TW386198B - Neural network utilizing logarithmic function and method of using same - Google Patents

Neural network utilizing logarithmic function and method of using same Download PDF

Info

Publication number
TW386198B
TW386198B TW083111637A TW83111637A TW386198B TW 386198 B TW386198 B TW 386198B TW 083111637 A TW083111637 A TW 083111637A TW 83111637 A TW83111637 A TW 83111637A TW 386198 B TW386198 B TW 386198B
Authority
TW
Taiwan
Prior art keywords
neural network
network
neuron
patent application
generate
Prior art date
Application number
TW083111637A
Other languages
English (en)
Inventor
Shay-Ping Thomas Wang
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Application granted granted Critical
Publication of TW386198B publication Critical patent/TW386198B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Neurology (AREA)
  • Feedback Control In General (AREA)
  • Devices For Executing Special Programs (AREA)
  • Image Analysis (AREA)
  • Measurement Of Radiation (AREA)

Description

Α7 Β7 五、發明説明(〇 二 先前應用的參考 本寒用已於1.99_4-年_丄_卫_2_日_.在美画提出,其專利應用號 碼為 08/176,iQ丄。 相«的發明 本發明與下列發明有鼸,他們譆渡給與本發明相同的受 讓人一 ------------------------- (Γ) ·’神經元電路及使用此神經元電路之方法” ("Neuron Circuit, and Method of Using Sa^eM ,其序 為.........— * '<2丨”使用加法電路之人造神經芫及使用該人造神經元 之方法 ” ("Artificial Neuron Using Adder Circuit and Met. hod of l丨 si hr Same”’),其序號為____,_,同 此同時申謫。 (3) ”神經網路及使用該神經網路之方法” ("Neural
Net, work and Method of 丨1 si Same”),其序 SS 為 _ -, 參照本發明的發表;藉此編入上面檷說的相闢發明的主 要事項。 技術領域 本發明與一般的人造神經網路有關且特別是與可於一 VI.ST(超大規模積體雷路)晶Η或電腦程式中當施的神經網 路有闢且該神經網路使用不需重覆訓練且對每一所給的输1 入向晕钼產生一全域最小值的訓練演算法。 . / ; 發明背景 -4 — 本纸張尺度適用中國國家揉率(CNS ) A4规格(210X297公釐)
(請先閲讀背面之注A -1—裝*— isi項再填寫本頁) 訂 經濟部中央標準局員工消費合作社印装 經濟部中央標隼局負工消费合作社印製 A7 B7 五、發明説明(2 ) - 人造神經網路在種種不同的計算瑁境中*具有其實用性 ’像是語音辨識(speech recognition)’壜程控制 <pr〇Cess c〇ntrol),光符號辨雄(optical character rec〇gn;t, i〇n),信.號處理(signal processing),及影像 處珲(image processing)。 *該神挥網路包含多俩稱為神經元電路的基本邏輯元件。 —神挥元雷路(或處理元件)是神經網路的基本組成部件 °神样元雷路有多俩蝓入及一僩+输出。 '如囿卜而標識為相關發明第]號'中的說明,傳統神經元 雷路的構造通常包括一乘法灌路(niultipHer circuit), 一加结!雷路,一供紈行非線性函數(像是二進位門檻 「thresholdl或S形「sigmoid〗函數)之電路與功能像神經 辨(svnapses)或加權的蝓入連接之電路。因為傳統典型的 神網路霈要所有上而提及韵罨路,所W做在半導JI晶 Η卜.的神經元窜軋黻目受到嚴格的限制。相Η發明第1號 棋孩於一雹施例中* 一種儀包括一乘法器當做其主要處理 元件的神稃元窜路,而上面一標識相闞發明第2號揭露於 一官腌例中,一種傕包栝一加法器當做其主要處理元件的 神辉元爾路。 如同卜.而榑_為相關發明第3號中的說明,有超遇二十 種R知的神姅網路架構的類型,其中”反向-傳送" ("hack-propagation”), 知器 ”(”perceptron”),與” 赭伯飛網路” ("Hopfie丨d network")最為人所熟悉。相期 -5 - 本紙張尺度逍用中國國家揉準(CNS ) Α4规格(210X297公嫠) —^裝·-- (請先聞讀背面之注毒事項再填寫本頁) -,η 經濟部中央樣準局負工消費合作社印装 A7 B7 五、發明説明(5 ) 二 發明第3號椹®於一《施例中•一種不需重覆訓嫌•對每 一输人向最姐產生全域最小值及具有易於實施的架構之神 畀網路。雖然相闞發明第3號中椹s的神經網路,表現超 择了先前得知的較早的技術之重大進步,而提供一至少具 有相W發明第3號揭露的優點及較簡單且便宜,實施於棟 «ί薄甚至π要較少砂茔間之改良神經期路是值 的。 w此對神經網路有一重要的禰求·那就是它不需重覆的 訓練,它對每一所給的繪入向最姐產生一全域最小值,而 肖它有一便宜且易於官施的簡單的構。 發明摘要 根據本發明的教義設計的神經網路的較佳實施例1最多 包栝三屑。