TW387991B - Integrated flow controller module and flow sensor - Google Patents

Integrated flow controller module and flow sensor Download PDF

Info

Publication number
TW387991B
TW387991B TW87116199A TW87116199A TW387991B TW 387991 B TW387991 B TW 387991B TW 87116199 A TW87116199 A TW 87116199A TW 87116199 A TW87116199 A TW 87116199A TW 387991 B TW387991 B TW 387991B
Authority
TW
Taiwan
Prior art keywords
scope
patent application
valve
layer
fluid
Prior art date
Application number
TW87116199A
Other languages
Chinese (zh)
Inventor
Ming-Jie Tsai
Yu-Min Wan
Chuen-Shiu Ke
Ruei-Hung Jang
Ching-Yi Wu
Original Assignee
Ind Technology Reasearch Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Technology Reasearch Inst filed Critical Ind Technology Reasearch Inst
Priority to TW87116199A priority Critical patent/TW387991B/en
Application granted granted Critical
Publication of TW387991B publication Critical patent/TW387991B/en

Links

Abstract

A integrated flow controller module has structure of three layers, proportional microvalve and sensing function of flow. The flow enters the controller module from the inlet of the lowest layer and is guided into region of sensing pressure. The flow capacity is sensed by the characteristic of pressure resistance and electric capacity. Finally, the flow enters the active drive microvalve region. The microvalve may operate under a normally closed mode or a normally open mode by actively driving silicon microbridge with mesa. Also the microvalve is closed or opened according to the external voltage ratio so as to achieve the precision of flow control.

Description

A7 ______B7________ 五、發明説明(/ ) [發明之應用範疇3 本發明是關於-種積體化流體流量控制模組,特別是關於一種利 用壓力感測達成流量控制之稹體化流量控制模組。本發明並揭示一種 適用磁積體化流量控制臟之流體流量感測器。 【發明之背景】 利用微加工製造技術製作之微流體元件及系統,能精密感測並控 制微量流體。通常對氣體而言,控制的流量尺度大約爲€/min以下, 對液體而言大約爲“ "min級數;元件的幾何尺度大約釐雜。除了 能精密控制輝量流體外還有省能源,反應快,體積小等優勢。由於微 製造技術的特性易於整合不同感應器、致動器及邀制電路於同一晶片 上,因此能在微小的單位體積內提供系統化、多功化,甚至智慧型之 微流體系統觀。此外,亦可陣列組合繼觀牛,以達到精確控制 較大流量的功能。預估微流體機械裝置未來可能全面取代傳統精密流 體控制元件。 對精密分析儀器及半導體製程設備而言,經常會使用質流量控制 器(Mass Flow Controller,MFC ),提供精密的氣體流量控制。MFC 構成的組件有精密控制閥、流量感測器及系統控制器等。其中精密控 制閥通常採用電磁或壓電式主動式閥,感測器使用毛細管加熱式流量 感測器。由於元件以超精密加工技術,配合機械性的封裝完成,整體 系統的零件多,組裝不易,價格昂貴β 在中華民國第120474號專利申請案中,同發明人曾經提出一種 熱挫屈致動微閥《»利用電流產生熱,驅動磊晶矽層薄膜產生變形’而 撤精密微閥的功能。 3 本紙張尺度適用中國國家標隼(CNS ) Α4规格(210X297公釐} ih. I -1 Ml--^----裝 4-- (請先Μ讀背面之注意事項再填寫本頁) 鯉濟部中央標準局员工消费合作社印製 .Γ— n l·— · 經濟部中央揉隼局貝工消費合作社印製 A7 B7 五、發明説明(J) 爲因應流體流量控制系統微小化,精密化的趨勢’目前有必要提 供一種積體化的流體流量控制模組。同時也有必要提供一種適合微製 程技術之流體流量控制系統,以取代傳統之微流體精密控制系統。 【發明之目的】 本發明之目的乃在提供一種新穎的積體化流體流量控制模組。 本發明之目的也在提供一種適合以微程製作之積體化流體流量 控制觀。 本發明之目的也在提供一種體積小,可靠度高且製作簡便的積體 化流體流量控制臟。 本發明之巨的也在讎一種利用壓力感測達成流量感測之稹體 化流體流量控制« 本發明之目的也在提供一種適合在上述積體化流體流量控制模 組之流量感測之件。 本發明之目的也在提供一種新穎的積體化流體流量控制模組及 其織感測器之製法。 【發明之簡述】 依據本發明之積體化流體流量控制模組,是由三層結構構成,同 時兼具比例式微閥及流量感測的功能。流體由最下層入口端進入’經 由流,導引至壓力感測區,利用其壓阻或電容特性,配合截流 通道(orifice )形成較大的壓力差’以感酒ί流量値。最後並進入主動 驅動微閥區。微閥區利用主動式驅動具平台之矽質微橋(silicon microbridge with mesa )結構,可在常態關閉(normally closed )或常 態開(normally open )兩種狀態下操作’並隨外界電壓比例驅動開或 關,完成精密之流體流量控制。 4 本紙張尺度適用中國國家摞準(CNS ) Α4規格(210Χ297公釐) I— -Γ.--7---J~| (請先閲讀背面之注$項再填寫本頁) 、·ιτ 經濟部中央標準局貝工消费合作社印装 A7 B7 五、發明说明(今) 本發明並揭示一種適用m 積體化流體流量控制模組之壓力感 測式臟量感測元件,以及該積體化流體流量控制量感測 器之製法。 上述及其他本發明之優點及目的可由以下詳細說明,並參照下列 圖式而更形淸楚。 【圖式之說明】 第1圖表示本發明積體化之流體流量控制模組第1實施例之截面 圖。 第2圖表示本發明之積體化流體流量控制擞膨實施例之製法 流程圖。 第3圖表示本發明積體化流體流量控制模組第2實施例之結構示 意圖。 第4圖表示本發明積體化流體流量控制模組第3實施例之結構示 意圖。 第5圖表示本發明積體化流體流量控制模組第4實施例之結構示 意圖。 [發明之詳細說明】 依據本發明之積體化流體流量控制麵,係包括一流體通道,一 比例式微閥》以及一流量感測元件,三者稹體條同一晶片上**流體 由一入口流入流體通道,首先進入流量感測元件區。感測元件利用感 壓電阻或電容特腿測流體流量。在本發明的實例中,流體通道最好 形成一涯區(orifice ),以形成較大的壓力差,提高量測精確性。 其後,流體藤主動驅動式微閥區。於流量感測元件測得之流量,經 由一微處理器轉換成控制信號’控制微閥之動作。在本發明的實例 5 本紙張尺度適用中繭國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) C3 經濟部中央標準局貝工消費合作杜印製 A7 _____B7__ 五、發明説明(4 ) 中,微閥可使用熱致動方式驅動。該微閥可爲具有一平台(mesa ) 之砂質微橋(silicon microbridge )結構,並可爲常態關或常態開之微 閥。經由對微閥之開、閉控制,達到精確控制流體流量之目的。本發 明之積體化流體流量控制模組,控制精確度可達10 sccm以下,且其 適用範圍約在// £ /min到i /min之間。 以下依據圖式說明本發明之實施例。 [實施例1 ] 第1圖顯示本發明積體化之流體流量控制模組第—實施例之截 面圖。如圖所示,本實施例之積體化流體流量控制模組具有三層結 構。其上層(1 )材質爲矽或其他適合微機構之材料,並形成三個腔 體(cavity )。其中,第1壓力腔(11 )及第2壓力腔(12 )用以 提供調整壓力P1及P2 〇 P1及P2之値可配合操作之流量範圍作適當 的調整’以加大本發明之量測適用範圍。第3壓力腔(13 )亦用以 提供適當之壓力P3予微閥(詳下述),用以調整本發明適用之流量 控制範圍》 流體流量控制觀之中間層(2 )包括一流量感丽以及一微閥 區呻間層亦以砍或其讎用之材質製成《>於相對於第1壓力腔(11 ) 聰2壓力腔(12 )之下方,分別形成第1臟區(21 )與第2截 流區(22 )〇此觀區(21 )( 22 )之設置,目的在提供流體較 大之壓力差’以提高量測精確性。而在相對於第3壓力腔(13 )之 下方’則分別形成二腔體(23 )及(24 ),以及其間之平台(25 ), 作爲微閥之用。該平台(25 )可爲中間層之砂質材料未經餓刻之部 份,也可是其他以微製程製成之台狀物。於中間層(2 )之上方與上 層(1 )之下方,爲一磊晶矽(Epi )層(4 )。該磊晶矽層形成一 6 本紙張尺度適用中國國家梯率(CNS〉A4規格(210X29*?公釐〉 LIΊ.--^----〇 裝一II (婧先閲讀背面之注f項再填寫本頁) *、訂 . — —k 經濟部中央標準局貝工消費合作社印製 A7 _B7_____— _ 五、發明説明(Γ) 薄膜,並提供良好之彈性,以因應壓力而動作。於該磊晶矽薄膜(4 ) 之上方,相對於該第1壓力腔(11 )及第2壓力腔(12 )下方’分 別形成四個雜質層(41a ) ( 41b ) ( 42a ) ( 42b ) ’作爲壓感電 阻(P-resistors )之用。於該壓感電阻(41a ) ( 41b )之相對位置, 則另形成電極(43a ) ( 43b ) ’壓感電阻(42a ) ( 42b )之相對 位置則形成電極(44a ) ( 44b )。因此,區(21 ) ( 22 ) 內之流體壓力改變,由電極(43a) (43b) (44a) (44b)即可 產生電壓變化,藉此微處理器(未圖示)即可量測流體之流量。本實 施係利用二儸纖區(21 )( 22 )來分別產生流體壓力信號,以收 赃之效。但如僅使用一個雜區,或使用=個以上截流區*均無不 可。此部份爲流體流量感麵。 於中間層(2 )之另一側爲微閥區。於該平台(25 )之上方, 該第3壓力腔(13 )之下方,亦爲磊晶矽薄膜層(4 ),其上方亦 形成一雜質層(45 );另於細對應位置,亦形成電極(46a ) (46b )。_用上,該雜質層(45 )可形成曲線开锹,環形或其 他適用之形狀,以使磊晶矽薄膜(4 )提供讎(micro bridge )之 功用。當由外界輸入電壓至該電極(46a )( 46b ),給予雜質層(45 ) 熱能消散(tbermal dissipation ),可造成慕晶砂薄膜層(4 )挫屈變 形,而向上屈摺,將平台‘(25 )向上提昇’使平台(25 )下方不再 抵住下層(3 )結構。因此,特定量之流體即可由該腔體(23 )流 出,形成一個微閥(micro value )。 上述微閥之結構及工作原理,可以參考前述中華民國第120,474 號專利申請案之內容。其他可以利用主動驅動方式達到流體流量控 制,且可與上述流體流量感測元件製作於同一晶片上之結構’均可適 7 本紙乐尺度適用中國國家標準(CNS ) A4規格(210X297公釐〉 ΙΓΜ1--7----〇 裝-------訂—1-----ik (請先《讀背面之注f項再填寫本頁) (:33 ) ( 34 ),以及流體出口( 35 )上方之突 A7 B7 五、發明説明(厶) 用。 在本實施例的積體化流體流量控制麵中,下層纖(3 )主要 是提供流體之進出口及流體通道。在本實例中,是以矽材質作成。其 他合適之材質也可以適用。其中,(31 )爲流體進口,( 32 )爲第 1截流區(21 )之進入通道,(33 )爲第1纖區(21 )與第2 截流區(22 )之連絡通道;(34 )爲第2截流區與腔體(23 )間 之,( 35 )爲流體出口。於流體出口( 35 )之上方,與該 平台(23)接觸點,另設二突狀物( 36 ) ( 36 ),以加強該平台 (25 )之阻所流體功能。該突出物(36 ) ( 36 )可爲與下層結構 (3)相同之材料,也可以是另外的適用材質》此外,若有必要,可 在該晶晶砂層(4 )中,該流量感測區與該微閥區之間,形成一絕緣 (47) 〇 以下說明本實施例之積體化流體流量控制模組之製法。第2圖表 示本發明之積體化流體流量控制實施例之製法流程圖。如圖 所示,於(201 )先製備一矽質下層織(3 )謝(substrate ) 〇 於(202 )以蝕刻技術在基材(3 )形成流體進口( 31 ),出口( 35 ) (32) 出物( 36 ) ( 36 ) 其次’於(203 )於該基材(3 )上方形成犧牲層(未圖式) 於(204 )於該犧牲^上方形成矽質中間層(2 )。接著,於(205 中間層(2 )以蝕刻形成第1纖區(21 ),第2纖區(22 ) 及腔體( 23 ) ( 24 ),並保留一平台(25) 〇於麵同時,應將 通道(31 ),( 32 ) ( 33 )及出口( 35 )上方之犧牲層蝕空,使 暢通。 本紙張尺度適用中國國家標準(CNS) Α4规格(210χ297公嫌) — ΙΊΙ·?----C.裝^------訂 I------,,Λ (諳先聞讀背面之注意事項再填寫本頁) 經濟部中央樣率局貝工消费合作社印策 經濟部中央標準局貝工消费合作社印黧 A7 B7 五、發明説明(7 ) 其後,於(206 )在該中間層(2 )上方形成一磊晶矽薄膜層 (4 ) ’於(207 ) 磊晶矽層(4 )相對該第1截流區(21 )、 第2繼區(22 )及平台(25 )上方位置,以離子植入法植入雜質, 形成雜質層(41a ) ( 41b ) ( 42a ) ( 42b ) ( 45 )。姉必要, 於(208 )¾流量感領幅與該微閥區上間,形成一絕緣(47 )。 其後’於( 209 ) _雜質區(41a) (41b) (42a) (42b) (45 )之上方形成電極(43a ) ( 431) ) ( 44a ) ( 44 ) ( 46 ) (46b ) 〇電極可爲簡適合之金属,例如鋁、鉬、鎢。其製作方式 可採用蒸鍍,焊接等。接著,於。10 )纖磊晶矽層(2 )上方形 成一上層(1 )。上層材料可爲矽、玻璃或髙肝材料。於(211 ) 在該上層材料(1 )中形成第1壓力腔(11 ),第2屋力腔(12 ) 及第3壓力腔(13 )。其方式包括蝕刻或其他適當之方式。最後, 於(212 )’在該腔體上方形成一覆蓋,即完成本發明積體化流體流 量控制麵之辦。其中該黯可爲與上層結構⑴相同之材質, 也可利用其倾當之材質。 在製作上,上層可以犧牲層触出後加黯,但也可以預先餓刻完 成,再與晶片接合。 依據上述方法形成之積體化流體流量控制觀,其纖如第1圖 所示。以下說明其應用, 當流體由進口( 31 )導入,經由通道(32 Μ入第1截流區(21 ) 及再經由通道(33 )進入第2截流區(22 ),流體之懕力傳達到雜 質區(41a ) ( 41b ),( 42a ) ( 42b ),讎質區(41a ) ( 41b ) ’ (42a ) ( 42b )之電阻發生變化。磊晶矽薄膜層(4 )爲N電極, 使電極(43a ) ( 43b ),( 44a ) ( 44b )形成並聯。由電極(43a ) 9 T--------^ J------訂--1----- (請先聞讀背面之注意事項再填寫本頁) 本紙張尺度遑用中國國家標率(CNS ) Α4規格(210X297公釐) 鯉濟部中央榡率局属工消费合作社印製 A7 B7__ 五、發明説明(左) (43b ),( 44a )( 44b )產生之電壓變倾由麵理器(未圖示) 測得後,即可據以換算出流體流量。其計算方式係可採習用之壓力一 流量換算方式》於此不予繁述《 微處理器(未圖示)測得流體流量之後,依一定之方式轉換爲流 量控制信號電壓,轉出於電極(46 ) ( 46 >該電屋«I質層(45 ), 產生熱能消散(thermal dissipation ),使幕晶砍層(4 )挫屈變形, 將平台(25 )抬至一定高度,而使流體由(?)( 23 )進入流 體出口( 35 )而流出。藉由電極(46 )( 46 )給予之電壓變化, 即可控制流體流出之量。 【實細2】 第3圖顯示本發明積體化流體流量控制模組第2實施例之結構示 意圖。圖中與第1圖相同之元件,均標以相同編號。如圖所示,本發 明第2實施例係爲一常開微閥之流體流量控制模組。於本實施例中, 流體出口( 35 )上方·中間層(2 )之部份,係形成凹入區(35a ) (35a )。於初始狀態’不對微橋結構(25 )產生微頂(英文?)’ 而是在動作時,因電壓(46 )( 46 )電壓之不同,使磊晶矽層(21 ) 向下熱挫屈變形,而達到控制流量的目的。 【實施例3】 第4圖顯示本發明積體化流體流量控制模組第3實施例之結構示 意圖。圖中與第1圖相同之元件,均標以相同之編號。圖中顯示,在 第1壓力腔(11 )及第2壓力腔(12 )下方之磊晶矽層(4 )並未 雛質層而是在其上方另齡屬電極層(14 )( 15 )。金屬電紐 (1〇 ( 15 )分別與電極(43a ) ( 43b )與(44a ) ( 44b )形 成電容。 10 本紙張尺度適用中國囷家揉準(CNS ) A4規格(2丨0 X 297公釐) ---Ί.—Η---0裝 4— (請先閲讀背面之注$項再填寫本頁) 訂 經濟部中央標率局貝工消費合作社印擎 A7 B7 五、發明説明(f) 流體進入後’該電容因截流區(21 )與(22 )壓力改變,使磊 晶矽層(4 )發生變形,改變電極(14 )與(43a ) ( 43b )以及 (15與(44a )( 44b )找離,而改變容値。將磊晶矽層魅正 極,電極(14 )( 15 )魅負極,即可感測該電容値之變化,而以 雛理器(未圖示)換算龜體之流量。其換算公式可以利用倾習 知之方式爲之》至於微閥區之動作,貝ij與前述實施例相同。 而在製程方面,電極(14 )( 15 )可在實施例1所示之流程圖, 以任何適用之方式,細力腔(11 )( 12 )上方形成。其方式包括: (請提供)。·材料則爲鉑(Pt ) ’或其他適用之金屬或合金》 【實施例4】 第5圖顯示本發明積體化流體流量控制模組第4實施例之結構示 意圖。圖中,與第1圖相同之元件,均標以相同之編號。如圖所示, 本實施例爲一種兩層讎。與實施例1 (及其他實施例)最大不同在 於沒有上層結構(1 ),因此並無第1壓力腔(11 ),第2壓力腔 (12 )麟3壓力腔(13 )。電極(43a ) ( 43b ) ( 44a ) ( 44b ) 及(46 )均裸露於結構外部,但也可另以覆蓋層加以覆蓋。 本實施例由於沒有上述壓力腔(11 )( 12 )( 13 )’因此其 適用範圍受限於嘉晶矽層之規格本身。通常而言,以(10〜30 " m (Ep之厚度))之磊晶砂層(4 ),(寬度15〜100 // m )之截流 區,可以用來量測及控制(〇〜10 "min ( gas ))範圍內之氣體流 量及(0〜100 cc/min ( liquid )範圔內之液體流量。 實施例4之結構,在微閥區也可形成常態開之結構。不過,這種 設計並不適用舰電容量測流體流量之設計(如實施例3 ),自不待 言。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) --^---:----------IT--;-----」 (請先閱讀背面之注$項再填寫本頁) A7 __B7__ 五、發明説明(丨0 ) 【實施例5、6】 於實施例1〜2及4之結構中,如不製作該微閥區,並在下層結構 (3 )中,第2截流區(22 )之下方形成流體出口( 35 ),貝(1可以 製成一種壓力感測式流體流量計。微處理計(未圖示肢據電阻(41a ) (41b) (42a) (42b)阻値之變化,通常可由薄膜上四個電阻構 成惠斯敦電橋電路(Wheatstone bridge circuit ) :¾¾大電到流量 訊號値可以換算出流體流量,得到精確之量測結果。 此外,在實施例3之結構下,如不製作微閥區,而摘2麵區 (22 )下方冬下層結構(3 )中·形成流體出口,g卩可製成另一_ 力感測式流量計。此時,微處理計(未圖示)可以依據電容(11 ) (12 )之容値變化,精確量得流體之流量。 【發明之效果】 本發明所揭示之積體化流量控制麵及獅量感測器可以將流 量感測元件及主動式驅動元件共同積體化,製作在同一晶片上,而兼 具量測與控制之功能。所製成之流量控制模組不但體積小,且可利用 薄膜製酿微製程完成,不需精密說裝,而適合大量链。在本發 明之積體化流量控制模組及其流量感測器中,流量感測區不需要_ 旁流通道(bypass ),而是直接在流體通道上進行量測及控制,使整 雖構簡化- 以上是對本發明積體化流體流量控制其流量感測器實施 例之說明,習於斯藝之人士不難由上述說明,了解本發明之精神,並 據以作出各種變化與衍伸。惟無論如何,均屬於本發明之範圍內。 12 本紙張尺度逍用中國國家揉準(CNS ) A4规格(210X297公釐)A7 ______B7________ 5. Description of the invention (/) [Application scope of the invention 3 The present invention is about a kind of integrated fluid flow control module, especially a kind of integrated flow control module using pressure sensing to achieve flow control. The invention also discloses a dirty fluid flow sensor which is suitable for controlling a dirty fluid flow. [Background of the Invention] Microfluidic components and systems made using microfabrication manufacturing technology can accurately sense and control trace fluids. Generally, for gas, the controlled flow rate is about less than € / min, and for liquids, it is about "" min series; the geometrical dimension of the element is about 20%. In addition to the precise control of the luminous fluid, it also saves energy , Quick response, small size and other advantages. Because the characteristics of micro-manufacturing technology are easy to integrate different sensors, actuators and invitation circuits on the same chip, it can provide systemization, multi-function, and even in a small unit volume. Intelligent microfluidic system concept. In addition, arrays can be combined to observe the cattle to achieve the function of accurately controlling large flows. It is estimated that microfluidic mechanical devices may completely replace traditional precision fluid control components in the future. Precision analysis instruments and semiconductors In terms of process equipment, mass flow controllers (MFCs) are often used to provide precise gas flow control. MFC components include precision control valves, flow sensors, and system controllers. Among them, precision control valves Electromagnetic or piezoelectric active valves are commonly used, and the sensor uses a capillary-heated flow sensor. The dense processing technology is completed with mechanical packaging. The whole system has many parts, which is not easy to assemble and expensive. In the patent application No. 120474 of the Republic of China, the same inventor once proposed a thermal frustration actuated microvalve The current generates heat, which drives the epitaxial silicon layer film to deform and removes the function of the precision microvalve. 3 This paper size applies to the Chinese National Standard (CNS) Α4 specification (210X297 mm) ih. I -1 Ml-^- --- Pack 4-- (Please read the precautions on the back before filling out this page) Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. System A7 B7 V. Description of the invention (J) In response to the miniaturization and precision of the fluid flow control system, it is necessary to provide an integrated fluid flow control module. At the same time, it is also necessary to provide a fluid suitable for micro process technology The flow control system replaces the traditional micro-fluid precision control system. [Objective of the invention] The purpose of the present invention is to provide a novel integrated fluid flow control module. The purpose of the present invention The invention also provides an integrated fluid flow control concept suitable for micro-fabrication. The purpose of the present invention is also to provide an integrated fluid flow control that is small in size, highly reliable and easy to manufacture. The invention is huge An integrated fluid flow control that achieves flow sensing using pressure sensing is also provided. The object of the present invention is also to provide a flow sensing device suitable for the integrated fluid flow control module described above. A novel integrated fluid flow control module and a method for fabricating the sensor are also provided. [Brief description of the invention] The integrated fluid flow control module according to the present invention is composed of a three-layer structure, and at the same time It also has the function of proportional micro-valve and flow sensing. The fluid enters through the bottom of the inlet end and passes to the pressure sensing area. It uses its piezoresistance or capacitance characteristics to cooperate with the interception channel (orifice) to form a larger pressure. Poor 'to feel the flow of wine. Finally, enter the active drive microvalve area. The micro-valve area uses a silicon microbridge with mesa structure of the active driver platform, which can be operated in two states: normally closed or normally open, and driven by the external voltage ratio. Or off, complete precise fluid flow control. 4 This paper size is applicable to China National Standard (CNS) Α4 size (210 × 297 mm) I— -Γ .-- 7 --- J ~ | (Please read the note on the back before filling this page), · ιτ Printed by the Central Standards Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, printed A7 B7 V. Description of the invention (present) The present invention also discloses a pressure-sensing dirty volume sensing element applicable to an integrated fluid flow control module of m, and the integrated Manufacturing method of fluid flow control volume sensor. The above and other advantages and objects of the present invention can be described in more detail by referring to the following drawings. [Explanation of the drawing] Fig. 1 shows a cross-sectional view of the first embodiment of the integrated fluid flow control module of the present invention. Fig. 2 is a flow chart showing a method for manufacturing an integrated fluid flow control and expansion method according to the present invention. Fig. 3 is a schematic diagram showing the structure of a second embodiment of the integrated fluid flow control module of the present invention. Fig. 4 is a schematic diagram showing the structure of a third embodiment of the integrated fluid flow control module of the present invention. Fig. 5 is a schematic diagram showing the structure of a fourth embodiment of the integrated fluid flow control module of the present invention. [Detailed description of the invention] The integrated fluid flow control surface according to the present invention includes a fluid channel, a proportional microvalve, and a flow sensing element. The three fluids are on the same wafer, and the fluid flows from an inlet. It flows into the fluid channel and first enters the flow sensing element area. The sensing element measures the fluid flow using a piezoresistive or capacitive leg. In the example of the present invention, the fluid channel is preferably formed as an orifice to form a larger pressure difference and improve measurement accuracy. Thereafter, the fluid rattan actively drives the microvalve area. The flow rate measured by the flow sensing element is converted into a control signal by a microprocessor to control the operation of the micro valve. In Example 5 of the present invention, the paper size is applicable to the National Cocoon Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling out this page) A7 _____B7__ 5. In the description of the invention (4), the micro-valve can be driven by thermal actuation. The micro-valve may be a silicon microbridge structure with a mesa, and may be a normally-closed or normally-opened micro-valve. Through the opening and closing control of the micro valve, the purpose of accurately controlling the fluid flow is achieved. The integrated fluid flow control module of the present invention has a control accuracy of less than 10 sccm, and its applicable range is from // £ / min to i / min. Hereinafter, embodiments of the present invention will be described based on the drawings. [Embodiment 1] Fig. 1 shows a sectional view of the first embodiment of the integrated fluid flow control module of the present invention. As shown in the figure, the integrated fluid flow control module of this embodiment has a three-layer structure. The upper layer (1) is made of silicon or other materials suitable for micro-mechanics, and forms three cavities. Among them, the first pressure chamber (11) and the second pressure chamber (12) are used to provide adjustment pressures P1 and P2, and the flow range of P1 and P2 can be appropriately adjusted according to the operation 'to increase the measurement of the present invention. Scope of application. The third pressure chamber (13) is also used to provide an appropriate pressure P3 to the microvalve (detailed below) to adjust the applicable flow control range of the present invention. The middle layer (2) of the fluid flow control concept includes a flow sensor And the interlayer of a microvalve area is also made of chopped or used materials "> The first dirty area (21) is formed below the first pressure cavity (11) and the second pressure cavity (12). ) And the second interception zone (22). This observation zone (21) (22) is set to provide a larger pressure difference of the fluid 'to improve the measurement accuracy. Below the third pressure chamber (13), two chambers (23) and (24), and a platform (25) therebetween, are formed as microvalves. The platform (25) may be a part of the intermediate layer of sandy material that has not been engraved, or it may be another platform made by micro-fabrication. Above the middle layer (2) and below the upper layer (1) is an epitaxial silicon (Epi) layer (4). The epitaxial silicon layer forms a 6-paper scale suitable for China's national gradient (CNS> A4 size (210X29 *? Mm) LIΊ .-- ^ ---- 〇 装 一 II (Jing first read the note f on the back) (Fill in this page again.) * 、 Order. — —K Printed A7 _B7_____ — _ by the Central Bureau of Standards, Ministry of Economic Affairs, Shellfish Consumer Cooperative. 5. Description of the Invention (Γ) film, and provide good flexibility to act in response to pressure. Here Above the epitaxial silicon film (4), four impurity layers (41a) (41b) (42a) (42b) are formed respectively below the first pressure cavity (11) and the second pressure cavity (12) as The use of piezoresistors (P-resistors). At the relative position of the piezoresistors (41a) (41b), another electrode (43a) (43b) is formed. The relative positions of the piezoresistors (42a) (42b) are The electrodes (44a) (44b) are formed. Therefore, the pressure of the fluid in the zone (21) (22) is changed, and the electrodes (43a) (43b) (44a) (44b) can generate a voltage change, so that the microprocessor ( (Not shown) to measure the flow rate of the fluid. In this embodiment, the second fiber area (21) (22) is used to generate a fluid pressure signal to collect Effect. But if only one miscellaneous area is used, or if more than one interception area * is used, this part is the fluid flow sensing surface. On the other side of the middle layer (2) is a micro valve area. On the platform Above (25), below the third pressure cavity (13), there is also an epitaxial silicon thin film layer (4), and an impurity layer (45) is also formed above it; in addition, an electrode (46a) is also formed at a fine corresponding position. ) (46b) ._ In use, the impurity layer (45) can form a curved opening, ring or other suitable shape, so that the epitaxial silicon film (4) provides the function of micro bridge. When input from the outside A voltage is applied to the electrode (46a) (46b), and an impurity layer (45) is given to the tbermal dissipation, which can cause the mucin sand film layer (4) to buckle and deform, and buckle upwards, bringing the platform '(25) upward Lifting 'makes the lower part of the platform (25) no longer abut against the structure of the lower layer (3). Therefore, a certain amount of fluid can flow out of the cavity (23) to form a micro valve. The structure and work of the above micro valve For the principle, please refer to the content of the aforementioned Patent Application No. 120,474 of the Republic of China. The fluid flow control can be achieved by an active drive method, and the structure can be made on the same wafer as the above-mentioned fluid flow sensing element. 'All are suitable for this paper scale. Applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm> ΙΓΜ1- -7 ---- 〇 Loading ------- Order—1 ----- ik (Please read "Note f on the back side before filling out this page) (: 33) (34), and fluid outlet (35) The upper protrusion A7 B7 V. Description of the invention (厶) Use. In the integrated fluid flow control surface of this embodiment, the lower layer fiber (3) mainly provides fluid inlet and outlet and fluid channels. In this example, it is made of silicon material. Other suitable materials can also be used. Among them, (31) is the fluid inlet, (32) is the entry channel of the first interception zone (21), (33) is the communication channel of the first fiber zone (21) and the second interception zone (22); (34) It is between the second interception area and the cavity (23), and (35) is a fluid outlet. Above the fluid outlet (35), a contact point with the platform (23) is provided with two protrusions (36) (36) to enhance the fluid resistance function of the platform (25). The protrusion (36) (36) may be the same material as the substructure (3), or it may be another suitable material. In addition, if necessary, in the crystal sand layer (4), the flow sensing Between the area and the microvalve area, an insulation is formed (47). The manufacturing method of the integrated fluid flow control module of this embodiment is described below. Fig. 2 is a flowchart showing a method for manufacturing an integrated fluid flow control embodiment of the present invention. As shown in the figure, a silicon underlying fabric (3) is prepared in (201), and a fluid inlet (31) and an outlet (35) (32) are formed on the substrate (3) using an etching technique (202). ) The product (36) (36) Next, a sacrificial layer (not shown) is formed on the substrate (3) at (203), and a silicon intermediate layer (2) is formed on the sacrificial substrate at (204). Next, the first fiber region (21), the second fiber region (22), and the cavity (23) (24) are formed by etching at (205) the intermediate layer (2), and a platform (25) is retained on the surface. The sacrifice layer above the passageway (31), (32) (33) and the exit (35) should be etched to make it clear. This paper size applies the Chinese National Standard (CNS) A4 specification (210x297) — ΙΊΙ ·?- --- C. Packing ^ ------ Order I ------ ,, Λ (闻 First read and read the notes on the back, then fill in this page) The Central Sample Rate Bureau of the Ministry of Economic Affairs, Pakong Consumer Cooperative, India Ink seal A7 B7, Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (7) Thereafter, an epitaxial silicon thin film layer (4) is formed above the intermediate layer (2) at (206) '(207) The epitaxial silicon layer (4) is implanted with an ion implantation method to form an impurity layer (41a) (41b) relative to the first interception region (21), the second relay region (22), and the platform (25). (42a) (42b) (45). If necessary, an insulation (47) is formed between (208) ¾ flow sensing collar and the upper part of the micro valve area. Then '(209) _ impurity area (41a) (41b) (42a) (42b) (45) An electrode (43a) (431), (44a), (44), (46) (46b) is formed above the electrode. The electrode may be a simple suitable metal, such as aluminum, molybdenum, and tungsten. It can be produced by evaporation, welding, etc. Then, at. 10) The square of the epitaxial silicon layer (2) forms an upper layer (1). The upper material can be silicon, glass, or liver-resistant material. At (211), a first pressure cavity (11), a second housing force cavity (12), and a third pressure cavity (13) are formed in the upper layer material (1). This may include etching or other appropriate methods. Finally, a cover is formed on the cavity at (212) ', which completes the integrated fluid flow control surface of the present invention. The shading can be the same material as the superstructure, or it can use the appropriate material. In production, the upper layer can be darkened after the sacrificed layer is touched out, but it can also be finished in advance and then bonded to the wafer. The integrated fluid flow control concept formed according to the above method is shown in Figure 1. The application is explained below. When the fluid is introduced from the inlet (31), enters the first interception zone (21) through the channel (32M) and enters the second interception zone (22) through the channel (33), the force of the fluid is transmitted to the impurities. Areas (41a) (41b), (42a) (42b), and osmotic regions (41a) (41b) '(42a) (42b) change in resistance. The epitaxial silicon thin film layer (4) is an N electrode, making the electrode (43a) (43b), (44a) (44b) are formed in parallel. The electrode (43a) 9 T -------- ^ J ------ order--1 ----- (please First read the notes on the back and then fill out this page.) This paper size uses the Chinese National Standard (CNS) Α4 size (210X297 mm). Printed by the Industrial and Consumer Cooperatives of the Central Government Bureau of the Ministry of Lijin A7 B7__ 5. Description of the invention (Left) (43b), (44a), (44b) The voltage inclination generated by the surface controller (not shown) can be used to convert the fluid flow rate. The calculation method is the pressure that can be used. Flow conversion method "will not be repeated here. After the microprocessor (not shown) measures the fluid flow, it is converted into a flow control signal voltage in a certain way and transferred to the electrode (46). (46 > The electric house «I mass layer (45), generates thermal dissipation (thermal dissipation), makes the curtain crystal cutting layer (4) buckle and deform, lifts the platform (25) to a certain height, and makes the fluid from ( ?) (23) enters the fluid outlet (35) and flows out. By changing the voltage given by the electrodes (46) (46), the amount of fluid outflow can be controlled. [Detail 2] Figure 3 shows the integration of the present invention Schematic diagram of the second embodiment of the fluid flow control module. In the figure, the same components as in Fig. 1 are marked with the same number. As shown in the figure, the second embodiment of the present invention is a fluid flow of a normally open micro valve. Control module. In this embodiment, the part above the fluid outlet (35) and the middle layer (2) forms a recessed area (35a) (35a). In the initial state, 'the microbridge structure (25) is not generated Micro-top (English?) 'But during operation, the epitaxial silicon layer (21) is thermally buckled and deformed downward due to the difference in voltage (46) (46), and the purpose of controlling flow is achieved. [Example 3] FIG. 4 shows a schematic structural diagram of the third embodiment of the integrated fluid flow control module of the present invention. The same components in Figure 1 are marked with the same number. The figure shows that the epitaxial silicon layer (4) under the first pressure chamber (11) and the second pressure chamber (12) is not a chlamydia layer but Above it is another electrode layer (14) (15). The metal button (10 (15)) forms a capacitor with the electrode (43a) (43b) and (44a) (44b), respectively. 10 The size of this paper is applicable to China's Standards (CNS) A4 (2 丨 0 X 297 mm) --- Ί.—Η --- 0 Pack 4— (Please read the note $ on the back before filling in this Page) Ordered by the Central Standards Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, India Engine A7 B7 V. Description of the invention (f) After the fluid enters, the capacitance is changed due to the pressure in the interception zone (21) and (22), so that the epitaxial silicon layer (4 ) Is deformed, and the electrodes (14) and (43a) (43b) and (15 and (44a) (44b)) are separated and the capacity is changed. The epitaxial silicon layer is charmed to the positive electrode, and the electrode (14) to (15) is charmed. The negative electrode can sense the change in the capacitance 値, and the turtle's body flow is converted by a chick (not shown). The conversion formula can be used in a known way. As for the action of the microvalve area, Beij and The foregoing embodiments are the same. In terms of manufacturing process, the electrodes (14) (15) can be formed on the flow chart shown in Embodiment 1 above the fine force cavity (11) (12) in any suitable manner. The methods include: (Please provide). · Material is platinum (Pt) 'or other applicable metals or alloys. [Example 4] Figure 5 shows the integrated flow of the present invention Schematic diagram of the fourth embodiment of the flow control module. In the figure, the same components as in Fig. 1 are labeled with the same number. As shown in the figure, this embodiment is a two-layer 雠. And Embodiment 1 (and Other embodiments) The biggest difference is that there is no superstructure (1), so there is no first pressure chamber (11), second pressure chamber (12), and 3 pressure chamber (13). Electrodes (43a) (43b) (44a) (44b) and (46) are both exposed on the outside of the structure, but can also be covered with a cover layer. Since this embodiment does not have the pressure chamber (11) (12) (13), the scope of application is limited to Jiajing The specification of the silicon layer itself. Generally speaking, the interception area with (10 ~ 30 " m (Ep thickness)) epitaxial sand layer (4), (width 15 ~ 100 // m) can be used to measure And control the gas flow in the range of (0 ~ 10 " min (gas)) and the liquid flow in the range of (0 ~ 100 cc / min (liquid)). The structure of embodiment 4 can also form a normal state in the microvalve area. Open structure. However, this design is not applicable to the design of measuring the fluid flow of the ship's electrical capacity (such as Embodiment 3), and it goes without saying. Paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm)-^ ---: ---------- IT-; ----- "(Please read the note on the back first $ Item, please fill out this page) A7 __B7__ V. Description of the invention (丨 0) [Examples 5 and 6] In the structures of Examples 1 to 2 and 4, if the micro valve area is not made, and the lower structure (3 ), A fluid outlet (35) is formed below the second interception area (22), and the shell (1) can be made into a pressure sensing fluid flow meter. Microprocessor (not shown limb resistance changes (41a) (41b) (42a) (42b) resistance changes, usually four resistors on the film to form a Wheatstone bridge circuit): ¾¾ large power The flow rate signal can be converted to the flow rate signal to obtain an accurate measurement result. In addition, under the structure of Example 3, if the micro valve area is not made, the lower winter structure (3) below the 2 area (22) is extracted. · The fluid outlet is formed, and g 卩 can be made into another _ force-sensing flowmeter. At this time, the micrometer (not shown) can accurately measure the fluid according to the capacity of the capacitor (11) (12). [Effect of the invention] The integrated flow control surface and the lion volume sensor disclosed in the present invention can integrate the flow sensing element and the active driving element together, and be fabricated on the same chip, and have both measurement And control functions. The manufactured flow control module is not only small in size, but also can be completed by the thin-film brewing micro-manufacturing process, without the need for precise installation, and suitable for a large number of chains. The integrated flow control module and No need for flow sensing area in its flow sensor _ Bypass, which is measured and controlled directly on the fluid channel to simplify the structure-the above is an explanation of the embodiment of the integrated flow sensor of the integrated fluid flow control of the present invention It is not difficult for those skilled in the art to understand the spirit of the present invention from the above description, and make various changes and extensions based on it. However, it is within the scope of the present invention in any case. A4 specifications (210X297 mm)

Claims (1)

AS B8 C8 D8AS B8 C8 D8 經濟部中央標準局負工消費合作社印装 071 16199 六、申請專利範圍 1· 一種積體化流體流量控制觀,包含一流體通道、至少一流量偵 測模組、一微閥模組與一控制電路,其中: 該流可供一待測流翻過; 該流量偵測觀碰該流旁,並包含: 一流體壓力感測元件,用以感測該待測流體之壓力;及 一壓力信號產生元件,以將該壓力感測元件測得之流體壓力轉變 爲電的形式,加以輸出: 該控制電路可接收該壓力信號產生元件之壓力信號,並依據一定 之方式產生一.流體控制信號;且 該微閥模組位於該流體通道之內,並包括: 一微閥,用以控制該流體通道於該微閥位置之截面積;及 一微閥控制元件 > 以依據該控制電路之流量控制信號,動該微 閥,以改變該流體通道於該微閥位置之截面積; r 其特徵爲’該微閥係彈性支撐於該流體通道之管壁’且該微閥控 制元件係以加熱方式使該部份管壁產生伸張及收縮,進而驅動該微閥 產生位移。 2. 如申請專利範圍第1項之流量控制模組,其中該微閥 包括一位於該流體通道內之半導體平台,且支撐該微閥之會壁係一彈 性半導體薄膜,且其微閥制元件包括碰該管壁,鄰近該半導體平 台之電阻層及至少一電極;藉由對該電極及該管壁道以電流,可驅動 該管-張或_。 3. 如申請專利範圍第1或2項之積控制模組,其中該 流體翻包括一彈性管壁元件;該壓力包括形成於該彈性管 13Printed by the Central Standards Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 071 16199 6. Scope of patent application1. An integrated fluid flow control concept, including a fluid channel, at least one flow detection module, a microvalve module and a control A circuit in which: the flow is capable of being turned over by a flow to be measured; the flow detection observation side touches the flow and includes: a fluid pressure sensing element for sensing the pressure of the flow to be measured; and a pressure signal The generating element converts the fluid pressure measured by the pressure sensing element into electricity and outputs it: the control circuit can receive the pressure signal of the pressure signal generating element and generate a fluid control signal according to a certain method; And the micro valve module is located in the fluid channel and includes: a micro valve for controlling a cross-sectional area of the fluid channel at the position of the micro valve; and a micro valve control element > based on the flow of the control circuit Control signal to move the micro valve to change the cross-sectional area of the fluid channel at the position of the micro valve; r is characterized by 'the micro valve is elastically supported on the wall of the fluid channel' and The micro-valve control element causes the part of the tube wall to expand and contract in a heating manner, thereby driving the micro-valve to generate displacement. 2. For example, the flow control module of the scope of patent application, wherein the micro-valve includes a semiconductor platform located in the fluid channel, and the wall supporting the micro-valve is an elastic semiconductor film, and the micro-valve element The method includes touching the tube wall, a resistive layer adjacent to the semiconductor platform, and at least one electrode; by applying current to the electrode and the wall of the tube, the tube can be driven or stretched. 3. If the product control module of item 1 or 2 of the patent application scope, wherein the fluid flow includes an elastic tube wall element; the pressure includes the elastic tube 13 本紙張尺度逋用中鬮國家橾準(CNS ) A4规格(210X297公釐) 經濟部中央揲準局真工消费合作社印簟 AS BB_S__ 六、申請專利範圍 壁元件內之電阻層;且該壓力信號產生元件包括一接觸於該電阻層之 電極。 4. 如申請專利範圍第3項之積1 |[量控制模組,其中該流體 通搬該壓力感測元件之鄰近形成一纖k,且該彈性管壁元件形成 該電阻層之外個ί,另形成一封。 5. 如申請專利範圍第4項之量控制模組,其中該截流 區包括一搬該流體內之This paper standard uses the Chinese National Standard (CNS) A4 specification (210X297 mm), printed by the Industrial and Commercial Bureau of the Central Bureau of Standards of the Ministry of Economic Affairs, AS BB_S__ VI. The resistance layer in the wall element of the patent application scope; The generating element includes an electrode in contact with the resistance layer. 4. If the product 1 of the scope of application for the product 1 | [quantity control module, wherein the fluid passes through the vicinity of the pressure sensing element to form a fiber k, and the elastic tube wall element forms a layer outside the resistance layer. And form another one. 5. If the quantity control module of item 4 of the patent application scope, wherein the shut-off area includes a 6. 如申請專利範圍第1或2項之積流量控制模組,其中該 微閥爲一常閉閥。 _ ;' .· (¾ 7. 如申請專利範圍第1或2項之積體;®流體流量控制模組,其中該 微閥爲一常開閥。 8. 如申請專利範圍第3項之习 之彈性半導體管壁與該彈性管! 9. 如申請專利範圍第8項之積,6. If the cumulative flow control module of item 1 or 2 of the scope of patent application, the micro valve is a normally closed valve. _; '. · (¾ 7. If the product of the scope of application for patents 1 or 2; ® fluid flow control module, where the micro valve is a normally open valve. 8. For the practice of scope of patent application 3 The flexible semiconductor tube wall and the elastic tube! 9. If the product of the 8th item in the scope of patent application, 控制模組,其中該微閥 :成形。 控制模組,其中該微閥 熱絕緣元件隔絕》 流量控制模組,其中該 之彈性半導體管壁與該彈性管壁考 10. 如申請專利範圍第1或2項之g 流體通道包括一彈性管壁元件;該壓力感測元件包括一位於該彈性管 壁元件上之第一電極,包圍該電極之一封閉空間及一位於該封閉空間 之另側該第一電極相對位置之第: 11. 如申請專利範圍第10項之_ 量控制模組,其中該流體 通道於該壓力感測元件之鄰近形I 12. 如申請專利範圍第11項之^ 梳量控制模組,其中該截流 區包括一位於該流體通道內之ίThe control module, wherein the micro valve is formed. Control module, in which the micro-valve thermal insulation element is isolated. "Flow control module, in which the elastic semiconductor tube wall and the elastic tube wall are examined. 10. If the patent application scope of item 1 or 2 of the fluid channel includes an elastic tube A wall element; the pressure sensing element includes a first electrode located on the elastic tube wall element, a closed space surrounding the electrode, and a first position of the first electrode opposite the closed space on the other side of the closed space: 11. Such as Item 10 of the scope of patent application_ volume control module, wherein the fluid channel is adjacent to the pressure sensing element I 12. For example, ^ comb quantity control module of scope 11 of the patent application scope, wherein the shutoff area includes a Located in the fluid channel 本紙張尺度逋用中困國家揉準(CNS > A4規格(210X297公釐) 請 先 聞if 背 再The paper size is suitable for the countries with difficulty (CNS > A4 size (210X297mm). Order 宽量控制模組,其中該微閥 :流量控制模組,其中該微閥Wide volume control module, where the micro valve: flow control module, where the micro valve 之位置 > 形成數個電極。 另包括: 之前,於欲形成電極之位置之彈 A8 B8 C8 Ό8 •申請專利範圍 13. 如申請專利範圍第10項之习 爲一常閉閥。 14. 如申請專利範圍第10項之习 爲一常開閥。 15. 如申請專利範圍第10項之流量控制觀,其中該微閥 之彈性半導體管壁與-彈性管秦1½¾成形 16_ -種積體化流體d量控制麵之製法,包括: 製備一基板; 蝕刻該基板,形成一流體入口,一流體出口及至少一流itirai 份; 於該基板上形成一中間層; 蝕刻該中間層以形成至少一流體通道部份、至少一截流塊及一微 閥平台; 於該中間層上形成一彈性管壁層;及 於該彈性管壁層上刨 17.如申請專利範圍第16 於在該彈性管壁層上方 性管壁形成相同數量之電阻層; 該電極之至少一部份係形成於該電阻層之上;及 於該彈性管壁層之上形成一具有數封閉腔體之上層; 其特徵在於’該封閉腔體之數量與該電極相同,且形成於該電極 之上。 18.如申請專利範圍第17項 中該形成一上層之步驟包括 形成一上層; IΙΊ 1 —Ί I / n J., —裝 訂,、線 (請先Η讀背面之注意事項再填寫本頁) 經濟部中央揉準局貝工消費合作社印製Position > forming several electrodes. Also include: Previously, the bullet at the position where the electrode is to be formed A8 B8 C8 Ό8 • Patent application scope 13. If the practice of item 10 of the patent application scope is a normally closed valve. 14. If the habit of applying for item 10 of the patent scope is a normally open valve. 15. The flow control concept of item 10 in the scope of the patent application, in which the flexible semiconductor tube wall of the microvalve and the elastic tube Qin 1½¾forming 16_-a method for manufacturing a d-quantity control surface of an integrated fluid, including: preparing a substrate; Etching the substrate to form a fluid inlet, a fluid outlet, and at least a first-tier itirai; forming an intermediate layer on the substrate; etching the intermediate layer to form at least a fluid channel portion, at least a blocking block, and a microvalve platform; Forming an elastic tube wall layer on the intermediate layer; and planing on the elastic tube wall layer 17. If the scope of the patent application is 16th, the same number of resistance layers are formed on the tube wall above the elastic tube wall layer; At least a part is formed on the resistance layer; and an upper layer having a plurality of closed cavities is formed on the elastic tube wall layer; characterized in that 'the number of the closed cavities is the same as that of the electrodes and is formed on On the electrode. 18. If the step of forming an upper layer in item 17 of the scope of patent application includes forming an upper layer; IΙΊ 1 —Ί I / n J., — binding, thread (please read the precautions on the back before filling this page) Printed by the Shellfish Consumer Cooperative of the Central Bureau of the Ministry of Economic Affairs 15 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) A8 B8 C8 D8 申請專利範圍 於該上層上方形成數個犧牲層,以定義該封閉腔體; 蝕刻該上層,以形成腔體空ί 封閉該腔體空間 19.如申請專利範圍第17項3 中該形成一上層之步驟包括: 製備一上層基板; 蝕刻該上層基板,形成數個腔體空間,及 將該上層基板與該具有基板、中間層、彈性管壁之組件接合,使 該麟空間碰電極之上 _15 This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) A8 B8 C8 D8 The scope of patent application forms several sacrificial layers above the upper layer to define the closed cavity; etching the upper layer to form the cavity The closed space of the cavity 19. The step of forming an upper layer as described in item 17 of the patent application scope 3 includes: preparing an upper substrate; etching the upper substrate to form a plurality of cavity spaces; and connecting the upper substrate with the The components with the substrate, the intermediate layer and the elastic tube wall are joined so that the lin space touches the electrode _ 其中在該形成彈性管壁之 _丨 籠中之步驟 20. 如申請專利範圍第16或17 後,更包括一形成一熱絕緣·, 21. 如申請專利範圍第16項_^:,另包括:於該彈性管壁之上形成 一具有數個封閉腔體且該腔極之相對位置分別設置一電 極之上層之步驟。 22.如申請專利範圍第21項! 形成一上層;Among them, the step of forming the elastic tube wall in the cage 20. If the scope of the patent application is 16 or 17, it also includes the formation of a thermal insulation. 21. If the scope of the patent application is # 16 _ ^ :, it also includes : Forming a step having a plurality of closed cavities on the elastic tube wall, and setting an upper layer of the electrode at the relative position of the cavity poles respectively. 22. If the scope of patent application is 21! Form an upper layer; 中該形成上層之步驟包括: ------ I - - — - HJ 1 - - -- IIA. ( I — (請先閱讀背面之注$項再填寫本頁) 訂 經濟部中央棣準局工消費合作社印製 於該上層上方形成數個犧牲層,以定義該封閉腔體; 蝕刻該上層,以形成腔體空間; 在該腔體空間至少一者上方形成電極;及 封閉該腔體空間。‘The steps to form the upper layer include: ------ I----HJ 1---IIA. (I — (Please read the note on the back before filling this page) Order the Central Ministry of Economic Affairs The local government consumer cooperative prints several sacrificial layers above the upper layer to define the closed cavity; etches the upper layer to form a cavity space; forms an electrode above at least one of the cavity spaces; and closes the cavity space.' 中該形成上層之步驟包括: 23.如申請專利範圍第21 製備一上層基板, 飽刻該上層基板,形成數個腔體空間; 在該腔體空間之至少一者內形成電極;及 16 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) 經濟部中央橾準局員工消費合作社印装 A8 B8 C8 D8 *申請專利範圍 將該上層基板與該有基板、中間層及彈性管壁之組件接合,使該 腔體空間碰麵個電極之上。 本紙張尺度適用中國國家標率(CNS ) Α4说格(210Χ297公釐) --r--,----装------^訂I------(W (請先Μ讀背面之注$項再填寫本頁)The steps of forming the upper layer include: 23. Prepare an upper substrate according to the scope of application for patent No. 21, and saturate the upper substrate to form a plurality of cavity spaces; form electrodes in at least one of the cavity spaces; and 16 books Paper size applies to China National Standard (CNS) A4 (210X297 mm) Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs A8 B8 C8 D8 * Scope of patent application The components of the wall are joined so that the cavity space meets the electrodes. This paper scale is applicable to China National Standards (CNS) Α4 grid (210 × 297 mm) --r-, ---- installation ------ ^ order I ------ (W (please first (Please read the $ on the back and fill in this page)
TW87116199A 1998-09-29 1998-09-29 Integrated flow controller module and flow sensor TW387991B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87116199A TW387991B (en) 1998-09-29 1998-09-29 Integrated flow controller module and flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87116199A TW387991B (en) 1998-09-29 1998-09-29 Integrated flow controller module and flow sensor

Publications (1)

Publication Number Publication Date
TW387991B true TW387991B (en) 2000-04-21

Family

ID=21631502

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87116199A TW387991B (en) 1998-09-29 1998-09-29 Integrated flow controller module and flow sensor

Country Status (1)

Country Link
TW (1) TW387991B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235386A (en) * 2022-02-28 2022-03-25 艾肯(江苏)工业技术有限公司 Test platform for verifying static pressure life of stop valve through fluid detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235386A (en) * 2022-02-28 2022-03-25 艾肯(江苏)工业技术有限公司 Test platform for verifying static pressure life of stop valve through fluid detection
CN114235386B (en) * 2022-02-28 2022-05-13 艾肯(江苏)工业技术有限公司 Test platform for verifying static pressure life of stop valve through fluid detection

Similar Documents

Publication Publication Date Title
US6032689A (en) Integrated flow controller module
US5417235A (en) Integrated microvalve structures with monolithic microflow controller
EP1603672B1 (en) Integrated capacitive microfluidic sensors method and apparatus
US7017420B2 (en) Miniaturized pressure sensor
Jerman Electrically-activated, micromachined diaphragm valves
EP2499368B1 (en) Method for producing at least one deformable membrane micropump and deformable membrane micropump
KR100807193B1 (en) The fabrication method of capacitive pressure sensor and product thereof
US10371135B2 (en) Micropump having a flowmeter, and method for producing same
US6003833A (en) Integrated micro pressure-resistant flow control module
Henning Microfluidic mems
EP3060835B1 (en) Fluid flow regulator device, comprising a valve member and a valve seat defining a fluid flow surface area, as well as method of using the same
US7789371B2 (en) Low-power piezoelectric micro-machined valve
US20140060206A1 (en) Microflowmeter and method for making same
Liu et al. Fully front-side bulk-micromachined single-chip micro flow sensors for bare-chip SMT (surface mounting technology) packaging
TW387991B (en) Integrated flow controller module and flow sensor
Ko et al. Novel fabrication of a pressure sensor with polymer material and evaluation of its performance
Cho et al. An ultrasensitive silicon pressure-based flowmeter
IT202000010264A1 (en) PIEZOELECTRIC ACTUATOR HAVING A DEFORMATION SENSOR AND RELATED MANUFACTURING PROCEDURE
Lo et al. A silicon mass flow control micro-system
Zhao et al. Highly-doped bulk silicon microheaters and electrodes embedded between free-hanging microfluidic channels by surface channel technology
Jang et al. A capacitive micro gas flow sensor based on slip flow
Zou et al. CoMSaT: a single-chip fabrication technique for three-dimensional integrated fluid systems
Gogoi et al. Force balanced micromachined pressure sensors
Subramanian et al. Scalable vertical diaphragm pressure sensors: Device and process design, design for packaging
JPH07167724A (en) Method and apparatus for detecting pressure

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees