TW309675B - Method and apparatus for complex fuzzy signal processing - Google Patents

Method and apparatus for complex fuzzy signal processing Download PDF

Info

Publication number
TW309675B
TW309675B TW85116043A TW85116043A TW309675B TW 309675 B TW309675 B TW 309675B TW 85116043 A TW85116043 A TW 85116043A TW 85116043 A TW85116043 A TW 85116043A TW 309675 B TW309675 B TW 309675B
Authority
TW
Taiwan
Prior art keywords
signal
output
inference
decision
parameter
Prior art date
Application number
TW85116043A
Other languages
Chinese (zh)
Inventor
Yiing Lii
Yau-Donq Jang
Original Assignee
Yiing Lii
Yau-Donq Jang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yiing Lii, Yau-Donq Jang filed Critical Yiing Lii
Priority to TW85116043A priority Critical patent/TW309675B/en
Application granted granted Critical
Publication of TW309675B publication Critical patent/TW309675B/en

Links

Abstract

A method for complex fuzzy signal processing includes the following steps:1) initialization mode: setting all the adjustable parameters to zero;2) training mode: utilizing the CANFIS algorithm to adjust the forward and the backward parameters according to the pre-stored training reference signal. When the error converges, the mode goes to the decision guiding mode; 3) decision guiding mode: obtaining the inference output signal from fuzzy inference and quantilizing it to obtain the decision output signal. Utilize the decision signal as reference signal and continuing to adjust the forward and the backward parameters by CANFIS algorithm. The CANFIS algorithm includes two steps: the fuzzy inference step and the parameter adjustment mode.

Description

309675 A7 B7 五、發明説明(/ ) 經濟部中央標準局員工消費合作社印製 發明領域 本發明係關於複數模糊訊號處理方法及其裝置,特別是以模糊推緣 方式對複數型態之訊號實現可適性非線性之訊號處理。其主要功能是 在使用複數訊號之系統中--如聲納、雷達、通訊--執行非線性濾波 (filtering)、估測(estimation)、偵察(detection)等功能,降低非線性支真、 噪音與干擾,提高訊號品質。 習知技藝說明 既有模糊技術:實數型態,非線性 近年來模糊領域之研究及應用非常興盛。家電用品(尤以曰製為 然)如洗衣機、冷氣等已有模糊智慧控制功能。學術界迹已提忠可隨 系.統特_怪破-鲞矣4于舉.盈.4周-整的性模糊系統,例如Jang的可適性 模糊網.路推 1^.系(參見 1993 年 5 月 IEEE Transaction on System, Men and Cybernetics,665至685頁)。這些系統可實現非線性可適性控 制,動態.系統鑑別,可適性訊號處理(例如等化)等功能;然而所處理 的均為在聲納、雷達、通訊系統中(類比或數位而 採用 quadrature amplitude modulation QAM 調變者),訊號是遂龜垄 1因此既有的模糊方法未能在這些系蘇中執ft訊號處理功能„ 既有可適性訊號處理技術:複數,線性 現有可適性訊號處理方法多將訊號依線性組合方式合併,再調整 其權重。訊號型態為實數或複數均可。主要的權重調整法則有最小 平均方差法(least mean square, LMS)與遞迴式最小方差法(recursive least square, RLS),RLS是卡i曼濾波方法(^丨《1&11£^1')之一特例。其應 準 標 家 國 一國一中 用 一適 X 尺 |張 紙 Μ S Ν I釐 -公 7 9 2 (請先閱讀背面之注意事項再填寫本頁) 、τ 809675 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(2 ) 用有雜訊消除(noisecancellation),等化(adaptiveequalization),陣列天線 之讯號合併等等。以陣列天線之訊號合併為例(複數訊號),傳統稱 為波束形成;調整各天線接收訊號之權重可調整不同方向入射訊號之 增益,因此可視為一種空間濾波。若調整到使干擾入射方向之增益較 小,而欲接收訊號方向之增益較大,則可抑制干擾,提高訊號品質。 以線性方式合併處理訊號之效果,在訊號遭受非線性失真時葬不理 想。英國為期二年的智慧型天線計畫結案報告(參見Barret and Arnold, 1994 年 8 月 Electronics and Communication Engineering Journal 203 至 214頁)即建議非線性訊號合併(非線性波束形成)為未來重要研究 課題,此亦為本發明創作之動機之一。本發明所欲解決的即是在訊號環 境或傳輸、接收裝置不理想,可能有非線性失真時訊號處理性能衰退之 問題。 發明概述 為解決上述問題而創作之本發明可以非線性模糊推論方式處理複 數驾號。 本發明之一目的係提供一種複數糢糊訊號處理方法,以雄線性之振 糊推論方法合併複數型態之訊號,並以參數調整法實現可適性訊號處理 之學習功能,包括初始模式,訓練模式及決策引導模式;初始模式先將 所有可調參數設定為零’訓練模式使用預先儲存的訓練資料作為訓練參 考訊號,以CANFIS中之參數調整法來調整前、後項參數,降低訊號處 理誤差’當參考訊號用盡或誤差收欽時,切換至決策引導模式,以 CANFIS中之模糊推論方法合併複數型態之輸入訊號得到輸出訊號,再 將輸出訊號量化得決策訊號,並以決策訊號做為決策參考訊號繼續依 CANHS中之參數調整法調整前、後項參數。pANFISj宗磾氺句今下沭 模糊推論步驟及參數調整步驟,參見第1圖(3);模糊推論步驟又包括 本紙張尺度適用中國國家樣準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -5 A7 B7 經濟部中央樣準局員工消费合作社印製 五、發明説明(3 模糊化步驟,推論步驟,與組合步驟,參多—第」圖(1>);模糊化步驟首 先針對個別輸入訊號取得對應之歸屬函數值,再取個別歸屬函數之適當 組合的乘積,再將該取得之乘積正規化,而得正規化激發強度,該歸屬 函數為高斯函數;推論步驟以輸入訊號找出對應模糊規則之輸出函數 值,該輸出函數含有可調之後項參數,再將該輸出函數值舆該正規化激 發強度相乘而取得各規則被激發之輸出:組合步驟將該推論步驟中所得 之各規則被激發之輸出相加’而產生輸出;該參數調整步驟包括前項參 數調整步驟,以隨機梯度法調整前項參數;後項參數調整步驟,以最小 遞迴方差法調整後項參數。 本發明之又一目的係提供一種複麵辑糊‘聲惠理方法,以非硃悻之 模糊推論方法合併複數型態孓tfL號,並以參數調整法實現可通性訊號處 理之學習功能,包括初始模式,訓練模式及決策引導模式;初始模式先 將所有可调參數设定為零’訓練模式使用預先儲存的訓練資料作為訓練 參考訊號,以CFBFN中之參數調整步驟來調整前、後項參數,降低訊 號處理誤差,當參考訊號用盡或誤差收歛時,切換至決策引導模式,以 CFBFN中之模糊推論方法合併複數型態之輸入訊號得到輸出訊號再 將輸出訊號量化得決策訊號,並以決策訊號做為決策參考訊號繼續依 CFBFN中之參數調整步驟調整前、後項參數。CFBFN-溪繹法息含下述 模糊搜输愛曼苎查整碉蓋巡a);模糊推論步驟又包括 模糊化步驟,推論步驟,與組合步驟,參見第2圖(1));;模糊化步驟 首先針對整個輸入訊號向量取得對應之高維度歸屬函數值,再將該歸屬 函數值正規化,而得正規化激發強度’該歸屬函數為高斯函數;推論步 驟以輸入訊號找出對應模糊規則之輸出函數值,該輸出函數含有可調之 後項參數’再將該輸出函數值與該正規化激發強度相乘而取得各規則被 激發之輸出;組合步驟將該推論步驟中所得之各規則被激發之輸出相 加’而產生輸出;該參數調整步驟包括前項參數調整步驟,以隨機梯度 法調整前項參數;後項參數調整步驟,以最小遞迴方差法調整後項參 本紙張尺度適用中國國家標準(CNS ) Μ規格(210X297公讀:) ~ '~'一 II 11 裝— — II 訂 1! 線 (請先閲讀背面之注意事項再填寫本頁) 309675 五、發明説明(夕 數 根據本發明之又—目的係提供—種棋糊訊號處理裝置,可以以非線 性訊號模糊推論方式處理峨,參見第3圖;包括輸人機構,用以輸入 «,運算處理觸’先將所村赃參數設定為零職行爾模式、 決策引導模式運# ’依CANFIS演繹法以模糊推論方法合併複數型態之 訊號’並以參數雜法實現_紐項參數之運算;記_存機構:儲 存該運算處理機騎狀爾f料;輸出機構,職運算處理機構所取 得之該最後輸出訊號輸出。 根據本發蚊XK魏供—麵糊峨歧n収以非線 性訊號模糊推論方式處理喊,包括輸人機構L人訊號;運算處 理機構’先將财可雜參數設定為零,再執行麟赋、決策引導模 式運算’依CTBFN鱗法以難推論妓合併·雜找號,並以 參數調整法實現罐祕項參數之運算,·域儲雜構,儲存該運算處 理機構所社麟資料;輸出㈣,靠運算處理麟所取得之該最後 輸出訊號輸出。 » In _ I^— (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部中央標準局員工消費合作社印製 實施例詳述 •—. — 本發明之上述及其它特點和優點,將可從參考附圖之下 清楚呈現。 第一實施例(以CANFIS演鐸法處致訊號) 本實施例係連績地以CANHS進行可適性訊號處理,可始 &_|_細齡考錢,以dNFis 中之參數調整法來調整前、後項參數,將可調參數調至較佳值 丧I田找;Μ · 各奋》缺由食Α祕¥ .丨L . 1 - ** ?擒至决模式,以一 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29Ti^y 線 經濟部中央標隼局員工消费合作社印製 A7 B7 五、發明説明(r)309675 A7 B7 V. Description of the invention (/) Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy Field of the Invention The present invention relates to a method and a device for processing complex fuzzy signals, in particular, it is possible to realize complex signals in a fuzzy way Adaptive nonlinear signal processing. Its main function is to perform nonlinear filtering, estimation, detection and other functions in a system using complex signals-such as sonar, radar, and communication-to reduce nonlinear support and noise And interference, improve signal quality. Description of conventional skills Existing fuzzy technology: real type, non-linear In recent years, research and application in the field of fuzzy are very prosperous. Household appliances (especially made in Japan) such as washing machines and air conditioners already have fuzzy intelligent control functions. Academic circles have been loyal and can follow the system. Tong Te _ strange broken-韞 矣 4 Yu Ju. Ying. 4 weeks-the whole sexual fuzzy system, such as Jang ’s adaptive fuzzy network. Lutui 1 ^. (See 1993 May, IEEE Transaction on System, Men and Cybernetics, pages 665 to 685). These systems can realize nonlinear adaptive control, dynamic system identification, adaptive signal processing (such as equalization) and other functions; however, all the processing is in sonar, radar, communication systems (analog or digital and quadrature amplitude modulation QAM modulator), the signal is Suiguilong1, so the existing blur method fails to perform the ft signal processing function in these systems. The existing adaptive signal processing technology: complex, linear, there are many existing adaptive signal processing methods. The signals are combined in a linear combination, and then their weights are adjusted. The signal type can be real or complex. The main weight adjustment rules are least mean square (LMS) and recursive least square. , RLS), RLS is a special case of the Kalman filtering method (^ 丨 《1 & 11 £ ^ 1 '). It should be applied to a bidder ’s country, a country, a middle school, and a suitable X ruler | sheet Μ S Ν I -Public 7 9 2 (please read the precautions on the back before filling in this page), τ 809675 A7 B7 Printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economy V. Invention Instructions (2) Use noise elimination (no isecancellation), equalization (adaptiveequalization), signal combining of array antennas, etc. Taking the signal combining of array antennas as an example (complex signals), it is traditionally called beamforming; adjusting the weight of signals received by each antenna can adjust the incident signal in different directions The gain can be regarded as a kind of spatial filtering. If it is adjusted to make the gain in the direction of the interference smaller, and the gain in the direction of the received signal is larger, the interference can be suppressed and the signal quality can be improved. The effect of processing the signals in a linear manner, It is not ideal when the signal suffers from nonlinear distortion. The British two-year smart antenna project closing report (see Barret and Arnold, Electronics and Communication Engineering Journal, August 1994, pages 203 to 214) suggests that the nonlinear signal merger ( Non-linear beamforming) is an important research topic in the future, which is also one of the motivations for the creation of the present invention. What the present invention intends to solve is the signal processing performance when the signal environment or the transmission and reception devices are not ideal, and there may be nonlinear distortion The problem of recession. Summary of the invention to solve the above problems The present invention can process complex driving numbers in a non-linear fuzzy inference way. One object of the present invention is to provide a method for processing complex fuzzy signals, which combines the signals of the complex types with a linearly linear vibrating inference method, and can be realized by a parameter adjustment method. The learning function of adaptive signal processing, including initial mode, training mode and decision guidance mode; the initial mode first sets all adjustable parameters to zero 'training mode uses pre-stored training data as training reference signals, using the parameter adjustment method in CANFIS To adjust the parameters before and after to reduce the signal processing error. When the reference signal is exhausted or the error is received, switch to the decision guidance mode. Use the fuzzy inference method in CANFIS to combine the input signals of the complex type to obtain the output signal. The output signal is quantized to obtain the decision signal, and the decision signal is used as the decision reference signal to continue to adjust the front and rear parameters according to the parameter adjustment method in CANHS. pANFISj 宗 簾 氺 句 Today's next fuzzy inference steps and parameter adjustment steps, see Figure 1 (3); the fuzzy inference steps also include the paper size applicable to the Chinese National Standard (CNS) A4 specifications (210X297 mm) (please first Read the precautions on the back and fill in this page) -5 A7 B7 Printed by the Central Provincial Bureau of the Ministry of Economic Affairs Employee Consumer Cooperative V. Description of the invention (3 fuzzy steps, inference steps, and combination steps, see more-Figure 1) (1 >); The fuzzification step first obtains the corresponding attribution function value for individual input signals, then takes the product of the appropriate combination of individual attribution functions, and then normalizes the obtained product to obtain the normalized excitation intensity, the attribution function is Gaussian Function; the inference step uses the input signal to find the output function value of the corresponding fuzzy rule. The output function contains the adjustable post-parameter, and then the output function value and the normalized excitation intensity are multiplied to obtain the output of each rule being excited: The combination step adds the excited outputs of the rules obtained in the inference step to generate an output; the parameter adjustment step includes the previous parameter adjustment step Stochastic gradient method is used to adjust the antecedent parameter; the latter parameter adjustment step is to adjust the latter parameter by the minimum recursive variance method. Another object of the present invention is to provide a complex surface editing 'sound benefit method, based on non-Zhu Di's fuzzy inference Methods Combine the complex type tfL numbers, and use the parameter adjustment method to realize the learning function of the passability signal processing, including the initial mode, training mode and decision guidance mode; the initial mode first sets all adjustable parameters to zero 'training mode Use the pre-stored training data as the training reference signal, and use the parameter adjustment steps in CFBFN to adjust the front and back parameters to reduce the signal processing error. When the reference signal is exhausted or the error converges, switch to the decision guidance mode. The fuzzy inference method combines the input signal of the complex type to obtain the output signal, and then quantizes the output signal to obtain the decision signal, and uses the decision signal as the decision reference signal to continue to adjust the parameters before and after the parameter adjustment step in CFBFN. CFBFN-brook The deduction method contains the following fuzzy search for Aiman and the inspection of the cover. A); the steps of fuzzy inference include fuzzy Steps, inference steps, and combination steps, see Figure 2 (1)); The fuzzification step first obtains the corresponding high-dimensional attribution function value for the entire input signal vector, and then normalizes the attribution function value, which is normalized Excitation intensity 'The attribution function is a Gaussian function; the inference step uses the input signal to find the output function value of the corresponding fuzzy rule, and the output function contains an adjustable post-term parameter' and then multiplies the output function value by the normalized excitation intensity and Obtain the excited output of each rule; the combination step adds the excited output of each rule obtained in the inference step to generate an output; the parameter adjustment step includes the previous parameter adjustment step, and the previous parameter is adjusted by the stochastic gradient method; the latter Parameter adjustment steps, adjusted by the minimum recursive variance method. The paper size of this item is applicable to the Chinese National Standard (CNS) Μ specification (210X297 public reading :) ~ '~' II II Pack — II order 1! Line (please first Read the precautions on the back and fill in this page) 309675 V. Description of the invention (Xishu according to the invention-the purpose is to provide-a kind of chess signal processing equipment , Can be processed by fuzzy inference method of nonlinear signal, see Figure 3; including input mechanism for input «, operation processing touch ', first set the parameters of the village to the vocational mode, decision guide mode operation # 'Using the CANFIS deduction method to combine the signals of the plural types by fuzzy inference method' and implement the calculation of the new item parameters by the parameter hybrid method; remember the storage mechanism: store the calculation processor to ride the data; the output mechanism, the operational calculation The final output signal obtained by the processing mechanism is output. According to the present mosquito XK Wei supply-batter Eqin received a non-linear signal fuzzy inference method to process the call, including the signal of the input agency L people; the calculation processing agency's first set the financial miscellaneous parameters to zero, and then execute the Lin Fu, Decision-guided mode operation 'based on the CTBFN scale method, it is difficult to infer the prostitute merger, miscellaneous search for numbers, and the parameter adjustment method to realize the calculation of the tank secret item parameters. The domain storage complex structure stores the social data of the operation processing agency; output (iv) , The final output signal obtained by arithmetic processing is output. »In _ I ^ — (please read the precautions on the back before filling in this page) Order the detailed description of the printed example of the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs • —. — The above and other features and advantages of the present invention will be available It is clearly presented from below with reference to the drawings. The first embodiment (signaling with CANFIS Acting Method) This embodiment is to successively use CANHS for adaptive signal processing, which can be started by & _ | _ fine-grained examination, adjusted by the parameter adjustment method in dNFis Before and after the parameters, adjust the adjustable parameters to a better value to find the field; Μ · Each Fen "lacks from the food A secret ¥. 丨 L. 1-**? To the ultimate mode, in a paper size Applicable to the Chinese National Standard (CNS) A4 specification (210X29Ti ^ y line A7 B7 printed by the Employee Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economy V. Description of the invention (r)

CANFIS中之横機振論立法ϋ複龙:SL態之輪入訊^|^推論楹jUjfL 號,再將輸出訊.¾置弗彳f苎赛整^藏.並以決f轉出珥赛敗為沬策參 考訊號依CANFIS中之參數調整法繼續調整前、後項參數,R適應名統 特性之變動,降_低訊號處理誤差。 根據本發明之第一實施例,CANF巧演繹法可分成择物推生與參 數週.整一步驟—如第,1胤⑻所示’模糊推論步燦又可分成模糊北^推 論、4組合三歩鄉,如第1圖(b)所示。構糊推論步驟會根據輸入訊號 ··'* ..:. ··........ 求出輸出_訊號;參數調整步驟會以可適性法則調聱辑糊推論步驟中之 可調參數,以減少誤差,並達到学習I力能。 在模糊推論步驟,若將複數型應輸入訊號$視為一《乘 —................._________二 /之複數內量,輸出視為一複數少,則ί與y之輸入輸出關係 可由一組模糊規則描述如下: 若輸入无在區域/則輸出少為/,(无),j_=〇^..w .......—.....^—τ —»—............... 其原理為先將輸入Ϊ所處之空間以輸入模糊售柔性割全為服區並訂出 在每一區所對應之輸出少=乂(3?),舉例而言,乂(f) = #,«i + c,,其中 访,為規則i輸出函數(/,(无))之權重向量,c,為規則,·輸出函數(/((幻) 之常數。當實際輸入f出現時,由輸4¾.塞踵屋鱼%^ 度,再將各區對應輸出依這些程度加權組和(weighted sum),貫現内插(interp〇iati〇n)。舉例而言无屬於第一區之程度為ο.〗, 屬於第二區程度為〇.7,(马(3〇 = 0.3, 4(元)=〇.7),則輸出 产03/ι⑺+ 0.7Λ⑺。總結來看,具有個規則的模糊推論方法輸 入輸出關係卞表為 y"'Ll=yMx)f,(x).......................................⑴ 在此^為无之非線性函數。m為規則數目。 本紙張尺度_ t S ϋ 格(21GX 297公董) :---------装------訂-------線 (請先閱讀背面之注意事項再填寫本頁) 309675 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(G) ⑴式中及⑺為第/個正規化輸入模榭歸屬函數其數值為^繾 屬於第ί_區乏程度,亦被稱為規則,·之必規化激發强度, '⑺=1。常見歸[函!足規化之高斯函數 等多種選擇,可視使用者之需要而選定。兵⑺中可調參數稱為前項參 數,例如高斯函數之中心與標準差。前項參數會影響輸入空間被劃分 的形式(規則數W則是劃分區域的個數)^ /,(无)為輸入f在第/區(第/個規則)所對應之輸出,常見型態為 常數,/,(无)=c,,線性函數乂⑺=#,+c,等等。其中_為”乘7之 複數向量,C,為一複數常數。/(幻中之可調參數稱為後項參數包含 诉i與C,.。 總之’模糊推論步驟之進行可分為模檀及組合三步驟。 模棚化.目的是產生正歸化激發強度 忍(无),…,瓦(f)。 推請:目的是產生各規則..被輿.發之輸.出 Μχ)Α(χ),···,Μχ)Μχ) 组合:目的是產生|終輪出 當模糊推論步驟完成後,再進行參數詷整步驟。該步驟係依據一 參考訊號r與輸出少之差異,以可適性法則調整前項及後項可調參數。 參考訊號乃理想之輸出少值,其來源可能是事先儲存之訓練資料 (trainingdata)或由推論結果推測求出之決策值(decisi〇n)。由於兵⑺一 般為#項參數之非婊性H鲞數遇整3缝^主蜂色逆軎法(stoch^stic gradient,SQ)iUt他並旅性參故週整法,如基ja逮甚法。本實施例係使 用隨機梯度色(§Q)。由於/,(¾為線性函數,參數調整可用遞迴最小方 本紙張尺度適财關家標準(CNS ) A规iM 21GX 297公釐) ' I ϋ I I I 裝 I I I 訂 I I 線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 Α7 Β7 五、發明説明(夕) 差法(RLS)或其他線性參數調整法如共軛梯度法(Conjugate Gradient Method, CGM),最小均方差法(Least Mean Square Method, LMS)等。本 實施例係使用遞迴最小方差法(RLS )。本實施例所使用之參數調整 法均具有處理複數訊號及參數之能力。 將於下述中以舉例之方式,實質地說明根據本實施例之各處理步 驟 第.ί 摟本登i的|_这色m酿理立產故^ 圓」«處理雄流程。如第1圖⑻⑼所示,係代表在某相 同時間之複數型態輸入訊號。為方便說明,第1圖中僅顯示三個輸入訊 號Χ,,Χ2,Χ3,事實上輸入訊號數可為任意數目,並非僅限於3。 如第1 0(b)所示,根據本實施例,模糊推論步驟可分為五層。前 三層執行模糊化,第四層執行推論,第五層執行推論。輸入訊號經由此 五層之處理後,所得之輸出為^,可表為(1)式,亦即 關於各層之功能和處理程序以及取得輸出y之過程,將 於下詳述。 第二;i」對複數輸入訊號a,心,心,分別找出對應之模糊越屬居數 值。舉例而言,對每個輸入訂定四僻高斯棋想辞屬函數恕下時, 〜(ΉχΡ(-|\-〜||7β),* = 1,2,3,/ = 1,··,4. 則本層所取得 A1 (Α ),气(A ), Wl3 (X, ),/η|4 (X, ),w2l (χ2 ),m22 ), (ι2 ),w24 (χ2 ),% (尤3 ),% (Χι ),% (心),% (a ) 等十二個歸H數值。其中稱為前項參數,根據本實施 , M . . ... ___ ,, I'J、 ;調整法將詳述。一 ~ 第二層:將該第一層所取得之歸屬函數值執行乘法運算,而取得 應之乘積如下: 本紙張尺度適用中國國家榡準(⑽)八4規格(训χ297公董) I----------1------、玎---------線 (請先閲讀背面之注意事項再填寫本頁) A7 B7 五、發明説明(5 = WllJXl)m2] (-^2 )^32(-^3) μ,{χ) = ηιλλ{χλ )m2x{x2)m^x^ 其中 ^ = 0,,x2,x3) A (f) = mu (χι )w21 ( jc , )mJ4 (x\) A(^) = w11(x,)w22(x2)W3i(X3), 凡4 (无)=W14(XI )切24 (h )0¾ (丨3 ) 將該第二層取.得之幕多乘.積執.&正規化運算 (normalization)’而取得每一規則之正規化激發強度_⑺如下: 兵⑴=⑺/Σ:⑺ i=l,...,64 5玄第層、第一層、及第二層係執行模糊化(Fuzzification)。 第四層:找出各規則之輸出函數值乂(无)=g^ + c,,並 與該第三層取得之正規化激發垮度及(幻相乘而得各規則被 激發之輸出及(幻/'(幻,i = l,·.64。此步驟又稱為推論 (Inference)。其中圮,c;稱為後項參數,使用遞迴最小方差法 (RLS)調整。 第五層.將推論所得各規則被激發之輸出相加,而取得 最後之總輸出少=)/(f)。此步驟又稱為組合 (Composition) ° 經濟部中央標準局員工消費合作社印製 元成模糊推論步驟後,接下來進行參教辨整龙驟。如第 1__所示,該步驟係依據參考訊號r與輸出y之差異,採 用機梯度法(SG)調整前項參數(高斯函數之中心與標準差) 並以遞迴最小方差法(RLS)調整後項參數(輸出函數之權重 #'與常數項ς )。後項參數調整方法可依即有之複數方 法進行。根據本實施例之前項參數在複數型態時調整方法 (SG )如下: 本紙張尺度適用中國困家裙準(CNS ) A4規格(21〇Χ297公釐) 309675五、發明説明(,The Knitting Machine Vibration Theory Legislation in CANFIS ϋ Fulong: SL State's Round-up Information ^ | ^ Infer the jUjfL number, and then output the information. ¾ Set the Fushi match to hide it. Failed to make the reference signal continue to adjust the front and back parameters according to the parameter adjustment method in CANFIS, R adapts to changes in the characteristics of the name system, and reduces the signal processing error. According to the first embodiment of the present invention, the CANF clever deduction method can be divided into object selection and parameter week. The whole step-as shown in the first, 1 胤 ⑻ 'fuzzy inference step can also be divided into fuzzy north ^ inference, 4 combinations Sanhe Township, as shown in Figure 1 (b). The step of constructing the inference will be based on the input signal ·· '* ..: ··· ........ The output_signal will be obtained; the parameter adjustment step will be adjusted according to the law of adaptability. Parameters to reduce errors and achieve learning capabilities. In the fuzzy inference step, if the input signal $ of complex type should be regarded as a "multiply -...................._____ two / complex internal quantity, the output is regarded as a complex number If there is less, the relationship between input and output of ί and y can be described by a set of fuzzy rules as follows: If the input is not in the area / then the output is less /, (none), j_ = 〇 ^ .. w .......-. .... ^ — τ — »—............... The principle is to first select the space where the input Ϊ is located as the input fuzzy sales flexible cut and serve as the service area and book it in The output corresponding to each area is less = 乂 (3?), For example, 乂 (f) = #, «i + c, where the visit is the weight vector of the rule i output function (/, (none)) , C, is the rule, the constant of the output function (/ ((magic). When the actual input f appears, input 4¾. 踵 屋 屋% ^ degrees, and then the corresponding output of each area is weighted according to these degrees. weighted sum), interpolated (interp〇iati〇n). For example, the degree of not belonging to the first zone is ο.〗, the degree of belonging to the second zone is 0.7, (Ma (3〇 = 0.3, 4 (元) = 〇.7), the output output is 03 / ι⑺ + 0.7Λ⑺. To sum up, the fuzzy inference method with a regular input and output relationship Bian table is y " 'Ll = yMx) f, (x) ............................................. . ⑴ Here is a non-linear function. M is the number of rules. The size of the paper _ t S ϋ grid (21GX 297 Gongdong): --------- installed ------ order- ------ Line (please read the precautions on the back before filling in this page) 309675 A7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Invention Instructions (G) ⑴In the formula and ⑺ is the first formal The value of the attribution function of the normalized input module is ^ 绱, which is the degree of depletion in the first __ area, also known as the rule, the normalized excitation intensity, '⑺ = 1. Commonly attributed to [letter! Fully regulated Gaussian function, etc. A variety of choices can be selected according to the needs of the user. The adjustable parameters in Bing⑺ are called antecedent parameters, such as the center and standard deviation of the Gaussian function. The antecedent parameters will affect the way the input space is divided (the number of rules W is divided into regions) Number) ^ /, (none) is the output corresponding to the input f in the / area (the / rule), the common type is a constant, /, (none) = c, linear function ⑺ = #, + c, etc. where _ is a complex number vector multiplied by 7, and C is a complex number constant. The latter parameters include v. I and C. In short, the process of fuzzy inference can be divided into three steps: the sandalwood and the combination. The purpose of the shed is to generate positively normalized excitation intensity (none), ..., watt (f ). Referral: The purpose is to generate the rules .. The output is sent out by the public. Μχ) Α (χ), ..., Μχ) Μχ) Combination: The purpose is to produce | final round out when the fuzzy inference step is completed , Then proceed to the parameter adjustment step. This step is based on the difference between a reference signal r and the output is small, and the adjustable parameters of the previous term and the latter term are adjusted by the law of adaptability. The reference signal is an ideal output with a small value, and its source may be training data (training data) stored in advance or a decision value (decisi〇n) presumed from the inference results. Since Bing ⑺ is generally # item parameter, the non-witch H-number meets the whole 3 stitches ^ the main bee color inverse gradient method (stoch ^ stic gradient, SQ) iUt he and the travel method, so the weekly adjustment method, such as the base ja law. This embodiment uses random gradient colors (§Q). Since /, (¾ is a linear function, the parameter adjustment can be used to return the smallest square paper size suitable for the financial standard (CNS) A regulation iM 21GX 297 mm) 'I ϋ III Pack III binding II line (please read the back side first (Notes to fill out this page) Printed Α7 Β7 by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the invention (Xi) Difference method (RLS) or other linear parameter adjustment methods such as the Conjugate Gradient Method (CGM), Least Mean Square Method (LMS), etc. In this embodiment, the recursive least variance method (RLS) is used. The parameter adjustment methods used in this embodiment all have the ability to process multiple signals and parameters. The processing steps according to this embodiment will be substantially described by way of example in the following. No. 戂 本 登 i 的 __ 色 色 體 理 立 产 為 ^ "Processing process. As shown in Figure 1 ⑻⑼, it represents a complex type input signal at a certain time. For the convenience of explanation, only three input signals X, X2, X3 are shown in the first picture. In fact, the number of input signals can be any number, not limited to 3. As shown in the first 10 (b), according to this embodiment, the fuzzy inference steps can be divided into five layers. The first three layers perform fuzzification, the fourth layer performs inference, and the fifth layer performs inference. After the input signal is processed through these five layers, the resulting output is ^, which can be expressed as (1), that is, the functions and processing procedures of each layer and the process of obtaining the output y will be described in detail below. Second; i "input the signal a, heart, and heart for complex numbers, and find the corresponding fuzzy occupancy values respectively. For example, when defining a quasi-Gaussian chess function for each input, ~ (ΉχΡ (-| \-~ || 7β), * = 1, 2, 3, / = 1, ··· , 4. The A1 (Α), gas (A), Wl3 (X,), / η | 4 (X,), w2l (χ2), m22), (ι2), w24 (χ2), % (Especially 3),% (Χι),% (heart),% (a) and other twelve normalized H values. Which is called the previous parameter, according to this implementation, M... ___,, I'J,; adjustment method will be detailed. One ~ second layer: multiply the attribution function value obtained in the first layer, and the product should be as follows: This paper scale is applicable to the Chinese National Standard (⑽) 84 specifications (training x297 public director) I- --------- 1 ------ 、 玎 --------- line (please read the precautions on the back before filling in this page) A7 B7 5. Description of the invention (5 = WllJXl) m2] (-^ 2) ^ 32 (-^ 3) μ, (χ) = ηιλλ (χλ) m2x (x2) m ^ x ^ where ^ = 0,, x2, x3) A (f) = mu (χι) w21 (jc,) mJ4 (x \) A (^) = w11 (x,) w22 (x2) W3i (X3), where 4 (none) = W14 (XI) cut 24 (h) 0¾ (丨3) Take the second layer. Take the multiplied screen. Accumulate. &Amp; Normalization (normalization) 'to obtain the normalized excitation intensity of each rule_⑺ as follows: 兵 ⑴ = ⑺ / Σ: ⑺ i = l, ..., 64 5 The first layer, the first layer, and the second layer perform fuzzification. The fourth layer: find out the output function value of each rule (none) = g ^ + c, and multiply it with the normalized excitation collapse and (magic) to get the output of each rule being excited and (Magic / '(magic, i = l, · .64. This step is also called inference). Among them, c; is called the latter parameter, adjusted using the recursive least variance method (RLS). Level 5 .Add the stimulated outputs of the inferred rules, and get the final total output less =) / (f). This step is also called Composition. ° The Central Committee of Bureau of Economics and Staff Employee's Consumer Cooperative printed the yuan into a blur After the inference step, the next step is to teach the teacher. As shown in section 1__, this step is based on the difference between the reference signal r and the output y, using the machine gradient method (SG) to adjust the previous parameters (the center of the Gaussian function and Standard deviation) and adjust the parameters of the latter term by the recursive least variance method (RLS) (weight # 'of the output function and the constant term ς). The method of adjusting the latter term parameters can be performed according to the existing complex number method. The parameter adjustment method (SG) in the plural form is as follows: CNS) A4 size (21〇Χ297 mm) 309 675 V. invention is described in (,

,咖為第《個參考訊號,_為模糊推 平方差可視為—代價函數(—η): 輸出’則♦ΗΚβϋ2 . W為可調參數,隨機梯度_取办) 朝向該梯度之反方向移動,以減少代價切間梯度,再❸ Ρ(η + 1) = ρ{η)-ην pj(n) 在此V表示取梯度;《代表時間;9為步距 本實^4^規嶋編I前辨如,“上所定義 之第/個减函數之中心與標準差,h為複數)可赶式擁: C^n + 〇 - - ^(2^«)ίΤ;Σ Re(/,.)i -, Is the first reference signal, _ is the fuzzy deduced squared difference can be regarded as-cost function (-η): output 'then ♦ ΗΚβϋ2. W is an adjustable parameter, random gradient _ to do) Move in the opposite direction of the gradient , In order to reduce the cost of the tangential gradient, then ❸ Ρ (η + 1) = ρ {η) -ην pj (n) where V represents the gradient; "representing time; 9 is the actual step size ^ 4 ^ Regular editing I was distinguished before, "The center and standard deviation of the / th subtraction function defined above, h is a complex number) can be rushed to embrace: C ^ n + 〇--^ (2 ^«) ίΤ; Σ Re (/, .) i-

CC

kl Cz i kl Ί) ( ) |2、. Xk_ckl 、σΜ Jkl Cz i kl Ί) () | 2, Xk_ckl, σΜ J

akAn + l) = ^kl{n) + ^|2Re[e(«)] ΙΣRe(/.)^L Φ;· 3η kl 2·^ mkr '°Λ σ\ι 丨裝 訂 ^--線 f請先聞讀背面之注意事項再填寫本頁) 經濟部中央梂準局員工消費合作社印裝 而 A = XMi Re^·), B = %Mi Im(y.), C = Σ. 根據本實施例,當輸入數目增加時,規則數目會呈指數 成長,因此可調參數與運算量亦呈指數成長。 第二實施例(以CFBFN處理訊號) 本紙垠尺度適用中國囷家標準(CNS ) M規格(210X297公着) 經濟部中央標隼局員工消費合作社印製 A7 B7 五、發明説明(/ 〇 ) 在第一實施例中’規則數目會因輸入個數而呈指數成 長,而在本實施例中規則數目可任意訂定,不會因輸入個數 増加而成指數成長。本實施例與第一實施例不同處僅在於模 糊化步驟,其餘步驟均相同,參見第2圖(a)。 本實施例係對整個複數型態之輸入向量訂定高維度之 模糊歸屬函數,規則數目即為高維度模糊歸屬函數之數目, 可任意訂定,因此當輸入個數多時,本實施例可大幅降低規 則數與運算量。 如第2取敁屢示,.根據本實苑例,ςρΒ祖之模抱推益 步驟可分為4層。前二層執行模糊化,第名遭熟哲择諦,第 四層執行組合。輸入訊號經由此四層之處理後,所得之輸出 為少,仍可表為(1)式,亦即 少(幻./;(幻 關於各層之功能和處理程序以及取得輸出y之過程,將 於下詳述。 第一層:對複數輸入訊號向量ί=(ΧρΧ2,Χ3),找出對 應之岗維度模糊歸屬函數值。舉例而言,若將規則數定為 m=20 ,則對輸入向量定義2〇個高斯模糊歸屬函數如下: μ,(χ) = exp(- ||χ - 〇, \[ /af), / = 1,..20. 本層即取得此2〇個歸屬函數值。其中己,σ,稱為前項參數, 係使用隨機梯度法則調整。 第二層:將該第一層所取得之歸屬函數值執正規化運算 (normalization)’而取得每一規則之正規化激發強度及如 下: Μχ) = μι(χ)/Υ^=ιμ.(χ) i=lt...7〇 本紙張尺姐财_家標準(CNS ) A4· 公釐) ---------批衣------、訂------^ (請先閱讀背面之注意事項再填寫本頁)akAn + l) = ^ kl {n) + ^ | 2Re [e («)] ΙΣRe (/.)^ L Φ; · 3η kl 2 · ^ mkr '° Λ σ \ ι 丨 binding ^-line f please Read the precautions on the back first and then fill out this page) Printed by the Ministry of Economic Affairs Central Enforcement Bureau Employee Consumer Cooperative and A = XMi Re ^ ·), B =% Mi Im (y.), C = Σ. According to this example As the number of inputs increases, the number of rules will grow exponentially, so the adjustable parameters and the amount of calculation also grow exponentially. Second Embodiment (Processing Signals with CFBFN) The size of this paper is applicable to the Chinese Standard (CNS) M Specification (210X297). The A7 B7 is printed by the Consumer Cooperative of the Central Standard Falconry Bureau of the Ministry of Economy. V. Invention Description (/ 〇) in In the first embodiment, the number of rules will grow exponentially due to the number of inputs. In this embodiment, the number of rules may be arbitrarily set, and will not grow exponentially due to the increase in the number of inputs. This embodiment differs from the first embodiment only in the blurring step, and the remaining steps are the same, see FIG. 2 (a). This embodiment defines a high-dimensional fuzzy attribution function for the entire complex-type input vector. The number of rules is the number of high-dimensional fuzzy attribution functions, which can be arbitrarily set. Therefore, when there are many input numbers, this embodiment can Significantly reduce the number of rules and calculations. As shown in the second sample, according to the example of this real estate, the step of pushing and pushing the ancestor of ρρΒ 祖 can be divided into 4 layers. The first two layers perform blurring, the first name is selected by Shu Zhe, and the fourth layer performs combination. After the input signal is processed through these four layers, the resulting output is less, which can still be expressed as (1), that is, less (magic. /; (Magic about the functions and processing procedures of each layer and the process of obtaining output y, will It is described in detail below. The first layer: For complex input signal vector ί = (ΧρΧ2, Χ3), find the corresponding fuzzy dimension function value of the post dimension. For example, if the rule number is set to m = 20, then the input The vector defines 20 Gaussian fuzzy membership functions as follows: μ, (χ) = exp (-|| χ-〇, \ [/ af), / = 1, .. 20. This layer obtains the 20 membership functions Value, where σ, called the previous parameter, is adjusted using the stochastic gradient rule. Second layer: Perform normalization on the attribution function values obtained in the first layer to obtain the regularization of each rule The excitation intensity is as follows: Μχ) = μι (χ) / Υ ^ = ιμ. (Χ) i = lt ... 7〇 paper ruler's money_Home Standard (CNS) A4 · mm) ----- ---- approved clothing ------, order ------ ^ (please read the notes on the back before filling this page)

該第一層、第二層係執行模糊化(Fuzzification)。 第三層:找出各規則之輸出函數值乂(无)=%无+ £;,並 與該第二層取得之正規化激發強度及〇〇相乘,而得各規則被 激發之輸出反(f)/;(i),i = l,..2〇。此步驟又稱為推論 (Inference)。其中#,,c,稱為後項參數,使用遞迴最小方差法 (RLS)調整。 第四層:將推論所得各規則被激發之輸出相加而取得 最後之總輸出少=Σ二及(无)/,(无)。此步驟又稱為組合 (Composition) ° 本實施例之參數調整係根據參考訊號/-⑽而執行。採用 隨機梯度法(SG)調整前項參數(高斯函數之中心與標準差), 並以遞迴最小方差法(RLS)調整後項參數(輪出函數之權重 與常數項c,)。根據本實施例之前項參數ί,,σ,依複數型態 隨機梯度法(SG )調整如下: ---------批衣! (請先閱讀背面之注意事項再填寫本頁) c (« +1) = c,· («) + j 2 Re[e{n)] j Re(/,-)The first layer and the second layer perform fuzzification. The third layer: find the output function value of each rule (none) =% null + £; and multiply it with the normalized excitation intensity and 〇〇 obtained in the second layer, and get the output of each rule excited (f) /; (i), i = 1, ..2〇. This step is also called inference. Among them, # ,, c, are called the latter parameters, adjusted using the recursive least variance method (RLS). The fourth layer: add the excited outputs of the inference rules to obtain the final total output less = Σ two and (none) /, (none). This step is also called composition. The parameter adjustment in this embodiment is performed according to the reference signal / -⑽. The stochastic gradient method (SG) is used to adjust the antecedent parameters (the center and standard deviation of the Gaussian function), and the recursive least squares method (RLS) is used to adjust the latter parameters (the weight of the round function and the constant term c,). According to the previous parameters ί ,, σ, according to this embodiment, the stochastic gradient method (SG) according to the complex pattern is adjusted as follows: --------- batch apparel! (Please read the notes on the back before filling this page) c («+1) = c, · («) + j 2 Re [e (n)] j Re (/,-)

D ,· (» +1) = CT/ («) + J 2 Re[e(«)] - Re(/;.) - ~ { Fl 2Im[e(rt)]D, · (»+1) = CT / («) + J 2 Re [e («)]-Re (/ ;.)-~ {Fl 2Im [e (rt)]

F 飞F fly

FF

E X-C, .2. σ) 線 經濟部中央標隼局員工消費合作社印袋 m /)= Σ Re 在此 / = 1 ftE X-C, .2. Σ) Line Printed bags of the Employee Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economic Affairs m /) = Σ Re here / = 1 ft

Mi £ = Σ Im fiMi £ = Σ Im fi

Mi m F · 本應用實例以同於第一實施例之方法(CANFIS)與同於第二實施例 之方法(CFBFN)實現數位無ligJk4統t座烈jy^之非盛性訊號合併(波 東也·成)。如第4圖所示。 本紙張尺度適用中國國家標準(CNS ) Α4規格(21〇χ297公釐) 經濟部中央標準局員工消費合作社印裝 Α7 Β7 i、發明説明(/沒) 通訊系統中數位訊號係經由(Quadrature Phase Shift..Kfy丨ng,qPSK) 方式調變產患QP逐訊號。通訊系統中某使用者於時間《時所傳輸之等 效基頻訊號在複數訊號空間中可視為± 1 ± _/四點中之一點。傳輸過 程中因多路徑延遲與共頻道干擾造成接收端收到訊號不僅包含項, 尚有該使用者以前傳輸之訊號項及另一使用者之傳輸訊號等 干擾項,及雜訊項V»接收端有由三支天線組成之線性等距陣列天線。 當干擾項乂^^之入射方向與欲接收訊號c(㈨不同時,經由適當合併 三支天線接收之訊號七(《),:*:2(«),13(«)可壓抑干擾,減少誤差。 以下說明本應用實施例於線性與非線性訊號環境實施之成效。數位 通訊系統中成效之判斷係以符號錯誤專(sj|ji^〇l err〇r j·%為主。符號 錯誤率越小者成效越佳。 線性訊號環境 採用Barrett and Amott (英國智慧型天線钍畫)禮假毯的型如第 5圖所示。欲接收收之QPSK訊號a(n)入射肖為〇度:咖…是阻⑻ 經過障礙物反射延遲一個符蓋號,強度忠私n) 低5 dB,入射魚為20度;b⑻表示共頻道干擾,入射角為5度、· 4〇度’強度比a(n)低5dB。假設天線間的距離,人為載波波 長,則各天線接收訊號之相位延遲9 = = = π«>/(θ)。因此第女根天線所接收<部聲士有相位延考以一 1)φ,可 表今(?)式 —一一 — xk (n) = a{ri) + 0.5623α(η - l)e j(k ι)πΗ20) + 〇 5523^(^ -•/(A-I)tc 刃>?(5。) + 0.5623+Κ)(Α—,)π44(Γ)+ν» (2) 其中 〜(《)為複數白色南斯雜訊,實部和虛部皆為#。Mi m F · This application example uses the same method as the first embodiment (CANFIS) and the same method as the second embodiment (CFBFN) to realize the non-prosperous signal combination of the digital ligJk4 system t block strong jy ^ (Podong Also · Cheng). As shown in Figure 4. This paper scale is applicable to the Chinese National Standard (CNS) Α4 specification (21〇297 mm) Printed by the Consumer Standardization Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Α7 Β7 i. Invention description (/ no) The digital signal in the communication system is passed (Quadrature Phase Shift .. Kfy 丨 ng, qPSK) method to modulate the QP signal from birth to patient. In the communication system, the equivalent fundamental frequency signal transmitted by a user at the time "can be regarded as one of ± 1 ± _ / four points in the complex signal space. During the transmission process, due to multipath delay and co-channel interference, the received signal received by the receiving end not only contains items, but also the interference items such as the signal item previously transmitted by the user and the transmission signal of another user, and the noise item V »Receive At the end there is a linear equidistant array antenna composed of three antennas. When the incident direction of the interference item ^^ is different from the desired signal c (㈨, the signal received by combining the three antennas properly (")": *: 2 («), 13 («) can suppress interference and reduce Error. The following describes the effectiveness of this application example in the implementation of linear and nonlinear signal environments. The judgment of effectiveness in digital communication systems is based on the sign error (sj | ji ^ 〇l err〇rj ·%. The more the sign error rate The smaller the better, the linear signal environment adopts Barrett and Amott (British smart antenna thorium painting) holiday blanket type as shown in Figure 5. The QPSK signal a (n) to be received is incident at 0 degrees: coffee … Is a resistance ⑻ a reflection symbol delayed by an obstacle, the intensity is loyal and private n) 5 dB lower, the incident fish is 20 degrees; b ⑻ represents the co-channel interference, the incidence angle is 5 degrees, and the intensity ratio is 4 ° degrees a ( n) 5dB lower. Assuming the distance between the antennas and the artificial carrier wavelength, the phase delay of the signals received by each antenna is 9 = = = π «> / (θ). Therefore, the < part of the female antenna received phase Extend the test to 1) φ, which can be expressed as (?) — 一一 — xk (n) = a {ri) + 0.5623α (η-l) ej (k ι) πΗ20) + 〇5523 ^ (^-• / (AI) tc blade>? (5.) + 0.5623 + Κ) (Α —,) π44 (Γ) + ν »(2) where ~ (《) is a complex white south For Si noise, the real and imaginary parts are #.

本紙浪尺度適用中國國家橾準(CNS I I I I I 訂 I I ^ 鍊 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 A7 _________ B7 五、發明説明() 模擬實驗結果如第6圖,第7圖,第8圖所示。第6圖為訓練階段錯誤訊號累積圖, 第7圖為決策引導模式中等效基頻訊號圖,第7阐(a)為第二支天線收到.<讯號_第7 圖(b)、(c)、(d)分別為經由線性RLS訊號合併,CANFIS及CFBFN模糊推論所得之 推論輸出訊號。第8圖比較30次獨立實驗,每次訓練模式2⑻個訊號,在決策引導 模式中5000個訊號所得平均符號錯誤率(symbolerr〇rrate,SER)。實驗結果顯示 線性訊號環境以線性RLS方法波束形成效果最佳,錯誤訊號累積最少,SER亦最小 (Ι.ηχΚΓ4)。然而 CANFIS(SER 1.53χ1(Γ4)及 CFBFN(SER 1.8〇xl〇-4)表現亦 很接近。 非線性訊统環境 參考Cha與Kassam研究nonlinear equalization時所採用之模型,假設在接收端有非線 性失真,並假設主路徑a(n)經過較大的振幅衰減,如第义圖所牟。則第*根天線 所接收之訊號可表示如下: xk {n) = ok (η) + 0.1〇1 {η) + 0.05〇1 {η) + vk (η) (3) (/7) = (0.34 - _/0.27)α(«) + (0.87 + y〇.43)a(/i - l)e—7(*_1)π —2〇。) + (0.34 - y〇.21>(«V 秦”·(5。)+ (0.25 - —_4°。) ⑷ ν*(«)為複數白色高斯雜訊’實部和虛部皆為tV(〇,0.025)。 模擬結果如第40樹,第第12圖所示。第1〇圖為訓練階段錯誤訊號累積圖, 第11圖為決策引導模式中等效基頻訊號圖,第丨丨圖化)為第二支天線收到之訊號, 第11圖(b)、(c)、(d)分別為經由線性RLS訊號合併,CANFIS及CFBFN模糊推論所 得之推論輸出訊號。第12圖比較3〇次獨立實驗,每次訓練模式2〇0個訊號,在決 策引導模式中5000個訊號所得平均符藏錯誤率(Symb〇i en*〇r rate, SER)。實驗結 ------.. 果顯示非線性訊號環境中線性RLS方法之波束形成效果大為衰退,不僅錯誤符號 數目累積迅速,且平均符號錯誤率SER值最大(0.175),並多達CANFIS之SER值的 接近5倍。CANFIS錯誤訊號累積最慢,SER亦最小(0_0365)°CFBFN之SER值在 規則數20,50, 64時分別為0.0908, 0.0473, 0.0380。模擬結果顯示,傳統線性波束 本紙張尺度適用中國國家梂準(CNS ) A4規格(210X 297公釐) I I 裝— I I I 線 (請先閱讀背面之注意事項再填寫本頁) 309675 A7 B7 五、發明説明(以) 形成方法並不能有效克服非線性失真。模糊波束形成器可以有效合併訊號、克服 非線性失真,對訊號環境變化的適應性較強。 上述中係以實施例之方式說明本發明,習於此技藝者,可根據上述說明在不 悖離申請專利範圍之精神及範圍下’執行修改及變異。 <請先閱讀背面之注意事項再填寫本頁) •裝· 訂 經濟部中央標隼局員工消費合作杜印製 本紙張尺度適用中國國家橾準(CNs ) a4規格(210X297公釐) A7 B7 五、發明説明(/夂)This paper wave scale is applicable to the Chinese National Standard (CNS IIIII Order II ^ Chain (please read the precautions on the back before filling in this page) A7 _________ B7 printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Invention description () Simulation experiment results As shown in Figure 6, Figure 7, Figure 8. Figure 6 is the accumulation of error signals during the training phase, Figure 7 is the diagram of the equivalent fundamental frequency signal in the decision guidance mode, and Figure 7 (a) is the second branch. The antenna received the signal. Figure 7 (b), (c), (d) are the inferred output signals obtained by the linear RLS signal combination, CANFIS and CFBFN fuzzy inference. Figure 8 compares 30 independent experiments , 2⑻ signals per training mode, the average symbol error rate (SER) of 5000 signals in the decision guidance mode. The experimental results show that the linear signal environment has the best beamforming effect with linear RLS method and the least error signal accumulation , SER is also the smallest (Ι.ηχΚΓ4). However, the performance of CANFIS (SER 1.53χ1 (Γ4) and CFBFN (SER 1.8〇x10-4) is also very close. The nonlinear system environment is used by Cha and Kassam to study nonlinear equalization. Model, assuming that there is nonlinear distortion at the receiving end, and assuming that the main path a (n) undergoes large amplitude attenuation, as shown in the first figure. Then the signal received by the * th antenna can be expressed as follows: xk {n ) = ok (η) + 0.1〇1 (η) + 0.05〇1 (η) + vk (η) (3) (/ 7) = (0.34-_ / 0.27) α («) + (0.87 + y〇 .43) a (/ i-l) e—7 (* _ 1) π —2〇. ) + (0.34-y〇.21> («V Qin" (5.) + (0.25-—_4 °.) ⑷ ν * («) is the complex white Gaussian noise, both real and imaginary parts are tV (〇, 0.025). The simulation results are shown in the 40th tree and Fig. 12. Fig. 10 is the accumulation of error signals during the training phase, and Fig. 11 is the diagram of the equivalent fundamental frequency signal in the decision guidance mode. ()) Is the signal received by the second antenna. Figure 11 (b), (c), (d) are the inferred output signals obtained by the linear RLS signal combination, CANFIS and CFBFN fuzzy inference. Figure 12 Comparison 3 〇 independent experiments, 200 signals per training mode, and the average symbol error rate (Symb〇i en * 〇r rate, SER) obtained from 5000 signals in the decision guidance mode. Experimental Results ------ .. The results show that the beamforming effect of the linear RLS method in a nonlinear signal environment is greatly degraded. Not only the number of error symbols accumulates rapidly, but the average symbol error rate SER value is the largest (0.175), and it is as close as 5 times the SER value of CANFIS .CANFIS error signal accumulates the slowest, and the SER is also the smallest (0_0365) ° The SER value of CFBFN is 0.0908, 0.0473, 0.038 when the rule number is 20, 50, 64 respectively 0. The simulation results show that the traditional linear beam paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) II Pack-III line (please read the precautions on the back before filling this page) 309675 A7 B7 5. 2. Description of the invention (with) The forming method cannot effectively overcome the non-linear distortion. The fuzzy beamformer can effectively combine the signals and overcome the non-linear distortion, and has a strong adaptability to the changes of the signal environment. The above is described by way of examples Inventions, those who are accustomed to this skill, can perform modifications and variations according to the above description without departing from the spirit and scope of the patent application scope. ≪ Please read the precautions on the back before filling out this page) Central Standard Falcon Bureau employee consumption cooperation Du printed paper standard is applicable to China National Standards (CNs) a4 specifications (210X297 mm) A7 B7 V. Invention description (/ 夂)

第1圖⑻係根據本發明第_實施例,說明CANFIS 論系統)之架構,主要分錢糊推論與參 第1圊(b)係根據本發明第一實施例,進一步剖析 CANFIS中模糊推論部份之架構,主要分成模糊化、推 論與組合三步驟,由五層之網路結構實現。 第2圖(a)係根據本發明第二實施例,說明cFBFN糊基&&數_)之架構,主要分賴糊減與參數調整 -部份。 第2圖(b)係根據本發明第二實施例,進一步剖析 CFBFN中模糊推論部份之架構主要分成模糊化、推 論與組合三步驟,由四層之網路結構實現。 第3圖係根據本發明第一實施例與第二實施例,實現可適性模 糊訊號處理之裝置實施圖。 (請先聞讀背面之注意事項再填寫本頁} -* Γ 經濟部中央榡準局員工消费合作杜印製 第4圖係根據本發明之應用實施例,使用CANFIS與 CFBFN進行數位無線通訊系統中,陣列天線之接收訊 號合併(模糊波束形成)之結構圖。 第5圖係根據本發明之應用實施例,模擬實驗時採用之線性訊 號環境說明圖。 第6圖係根據本發明之應用實施例,線性訊號環境模擬實驗時 訓練模式階段線性(RLS)與棋糊(CANFIS,CFBFN)波束形成結果 錯誤訊號累積數目圖。 第7圖係根據本發明之應用實施例,線性訊號環境模擬實驗時 決策引導模式中等效基頻訊號圖,第7圖(a)為第二支天線收到之 訊號,第7圖(b)、(c )、(d)分別為經由線性RLS訊號合併,CANFIS 及CFBFN模糊推論所得之推論輸出訊號。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 五、發明説明(/6 ) A7 B7 第8圖係根據本發明之應用實施例,線性訊號環境模擬實驗時 30次獨立實驗,每次訓練模式2〇〇個訊號,在決策引導模式中 5000個afl號所得平均符號錯誤率(Symb〇i err〇r rate,SER)比較 表。 第9圖係根據本發明之應用實施例,模擬實驗時採用之非線性 訊號環境說明圖。 第10圖係根據本發明之應用實施例,非線性訊號環境模擬實驗 時訓練模式階段線性(RLS)與模糊(CANFIS, CFBFN)波束形成結 果錯誤訊號累積數目圖。 第11圖係根據本發明之應用實施例,非線性訊號環境模擬實驗 時決策引導模式中等效基頻訊號圖,第11圖(a)為第二支天線收 到之訊號,第11圖(b)、(c)、(d)分別為經由線性RLS訊號合併, CANFIS及CFBFN模糊推論所得之推論輸出訊號。 第12圖係根據本發明之應用實施例,線性訊號環境模擬實驗時 30次獨立實驗,每次訓練模式200個訊號,在決策引導模式中 5000個訊號所得平均符號錯誤率(Symb〇l error rate, SER)比較 表0 (請先閲讀背面之注意事項再填寫本頁) •柒. ΓFigure 1 ⑻ illustrates the architecture of the CANFIS theory system according to the _th embodiment of the present invention, which mainly divides money into inferences and refers to Section 1 (b) according to the first embodiment of the present invention, further analyzes the fuzzy inference part in CANFIS The structure of the share is mainly divided into three steps: fuzzification, inference and combination, which are realized by a five-layer network structure. Figure 2 (a) illustrates the structure of cFBFN paste base & number according to the second embodiment of the present invention, which mainly depends on paste reduction and parameter adjustment-part. Figure 2 (b) is based on the second embodiment of the present invention, and further analyzes the structure of the fuzzy inference part in CFBFN, which is mainly divided into three steps: fuzzy, inference and combination, which are realized by a four-layer network structure. Fig. 3 is an implementation diagram of an apparatus for implementing adaptive fuzzy signal processing according to the first embodiment and the second embodiment of the present invention. (Please read the precautions on the back and then fill out this page)-* Γ Printed by the Consumers ’Collaboration Department of the Central Bureau of Economics of the Ministry of Economic Affairs. Figure 4 is a digital wireless communication system using CANFIS and CFBFN according to the application example of the present invention In the figure, the structure of the received signal combining (fuzzy beam forming) of the array antenna. Figure 5 is the illustration of the linear signal environment used in the simulation experiment according to the application embodiment of the invention. Figure 6 is the application implementation according to the invention For example, the linear signal environment simulation experiment during the training mode stage linear (RLS) and chess (CANFIS, CFBFN) beamforming results error signal cumulative number graph. Figure 7 is an application embodiment of the present invention, the linear signal environment simulation experiment Fig. 7 (a) is the signal received by the second antenna, Fig. 7 (b), (c) and (d) are merged via linear RLS signal, CANFIS and The inference output signal obtained by the fuzzy inference of CFBFN. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm). V. Description of the invention (/ 6) A7 B7 Figure 8 is the application according to the present invention Example, 30 independent experiments in a linear signal environment simulation experiment, 200 signals per training mode, and the average symbol error rate (Symb〇i error rate, SER) comparison of 5000 afl numbers in the decision guidance mode Table 9. Figure 9 is an illustration of the nonlinear signal environment used in the simulation experiment according to the application embodiment of the present invention. Figure 10 is a training mode stage linear according to the application embodiment of the present invention during the nonlinear signal environment simulation experiment ( RLS) and fuzzy (CANFIS, CFBFN) beamforming results. Accumulated number of erroneous signals. Figure 11 is a diagram of the equivalent fundamental frequency signal in the decision guidance mode during the simulation experiment of a nonlinear signal environment according to the application embodiment of the present invention. (a) is the signal received by the second antenna. Figure 11 (b), (c), (d) are the inferred output signals obtained by the linear RLS signal combination, CANFIS and CFBFN fuzzy inference. Figure 12 According to an application embodiment of the present invention, the linear signal environment simulation experiment is 30 independent experiments, each training mode has 200 signals, and the average symbol error obtained from 5000 signals in the decision guidance mode is Rate (Symb〇l error rate, SER) comparison table 0 (Please read the Notes on the back to fill out this page) • qi. Γ

I 經濟部中央標準局負工消费合作社印策 本紙張尺度適用中國國家橾準(CNS ) A4规格(210X297公釐)I Printed by the National Bureau of Standards of the Ministry of Economic Affairs and the Consumer Cooperative Cooperative. This paper scale is applicable to the Chinese National Standard (CNS) A4 (210X297mm)

Claims (1)

S09675 8 8 88 ABCD π、申請專利範圍 經濟部中央標準局員工消費合作杜印製 1一種複數糢糊訊號處理方法,以模糊推論方式對複數型態之訊號實現可 適性非線性之訊號處理,包括: 初始棋式’先將所有可調整參數設定為零; 訓練模式’使用預先儲存的訓練資料作為訓練參考訊號,以CANFIS演繹法 來調整前、後項參數,以降低訊號處理之誤差,當參考訊號用盡或誤差收歛時, 切換至決策料棋式,該CANFIS演繹法包含下賴糊推論步驟及參數調整步 驟;模糊推論步驟包括: 模糊化步驟,首先,針對該個別訊號取得對應之歸屬函數值,再取 個別歸屬函數之適當組合的乘積,再將該取得之乘積正規化,而得正規化激 發強度’該歸屬函數為高斯函數; 推論步驟,以輸入訊號中找出對應模糊規則之輸出函數值,該輸出 函數含有可调之後項參數,再將該輸出函數值與該正規化激發強度相乘而取 得各規則被激發之輸出; 組合步驟,_推論步驟帽得之各_被激發之輸出相加,而產 生輸出; 該參數調整步驟包括: 前項參數調整步驟,依據下式調整前項參數; 在此▽表示取梯度;《代表時間;;7為步距 前項參數%,、/ 上所定義之第/個高斯函數之中心與標準差, 為複數)可依下式隨機梯度法調整: C 1 r / , \ Φ; Β Φ: 1 f \ ___V ^1 c2 i ^ki. 1.2.¾. xk~ckl σ\ι > akAn+Ο = σΜ+2 Re[e(M)] J 裝 訂 ^ 線·_ (請先閱讀背面之注意事項再填寫本頁) 309675 A8 B8 C8 D8 申請專利範圍 Β dm. Σ- •2.j lkl ~ckl\\σ1ι 經濟部中央樣準局—工消费合作社印製 nkl c2 i ^kl.. 而 h^ReU), c=:^·· 後項參數調整步驟’以遞迴最小方差法調整後項參數; 決策引導模式’以模糊推論取得推論輸出訊號,量化後取得決策輸出訊號’ 並以之決策輸出訊號訊號為參考訊號,繼績以該CANFIS法調整前後項參數。 2·—種複數糢糊訊號處理方法,以模糊推論方式對複數型態之訊號實現可 適性非線性之訊號處理,包括: 初始模式,先將所有可調參數設定為零; 訓練模式,使用預先儲存的訓練資料作為訓練參考訊號,以CFBFN演繹法來 調整前、後項參數,以降低訊號處理之誤差,當參考訊號用盡或誤差收歛時,切 換至決策引導棋式’該CFBFN演繹法包含下述模糊推論步驟及參數調整步驟;模 糊推論步驟包括: 模糊化步驟’首先’針對整個輸入訊號向量取得對應之高維度歸屬 函數值,再將該歸屬函數值正規化,而得正規化激發強度,該歸屬函數為高 斯函數; 推論步驟,以’輸入訊號中找出對應模糊規則之輸出函數值,該輸 出函數值含有可調之後項參數,再將該輸出函數值與該正規化激發強度相乘 而取得各規則被激發之輸出; 組合步驟,將該推論步驟中所得之各規則被激發之輸出相加,而產 生輸出; 該參數調整步驟包括: 前項參數調整步驟,依據下式調整前項參數; 前項參數^,σ,依複數型態隨機梯度法(SG )調整如 下: (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度逋用中困國家揉準(CNS ) Α4規格(210X297公釐) 申請專利範圍 (w +1) = ci («) + I 2 Re[e(«)] Re| A8 B8 C8 D8 U)- F X-Ct <7/ (« + l) = σ («) + I 2 Re[e(«)] F D "T + 2 丨m[e(”)] 士 lm(乃)— F x-c; σ] m ^>= Σ Re 在此 m i; £= Σ Im A Ui m 經濟部中央標準局貝工消费合作社印策 後項參數調整步驟,以最小遞迴方差法調整後項參數; 、決策引導模式,以模糊推論取得推論輸出訊號,量化後取得絲輸出訊號, 並以之決策輸出訊號訊號為參考訊號,繼續以該CFBFN法調整前、後項參數。 3 . —種模糊訊號處理裝置,可以以非線性模糊推論方式處理訊號,包括: 輸入機構,用以輸入訊號; 運算處理機構,先將所有可調整參數設定為零,執行訓練模式、決策引導 模式運算,該訓練模式運算使係用預先儲存的訓練資料作為訓練參考訊號以 CANFIS演繹法來調整前、後項參數,以降低訊號處之誤差,當參考訊號用盡 或誤差收歛時,切換至決策引導運算,該CANFIS演繹法包含下述模糊推論步 驟及參數調整步驟;模糊推論步驟包括: 模糊化步驟,首先,針對個別輸入訊號取得對應之歸屬函數值, 再取個別歸屬函數之適當組合的乘積’再將該取得之乘積正規化,而得正 規化激發強度’該歸屬函數為高斯函數; 推論步驟’從預先儲存之訓練資料中找出對應模糊規則之輸出函 數值’該輸出函數值含有可調之後項參數’再將該輸出函數值與該正規化 激發強度相乘而取得各規則被激發之輸出; 組合步驟’將該推論步驟中所得之各規則被激發之輸出相加,而 產生輸出; 該參數調整步驟包括: 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐) I I I I I I 裝 I I I I 訂 I I I 線 * (請先閲讀背面之注意事項再填寫本頁) A8 B8 C8 D8S09675 8 8 88 ABCD π, patent application scope Central China Bureau of Economic Affairs Employee consumption cooperation Du Print 1 A method of complex fuzzy signal processing, which implements adaptive non-linear signal processing of complex type signals by fuzzy inference, including: The initial chess style 'set all the adjustable parameters to zero first; the training mode' uses pre-stored training data as training reference signals, and uses CANFIS deduction to adjust the parameters before and after to reduce the error of signal processing. When the reference signal When exhausted or error converges, switch to the decision-making chess game. The CANFIS deduction method includes the following inference steps and parameter adjustment steps; the fuzzy inference steps include: the fuzzification step. First, obtain the corresponding attribution function value for the individual signal , Then take the product of the appropriate combination of individual attribution functions, and then normalize the obtained product to obtain the normalized excitation intensity. The attribution function is a Gaussian function; the inference step is to find the output function corresponding to the fuzzy rule in the input signal Value, the output function contains the adjustable after parameter, and then the output function Multiply the normalized excitation intensity to obtain the output of each rule being excited; the combination step, the output of the _ inference step cap is added, and the output is generated; the parameter adjustment step includes: the previous parameter adjustment step, Adjust the previous parameter according to the following formula; here ▽ means to take the gradient; "represents the time ;; 7 is the step parameter% of the previous item, and the center and standard deviation of the / th Gaussian function defined on / are complex numbers) Stochastic gradient method adjustment: C 1 r /, \ Φ; Β Φ: 1 f \ ___V ^ 1 c2 i ^ ki. 1.2.¾. Xk ~ ckl σ \ ι > akAn + Ο = σΜ + 2 Re [e (M)] J binding ^ line · _ (please read the precautions on the back before filling in this page) 309675 A8 B8 C8 D8 Patent application scope d dm. Σ- • 2.j lkl ~ ckl \\ σ1ι The quasi-bureau-industrial and consumer cooperatives printed nkl c2 i ^ kl .. and h ^ ReU), c =: ^ ·· The adjustment step of the latter parameter 'is to adjust the latter parameter by the recursive minimum variance method; the decision guidance mode' is fuzzy Inference to obtain the inference output signal, after quantization to obtain the decision output signal 'and use it to make the decision output signal The signal is the reference signal, and the performance is adjusted by the CANFIS method before and after the parameters. 2 · —A kind of complex fuzzy signal processing method, which implements adaptive nonlinear signal processing for complex type signals by fuzzy inference, including: Initial mode, first set all adjustable parameters to zero; Training mode, use pre-storage The training data is used as the training reference signal. The CFBFN deduction method is used to adjust the parameters of the front and back items to reduce the error of signal processing. When the reference signal is exhausted or the error converges, switch to the decision-guided chess style. The CFBFN deduction method includes the following The fuzzy inference steps and parameter adjustment steps are described; the fuzzy inference steps include: the fuzzification step 'first' obtains the corresponding high-dimensional attribution function value for the entire input signal vector, and then normalizes the attribution function value to obtain the normalized excitation intensity, The attribution function is a Gaussian function; the inference step is to find the output function value of the corresponding fuzzy rule in the input signal, and the output function value contains an adjustable post-term parameter, and then the output function value is multiplied by the normalized excitation intensity And get the output of each rule being stimulated; combine the steps and get the results from the inference step The outputs that are excited by the rules are added to produce an output; the parameter adjustment steps include: the previous parameter adjustment step, which adjusts the previous parameter according to the following formula; the previous parameter ^, σ, adjusted according to the complex type random gradient method (SG) as follows: ( Please read the precautions on the back before filling out this page) This paper uses the national standards (CNS) Α4 specifications (210X297mm). Patent scope (w +1) = ci («) + I 2 Re [ e («)] Re | A8 B8 C8 D8 U)-F X-Ct < 7 / (« + l) = σ («) + I 2 Re [e («)] FD " T + 2 丨 m [e (”)] Shi lm (乃) — F xc; σ] m ^ > = Σ Re here mi; £ = Σ Im A Ui m Ministry of Economic Affairs Bureau of Central Standards Beigong Consumer Cooperative ’s policy adjustments Step, adjust the latter parameter by the minimum recursive variance method; Decision-making guide mode, obtain the inference output signal by fuzzy inference, obtain the silk output signal after quantization, and use the decision output signal signal as the reference signal, continue to adjust by the CFBFN method Before and after parameters 3. A kind of fuzzy signal processing device, which can be processed by nonlinear fuzzy inference Signals, including: Input mechanism for inputting signals; Operation processing mechanism, first set all adjustable parameters to zero, perform training mode, decision-guided mode operation, the training mode operation uses pre-stored training data as training reference The signal uses CANFIS deduction method to adjust the parameters of the front and back items to reduce the error at the signal. When the reference signal is exhausted or the error converges, switch to the decision-guided operation. The CANFIS deduction method includes the following fuzzy inference steps and parameter adjustment steps ; The fuzzy inference steps include: The fuzzification step. First, obtain the corresponding attribution function value for each input signal, and then take the product of the appropriate combination of individual attribution functions' and then normalize the obtained product to obtain the normalized excitation intensity. The attribution function is a Gaussian function; the inference step is to find the output function value of the corresponding fuzzy rule from the pre-stored training data, the output function value contains an adjustable parameter, and then the output function value and the normalized excitation intensity Multiply to get the output of each rule being excited; the combining step will The stimulated outputs of the rules obtained in the inference step are added to produce the output; the parameter adjustment steps include: This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) IIIIII Pack IIII Order III line * ( Please read the precautions on the back before filling this page) A8 B8 C8 D8 申請專利範圍 經濟部中央標準局貝工消費合作社印裝 前項參數調好驟,依據τ式鑛前項參數.後項參數機轉,叫棘付纽調贿項參數; 決策引導模式,以模糊推論取得推論輸出訊號,量化後取得 並以之決策輸出訊號訊號為參考訊號,__canfis法調㈣、後項 數。 記憶儲存機構,儲存該運算處理機構_之訓練資料; 輸出機構’將該運算處理機構所取得之該最後決策輪出訊號輪出。 4 · -種難職處理裝置,可„雜賴_論方式處理訊號包括: 輸入機構’用以輸入訊號; 運算處理機構’先將所有可調整參數設定為零,執行訓練模式、決策引導 模式運算’該訓練模式運算使係用預先儲存的訓練資料作為訓練參考訊 =以CFBFN廣繹法來調整前後項參數,以降低訊號誤差,當參考訊 號用盡或誤纽歛時,切換至決f 5丨導運算,該CFBFN演繹法包含下述 模糊推論步驟及參數調整步驟;模糊推論步驟包括: 模糊化步驟’首先’騎整個輸人職轉對狀高維度歸屬函 數值’再將該關函數值正規化,而得正規化激發強度該歸屬函數為高 斯函數; 推論步驟,從預先儲存之訓練資料中找出對應模糊規則之輸出函 數值,該輸出函數值含有可調之後項參數,再將該輸出函數值與該正規化 激發強度相乘而取得各規則被激發之輸出; 組合步驟,將該推論步驟中所得之各規則被激發之輸出相加,而 產生輸出; 該參數調整步驟包括: 前項參數調整步驟,依據下式調整前項參數; 後項參數調整步驟,以最小遞迴方差法調整後項參數; 決策引導模式’以模糊推論取得推論輸出訊號量化後取得決策輸出訊號, 並以之決策輸出訊號訊號為參考訊號,繼續以該CFBFN法調整前、後項 本紙張尺度適用中國®家#準(CNS ) A4规格(210X297公羞) (請先閲讀背面之注意事項再填寫本頁) .裝· 訂 * I -- - II I I · A8 Bg C8 D8 々、申請專利範圍 參數。 記憶儲存機構,儲存該運算處理機構所須之訓練資料; 輸出機構,將該運算處理機構所取得之該最後決策輸出訊號輸出。 II 裝 訂 線 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局貝工消費合作社印製 本紙張尺度逋用中國國家標準(CNS ) A4規格(210X297公嫠)Patent application scope The Central Parameter Bureau of the Ministry of Economic Affairs Beigong Consumer Cooperative printed the first parameter adjustment step, based on the τ type mine previous parameter. The latter parameter is transferred, called the payment of bribery adjustment parameters; Decision guidance mode, obtained by fuzzy inference Infer the output signal, obtain it after quantization and use the decision output signal as the reference signal, __canfis method adjustment, and the number of subsequent items. The memory storage mechanism stores the training data of the arithmetic processing mechanism_; the output mechanism 'rotates the final decision-round signal obtained by the arithmetic processing mechanism. 4-A kind of difficult job processing device, which can deal with signals in ‘Miscellaneous _ on the way including: input mechanism 'for inputting signals; operation processing mechanism' first set all adjustable parameters to zero, perform training mode, decision guidance mode operation 'The training mode operation uses pre-stored training data as training reference signal = CFBFN extensive interpretation method to adjust the front and rear parameters to reduce the signal error, when the reference signal is exhausted or incorrectly converged, switch to the decision f 5丨 Derivative operation, the CFBFN deduction method includes the following fuzzy inference steps and parameter adjustment steps; fuzzy inference steps include: the fuzzification step 'first' ride the entire input job transfer to the high-dimensional attribution function value 'and then the value of the pass function Normalization, and the normalized excitation intensity is obtained. The attribution function is a Gaussian function; the inference step is to find the output function value of the corresponding fuzzy rule from the pre-stored training data. The output function value contains the adjustable after-term parameter, and then the The output function value is multiplied by the normalized excitation intensity to obtain the output of each rule being excited; the combination step is obtained from the inference step The output of each rule that is excited is added to produce an output; the parameter adjustment step includes: the previous parameter adjustment step, which adjusts the previous parameter according to the following formula; the latter parameter adjustment step, which adjusts the latter parameter by the least recursive variance method; decision "Guide mode" uses fuzzy inference to obtain the inference output signal and quantize the decision output signal, and uses the decision output signal signal as the reference signal, and continues to use the CFBFN method to adjust the paper size before and after. A4 specification (210X297 public shame) (please read the precautions on the back before filling in this page). Binding · Order * I--II II · A8 Bg C8 D8 々, patent application range parameters. Memory storage mechanism, store the calculation The training data required by the processing agency; The output agency outputs the final decision output signal obtained by the arithmetic processing agency. II Gutter (please read the precautions on the back before filling out this page) The paper printed by the cooperative is based on the Chinese National Standard (CNS) A4 (210X297 gong)
TW85116043A 1996-12-26 1996-12-26 Method and apparatus for complex fuzzy signal processing TW309675B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW85116043A TW309675B (en) 1996-12-26 1996-12-26 Method and apparatus for complex fuzzy signal processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW85116043A TW309675B (en) 1996-12-26 1996-12-26 Method and apparatus for complex fuzzy signal processing

Publications (1)

Publication Number Publication Date
TW309675B true TW309675B (en) 1997-07-01

Family

ID=51566309

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85116043A TW309675B (en) 1996-12-26 1996-12-26 Method and apparatus for complex fuzzy signal processing

Country Status (1)

Country Link
TW (1) TW309675B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725506B2 (en) 2010-06-30 2014-05-13 Intel Corporation Speech audio processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725506B2 (en) 2010-06-30 2014-05-13 Intel Corporation Speech audio processing
TWI455112B (en) * 2010-06-30 2014-10-01 Intel Corp Speech processing apparatus and electronic device

Similar Documents

Publication Publication Date Title
Wen et al. Deep learning for massive MIMO CSI feedback
Tresp Committee machines
Tan et al. Improving massive MIMO message passing detectors with deep neural network
Tadayon et al. Iterative sparse channel estimation and spatial correlation learning for multichannel acoustic OFDM systems
Imani et al. SINR maximization in colocated MIMO radars using transmit covariance matrix
JPH06502519A (en) Optimal demodulator with maximum a posteriori probability estimation
Slavakis et al. Adaptive multiregression in reproducing kernel hilbert spaces: The multiaccess mimo channel case
Martinek et al. The real implementation of ANFIS channel equalizer on the system of software-defined radio
Li et al. On probing signal design for MIMO radar
Dakulagi et al. Efficient blind beamforming algorithms for phased array and MIMO RADAR
Lee et al. MMSE-based CFO compensation for uplink OFDMA systems with conjugate gradient
Kaur et al. Biogeography-based optimisation of cognitive radio system
Beaussart et al. Waffle: Weighted averaging for personalized federated learning
TW309675B (en) Method and apparatus for complex fuzzy signal processing
Pugalenthi et al. Impulse noise reduction using hybrid neuro‐fuzzy filter with improved firefly algorithm from X‐ray bio‐images
Ayesha et al. On self-interference cancellation and non-idealities suppression in full-duplex radio transceivers
Wang et al. Batch learning from bandit feedback through bias corrected reward imputation
Hegde et al. Matching theoretic beam selection in millimeter-wave multi-user MIMO systems
Zhao et al. OFDM wavefroms designed with piecewise nonlinear frequency modulation pulse for MIMO radar
Nandi et al. Avenues to improve channel estimation using optimized CP in STBC coded MIMO-OFDM systems—a global optimization approach
Fateh et al. Performance Evaluation of MC-CDMA Systems with Single User Detection Technique using Kernel and Linear Adaptive Method
Hu et al. Parameter identifiability of space-time MIMO radar
Lee et al. Theoretical derivation of minimum mean square error of RBF based equalizer
Aravindan et al. Medical image denoising by using discrete wavelet transform: Neutrosophic theory new direction
Castaldi et al. Evaluation of a neural-network-based adaptive beamforming scheme with magnitude-only constraints