第一層至少提供兩禰功能:(1)連接钃路的外 而輸λ的連接功能(丨nte「connect function),及(2)對網 路,J面输人取對數的對黻功靡。第二曆使用上面一 _^雄 枏Μ發明第2號电說明的神經元霄路或其軟體同等物。第 三賻為输出蹰,對第二層的神經元的輸出執行反對數功能 而後將他們加總。 對照傳統神經網路,它需要漫長的訓練週期,而根據本 發明建造的神經網路於單一訓練遇期(也參照為一個時期 fepochl或反覆〖iteration]),便收歛於一全域解,用個 人雷腦常常可不需嫌分鐘的時間來計算該全域解。 此外,對照傳統神經網路,根據本發明有提供的神羥網 路,它使用多俩神經元電路;該神經元電路不俚別地使用 —〇 裝·— (請先閲讀背面之注毒事項再填寫本頁) 、11 1 - 6 · 本紙張尺度適用中两两家揉牟(CNS ) A4规格(2H)X297公釐> 經濟部中央標隼局員工消費合作社印装 Α7 Β7 五、發明説明(4 ) 二 任何非媒性功能且每~個神經元轚路僅需要一加法電路當 做其主要處理元件。因此,更多的神經元罨路可K整合於 一 VIST晶Η上,此舉大大地的增加使用這類晶片的神經網 路的計箄能力。 如此根據本發明建造的神經網路,不論在半導«晶Η上 普滅少下,铁辛 精確的结果,且得Μ大最的減少成本及Sfe的裡雜度將 夸到窜視。 此外,根據本發明建造的神經網路,藉由提供做加總神 鋅元雷路的输出的多僩加總電路,~苛具有多個输出。 因此,提供使用多俩神經元電路的神經網路,而每一神 經元蜇路本質上備需要一加法罨路來當做它主要的處理元 件是本發明的一優點,所Μ可建造包含非常大數目的此神 拌元窜路之神經網路*由於它功能性的高牖次及製造的低 成_本_,使它成為商業上具銪爭&的產品。 _ 提供不隳要重甩訓練的神經網路,也是本發明的儍點之 -0 又本發明的另一儇點是提供對每一所給驗入向量姐產生 一幸域最小堉。 提供訓練神經網路之方法,而該神纆網路不霈要重覆訓 練是本發明的另一儍點。 根撺本發明,提供使用神經網路之方法也是本發明的優 根據本發明的一外觀,有提供具有多個網路轤入及至少 -7- 本纸張Λ度適用中國國家揉率(CNS ) Α4規格(210X297公釐〉 (請先閲讀背面之注參事項再填寫本頁) 、裝- 訂 A7 B7 五、發明説明(5 ) 二 一锢網路输出的神經網路,該神經網路包括供運用對數功 能於網路輪入以產生相對應的對數输入之裝置;多個神經 元,每一神經元具有多個響應相對懕的對數蹌入之嫌入且 砻生一鎗出;供埋用反對數功能於每一神羝元綸出Μ產笔 枏對應的反對數輸出之裝置;與供加總神經元的反對數输 f g g生至少一網路輸^-- 又根據本發明的另一外観,有提供包括多俚網路輸入及 牵少一網路輸出的神經網路;多個神經元,每一神經元接 收多俩輪入及產生一输出;供產生對數及反對數功能之裝 W ;及搡作該神經網路之方法*該飞法包括下列步» ·· (a)該對歟功能產生裝置運用對黻功能於該神經输人以產 牛相對應的對數轤人;(b)分配每一該對數轤入該每一該 神經元輸人;<c)每一神經元理用選通功能(gating funct. ίοη)於毎一該對數蝓入以產生相對應的選通输入 (pa ted input); (d)每一神經元加每一該S通蝓入在:起 W產生一加總;(卩)每~神經元加該加缌於一加榷值以對 每一神經產生一神纆元輪出;(f)該反對數功陡產生裝置 评用反對敝功能&每一該神經元輸出W產生相對應的反對 齡輪出;及加總該神經元的反對數轤出>乂產生至少一 (請先閱讀背面之注鲁事項再填寫本頁) .裝·
,1T 經濟部中央標準局員工消费合作社印装 ’ 將 而點 然特 ❶的 明明: 發發中 本本其 出;, 指畫解 明地圖瞭 說別的易 短特随容 簡,伴最 的中同將 畫圍連明 調範,發 利明本 專說且 請的見 申细易 。 的詳而 出加列願 輸 附下更 路 於照得 網參華 本纸張尺度逋用中國國家梂準(CNS }八4规格(210Χ297公釐) 五、發明説明(6 ) in 1 阃2 流程圃 Η 3 俩輪出 ^ m 4 流程鼷 國5 輪人目. 流稈圃 本枝 硬鵂, 式而交 神辟元 C 1 Γ c u I c i r c υ ί A7 B7 (FTG.1)根據本發明,展示神經網路的概觀圈。 (FIG.2)展示使闬圖1中說明的神經網路的方法之 Ο (FIG.3)根據本發明,展示平行地接收输入且有多 的神經網路之槪觀圔。 gjK 使甩 的方法之 (FTG. 5)根據本發明較佳霣施例,屐示顒序地接收 有多铒輸出的神經網路之概観_。 (FTG.fi)展示使闬國5中說涮的神經網路的方法之 〇 較佳《施例的詳細說明 «中技術普通的人·會瞭解本發明的神纆網路可Μ 軟鵂或兩者的姐合來實豳,且本說明中依《豳的型 互地使用像是”神經罨路”(”neUr〇n circuit”)^輿” ”(” n e u r ο η ”)術語或”加缌電路 ”("s u * n i n g t. ”加總器 ”「’summer ”),”加法電路 ”("adder t. ”卜”加^器”(” a d d e「” >,等術語。 本0 根 請 先 閲 讀 背 1 奮 裝 訂 線、 經濟部中央標準局員工消费合泎tt印裝 的 〉當 逋 lylK _ λ 可 輸能 的功於 路數能 網對功 倨該數 多,對 。4 行 匾能紈 観功它 槪黻且 的對, 路给腌 網餾實 經地來 神序法 示 _ 算 展χη演 ,,或 明:路 發:窜 〇 時 人人 轤输 的一 黻每 對於 生用 ti·-. be 庳 缠 Μ 4 賴能 , 功霸 人齡醚 输對隈 的當給 它.配 元0 神 示 展0 中 其 分元 出經 翰神數一 對毎 的的 應8) 對及 相7 本纸張尺度適用中國國家捸率(CNS ) A4規格(210X297公釐) B7 五、發明説明(7 ) 。本發明中,皤黼層傕霈要一 1神經元。 如间上而檷谦為相闞發明的說明,每一神經元理用選通 功能於胃數输入Μ產生相對應的選通输入。當每一輪入 X,的對黻分配給神經元5-8時,每一神經元5-8可以理用遘 通功能於它Μ形成選通输入。然後,每一神經元5-8它的 m _k與緊穑的加總相加i該加燼是前次通助1结思,转# 有該加结!,則它的输入與0相加,來產生新的累積的加總 0 镌最後的輸入,x„,的對數分配給神經元5 - 8時* _巷有 加權侑Ueight value),每一神經X 5-8把它個別的累稽 加塘與加權侑相加來形成累積加總。 然後,灌用反對數功能12理用於每一神經元的累積加缌 ,該反對黻功能紈行反對黻功能於它的输入。神經元5-8 的檢出的反對數接著捶用於输出曆中逋當的加總裝置或功 能,像是加缌器14,以產生神經網路的输出。 _ Λ-- 醐2展示使用中說明的神經網路的方法之流程圓。 如同框20中的說明,第一步,對數功能運用於眾多網路输 入X,中的一侗。下一步,如同框22中的說明;蝓入XI的對 齡分配給每一神經元5 - 8 。 經濟部中央標準局貝工消費合作社印製 決定框24中,確定這是否為第η個網路蝓入。若是,則 該方法前進到框28,但是·若不是,它前進到框26。 豭26中,每一神經元5-8把它的個別的選通输入與它先 前的累稽加總相加•若沒有該加缌,則該個別的選通输入 街0相加,來產生累積加總。然後,該方法回到框20° -10- 本紙張尺度逋用中國國家搮车(CNS ) Α4规格< 210X297公釐) A7 B7_二_ 五、發明説明(8 ) ~ 框28中,若有先前的累積加總及加權值,每一神經元 5-8把它的p別的選通输入與該先前的累積加结[及加權值 相加Μ形成累積加總。 框30中,每一神經元的累積加缌定義成它的_出。下一 步,框於中,對眾多的神經元5-8的一個轤出取反對數。 框· 34中,反對數分配給加總器14的綸入,且框36中,加總 器〗4把這输入與先前的累積加總相加’若沒有該累積加總 ,則其與0相加,以產生新的累積加缌。 決定抿37中,確定這是否為最後(譬如’第η個)的神經 示輪出的反對數。若是,該方法前氇到框38,但是,若不 #,它冋到框3 2。 框38中,加總器的輸出定義成神經網路的輸出y ,且程 .序结束。 阃3根據本發明•展示平地地接收檐人且有多俚輪出神 铧網路之《觀鬭。多俑綱路輸U,X2·----及儷刖ώ餵 給輸"人醑的對數功能41,42興44。 經濟部中央標準局員工消費合作社印製 (請先《讀背面之注意本項再填寫本頁) ‘输入翳中的毎一對數功徙41 * 42與44的_出分配給皤Μ 麻的每一神經元f其中僅展示46 ’ 47,51與52)。例如’對 齡功能41的输出分配給神經電路46,47 ’ 51與52的每一個 目分RB給皤輛層中所有其它的神經元電路(沒有展示)°關 於對齡功能42,44’與其它输人層中的對數功能(沒有展 示)也做相同的連接。 對神姅網路的本官拖例,反對數功能54· 55’ 58,及 59分別地琿用於神經雷路46 ’ 47,5]與的蝓出’來產生 1 1 _ 本紙張尺度適用中國國家樣準^CNS)A4規格(210x297公羞) " Α7 Β7 經濟部中央標隼馬員工消費合泎杜印裝 五、發明説明(9 ) - 痦些輪出的反對數。 下一步,神經元46與47的反對數由加總器61來加總,其 輸出yi表示本神經網路的一输出。此外*神經元47,51與 R2的反對黻由加總器6來加總,其输出^表示神經網路的 另一输出。外加的加餹器(沒有黼示)缠當地理用於神經 46-52典其罄康」其它输出 y r, - 1 ° 雖然國3展示兩髑加總器或加缌電路於輸出層中,技術 普掮的人會瞭解,可Μ使用多於兩偁的加缌器或加總轚路 /雖然,阃3也展示某些網路输出接在一起*神經元的 输出也可Κ是不逋接的。 围4屏示使用國3中說明的神經網路的方法之流程圔。 如同框70中的說明,對毎一網路输入(譬如输入Χϊ,x2, ....,χΝ)取對敝。下一步,框72中•這值大鎇上同時地 令給毎一神銲元的鳙人(臀JPW3中,皤藏層的神_^元 46* 47* 5J* 52)° 下一步,如囿框74中的說明,毎一神經元理用選通功能 於網路《5入的每一對數Μ產生相對應的S通輸人。如上面 提到關於闕3的,任一所給的神經元可以理用不同的選通 劝能於它接收的不同網路的输入之每一對數。 下一步,如同框76中的說明,對任一所给的神經元,該 撰通輸人加在一起Κ產生加總。 下一步,如同糇78中的說明,對任何所給的神經元•選 通輪入的加嫌與預先決定的加檷值相加Μ對這類神烴元產 -12- 本紙張Α度適用中國國家揉準(CNS ) Α4%格(210x297公釐) (請先聞讀背面之注意 -ϋ 1^1 nn T項再填寫本頁)
1. > J 、-'• -1 經濟部中央橾隼局員工消費合作社印製 A7 B7 五、發明说明(π) 二 生神經元轅出。如同上面提到鬮於圖3的,任何所姶的神 姅元也可以運用不同的加權值於它的加缌。 下一步,閭於框80,對每一神經元输出取反對數。框 82中,加埭器6〗把第一群神經元(亦卽神經元46及47>的神 锊元褕出的反對數加结!,Μ產生第一饀網路輪出yt。 丄(亦即神經--- 芫47, 51及52)的神經轤出的反對數加總,以產生第二個 網路蝓出y n。 如同 >.而提到Μ於 3的,本技藝中普通技術的人會了 解神經元4R-52的反對數的另外时可Μ放入另外的加路! 器中(沒有展示)Μ產生另外的_出mn-i。 圈5根據本發明較佳實施例*展示厢序地接收输入且有 多俩輸出的神經網路之槪觀圖。像圖1中所展示的,多涠 網路檐人X1,____,i暇序地供給输入層的單一對數 功能4 。對》功能4的輸出分配給陲藏層的每一神經j ( —气· ^ •一" 其·中R有展示神辨/元5-8)。 對神铧網路的本苜拖例而言,神經元5-8之一的输出首 先供給斥對敝功能]2,然後·這類神經元输出的反對數大 髑h同時地理用於每加法器1〇〗-1〇9。下一步’神經元 5 _8中的另一個的蝓出供給反對數功能]2,且它的反對數 大髑上同時地運闬於每—加法器101- 109。 加法器101- 109,其中每一涸加法器把每一個最近收到 反對》與它的絜積加缌相加,要不然與〇相加,且當它接 收完每—神經元输出的反對黻時,每一加缌器101- 109的 -13- 本纸張尺度適用中國國家梂率(0NS ) Λ4规格(210X297公嫠) --------—o^.------IT----.--L·. (請先W讀背面之注意事項再填寫本頁) A7 B7 經濟部中央標準扃貝工消费合作社印装 五、發明説明(11 ) T_ •s 最後累積加總定義為神經網路的檢出:^至1。 本枝藝中,技術普通的人,皤鱅層中另外的神經元(沒 有展示)的輸出可以埋用於另外的反對數功能(沒有展示) 目可Κ運用於加法器]〇 1 - 1 〇 9。 两Β展示使用_5中說明的神經網路的方法之流程圈。 釅4?〇- 3?也許輿圔2中說明的相| 的步驟宪全相同。 米驟110中,神經元之一(譬如,神經元5 )的蝓出的反 對黼,分配給毎一俩輸出加结!器10〗-109。步》112中,若 有先前的累積加總,則每一加缌器1G它的输入與其相加, 否刖與0相加,Κ產生新的累積加總。 於決定框Π4中,確定這是否為最後的(亦卽,第η儷) 神铧元鲔出的反對數。若是,本方法前進到框]16 ,若不 是♦刖它冋到框3 2。 _步_嫌1U中,毎一输出加總控最後累積加總,定義_^眾 多'網路输出yi至yp之一。 本發明的神絆網路的操作根據於多項式展開的使用且寬 丈的意義中是ΪΕ交1¾黻的使用,像是正孩,餘弦,指數/ 對辭,複利絮轉換(Fourier transformation),藍劍多項 式(丨egendre po丨ynomia丨),像是瓦特利函數或徑向基函 牌(rafMal basis fuct, ion)的非線性基函數(non-linear basis funcU on),或是類似的函數,或是多項項式展開 朗JH交函數的姐合。 一較佳管施例使用多項式展開,其中方程式1表示一般 ~------.. -14- 本紙張尺度適用中國困家橾率(CNS ) A4规格(210X297公釐) (請先閲讀背面之注兔 事項再填寫本頁) Γ -L , 、-· 五、發明説明(I2 的惰況如下: A7 B7 y = Σ Xlgii x2g2i . i=l • Xn^ni 方程式 經濟部中央標準局貝工消費合作社印裝 其中X f表 其中z .,暴任 :其中y表 的權:其中 醃Η都是整 单網路的輪 方稈式1 闞的櫬朗選 。必須注意 地薄用對數 琯產生ΪΚ確 神烊網路 孑而得,包 。應該了解 得不窜要。 ,R要是可 输人相朗的 要檁準化。 方_程式2 頂。 示網路输入且可Μ是像是的函數 «Τ 示神經網路的鎗出;其Wl-i表示第i個神經元 Rii,....,gn丨表不供第ΐ 神經元的選通函 黻,於一較佳實施例中它是〇或大於0 ;而〇 入。 … 中的每一項表示一神經元输出及與該神經元相 通功能。相關發明第2號中說明神經元的搡作 毎一神經元,它假定每一輪入值是正的且ϋ當 踪每一 _入的符號且對方程式1中的 功能*追 的符號。 中使用/的 栝可利用 多琯式展 因此,一 能*便選 罱度單位 多項式展開的項的數目是根據多個因 的神經元的數目•訓練例子的數目等 開的較高階的項通常是比低階的項來 較佳苜施例中,根據上面提到的因子 取較低階的項°同樣的,因為與不同 可能變動,所Μ输入在使用前可能需 是方程式1的另一表示式,展示直到第3階的 -15 本紙張尺度適用中國國家梂準(CNS ) Α4規格(210 X 297公漦) C---裝— (請先Μ讀背面之注I事項再填寫本頁) 訂 線 A7 B7 五、發明説明(13 η y = w〇 + Σ wi Xi i=l n + Σ wfl(i) xi2 i*l 請 先 閲 背 之 注 n n 再 Σ Σ wf2(iij) XiXj i-1 j=i+l n Σ wf3(i) Xi3 i=l n n 十 Σ Σ Vf4(i,j> xi2xj i=l j=i+l n n i 訂 經濟部中央標準局員工消費合作社印製 + Σ Σ Wf5(i,j) XiXj2 i=l j-i+l η η n+ Σ Σ Σ wf6(i/j/k) xixjxk i=l j=i+l k=i+j+l + 方程式2 -16- 本紙張尺度逋用中國國家揉隼(CNS〉A4規格(210X297公釐) 經濟部中央標準局員工消費合作杜印褽 A7 B7 〜 五、發明説明(砵) 二 其中華數的意義與方程式1中的相同且是範圃從 n + 1至2n的指播函數;是範圍從2n + l至 2n+(r>)(n-l)/2的指檷函數;且“^.”是範_從 2n + 1 + U)(n-l)/2 至 3η+(η)(η-1)/2。而且 至 feM 類似的 方式表示。 中技術熟缭的認得遘通函镟方程式2 的項中。例如,方程式2可Μ表示如下: y_= W〇 + W! Χχ + W2 Χ2 + - · . Wi Xi + . . . + wn Xn ' + Wn+jL Xi2 + . . ‘ + W2n Xn2… + W2n+1 XI X2 + W2n+2 Xl X3 + ... + W3n-i Χχ Xn + W3n X2 X3 + W3n+1 X2 X4 + -.-W2n+(n〉(n-l)/2 Xn-1 Xn + . ·. --· + Wn-1 Xl^lN X2?2N . . · Λη9ηΝ + ... " 方程式3 其中變數意義與方程式〗的相同。 應該特別注意,雖然選通函數項fUn明顯地出現在方程 3最後屏示的項中,人們會了解其它每一項有它自己明顯 地展示的Pf,、項(臀如,對於Wi Xi項gl2 = ]且其它f?12 = 0’ ;=2,3,. . .,η )。Η是任意正整數且表示網路中的第N 俩神經元。 訓練演算法 -17- 本紙張A度逍用中國國家揉準(CNS ) A4规格(210X297公釐) ~裝·-- (讀先閲讀背面之注秦事項再填寫本頁) 訂 A7 B7 ' 五、發明説明(15) 二 要神經網路是有用的,必須決定每神經元罨路的權。使 闬拥常的訓嫌演箄法可達到這目的’例如,像相翮發明第 3號的說明。 摘要 於此已說明一覼念,Μ及多僩神經網路的實施例包括一 iTf實豳例,該神經網用多」一加法器當JtAm 萝處理元件的神經元。 因為神經元雷路的不同的實施例及使用與訓練該神經網 路之方法,如同其中的說明,不需要重覆訓練且對毎—所 给的輸入向#姐提供一全域最小值他們不論在半導體晶 Η上或雷瞬稈式中,在計茸畤間大大地改巻滅小下。執行 得到更精確的结果,旦得W大最的減少成本及首施的複雜 摩。 而目,掼孩的發明可Μ甚多的方式修改且圼規上面明確 地陳述明說明的多侗苜施例而不是較佳的形式,對本技轻 • •一. Λ- 中技術熟練人是顯而易見的。 . <
I 經濟部中央標準局員工消費合作社印製 :(請先閲讀背面之注意策項再填寫本頁) 本發明的覼念可Μ多個方式改變是可了解的。例如’它 是依稽鵂霄路技i,實施的型式(譬如,類比,數位,軟 體等),鏞横大小,外面插針(pin-outs),及其它等,認 為瑄類系統球造上的元件為瑜人節點的數目,神經元或神 辉元雷路的》目與對數,反對數的數目*與加總裝置或霉 路及他們的逋接的設計選擇的事情。 卜面提到的多堉式屏開的截斷程度視想要的精確程度而 定也是鼦而易見的。 _ 1 8 _ 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) 五、發明説明(16 A7 B7 合 逋 有 所 的 明 發 本 蓋 涵 圈。 意改 園修 範的 利圈 專範 請與 申神 的精 加真 附的 , 明 此 0 闲木 於 -~~^裝·-- (诗先閱讀背面之注*事項再填寫本頁)
•1T 經濟部中央標準局員工消費合作社印装 本紙張尺度適用中困國家揉準(CNS ) A4规格(210X297公釐〉

Claims (1)

  1. 第831U637號專利申請案 ~?文申請專利範圍修正本(88年 A8 B8 C8 D8 六、申請專利範圍
    經濟部中央梂牟局貝工消费合作社印簟 1·—種用以回應多個網路輸入信號而產生至少一網路輸出 仏號之神經網路,該神經網路包括: 一對數功能電路,回應該等網路輸入信號以產生多個對 數輸入信號; 一多個^經元’用以產生多個神經元輸出信號,該等神經 元各回應該等多個對數輸入信號而產生一神經元輸出信 號; ° 一反對數功能電路,回應該等神經元輸出信號以產生多 ‘個反對數輸出信號;及 一加總電路,用以-加總該等反對數輸出信號而產生該至 少一網路輸出信號。 2. 如申凊專利範圍第丨項之神經網路,其中該神經元包括 一線性轉換功能。 3. 如申凊專利範園第j項之神經網路,其中該神經網路係 .包含於至少一積體電路。 4. 如申請專利範園第丨項之神經網路,其中該等多個神經 元之至少一個包括一閂鎖及一加法器。 5. 如申請專利範圍第1項之神經網路,其中該等多個神經 元之至少一個包括一計數器及一閂鎖。 6. 如申請專利範圍第丨項之神經網路,其中該等輸入信號 並無包括表示經濟現象之時間序列資料。 7. —種用以回應多個網路輸入信號而產生多個網路輸出信 號之神經網路,該神經網路包括: 運用對數功能於該網路輸入信號以產生多個對數輸入信 O:\38\38146-l.DOC\MFY _ 1 _ (請先閲讀背面之注^^項再填寫本頁} ,華· -- Γ 第831U637號專利申請案 ~?文申請專利範圍修正本(88年 A8 B8 C8 D8 六、申請專利範圍
    經濟部中央梂牟局貝工消费合作社印簟 1·—種用以回應多個網路輸入信號而產生至少一網路輸出 仏號之神經網路,該神經網路包括: 一對數功能電路,回應該等網路輸入信號以產生多個對 數輸入信號; 一多個^經元’用以產生多個神經元輸出信號,該等神經 元各回應該等多個對數輸入信號而產生一神經元輸出信 號; ° 一反對數功能電路,回應該等神經元輸出信號以產生多 ‘個反對數輸出信號;及 一加總電路,用以-加總該等反對數輸出信號而產生該至 少一網路輸出信號。 2. 如申凊專利範圍第丨項之神經網路,其中該神經元包括 一線性轉換功能。 3. 如申凊專利範園第j項之神經網路,其中該神經網路係 .包含於至少一積體電路。 4. 如申請專利範園第丨項之神經網路,其中該等多個神經 元之至少一個包括一閂鎖及一加法器。 5. 如申請專利範圍第1項之神經網路,其中該等多個神經 元之至少一個包括一計數器及一閂鎖。 6. 如申請專利範圍第丨項之神經網路,其中該等輸入信號 並無包括表示經濟現象之時間序列資料。 7. —種用以回應多個網路輸入信號而產生多個網路輸出信 號之神經網路,該神經網路包括: 運用對數功能於該網路輸入信號以產生多個對數輸入信 O:\38\38146-l.DOC\MFY _ 1 _ (請先閲讀背面之注^^項再填寫本頁} ,華· -- Γ 號之裝置; 多個神經元電路,用以產生多個神經元輸出信號,该等 神經元電路各回應該等多個對數輸入信號至少其一而虞 生一神經元輸出信號; 一運用反對數功能於每一該神經元輸出信號以產生多偶 反裝置H 多個加總電路,該等加總電路各加總預定之該等反對數 輸出信號以產生該等網、路輸出信號。 8. 如申請專利範圍第7項之神經網路,其中該等神經元包 括一線性轉換功能。 9. 如申清專利範圍第7項之神經網路,其中至少有些該等 反對數輸出可由多於一個之該等加總電路所加總。 1〇_如申請專利範圍第7項之神經網路,其中該神經網路係 包含於至少一積體電路。 11. 一種用以回應一序列網路輸入信號而產生至少一網路輸 出信號之神經網路,該神經網路包括: 經濟部中央棣準局貝工消費合作杜印製 一對數功能電路,用以接收該序列之網路輸入連績信號 及運用對數功能於各個該等網路輸入信號以產生多個對 數輸入信號; 多個神經元電路,用以產生多個神經元輸出信號,該等 神經元電路各具有至少一輸入且產生一神經元輸出信 號; 分配裝置’用以分配該等對數輸入信號於每一該等神經 元電路之至少一輸入; —2 — 本紙張尺度逍用中國國家梯準(CNS ) Α4规格(2丨0X297公釐) 經濟部中央棣牟局負工消费合作社印製 is8 _ C8 - D8六、申請專利範圍 反對數功能電路,用以運用一反對數功能於每—該等 神t元輸出信號而產生多個反對數輸出信號;及 —加總電路,用以加總該等反對數輸出信號而產生該至 少一網路輸出信號。 12·如申请專利範圍第11項之神經網路,其中該等神經元包 括一線性能厂。 —— 13如申請專利範圍第11項之神經網路,其中該加總電路包 括多個加總器,各加總器加總預定之該等反對數輸出信 .號且產生該等網路輸出信號。 14·如申*青專利範園第13項之神經網路,其中至少有些該等 反對數輸出信號可由多於一個之該等加總器所加總。 5·浚申專利範圍第η項之神經網路,其中該神經網路係 包含於至少一積體電路。 16_ —種於神經網路中回應接收之多個網路輸入信號而產生 至少一網路輸出信號之方法,該方法包括下列步驟: ⑻運用该網路輸入信號於對數功能電路以產生相對應 之多個對數輸入; (b) 刀配每一該對數輸入於多個神經元; (c) 每一該等神經元運用一選通功能於每一該對數輪入 以產生相對應的多個選通輸入; (d) 每一該等神經元加總該等選通輸入以產生一加總; ⑹每一該等神經元把該加總與加權值相加以產生—神 經元輸出信號,並由此產生多個神經元輸出信號; ⑴運用每一該等神經元輸出信號於反對數功能電路以
    f #先闻讀背面之
    •訂 線 經濟部中央棣率局工消費合作社印装 A8 B8 C8 _______D8、申請S範圍 ^ 產生相對應之多個反對數輸出;及 ⑻加總該等反對數輸出以至少產生一該網路輸出信 號。 17.如申請專利範圍第16項之方法,其中該至少一網路輸出 信號係根據一多項式展開》 下列形式: 0C y=Zwi-i xi&i x2g2i...xngni i=l 其中y表示神經網路之輸出; 其中Wi_i表示第i個神經元之加權值,; 其中X!,X2,... Xn表示該神經網路之輸入; • $中gU,_ _ . gni表示供運用於該等輸入之第i個神經元之 選通函數;及 其中η為一正整數。 19_‘如申請專利範圍第18項之方法,其中各&係由Xi = fi(Zj)函 數所表示,其中Zj為任一變數’且其中指標i與』可以是 任何正整數。 20.如申請專利範圍第I8項之方法,其中該至少—網路輪出 信號係根、據該多項式展開之一截斷版本。 21_如申請專利範圍第17項之方法,其中該多項式展開具有 下列形式: η y = w〇 + Σ% Λ i=l η + Ew_ xi2 i=l -4 - 本紙浪尺度逍用中國國家梯準(CNS ) A4规格(210X297公釐) f鲭先s-tt背面之注
    —裳-- 項再填窝本頁) 、ΤΓ·_
    申請專利範圍 η η Σ Σ Wf2(i,j) X,iXj *=1 J=i+1 : I;Wf3(i) Xi3 i=l n nΣ Zwf4(ij) x:2xj jei+l Σ Σ^β(υ) xiXj2 »=1 j=i+l 經濟部中央椟牟局Λ工消費合作社印製 +Σ Σ Wk 1=1 j=i+l k=i+j+l 其中y表示神經網路之輸出; 其中wH表示第i個神經元之加權值; 其中xi,Xj, Xk表示該神經網路之輸入;. 其中η為一正整數;且 其中f1(i)至f6(U k)L為指標產主之函數。 22一如申請專利範圍第w項之方法,其中該多項式展開具有 下列形式: y=W〇+Wi X1+W2 X2+...+Wi Xi+...+Wn Xn +Wn+i Xi2+...+W2n Xn2 +w2n+l Xl X2+W2n+2 Xl X3 + ··· +W3n-1 Xl Xn+W3„ x2 X3+W3„+i X2 X4 + .-.W2n+⑷(n_i)/2.Xn-i Xn+... +WN.j X,g1N X2g2N ... X„gnN+... 其中y表示神經網路之輸出; 其中w〇,W丨,· · . WN_!表示加權值,N為一正整數,表, N個神經元,且Wi項通常表示與第i + 1個神 ’、第 加權值; 經元相關之 (請先聞讀背面之注Ϊ項再填窝本頁) 訂 本紙張尺度遒用中國國家棵準(CNS ) A4规格(210X297公釐) 申請專利範圍 合 作 社 其中 X!,X2,·..,&*+ 分 Xn表不该神經網路之輸入,η 數;且 ’ 跫 其中glN,· . .,gnN表示俾遂JJI、λ、、 之選通函數。料用於孩爭輸入之第Ν個神經元 23:”^^16項之方法,其中該至少-網路輸出 信號 --------_出 24如申請專利範圍第2 r , 夂万去,其中孩正交函數為正 孩,餘孩,指數’對數,傳 ^ 得利葉轉換,I劍多项式, 是如瓦特利函數或徑命其ώ 气 m基底函數之非線性函數。 25. 如申請專利範圍第10 月<万忐,其中孩至少一網路輸屮 #號係根據一多項式展朗芬x, 〆月八展開及正交函數之組合。 26. 如申請專利範園第16項之 甘+ .、、丄, 、 ^ < 万法,其中孩神經網路係包会 於至少一積體電路。 27. 如申請專利範園第16項之方法,其中該神經網路係“ 於一電腦程式中。 ° 28. -種於神經網路中回應多個網路輸入信號而產生至少— 網路輸出信號之方法,該方法包括下列步驟: ⑻運用該等網路輸入信號於對數功能以產生多個對 輸入; (b)分配每一該對數輸入於多個神經元電路; ⑹每一該等神經元電路運用一選通功能於每一該等對 數輸入以產生多個選通輸入; (d)每一該等神經元電路把該等選通輸入加在一起以產 '、生一加總;
    n I. I (請先聞讀背面之注ί項再填窝本頁> 訂 線· 本紙張尺度逋用中國II家棣準(CNS ) A4规格(210X297公釐) 經濟部中央揉準局負工消費合作社印装 '申請專利範圍 ()每該等神總瓜電路把該加總與加權值相加以產生 神心·疋輸出#號,並由此產生多個神經元輸出信 號; ⑴運用該等神經元輸出信號於反對數功能以產生多個 反對數輸出; 對數屬·出以產生第—個網路輸出信號;及 ⑹加總相對應該等多個神經元電路的第二群的梦等反 對數輸出4產生第二個網路輸出信號。· 29.如申咐專利範園第28項之方法,其中於步驟⑻及⑸中至 少有些該等神經元可能皆於該等多個神經元之該第一群 ,及第二群中。 30_如申請專利範圍第π項之方法 號係根據一多項式展開。 31.如申請專利範圍第30項之方法 下列形式.: OC Υ = xlgll x2g2i-xngm 其中y表示神經網路之輸出; 其中Wh表示第i個神經元之加權值; 其中X〗,X2,... χη表示該神經網路之輸入; 其中gli,…gni表..示_供運.用於〜該表.翁入之第i個神經元之 選通函數;及 其中η為一正整數。 其中該第一網路輸出信 其中該多項式展開具有 (请先s饋背面之注九 -- 系存填寫本ί 订' 本紙張尺度適用中國國家標準(CNS ) Α4说格(21〇Χ297公釐) ____*
    y m '申請專利範圍 32.,如申請專科範,爾第如 中各Xi係由函 •數所表不,其中Zj為任—變數,且其中指標 任何正整數。 疋 览如申請專利範圍第31项之方法,其中該第—_輪出信 %係根據該多項式展開之一截斷版本。 - 。 34.、如T 下列形式:, "^ η 〇 + Zwi xi Swfl(i) Xi i=l η n Σ Swf2(i,j) xixj i=l j=i+l Zw (靖先閑讀背面之注f項再填寫本頁} η nΣ Zwf4(ij) Xi2Xj j=i+l -訂 +Σ Xwf5(ij) xixj i=l j-i+1 η η n + Σ Σ SWf6(U,k) XiXjXk i=l j=i+l k=i+j+l 其中y表示神經網路之輸出; 其中表示第i個神經元之加權值; 其中Xi,Xj,xk表示該神經網路之輸入; 其中η為一正整數;且 其中fi(〇至%j,k)為指標產生之函數。 35.如申請專利範圍第30項之方法,丨中該多項式展開具有 下列形式: 、 y=W〇+W丨 XdWs X2+._.+Wi Xi+...+Wn Χη 線 經濟部中央標準局貝工消费合作社印氧 私紙張尺度遙用中國國家棵準(CNS ) Α4规格(210X297公釐)— • I— m HI A8 B8 C8
    申請專利範固 經濟部中央標率局貝工消費合作社印簟 41 -種於神經網路中回應—序列網路輸人信號而產生至少 ’凋路輸出號之方法,該方法包括下列步驟: ⑻連續運用孩等網路輸入信號於對數功能電路以產生 相對應序列之對數輸入信號; (b)分配4等對數輸入信號之一於多個吁經元電路; ⑹莓各別之選通 輸入信號以產生各別之選通輸入; (d)決疋是否該對數輸入信號相對應於一第一網路輸入 信號; (i)假如為疋,繼續進行步驟⑹,; 你)假如為—否,繼續進行步驟⑴; ⑹每一该等神.經元電路把農各別之選通輸入與各別之 加權值相加以產生一加總,然後回到步驟⑸; ⑴每一該等神經元電路累積該各別之選通輸入於該 總; ⑻決定是否所有之該序列對數輸入信號皆已分配; (i)假如為是,繼續進行步騾⑸; ⑼假如為否,回到步驟⑹; (h)對於每—該等神經元電路計算該加總以得一神經 輸出信號,並由此產生多個神經元輸出信號; ⑴運用該等多個神經元輪出信號於反對數功能電路 產生多個反對數輸出信號;及 請 λ 聞 面 之 注 I 寫裝· 套· 頁 訂 加 元 以 反 線! ⑴加總相對應該等多個神經元電路的第一群之該等 對數輸出信號以產生—第一網路輪出信號⑽;及
    A8 B8 C8 D8 申請專利範圍 (k)加總相斜應該等多㈣經元的第二群之該等反對數 輸出信號以產生-第二網路輪出信號⑽。 必如申請專利範園第41項之方法,其中於步驟⑴及(k)中至 少有些該等神經元可能皆於該等多個神經元之該第—群 及第二群中。 43. 如 t ____ 號係根據一多項式展開。 44. 如申請專利範圍第43項之方法,其中該多項式展開 下列形式: 0C y = ZWi-l Xlgli X2g2i---Xng„i i=l 其中y表示神經網路之輸出; 其中表示第丨個神經元之加權值; 其中Xi,X2,. _ _ xn表示該神經網路之輸入; 其中gn,...gni表示供運用於該等輸入之第i個神經 選通函數;及 ^ 其中11為* 正整數 45. 如申請專利範圍第44項之方法,其中夂#丄 分' Xi 1乐由 X; == f·(、 鯉濟部中夬#丰局工消費合作杜印*.
    訂 數所表示’其中3為任一變數’且其 j τ知標1與j可以I 任何正整數。 乂疋 46. 如申請專利範圍第料項之方法,其中今银 τβ第—網路輪 號係根據該多項式,展開之一截.斯版本。 1s 47. 如申請專利範圍第43項之方法,其中發客 下列形式:μ貝式展開具有 _ 11 _ 本紙張尺度逋用中國國家梂率(CNS ) Α4规格(210X297公釐) 經濟部中央標率局貝工消費合作社印装 A8 B8 C8 D8 六、申請專利範園 η y = w〇 + Zwi xi i=l n + Zwn(i) xi2 i=l η n +Σ Zwf2(ij) xixj i=l j=i+l n + ZWf3〇) Xi3 i=l .............—n-n-:-------- +Σ Σ^) xi2xj i=l j=i+l η n +Σ Zwf5〇j) xix/ i=l j=i+l η η n + Σ Σ Wk i=l j=i+l k=i+j+l 其中y表示神經網路之輸出; 其中表示第i個神經元之加權值; 其中Xi , Xj xk表示該神經網路之輸入; 其中η為一正整數;且 其中f1(i)至為指標產生之函數。 48.如申請專利範圍第43項之方法,其中該多項式展開具有 下列形式: y=w〇+Wi Xi+w2 x2+...+Wi Xi+...+wn xn +Wn+1 X12+...+W2n Xn2 +W2n+1 Xi X2+W2n+2 Xi X3 + ... +W3n_i Xj X„+W3„ X2 X3+W3n+l X2 X4 + ._.W2ii+(n)(n-l)/2 Xn-1 Xn+... +WN-i XigiN X2g2N …XngnN+-· 其中y表示神經網路之輸出; 其中W〇 , W!,…表示加權值,N為一正整數,表示第 -12 - 本纸張尺度逋用中鬮國家橾率(CNS ) A4洗格(210X297公釐) (請先W讀背面之注項再填寫本頁) ri. -訂
    申請專利範固
    N個神經兀,且%項通常表示與第i+i個神經元相關 加權值; … 其中X! ’ X2,...,Χη表示該神經網路之輸入,η為—正 數;且 ^ 其中giN,· · ·,gnN表示供運用於該等輸入之第Ν個神經 之連 —--------------------------二^ 士申請專利範園第41項之方法,其中該第_網路輪出 號係根據一正交函數。 5〇.如申請專利範圍第49項之方法,其中該正交函數為正 弦,餘弦,指數,對數,傳利葉轉換,藍劍多項式, 是如瓦特利函數或徑向基底函數之非線性函數。 5 51.如申請專利範圍第41項之方法,其中該第—網路輪 號係根據一多項式展開及正交函數之組合、 ° 说如申請專利H㈣41項之方法,其中該神經網路係 於至少一積體電路。 匕含 53.如申請專利範圍第41項之方法,其中該神_路係 於一電腦程式中。 L含 {請先聞讀背面之注t事項再填寫本頁) •訂. 線 經濟部中央樑準局WC工消费合作社印¾ -13 私紙張尺度逍用中國國家揉準(CNS ) A4規格(210X297公釐)
TW083111637A 1994-01-03 1994-12-13 Neural network utilizing logarithmic function and method of using same TW386198B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17660194A 1994-01-03 1994-01-03

Publications (1)

Publication Number Publication Date
TW386198B true TW386198B (en) 2000-04-01

Family

ID=22645042

Family Applications (1)

Application Number Title Priority Date Filing Date
TW083111637A TW386198B (en) 1994-01-03 1994-12-13 Neural network utilizing logarithmic function and method of using same

Country Status (7)

Country Link
US (1) US5778153A (zh)
EP (1) EP0661645A3 (zh)
JP (1) JPH07210534A (zh)
KR (1) KR950024083A (zh)
CA (1) CA2135857A1 (zh)
RU (2) RU94045263A (zh)
TW (1) TW386198B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501805B1 (en) 1999-05-14 2002-12-31 Harris Corporation Broadcast transmission system with single correction filter for correcting linear and non-linear distortion
RU2459254C2 (ru) * 2007-04-27 2012-08-20 Сименс Акциенгезелльшафт Способ компьютеризованного обучения одной или более нейронных сетей
US11244225B2 (en) * 2015-07-10 2022-02-08 Samsung Electronics Co., Ltd. Neural network processor configurable using macro instructions
CN106777829B (zh) * 2017-02-06 2019-04-12 深圳晶源信息技术有限公司 一种集成电路掩模设计的优化方法及计算机可读的存储介质
US10922608B2 (en) * 2017-03-08 2021-02-16 Arm Ltd Spiking neural network
US10929746B2 (en) * 2017-11-27 2021-02-23 Samsung Electronics Co., Ltd. Low-power hardware acceleration method and system for convolution neural network computation
US20210232899A1 (en) * 2018-02-06 2021-07-29 Tokyo Institute Of Technology Neural electronic circuit
DE102019208257A1 (de) * 2018-07-03 2020-01-09 Heidelberger Druckmaschinen Ag Druckqualitätsanalyse mit neuronalen Netzen
JP2020188386A (ja) * 2019-05-15 2020-11-19 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551663A (en) * 1965-04-15 1970-12-29 Gen Electric Multiplication apparatus in a data processing system with a variable length multiplier
US3748451A (en) * 1970-08-21 1973-07-24 Control Data Corp General purpose matrix processor with convolution capabilities
FR2212952A5 (zh) * 1972-12-29 1974-07-26 Cit Alcatel
US3967100A (en) * 1973-11-12 1976-06-29 Naonobu Shimomura Digital function generator utilizing cascade accumulation
US3922536A (en) * 1974-05-31 1975-11-25 Rca Corp Multionomial processor system
PL106470B1 (pl) * 1977-02-01 1979-12-31 Inst Maszyn Matematycznych Uklad cyfrowy do obliczania wartosci zlozonych wyrazen arytmetycznych
NL192637C (nl) * 1984-02-27 1997-11-04 Nippon Telegraph & Telephone Stelselprocessor.
US4626825A (en) * 1985-07-02 1986-12-02 Vlsi Technology, Inc. Logarithmic conversion apparatus
US5109524A (en) * 1985-07-02 1992-04-28 Vlsi Technology, Inc. Digital processor with a four part data register for storing data before and after data conversion and data calculations
GB8619452D0 (en) * 1986-08-08 1986-12-17 Dobson V G Signal generating & processing
DE3882487T2 (de) * 1987-05-14 1993-11-04 Fujitsu Ltd Vektorprozessor zur schnellen verarbeitung von rekursiven gleichungen.
US5337266A (en) * 1987-12-21 1994-08-09 Arnold Mark G Method and apparatus for fast logarithmic addition and subtraction
US4849925A (en) * 1988-01-15 1989-07-18 The United States Of America As Represented By The Secretary Of The Navy Maximum entropy deconvolver circuit based on neural net principles
FI894021A (fi) * 1988-08-31 1990-03-01 Fujitsu Ltd Neuronstruktur.
US5073867A (en) * 1989-06-12 1991-12-17 Westinghouse Electric Corp. Digital neural network processing elements
US5359551A (en) * 1989-06-14 1994-10-25 Log Point Technologies, Inc. High speed logarithmic function generating apparatus
US5113367A (en) * 1989-07-03 1992-05-12 The United States Of America As Represented By The Secretary Of The Navy Cross entropy deconvolver circuit adaptable to changing convolution functions
US5042001A (en) * 1989-10-02 1991-08-20 Cyrix Corporation Method and apparatus for performing mathematical functions using polynomial approximation and a rectangular aspect ratio multiplier
US5068816A (en) * 1990-02-16 1991-11-26 Noetzel Andrew S Interplating memory function evaluation
US5343254A (en) * 1991-04-25 1994-08-30 Olympus Optical Co., Ltd. Image signal processing device capable of suppressing nonuniformity of illumination
JP3003276B2 (ja) * 1991-06-19 2000-01-24 松下電器産業株式会社 信号解析装置
US5450522A (en) * 1991-08-19 1995-09-12 U S West Advanced Technologies, Inc. Auditory model for parametrization of speech
US5331582A (en) * 1991-12-16 1994-07-19 Pioneer Electronic Corporation Digital signal processor using a coefficient value corrected according to the shift of input data
US5365465A (en) * 1991-12-26 1994-11-15 Texas Instruments Incorporated Floating point to logarithm converter
US5278945A (en) * 1992-01-10 1994-01-11 American Neuralogical, Inc. Neural processor apparatus
EP0628183B1 (de) * 1992-02-29 1998-07-15 Bernd HÖFFLINGER Schaltungsanordnung zum digitalen multiplizieren von integer-zahlen
JPH05342191A (ja) * 1992-06-08 1993-12-24 Mitsubishi Electric Corp 経済時系列データ予測及び解析システム
US5517667A (en) * 1993-06-14 1996-05-14 Motorola, Inc. Neural network that does not require repetitive training
US5553012A (en) * 1995-03-10 1996-09-03 Motorola, Inc. Exponentiation circuit utilizing shift means and method of using same

Also Published As

Publication number Publication date
EP0661645A2 (en) 1995-07-05
CA2135857A1 (en) 1995-07-04
JPH07210534A (ja) 1995-08-11
KR950024083A (ko) 1995-08-21
RU94045146A (ru) 1996-10-20
EP0661645A3 (en) 1995-09-20
US5778153A (en) 1998-07-07
RU94045263A (ru) 1996-10-20

Similar Documents

Publication Publication Date Title
Poornima et al. Implementation of multiplier using Vedic algorithm
Newman A measure of betweenness centrality based on random walks
McKenzie et al. Distributions of cherries for two models of trees
Aktuğlu et al. q-Cesáro matrix and q-statistical convergence
TW386198B (en) Neural network utilizing logarithmic function and method of using same
Bouguezel et al. A new radix-2/8 FFT algorithm for length-q/spl times/2/sup m/DFTs
Du et al. A New Theoretical Estimate for the Convergence Rate of the Maximal Weighted Residual Kaczmarz Algorithm.
CN113470684B (zh) 音频降噪方法、装置、设备及存储介质
Dong et al. CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy
Daykin et al. Reconstructing a string from its Lyndon arrays
CN106682732B (zh) 一种应用于神经网络的高斯误差函数电路
Gnedin et al. Coherent permutations with descent statistic and the boundary problem for the graph of zigzag diagrams
Yuen et al. Option pricing in a jump-diffusion model with regime switching
Henderson Inverse of a matrix of relationships due to sires and maternal grandsires in an inbred population
Qi On the Kuznetsov trace formula for PGL2pCq
Fang Remarks on a generalized q-difference equation
Andrews A high-speed algorithm for the computer generation of Fourier transforms
CN114862285A (zh) 生态流量的评价方法和装置、电子设备和存储介质
CN110647312B (zh) 一种基于电力系统的随机数产生方法
Zhang et al. Quadratic finite element and preconditioning for options pricing in the SVCJ model
Sethi Some Further Aspects of Rates of Growth Computations
MAYER FINAL REPORT ON THE STAND-ALONE PROJECT P 26008-N25,“TOWERS OF p-CLASS FIELDS OVER ALGEBRAIC NUMBER FIELDS”
O’Brien et al. Alternative transformations and duality of linear fractional programming
Mayer Finite non-metabelian Schur sigma-Galois groups of class field towers
Han et al. Multivariate chaotic time series prediction based on radial basis function neural network

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent