline Electrical damage. Due to practical limitations in the design of conventional coaxial cable, the inventor developed a structure that sharpened the centerline and extended a distance from the protective layer, or a sharpened tip was mechanically and electrically connected to the centerline. When the hole on the left allows far-field propagating waves to be transmitted to the sample and dominates near-field propagating waves, in order to minimize any electromagnetic field generated between the probe tip and the external protective end, an additional inventive protective component Attach to the bottom edge of the coaxial cable. In addition, the inventor added a resonator directly near or on the tip of the probe, which enables it to generate and detect evanescent waves with better efficiency and sensitivity, although its resonator is for every application It is not necessary. The invented SEMM tip limits the generation of propagating waves so that it can effectively achieve high-resolution evanescent wave measurements. A feature of the tip that was invented to limit the far-field propagation wave is a conductive protection component, which guarantees that the 12 papers are again applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) (Please read the note on the back first Matters written on this page), 1T

Hr 修 Μ ,: 修 Μ ,: 經濟部智慧財產局員工消費合作社印製 五、發明說明([1) 護組件延伸出同軸電纜部份,否則同軸電纜將是開放於外 的。參照圖1和2 ’ 一種新的電氣傳導保護組件16設置於 探針尖端20所延伸的末端,使得其外部邊緣連接到外部的 同軸保護層17和其內部邊緣的環狀物’或圍繞物’而探針 尖端並無電氣地短路到它。傳導用的保護組件1要適當地 細薄,於Ιμηι的層級,以避免引起過量的損失。其實際上 較佳地提供一個低損失的絕緣體,如藍寶石。實質上,外 部保護1^_置於絕緣體的末端部份16的周圍’卻具有一個 空孔或洞孔22,探針可以延伸出此洞孔,而不須電氣地短 路到其保護層。其洞孔傳統爲圓形的,但並不一定是要圓 形的。此洞孔較小於同軸電纜和用來產生瞬逝波的一個共 振器。方便的是,絕緣體的末端部份形成一個趨近垂直於 探針部份的直線之平面,只要探針的靈敏度保持在可接受 的程度和避免Q値因數的衰減,無論如何一個漸尖的表面 可以延長外部保護層和探針之間的一部分距離。其Q値因 數乃是一個品質因數;相等於共振器中的總能量和從共振 器散逸的能量之比率(EtcHal/Edissipated)。Q値因數爲一個空腔 的幾何形狀之函數,而使空腔內壁漸尖可能會減低Q値因 數(如同減低靈敏度),對任何一個已指定的所要量測而言 ,此情況並不被接受。 如圖1和2所示,一個削尖的金屬尖端20,其乃是依 照本發明所實行的一個類似點狀的瞬逝波發射器和一個檢 波器,延伸出一個在空腔10末端障壁16的圓筒狀空孔或 洞孔22,如以下更詳細的描述。樣本80已架置妥當且直 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公髮) (請先閱讀背面之注意事項再填寫本頁)Hr Repair M: Repair M: Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the Invention ([1] The protective component extends out of the coaxial cable, otherwise the coaxial cable will be open to the outside. 1 and 2 ′ A new electrical conduction protection assembly 16 is provided at the end of the probe tip 20 extension such that its outer edge is connected to the outer coaxial protective layer 17 and the ring 'or surround' of its inner edge. The probe tip is not electrically shorted to it. The conductive protection component 1 should be appropriately thin, at a level of 1 μm to avoid causing excessive losses. It is actually better to provide a low loss insulator such as sapphire. In essence, the outer protection 1 ^ _ is placed around the end portion 16 of the insulator, but has a hole or hole 22, and the probe can extend out of this hole without having to be electrically shorted to its protective layer. The holes are traditionally round, but they do not have to be round. This hole is smaller than the coaxial cable and a resonator used to generate evanescent waves. Conveniently, the end portion of the insulator forms a plane approaching a straight line perpendicular to the probe portion, as long as the sensitivity of the probe is maintained at an acceptable level and the Q factor is not attenuated, no matter what a tapered surface Part of the distance between the outer protective layer and the probe can be extended. Its Q factor is a figure of merit; it is equal to the ratio of the total energy in the resonator to the energy dissipated from the resonator (EtcHal / Edissipated). The Q 値 factor is a function of the geometry of the cavity, and tapering the interior wall of the cavity may reduce the Q 値 factor (like reducing sensitivity), which is not the case for any specified required measurement. accept. As shown in FIGS. 1 and 2, a sharpened metal tip 20 is a point-like evanescent wave transmitter and a detector implemented in accordance with the present invention, extending a barrier 16 at the end of the cavity 10 The cylindrical hollow or hole 22 is described in more detail below. Sample 80 has been placed properly and the paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297). (Please read the precautions on the back before filling this page)

經濟部中央標隼局員工消費合作衽印製 A7 B7 五、發明説明(p) 接鄰接於削尖尖端20。樣本80乃是架置於一個可移動的 靶式托板上或步進的機構90上,藉由一個X-Y-Z掃描控 制器1〇〇而能以X,或Y或Z軸來移動,掃描控制器1〇〇 乃是藉由來自電腦60的信號依次控制的。 微波產生器30,檢波器4〇,資料獲取單元50,電腦 60,顯示器70,可移動的靶式托板90,和X-Y-Z掃描控 制器100皆由商業上可買得到的設備所組成。例如,微波 產生器30可從程式測試來源公司(Programmed Test Source Company)買到,如型號PTS1000 ;檢波器40可從帕斯德 納克事業(Pasternack Enterprises)買到,如型號 PE800-50 ; 資料獲取單元50可從國際儀器(National Instrument)買到, 如型號PC-TI002150 ;電腦60可由任何標準的可程式電腦 所組成;顯示器70可由任何商業上買得到的螢光幕所組成 ;可移動的靶式托板上或步進的機構90可從伊令公司 (Ealing Company)買到,如型號61-0303 ;而X-Y掃描控制 器100可從伊令公司(Ealing Company)買到,如型號37-1039。一個四分之一波長空腔的設計原理,如空腔10,可 由F.E.特曼(Terman)所作的”無線電工程手冊”中得知。 空腔10包含一個標準的四分之一或二分之一波長之圓 柱形微波空腔共振器,共振器具有一個中心金屬導體18, 而中心金屬導體18則具有一個漸尖的末端19,再者,削 尖的金屬尖端或探針20裝設於漸尖的末端19上。一個非 必要的墊片,爲一種絕緣材質例如鐵氟龍(Teflon)所製成, 可以用來協助保持中心導體18的中心位置以同軸於空腔。 ^ 14 — ’ 本紙張尺度適用中國國家榡準(CNS ) Λ4規格(21〇X 297公釐) (請先閲讀背面之注意事馬本頁) .裝. 訂 A7 B7 五、發明説明(〇) 如圖所示的,探針尖端20延伸經過並突出於末端障壁16 上所成形的洞孔22。 金屬探針尖端的粗細 金屬探針尖端20具有一個削尖的末端,其上的直徑可 以尖細如大約1〇〇埃左右。尖端20的削尖端在直徑上逋常 將會從小如1〇〇埃(l〇nm)左右改變到大如ΙΟΟμηι左右,而 較佳的範圍則是從大約200埃(20nm)左右到大約20μιη左 右。削尖的金屬探針尖端20可以如此成形:例如,藉由電 氣化學蝕刻一條金屬線的一部分,金屬線於電氣化學蝕刻 之前可以具有一個從Ιμιη左右到0.2毫米(mm)左右的直徑 。削尖的金屬探針尖端20可以藉由焊接或任何其他適合的 方式,連接到中心導體18的漸尖端19 ;其中的焊接或適 合的方式將會在尖端20和漸尖探針末端19之間提供一個 牢固的機械和電氣接點。 洞孔的直徑 實驗上,洞孔22最小的直徑已經決定爲保持高Q値 因數和高共振器靈敏度的最小直徑。洞孔必須足夠得小到 不會放射出一種傳播波,其傳播波將會干擾瞬逝波的量測 。爲了保持高的Q値,洞孔22最小的直徑應該較大於末 端障壁16的厚度。換言之,末端障壁厚度t除以洞孔直徑 d必須小於l(t/d«l)以保持共振器的高Q値因數(或低損失 )。觀念上,末端障壁應該藉由在低損失絕緣板(〜1mm厚) 上電鑛一層1-2μιη厚的良好導電薄膜(銀或銅);其絕緣板 如藍寶石或L2A103,用以減小厚度t,同時保持其堅硬程 ____15____ ^紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) Α7 Β7 五、發明説明(\ψ). 度(機械的震動並不是所要的)°洞孔直徑也有關於金屬探 針尖端的直徑,金屬探針尖端經過並且突出於洞孔22之外 。因此,最小的洞孔直徑通常至少大約爲200埃(20nm)左 右。無論如何,如果洞孔22的直徑太大,解析度將會降低 。無論如何,已可得知的是’洞孔22的直徑可以大如 3mm而仍能保持滿意的解析度。典型地,洞孔22直徑的 範圍則是從大約500埃(50nm)左右到大約1mm左右。 經渦# Η空出湎孔的金屬尖端之延伸 經濟部中央標準局員工消費合作社印製 (请先閱讀背齑之泣意事項寫本育〇 如圖1和2所示削尖的金屬实端20延伸經過並且突出 原柱狀的洞孔22 ’而其洞孔22乃是在共振器10的末端障 壁16之中。爲何探針尖端20必須延伸出在共振氣10末端 障壁16之中的洞孔22 —段可與洞孔22直徑比較的距離之 理由,根據本發明,乃是爲了減低有關解析度的洞孔尺寸 效應。換言之,替代在洞孔22終止,如在習知技術的架構 ,削尖的金屬尖端20延伸經過並且突出洞孔22的理由’ 乃是爲了提供更多的空間解析度,其在尺寸上寧願憑探針 尖端20的半徑來決定而不願憑洞孔22的直徑來決定。突 出洞孔22的探針20之延伸對樣本的掃描而言也有所幫助 和便利。延伸經過並且突出洞孔22之削尖的金屬探針尖端 20部份的長度乃是有關於洞孔22的直徑。延伸經過並且 突出洞孔22之探針尖端20的長度範圍則是從大約洞孔22 直徑的1/3左右到大約洞孔22直徑的3倍左右。延伸長度 對洞孔直徑較佳的比率已經得知大約爲1左右。延伸長度 應該進一步被挑選爲不會引起巨大背景信號(來自與樣本交 16 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) 經濟部中央椟率局員工消費合作衽印裝 Α7 Β7 五、發明説明(ί<) 互作用的洞孔之輻射所引起)的長度,同時仍能藉由尖端-樣本的交互作用而引起一個強大的信號。 共振器 仍然參照圖1和2的實施例,空腔10,包含護層32 和末端障壁16,乃是由金屬所形成的,而較強磁性材質合 適的是由一種反磁性材質所組成,例如銅或銀’以使得在 空腔10的連接上能夠使用調變磁場。空腔1〇的直徑(或尺 寸改變的直徑)將決定空腔的Q値因數,同時空腔1〇的長 度將會等於波長(於共振頻率)除以4,即是空腔長度=λ/4( 一個四分之一波長的空腔)。爲提供一個理想的Q値因數’ 通常空腔直徑應該要夠大,且空腔10對中心電極18的直 徑比率應該要在大約3.6左右。一個微波空腔或共振器的 Q値可以定義爲空腔的品質因數,並且應該盡可能地保持 在高的數値。可以藉由增加共振器的輸入微波功率和無載 Q値,記爲Qu,來改善近場微波的靈敏度;其中的共振器 具有一個最理想的耦合,乃是藉由調整耦合強度以使得有 載的Q値,記爲Q,,爲Qu的2/3。 共振器空腔容積中爲一種非傳導性的材質所塡滿’較 佳的是一種具有低損失的材質。共振波長直接正比於塡滿 空腔的相對介電常數之平方根即是λ=ε1/2/λ〇。相對介電常 數則正比於真空中的介電常數。因此使用一種具有大ε的介 電材質會降低空腔的共振頻率或減小給定共振範圍所需的 空腔之尺寸。能方便用來塡滿共振器空腔的樣本介電材質 包括空氣、緦太酸鹽(SrTi03)和藍寶石(Α12〇3)。 _______17__ 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X29*7公釐) (請先閱讀背面之注意事項HI寫本頁) 聲 ,ιτ A7 B7 :修正 補充 五、發明說明(I i) 共振器的高度爲λ/4的整數倍即是ηλ/4,其中η爲一· 個整數。如果其共振器爲一種開放式的共振器,則η爲一 個偶整數;如果共振器爲一種封閉的共振器,則η爲一個 奇整數。 替代共振器的同軸雷纜之功用 共振器能夠以一個標準同軸電纜來代替。圖16顯示所· 發明的探針尖端之1個實施例,其中的探針尖端使用傳統 同軸電纜替代一個共振器。一個電磁能量來源1傳送電磁 能量到其電纜上。同軸電纜具有一個環繞絕緣體組件44和 中心傳導性組件48的外部保護組件52。中心傳導性組件 延伸突出同軸電纜的末端,而削爲尖端或細微的削尖尖端 60則附於其上。在電纜同軸部份的末端,一個薄金屬末端. 障壁46附於絕緣體上,其絕緣體則置於保護層52和中心 導體48之間。末端障壁的厚度乃是受位於共振器末端的傳 導性末端障壁16之相同的考量所支配。位於同軸電纜末端 的末端障壁46,具有一個足夠大小的洞孔以允許中心電纜 48通過末端障壁46,而使中心探針能無電氣地短路到其末 端障壁上。 所發明之包含一個同軸電纜的探針.,另外具有一個位 於末端障壁46和來源1之間的直接耦合器11。直接耦合 器43_耦>合來源的電磁波到電纜上。電磁波沿著電纜傳下至 末端,並且藉由其末端的壁障反射回去。探針的尖端54以 及所掃描的樣本之間的交互作用則修正反射波的特性。反 射波藉由直接耦合器連接到一個檢波器50中,並且藉 18 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -裝--------訂---------. 經濟部智慧財產局員工消費合作杜印製 經濟部中央標準扃員工消费合作社印製 •A 7 B7 _ 五、發明説明(^) 由檢波器來測量出反射波的大小和相位。樣本物理特性的 定量値,例如複合的導電係數、介電常數、正切損失函數 、導電係數、和其他電氣參數乃是使用設計於SEMM中的 方程式來決定。 非傳導件或強磁件材質複數雷氣阳杭之定量量測 使用所發明具有保護的一個探針尖端,與減小或消除 遠場波成份的共振器,非傳導性材質已經以l〇〇nm的空間 解析度和lxl〇_3的靈敏度成像。再者,使用一個探針尖端 周圍場分佈的分析表現之數値,來實行一種非傳導性材質 複雜的電氣阻抗之定量量測。因此而建立一個電氣阻抗數 値的圖像,其符合影像的解析度和靈敏度,且其中所量測 到的複數阻抗値與在影像上所看得見的特性有相互關係。 再參照圖2在一個實施例中同軸共振器具有λ/4的高 度。一個具有中心洞孔之藍寶石圓盤21置於末端平面之上 ,其中心洞孔只略大於尖端導線。尖端直徑介於大約50μπι 和大約ΙΟΟμιη之間。大約Ιμπι的金屬層置於藍寶石圓盤的 外部表面上來保護尖端以避免遠場傳播波。藉由集膚深度 所決定的金屬被覆厚度乃是爲了避免形成微傳輸線,因微 傳輸線在洞孔近處會有大量的損失。在一個實施例中,藍 寶石圓盤用來減低震動,並且使用絕緣接著劑將其連接到 探針尖端上。另外,具有低能量損失的絕緣接著劑可以用 來固定尖端導線於末端障壁保護層,使得尖端不會倚著保 護層震動。 在一個不同的實施例中,整個共振空腔塡滿一種非傳 一 ___ 19_____ 尺度適用中國國家棟準(CNS〉Α4規格(2l〇X297公釐) : ~ .(請先閱讀背面之注意事項β寫本頁)Printed by employees of the Central Bureau of Standards of the Ministry of Economic Affairs on consumer cooperation A7 B7 V. Description of the invention (p) Adjacent to the sharpened tip 20. The sample 80 is mounted on a movable target plate or a stepping mechanism 90, and can be moved in the X, or Y or Z axis by an XYZ scanning controller 100. The scanning controller 100 is controlled sequentially by a signal from the computer 60. The microwave generator 30, the detector 40, the data acquisition unit 50, the computer 60, the display 70, the movable target holder 90, and the X-Y-Z scanning controller 100 are all composed of commercially available equipment. For example, the microwave generator 30 can be purchased from a Programed Test Source Company, such as model PTS1000; the detector 40 can be purchased from Pasternack Enterprises, such as model PE800-50; The acquisition unit 50 can be purchased from National Instrument, such as model PC-TI002150; the computer 60 can be composed of any standard programmable computer; the display 70 can be composed of any commercially available fluorescent screen; removable The target plate or stepping mechanism 90 is available from Ealing Company, such as model 61-0303; and the XY scanning controller 100 is available from Ealing Company, such as model 37 -1039. The design principle of a quarter-wavelength cavity, such as cavity 10, can be found in the "Radio Engineering Handbook" by F.E. Terman. The cavity 10 contains a standard quarter or half-wavelength cylindrical microwave cavity resonator. The resonator has a central metal conductor 18, and the central metal conductor 18 has a tapered end 19. Alternatively, a sharpened metal tip or probe 20 is mounted on the tapered tip 19. A non-essential gasket, made of an insulating material such as Teflon, can be used to help maintain the center position of the center conductor 18 to be coaxial with the cavity. ^ 14 — 'This paper size applies to China National Standards (CNS) Λ4 specification (21〇X 297 mm) (Please read the note on the back page first). Binding. Order A7 B7 V. Description of the invention (〇) As shown, the probe tip 20 extends through and protrudes from a hole 22 formed in the end barrier 16. Thickness of the metal probe tip The metal probe tip 20 has a sharpened end, and the diameter thereon can be as thin as about 100 angstroms. The diameter of the sharpened tip of tip 20 will usually change from as small as 100 angstroms (10 nm) to as large as 100 μm, and the preferred range is from about 200 angstroms (20 nm) to about 20 μm . The sharpened metal probe tip 20 may be shaped such that, for example, by chemically etching a portion of a metal wire, the metal wire may have a diameter from about 1 μm to about 0.2 millimeters (mm) before the electrochemical etching. The sharpened metal probe tip 20 can be connected to the tapered tip 19 of the center conductor 18 by welding or any other suitable method; the welding or suitable method will be between the tip 20 and the tapered probe tip 19 Provide a strong mechanical and electrical contact. The diameter of the hole In experiments, the smallest diameter of the hole 22 has been determined as the smallest diameter to maintain a high Q 値 factor and high resonator sensitivity. The hole must be small enough not to emit a propagating wave, which will interfere with the measurement of evanescent waves. In order to maintain a high Q 値, the minimum diameter of the hole 22 should be larger than the thickness of the terminal barrier 16. In other words, the end barrier thickness t divided by the hole diameter d must be less than l (t / d «l) to maintain a high Q 的 factor (or low loss) of the resonator. Conceptually, the terminal barrier should be a 1-2μm thick conductive film (silver or copper) on the low-loss insulation board (~ 1mm thick); the insulation board such as sapphire or L2A103 is used to reduce the thickness t , While keeping its hard course ____15____ ^ Paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) Α7 Β7 V. Description of invention (\ ψ). Degree (mechanical vibration is not required) ° Hole diameter There is also the diameter of the metal probe tip, which passes through and protrudes beyond the hole 22. Therefore, the smallest hole diameter is usually at least about 200 angstroms (20 nm). In any case, if the diameter of the hole 22 is too large, the resolution will decrease. In any case, it has been known that the diameter of the 'hole 22 can be as large as 3 mm while still maintaining a satisfactory resolution. Typically, the diameter of the holes 22 ranges from about 500 angstroms (50 nm) to about 1 mm. Jing vortex # The extension of the metal tip that empties the hole is printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs (please read the textbook of the Weeping Matters first), as shown in Figure 1 and 2 The hole 22 'extending through and protruding from the original column is in the end barrier 16 of the resonator 10. Why the probe tip 20 must extend out of the hole in the end barrier 16 of the resonance gas 10 22—The reason for the distance comparable to the diameter of the hole 22 according to the present invention is to reduce the effect of hole size on the resolution. In other words, instead of terminating at the hole 22, as in the conventional technology architecture, The reason that the pointed metal tip 20 extends through and protrudes the hole 22 is to provide more spatial resolution, and its size is preferably determined by the radius of the probe tip 20 rather than by the diameter of the hole 22 Decided. The extension of the probe 20 protruding from the hole 22 is also helpful and convenient for scanning the sample. The length of the portion of the sharpened metal probe tip 20 extending through and protruding from the hole 22 is related to the hole Diameter 22. Warp And the length of the probe tip 20 protruding from the hole 22 ranges from about 1/3 of the diameter of the hole 22 to about 3 times the diameter of the hole 22. A better ratio of the extension length to the diameter of the hole has been known It is about 1. The extension length should be further selected so as not to cause a huge background signal (from the paper size of 16 papers to the Chinese National Standard (CNS) A4 specification (210 X 297 mm)) Consumption cooperation printing A7 Β7 V. The length of the invention (induced by the radiation of the interaction hole), while still generating a strong signal through the tip-sample interaction. The resonator still refers to In the embodiment of FIGS. 1 and 2, the cavity 10, including the protective layer 32 and the end barrier 16, is formed of metal, and the stronger magnetic material is suitably composed of a diamagnetic material, such as copper or silver. So that the modulation magnetic field can be used on the connection of the cavity 10. The diameter (or the diameter of the size change) of the cavity 10 will determine the Q factor of the cavity, and the length of the cavity 10 will be equal to the wavelength (in Total Frequency) divided by 4, which is the cavity length = λ / 4 (a quarter-wavelength cavity). To provide an ideal Q factor, the cavity diameter should be large enough, and the cavity has 10 pairs. The diameter ratio of the center electrode 18 should be about 3.6. The Q 値 of a microwave cavity or resonator can be defined as the figure of merit of the cavity, and it should be kept as high as possible. By adding a resonator The input microwave power and unloaded Q 値 are denoted by Qu to improve the sensitivity of the near-field microwave. The resonator has an optimal coupling, which is to adjust the coupling strength so that the loaded Q 强度 is recorded as Q, is 2/3 of Qu. The volume of the cavity of the resonator is filled with a non-conductive material, and a material with low loss is preferred. The resonance wavelength is directly proportional to the square root of the relative permittivity of the full cavity, which is λ = ε1 / 2 / λ〇. The relative dielectric constant is proportional to the dielectric constant in the vacuum. Therefore, using a dielectric material with a large ε will reduce the resonant frequency of the cavity or reduce the size of the cavity required for a given resonance range. Sample dielectric materials that can be conveniently used to fill the cavity of the resonator include air, galactamate (SrTi03), and sapphire (Α12〇3). _______17__ This paper size applies to Chinese National Standard (CNS) Α4 size (210X29 * 7mm) (Please read the note on the back first to write this page) Acoustic, ιτ A7 B7: Correction Supplement V. Invention Description (I i) Resonance The height of the device is an integer multiple of λ / 4, which is ηλ / 4, where η is an integer. If the resonator is an open resonator, η is an even integer; if the resonator is a closed resonator, η is an odd integer. The function of coaxial lightning cable instead of resonator The resonator can be replaced by a standard coaxial cable. Fig. 16 shows an embodiment of the inventive probe tip, in which the probe tip uses a conventional coaxial cable instead of a resonator. An electromagnetic energy source 1 transmits electromagnetic energy to its cable. The coaxial cable has an outer protective component 52 that surrounds the insulator component 44 and the central conductive component 48. The central conductive component extends beyond the end of the coaxial cable, and a sharpened or finely-sharpened tip 60 is attached to it. At the end of the coaxial portion of the cable, a thin metal end. A barrier 46 is attached to the insulator, and the insulator is placed between the protective layer 52 and the center conductor 48. The thickness of the terminal barrier is governed by the same considerations of the conductive terminal barrier 16 at the end of the resonator. The end barrier 46 at the end of the coaxial cable has a hole of sufficient size to allow the center cable 48 to pass through the end barrier 46 so that the center probe can be electrically shorted to the end barrier. The invented probe includes a coaxial cable, and additionally has a direct coupler 11 between the end barrier 46 and the source 1. The direct coupler 43_couples electromagnetic waves from a source to the cable. The electromagnetic wave travels down the cable to the end and is reflected back by a barrier at the end. The interaction between the tip 54 of the probe and the sample being scanned modifies the characteristics of the reflected wave. The reflected wave is connected to a detector 50 by a direct coupler, and 18 paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page) -Equipment -------- Order ---------. Intellectual Property Cooperation of the Ministry of Economy Intellectual Property Bureau Staff Printing Du printed by the Central Standards of the Ministry of Economy 扃 Printed by Employee Consumer Cooperatives • A 7 B7 _ V. Invention Note (^) The size and phase of the reflected wave are measured by the detector. The quantitative characteristics of the physical properties of the sample, such as the composite conductivity, dielectric constant, tangent loss function, conductivity, and other electrical parameters are determined using equations designed in SEMM. Non-conducting or ferromagnetic material is measured by a number of Leiqi Yanghang quantitative measurements using a probe tip with protection, and a resonator that reduces or eliminates far-field wave components. Spatial resolution of nm and sensitivity of lx10_3. Furthermore, a quantitative measurement of the complex electrical impedance of a non-conductive material is performed using the analysis performance of the field distribution around the tip of a probe. Therefore, an image of electrical impedance number 建立 is established, which conforms to the resolution and sensitivity of the image, and the measured complex impedance 値 is related to the characteristics seen on the image. Referring again to Fig. 2, the coaxial resonator has a height of? / 4 in one embodiment. A sapphire disc 21 with a central hole is placed on the end plane, and its central hole is only slightly larger than the tip wire. The tip diameter is between about 50 μm and about 100 μm. A metal layer of approximately 1 μm is placed on the outer surface of the sapphire disc to protect the tip from far-field propagation waves. The thickness of the metal coating determined by the skin depth is to avoid the formation of micro-transmission lines, because the micro-transmission lines will have a large amount of loss near the hole. In one embodiment, a sapphire disc is used to reduce vibrations and is connected to the probe tip using an insulating adhesive. In addition, an insulating adhesive with low energy loss can be used to fix the tip wire to the end barrier protection layer so that the tip does not vibrate against the protection layer. In a different embodiment, the entire resonant cavity is filled with a non-transmitting ___ 19_____ scale applicable to China National Building Standard (CNS> Α4 specification (2l0 × 297 mm)): ~. (Please read the notes on the back first β write this page)

---n I----衣--I 1T——^---- 經濟部中央標準局員工消費合作社印製 A7 ^. . _B7 五、發明説明((g) 導性材質,例如SrTi03。依照共振波長反比於空腔所塡滿 的材質之相對介電常數的平方根,在其實例中共振空腔的 高度大大地減小。考慮λ=(<:/;Γ)ε_1/2,對f=lGHZ、且ε=300 的SrTi03而言,λ大約爲1.73cm,而共振器的高度,λ/4, 大約只有〇.43cm左右。其共振直徑也大大地縮小。如相互 等候判決的申請書序號08/717,321所說明的,一個影像 乃是藉由物理直接接觸地放置共振器的尖端於所要成像的 樣本上,並且以橫越樣本的表面來掃描其尖端。共振器於 一個頻率驅動,而其頻率略高或略低於共振器的共振頻率 。測量共振頻率的改變則是藉由記錄在輸入頻率之下的輸 出功率所得到的(如量測檢波器的輸出電壓)。當尖端掃描 樣本時,共振器的共振頻率減低如同其樣本不同區域的相 對導電係數之一個函數。因此,例如非常細微鈮金屬的導 線所塗刷於其上的,比如說,矽二氧化物,能夠以大約 5μιη左右(大約λ/100000左右)的空間解析度成功地成像。 在本發明中,除了檢出樣本表面導電係數相對的差異 之外’也能得到複數的電氣阻抗之定量量測。而如此爲可 能的’乃是由於共振頻率fr和品質因數Q由於介電常數和 任何材質的損失正切函數之作用而變動,例如置於探針尖 端近處的樣本。無論如何,在過去,對此作用關係所知的 並不足以從量測到的或Q之變動,而獲得有關介電常數 、損失正切函數、或複數電氣砠抗的定量資訊。 本發明包含一個具有一計算組件的掃描瞬逝波共振探 針顯微鏡,其計算組件能夠正確地陳述在樣本表面一連串 ----20___ 本紙張尺度適用中國國家標準(CNS )八4規格(210.X29*;公釐) (請先閱讀背面之注意事項β!寫本頁) 11¾. 訂 詩 經濟'部中央檩準局員工消費合作社印製 A7 .__;___ . — 87 _;_' 五、發明説明(ip 的位置上所測量到的fr和Q之一連串變動爲複數電氣阻抗( 例如介電常數、損失正切函數、或導電係數)。其計算組件 乃是以程式化來計算一連串不同的頻率下之ε和正切損失 (tan5)値。 其計算乃是從一種數學模型獲得的,其數學模型全然 描述於一篇題目爲”非傳導特性的定量微波近場顯微鏡”的 論文之中’爲發明者提呈科學儀器評論(Review of--- n I ---- clothing--I 1T —— ^ ---- A7 printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs ^.. _B7 V. Description of the invention ((g) Conductive material, such as SrTi03 According to the resonance wavelength inversely proportional to the square root of the relative dielectric constant of the material filled by the cavity, the height of the resonance cavity is greatly reduced in its example. Consider λ = (<:/; Γ) ε_1 / 2, For SrTi03 with f = lGHZ and ε = 300, λ is about 1.73cm, and the height of the resonator, λ / 4, is only about 0.43cm. The resonance diameter is also greatly reduced. As described in Application Serial No. 08 / 717,321, an image is obtained by placing the tip of the resonator on the sample to be imaged by physical direct contact, and scanning the tip across the surface of the sample. The resonator is on a The frequency is driven, and its frequency is slightly higher or lower than the resonance frequency of the resonator. The change in the measured resonance frequency is obtained by recording the output power below the input frequency (such as measuring the output voltage of the detector). When the tip scans the sample, the resonance frequency of the resonator decreases as much A function of the relative conductivity of different regions. Therefore, for example, a very fine niobium metal wire painted on it, such as silicon dioxide, can be resolved in a space of about 5 μηη (about λ / 100000). In the present invention, in addition to detecting the relative difference in the surface conductivity of the sample, a quantitative measurement of the electrical impedance can also be obtained. This is possible because of the resonance frequency fr and the quality factor. Q varies due to the dielectric constant and the loss tangent function of any material, such as samples placed near the tip of the probe. However, in the past, this interaction was not known enough from the measured or Q changes to obtain quantitative information about the dielectric constant, loss tangent function, or complex electrical reactance. The present invention includes a scanning evanescent wave resonance probe microscope with a calculation component that can be correctly stated in A series of sample surfaces ---- 20___ This paper size is applicable to China National Standard (CNS) 8-4 specifications (210.X29 *; mm) (Please read first Notes on the face β! Write this page) 11¾. The Book of Poetry Economy 'printed by the Central Consumers ’Cooperative Bureau of the Ministry of Consumers A7 .__; ___. — 87 _; _' V. Description of the invention (measured on the position of ip One of the series changes of fr and Q is the complex electrical impedance (such as dielectric constant, loss tangent function, or conductivity coefficient). Its calculation component is to calculate the ε and tangent loss (tan5) at a series of different frequencies by programming. The calculations were obtained from a mathematical model described entirely in a paper entitled "Quantitative Microwave Near-Field Microscopy with Non-Conducting Properties" to present a review of scientific instruments for the inventors.

Scientific Instruments),同意公開,並且於此合倂爲供參考 〇 使用所發明的顯微鏡探針尖端之放置方式不是以直接 安穩地碰觸樣本’就是在探針尖端和樣本之間保持一段小 間隙。有數個執行非傳導性樣本量測的步驟,詳細地描述 於下。總之’量測一個非傳導性樣本和一個樣本的損失正 切函數之方式包含, a) '决定探針的參考共振頻率fQ乃是藉由 i) 將探針置於足夠遠離樣本材質之處,使其不受樣 本影響; ii) 掃描一個頻率範圍; iii) 畫出頻率對功率的曲線圖; iv) 配合一條曲線來得知其最大的頻率,稱爲f〇 ; b) 藉由將fQ除以兩半功率振幅點所對應的頻率之差 値來決定; c) 由方程式S=MQ〇2來計算係數Μ,其中S爲在f〇 時之功率; 本紙張尺度適用中國國家標準(CNS ) A4規格(2〖〇Χ297公釐) (請先閲讀背面之注意事項本頁) 訂 經濟部中央標準局員工消費合作社印製 A7 . __________B7 , ' _;___ "X、發明説明(〆) d) 使用已知介電常數的樣本來校準在方程式5和6 中的幾何因數A、B和R。; e) 將掃描瞬逝電磁波顯微鏡的一個探針尖端置於樣 本的近處或安穩地碰觸樣本; f) 測量探針近處因樣本的接近而引起的共振頻率變 動; g) 測量探針近處因樣本的接近而引起的品質因數變 動;以及 h) 使用一對方程式來計算介電常數和損失正切函數 ,其方程式乃是從包含安穩接觸方程式2和3、探針-樣本 間隙方程式5和6的一群方程式或薄膜方程式中所挑選出 來的。 可替代的是,以上程序中頻率對功率的曲線可以使用 一種適合得到f〇和Q〇的洛仁子(Lorentz)線條型態來決定。 非傳導性材質的安穩接觸量測 當使用瞬逝波和一相當地小於探針波長的尖端半徑時 ,電磁波可以視爲半靜態,即是,場的波性質可以忽略。 另外,合理地認爲在微小探針尖端近處的樣本材質其介電 特性乃是齊性的和等向性的。 因此,ε=ε’+】ε”而ε>>ε。,以及ε’》ε”,其中ε爲複數的 介電常數,ε’爲介電常數的實數成份,ε”爲介電常數的虛 數成份,而ε〇爲自由空間中的介電常數。 再者,μ=μ’+〗μ”而μ〜μ〇,其中μ爲樣本的磁性導磁係 數,μ’爲磁性導磁係數的實數成份,而μ”爲磁性導磁係數 ' ___22______ 本紙張尺度適^中國國家標準(CNS ) Α4規格7 2丨0Χ297公釐) (請先閲讀背面之注意事- f本頁)Scientific Instruments), agree to make it public, and hereby incorporate it for reference 〇 The invented method of using the microscope probe tip is either to directly and securely touch the sample ’or to maintain a small gap between the probe tip and the sample. There are several steps for performing non-conductive sample measurements, described in detail below. In short, the way to measure the loss tangent function of a non-conductive sample and a sample includes, a) 'The reference resonance frequency fQ of the probe is determined by i) placing the probe far enough away from the sample material so that It is not affected by the sample; ii) scan a frequency range; iii) draw a frequency vs. power curve; iv) match a curve to know its maximum frequency, called f0; b) by dividing fQ by two The difference between the frequencies corresponding to the half-power amplitude points is determined; c) The coefficient M is calculated by the equation S = MQ〇2, where S is the power at f0; this paper size applies the Chinese National Standard (CNS) A4 specification (2 〖〇 × 297mm) (Please read the note on the back page first) Order A7 printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs. __________B7, '_; ___ " X. Invention Description (〆) d) Use Samples of known dielectric constant to calibrate the geometric factors A, B, and R in Equations 5 and 6. E) Place a probe tip of a scanning evanescent electromagnetic microscope close to the sample or touch the sample securely; f) The resonance frequency change caused by the approach of the sample near the measurement probe; g) The measurement probe Changes in the figure of merit due to the proximity of the sample; and h) the use of a pair of equations to calculate the dielectric constant and loss tangent function, the equations of which are from the equations 2 and 3 of the stable contact, the probe-sample gap equation 5 And 6 are selected from a group of equations or thin film equations. Alternatively, the frequency versus power curve in the above program can be determined using a Lorentz line pattern suitable for obtaining f0 and Q0. Stable contact measurement of non-conductive materials When using evanescent waves and a tip radius that is considerably smaller than the probe wavelength, electromagnetic waves can be considered semi-static, that is, the wave properties of the field can be ignored. In addition, it is reasonable to believe that the dielectric properties of the sample material near the tip of the microprobe are homogeneous and isotropic. Therefore, ε = ε '+] ε "and ε > > ε., And ε' >> ε", where ε is a complex dielectric constant, ε 'is a real number component of the dielectric constant, and ε "is a dielectric constant Imaginary number component, and ε〇 is the dielectric constant in free space. In addition, μ = μ '+ 〖μ ″ and μ ~ μ〇, where μ is the magnetic permeability of the sample and μ ′ is the magnetic permeability. The real number component, and μ ”is the magnetic permeability coefficient. ___22______ This paper is suitable for size ^ Chinese National Standard (CNS) Α4 size 7 2 丨 0 × 297 mm) (Please read the note on the back-f page)

裝· 訂— A7 B7 五、發明説明() 的虛數成份’且μ〇爲自由空間中的磁性導磁係數。 圖3顯示量測圖形的線條圖。探針尖端20安穩地接觸 一個非傳導性材質go的表面上,而材質80具有相當大於 尖端半徑的厚度。最好是尖端五倍的厚度。爲了最初的安 排,由於其尖端只延伸出一段小於突出空腔的波長數個層 級大小的長度’探針尖端呈現一種在相同的電位下修改過 的導電球狀體’如同共振器末端障壁中的中心導體之末端 點或尖端。在尖端之下的非傳導性樣本乃是爲尖端的電場 所極化,因而在尖端的電氣行爲引起尖端上電荷的重新分 佈,以保持傳導性球狀體表面之等電位。在尖端上的行爲 乃是藉由一個位於樣本中的影像電荷qi’所呈現;探針尖端 的電荷重新分佈乃是藉由另一個位於球形尖端的影像電荷 q2所呈現。自我重複如此的行爲和重新分佈,換言之’如 此反覆地直到獲得平衡爲止。如圖3所示,滿足邊界條件 之三個系列的影像點電荷形成於尖端和非傳導性樣本表面 上。在樣本中,場分佈的峰値可以表示爲點電荷qn”系列所 建立的一種疊加效用,qn”爲樣本中qn的有效値。場分佈 的表示式爲, 1=—q~ yV AiiitAZziX, a) 其中 b=(s-sG)/(s+S()) ’ qMnsoRoVo ; r。爲尖端的半徑 ,而^和ez分別爲沿著圓柱座標r和z方向的單位向量。 如此的場分佈滿足庫倫定律,並且滿足探針尖端的傳導性 23 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X297公麈)Binding and ordering — A7 B7 V. Imaginary component of the description of the invention 'and μ〇 is the magnetic permeability in free space. Figure 3 shows a line graph of the measurement pattern. The probe tip 20 securely contacts the surface of a non-conductive material go, while the material 80 has a thickness considerably larger than the radius of the tip. It is best that the tip is five times thicker. For the initial arrangement, because the tip only extended a length of several steps smaller than the wavelength of the protruding cavity, 'the probe tip presents a conductive spheroid modified at the same potential' as in the barrier at the end of the resonator The end point or tip of a center conductor. The non-conductive sample under the tip is polarized by the electric field of the tip, so the electrical behavior at the tip causes the redistribution of the charge on the tip to maintain an equipotential on the surface of the conductive spheroid. The behavior on the tip is presented by an image charge qi 'located in the sample; the charge redistribution of the probe tip is presented by another image charge q2 located on the spherical tip. Repeat this behavior and redistribution yourself, in other words, 'Iteratively until equilibrium is achieved. As shown in Figure 3, three series of image point charges meeting the boundary conditions are formed on the tip and on the surface of the non-conductive sample. In the sample, the peak value of the field distribution can be expressed as a superposition effect established by the point charge qn ”series, and qn” is the effective value of qn in the sample. The expression of the field distribution is: 1 = —q ~ yV AiiitAZziX, a) where b = (s-sG) / (s + S ()) ′ qMnsoRoVo; r. Is the radius of the tip, and ^ and ez are unit vectors along the cylindrical coordinates r and z, respectively. Such a field distribution satisfies Coulomb's law and the conductivity of the probe tip. 23 This paper size applies the Chinese National Standard (CNS) Λ4 specification (210X297 cm).

經濟部中央標準局員工消費合作社印製 (請先閲讀背面之注意事項 、-'0Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs (Please read the precautions on the back, -'0

A7 B7 五、發明説明( 球狀體終點和非傳導性樣本兩者表面上的邊界條件。在此 種模式中,大多數的電磁能量_中於空腔中,且空腔內部 場的分佈不受尖端-樣本交互作用的干擾。因此用於電磁共 振器的擾動理論,其中的頻率輕微地受到擾動以得知共振 頻率,或者得知儲存於空腔中的能量多少受到擾動,可以 用來計算[和Q的偏移,而其偏移乃是起因於一種特別的 非傳導性材質,如同方程式(2)和(3)所指明的。 Μχ.._ »Η-,)φ AMy-b) 乂 ^ |(^02 Λ-μ,Ηΐ)^ ' =4—1 +1] (2) ⑶ (請先閲讀背面之注意事項A7 B7 V. Description of the invention (Boundary conditions on the surface of both the end point of the spheroid and the non-conductive sample. In this mode, most of the electromagnetic energy is in the cavity, and the field distribution in the cavity is not distributed. It is disturbed by the tip-sample interaction. Therefore, it is used in the perturbation theory of the electromagnetic resonance device, in which the frequency is slightly perturbed to know the resonance frequency, or how much the energy stored in the cavity is perturbed, which can be used to calculate [The offset from Q, which is due to a special non-conductive material, as indicated by equations (2) and (3). Μχ .._ »Η-,) φ AMy-b)乂 ^ | (^ 02 Λ-μ, Ηΐ) ^ '= 4--1 +1] (2) ⑶ (Please read the precautions on the back first

訂 經濟部中夬橾準局員Η消費合作衽印製 其中E〇、H〇和Ei、Hi分別指擾動前後的電場和磁場 ,入爲波長,A=4KS〇RQ(V«)2/Et()tal)乃是由尖端-共振器組合的 幾何形狀所決定的一個常數(對一個λ/4的同軸共振器而言 Α〜WRoli^R^/Ri)/^),以及tan5=s’/s。V。則爲探針尖端上 的電壓。 首先考慮共振頻率的偏移,方程式(2)顯示共振頻率的 偏移正比於探針尖端的半徑R〇。此乃是由於導電球狀體近 處的電場在一個給定的電壓下反比於球狀體的半徑,而貢 獻到信號上的總和爲電場除以樣本體積再平方後的積分値 ;其中的導電球狀體爲探針尖端之所以模組化的方式。 現在考慮品質因數Q的偏移,當球狀的探針尖端置於 24 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公潑) A7 B7 五、發明説明( >》) 一個引起電阻率損失的介質近處時,一個所需的外加電流 用來輔助重新分佈在球狀的探針尖端上的電荷。Q値的偏 移結果表τρί爲, ~Βτ (4) 而Q値偏移的總和爲Order the China Bureau of the Ministry of Economic Affairs, Consumer Affairs Cooperation, and print out where E0, H0, Ei, and Hi refer to the electric and magnetic fields before and after the disturbance, respectively, and the wavelength is A = 4KS〇RQ (V «) 2 / Et ( ) tal) is a constant determined by the geometry of the tip-resonator combination (for a λ / 4 coaxial resonator Α ~ WRoli ^ R ^ / Ri) / ^), and tan5 = s' / s. V. Is the voltage at the probe tip. First consider the shift of the resonance frequency. Equation (2) shows that the shift of the resonance frequency is proportional to the radius R0 of the probe tip. This is because the electric field near the conductive spheroid is inversely proportional to the radius of the spheroid at a given voltage, and the sum contributed to the signal is the integral of the electric field divided by the sample volume and then squared. The spheroid is the modular approach to the probe tip. Now consider the shift of the quality factor Q. When the spherical probe tip is placed on 24 paper standards, the Chinese National Standard (CNS) A4 specification (210X 297 male splash) A7 B7 V. Description of the invention (>) When the resistivity-losing medium is near, a required applied current is used to assist in re-distributing the charge on the spherical probe tip. Q 値 's offset result table τρί is ~ Bτ (4) and the sum of Q 値 offsets is

(4) (請先閱讀背面之注意事項本頁) 其taM乃是指損失正切函數。 使用方程式2、3和4,可以得到樣本局部的複合介電 常數之定量量測,其樣本具有相當大於探針尖端半徑的厚 度。樣本的厚度可至少爲探針尖端半徑厚度的兩倍。較佳 的是,樣本的厚度至少爲探針尖端半徑厚度的五倍。更佳 的是,樣本的厚度至少爲探針尖端半徑厚度的十倍。常數 A和B則是藉由對一個標準樣本的校正所得知的,標準樣 本例如具有已知介電常數和損失正切函數的藍寶石。表I 列出使用所發明的SEMM所量測的一些材質之相對介電常 數1和損失正切函數。相對介電常數與在真空或空氣中的 量測有關。其量測乃是以一個藍寶石單晶體來校正(ε产11.6 而tan5=2Xl〇·5藍寶石於10GHZ之下)。藍寶石的這些値 和表中記述的値則是從T. Konaka,et al. ’ J. Supercond 4 283(1991)所得到的。所量測的値相當地符合文獻中的値 25 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐〉 -* 經濟部中央標準局員工消費合作社印製 五、發明説明(>4) A7 B7 ,文獻中的値與實用上的差異是因爲它們爲大量量測的平 均値。 表I.所量測的單晶體介電常數和正切損失函數 材質 量測的ε!· 記述的 量測的tan5 記述的tan5 YSZ 30.0 29 1.7 ΧΙΟ-3 1.75 XI O'3 LaGa03 23.3 25 1.5 ΧΙΟ'3 1.8 X10·3 CaNdA104 18.2 19.5 1.5X10-3 0.4-2.5 XI0'3 Ti02 86.8 85 3.9 X10'3 4X10'3 BaTiOs 295 300 0.47 0.47 YAIO3 16.8 16 8.2 SrLaA104 18.9 20 LaAL〇3 25.7 24 2.1X10·5 MgO 9.5 9.8 1.6 X10·5 LiNb03(X- cut) 32.0 30 • i - —^ϋ n (請先閱讀背面之注意事項寫本頁) 訂 經濟部中央標準局員工消費合作社印製 非傳導性材質的空氣間隙量測不將探針尖端直接接觸樣本有時是較佳的。在如此的 實例中,對如圖4所示的影像電荷而言,得到疊代法的關 係式。 a'=\ +a' qn = tnq 1 十 < 26 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) ',-f--v、 經濟部中央標準局員工消費合作社印製 A7 Β7 五、發明説明(〆) t其中a’=g/R〇 ’而g爲樣本和探針尖端之間的間隙距離 。疊代法的初始條件爲arw+a^l+g/Rdi;] tl=1。使用—種 類似於上述的擾動方法, Κ 丨 (5) Λ h α{+α'Λ △(会),=-(5 +tan今丨 ⑹ 圖5顯示就一個氧化鎂(MgO)單晶體而言所量測的fr 爲間隙距離的一個函數(資料點以三角形顯示)》圖5也顯 示使用模組化方程式5的最佳曲線。對MgO而言,Sr=9.5 ,ΙΙ〇=12.7μιη,且A=1.71X10·3。量測和用於本發明顯微鏡 的數學模型之間非常良好的一致性,指出半靜態和球狀體 尖端近似提供了正確的量測。 使用安穩接觸而評估有關所作的量測之空氣間隙效應 乃是重要的。對安穩接觸量測a,而言’ a’等於g/R〇 ’接近 零。對空氣間隙而言, .1 2η1 , η :+—3η-α 以及 L Λ -/ Μ 2 t -- —(1 -—ά) η η 3 27 _;_ 本紙張尺度適用中國國家標準(CNS ) Α4規格(2丨〇><297公釐〉 (請先閣讀背面之注意事項舄本頁) HHV ii' 訂 五、發明説明(_ 則 A^. fr -λΣ ΑΊ B7(4) (Please read the note on the back page first) The taM is the loss tangent function. Using equations 2, 3, and 4, a quantitative measurement of the local composite dielectric constant of the sample can be obtained, the sample having a thickness that is considerably larger than the radius of the probe tip. The thickness of the sample can be at least twice the thickness of the radius of the probe tip. Preferably, the thickness of the sample is at least five times the thickness of the radius of the probe tip. More preferably, the thickness of the sample is at least ten times the thickness of the radius of the probe tip. The constants A and B are known by calibration of a standard sample, such as sapphire with a known dielectric constant and loss tangent function. Table I lists the relative dielectric constants 1 and loss tangent functions of some materials measured using the invented SEMM. The relative dielectric constant is related to the measurement in vacuum or air. The measurement is calibrated with a single sapphire crystal (ε produced 11.6 and tan5 = 2Xl0.5 sapphire below 10GHZ). These sapphires and the tadpoles described in the table were obtained from T. Konaka, et al. 'J. Supercond 4 283 (1991). The measured 値 is quite in line with 値 25 in the literature. This paper size applies to the Chinese National Standard (CNS) A4 (210 X 297 mm)-* Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. 5. Description of the invention (& gt 4) A7 B7, the difference between 値 in the literature and practicality is that they are the average 値 of a large number of measurements. Table I. The measured dielectric constant of the single crystal and the tangent loss function ε! Tan5 measured tan5 YSZ 30.0 29 1.7 ΧΙΟ-3 1.75 XI O'3 LaGa03 23.3 25 1.5 ΧΙΟ'3 1.8 X10 · 3 CaNdA104 18.2 19.5 1.5X10-3 0.4-2.5 XI0'3 Ti02 86.8 85 3.9 X10'3 4X10'3 BaTiOs 295 300 0.47 0.47 YAIO3 16.8 16 8.2 SrLaA104 18.9 20 LaAL〇3 25.7 24 2.1X10 · 5 MgO 9.5 9.8 1.6 X10 · 5 LiNb03 (X- cut) 32.0 30 • i-— ^ ϋ n (Please read first (Notes on the reverse side are written on this page) It is sometimes better to order the air gap measurement of non-conductive material printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs without touching the probe tip directly to the sample. In such an example, the For the image charge shown in Figure 4, Get the relational formula of the iteration method: a '= \ + a' qn = tnq 1 ten &26; This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) ', -f--v, economy Printed by the Consumer Standards Cooperative of the Central Bureau of Standards of the Ministry A7 B7 V. Description of the invention (〆) t where a '= g / R〇' and g is the gap distance between the sample and the probe tip. The initial condition of the iterative method is arw + a ^ l + g / Rdi;] tl = 1. Using a kind of perturbation method similar to the above, κ 丨 (5) Λ h α {+ α'Λ △ (Will), =-(5 + tan 今 丨⑹ Figure 5 shows the measured fr as a function of the gap distance for a magnesium oxide (MgO) single crystal (data points are shown in triangles). Figure 5 also shows the best curve using modular equation 5. For MgO In terms of Sr = 9.5, ΙΟ = 12.7μιη, and A = 1.71X10 · 3. Very good agreement between the measurement and the mathematical model used in the microscope of the present invention indicates that the semi-static and spheroidal tips provide approximately The correct measurement is made. It is important to use stable contact to evaluate the air gap effect of the measurement being made. For stable contact measurement a, 'a' is equal to g / R0 'near zero. For air gaps, .1 2η1, η: + — 3η-α and L Λ-/ Μ 2 t-— (1 -—ά) η η 3 27 _; _ This paper size applies Chinese National Standard (CNS ) Α4 specification (2 丨 〇 > < 297 mm> (Please read the precautions on the back of this page 舄 this page) HHV ii 'Order 5. Description of the invention (_ rules A ^. Fr -λΣ ΑΊ B7

b(2-b) W y (Λ+ nz Af · , - —T2-〆】* )e 元"1 ⑺ 經濟部中央標準局員工消費合作衽印製 其中(△&/&)〇乃是指當尖瑞安穩地接觸樣本時之頻率偏 移,其能由方程式2來求値。方程式7,顯示即使尖端到 樣本的距離保持於lnm以內(例如對一個l〇〇nm的探針半 徑而言a’〜10_2),由於方程式6的第二項具有一個相對爲小 的分母(Ι-b〜2ε〇/ε),如此的一個空氣間隙效應並不能忽略 。對一個&=10而言,其差異大約爲10%左右;而對一個 ερ35而言,其差異大約爲50%左右。 薄膜量亂 所發明的SEMM之一個應用爲測量薄膜的介電常數。 在此著眼點上重要的是,了解許多傳統所考慮的薄膜與所 發明的顯微鏡之交互作用如同一龐大的樣本,其乃是由於 探針尖端的末端削尖而可以做得到。場的滲透深度使用方 程式1來計算將會大略相等於探針尖端的半徑,Rf 如圖6所畫的,在薄膜厚度爲R〇或更小的層級之實例 中,由於影像電荷的發散,以上所討論的影像電荷模組是 沒有用的。典型地,數値分析,如有限的組件之分析,對 如此的薄膜而言則是必需的。無論如何,將基座的貢獻模 組化爲尖端上的反應,使用一種影像電荷的方法來提供一 個良好的趨近。明顯地,當薄膜厚度和介電常數增加,來 自基座的貢獻則減少。藉由使用以下的方程式,以一個"有 (請先閱讀背面之注意事項b (2-b) W y (Λ + nz Af ·,-—T2-〆) *) e Yuan " 1 It refers to the frequency offset when Jianruian touches the sample steadily, which can be calculated by Equation 2. Equation 7 shows that even if the distance from the tip to the sample remains within 1 nm (for example, a '~ 10_2 for a 100 nm probe radius), since the second term of Equation 6 has a relatively small denominator (1 -b ~ 2ε〇 / ε), such an air gap effect cannot be ignored. For an & = 10, the difference is about 10%; for an ερ35, the difference is about 50%. Thin film quantity One application of the invented SEMM is to measure the dielectric constant of a thin film. It is important to note here that understanding the interaction of many traditionally considered films with the invented microscope is the same as a large sample, which can be done because the tip of the probe tip is sharpened. The penetration depth of the field is calculated using Equation 1 which will be approximately equal to the radius of the probe tip. The image charge module in question is useless. Typically, mathematical analysis, such as analysis of limited components, is necessary for such films. In any case, the contribution of the pedestal is modeled as a response on the tip, using a method of image charge to provide a good approach. Obviously, as the film thickness and dielectric constant increase, the contribution from the pedestal decreases. By using the following equation, a " yes (please read the notes on the back first

28 尽紙張尺度適用中國國家標準(CNS ) A4規格(2丨0X297公釐) 五、發明説明(>1) A7 B7 效電荷”替代複雜的影像電荷感應效應,來模組化此一貢獻 其中 ΐ>2〇=(ε2-ε〇)/(ε2+ε。),bioKsi-SoVh+s。),以及ε2 和 Si分別爲薄膜和基座的介電常數;a=d/RQ而d爲薄膜的厚 度。在選擇此種限制理論的方面,說明無限的薄和無限的 厚之限制。常數,0.18,乃是經由一連串的校正所決定的 ,並且其値可以更進一步地再琢磨。本發明並不限於方程 式中此一特別的値。使用如上所述的一種相似處理方式得 到: y1 = ~ΑΣ Σ KsKK [—~z——--- j r n=l m=〇 LmtlCL /7 + 1-(- 2(/71 + 1)/1^ Δ(^), = ^{tan bn-lb^[—~ 1 + 2mna n + \ + 2{m + \)na ]+ (請先閱讀背面之注意事項^^寫本頁) 厂裝. 訂28 Applicable to Chinese National Standard (CNS) A4 specifications (2 丨 0X297 mm) as far as possible paper size. 5. Description of the invention (> 1) A7 B7 effect charge instead of the complex image charge induction effect to modularize this contribution. ΐ > 2〇 = (ε2-ε〇) / (ε2 + ε.), bioKsi-SoVh + s.), and ε2 and Si are the dielectric constants of the film and the pedestal respectively; a = d / RQ and d is The thickness of the thin film. In terms of choosing this kind of limitation theory, explain the limitation of infinite thinness and infinite thickness. The constant, 0.18, is determined by a series of corrections, and its value can be further refined. The present invention It is not limited to this particular 値 in the equation. Use a similar processing method as described above to obtain: y1 = ~ ΑΣ Σ KsKK [— ~ z ——--- jrn = lm = 〇LmtlCL / 7 + 1-(- 2 (/ 71 + 1) / 1 ^ Δ (^), = ^ {tan bn-lb ^ [— ~ 1 + 2mna n + \ + 2 (m + \) na] + (Please read the precautions on the back first ^^ Write this page) Factory installed. Order

(A 1ετεχ tan δλ y γ 、 Δ/. + ^)(^2^ Z^n + l + 2(m + \)na~ 經濟部中央標準局員工消費合作社印製 其中b2i=(S2-s丨)/(ε2+ει),tan52和tai^爲薄膜和基座 的正切損失函數。 以上的兩個方程式可以稱爲薄膜方程式(Thin Film Equations)。 表Π顯示使用所發明的SEMM和一種於1GHZ的傳統 __29 _____ 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇>< 297公釐) ' 經濟部中央標準扃員工消費合作社印裝 五、發明説明(>” 交叉指狀接觸電極來測量薄膜的介電常數之結果。 表Π藉由SEMM和交叉指狀雷極技所鄕丨量的各種蓮 膜之介雷常數和正切搢安兩數 SEMM量測 交叉指狀電極 薄膜 εΡ tan5 ερ tan5 SrTi03 292 0.01 297 0.01 Ba〇.5Sr〇.5Ti〇3 888 0.19 868 0.10 Ba〇.7Sr〇.3Ti〇3 707 0.14 727 0.07 本質的空間解析度 本質的空間解析度對顯微鏡而言,爲一個重要的優點 表徵。評估所發明的顯微鏡之本質解析度爲:使用方程式 2而從小的縱向庫倫來數値計算對(Afr/fr)的貢獻,如有關 於不同介電常數材質的尖端中心之橫向位置(r)的一個函數 。隨著r增加其貢獻顯然快速地減少,特別當大的ε値時。 來自半徑內部體積的貢獻達到總貢獻的50%,其半徑定義 爲本質空間解析度。在其實例中,於適度的4〜50)所評估 的解析度大約爲小於尖端半徑大小兩個層級左右,並且隨 著εr的增加而些微地減少。此乃圖示於圖7中。如此的行 爲可以藉由考慮極化的非傳導性樣本引起探針尖端上有效 的探測電荷降到樣本上來了解。介電常數越高,電荷和樣 本之間的有效距離越短。因此,隨著垂直於樣本表面的極 化作用’樣本內部場的分佈集中於非常小的區域中,而其 區域僅僅於尖端的末端下方,並且和Q的偏移受到來自 _ 30 4 i 度 尺 张(A 1ετεχ tan δλ y γ, Δ /. + ^) (^ 2 ^ Z ^ n + l + 2 (m + \) na ~ printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs where b2i = (S2-s 丨) / (ε2 + ει), tan52 and tai ^ are the tangent loss functions of the film and the pedestal. The above two equations can be called Thin Film Equations. Table Π shows the use of the invented SEMM and one at 1GHZ Tradition __29 _____ This paper size applies Chinese National Standard (CNS) A4 (21〇 > < 297mm) '' Central Standard of the Ministry of Economics 扃 Printed by Employee Consumer Cooperatives 5. Description of Invention (>) Cross Fingers The results of measuring the dielectric constant of the thin film by contacting the electrodes. Table Ⅱ Cross-finger electrode thin film measured by the dielectric constants and tangent SEM of various lotus films measured by SEMM and cross-finger lightning technology. εΡ tan5 ερ tan5 SrTi03 292 0.01 297 0.01 Ba〇.5Sr.5Ti〇3 888 0.19 868 0.10 Ba〇.7Sr〇.3Ti〇3 707 0.14 727 0.07 Essential spatial resolution For the microscope, Characterize an important advantage. Evaluate the nature of the microscope invented The resolution is: use Equation 2 to calculate the contribution to (Afr / fr) from a small longitudinal Coulomb, if there is a function about the lateral position (r) of the tip center of a different dielectric constant material. As r increases Its contribution obviously decreases rapidly, especially for large ε 値. The contribution from the internal volume of the radius reaches 50% of the total contribution, and its radius is defined as the essential spatial resolution. In its example, at a moderate 4 ~ 50) The resolution of the evaluation is about two levels smaller than the tip radius, and decreases slightly as εr increases. This is illustrated in Figure 7. Such behavior can be caused by considering a non-conductive sample that is polarized The effective detection charge on the probe tip is reduced to the sample to understand. The higher the dielectric constant, the shorter the effective distance between the charge and the sample. Therefore, with the polarization effect perpendicular to the sample surface, the distribution of the field inside the sample is concentrated In a very small area, and its area is just below the tip of the tip, and the offset from Q is subject to a _ 30 4 i degree ruler

I 釐 公I cm

經濟部中央標準局員工消費合作社印製 ..-.A7 B7Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs ..-. A7 B7

' .. r - . I 五、發明説明(>” 此一小區域的貢獻所支配。由具有適度介電常數的非傳導 性材質上之實驗已經得知,lOOnm的解析度能夠以數個微 米的尖端半徑來實現。近場顯微鏡優點的表徵爲樣本內部 波長和空間解析度的比率。對本實施例而言,一個大約4 X105左右的優點表徵如以下所計算的,並且藉由量測來驗 證… X〇=c/f=30cm λ=λ〇ε·1/2=λ〇/50*1/2=30οιη/7.1=4.2οηι 其空間解析度爲100mm所以優點的表徵爲, X/100mm=4.2cm/lCr5cm=4.2X 1〇5。 由於材質中的電磁波長爲小於自由空間中的波長數個( 至少4)層級的大小,電氣傳導性材質的樣本並不適合如此 的解析度分析。 靈敏度分析 共振系統可以使用如圖2所示的一種塊狀串接共振電 路來分析,其共振電路則是使用有效的電容C、電感L和 電阻R(對一個理想的四分之一波共振器而言)。'.. r-. I V. Description of the invention (> ”This contribution is dominated by a small area. Experiments on non-conductive materials with a moderate dielectric constant have shown that the resolution of 100 nm can be measured in several It is realized by the tip radius of micrometer. The advantage of near-field microscope is characterized by the ratio of the internal wavelength of the sample to the spatial resolution. For this example, an advantage characteristic of about 4 × 105 is calculated as follows and measured by measurement. Verify ... X〇 = c / f = 30cm λ = λ〇ε · 1/2 = λ〇 / 50 * 1/2 = 30οιη / 7.1 = 4.2οηι The spatial resolution is 100mm, so the advantage is characterized by X / 100mm = 4.2cm / lCr5cm = 4.2X 10.5. Since the electromagnetic wavelength in the material is several (at least 4) levels smaller than the wavelength in free space, samples of electrically conductive materials are not suitable for such resolution analysis. Sensitivity The analysis of the resonance system can be analyzed using a block-type series resonance circuit as shown in Figure 2. The resonance circuit uses an effective capacitor C, inductance L and resistance R (for an ideal quarter-wave resonator and Language).

C “g/ln(綱 31 (請先閱讀背面之注意事項Θ寫本頁) 訂 本紙浪尺度適用中國國家標準(CNS ) A4規格(2丨0X297公釐) A7 A7 Qc __________ B7______ 五、發明説明u〇) 其中1«λ/4爲有效的空腔長度,Rs爲空腔材質的表面 電阻,R2和R,分別爲導體中心和外部的半徑;ε〇和μ〇分 別爲自由空間中的電容率和導磁係數。共振系統的無耦合 (Qu)和耦合(Q。)品質因數爲:C "g / ln (Outline 31 (please read the notes on the back Θ to write this page) The size of the paper is applicable to the Chinese National Standard (CNS) A4 specification (2 丨 0X297 mm) A7 A7 Qc __________ B7______ 5. Description of the invention u〇) where 1 «λ / 4 is the effective cavity length, Rs is the surface resistance of the cavity material, R2 and R are the radii of the center and outer conductor, respectively; ε〇 and μ〇 are the capacitance in free space, respectively Coefficient and permeability. The uncoupling (Qu) and coupling (Q.) quality factors of the resonance system are:

,CR rC R + RJp‘ 其中R〇爲來源的內部電阻値,c〇r=2nfr=l//XC而fr爲 共振頻率,以及pcx(h/l>C〇Se爲耦合因數(h爲等效耦合長 度,而Θ爲耦合環線和半徑方向的角度)。來源所傳送的功 率,Ρ〇,傳送到空腔之中的功率,P,和儲存於空腔中的能 量,Ε,表示爲: (請先閱讀背面之注意事項本頁) 1 V= 1(7)2 ρ = τ(-)2 +, CR rC R + RJp 'where R0 is the internal resistance of the source 値, c〇r = 2nfr = 1 // XC and fr is the resonance frequency, and pcx (h / l> CoSe is the coupling factor (h is equal to Effective coupling length, and Θ is the angle of the coupling loop and the radius). The power transmitted by the source, Po, the power transmitted into the cavity, P, and the energy stored in the cavity, E, is expressed as (Please read the caution page on the back first) 1 V = 1 (7) 2 ρ = τ (-) 2 +

Rjp'1 (R + R0/p2)2 P〇Qc PQ. i 經濟部中央標準局員工消費合作社印製 CQ2c=-CV02 πε^λ 81n(尽/Λ,) V1 ~ Λ 其中VQ爲開放端峰値電壓。當二極體檢波器所檢測到 的信號S正比於耦合環線的電壓平方,在共振頻率下我們 得到: 32 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210Χ297公釐) A 7 B7 五、發明説明(77 I ) S = M Qc2 - (7Α) 其中Μ爲一個常數,乃是測量來自一個已知材質頻率 響應的Q値所決定。 同時,相位檢波器的輸出電壓可以表示爲: 其中2=2(^(0)()-0)^)/0^,C〇g爲來源的圓周頻率* Vn爲雜 訊電壓。則δω=(ω()-ο^)所引起的輸出功率爲: p^Ps + P^^PQ2c(—)2^pn ,Rjp'1 (R + R0 / p2) 2 P〇Qc PQ.i Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs CQ2c = -CV02 πε ^ λ 81n (Fin / Λ,)値 Voltage. When the signal S detected by the dipole detector is proportional to the square of the voltage of the coupling loop, at the resonance frequency we get: 32 This paper size applies the Chinese National Standard (CNS) Λ4 specification (210 × 297 mm) A 7 B7 V. Description of the invention (77 I) S = M Qc2-(7Α) where M is a constant and is determined by measuring Q 値 from a known material frequency response. At the same time, the output voltage of the phase detector can be expressed as: where 2 = 2 (^ (0) ()-0) ^) / 0 ^, Cog is the source's peripheral frequency * Vn is the noise voltage. Then the output power caused by δω = (ω ()-ο ^) is: p ^ Ps + P ^^ PQ2c (—) 2 ^ pn,

<^r I 了評估強生(Johnson)雜訊所限制的靈敏度,如圖3所 示,讓我們考慮在實際溫度T之下一個配好的有損耗網路 。參考平面上流到左邊和右邊的能量因熱平衡而相等: 經濟部中央標準局員工消費合作社印製 (請先閱讀背面之注意事項寫本頁)< ^ r I evaluates the sensitivity limited by Johnson noise, as shown in Figure 3, let us consider a well-equipped lossy network below the actual temperature T. The energy flowing to the left and right of the reference plane is equal due to thermal equilibrium: Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back to write this page)

k3TB / N + Pn = k3TB 其中N=QU/(QU-Qe)爲介入損失,kB爲波茲曼 (Bolzmann)常數,而B爲資料擷取頻寬。最後雜訊功率爲k3TB / N + Pn = k3TB where N = QU / (QU-Qe) is the intervention loss, kB is the Bolzmann constant, and B is the data acquisition bandwidth. The final noise power is

Pn=kaTB^~ ___J3_ 本紙張尺度適用中國國家標準(CNS") A4規格(21〇Χ 297公釐) A7 B7 __;____~ 五、發明説明(〆) 經濟部中央標率局員工消費合作社印製 強生雜訊所限制的靈敏度則由Ps=Pn所決定: δε 一 L 了一4 當PQ。達到最大値Qe=(2/3)Q(最佳工作條件,其可藉 由調ί耦合5環線的角度θ來實現)時’最小可檢測到的(δε/ε) 則評估爲: 么__ί一_ Γ~ ^JBc ~ {τ)αώι ^oKfrps.QjniRJR^ 其中C爲在自由空間中的光速。假定保護塗層和尖端 導線之間的真空崩潰電壓爲VQ=10V(對尖端導線和保護塗 層之間的一個i〇mm間隙而言),就所評估的靈敏 虔大約爲 1 X 1〇·5 左右 ’ fr=1GHZ ’ T=300K ’ B=100kHz ’ Qu=1700以及R2/Ri=5。爲得到如此的靈敏度,需要一個具 有df/f=lX10·8頻率穩定度的微波來源。用於系統中的類比 電壓控制振盪器(VCO)之穩定度(10_6),限制靈敏度爲IX 10·3。以上的方程式顯示靈敏度以尖端半徑Rg直線地增加 。當示於上文中解析度以尖端半徑直線地增加,從實際的 觀點上,解析度和靈敏度之間的衝突已經達成最佳而合理 的折衷處理。 一種電氣傳導件樣本的導雷係數定量量測 ___________34__ 本紙浪尺度適用中國國家標準(CNS ) A4规格(210X 297公釐)Pn = kaTB ^ ~ ___J3_ This paper size applies to Chinese National Standards (CNS ") A4 specifications (21〇 × 297 mm) A7 B7 __; ____ ~ 5. Description of the invention (〆) Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs The sensitivity limited by the Johnson Controls noise is determined by Ps = Pn: δε-L = 4 as PQ. When the maximum 値 Qe = (2/3) Q is reached (the optimal working condition, which can be achieved by adjusting the angle θ of the coupling 5 loop line), the 'minimum detectable (δε / ε) is evaluated as: _ _ί 一 _ Γ ~ ^ JBc ~ {τ) αώι ^ oKfrps.QjniRJR ^ where C is the speed of light in free space. Assuming the vacuum breakdown voltage between the protective coating and the tip wire is VQ = 10V (for an i0mm gap between the tip wire and the protective coating), the estimated sensitivity is approximately 1 X 1 ·· 5 or so 'fr = 1GHZ' T = 300K 'B = 100kHz' Qu = 1700 and R2 / Ri = 5. To obtain such sensitivity, a microwave source with a frequency stability of df / f = lX10 · 8 is required. An analog voltage-controlled oscillator (VCO) used in the system. The stability (10_6) limits the sensitivity to IX 10 · 3. The above equation shows that the sensitivity increases linearly with the tip radius Rg. When the resolution shown in the above increases linearly with the tip radius, from a practical point of view, the conflict between resolution and sensitivity has reached the best and reasonable compromise. Quantitative measurement of the lightning conductivity coefficient of a sample of electrical conductive parts ___________34__ This paper wave scale is applicable to China National Standard (CNS) A4 specification (210X 297 mm)

[JbTB (請先閲讀背面之注意事項[JbTB (Please read the notes on the back first

r本頁) 訂 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(0) 以指出傳導性材質古典的集膚深度觀念(仍然常用於瞬 逝波顯微鏡檢測)於描述瞬逝電磁波和傳導性材質之間的交 互作用,不再是有效的。古典集膚深度之觀念乃是由一個 傳導性表面和傳播平面波之間的交互作用所導出的’其中 傳播平面波的k向量成份(kr、kz)必須小於kQ。當ke»k〇 時,不同kz的傳導性材質內部的折射波之間有微小的差距 ,並且能夠以一個唯一評估的keko來計算所有物理參數 。另一方面,包含於瞬逝波和樣本之間交互作用的瞬逝平 面波k向量成份(kr、kz),其値爲多重評估的,並且可以較 k〇爲高。對每一個不同k向量成份而言必須計算所有的物 理參數,並且必須整合所有的物理參數。我們在此以傳導 性材質提出一個詳細的場結構計算,以及瞬逝電磁波的交 互作用。其應能給予定量瞬逝電磁波顯微鏡科學應用一個 寬廣的能力範圍。只要波長相當大過於交互作用區域的尺 度,原則上其結果適合於頻率提升到紅外線程度的瞬逝波 顯微鏡檢測。另外,由於在此所考慮的電場結構完全相同 於各種掃描探針顯微鏡的靜電場結構,其應該也能給予使 用掃描探針顯微鏡的定量顯微鏡檢測一個寬廣的能力範圍 〇 所發明的SEMM乃是基於一個高品質因數(Q)的微波 同軸共振器,其微波同軸共振器則是具有一個置於中心導 體上削尖的金屬尖端。其尖端延伸突出一個成形於共振器 薄金屬保護末端障壁的洞孔。有鑑於非傳播瞬逝波產生於 尖端,設計尖端和保護層架構乃是爲了使傳播遠場成份被 35 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨〇X297公釐) (請先閱讀背面之注意事項^:寫本頁) —.批裝 III βτ寫本 、·ιτ 缠濟部中央榡準局員工消費合作衽印製 ..A7 ____ B7________ 五、發明説明"Ψ) 屏障於空腔之中。對高解析度和定量分析而言,此特點是 極爲困難的。由於模組化瞬逝波和傳播波,在數學上並非 可實行的,(其中後者乃是從共振器所洩漏出的),沒有所 發明的顯微鏡架構,定量顯微鏡檢測將不能施行。相對於 傳統的天線式探針(一種遠場觀念)所發明的探針不會放射 出重要的能量(因而提供一個非常高的Q値以提升靈敏度) °只有當尖端靠近樣本,尖端上的瞬逝波才會與材質產生 交互作用。其交互作用導致空腔的頻率和Q値改變,而致 電氣阻抗的顯微鏡檢測。 簡言之,電氣傳導性樣本導電係數的量測包含以下的 步驟: a) 決定探針的一個參考共振頻率f〇 : i) 將探針置於足夠遠離樣本材質之處,使其不受樣 本影響; ϋ)掃描一個頻率範圍;(r page) Order A7 B7 printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs. 5. Description of the Invention (0) To point out the concept of classical skin depth of conductive materials (still commonly used in evanescent wave microscopy) to describe evanescent electromagnetic waves. Interaction with conductive materials is no longer valid. The concept of classical skin depth is derived from the interaction between a conductive surface and a propagating plane wave, where the k-vector component (kr, kz) of the propagating plane wave must be less than kQ. When ke »k〇, there is a slight gap between the refracted waves inside conductive materials of different kz, and all physical parameters can be calculated with a uniquely evaluated keko. On the other hand, the k-vector component (kr, kz) of the evanescent surface wave, which is included in the interaction between the evanescent wave and the sample, is multi-evaluated and can be higher than k0. All physical parameters must be calculated for each different k-vector component, and all physical parameters must be integrated. We propose here a detailed calculation of the field structure using conductive materials and the interaction of evanescent electromagnetic waves. It should give a wide range of capabilities for the quantitative application of quantitative evanescent electromagnetic wave microscopy. As long as the wavelength is too large and the size of the interaction region, in principle, the results are suitable for evanescent wave microscopy with frequencies rising to infrared. In addition, since the electric field structure considered here is exactly the same as the electrostatic field structure of various scanning probe microscopes, it should also be able to give a wide range of capabilities to the quantitative microscope using a scanning probe microscope. A microwave coaxial resonator with a high quality factor (Q) has a sharpened metal tip placed on the center conductor. Its tip extends through a hole formed in the thin metal protective tip barrier of the resonator. In view of the fact that the non-propagating evanescent wave is generated at the tip, the design of the tip and the protective layer structure is to make the far-field component of the transmission be 35 paper standards applicable to the Chinese National Standard (CNS) A4 specification (2 丨 〇297mm) (please first Read the notes on the back ^: Write this page) —. Batch III βτ manuscripts, · ιτο Department of Economic Cooperation, Central Bureau of quasi Bureau employee consumption cooperation print: A7 ____ B7________ V. Description of invention " Ψ) The barrier is empty Cavity. This feature is extremely difficult for high-resolution and quantitative analysis. Modular evanescent waves and propagating waves are not mathematically feasible (the latter is leaked from the resonator). Without the invented microscope structure, quantitative microscopy cannot be performed. Compared with the traditional antenna probe (a far-field concept), the probe invented does not emit significant energy (thus providing a very high Q 値 to improve sensitivity) ° Only when the tip is close to the sample, the transient on the tip The evanescent wave interacts with the material. Their interactions cause changes in the frequency and Q 値 of the cavity, resulting in a microscopic examination of electrical impedance. In short, the measurement of the conductivity of an electrically conductive sample involves the following steps: a) Determine a reference resonance frequency f of the probe: i) Place the probe far enough away from the sample material so that it is not affected by the sample Impact; ϋ) scanning a frequency range;

Hi)畫出頻率對功率的曲線圖; iv)配合一條曲線來得知其最大的頻率,稱爲f〇 ; b) 藉由將f〇除以兩半功率振幅點所對應的頻率差 値來決定Q〇 ; c) 由方程式S=MQ〇2來計算係數Μ ’其中S爲在f〇 時之功率; d) 將掃描瞬逝電磁波顯微鏡的一個探針尖端置於 樣本的近處; e) 藉由測量並配合頻率和品質因數來校準在方程 _________36 ______ 紙張尺度適用中國國家榡準(CNS ) Α4規格(21〇Χ 297公t ) (請先閱讀背面之注意事項本頁) 訂 經濟部中央標準局員工消費合作社印製 .A7 B7__ 五、發明説明U<) 式12和19中的幾何 因數A、B和R〇,其頻率和品質因數爲探針尖端和已 知導電係數 的參考樣本之間的間隙距離,g ’之一個函數; f) 測量探針近處因樣本的接近而引起的共振頻率之 變動; g) 由方程式12來計算g; h) 測量探針近處因樣本的接近而引起的品質因數 之變動;以及 i) 使用方程式19來計算導電係數。 當一個傳導性材質置於尖端(模組化爲一個球狀體)的 近處時,其將與尖端產生交互作用而導致電荷和場的重新 分佈。首先,可以藉由將材質視爲一種具有無限導電係數 的理想導體,而得到場的重新分佈。根據半靜態趨近(波長 大大於場分部的有效區域),傳導性材質的表面爲一個電荷 鏡,而尖端-樣本之間的交互作用可以表示爲一種多重影像 電荷的過程,如圖8所示。可以計算尖端-樣本區域中的電 場爲所有電荷分佈的疊加: (請先閲讀背面之注意事項Hi) Draw a frequency vs. power curve; iv) Match a curve to get its maximum frequency, called f0; b) Determine by dividing f0 by the frequency difference 値 corresponding to the half power amplitude point Q〇; c) Calculate the coefficient M ′ by the equation S = MQ〇2, where S is the power at f0; d) Place a probe tip of a scanning evanescent electromagnetic microscope near the sample; e) borrow It is calibrated by measuring and cooperating with the frequency and figure of merit in the equation _________36 ______ Paper size is applicable to China National Standard (CNS) Α4 size (21〇 × 297297t) (Please read the precautions on the back page) Printed by the Consumer Bureau of Standards Bureau. A7 B7__ V. Description of the invention U <) The geometric factors A, B, and R0 in Equations 12 and 19, the frequency and figure of merit are the probe tip and reference samples of known conductivity coefficients Gap distance, a function of g '; f) the change in resonance frequency caused by the approach of the sample near the measuring probe; g) calculate g from Equation 12; h) the approach of the sample due to the approach of the sample The resulting change in figure of merit; and i) Equation 19 is used to calculate the conductivity. When a conductive material is placed near the tip (modulated as a spheroid), it will interact with the tip and cause a redistribution of charge and field. First, the field can be redistributed by treating the material as an ideal conductor with infinite conductivity. According to the semi-static approach (the wavelength is greater than the effective area of the field segment), the surface of the conductive material is a charge mirror, and the tip-sample interaction can be expressed as a multiple image charge process, as shown in Figure 8. Show. The electric field in the tip-sample area can be calculated as the superposition of all charge distributions: (Please read the precautions on the back first

訂 •30 3 ___ ㈣ 1[/·2+(ζ + α,,^)2]^ [r1 KHz-anR,)et 以及傳導性材質的表面電磁場爲: aSn 37 本紙浪尺度適用中國國家標準(CNS ) Λ4規格(210X297公釐 ⑻ (9)Order • 30 3 ___ ㈣ 1 [/ · 2 + (ζ + α ,, ^) 2] ^ [r1 KHz-anR,) et and the surface electromagnetic field of the conductive material is: aSn 37 The paper wave scale is applicable to Chinese national standards ( CNS) Λ4 size (210X297 mm⑻ (9)

五、發明説明( 3R〇 y W (-2πε〇Μ〇”=1 [厂2+(£7入)2产1/<^ (10) 其中ε〇和μ〇爲自由空間中的電容率和導磁係數’ R〇爲 尖端半徑,^和e/分別爲圓柱座標r和z方向的單位向量 ,&11^和qn分別爲尖端內部第η個影像之電荷和位置。 1 + , 1 + flo (11) (請先閱讀背面之注意事項V. Description of the invention (3R〇y W (-2πε〇Μ〇 ”= 1 = 1 [factory 2+ (£ 7 in) 2 production 1 / < ^ (10) where ε〇 and μ〇 are the permittivity in free space And magnetic permeability coefficient 'R〇 is the tip radius, ^ and e / are the unit vectors in the cylindrical coordinates r and z directions, and & 11 ^ and qn are the charge and position of the nth image inside the tip, respectively. 1 +, 1 + flo (11) (Please read the notes on the back first

1 + α〇+α, '本頁) 經濟部中央標準局員工消費合作社印製 初始條件爲ai1+a〇以及q=47^GRGV() ’ h爲尖端-樣本距 離,而Vo爲尖端電壓。由於方程式8滿足庫倫定律和邊界 値條件,其因此而爲此一問題的正確且唯一的解。雖然我 們在此處理電磁波(Ε、α ηλ場符合馬克斯威爾方程式)’在 此所解的電場結構同於各種SPM's的電場結構。 從方程式10(圖9)所得到的典型場強度輪廓形成一個 火山的外型。對不同尖端-樣本距離而言’半徑的分佈描述 於圖10中。其圖分別指出鑄造者(顯微鏡空間解析度的一 種量測)的尺寸減小,和場的強度以尖端-樣本距離的減小 而增加。 我們經由一個共振器的等效串聯RLC電路來分析其系 統。尖端表示爲一個電容器,C’,其電容量則視尖端-樣本 的交互作用決定,且並聯到共振電路的主要電容器上。相 對的共振頻率偏移則正比於C'的變化。也能夠藉由尖端上 38 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) A7 ______ , B7 - ... 五、發明説明U/p 總電荷的變化來表示此種變化,即是所有樣本感應(成像) 電荷的總和: (請先閱讀背面之注意事項 ♦”丨 (12)1 + α〇 + α, 'this page) Printed by the Consumer Cooperatives of the Central Standards Bureau, Ministry of Economic Affairs Initial conditions are ai1 + a〇 and q = 47 ^ GRGV () ′ h is the tip-sample distance, and Vo is the tip voltage. Since Equation 8 satisfies Coulomb's law and boundary martingale conditions, it is therefore the correct and unique solution to this problem. Although we deal with electromagnetic waves here (the E, α ηλ field conforms to Maxwell's equation), the electric field structure solved here is the same as that of various SPM's. The typical field intensity profile obtained from Equation 10 (Figure 9) forms a volcanic appearance. The distribution of the 'radius for different tip-sample distances is described in FIG. The figures indicate that the size of the caster (a measure of the spatial resolution of the microscope) decreases, and the intensity of the field increases with decreasing tip-sample distance. We analyze the system via the equivalent series RLC circuit of a resonator. The tip is represented as a capacitor, C ', whose capacitance is determined by the tip-sample interaction and is connected in parallel to the main capacitor of the resonant circuit. The relative resonance frequency shift is proportional to the change in C '. This change can also be expressed by the 38 paper sizes on the tip that are applicable to the Chinese National Standard (CNS) A4 specifications (210X297 mm) A7 ______, B7-... V. Description of the invention The change in the total charge of U / p can be used to express this change, ie It is the sum of the induced (imaging) charges of all samples: (Please read the precautions on the back first "(12)

' I ---訂 如果滿足良好金屬的條件即是σ»ωε,此一結果通用 於所有傳導性材質(不受導電係數的支配),其中σ、ε分別 爲傳導性材質的導電係數和介電常數,而ω爲微波的圓周 頻率(即Cu在1GHZ下的σ/ωε爲109的層級)。圖11顯示對 Cu所量測的f爲尖端-樣本距離的一個函數以及符合方程 式12的最佳曲線。最佳曲線決定了 A=2.82X10·3以及 Ι1*8μπι(與觀察爲一致的)。 爲了計算傳導性材質內部所散逸的能量,第二個步驟 則必須考慮趨近作用,和之後在傳導性材質表面上瞬逝電 磁波的折射作用,以及材質內部的衰減行爲。在下一個章 節中’我們將先討論傳導性材質表面上瞬逝電磁波的折射 作用。然後,計算波的衰減和傳導性材質內部的散逸,以 驗證定量量測SEMM信號所得到的導電係數》 經濟部中央標準局員工消費合作社印製 空氣中和傳導性材質中電磁波的波動方程式所具有的 型式爲: + klu : ζ<0 (空氣中) 一 〇 (傳導性材質中) (13) 39__ ( CNS ) A4Mi^T21〇x 297^^^ ~~~~~~ -- A7 __________ B7 ______ 五、發明説明(p) 其中U爲電磁波的任意成份,kQ和匕分別爲空氣和傳 導性材質的(複數)特徵波動向量。1^2=ω2εμ(1+ίσ/ωε)而 ’其中μ爲傳導性材質的導磁係數。在微波頻率 clOGHzdk^/k^lMO)的範圍下,即使對輕微摻雜的半導體 (例如具有摻雜物10程度和3Qcm的電阻率之Si)而言,仍 然丨ke2卜外。2。 由於邊界條件,當一個波從空氣中(不是傳播便是瞬逝 )入射於傳導性材質的表面上時,波動向量的橫向成份連續 地正交於接觸面,即1^ΛΧηΛ=1^ΛχηΛ,ηΛ其中爲垂直於接觸 面的單位向量,k/表示k〇A的折射波動向量。當入射波爲 一種傳播波時,其波動向量在空氣中的垂直成份, kOZ(=k〇C〇S0,其中0爲入射角),爲實數;而其橫向成份, ko^^aJ-kJ^kosiiie),限制爲小於k的値。因此,由 於k〇r# I ke |而言乃是可以忽略的,一傳播波的傳導性材質 内部折射波動向量幾乎總是垂直於其表面的,即kQz=, (kc2-kQr2)Eke。所以,衰減長度無關於入射角。由此一觀點 ,通常所陳述的爲:在某一無關入射角(即波動向量的橫向 成份)的頻率下,傳導性材質具有一個唯一的表面阻抗値( 或表面電阻値),其中入射角乃是微波領域的入射電磁波的 入射角。其乃是基於驗證了傳統的集膚深度觀念的事實。 無論如何,其情況是完全不同於瞬逝波的。在如此的情況 下相應的可以是相當於或甚至大於|ke |的任意値,而不 再忽略。所以,衰減的長度由k〇r所決定,且必須對每一個 ---40_ 本紙張尺度適用中國國家標準(€泌)八4規格(210'_>< 297公釐) (請先閱讀背面之注意事項'I --- Order if satisfying the condition of good metal is σ »ωε, this result is common to all conductive materials (not subject to conductivity coefficient), where σ and ε are the conductivity coefficient and dielectric of the conductive material, respectively The electric constant, and ω is the circumferential frequency of the microwave (that is, the σ / ωε of Cu at 1GHZ is a level of 109). Figure 11 shows the measured f for Cu as a function of tip-sample distance and the best curve according to Equation 12. The best curve determines A = 2.82X10 · 3 and Ι1 * 8μm (which is consistent with the observation). In order to calculate the energy dissipated inside the conductive material, the second step must consider the approaching effect, and then the refraction of ephemeral electromagnetic waves on the surface of the conductive material, as well as the attenuation behavior inside the material. In the next section, we ’ll first discuss the refraction of evanescent electromagnetic waves on the surface of conductive materials. Then, calculate the attenuation of the wave and the internal dissipation of the conductive material to verify the conductive coefficient obtained from the quantitative measurement of the SEMM signal. The type is: + klu: ζ < 0 (in air)-10 (in conductive material) (13) 39__ (CNS) A4Mi ^ T21〇x 297 ^^^ ~~~~~~-A7 __________ B7 ______ 5. Description of the invention (p) where U is an arbitrary component of electromagnetic waves, and kQ and dagger are (complex) characteristic fluctuation vectors of air and conductive materials, respectively. 1 ^ 2 = ω2εμ (1 + ίσ / ωε) and ′ where μ is the magnetic permeability coefficient of the conductive material. In the range of microwave frequency clOGHzdk ^ / k ^ lMO), even for lightly doped semiconductors (e.g., Si with a dopant level of 10 and a resistivity of 3Qcm), it is still ke2. 2. Due to boundary conditions, when a wave is incident on the surface of a conductive material from the air (either propagating or ephemeral), the lateral component of the wave vector is continuously orthogonal to the contact surface, ie ηΛ is a unit vector perpendicular to the contact surface, and k / represents a refractive wave vector of k0A. When the incident wave is a propagating wave, the vertical component of its wave vector in the air, kOZ (= k0C0S0, where 0 is the angle of incidence), is a real number, and its transverse component, ko ^^ aJ-kJ ^ kosiiie), limited to 値 less than k. Therefore, since k〇r # I ke | is negligible, the internal refraction wave vector of the conductive material of a propagating wave is almost always perpendicular to its surface, that is, kQz =, (kc2-kQr2) Eke. Therefore, the attenuation length is independent of the angle of incidence. From this point of view, it is generally stated that at a frequency that is independent of the angle of incidence (ie, the transverse component of the wave vector), the conductive material has a unique surface impedance 値 (or surface resistance 値), where the angle of incidence is It is the angle of incidence of incident electromagnetic waves in the microwave field. It is based on the fact that the traditional concept of skin depth has been verified. In any case, the situation is completely different from evanescent waves. In this case, the corresponding value can be any 是 equivalent to or even greater than | ke |, and it is no longer ignored. Therefore, the length of the attenuation is determined by k〇r, and must be applied to each of the --- 40_ This paper size applies the Chinese national standard (€) 8 4 specifications (210 '_ > < 297 mm) (Please read first Notes on the back

訂 經濟部中央標準局員工消費合作衽印製 經濟部中央標準局員工消費合作社印製 A7 ___ B7 __ 五、發明説明(V?) k0r値做計算。古典集膚深度的觀念於此失效。不特別考慮 此一事實,傳導性材質的瞬逝波顯微鏡檢測方面的任何理 論皆是有瑕疵的。 爲了進一步地詳細敘述以上的分析,我們使用如同傅 立葉(Fourier)光學的空間頻率觀念,將表面場Hs (r)展開爲 個別的橫向成份: 昃&反⑺exp(丸(14) 尖端·樣本距離對尖端半徑(aQ)不同比率所計算的空間 頻率頻譜如圖13所示。對某一 R〇和aQ而言,明顯地存在 一個截止頻率。從其圖也淸楚地知道,尖端-樣本距離越小 (即aQ/RQ越小),高的空間頻率則越強。在圖13也可發現 ,強度的增加以致在頻譜高的kQr範圍中,a。的減少非常地 快速,而在頻譜低的kGr範圍中則相當地慢。換言之,有關 於尖端-樣本距離減小之場強度的增加,主要集中於高的空 間頻率區域中。傳導性材質內部相應的垂直波動向量成份 可以得到:Order printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. A7 ___ B7 __ V. Description of Invention (V?) The concept of the classical skin depth is no longer valid. Regardless of this fact, any theory of evanescent wave microscopy of conductive materials is flawed. In order to further describe the above analysis in detail, we use the concept of spatial frequency like Fourier optics to expand the surface field Hs (r) into individual lateral components: 昃 & anti⑺exp (maru (14) tip · sample distance The spatial frequency spectrum calculated for different ratios of the tip radius (aQ) is shown in Figure 13. For a certain R0 and aQ, there is obviously a cut-off frequency. It is also clear from the figure that the tip-sample distance The smaller (ie, the smaller the aQ / RQ), the stronger the high spatial frequency. It can also be found in Fig. 13 that the intensity increases so that in the kQr range where the spectrum is high, the decrease of a. In the kGr range, it is relatively slow. In other words, the increase in field strength with decreasing tip-sample distance is mainly concentrated in the high spatial frequency region. The corresponding vertical wave vector component inside the conductive material can be obtained:

Vi - kl = - k'r = kX (15) 其中1^。2和k、表示kez的實數部份和虛數部份’ δ2=2σ/(ωμε)爲金屬和半導體古典的集膚深度,或超導體的 滲透深度。傳導性材質內部的相應電磁場所具有的型式爲 _____41___.. 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閱讀背面之注意事項^^寫本頁) 寫太Vi-kl =-k'r = kX (15) where 1 ^. 2 and k, the real and imaginary parts representing kez'δ2 = 2σ / (ωμε) is the classical skin depth of metals and semiconductors, or the penetration depth of superconductors. The corresponding electromagnetic field inside the conductive material has a type of _____41___ .. This paper size applies to the Chinese National Standard (CNS) Α4 specification (210X297 mm) (Please read the precautions on the back first ^^ write this page) Write too

,tT -象 Α7 Β7 五、發明説明( ffc(kQr) = + k0rr) ~ Jc'^z] (16) ^AKr) = V x Hc{k0r)/(a - ίωε) (17) 請 先 閱 讀 背 以及傳導性材質中流進和散逸掉的總功率可以驗證爲 意 事 項 Jη ·Sdkl = IJ Re{^.χ H'c)}dkl (18) 其中 SA=(l/2)Re{EAxHA、爲坡印亭(Poynting)向量。傳 導性材質中功率散逸所引起的Q値偏移爲: Δα (19) 寫 本 頁 訂 經濟部中央標準局員工消費合作社印製 其中Β爲一個常數,可以藉由相同於方程式12中的 Α値方式校正而得到。 如果k〇z«l/3,以上的方法產生與古典集膚深度方法 相同的結果。無論如何,如果kGr〜l/δ或k〇r<<l/5,其情況 的改變將是引人注目的。此乃淸楚地表明於圖13和圖14 中。 也顯示於圖13中的是,對Cu所量測到的Q-距離曲線 和使用方程式19最適合的曲線。其最佳適合曲線提供 B=1.52xl0_7和6.2xl07S/m的導電係數(以傳統δ«2μιη的集 42 本紙張尺度適用中國國家榡準(CNS ) Α4規格(2丨0 X 297公釐〉 經濟部中央標準局員工漭費合作社印製 A7』 _ B7 五、發明説明(斗|) 膚深度所表現的特徵),其與Cu的導電係數(5.8xl07s/m)相 當地吻合。將使用古典集膚深度觀念的最佳適合曲線畫在 一起。在小的尖端-樣本距離區域中其差異則是相當大的。 使用所發明的SEMM之其他電器參數量沏丨 使用所發明的SEMM可以定量地測量其他的電氣參數 ,例如電容量和庫倫力。在此所解出的電場結構完全相同 於各種SPM’s中的靜電場結構、其中的SPM's諸如掃描電 容量顯微鏡檢測。對傳導性和非傳導性樣本兩者而言,尖 端和樣本之間電容量的完整表示式寫爲: 广/ - n9[ V〇 對傳導性材質而言,當其距離小於尖端半徑的十分之 一時’我們發現電容量能夠用以下的方程式表達得相當好 C/ = -1.26x70^0 ^log^.Lll^Mo UFarad) 尖端和樣本之間的庫倫力爲:, tT-like Α7 Β7 V. Description of the invention (ffc (kQr) = + k0rr) ~ Jc '^ z] (16) ^ AKr) = V x Hc {k0r) / (a-ίωε) (17) Please read first The total power flowing in and out of the back and conductive material can be verified as the intention Jη · Sdkl = IJ Re {^. Χ H'c)} dkl (18) where SA = (l / 2) Re {EAxHA, Poynting vector. The Q 値 shift caused by power dissipation in a conductive material is: Δα (19) Write this page and print it from the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs where B is a constant, which can be the same as Α 値 in Equation 12 Obtained by mode correction. If k0z «l / 3, the above method produces the same results as the classical skin depth method. In any case, if kGr ~ l / δ or k〇r < l / 5, the change of situation will be dramatic. This is illustrated clearly in Figures 13 and 14. Also shown in Fig. 13 are the Q-distance curve measured for Cu and the curve most suitable for using Equation 19. The best fit curve provides the conductivity coefficients of B = 1.52xl0_7 and 6.2xl07S / m (based on the traditional δ «2μιη set 42. The paper size is applicable to China National Standards (CNS) Α4 specifications (2 丨 0 X 297 mm> Economy) Printed by A7 of the Central Bureau of Standards of the Ministry of Labor Cooperatives _ _ B7 V. Description of the Invention (Characteristics of Skin Depth), which is in good agreement with the conductivity of Cu (5.8xl07s / m). A classical set will be used. The best fit curves of skin depth concept are drawn together. The difference is quite large in the small tip-sample distance area. Other electrical parameter quantities using the invented SEMM can be quantitatively measured using the invented SEMM Other electrical parameters, such as capacitance and Coulomb force. The electric field structure solved here is exactly the same as the electrostatic field structure in various SPM's, including SPM's such as scanning capacitance microscope detection. For conductive and non-conductive samples For example, the full expression of the capacitance between the tip and the sample is written as: guang /-n9 [V〇 For conductive materials, when the distance is less than one-tenth of the tip radius, we find that Amount capable of expressing fairly well with the following equation C / = -1.26x70 ^ 0 ^ log ^ .Lll ^ Mo UFarad Coulomb force between the tip and sample) as follows:

岭%2) R F= -'dh = -^^〇'il^{Newt〇n) 追些關係可以用來得到各種SPM,s的定量顯微鏡檢測 Ο _______43 張尺度適用中國國家標準(CNS〉A4規格(210X29^^-* --„-------- (請先閱讀背面之注意事項@寫本頁) -訂' 經濟部中夬榡準局員工消費合作衽印製 A7 B7 _ . . · 五、發明説明(^>) 一個SEMM的距離規則 電子/光學工業的快速進步需要具有將電氣特性以高解 析度成像的能力。我們已經發展出一種掃描瞬逝波顯微鏡 (SEMM),其能夠以低於微米的解析度來定量量測電氣特性 和表面電阻。我們藉由監控一個同軸空腔的共振頻率(fr)和 品質因數(Q),來測量樣本的介電特性。fr的偏移相應於材 質的介電常數(ε),同時Q的偏移相應於正切損失函數 (tan5)。藉由將尖端模組化爲一個單極點,以及藉由計算一 系列的影像電荷,我們評估局部的ε和tan5。由於尖端半徑 決定場分佈的範圍,此種顯微鏡能夠具有低於微米的解析 度之能力。爲了柯材質的定量特性描寫致能,其對一已知 距離下的操作是有用的。我們已經在一種安穩接觸的模式 下操作了,但此種模式降低了解析度,而且安穩的接觸甚 至會損壞尖端和樣本。在此我們敘述一些不同的方式來調 節尖端-樣本的分離程度,並且允許無接觸地定量測量具有 高解析度之金屬和絕緣表面。 SEMM反應的定量模組化已經履行於金屬和絕緣體的 實例中。因而產生的曲線已經在理論上適當化了(圖11)。 對良好金屬的實例而言,&因而產生的偏移不並是憑藉表 面電阻値所決定的。然而’ Q的偏移爲表面電阻値的一個 函數。由於頻率的偏移並不隨著導電係數改變,所以它可 以藉由保持分離程度以感應一個固定的頻率偏移,來控制 尖端-樣本的分離程度。經由此類的方法,表面的局部解剖 圖可以成像。經由品質因數量測和理論上的計算,金屬的 _44_ 本紙張尺度適用中國國家標準(CNS ) Α·4規格(210X 297公釐) (請先閱讀背面之注意事項^^寫本頁) 訂 經濟部中央標準局員工消費合作社印製 .A7 B7 ____ 五、發明説明(4》) 導電係數可以同時成像。 金屬:對金屬的實例而言,當頻率的偏移必須是一個 常數時,我們可以藉由調整尖端-樣本的分離程度來保持固 定的尖端-樣本分離程度,用以保持空腔中一個固定的頻率 fr。用來履行表面電阻無接觸成像的能力開發種種可能的 應用。微波群集的一些趣味性之一,爲高τ。薄膜發展結果 的輪廓描繪。 一種用於非傳導性和金屬材質尖端反應的定量分析模 組已發展。由於SEMM以大約λ/106的解析度操作於極端 的近場區域中,所以我們可以使用半靜態趨近方式。局部 的電氣特性乃是藉由將模組化尖端爲一個金屬球狀體。和 藉由計算一連串的影像電荷所評估的。SEMM反應的定量 模組化履行於金屬和絕緣體的實例中。尖端響應與模組化 響應的定量比較已經表現爲距離和樣本特性的一個函數’ 並且已經在廣泛變化非傳導性和金屬特性的樣本上論證5% 內的準確性。 對金屬而言,其結果表示爲Ridge% 2) RF = -'dh =-^^ 〇'il ^ {Newt〇n) These relationships can be used to obtain a variety of SPM, s quantitative microscope detection 〇 _______43 scales applicable to Chinese national standards (CNS> A4 specifications (210X29 ^^-*-„-------- (Please read the notes on the back @write this page first)-Order 'Consumer Cooperation with Employees of the China Prospective Bureau of the Ministry of Economic Affairs and print A7 B7 _. 5. Explanation of the invention (^ >) A distance rule for SEMM The rapid progress of the electronics / optical industry requires the ability to image electrical characteristics at high resolution. We have developed a scanning evanescent wave microscope (SEMM), It can quantitatively measure electrical characteristics and surface resistance with a resolution below micron. We measure the dielectric characteristics of a sample by monitoring the resonant frequency (fr) and quality factor (Q) of a coaxial cavity. The offset corresponds to the dielectric constant of the material (ε), while the offset of Q corresponds to the tangent loss function (tan5). By modularizing the tip into a single pole, and by calculating a series of image charges, we Evaluate local ε and tan5. Since the tip radius determines the range of the field distribution, this Microscopes can have a resolution below micron. For the quantitative characterization of Ke material, it is useful for operation at a known distance. We have operated in a stable contact mode, but this kind of Mode reduces resolution, and stable contact can even damage the tip and sample. Here we describe some different ways to adjust the tip-sample separation and allow non-contact quantitative measurement of high-resolution metal and insulating surfaces The quantitative modularization of the SEMM response has been performed in the case of metals and insulators. The resulting curve has been theoretically appropriate (Figure 11). For the case of good metals, the & resulting offset does not It is determined by the surface resistance 然而. However, the shift of 'Q is a function of the surface resistance 。. Since the frequency shift does not change with the conductivity, it can sense a fixed value by maintaining the degree of separation. Frequency offset to control the degree of tip-sample separation. Through such methods, the local anatomy of the surface can be The quality of the metal is _44_ The paper size applies the Chinese National Standard (CNS) Α · 4 specification (210X 297 mm) (please read the precautions on the back first ^^ write this page) ) Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. A7 B7 ____ V. Description of the Invention (4) The conductivity can be imaged at the same time. Metal: For the example of metal, when the frequency offset must be a constant, We can maintain a fixed tip-sample separation by adjusting the tip-sample separation to maintain a fixed frequency fr in the cavity. The ability to perform surface resistive contactless imaging develops a variety of possible applications. One of the interesting aspects of microwave clustering is high τ. The outline of the thin film development results. A quantitative analysis module for non-conductive and metallic tip reactions has been developed. Since SEMM operates in extreme near-field regions with a resolution of approximately λ / 106, we can use a semi-static approach. Local electrical characteristics are achieved by turning the modular tip into a metal sphere. And are evaluated by calculating a series of image charges. Quantification of SEMM reactions Modularization is performed in examples of metals and insulators. Quantitative comparisons of tip response and modular response have been shown as a function of distance and sample characteristics' and have demonstrated accuracy within 5% on samples with widely varying non-conductive and metallic characteristics. For metals, the result is expressed as

Af/f=-AIqn/V〇 > 其中的總和乃是從n=2到無窮大’而其中的A爲一個 幾何形狀因數。 qjlj是藉由一個疊代關係式產生: qn= qn-i/(l+a〇+an.i);以及 an=l+a〇-[l/(l+a〇+an.i)] 以初始條件:ael+a。和q丨=4tcS()R〇V(),其中a〇=g/R〇爲 _____45___ 本紙張尺度適用中國國家標準(CNS ) A4规格(公釐) (請先閱讀背面之注意事項β寫本頁) ·*% ·寫· 訂 經濟部中央標準局員工消費合作社印裝 .A7 _^______;__B7_____ 五、發明説明(#) 尖端-樣本分離的程度,R〇爲尖端半徑,而vQ爲尖端的電 壓。對a〇<<l而言,由於來自尖端的影像電荷之緩慢發散 ,此表示式則緩慢地收歛。無論如何表示式 Af/f=-1.14Alogi〇(a〇) 對a〇<0.1而言乃是相當適宜的。由於這些表示式對良 好金屬而言無關於導電係數,所以頻率的偏移用來當作距 離的量測,而其表面電阻則是分開來量測的。 藉由在一個金屬基座上方改變尖端-樣本的分離程度, 可以測量頻率的反應。用來決定幾何形狀常數A的空腔校 正之後,可以匹配理論上的曲線,而且可以引出在一個給 定的fr之下的和完全分離程度。(圖17) 我們的顯微鏡之設計乃是基於一種先前所建構的 SEMM。從校正曲線可知,一個頻率fRF乃是選擇來相應於 一些尖端-樣本的分離程度。爲了調節尖端-樣本的距離’ 我們使用一種鎖相迴路,其中在圖2的接點31是打開的。 —個固定的RF頻率fRF輸入空腔中,而空腔的輸出和一個 來自參考路徑的信號混合。當&達到fRF時,調整參考路 徑的長度以使得混波器的輸出爲零。相位檢波器的輸出供 給一個積分器,其藉由改變一個壓電致動器(保雷 (Burleigh) PZS-050)的延展來調節尖端-樣本距離’以保持 積分器的輸出接近爲零。對顯示均勻頻率偏移的樣本而言 ,此乃相應於固定的尖端·樣本之分離程度。藉由致動器的 震動和相當低的共振頻率,來限制其量測至接近30Hz左 右。測量Q値且同時測量空腔共振的大小。使用校正曲線 ___ 46 ------- 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇>< 297公慶) ,(請先閱讀背面之注意事項本頁) 訂 Α7 Β7 五、發明説明(〆) .(fr對d)’相應於—些所選出的尖端_樣本分離程度之共振 頻率被選來用於空腔中。所選出的共振頻率供給空腔,而 相位檢波器的輸出則用來調節所供應的電壓至壓電致動器 。樣本的局部解剖圖乃是藉由監控供應到壓電致動器的電 壓震動來測量的。 爲了論證分離局部解剖圖和電氣資訊的能力,我們將 金屬薄膜上變更高度的一組金屬方形物成像(圖18)。此樣 _ 本由置於一個2.1μιη Ag基座上的l〇〇nm、200nm和400nm 的Ag方形物所組成,而Ag基座則是設置在一個藍寶石基 座上。它們逐個爲250μιη且以60μπι的距離分開。局部解 剖圖影像顯示不同方形物高度上淸楚的變化。其損失影像 則必須是沒有特色的β 爲了論證表面電阻成像的能力,我們將變更電阻率的 方形物成像(圖19)。此樣本由設置於75nm的Pt上之Μη 、Cr和Zr方形物所組成,而Pt則是設置在一個矽基座上 ' ί. 。局部解剖圖影像的變化相應於輪廓測定器所測量到的高 5 經濟部中央標準局員工消費合作社印製 ^ J"丨 (請先閱讀背面之注意事項本頁) 度之實際變化。其損失影像是淸楚可見的,而且相應於電 阻率的變化。 極化單晶體:對頻率偏移爲常數的材質(即極化單晶體 )而言,尖端-樣本的距離(d)可以藉由調節其距離來控制, 以保持一固定的頻率偏移。我們已經使用一種相位靈敏檢 波器履行一個負回授迴路,來迫使一個壓電致動器(保雷 PZS-050)保持固定的fr。對顯示均勻頻率偏移的樣本而言 ,此乃相應於固定的尖端·樣本分離程度。樣本的局部解剖 ___________ 47 本紙ί艮尺度適用中國國家標準(CNS ) A4規格(210X29*7公釐) :A7 _ B7 ___ 五、發明説明(朴) 圖乃是藉由監控供應到致動器的電壓之變化來測量的。藉 由一個額外信號的同畤量測,能夠以連結局部解剖圖來將 樣本特性的變化成像。所傳送的功率之變化相應於正切損 失函數或表面電阻的變化。藉由應用一個具有一頻率的交 流電壓,其頻率介於尖端-樣本負回授迴路的頻率和空腔的 頻寬之間;以及藉由測量相位檢波器輸出的變化,也可以 . 測量第一個層級的介電常數(sUk)。(圖15)此影像乃是以一 個週期性的極化單晶體LiNb03晶片所測量到的。除了一固 定的傾斜,局部解剖圖影像則必須是沒有特色的。藉由交 流領域中的逆轉極化作用,非線性影像則以相位上的逆轉 爲其特色。 其他:無洞孔的反射模式近場光學顯微鏡檢測(無洞孔 的NSOM)也可以使用於一個SEMM的距離調節上。在光 學頻率下材質特性的變化小於在較低頻率下的變化,而使 得無洞孔的NSOM適合用於距離調節。’傳統的’近場光學 依靠使用一個傳送或吸收的錐形導波管之幾何形狀。這種 導波管能夠從一個洞孔近處不是限制便是取樣光線,而其 洞孔的尺寸則小於光線的波長。這種形式的近場光學需要 裝配一種複雜的探針。在無洞孔的NSOM中,一個鋒利、 光學傳導的尖端置於靠近樣本之處而一個高聚焦的聚光燈 照明尖端-樣本的區域。此乃對比於早先從底端照明其尖端 的無洞孔NSOMs。限制這些無洞孔的NSOMs使用在光學 傳輸的樣本上。不是藉由大小的量測便是藉由散射光極化 作用的量測,散射光隨尖端-樣本的分離程度變化而可以用 ---------48__ 本紙張尺度適用中S國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項Af / f = -AIqn / V〇 > where the sum is from n = 2 to infinity 'and A is a geometric shape factor. qjlj is generated by an iterative relationship: qn = qn-i / (l + a〇 + an.i); and an = l + a〇- [l / (l + a〇 + an.i)] With initial conditions: ael + a. And q 丨 = 4tcS () R〇V (), where a〇 = g / R〇 is _____45___ This paper size is applicable to China National Standard (CNS) A4 size (mm) (Please read the precautions on the back first β write (This page) · *% · Write · Order printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. A7 _ ^ ______; __B7_____ V. Description of the Invention (#) Tip-The degree of sample separation, R0 is the tip radius, and vQ is Tip voltage. For ao < l, this expression slowly converges due to the slow divergence of the image charge from the tip. In any case, the expression Af / f = -1.14Alogi〇 (a〇) is quite suitable for a〇 < 0.1. Since these expressions are not related to the conductivity of good metals, the frequency offset is used as a measurement of distance, and its surface resistance is measured separately. By changing the degree of tip-sample separation above a metal base, the frequency response can be measured. After the cavity calibration used to determine the geometric constant A, the theoretical curve can be matched, and the degree of complete separation can be derived below a given fr. (Figure 17) The design of our microscope is based on a previously constructed SEMM. It can be seen from the calibration curve that a frequency fRF is selected to correspond to the degree of tip-sample separation. To adjust the tip-sample distance 'we use a phase-locked loop in which the contact 31 in Fig. 2 is open. A fixed RF frequency fRF is input into the cavity, and the output of the cavity is mixed with a signal from the reference path. When & reaches fRF, adjust the length of the reference path so that the output of the mixer is zero. The output of the phase detector is supplied to an integrator, which adjusts the tip-sample distance by changing the extension of a piezoelectric actuator (Burleigh PZS-050) to keep the output of the integrator close to zero. For samples showing uniform frequency offset, this corresponds to the degree of separation of the fixed tip and sample. The vibration of the actuator and the relatively low resonance frequency limit its measurement to approximately 30 Hz. Measure Q 値 and simultaneously measure the size of the cavity resonance. Use the calibration curve ___ 46 ------- This paper size applies the Chinese National Standard (CNS) A4 specification (21〇 > < 297 public holiday), (Please read the precautions on the back page first) Order A7 Β7 V. Description of the invention (i). (Fr vs. d) 'Resonance frequencies corresponding to some selected tip-sample separation degrees are selected for use in the cavity. The selected resonance frequency is supplied to the cavity, and the output of the phase detector is used to adjust the supplied voltage to the piezoelectric actuator. The anatomy of the sample was measured by monitoring the vibration of the voltage supplied to the piezoelectric actuator. To demonstrate the ability to separate local anatomy and electrical information, we imaged a set of metal squares with varying heights on a thin metal film (Figure 18). This sample _ was composed of 100 nm, 200 nm, and 400 nm Ag squares placed on a 2.1 μm Ag base, and the Ag base was set on a sapphire base. They are 250 μm one by one and separated by a distance of 60 μm. Partial solution The cross-section image shows the meticulous changes in the height of different squares. The loss image must be uncharacterized β. In order to demonstrate the ability of surface resistivity imaging, we will image a square with a changed resistivity (Figure 19). This sample consists of Mn, Cr, and Zr squares set on Pt at 75nm, and Pt is set on a silicon substrate. The change in the anatomy image corresponds to the height measured by the profilometer. 5 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs ^ J " 丨 (Please read the precautions on the back page). The loss image is clearly visible and corresponds to the change in resistivity. Polarized single crystal: For materials with constant frequency offset (ie, polarized single crystal), the tip-sample distance (d) can be controlled by adjusting its distance to maintain a fixed frequency offset. We have used a phase-sensitive detector to perform a negative feedback loop to force a piezo-actuator (Rayleigh PZS-050) to maintain a fixed fr. For samples showing a uniform frequency offset, this corresponds to a fixed tip-sample separation degree. Local anatomy of the sample ___________ 47 The paper is compliant with the Chinese National Standard (CNS) A4 (210X29 * 7 mm): A7 _ B7 ___ V. Description of the invention (Park) The picture is supplied to the actuator through monitoring The change in voltage is measured. Peer measurement of an additional signal enables imaging of changes in sample characteristics by linking the local anatomy. The change in power delivered corresponds to a change in tangent loss function or surface resistance. By applying an alternating voltage with a frequency between the frequency of the tip-sample negative feedback loop and the bandwidth of the cavity; and by measuring the change in the output of the phase detector, it is also possible to measure. First The dielectric constant (sUk) of each level. (Figure 15) This image was measured with a periodically polarized single crystal LiNb03 wafer. Except for a fixed tilt, the topographic image must be uncharacteristic. With the reversal of polarization in the AC field, nonlinear images are characterized by reversal in phase. Others: The reflection mode near-field optical microscope inspection without holes (NSOM without holes) can also be used for the distance adjustment of a SEMM. The change in material properties at optical frequencies is less than at lower frequencies, making the NSOM without holes suitable for distance adjustment. 'Traditional' near-field optics rely on the geometry of a transmitting or absorbing tapered waveguide. This type of waveguide can either limit or sample light from near a hole, and the size of the hole is smaller than the wavelength of the light. This form of near-field optics requires the assembly of a complex probe. In a holeless NSOM, a sharp, optically conductive tip is placed near the sample and a highly focused spotlight illuminates the tip-sample area. This is in contrast to earlier holeless NSOMs, which illuminated their tips from the bottom. Limit these hole-free NSOMs to optically transmitted samples. Either by size measurement or by measurement of the polarization of scattered light, the scattered light can be used as the degree of tip-sample separation changes --------- 48__ This paper is applicable to S countries Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back first

,1J-P-0J 經濟部中央標準局員工消費合作杜印製 A7 B7 :#ι£ {-I補t 本~〇月"£ 五、發明說明(q), 1J-P-0J Printed by the Consumer Co-operation of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7: # ι £ {-I 补 T 本 ~ 〇 月 " £ V. Description of Invention (q)

於距離的控制。爲了減少背景亮度的效應,我們提出史瓦 丁柴爾德(Schwartzchild)透鏡的使用,其具有一個黑暗的中 心區域以用來減少散射的背景。另外,可以使用一種縱向 的高頻振動來減少遠場背景效應。這種高頻振動應該只將 光學信號的成份檢測出來,其光學信號的變化遍及小長度 的尺度。這種方法考慮一個高解析度SEMM的尖端-樣本 分離程度之控制,其SEMM的高解析度遍及結合樣本電氣 特性伺時量測的基座之一個寬廣範圍Z 尖端-樣本距離也可以藉由頻率偏移的差異量測來調節 。振動樣本的位置,例如設置一個壓電組件於樣本之下, 會導致共振頻率和其諧波的改變。這些改變的測量則是使 用,例如,自保持放大器。共振頻率的改變將具有比顯微 鏡信號較急遽的距離從屬,而能夠用於距離的控制。對距 離從屬類似一功率定律的頻率偏移而言,在空腔高頻振動 的頻率下,f;的變化將逆向改變另外一個尖端-樣本分離程 度的因數。容許同時量測樣本特性和局部解剖圖,如果此 一縱向的高頻振動較尖端-樣本分離程度爲小,則所取得的 信號總變化將是小的。 頻率偏移和諧波強度無關於介電常數和尖端-樣本距離 g的函數,而引出兩個獨立的方程式: ㈣e,g) (2〇) 邱上 =f2(e,g) dS U (21) 49 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝·! ------訂--------- 經濟部智慧財產局員工消費合作社印製For distance control. To reduce the effect of background brightness, we propose the use of Schwartzchild lenses, which have a dark center region to reduce the background of scattering. In addition, a longitudinal high-frequency vibration can be used to reduce far-field background effects. This high-frequency vibration should only detect the components of the optical signal, and its optical signal changes over a small length scale. This method considers the control of the tip-sample separation of a high-resolution SEMM. The high-resolution of the SEMM extends across a wide range of Z-tip-sample distances of the base combined with the electrical characteristics of the sample. The offset difference is measured to adjust. The location of a vibrating sample, such as placing a piezoelectric component under the sample, will cause the resonant frequency and its harmonics to change. These changes are measured using, for example, self-holding amplifiers. Changes in the resonance frequency will have a sharper distance dependency than the microscope signal and can be used for distance control. For a frequency offset from a slave similar to a power law, a change in f; at the frequency of the cavity's high-frequency vibrations will reversely change the other tip-sample separation factor. It is allowed to measure the sample characteristics and local anatomy at the same time. If the longitudinal high-frequency vibration is smaller than the tip-sample separation degree, the total change of the obtained signal will be small. Frequency offset and harmonic intensity are independent of the dielectric constant and tip-sample distance g, but two independent equations are derived: 引 e, g) (2〇) Qiu Shang = f2 (e, g) dS U (21) 49 This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) Loading ·! ------ Order ------- -Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs

五、發明說明(Hi) 其中f,.描述於之前的方程式5中。將方程式5帶入方 程式2〇中,Af=fr-f〇。另外,方程式5中的分母f|以心替 代,由於數量相對的大小,而對其結果將會有〜個非^微 小的影響。方程式5則解出fV並用作方程式20。方程式21 爲對g的一次微分。同時解出方程式20和21以得到介電 常數,ε,和間隙距離’ g。 做例證之實施例的說明以及本發明的最佳模式並不打 算限制本發明的範疇。在不需偏離後附的申請專利範圍真 正的精神和範圍之下可以使用種種的修改、架構以及等效 裝置。 〔元件符號〕 (請先閱讀背面之注意事項再填寫本頁) Μ 經濟部智慧財產局員工消費合作社印製 10 微波空腔 1 2 環線輸入 14 環線輸出 16 末端障壁 17 保護組件 18 中心金屬導體 19 漸尖的末端 2〇 削尖的金屬尖端 2 1 藍寶石圓盤 2 2 洞孔 3 0 產生器 3 1 接點 50 ----訂---------------------- -—^ -n n - 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) A7 B75. Description of the invention (Hi) where f ,. is described in the previous equation 5. Bring equation 5 into equation 20, Af = fr-f0. In addition, the denominator f | in Equation 5 is replaced by the heart. Due to the relative size of the number, its result will have a non-negligible effect. Equation 5 solves fV and uses it as Equation 20. Equation 21 is a derivative of g. Equations 20 and 21 are solved at the same time to obtain the dielectric constant, ε, and the gap distance 'g. The description of the exemplifying embodiments and the best mode of the invention are not intended to limit the scope of the invention. Various modifications, structures, and equivalent devices can be used without departing from the true spirit and scope of the attached patent application. [Element Symbol] (Please read the precautions on the back before filling this page) Μ Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 10 Microwave cavity 1 2 Loop line input 14 Loop line output 16 Terminal barrier 17 Protective component 18 Center metal conductor 19 Sharpened tip 20 Sharpened metal tip 2 1 Sapphire disc 2 2 Hole 3 0 Generator 3 1 Contact 50 ---- Order ---------------- ------ -— ^ -nn-This paper size applies to China National Standard (CNS) A4 (210x297 mm) A7 B7

丨修正 丨補I 本竑年 五、發明說明 同軸接線 3 4 二極體 4 0 檢波器 4 2 直接耦合器 4 3 直接耦合器 4 4 絕緣體組件 4 6 金屬末端障壁 4 8 中心導體 5 0 資料獲取單元 5 2 外部保護組件 5 4 ' 探針的尖端 6 0 電腦 7 0 影像顯示器 8 0 樣本 9 0 步進的機構 10 0 控制器 (請先閱讀背面之注意事項再填寫本頁) 裝 '---訂i -------f.rl> /Γ. '· 經濟部智慧財產局員工消費合作社印製 51 本紙張尺度適用中國國家標準(CNS)A4規格(2〗0 x 297公釐)丨 Correction 丨 Supplement I This year, the fifth invention description Coaxial wiring 3 4 Diode 4 0 Detector 4 2 Direct coupler 4 3 Direct coupler 4 4 Insulator assembly 4 6 Metal terminal barrier 4 8 Center conductor 5 0 Data acquisition Unit 5 2 External protective component 5 4 'Probe tip 6 0 Computer 7 0 Image display 8 0 Sample 9 0 Stepping mechanism 10 0 Controller (Please read the precautions on the back before filling this page) -Order i ------- f.rl > / Γ. '· Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 51 This paper size applies to China National Standard (CNS) A4 (2) 0 x 297 mm )

Claims (1)

A8 B8 C8 D8 六 經濟部智慧財產局員工消費合作杜印製 、申睛專利範圍 ' 丨修正 j l一種掃描電磁波顯微鏡的探針,包含:|補充 a) —個具有中心傳導性組件的同軸電纜; b) —環繞中心傳導性組件的絕緣材質; c) 一個外部的電氣傳導保護組件,環繞於絕緣材質; d) —個具有一洞孔的末端障壁,末端障壁連接於保護 組件;. .e)—個..電氣地連接到虫.心傳導性組件_.削尖之_尖端._, 其中心傳導j生組件以延伸經過和突出末端障壁的洞孔之方 式辑置。 如申請專利範圍第1項之探針,其中探針包含一條 線狀的..同軸電纜。 3.—種掃描電磁_波.顯微鏡的探針,包含: a) ~~個具有中心傳導性組件的共振器; b) —個環繞中心傳導性組件的空腔;. c) —個外部的電氣傳導保護組侔,環繞於空腔; d) —個具有一洞孔的末端障璧,末端障壁連接於保護 組件;以及 e) —個電氣地連接到中心傳導性組件的削尖之尖端, 其中心傳導性組件以延伸經過和突出末遍障壁的洞孔之方 式設置。 、4•如申請專利範圍第3項之探針,進一步®包含一個 第二的電氣傳導性前端障壁,前端麗璧設置li末端障壁上 方一段距離之虞,其中的距灕.介於L/丄1和1/4 .λ的一個整 數η倍之間。 良紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) ^^iiitr---------線. A8 B8 C8 D8 六 經濟部智慧財產局員工消費合作杜印製 、申睛專利範圍 ' 丨修正 j l一種掃描電磁波顯微鏡的探針,包含:|補充 a) —個具有中心傳導性組件的同軸電纜; b) —環繞中心傳導性組件的絕緣材質; c) 一個外部的電氣傳導保護組件,環繞於絕緣材質; d) —個具有一洞孔的末端障壁,末端障壁連接於保護 組件;. .e)—個..電氣地連接到虫.心傳導性組件_.削尖之_尖端._, 其中心傳導j生組件以延伸經過和突出末端障壁的洞孔之方 式辑置。 如申請專利範圍第1項之探針,其中探針包含一條 線狀的..同軸電纜。 3.—種掃描電磁_波.顯微鏡的探針,包含: a) ~~個具有中心傳導性組件的共振器; b) —個環繞中心傳導性組件的空腔;. c) —個外部的電氣傳導保護組侔,環繞於空腔; d) —個具有一洞孔的末端障璧,末端障壁連接於保護 組件;以及 e) —個電氣地連接到中心傳導性組件的削尖之尖端, 其中心傳導性組件以延伸經過和突出末遍障壁的洞孔之方 式設置。 、4•如申請專利範圍第3項之探針,進一步®包含一個 第二的電氣傳導性前端障壁,前端麗璧設置li末端障壁上 方一段距離之虞,其中的距灕.介於L/丄1和1/4 .λ的一個整 數η倍之間。 良紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) ^^iiitr---------線. 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 _5.如申請專利範圍第4項之探針,其电前端障壁電氣 地短路到中心導體,且前端J章壁和末端障壁之間的距離爲 η( 1 /4 λ),其中的.n爲奇整數。 6. 如申量蔓显範圍第4項之探針.,其中.前端障壁並無 霉蓋短路到中心.導體,.且-爲η(1/4 λ),其中的η爲偶整數。 7. 祖吏請專㈣範圍第4項之探針,其中保護組件以黏 著劑適當地固定於中心導體。 8. 如申請專利範圍第3項之探針,其中空腔包含一種 絕緣材質。 9. 一種掃描電磁波顯微鏡,包含: a) —個具有洞孔和中心傳導性組件的掃描電磁波顯微 .鏡探針,其洞孔設置於一個電氣傳導性的末端障壁.上,而 中心傳導性組件包含一個延伸經過且突出末端障嬖韵削尖 尖牺, b) —頻率偵測器,其用以計算稱爲頻率偏移之共振器 的起始和最終共振頻率;及 c) 一電力偵測器,其用以計算稱爲Q偏移之消耗及儲 存於共振器的電磁能之起始和最終的比値。 10. 如申請專初範圍第9項之顯微鏡,進一步地包含一 種用來計算非傳導性材質的介電常數之電腦工具,其非傳 導性材質置於電極探針尖端近處,.而介電常數爲共振頻率 的偏移或反射波的改變之一個函數,且反射波乃是因非傳 導性材質接近探針尖所引起的。 _ 2 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) : ' ' (請先閱讀背面之注音?事項再填寫本頁) • n n n 1 fli^ i i 訂-----^----線 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 _5.如申請專利範圍第4項之探針,其电前端障壁電氣 地短路到中心導體,且前端J章壁和末端障壁之間的距離爲 η( 1 /4 λ),其中的.n爲奇整數。 6. 如申量蔓显範圍第4項之探針.,其中.前端障壁並無 霉蓋短路到中心.導體,.且-爲η(1/4 λ),其中的η爲偶整數。 7. 祖吏請專㈣範圍第4項之探針,其中保護組件以黏 著劑適當地固定於中心導體。 8. 如申請專利範圍第3項之探針,其中空腔包含一種 絕緣材質。 9. 一種掃描電磁波顯微鏡,包含: a) —個具有洞孔和中心傳導性組件的掃描電磁波顯微 .鏡探針,其洞孔設置於一個電氣傳導性的末端障壁.上,而 中心傳導性組件包含一個延伸經過且突出末端障嬖韵削尖 尖牺, b) —頻率偵測器,其用以計算稱爲頻率偏移之共振器 的起始和最終共振頻率;及 c) 一電力偵測器,其用以計算稱爲Q偏移之消耗及儲 存於共振器的電磁能之起始和最終的比値。 10. 如申請專初範圍第9項之顯微鏡,進一步地包含一 種用來計算非傳導性材質的介電常數之電腦工具,其非傳 導性材質置於電極探針尖端近處,.而介電常數爲共振頻率 的偏移或反射波的改變之一個函數,且反射波乃是因非傳 導性材質接近探針尖所引起的。 _ 2 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) : ' ' (請先閱讀背面之注音?事項再填寫本頁) • n n n 1 fli^ i i 訂-----^----線 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 ,1 、 . 11.如申請專利範圍第10項之顯微鏡,其申鼋腦工羡 以程式設計來從方程式2計算其介電常數。: 12_如申請專利範圍第9項之顯微鏡’進·一步地包含一 種用來計算非傳導性材質的損失正切函數之電腦工具’其 非傳導性材質置於電極探針尖端近處’而介電常數爲Q値 的偏移之一個函數’且Q薇的i扁移乃是因遵.傳導性材質接 近探針尖所引起的。 13. 如申請專利範圍第12項之顯微鏡,其中霹腦工具 以程式設計苯從方程式3計篡其損失正切函數。 14. 如申請專利範圍第9項之顯微鏡,其中,功率檢波器 ' .... 爲一個二極體檢波器。 15. 如申請專利範圍第9項之顯微鏡,其中頻率檢波器 包含·一個相位偏移器、.一個;相位檢波器和一個積分器。 16. 如申請專利範圍第9.項之顯微鏡,其中的探針具有 一個共振器,而且其中的空腔塡滿一種非傳導性材質。 Π·如申請專利範圍第16項之顯微鏡,其中的非傳導 性材質爲藍寶石。 18. 如申請專利範圍第..17項之顯微鏡,其中的非傳導 性材質爲SrTi03。 19. 如申請專-利範圍第9項之顯微鏡,其中探針尖端延 .伸突出洞孔一段距離,其距離則是介於穿過洞孔距離的1/3 左右和3倍左右之間。 .2〇.如申請專利範圍第9項之顯微鏡,其φ共振器末端 障壁中的洞孔爲圓形的,而且其直徑介於大約20千分之一 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) ----------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 ,1 、 . 11.如申請專利範圍第10項之顯微鏡,其申鼋腦工羡 以程式設計來從方程式2計算其介電常數。: 12_如申請專利範圍第9項之顯微鏡’進·一步地包含一 種用來計算非傳導性材質的損失正切函數之電腦工具’其 非傳導性材質置於電極探針尖端近處’而介電常數爲Q値 的偏移之一個函數’且Q薇的i扁移乃是因遵.傳導性材質接 近探針尖所引起的。 13. 如申請專利範圍第12項之顯微鏡,其中霹腦工具 以程式設計苯從方程式3計篡其損失正切函數。 14. 如申請專利範圍第9項之顯微鏡,其中,功率檢波器 ' .... 爲一個二極體檢波器。 15. 如申請專利範圍第9項之顯微鏡,其中頻率檢波器 包含·一個相位偏移器、.一個;相位檢波器和一個積分器。 16. 如申請專利範圍第9.項之顯微鏡,其中的探針具有 一個共振器,而且其中的空腔塡滿一種非傳導性材質。 Π·如申請專利範圍第16項之顯微鏡,其中的非傳導 性材質爲藍寶石。 18. 如申請專利範圍第..17項之顯微鏡,其中的非傳導 性材質爲SrTi03。 19. 如申請專-利範圍第9項之顯微鏡,其中探針尖端延 .伸突出洞孔一段距離,其距離則是介於穿過洞孔距離的1/3 左右和3倍左右之間。 .2〇.如申請專利範圍第9項之顯微鏡,其φ共振器末端 障壁中的洞孔爲圓形的,而且其直徑介於大約20千分之一 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) ----------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) A8 B8 C8 D8 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 微米和大約3毫米之間。 21. 如申請專利範圍第9項之顯微鏡,其中的頻率產生 .器包含一個電壓控制振盪器。 22. 如申請專利範圍第21項之顯微鏡,其中的頻率產 生器操作於微波的領域中'。 23. 如申請專利範圍第9項之顯微鏡,其中的頻率控制 器爲數位式的。 24. —種測量一樣本的介電常數和損失正切函數之方法 ,包含: j)決定探針的一個參考共振頻率f〇,藉由 .Y).將探針置於足夠遠離樣本材質之處,使其不受樣本 影響; vi) 掃描一個頻率籠屬; vii) 畫出頻率對功率的曲.線圖;, viii) 配合一條曲線來得知其最大的頻率,稱爲f〇 ; 1〇藉由將f〇除以兩半功率振幅點所對應的頻率之差値 來決定Q。; .1).由方程式S=MQQt來計算係數Μ,其中S爲在f〇時 之功率; nr)使甩已知介電常數的樣本來校準在方程式5和6 .中 的幾何因數A、B和R〇 η)將掃描瞬逝電磁波顯:微鏡的一個探針尖端置於樣本 的近處或安穩地碰觸樣本; 〇)測量探針近處因樣本的接近而引起的共振頻率變動 4 (請先閱讀背面之注意事項再填寫本頁) -\=D X % 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A8 B8 C8 D8 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 微米和大約3毫米之間。 21. 如申請專利範圍第9項之顯微鏡,其中的頻率產生 .器包含一個電壓控制振盪器。 22. 如申請專利範圍第21項之顯微鏡,其中的頻率產 生器操作於微波的領域中'。 23. 如申請專利範圍第9項之顯微鏡,其中的頻率控制 器爲數位式的。 24. —種測量一樣本的介電常數和損失正切函數之方法 ,包含: j)決定探針的一個參考共振頻率f〇,藉由 .Y).將探針置於足夠遠離樣本材質之處,使其不受樣本 影響; vi) 掃描一個頻率籠屬; vii) 畫出頻率對功率的曲.線圖;, viii) 配合一條曲線來得知其最大的頻率,稱爲f〇 ; 1〇藉由將f〇除以兩半功率振幅點所對應的頻率之差値 來決定Q。; .1).由方程式S=MQQt來計算係數Μ,其中S爲在f〇時 之功率; nr)使甩已知介電常數的樣本來校準在方程式5和6 .中 的幾何因數A、B和R〇 η)將掃描瞬逝電磁波顯:微鏡的一個探針尖端置於樣本 的近處或安穩地碰觸樣本; 〇)測量探針近處因樣本的接近而引起的共振頻率變動 4 (請先閱讀背面之注意事項再填寫本頁) -\=D X % 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專科範圍 , P)測量探針近處因樣本的接近而引起的品質因數變動 :以及 q)使用一對方程式來計算介電常數和損失正切函數’ 其方程式乃是從包含安穩接觸方程式2和3、探針-樣本間 隙方程式5和6的一群方程式或薄膜方程式中所挑選出來 的。. 25.如申請專利範圍第24項之方法,其中,一俩洛仁 子線條型態係用以決定f〇和Qo的頻率對功率曲線。 .26.—種測量一傳導性樣本:導電係數之方桂,包含: a) 決定探針的一個參考共振頻率f〇 : i)將探針置於足夠遠離樣本材質之處,使其不受樣本 影響; i_i).掃描一個頻率範圍; Ui)畫出頻率對功率的曲線圖; iv)配合一條曲線來得知其最大的頻率,稱爲f〇 ; b) 藉由將..fo..除以兩..举功車振.fe點..販對應选頻廉差値來. 決定Qg ; c.)由方程.式S.="MQ_〇.2 .來計.算係數.賓单1爲—在u夸 之功.率; . d) 將掃描瞬逝電磁波顯微鏡的一個探針尖端置於樣本 .的近處, e) 藉虫.測量並-配合頻寧和品翼.因數來控車在方種式12 和I9.中的幾何因數A、B和R〇 ’其頻率和品質因數爲探針 _ 5 氏張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)'~~~'~~~ -:-- (請先閱讀背面之注意事項再填寫本頁) -------------.^w------Γ— ^---------線- 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專科範圍 , P)測量探針近處因樣本的接近而引起的品質因數變動 :以及 q)使用一對方程式來計算介電常數和損失正切函數’ 其方程式乃是從包含安穩接觸方程式2和3、探針-樣本間 隙方程式5和6的一群方程式或薄膜方程式中所挑選出來 的。. 25.如申請專利範圍第24項之方法,其中,一俩洛仁 子線條型態係用以決定f〇和Qo的頻率對功率曲線。 .26.—種測量一傳導性樣本:導電係數之方桂,包含: a) 決定探針的一個參考共振頻率f〇 : i)將探針置於足夠遠離樣本材質之處,使其不受樣本 影響; i_i).掃描一個頻率範圍; Ui)畫出頻率對功率的曲線圖; iv)配合一條曲線來得知其最大的頻率,稱爲f〇 ; b) 藉由將..fo..除以兩..举功車振.fe點..販對應选頻廉差値來. 決定Qg ; c.)由方程.式S.="MQ_〇.2 .來計.算係數.賓单1爲—在u夸 之功.率; . d) 將掃描瞬逝電磁波顯微鏡的一個探針尖端置於樣本 .的近處, e) 藉虫.測量並-配合頻寧和品翼.因數來控車在方種式12 和I9.中的幾何因數A、B和R〇 ’其頻率和品質因數爲探針 _ 5 氏張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)'~~~'~~~ -:-- (請先閱讀背面之注意事項再填寫本頁) -------------.^w------Γ— ^---------線- 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 尖竭和已知導電係數赴參—對复本之間斑間.滕距灕g之一偃 函數; f) 測量探針近處..因樣本斑接近而引.起的共振頻率之變 動; g) 由方程式12來計算g ; h) 測量探針近處因樣本的接近而引起的品質因數之變 . " . 動; 以及 i) 使用方程式19來計算導電係數。 27·—種調節掃描_逝電磁波顯微鏡的探針尖端和所要 掃描的傳導性樣本之間的距離之方法,包倉: ,a)選擇尖端和樣本之間一段較佳的距離,gp ; 1 b)決定探針的一個參考共振頻率f0 : i) 將探針置於足夠遠離樣本材質之處Λ.使其不受樣;^ 影響; ii) 掃描一個頻率範圍;. i、ii)畫出頻率對功率的曲線圖; iv)配合一條曲線來得知其最本的率,稱爲; c) 藉由將f〇 .除以兩半功率振幅點所對應的頻率差値$ 決定Q〇 ; d) 藉由測量並配合頻率和品質因數來校準在方程式;12 和19中的幾何因數A、B和RQ ’其頻率和品質因數爲探針 尖端和已知導電係數的參考樣本之間的閒隙距離g之—個 函數; 6 (請先閱讀背面之注意事項再填寫本頁)A8 B8 C8 D8 Consumer cooperation of the Intellectual Property Bureau of the Ministry of Economic Affairs of the People's Republic of China, printed and applied for patent scope. 丨 Modified a probe for a scanning electromagnetic microscope, including: | Supplement a) a coaxial cable with a central conductive component; b) — an insulating material surrounding the central conductive component; c) an external electrical conductive protection component surrounding the insulating material; d) — an end barrier with a hole, the end barrier is connected to the protection component; .e) A .. It is electrically connected to the worm. The cardiac conductive component _. Sharpened _ tip. _, Its central conductive component is arranged to extend through and protrude through the hole of the terminal barrier. For example, the probe of the scope of patent application, the probe includes a linear coaxial cable. 3.—A kind of scanning electromagnetic wave. The probe of the microscope includes: a) ~~ resonators with a central conductive component; b) — a cavity surrounding the central conductive component; c) — an external Electrically conductive protection group 侔, surrounding the cavity; d) an end barrier with a hole, the end barrier is connected to the protection component; and e) a sharpened tip electrically connected to the central conductive component, The central conductive component is arranged in such a way as to extend through and protrude through the hole of the last barrier. 4, 4 If the probe in the scope of patent application No. 3, further ® includes a second electrically conductive front end barrier, the front end is set at a distance above the end barrier, and the distance between them is between L / 丄Between 1 and 1/4 .λ an integer n times. Good paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page) ^^ iiitr --------- line. A8 B8 C8 D8 6. Consumption cooperation between employees of the Intellectual Property Bureau of the Ministry of Economic Affairs, Du printed, and patent application scope. 丨 Modified a probe of a scanning electromagnetic wave microscope, including: | Supplement a)-a coaxial cable with a central conductive component; b)-surround The insulating material of the central conductive component; c) an external electrical conductive protection component surrounding the insulating material; d) an end barrier with a hole, the end barrier is connected to the protection component; .e)-one .. Electrically connected to the worm. Heart conductive component _. Sharpened _ Tip. _, Its central conductive component is arranged to extend through and protrude through the hole in the terminal barrier. For example, the probe of the scope of patent application, the probe includes a linear coaxial cable. 3.—A kind of scanning electromagnetic wave. The probe of the microscope includes: a) ~~ resonators with a central conductive component; b) — a cavity surrounding the central conductive component; c) — an external Electrically conductive protection group 侔, surrounding the cavity; d) an end barrier with a hole, the end barrier is connected to the protection component; and e) a sharpened tip electrically connected to the central conductive component, The central conductive component is arranged in such a way as to extend through and protrude through the hole of the last barrier. 4, 4 If the probe in the scope of patent application No. 3, further ® includes a second electrically conductive front end barrier, the front end is set at a distance above the end barrier, and the distance between them is between L / 丄Between 1 and 1/4 .λ an integer n times. Good paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the notes on the back before filling this page) ^^ iiitr --------- line. Intellectual Property of the Ministry of Economic Affairs A8 B8 C8 D8 printed by the Bureau ’s Consumer Cooperatives 6. Application scope of patents_5. If the probe in the scope of patent application No. 4 is applied, the electrical front end barrier is electrically short-circuited to the center conductor, and the front end of the J chapter wall and the end barrier The distance is η (1/4 λ), where .n is an odd integer. 6. For example, the probe in item 4 of the spread range, in which the front end barrier is not short-circuited to the center, the conductor, and-is η (1/4 λ), where η is an even integer. 7. The ancestral staff please specialize in the probe of the scope 4 in which the protective component is appropriately fixed to the center conductor with an adhesive. 8. The probe as claimed in claim 3, wherein the cavity contains an insulating material. 9. A scanning electromagnetic wave microscope comprising: a) a scanning electromagnetic wave microscope having a hole and a central conductive component. A mirror probe having a hole provided on an electrically conductive terminal barrier, and the center conductive The component includes a sharpened tip that extends past and highlights the end barrier, b) a frequency detector that calculates the initial and final resonance frequencies of a resonator called a frequency offset; and c) a power detector The detector is used to calculate the initial and final ratios of the consumption called Q offset and the electromagnetic energy stored in the resonator. 10. For the microscope of item 9 of the application scope, it further includes a computer tool for calculating the dielectric constant of a non-conductive material. The non-conductive material is placed near the tip of the electrode probe. The constant is a function of the shift of the resonance frequency or the change of the reflected wave, and the reflected wave is caused by the non-conductive material approaching the probe tip. _ 2 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm): '' (Please read the note on the back? Matters before filling out this page) • nnn 1 fli ^ ii Order ----- ^ ---- Printed by A8, B8, C8, D8, Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs VI. Patent application scope_5. If the probe in the patent application item 4 is applied, its electrical front end barrier is electrically shorted to the center conductor, And the distance between the front J chapter wall and the end barrier is η (1/4 λ), where .n is an odd integer. 6. For example, the probe in item 4 of the spread range, in which the front end barrier is not short-circuited to the center, the conductor, and-is η (1/4 λ), where η is an even integer. 7. The ancestral staff please specialize in the probe of the scope 4 in which the protective component is appropriately fixed to the center conductor with an adhesive. 8. The probe as claimed in claim 3, wherein the cavity contains an insulating material. 9. A scanning electromagnetic wave microscope comprising: a) a scanning electromagnetic wave microscope having a hole and a central conductive component. A mirror probe having a hole provided on an electrically conductive terminal barrier, and the center conductive The component includes a sharpened tip that extends past and highlights the end barrier, b) a frequency detector that calculates the initial and final resonance frequencies of a resonator called a frequency offset; and c) a power detector The detector is used to calculate the initial and final ratios of the consumption called Q offset and the electromagnetic energy stored in the resonator. 10. For the microscope of item 9 of the application scope, it further includes a computer tool for calculating the dielectric constant of a non-conductive material. The non-conductive material is placed near the tip of the electrode probe. The constant is a function of the shift of the resonance frequency or the change of the reflected wave, and the reflected wave is caused by the non-conductive material approaching the probe tip. _ 2 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm): '' (Please read the note on the back? Matters before filling out this page) • nnn 1 fli ^ ii Order ----- ^ ---- Printed by A8, B8, C8, D8, Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs VI. Scope of patent application, 1, 1. 11. If the scope of the scope of patent application is 10, its application is brain-envy. Let's calculate its dielectric constant from Equation 2. : 12_ If the microscope in item 9 of the patent application scope 'further contains a computer tool for calculating the loss tangent function of a non-conductive material' its non-conductive material is placed near the tip of the electrode probe ' The electric constant is a function of Q 値 's offset and Q Wei's i translation is caused by compliance. The conductive material is close to the probe tip. 13. For the microscope of the scope of application for patent No. 12, in which the brain tool is programmed to calculate the loss tangent function of benzene from Equation 3. 14. The microscope of item 9 in the scope of patent application, wherein the power detector '.... is a diode detector. 15. The microscope according to item 9 of the scope of patent application, wherein the frequency detector includes a phase shifter, a phase detector, and an integrator. 16. The microscope of item 9. in the patent application, wherein the probe has a resonator and the cavity is filled with a non-conductive material. Π. The microscope of item 16 in the scope of patent application, wherein the non-conductive material is sapphire. 18. For the microscope with the scope of patent application No..17, the non-conductive material is SrTi03. 19. For the microscope of item 9 of the scope of patent application, in which the probe tip extends a certain distance from the hole, the distance is between about 1/3 and 3 times the distance through the hole. .20. As for the microscope in the 9th scope of the patent application, the hole in the barrier at the end of the φ resonator is circular, and its diameter is about 1 / 20th of a millimeter. ) A4 size (210 X 297 public love) ---------------------- Order --------- line (Please read the note on the back first Please fill in this page again) Printed by A8, B8, C8, D8, Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 6. Scope of patent application, 1, 1 Let's calculate its dielectric constant from Equation 2. : 12_ If the microscope in item 9 of the patent application scope 'further contains a computer tool for calculating the loss tangent function of a non-conductive material' its non-conductive material is placed near the tip of the electrode probe ' The electric constant is a function of Q 値 's offset and Q Wei's i translation is caused by compliance. The conductive material is close to the probe tip. 13. For the microscope of the scope of application for patent No. 12, in which the brain tool is programmed to calculate the loss tangent function of benzene from Equation 3. 14. The microscope of item 9 in the scope of patent application, wherein the power detector '.... is a diode detector. 15. The microscope according to item 9 of the scope of patent application, wherein the frequency detector includes a phase shifter, a phase detector, and an integrator. 16. The microscope of item 9. in the patent application, wherein the probe has a resonator and the cavity is filled with a non-conductive material. Π. The microscope of item 16 in the scope of patent application, wherein the non-conductive material is sapphire. 18. For the microscope with the scope of patent application No..17, the non-conductive material is SrTi03. 19. For the microscope of item 9 of the scope of patent application, in which the probe tip extends a certain distance from the hole, the distance is between about 1/3 and 3 times the distance through the hole. .20. As for the microscope in the 9th scope of the patent application, the hole in the barrier at the end of the φ resonator is circular, and its diameter is about 1 / 20th of a millimeter. ) A4 size (210 X 297 public love) ---------------------- Order --------- line (Please read the note on the back first Please fill in this page again for details) A8 B8 C8 D8 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 6. The scope of patent application is between micron and approximately 3 mm. 21. The microscope of claim 9 in which the frequency generator includes a voltage controlled oscillator. 22. A microscope such as the scope of patent application No. 21, wherein the frequency generator operates in the field of microwaves'. 23. The microscope of item 9 of the patent application, wherein the frequency controller is digital. 24. — A method for measuring the dielectric constant and loss tangent function of a sample, including: j) Determine a reference resonance frequency f of the probe, by .Y). Place the probe far enough away from the sample material , Make it not affected by the sample; vi) scan a frequency cage; vii) draw a curve of frequency versus power; line graph ;, viii) cooperate with a curve to know its maximum frequency, called f〇; 1〇 borrow Q is determined by dividing f0 by the difference between the frequencies corresponding to the two half power amplitude points. .1). Calculate the coefficient M from the equation S = MQQt, where S is the power at f0; nr) Calibrate the geometric factors A, E in equations 5 and 6 by samples of known dielectric constants. B and R〇η) The scanning evanescent electromagnetic wave is displayed: a probe tip of the micromirror is placed near the sample or the sample is stably touched; 〇) the resonance frequency change caused by the approach of the sample near the probe 4 (Please read the precautions on the back before filling this page)-\ = DX% This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) A8 B8 C8 D8 Employee Consumer Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs Printed 6. Patent application range is between micron and about 3 mm. 21. The microscope of claim 9 in which the frequency generator includes a voltage controlled oscillator. 22. A microscope such as the scope of patent application No. 21, wherein the frequency generator operates in the field of microwaves'. 23. The microscope of item 9 of the patent application, wherein the frequency controller is digital. 24. — A method for measuring the dielectric constant and loss tangent function of a sample, including: j) Determine a reference resonance frequency f of the probe, by .Y). Place the probe far enough away from the sample material , Make it not affected by the sample; vi) scan a frequency cage; vii) draw a curve of frequency versus power; line graph ;, viii) cooperate with a curve to know its maximum frequency, called f〇; 1〇 borrow Q is determined by dividing f0 by the difference between the frequencies corresponding to the two half power amplitude points. .1). Calculate the coefficient M from the equation S = MQQt, where S is the power at f0; nr) Calibrate the geometric factors A, E in equations 5 and 6 by samples of known dielectric constants. B and R〇η) The scanning evanescent electromagnetic wave is displayed: a probe tip of the micromirror is placed near the sample or the sample is stably touched; 〇) the resonance frequency change caused by the approach of the sample near the probe 4 (Please read the notes on the back before filling in this page)-\ = DX% This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 VI. Application scope, P) Change of figure of merit caused by the approach of the sample near the measuring probe: and q) Use a formula to calculate the dielectric constant and loss tangent function. The contact equations 2 and 3, the probe-sample gap equations 5 and 6 are selected from a group of equations or a thin film equation. 25. The method according to item 24 of the patent application scope, wherein one or two Luorenzi line patterns are used to determine the frequency vs. power curve of f0 and Qo. .26.—A method for measuring a conductive sample: the coefficient of conductivity, including: a) determining a reference resonance frequency of the probe f0: i) placing the probe far enough away from the sample material so that it is not affected by Sample impact; i_i). Scan a frequency range; Ui) Draw a frequency vs. power curve; iv) Match a curve to know its maximum frequency, called f0; b) By dividing ..fo .. Take two: lift the car, fe point, and select the frequency and cheap rate to determine the Qg; c.) Calculate by the equation S. = &Quot; MQ_〇.2. Calculate the coefficient. Bin Single 1 is-the rate of work in u quan; d) place a probe tip of a scanning evanescent electromagnetic microscope near the sample, e) borrow the worm. Measure and-cooperate with Pinning and Pinyi. Factor The geometric factors A, B and R0 'of the control car in the formulas 12 and I9. Are frequency and figure of merit probes. The 5-degree scale is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm). ) '~~~' ~~~-:-(Please read the notes on the back before filling this page) -------------. ^ W ------ Γ— ^ --------- Line-Printed by A8, B8, Consumer Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs C8 D8 VI. Application scope, P) Change of figure of merit caused by the approach of the sample near the measuring probe: and q) Use a formula to calculate the dielectric constant and loss tangent function. The contact equations 2 and 3, the probe-sample gap equations 5 and 6 are selected from a group of equations or a thin film equation. 25. The method according to item 24 of the patent application scope, wherein one or two Luorenzi line patterns are used to determine the frequency vs. power curve of f0 and Qo. .26.—A method for measuring a conductive sample: the coefficient of conductivity, including: a) determining a reference resonance frequency of the probe f0: i) placing the probe far enough away from the sample material so that it is not affected by Sample impact; i_i). Scan a frequency range; Ui) Draw a frequency vs. power curve; iv) Match a curve to know its maximum frequency, called f0; b) By dividing ..fo .. Take two: lift the car, fe point, and select the frequency and cheap rate to determine the Qg; c.) Calculate by the equation S. = &Quot; MQ_〇.2. Calculate the coefficient. Bin Single 1 is-the rate of work in u quan; d) place a probe tip of a scanning evanescent electromagnetic microscope near the sample, e) borrow the worm. Measure and-cooperate with Pinning and Pinyi. Factor The geometric factors A, B and R0 'of the control car in the formulas 12 and I9. Are frequency and figure of merit probes. The 5-degree scale is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm). ) '~~~' ~~~-:-(Please read the notes on the back before filling this page) -------------. ^ W ------ Γ— ^ --------- Line-Printed by A8, B8, Consumer Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs C8 D8 6. Excessive patent application scope and known conductivity coefficients to participate in the test—a function of one-to-one distance between spots between replicas. F) Near the measuring probe. Due to the sample spot approaching. The change in resonance frequency; g) calculated by Equation 12; h) the change in the figure of merit caused by the approach of the sample near the measuring probe. &Quot;.Movement; and i) use Equation 19 to calculate the conductivity . 27 · —A method of adjusting the distance between the probe tip of a scanning _ evanescent electromagnetic microscope and the conductive sample to be scanned, packing: a) Select a better distance between the tip and the sample, gp; 1 b ) Determine a reference resonance frequency f0 of the probe: i) Place the probe far enough away from the sample material Λ. Make it unaffected by the sample; ^) Scan a frequency range; i, ii) Draw the frequency A graph of power; iv) A curve is used to learn its original rate, called; c) Q is determined by dividing f0. By the frequency difference corresponding to the two half power amplitude point Q $; d) Calibrate the equation by measuring and matching the frequency and figure of merit; the geometric factors A, B, and RQ in 12 and 19 'are the frequency and figure of merit of the gap distance between the probe tip and a reference sample of known conductivity g 之 —a function; 6 (Please read the notes on the back before filling this page) 本紙張尺度適用中國國冢棵準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 尖竭和已知導電係數赴參—對复本之間斑間.滕距灕g之一偃 函數; f) 測量探針近處..因樣本斑接近而引.起的共振頻率之變 動; g) 由方程式12來計算g ; h) 測量探針近處因樣本的接近而引起的品質因數之變 . " . 動; 以及 i) 使用方程式19來計算導電係數。 27·—種調節掃描_逝電磁波顯微鏡的探針尖端和所要 掃描的傳導性樣本之間的距離之方法,包倉: ,a)選擇尖端和樣本之間一段較佳的距離,gp ; 1 b)決定探針的一個參考共振頻率f0 : i) 將探針置於足夠遠離樣本材質之處Λ.使其不受樣;^ 影響; ii) 掃描一個頻率範圍;. i、ii)畫出頻率對功率的曲線圖; iv)配合一條曲線來得知其最本的率,稱爲; c) 藉由將f〇 .除以兩半功率振幅點所對應的頻率差値$ 決定Q〇 ; d) 藉由測量並配合頻率和品質因數來校準在方程式;12 和19中的幾何因數A、B和RQ ’其頻率和品質因數爲探針 尖端和已知導電係數的參考樣本之間的閒隙距離g之—個 函數; 6 (請先閱讀背面之注意事項再填寫本頁)This paper size is applicable to China's National Tombs and Trees (CNS) A4 specification (210 X 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 6. Exhausting patent applications and known conductivity coefficients to participate in — A unitary function of the spot-to-segment distance between replicas; f) near the measuring probe; the change in resonance frequency due to the sample spot approaching; g) to calculate g from equation 12; h ) Change in the figure of merit caused by the proximity of the sample due to the proximity of the measurement probe; and i) Use Equation 19 to calculate the conductivity. 27 · —A method of adjusting the distance between the probe tip of a scanning _ evanescent electromagnetic microscope and the conductive sample to be scanned, packing: a) Select a better distance between the tip and the sample, gp; 1 b ) Determine a reference resonance frequency f0 of the probe: i) Place the probe far enough away from the sample material Λ. Make it unaffected by the sample; ^) Scan a frequency range; i, ii) Draw the frequency A graph of power; iv) A curve is used to learn its original rate, called; c) Q is determined by dividing f0. By the frequency difference corresponding to the two half power amplitude point Q $; d) Calibrate the equation by measuring and matching the frequency and figure of merit; the geometric factors A, B, and RQ in 12 and 19 'are the frequency and figure of merit of the gap distance between the probe tip and a reference sample of known conductivity g 之 —a function; 6 (Please read the notes on the back before filling this page) 本紙張尺度適用中國國冢棵準(CNS)A4規格(210 X 297公釐) A8 B8 C8 D8 六、申請專利範圍 e) 測量共振頻率並得到其與參考頻率之間的絕對差値 , f) 需要恢復間-隙距離爲gp〜’而計算間_距離的變化; g) 電氣化學地調節探教的尖端和所要掃描的樣本之麗 的距.雛等於...gp...;......以_1 h) 以一組時間間隔週期重道费驛至g)直到掃描程序 完成。 28. —種調節掃描瞬逝電磁波顯微鏡的探針尖端和所要 掃描的非傳導性樣本之間的距離之方法,包含: a) 選擇尖端和樣本之間一段較佳的距灕,gp ; b) 決定探針的一個參考共振頻率f〇 : ,i)將探針置於足夠遠雛樣本材質之處,使其不受樣本. 影響; ii)靖描一個頻率範圍;.· 畫出頻率對功率的曲線圖」 iv)配合一條曲線來得知其最大的頻率,稱爲f0 ; c) 藉由將匕除以兩半功率振幅:點所對應的頻率褰値來 決定Qo d) 由方程式;S=MQq2來計算係數M,其中S爲在f〇時 之功率; · e) 使用已知介電常數的樣本來校準在方程式5和6中 的幾何因數A、B和RQ ; f) 震動樣本來改變尖端和樣本之間的間隙距離g ’其中 震動的大小爲輕微的,例如一個壓電組件所引起的輕微震 7 本紙張尺度適用中國國家標準(CNS)A4規格(21〇37公釐) (請先閱讀背面之注意事項再填寫本頁} -螫.! 訂---------線· 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 e) 測量共振頻率並得到其與參考頻率之間的絕對差値 , f) 需要恢復間-隙距離爲gp〜’而計算間_距離的變化; g) 電氣化學地調節探教的尖端和所要掃描的樣本之麗 的距.雛等於...gp...;......以_1 h) 以一組時間間隔週期重道费驛至g)直到掃描程序 完成。 28. —種調節掃描瞬逝電磁波顯微鏡的探針尖端和所要 掃描的非傳導性樣本之間的距離之方法,包含: a) 選擇尖端和樣本之間一段較佳的距灕,gp ; b) 決定探針的一個參考共振頻率f〇 : ,i)將探針置於足夠遠雛樣本材質之處,使其不受樣本. 影響; ii)靖描一個頻率範圍;.· 畫出頻率對功率的曲線圖」 iv)配合一條曲線來得知其最大的頻率,稱爲f0 ; c) 藉由將匕除以兩半功率振幅:點所對應的頻率褰値來 決定Qo d) 由方程式;S=MQq2來計算係數M,其中S爲在f〇時 之功率; · e) 使用已知介電常數的樣本來校準在方程式5和6中 的幾何因數A、B和RQ ; f) 震動樣本來改變尖端和樣本之間的間隙距離g ’其中 震動的大小爲輕微的,例如一個壓電組件所引起的輕微震 7 本紙張尺度適用中國國家標準(CNS)A4規格(21〇37公釐) (請先閱讀背面之注意事項再填寫本頁} -螫.! 訂---------線· 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 動,以及其中震動的頻率則是在上述組件C)的頻率差値之 內; g)測量共振頻率的平均偏遺憾第一次諧波的強度; ‘ h)解方程式20和21以得到g ; i) 需要恢復間隙距離爲gP,而計算間隙距離的變化; j) 電氣化學地調節探針的尖端和所要掃描的樣本之間 的距離等於gp ;以及 k) 以一組時間間隔週期重複步驟e)至g)直到掃描程序 完成。 ' (請先閱讀背面之注意事項再填寫本頁) -— 訂----- 線 經濟部智慧財產局員工消費合作社印製 8 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A8 B8 C8 D8 六、申請專利範圍 動,以及其中震動的頻率則是在上述組件C)的頻率差値之 內; g)測量共振頻率的平均偏遺憾第一次諧波的強度; ‘ h)解方程式20和21以得到g ; i) 需要恢復間隙距離爲gP,而計算間隙距離的變化; j) 電氣化學地調節探針的尖端和所要掃描的樣本之間 的距離等於gp ;以及 k) 以一組時間間隔週期重複步驟e)至g)直到掃描程序 完成。 ' (請先閱讀背面之注意事項再填寫本頁) -— 訂----- 線 經濟部智慧財產局員工消費合作社印製 8 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)This paper size is applicable to China National Tossing Tree (CNS) A4 specification (210 X 297 mm) A8 B8 C8 D8 VI. Patent application scope e) Measure the resonance frequency and get the absolute difference between it and the reference frequency, f) It is necessary to recover the gap-gap distance to gp ~ 'and calculate the change in gap_g; g) Electrochemically adjust the distance between the tip of the probe and the beauty of the sample to be scanned. The chick is equal to ... gp ...; .. .... At _1 h), repeat the path to g) at a set time interval until the scanning process is completed. 28. A method for adjusting the distance between the probe tip of a scanning evanescent electromagnetic microscope and a non-conductive sample to be scanned, including: a) selecting a better distance between the tip and the sample, gp; b) Determine a reference resonance frequency f0 of the probe: i) Place the probe far enough away from the sample material of the chick so that it is not affected by the sample. Ii) Draw a frequency range; Draw the frequency versus power Iv) Cooperate with a curve to find its maximum frequency, which is called f0; c) Determine Qo by dividing dagger by two half power amplitude: the frequency corresponding to the point d) by the equation; S = Use MQq2 to calculate the coefficient M, where S is the power at f0; e) use samples with known dielectric constants to calibrate the geometric factors A, B, and RQ in Equations 5 and 6; f) shake samples to change The gap distance g 'between the tip and the sample is where the magnitude of the vibration is slight, such as a slight vibration caused by a piezoelectric component. 7 This paper size applies to the Chinese National Standard (CNS) A4 specification (2,037 mm) (Please Read the notes on the back before filling out this page} -螫.! Order --------- line · Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 VI. Patent application scope e) Measure the resonance frequency and get the absolute value between it and the reference frequency Rate, f) Need to recover the gap-gap distance to gp ~ 'and calculate the change in gap_g; g) Electrochemically adjust the distance between the tip of the probe and the beauty of the sample to be scanned. The chick is equal to ... gp. ..; ... at _1 h) to repeat the process at a set time interval to g) until the scanning process is completed. 28. A method for adjusting the distance between the probe tip of a scanning evanescent electromagnetic microscope and a non-conductive sample to be scanned, including: a) selecting a better distance between the tip and the sample, gp; b) Determine a reference resonance frequency f0 of the probe: i) Place the probe far enough away from the sample material of the chick so that it is not affected by the sample. Ii) Draw a frequency range; Draw the frequency versus power Iv) Cooperate with a curve to find its maximum frequency, which is called f0; c) Determine Qo by dividing dagger by two half power amplitude: the frequency corresponding to the point d) by the equation; S = Use MQq2 to calculate the coefficient M, where S is the power at f0; e) use samples with known dielectric constants to calibrate the geometric factors A, B, and RQ in Equations 5 and 6; f) shake samples to change The gap distance g 'between the tip and the sample is where the magnitude of the vibration is slight, such as a slight vibration caused by a piezoelectric component. 7 This paper size applies to the Chinese National Standard (CNS) A4 specification (2,037 mm) (Please Read the notes on the back before filling out this page} -螫.! Order --------- Line · Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 6. The scope of patent application is dynamic, and the frequency of vibration is in the above component C) Within the frequency difference; g) Measure the intensity of the average harmonic of the first harmonic of the resonance frequency; 'h) Solve equations 20 and 21 to get g; i) Need to restore the gap distance to gP, and calculate the change in gap distance J) Electrochemically adjust the distance between the tip of the probe and the sample to be scanned equal to gp; and k) Repeat steps e) to g) at a set time interval period until the scanning procedure is complete. '(Please read the precautions on the back before filling out this page) ----- Order ----- Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Online Economics 8 This paper size applies to China National Standard (CNS) A4 (210 X 297 Mm) A8 B8 C8 D8 VI. Patent application range, and the frequency of the vibration is within the frequency difference of the above-mentioned component C); g) the average unfortunately the first harmonic of the resonance frequency is measured; 'h) Solve equations 20 and 21 to obtain g; i) Need to restore the gap distance to gP and calculate the change in gap distance; j) Electrochemically adjust the distance between the tip of the probe and the sample to be scanned equal to gp; And k) Repeat steps e) to g) at a set interval time interval until the scanning procedure is completed. '(Please read the precautions on the back before filling out this page) ----- Order ----- Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Online Economy Mm)
TW87117103A 1998-09-22 1998-10-15 Scanning evanescent electro-magnetic microscope TW396271B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/158,037 US6173604B1 (en) 1996-09-20 1998-09-22 Scanning evanescent electro-magnetic microscope

Publications (1)

Publication Number Publication Date
TW396271B true TW396271B (en) 2000-07-01

Family

ID=22566455

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87117103A TW396271B (en) 1998-09-22 1998-10-15 Scanning evanescent electro-magnetic microscope

Country Status (1)

Country Link
TW (1) TW396271B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111189855A (en) * 2020-03-02 2020-05-22 张洮 Near-field microwave measuring system based on impedance measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111189855A (en) * 2020-03-02 2020-05-22 张洮 Near-field microwave measuring system based on impedance measurement

Similar Documents

Publication Publication Date Title
US6173604B1 (en) Scanning evanescent electro-magnetic microscope
US8358141B2 (en) Analytical scanning evanescent microwave microscope and control stage
US7130755B2 (en) Near-field scanning microwave microscope using dielectric resonator
US7271574B2 (en) Evanescent microwave probe with enhanced resolution and sensitivity
Farina et al. Calibration protocol for broadband near-field microwave microscopy
Xiang et al. Quantitative complex electrical impedance microscopy by scanning evanescent microwave microscope
Tselev et al. Broadband dielectric microwave microscopy on micron length scales
Bagdad et al. Near-field scanning microwave microscope platform based on a coaxial cavity resonator for the characterization of semiconductor structures
Balusek et al. A three-dimensional finite element model of near-field scanning microwave microscopy
JP4431273B2 (en) Scanning evanescent electromagnetic microscope
Reznik et al. Quantitative model for near-field scanning microwave microscopy: Application to metrology of thin film dielectrics
Siegel Microwaves Are Everywhere:“SMM: Nano-Microwaves”
TW396271B (en) Scanning evanescent electro-magnetic microscope
Nozokido et al. Contrast analysis of near-field scanning microscopy using a metal slit probe at millimeter wavelengths
Kim et al. Nondestructive high spatial resolution imaging with a 60 GHz near-field scanning millimeter-wave microscope
Wang et al. Calibration methods of a 2GHz evanescent microwave magnetic probe for noncontact and nondestructive metal characterization for corrosion, defects, conductivity, and thickness nonuniformities
Zhang et al. High frequency dielectric properties distribution of BiFeO3 thin film using near-field microwave microscopy
Kantor et al. Method of increasing spatial resolution of the scanning near-field microwave microscopy
WO2001020352A1 (en) Quantitative imaging of dielectic permittivity and tunability
Geyer et al. Tailored dielectric and magnetic properties of composite electroceramics with ferroelectric and ferrimagnetic components
Chusseau et al. Near-Field Millimeter Wave Vector Measurements--Experimental Design & Measurement Interpretation
Usanov et al. Near-field microwave microscopy. Capabilities. Application areas
Hao et al. Electromagnetic metrology for NEMS
Cheng et al. Evanescent microwave probe study on dielectric properties of materials
Fujimoto et al. Structure modification of M-AFM probe for the measurement of local conductivity

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees