TW298623B - Method and apparatus for determining seismic vulnerability of a structure - Google Patents

Method and apparatus for determining seismic vulnerability of a structure Download PDF

Info

Publication number
TW298623B
TW298623B TW85107393A TW85107393A TW298623B TW 298623 B TW298623 B TW 298623B TW 85107393 A TW85107393 A TW 85107393A TW 85107393 A TW85107393 A TW 85107393A TW 298623 B TW298623 B TW 298623B
Authority
TW
Taiwan
Prior art keywords
layer
vibration
seismic
ground
recorded
Prior art date
Application number
TW85107393A
Other languages
Chinese (zh)
Inventor
Yutaka Nakamura
Fumiaki Uehan
Masayuki Nishinaga
Original Assignee
Railway Technical Res Inst
System And Data Res Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP13170496A external-priority patent/JP3105450B2/en
Application filed by Railway Technical Res Inst, System And Data Res Co Ltd filed Critical Railway Technical Res Inst
Application granted granted Critical
Publication of TW298623B publication Critical patent/TW298623B/en

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

In order to determine the seismic vulnerability of a structure, a vibration sensor is placed on each of the top surface of a layer of the structure and the ground surface near the structure so as to record vibrations. A seismic vulnerability data processor assumes a transfer function of vibration of the top surface of the layer of the structure based on a spectral ratio between the vibration recorded on the top surface of the layer of the structure and the vibration recorded on the ground surface, thereby obtaining a predominant frequency and amplification factor of vibration of the top surface of the layer of the structure. A seismic vulnerability index of the layer of the structure resulting from a deformation of the layer is obtained based on the obtained predominant frequency and amplification factor of vibration of the top surface of the layer of the structure and on the height of the layer of the structure. This seismic vulnerability index is multiplied by an assumed seismic acceleration so as to obtain a maximum shear strain of the layer of the structure upon being subjected to an earthquake.

Description

298623 A7 B7 五、發明説明(/ ) 發明背景 發明之領域 本發明係有《用以決定一结構對於地震之弱點的方法 及装置。 前技說明 / 傳統上,用作為決定一结構之地震弱點的方法有:( ^ 1)藉由振動一结構來獲得此結構之自然頻率的方法·( \ 2)使用一檢査表列來求取一结構之防震效果的方法,以 \及(3)經由结構計算來算出防震指數的防麄診斷法。 於方法(1)中,即藉由振動一结構來獲得此结構之 自然頻率的方法中,一结構係利用一振動產生器或是一重 物來給出一震動而被振動,並然後结構的自然頻率係依據 所產生的振動而獲致。所述自然頻率係比較於一參考值, 以決定出該结構的防震效果。 於方法(2)中*即使用一檢査表列來求取一结構之 防震效果的方法中,一结構係利用一含有諸如结構之下土 壤的狀況、结構之建築年代、Μ及结構規格等預定項目而 求算出。结構的防震效果係依據在此求算狀況下賦予的缌 點數而決定出。 於方法(3)中,即經由结構計算來算出防震指數的 防震診斷法中,依特定狀況而定,係使用以下三種方法之 任一者。在第一種方法中,每一層的最高強度係依據牆壁 本紙張尺度逋用中國國家標隼(CNS ) Α4規格(210X297公釐) I I I I I I私衣 I I I訂— 線 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央樣準局員工消費合作社印装 經濟部中央標準局員工消费合作社印装 A7 B7 五、發明説明(>") 和樑柱的截面積而被算出。在第二種方法中,每一層的撓 曲強度係依據假設裸和樓板為期性以及依據所算得各個樑 柱和牆壁的彎曲和所算得每一層的最高剪力強度而得,並 且其後每一層的韌度係依據此撓曲強度和該最高剪力強度 之間的闞係、加強桿、…等而算出。在第三種方法中,一 簡單的非媒性架構分析係在考慮到樑的強度和韌度的同時 被加Μ實施。 上述用來決定出一结構之地震弱點的方法具有Μ下問 題點。 在藉由振動一结構來獲得此结構之自然頻率的方法中 ,需要一尺寸很大的裝置來振動該结構,並且此结構在當 裝置被安裝或是當一衝力係加諸於該结構時將被損壊。而 且,此方法需要一參考自然頻率作為比較的基礎,例如一 理論自然頻率、一經驗専出的自然頻率、或是一在過去所 量得的自然頻率。 在使用一檢査表列來求取一结構之防震效果的方法中 ,所述求值是粗略的並且將受到檢視人員主覼因素的影響 ;结構的振動特激無法定量獲得。 在經由结構計算來算出防震指數的防震診斷法中,檢 驗所獾得的資料Μ供使用於结構計篝以及登錄如此所獲得 的資料,需要相當的時間和花費。而且,所述診斷需要高 度的结構計算知識,因此無可避免地將需要專家之參與。 本發明之《要 -5- 本紙張尺度遑用中國國家標準(CMS ) Α4規格(210Χ 297公釐) ---------襄------1Τ------^ (請先閲讀背面之注意事項再填寫本頁) A7 B7 經濟部中央標準局員工消费合作社印裝 五、發明説明 ( ) 1 | 本 發 明 之 一 百 的 9 在 於 解 決 上 述 傳 统 用 於 決 定 一 结 構 1 _ i I 之 地 震 弱 點 方 法 中 的 問 題 點 > >λ 及 提 供 — 種 單 藉 由 使 用 装 1 1 I 、設 在 該 结 構 上 的 搌 動 感 應 器 並 接 著 對 所 獲 得 的 資 料 執 行 簡 請 先 1 1 單 的 計 算 * 用 來 定 量 求 算 — 结 構 之 地 震 弱 點 的 方 法 和 装 置 閲 讀 择 1 I η S7 1 I 〇 之 1 注 1 為 獲 得 上 述 百 的 t 依 據 本 發 明 的 第 一 項 特 色 提 供 有 意 事 1 項 l 一 種 用 來 決 定 — 结 構 之 地 震 弱 點 的 方 法 t 其 包 括 的 步 驟 有 再 4 1 : ( a ) 放 置 一 振 動 感 懕 器 在 該 结 構 之 — 層 的 頂 面 和 接 近 寫 本 頁 裝 1 該 结 構 之 地 面 二 者 上 VX 便 記 錄 振 動 • * ( b ) 依 據 被 記 錄 1 I 在 該 结 構 之 該 層 頂 面 上 的 振 動 和 被 記 錄 在 接 近 該 结 構 之 地 1 1 1 面 上 的 振 動 之 間 的 光 譜 比 9 估 算 該 结 構 之 該 層 頂 面 的 振 動 1 1 訂 1 之 轉 換 方 程 式 * Μ 便 獲 得 該 结 構 之 該 層 頂 面 的 振 動 之 主 頻 率 和 放 大 因 數 f ( C ) 依 據 所 獲 得 該 结 構 之 該 層 頂 面 的 振 1 1 動 之 主 頻 率 和 放 大 因 數 和 依 據 該 结 構 之 該 層 的 高 度 9 獲 致 1 1 一 導 源 該 層 之 變 形 該 结 構 之 該 層 的 地 藤 弱 點 指 數 1 1 及 ( d ) 將 該 地 震 弱 點 指 數 乘 上 假 設 的 地 震 加 速 度 因 線 1 而 在 遭 受 到 地 麄 時 獲 得 該 结 構 之 該 層 的 最 大 剪 應 變 0 1 1 較 佳 地 該 结 構 之 該 層 的 地 震 弱 點 指 數 係 利 用 依 據 1 | 被 記 錄 在 該 结 構 之 該 層 頂 面 上 的 振 動 之 水 平 分 量 和 被 記 錄 1 1 在 接 近 該 结 梅 之 地 面 上 的 振 動 之 水 平 分 量 二 者 之 間 的 光 譜 1 1 比 所 獲 得 的 主 頻 率 和 放 大 因 數 而 得 0 在 遭 受 到 地 震 時 此 1 I 地 震 弱 點 指 數 係 乘 上 一 假 設 的 最 大 地 面 地 震 加 速 度 » 因 而 1 1 獲 得 該 结 檷 之 該 層 的 剪 應 變 0 1 1 - 6 - 1 1 1 本紙乐尺度適用中國國家標隼(CNS > A4現格(2丨OX 297公釐) 經濟部中央標準局負工消費合作杜印装 A7 B7 五、發明説明($ ) 較佳地,該结構之該層的地Μ弱黏指數係利用一主頻 率和利用一放大因數而獲致,其中該主頻率則係依據被記 錄在該结檐之該層頂面上的振動之水平分量和被記錄在接 近該结構之地面上的振動之水平分量二者之間的光譜比而 獲得*而該放大因數則係依據被記錄在該结構之該層頂面 上的搌動之水平分量和被記錄在接近該结構之地面上的振 動之垂直分量二者之間的光譜比而獲得。在此計算中,一 表層之地藤運動的放大係被列入考慮。在遭受到地震時, 所述地1弱黏指數係乘上一假設的最大地基地霖加速度, 因而獲致該结構之該層的剪應變。 依據本發明的第二項特色*提供有一種用來決定一结 構之地震弱點的方法*其包括的步驟有:(a)放置一振 動感應器在該结構之一層的頂面、該结構之該層的底面、 K及接近該结構之地面三者上,Μ便記錄振動;(b)依 據被記錄在該结構之該層頂面上的振動和被記錄在接近該 结構之地面上的振動之間的光譜比*估算該结構之該層頂 面的振動之轉換方程式,K便獲得該结構之該層頂面的振 動之主頻率和放大因數;(c)依據被記錄在該结構之該 層底面上的振動和被記錄在接近該结構之地面上的振動之 間的光譜比,估算該结構之該層底面的振動之轉換方程式 ,以便獲得該结構之該層底面的振動之主頻率和放大因數 ;(d)依據所獲得該结構之該層頂面的振動之主頻率和 放大因數、依據所獲得該结構之該層頂面的振動之主頻率 -7- j紙浪尺度適用中國國家標準(CNS ) A4規格(210x297公釐) II I 批衣 訂— I 線 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印装 A7 B7 五、發明説明(f) 和放大因數、以及依攞該结構之該層的高度,來獲致一導 源自該層之變形*該结構之該層的地霣弱點指數;Μ及( e)將該地霣弱點指數乘上一假設的地震加速度,因而獲 得該结構之該層的剪應變。 較佳地,該结構之該層的地震弱點指數,係利用依據 被記錄在該结構之該層頂面和底面上的振動之水平分量和 被記錄在接近該结構之地面上的振動之水平分量二者之間 的光譜比所獲得的主頻率和放大因數而得。在遭受到地震 時,此地震弱點指數係乘上一假設的最大地面地震加速度 •因而獲得該结構之該層的剪應變。 較佳地,該结構之該層的地藤弱點指數係利用一主頻 率和利用一放大因數而獲致,其中該主頻率則係依據被記 錄在該结構之該層頂面和底面上的振動之水平分置和被記 錄在接近該结構之地面上的振動之水平分量二者之間的光 譜比而獲得,而該放大因數則係依據被記錄在該结構之該 層頂面和底面上的振動之水平分量和被記錄在接近該结構 之地面上的振動之垂直分量二者之間的光譜比而獲得。在 此計算中,一表層之地震運動的放大係被列入考盧。在遭 受到地震時,所述地靄弱點指數係乘上一假設的最大地基 地震加速度,因而獲致該结構之該層的剪應變。 較佳地,所逑振動係微震動。 依據本發明的第三項特色,提供有一種用來決定一结 構之地震弱點的装置,其包括有:(a)—用來記錄振動 本紙張尺度適用中國國家標準(CNS ) A4現格(210X297公釐) — II __ I I I —_ I 裝 — — I I 訂 線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局負工消费合作杜印製 A7 B7 五、發明説明(卜) 的第一振動感應器*其被放置在一结構之一層的頂面上, (b) —用來記錄振動的第二振動感應器,其被放置在接 近該结構之地面上,Μ及(c)—地霣弱點資料處理器, 其被埋到該等振動感應器並且依據所記錄的振動來決定出 該结構的地震弱點。該地霣弱點資料處理器實施一些處理 ,用來依據被記錄在該结構之該層頂面上的振動和被記錄 在接近該结構之地面上的振動之間的光繒比,估算該结構 之該層頂面的振動之轉換方程式,Μ便獲得該结構之該層 頂面的振動之主頻率和放大因數;用來依據所獲得該结構 之該層頂面的振動之主頻率和放大因數和依據該结構之該 層的高度,獲致一導源自該層之變形,該结構之該層的地 震弱點指數;以及用來將該地震弱點指數乘上一假設的地 藤加速度*因而在遭受到地震時,獲得該结構之該層的最 大剪應變。 較佳地,該地震弱點資料處理器係被適配成來實施下 述程序。該结構之該層的地震弱點指數,係利用依據被記 錄在該结構之該層頂面上的振動之水平分量和被記錄在接 近該结構之地面上的振動之水平分量二者之間的光譜比所 獲得的主頻率和放大因數而得。在遭受到地麻時,此地震 弱點指數係乘上一假設的最大地面地篇加速度,因而獲得 該结構之該層的剪懕變。 較佳地,該地震弱點資料處理器係被適配成來實施下 述程序。該结構之該層的地震弱點指數係利用一主頻率和 -9- 本紙張尺度適用中國國家標準(CNS ) A4現格(210X297公釐) — I— . I n n 訂 I 線 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標举局員工消費合作杜印装 Α7 Β7 五、發明説明(1 ) 利用一放大因数而獾致,其中該主頻率則係依據被記錄在 該结構之該層頂面上的振動之水平分量和被記錄在接近該 结構之地面上的振動之水平分量二者之間的光譜比而獲得 ,而該放大因數則係依據被記錄在該结構之該曆頂面上的 振動之水平分量和被記錄在接近該结構之地面上的振動之 垂直分量二者之間的光譜比而獲得。在此計算中,一表層 之地震蓮動的放大係被列入考應。在遭受到地震時,所述 地蒽弱點指數係乘上一假設的最大地基地震加速度,因而 獲致該结構之該層的剪應變。 依捶本發明的第四項特色,提供有一種用來決定一结 構之地震弱點的裝置,其包括有:(a) —用來記錄振動 的第一振動感應器,其被放置在該結構之一曆的頂面上, (b)—用來記錄振動的第二振動感應器,其被放置在該 结構之該臛的底面上,(c)一用來記錄振動的第三振動 感應器,其被放置在接近該结構之地面上,Μ及(d) — 地震弱點資料處理器,其被連到該等振動感懕器並且依據 所記錄的振動來決定出該结構的地震弱點。該地震弱點資 料處理器實施一些處理,用來依據被記錄在該结構之該層 頂面上的振動和被記錄在接近該结構之地面上的振動之間 的光譜比*估算該结構之該層頂面的振動之轉換方程式, Μ便獲得該结構之該層頂面的振動之主頻率和放大因數; 用來依據被記錄在該结構之該層底面上的振動和被記錄在 接近該结構之地面上的振動之間的光譜比,估算該结構之 -10- 本紙張尺度適用中國國家標準(CNS ) A4規格(210x 297公釐) ---------扣衣------ir------.^ (請先閲讀背面之注意事項再填寫本頁) A7 B7 經濟部中央標準局員工消费合作社印袈 五、發明説明(5 ) 該層底面的振動之轉換方程式,κ便獲得該结構之該曆底 面的振動之主頻率和放大因數;用來依據所獲得該结構之 該層頂面的振動之主頻率和放大因數、依據該结構之該層 底面的振動之主頻率和放大因數、κ及依據該结構之該層 的高度,獲致一導源自該層之變形,該结構之該層的地襄 弱點指數;以及用來將該地麻弱點指數乘上一假設的地霣 加速度,因而在遭受到地霣時,獲得該结構之該層的剪應 變。 較佳地,該地震弱點資料處理器係被適配成來實施下 述程序。該结構之該層的地震弱點指數*係利用依據被記 錄在該结構之該層頂面和底面上的振動之水平分量和被記 錄在接近該结構之地面上的振動之水平分量二者之間的光 譜比所獲得的主頻率和放大因數而得。在遒受到地震時, 此地震弱點指数係乘上一假設的最大地面地震加速度,因 而獲得該结構之該層的剪應變。 較佳地,該地震弱點資料處理器係被通配成來實施下 述程序。該结構之該層的地震弱點指數係利用一主頻率和 利用一放大因數而獲致,其中該主頻率則係依據被記錄在 該结構之該層頂面和底面上的振動之水平分量和被記錄在 接近該结構之地面上的振動之水平分量二者之間的光譜比 而獲得,而該放大因數則係依據被記錄在該结構之該層頂 面和底面上的振動之水平分1和被記錄在接近該结構之地 面上的振動之垂直分量二者之間的光譜比而獲得。在此計 -11- (請先閲讀背面之注意事項再填寫本頁) -裝. 訂 線 本纸張尺度適用中國國家橾準(CNS ) A4*t格(210X297公釐) 經濟部中央標準局員工消費合作社印裝 Α7 Β7 五、發明説明(i )298623 A7 B7 V. Description of the invention (/) Background of the invention Field of the invention The present invention is a method and device for determining the weakness of a structure to earthquakes. Former technology description / Traditionally, the methods used to determine the seismic weakness of a structure are: (^ 1) The method of obtaining the natural frequency of this structure by vibrating a structure · (\ 2) Use a checklist to find A method of anti-seismic effect of the structure, and (3) the anti-diagnosis method of calculating the anti-seismic index through structural calculation. In method (1), that is, a method to obtain the natural frequency of a structure by vibrating a structure, a structure is vibrated by using a vibration generator or a heavy object to give a vibration, and then the natural structure The frequency is based on the vibration generated. The natural frequency is compared to a reference value to determine the anti-shock effect of the structure. In method (2) *, that is, a method of using a checklist to obtain the seismic effect of a structure, a structure uses a schedule that includes such things as the condition of the soil under the structure, the building ’s age, Μ, and structural specifications. Project. The anti-seismic effect of the structure is determined based on the number of points given in this calculation. In method (3), that is, the earthquake diagnosis method that calculates the earthquake prevention index through structural calculation, depending on the specific situation, any one of the following three methods is used. In the first method, the highest strength of each layer is based on the paper standard of the wall using the Chinese National Standard Falcon (CNS) Α4 specification (210X297 mm) IIIIII private clothing III set-line (please read the precautions on the back first (Fill in this page) Printed and printed by the Central Sample Bureau of the Ministry of Economic Affairs, printed and printed by the Employees and Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7 V. The description of the invention (> ") and the cross-sectional area of the beam are calculated. In the second method, the flexural strength of each layer is based on the assumption of the duration of the bare and floor slabs, as well as the calculated bending of each beam and wall and the calculated maximum shear strength of each layer, and each subsequent layer The toughness of is calculated based on the Kang system between the flexural strength and the highest shear strength, reinforcing rods, etc. In the third method, a simple non-medium structural analysis system is implemented by adding M while considering the strength and toughness of the beam. The above method for determining the seismic weakness of a structure has the following problem points. In the method of obtaining the natural frequency of a structure by vibrating a structure, a large-sized device is required to vibrate the structure, and the structure will be changed when the device is installed or when an impulse force is applied to the structure. Damaged. Moreover, this method requires a reference natural frequency as a basis for comparison, such as a theoretical natural frequency, an empirical natural frequency, or a natural frequency measured in the past. In the method of using a checklist to obtain the anti-shock effect of a structure, the evaluation is rough and will be affected by the inspector's subjective factors; the vibrational vibration of the structure cannot be obtained quantitatively. In the earthquake-preventive diagnosis method for calculating the earthquake-preventive index through structural calculation, it takes considerable time and expense to examine the information M obtained by the badger for use in the structural calculation and to register the data thus obtained. Moreover, the diagnosis requires a high degree of structural calculation knowledge, so it will inevitably require the participation of experts. "Yao-5-This paper scale adopts Chinese National Standard (CMS) Α4 specification (210Χ 297 mm) --------- XIANG ------ 1Τ --------" ^ (Please read the precautions on the back before filling this page) A7 B7 Printed by the Employees ’Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention () 1 | 9 of the present invention is to solve the above-mentioned tradition for determining a structure 1 _ i I's problem in the seismic weakness method > > λ and provide — a simple method of using a 1 1 I equipped with a motion sensor on the structure and then performing a brief summary of the data obtained First 1 1 Single calculation * Used for quantitative calculation-method and device for seismic weakness of structure 1 I η S7 1 I 1 of 0 Note 1 To obtain the above 100 t provides an intention according to the first feature of the present invention 1 item, 1 item, one type is used to decide-knot The method of constructing seismic weak points t includes the following steps 4 1: (a) Place a vibration sensor on the structure — the top surface of the layer and the surface close to the writing page 1 VX on both the ground of the structure Record vibration • * (b) Estimate the structure of the structure based on the spectral ratio between the recorded 1 I vibration on the top surface of the layer of the structure and the vibration recorded on the surface near the structure 1 1 1 Vibration of the top surface of the layer 1 1 Set the conversion equation of 1 * Μ to obtain the main frequency and amplification factor f (C) of the vibration of the top surface of the layer of the structure according to the vibration 1 1 movement of the top surface of the layer of the obtained structure The main frequency, the amplification factor, and the height 9 of the layer of the structure are obtained 1 1-the source of the deformation of the layer is the ground vine weakness index of the layer of the structure 1 1 and (d) multiply the seismic weakness index by the hypothesis The seismic acceleration is due to line 1 Obtain the maximum shear strain of the layer of the structure when subjected to ground stress 0 1 1 Preferably the seismic weakness index of the layer of the structure is based on the use of 1 | the level of vibration recorded on the top surface of the layer of the structure Component and recorded 1 1 The spectrum between the horizontal component of the vibration on the ground close to the knot plum 1 1 The ratio of the obtained main frequency and the amplification factor is 0 and it is 0 when the earthquake is encountered 1 I Seismic vulnerability index It is multiplied by a hypothetical maximum ground seismic acceleration »Therefore 1 1 Obtain the shear strain of the layer of the structure 0 1 1-6-1 1 1 This paper music scale is applicable to the Chinese National Standard Falcon (CNS > A4 present grid (2丨 OX 297mm) Duty-printed consumer cooperation A7 B7 by the Central Bureau of Standards of the Ministry of Economic Affairs V. Invention description ($) Preferably, the ground weak viscosity index of this layer of the structure uses a main frequency and a Due to the amplification factor, where the main frequency It is obtained based on the spectral ratio between the horizontal component of the vibration recorded on the top surface of the layer of the eaves and the horizontal component of the vibration recorded on the ground close to the structure * and the amplification factor is It is obtained based on the spectral ratio between the horizontal component of the vibration recorded on the top surface of the layer of the structure and the vertical component of the vibration recorded on the ground close to the structure. In this calculation, the magnification of the surface vine movement is considered. When an earthquake is encountered, the ground 1 weak viscosity index is multiplied by a hypothetical maximum ground-lin acceleration, thereby obtaining the shear strain of the layer of the structure. According to the second feature of the present invention * there is provided a method for determining the seismic weakness of a structure * which includes the steps of: (a) placing a vibration sensor on the top surface of a layer of the structure, the structure of the structure On the bottom of the layer, K and the ground close to the structure, M will record the vibration; (b) According to the vibration recorded on the top surface of the layer of the structure and the vibration recorded on the ground close to the structure The spectral ratio between the two * estimates the transfer equation of the vibration of the top surface of the layer of the structure, and K obtains the main frequency and the amplification factor of the vibration of the top surface of the layer of the structure; The spectral ratio between the vibration on the bottom surface and the vibration recorded on the ground close to the structure to estimate the transfer equation for the vibration of the bottom surface of the layer of the structure in order to obtain the main frequency and amplification of the vibration of the bottom surface of the structure Factor; (d) according to the main frequency of the vibration of the top surface of the layer obtained by the structure and the amplification factor, according to the main frequency of the vibration of the top surface of the layer obtained by the structure (CNS) A4 size (210x297 mm) II I Approved clothing order-I line (please read the precautions on the back before filling in this page) A7 B7 printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Invention description (f) and magnification factor , And depending on the height of the layer of the structure, to derive a deformation derived from the layer * the index of weakness in the layer of the structure; Μ and (e) multiply the index of weakness in the layer by a hypothetical The seismic acceleration thus obtains the shear strain of the layer of the structure. Preferably, the seismic weakness index of the layer of the structure is based on the horizontal component of the vibration recorded on the top and bottom surfaces of the layer of the structure and the horizontal component of the vibration recorded on the ground close to the structure The spectrum between the two is derived from the obtained main frequency and amplification factor. When an earthquake is encountered, this seismic vulnerability index is multiplied by a hypothetical maximum ground seismic acceleration. Thus, the shear strain of the layer of the structure is obtained. Preferably, the ground vine weakness index of the layer of the structure is obtained using a main frequency and an amplification factor, wherein the main frequency is based on the vibrations recorded on the top and bottom surfaces of the layer of the structure The horizontal split and the spectral ratio between the horizontal component of the vibration recorded on the ground close to the structure are obtained, and the amplification factor is based on the vibration recorded on the top and bottom surfaces of the layer of the structure The spectral component of the horizontal component of the vibration and the vertical component of the vibration recorded on the ground close to the structure. In this calculation, the amplification of the seismic motion of a surface layer is included in Kalu. When subjected to an earthquake, the ground haze weakness index is multiplied by a hypothetical maximum ground-based seismic acceleration, thereby obtaining the shear strain of the layer of the structure. Preferably, the vibration is a slight vibration. According to the third feature of the present invention, there is provided a device for determining the seismic weakness of a structure, which includes: (a)-used to record the vibration. The paper size is applicable to the Chinese National Standard (CNS) A4 present grid (210X297 Mm) — II __ III —_ I installed — — II line (please read the precautions on the back before filling in this page) A7 B7 du printed by the Ministry of Economic Affairs, Central Standards Bureau, and consumer cooperation V. Description of invention (Bu) The first vibration sensor * is placed on the top surface of one layer of a structure, (b) —the second vibration sensor used to record vibrations is placed on the ground close to the structure, M and (c ) —Earth weak point data processor, which is buried in the vibration sensors and determines the seismic weakness of the structure according to the recorded vibration. The ground weak point data processor implements some processing to estimate the structure of the structure based on the light-to-light ratio between the vibration recorded on the top surface of the layer of the structure and the vibration recorded on the ground close to the structure The conversion equation of the vibration of the top surface of the layer, M will obtain the main frequency and amplification factor of the vibration of the top surface of the layer of the structure; used to obtain the main frequency and the amplification factor of the vibration of the top surface of the layer of the structure obtained Based on the height of the layer of the structure, a deformation derived from the layer, the seismic weakness index of the layer of the structure; and the earthquake weakness index used to multiply the seismic weakness index by a hypothetical ground vine acceleration * are being suffered During an earthquake, the maximum shear strain of this layer of the structure is obtained. Preferably, the seismic weakness data processor is adapted to implement the following procedure. The seismic weakness index of the layer of the structure is based on the spectrum between the horizontal component of the vibration recorded on the top surface of the layer of the structure and the horizontal component of the vibration recorded on the ground close to the structure Than the obtained main frequency and amplification factor. When suffering from ground anesthesia, the seismic weakness index is multiplied by a hypothetical maximum ground acceleration, thus obtaining the shear deformation of the layer of the structure. Preferably, the seismic weakness data processor is adapted to implement the following procedure. The seismic weakness index of this layer of the structure is based on a main frequency and -9- This paper scale applies the Chinese National Standard (CNS) A4 present grid (210X297 mm) — I—. I nn Set the I line (please read the back side first Please pay attention to this page and then fill out this page) Employee Consumption Cooperation Du Printed Α7 Β7 of the Ministry of Economic Affairs of the Ministry of Economy V. Description of the invention (1) Badger using an amplification factor, where the main frequency is based on the record in the structure The spectral ratio between the horizontal component of the vibration on the top surface of the layer and the horizontal component of the vibration recorded on the ground close to the structure is obtained, and the amplification factor is based on the calendar recorded on the structure The spectral ratio between the horizontal component of the vibration on the top surface and the vertical component of the vibration recorded on the ground close to the structure is obtained. In this calculation, the amplification of the seismic motion of a surface layer is taken into consideration. When an earthquake is encountered, the dianthracene weakness index is multiplied by a hypothetical maximum ground-based seismic acceleration, thus obtaining the shear strain of the layer of the structure. According to the fourth feature of the present invention, there is provided a device for determining the seismic weakness of a structure, which includes: (a)-a first vibration sensor for recording vibration, which is placed on the structure The top surface of a calendar, (b) —a second vibration sensor for recording vibrations, which is placed on the bottom surface of the structure, (c) a third vibration sensor for recording vibrations, It is placed on the ground close to the structure, M and (d) — seismic weakness data processor, which is connected to the vibration sensors and determines the seismic weakness of the structure based on the recorded vibration. The seismic weakness data processor performs some processing to estimate the layer of the structure based on the spectral ratio between the vibration recorded on the top surface of the layer of the structure and the vibration recorded on the ground close to the structure The conversion equation of the vibration of the top surface, Μ obtains the main frequency and amplification factor of the vibration of the top surface of the layer of the structure; it is used to record the vibrations recorded on the bottom surface of the layer of the structure and recorded near the structure. The spectral ratio between the vibrations on the ground is estimated to be -10-The structure of this paper is in accordance with the Chinese National Standard (CNS) A4 specification (210x 297mm) --------- Clothing ---- --ir ------. ^ (Please read the precautions on the back before filling this page) A7 B7 Employee's Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs Printed cover V. Description of invention (5) Conversion of vibration of the bottom surface of this layer Equation, κ obtains the main frequency and amplification factor of the vibration of the bottom surface of the structure; used to obtain the main frequency and amplification factor of the vibration of the top surface of the layer of the structure, and the vibration of the bottom surface of the layer The main frequency and amplification factor, κ and According to the height of the layer of the structure, a deformation derived from the layer, the geo-weakness index of the layer of the structure; and the multiplied index of the ground anesthesia are multiplied by a hypothetical ground acceleration, so When subjected to ground traps, the shear strain of this layer of the structure is obtained. Preferably, the seismic weakness data processor is adapted to implement the following procedure. The seismic weakness index * of the layer of the structure is based on the difference between the horizontal component of the vibration recorded on the top and bottom of the layer of the structure and the horizontal component of the vibration recorded on the ground close to the structure The spectrum is derived from the obtained main frequency and amplification factor. When an earthquake occurs, the seismic weakness index is multiplied by a hypothetical maximum ground seismic acceleration, so that the shear strain of the layer of the structure is obtained. Preferably, the seismic weakness data processor is wildly configured to implement the following procedure. The seismic weakness index of the layer of the structure is obtained by using a main frequency and an amplification factor, wherein the main frequency is based on the horizontal component of the vibration recorded on the top and bottom surfaces of the layer of the structure and the recorded The spectral ratio between the horizontal component of the vibration on the ground close to the structure is obtained, and the magnification factor is based on the vibration points recorded on the top and bottom surfaces of the layer of the structure. It is obtained by recording the spectral ratio between the vertical components of the vibration on the ground close to the structure. Count here-11- (please read the precautions on the back before filling in this page)-Packing. The paper size of the binding book is applicable to China National Standard (CNS) A4 * t grid (210X297mm) Central Bureau of Standards, Ministry of Economic Affairs Employee Consumer Cooperative Printed Α7 Β7 V. Description of Invention (i)

I 算中,一表層之地親運動的放大係被列入考應。在遭受到 地霣時,所述地震弱點指數係乘上一假設的最大地基地惠 加速度,因而獲致該结構之該層的剪應變。 較佳地,所述振動感應器係用於檢知微萬動者。 因此,本發明提供了下述效果。 地震弱點可予立即決定出,而毋需利用一種用來振動 —结構的裝置。而且•由於在遭受到地震時可獲得一剪應 變,故一结構之地震弱點可予定置地決定。 地震弱點可僅藉由實施簡單的量測和計算便決定出* 毋需詳细檢視一摞的结構。而且,毋需專家參與地霣弱點 之決定。因此,一结構的地霣弱點可在一較短的期間和在 低費用下予決定出。 由於係利用到闞於一结構的實際振動,故一考慮到结 樽之損壊、差勁施工、以及其他類似因素的絕對評估是可 能的。 附圖之簡略說明 依據本發明,用來決定一结構之地震弱點的方法和用 於此方法的装置之结構和特色,在藉由參照圖式而更加了 解之後,將可立即得知。 圖1為一說明圖,示出本發明的第一實施例,其中振 動係被加Μ置瀾,以決定出一结構之第—層(與地面接觸 的那—層)的地裔弱點; -12- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝· •1Τ 228623 at B7五、發明説明(J) 0 地 定 決 來 用 例 施 實 弱 霣 地 定 決 來 用 例 施 1 霣 第一 據第 依據 出依 示 在 , 用 圈使 塊 被 方出 一; 示 為法顯 2 方 3 圓的應 點 弱 振 中 其 例 施 實二 第 ; 的 » 33 様 明 结發 的本 器出 應示 想 , 動圖 振明 1 說 之一 中為 法4 方圖 的 點 •1 層 點雙 弱一 震中 地其 的, 層圖 1 明 任說 之的 構例 结施 1 霣 出 三 定第 決明 M發 ’ 本 測出 量示 以為 加 5 被圈 係 動 测實 量三 被第 係據 動依 霖係 微 6 的圈 屋 木 和比 纛譜 分光 平的 水間 的之 動量 0 分, 微平I 上水 層的的 二動動 第震振 的徹之 子上樓 屋 -0 層 5 面二 匾地第 在的到 錄 5 進 記圖行 被在面 , 錄地 例記從 施被ί 層二 第 的 子 屋 5 圔 在 錄 記 被 例 施 實 三 } 第 式據 程依 方係 換 7 轉圖 估 預 微直 上垂 估 預 的的 « 助 震振 微之 上樓 d 層 面 二 地第 的到 5 進 圖行 在基 錄地 記從 被 C 和比 K 量譜; 分光 } 平的式 水間程 的之方 動量換 藤分轉 及 (請先閲讀背面之注意事項再填寫本頁) -裝. 訂 線 經濟部中央揉李局員工消费合作社印製 第 的 明 發 本 說 解 來 用 圔 示 概 的 物 築 建 層 高1 為。 8 例 圈施 實 四 述 描 细 詳 式 圖 照 參 將 著 明接 說例 细施 詳實 之的 例明 施發 實本 佳 較 層 - 那 的 層1 第 之 構 结。 一 法 得方 獲之 來點 用弱 棰震 1 地 述的 描} 先 首 觸 接 面 地 與 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) A7 B7 經濟部中央標準局負工消费合作社印製 五、發明説明 丨( il ) 1 1 | 圖 1 顯 示 出 本 發 明 的 第 一 實 施 例 9 其 中 振 動 係 被 加 K 1 1 I 量 測 > >λ 便 藉 由 依 據 本 發 明 第 — 實 施 例 的 方 法 來 決 定 出 該 1 | 结 構 之 第 一 層 ( 與 地 面 接 觸 的 那 — 層 ) 的 地 震 弱 點 〇 匾 2 請 1 1 閱 I 為 示 出 一 種 用 來 決 定 地 震 弱 點 之 方 法 的 方 塊 圈 〇 画 3 顯 示 讀 背 I I 出 一 振 動 感 應 器 的 構 造 0 之 1 注 1 如 |^ST 圈 1 中 所 示 > 當 欲 決 定 一 结 構 1 之 地 m 弱 點 時 , —* 意 事 1 項 1 振 動 感 懕 器 7 係 被 放 置 在 該 结 構 1 之 一 欞 層 2 的 頂 面 3 上 再 4 1 寫 裝 1 » 並 且 —* 振 動 感 懕 器 8 係 被 放 置 在 接 近 該 结 構 1 之 地 面 4 本 頁 上 0 1 I 該 振 動 感 應 器 7 的 结 構 現 將 參 照 ΒΒ 3 加 Μ 描 述 0 該 振 1 I 動 感 應 器 8 具 有 與 振 動 感 應 器 7 為 相 同 的 结 構 並 可 獲 得 振 1 1 訂 1 動 資 料 ( 例 如 有 翮 微 震 動 的 資 料 ) 0 該 振 動 感 應 器 7 係 由 一 用 來 提 供 電 源 到 其 上 並 用 來 輪 1 | 出 振 動 資 料 的 連 接 器 7 a 、 — 連 到 該 連 接 器 7 a 的 電 線 7 1 I b > 一 被 提 供 在 一 殺 體 7 ί 上 的 水 平 儀 7 C — 手 把 7 d 1 1 線 1 ·> — 極 性 標 記 7 e 一 垂 直 ( 方 向 Ζ ) 振 動 檢 知 器 7 f 、 — 水 平 ( 方 向 X ) 振 動 檢 知 器 7 S > Μ 及 一 水 平 ( 方 向 Y 1 | ) 振 動 檢 知 器 7 h 所 組 成 0 1 I 該 振 動 感 應 器 7 係 定 向 成 致 使 得 其 所 檢 知 振 動 的 水 平 1 1 分 量 為 位 於 用 來 決 定 出 地 篇 弱 點 之 振 動 方 向 上 0 1 1 在 此 用 來 決 定 地 震 弱 點 的 方 法 中 9 如 圈 2 中 所 示 t 由 1 I 振 動 感 應 器 7 ( 或 8 ) 所 獲 得 的 振 動 資 料 係 被 讚 入 — 地 η 1 I 弱 點 簧 料 處 理 器 9 0 此 地 藤 弱 點 資 料 處 理 器 9 係 由 一 濾 波 1 1 - 14 - 1 1 1 本纸佚尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央揉準局員工消费合作社印製 A7 B7 五、發明説明(ί>) 放大器9a、一 A/D轉換器9b、一波形儲存區部9c 、一分析區部9 d、Μ及一輸出匾部9 e所組成。 如圓1中所示,從該地面4行進到該頂面3振動之轉 換方程式,係依據被由放置在該頂面3上的振動感應器7 所記錄振動的水平分量10和被由放置在該地面4上的振 動感應器8所記錄振動的水平分量11之間的光譜比而估 算出。從地面4行進到頂面3之振動的主頻率F s和放大 因數As係依據所估算轉換方程式的峰值而得。 有鑑於一地基5之振動的水平分量係概略相同於其垂 直分量並且此垂直分量並未被表層放大多少之事S,在該 地基5處振動之水平分量13的光譜係可K在該地面4上 所記錄振動之垂直分1 1 2的光譜來近似。因此*從地基 5行進到頂面3之振動的轉換方程式,可依攞被記錄在該 頂面3上振動之水平分量1 0和被記錄在該地面4上振動 之垂直分量1 2之間的光譜比來估算。從地基5行進到頂 面3之振動的放大因數As g可依據此估算轉換方程式的峰 值而得。 一最大地面地震加速度cts、一最大地基地震加速度 ctb、以及該頂面3的最大地霣加速度α (三者在遭受到 地震時預估將產生出)維持下列式子(1)所表示的關係 0 a = A s X a s =A sg χ a b ( 1 ) -1 5 - 本紙張尺度適用中國國家標率(CNS ) A4規格(210X297公藿) I I I I I I 裝 I I 訂—— —線 (請先閱讀背面之注意事項再填寫本瓦) 經濟部中夾樣準局員工消费合作社印裝 A7 B7 五、發明説明(【4) 當一具有最大地面地霣加速度ccs(Ga 1)的地鼉 波係被输入到接近结構1的地面4時,該頂面3的水平分 量,亦即第一層的内層位移5 (cm)係由下列式子(2 )而得。 δ = I / k =Μ χ α / k =(M/k) χ A s x a s 2 =(1 / ω ) x A s χ a s 2 =Cl / (2πΡ8) ]x A s x as =(1/4 π2) x (As/Fs2) x a s (2) 當一具有最大地基地震加速度ab(Ga 1)的地霣 波係被输入到接近结構1之下的地基5時,該頂面3的水 平分量*亦即第一層的内層位移δ (cm)係由下列式子 (3 )而得。 5 = I / k =Μ χ α / kIn the calculation, the amplification of the pro-motion of a surface layer is included in the test. When subjected to ground encroachment, the seismic weakness index is multiplied by a hypothetical maximum ground benefit acceleration, thus resulting in the shear strain of the layer of the structure. Preferably, the vibration sensor is used to detect micro-movers. Therefore, the present invention provides the following effects. Earthquake weaknesses can be determined immediately without the need for a device to vibrate the structure. Furthermore, since a shear strain can be obtained when an earthquake is encountered, the seismic weakness of a structure can be predetermined. Earthquake weakness can be determined simply by performing simple measurements and calculations * No need to examine a stack of structures in detail. Moreover, there is no need for experts to participate in the determination of weak points. Therefore, the weakness of a structure can be determined in a shorter period and at a lower cost. Since the actual vibrations of a structure are used, an absolute assessment that takes into account damage to the structure, poor construction, and other similar factors is possible. Brief Description of the Drawings According to the present invention, the structure and characteristics of the method for determining the seismic weakness of a structure and the device used for this method will be immediately known by referring to the drawings. FIG. 1 is an explanatory diagram showing the first embodiment of the present invention, in which the vibration system is added to determine the weak point of the ancestry of the first layer (the layer in contact with the ground) of a structure;- 12- This paper scale is applicable to China National Standard (CNS) Α4 specification (210Χ297mm) (please read the precautions on the back before filling out this page). • 1T 228623 at B7 5. Description of the invention (J) Come to use cases to implement weak decision to use cases to make use of the first example according to the first basis, use the circle to make the block be squared out; shown as the law display 2 square 3 circle of weak points in the case of implementation The second section; of »33 The appearance of the instrument produced by Shaming Ming should be imaginative. One of the motion diagrams of Zhenming 1 is the point of the square diagram of the French 4 • One layer point is double weak and one epicenter, its layer picture 1 is Ming Ren Said the structure of the knot Shi 1 霣 出 三定 第 定 明 M 发 'The measured quantity is shown as plus 5 by the circle system dynamic measurement of the third by the system according to the dynamic Yilin system micro 6 The spectroscopic spectroscopic level of the momentum between the water is 0 points, the micro level I of the upper water layer The second son of the second son of Tokushinki Go to the upper building-floor 5 on the 5th floor with 2 plaques on the floor to the record 5 The record line is on the face, and the record is recorded from the Shibei floor 2nd house on the 5th floor In the record, it is implemented in the third instance. According to the system, the 7th rotation chart is estimated to be slightly up and down, and the estimated «shock-assisted vibration micro-upstairs d level 2nd to the 5th map is at the base recording site Note the measured spectrum from C and K; Spectroscopy} The square momentum of the square water course is changed to the rattan and the momentum (please read the precautions on the back and then fill out this page)-installed. The bureau employee consumer cooperative printed the first version of the Mingfa version to build a high-rise building with the outlined objects. 8 cases of circle Shi Shi four detailed description of the picture according to the reference will be described in detail, detailed examples of detailed implementation of the actual implementation of the best layer-that the first layer of the structure. The method of obtaining a point with a weak shock is described as follows: First touch the surface and the paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) A7 B7 The Ministry of Economic Affairs Central Standards Bureau is negative Printed by the Industrial and Consumer Cooperative Society 5. Description of the invention 丨 (il) 1 1 | FIG. 1 shows the first embodiment 9 of the present invention where K 1 1 I measurement is added to the vibration system > > λ is based on the present invention The method of the first embodiment is used to determine the seismic weakness of the first layer of the structure (the layer in contact with the ground). Plaque 2 Please 1 1 Read I is a block showing a method for determining seismic weakness Circle 〇Drawing 3 shows the structure of a vibration sensor in reading back II. 1 of 0 Note 1 As shown in | ^ ST circle 1> When you want to determine the weak point of a structure 1 ground, — * intention 1 item 1 Vibrate The trap 7 is placed on the top surface 3 of one of the tiers 2 of the structure 1 and then 4 1 writing 1 »and— * the vibration trap 8 is placed on the ground close to the structure 1 4 on this page 0 1 I The structure of the vibration sensor 7 will now be described with reference to BB 3 plus M 0 The vibration 1 I The motion sensor 8 has the same structure as the vibration sensor 7 and can obtain vibration 1 1 Set 1 dynamic data (for example, there is 翮Micro-vibration data) 0 The vibration sensor 7 is composed of a connector 7 a for supplying power to it and for the wheel 1 | to output vibration data, — a wire 7 1 I b & gt connected to the connector 7 a ; A spirit level 7 C provided on a killing body 7 ί — handle 7 d 1 1 line 1 > — polarity mark 7 e a vertical (direction Z) vibration detector 7 f, — horizontal (direction X ) Vibration detector 7 S > Μ and a level (direction Y 1 |) Vibration detector 7 h composed of 0 1 I The vibration sensor 7 is oriented so that the level of the vibration it detects 1 1 The component is located in the direction of the vibration used to determine the weak point of the ground chapter 0 1 1 In this method used to determine the seismic weakness 9 as shown in circle 2 t The vibration data obtained by 1 I vibration sensor 7 (or 8) is praised — ground η 1 I weak point spring processor 9 0 The vine weakness data processor 9 here is a filter 1 1-14-1 1 1 The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) A7 printed by the Employee Consumer Cooperative of the Central Bureau of Economic Development of the Ministry of Economic Affairs B7 V. Description of Invention (ί >) The amplifier 9a, an A / D converter 9b, a waveform storage section 9c, an analysis section 9d, M and an output plaque section 9e. As shown in circle 1, the transfer equation of vibration traveling from the ground 4 to the top surface 3 is based on the horizontal component 10 of the vibration recorded by the vibration sensor 7 placed on the top surface 3 and by the The spectral ratio between the horizontal components 11 of the vibration recorded by the vibration sensor 8 on the ground 4 is estimated. The main frequency F s and the amplification factor As of the vibration traveling from the ground 4 to the top surface 3 are obtained based on the peak value of the estimated conversion equation. In view of the fact that the horizontal component of the vibration of a foundation 5 is roughly the same as its vertical component and this vertical component has not been amplified much by the surface S, the spectrum of the horizontal component 13 of the vibration at the foundation 5 can be K on the ground 4 The vertical division of the vibration recorded on the 1 1 2 spectrum is approximated. Therefore, the conversion equation of the vibration traveling from the foundation 5 to the top surface 3 can be determined by the spectrum between the horizontal component 10 of the vibration recorded on the top surface 3 and the vertical component 1 2 of the vibration recorded on the ground 4 Than to estimate. The amplification factor As g of the vibration that travels from the foundation 5 to the top surface 3 can be obtained based on the peak value of the conversion equation. A maximum ground seismic acceleration cts, a maximum ground seismic acceleration ctb, and the maximum ground acceleration α of the top surface 3 (the three are predicted to be generated when an earthquake is encountered) maintain the relationship expressed by the following formula (1) 0 a = A s X as = A sg χ ab (1) -1 5-This paper scale is applicable to China National Standards (CNS) A4 specification (210X297 gagweed) IIIIII Binding II order-line (please read the back first Note: fill in this tile again.) A7 B7 printed by the Ministry of Economic Affairs in the Bureau of Consumers ’Cooperatives. 5. Description of the invention ([4) When a ground wave system with maximum ground acceleration ccs (Ga 1) is entered When approaching the ground 4 of the structure 1, the horizontal component of the top surface 3, that is, the inner layer displacement 5 (cm) of the first layer is obtained by the following formula (2). δ = I / k = Μ χ α / k = (M / k) χ A sxas 2 = (1 / ω) x A s χ as 2 = Cl / (2πΡ8)] x A sx as = (1/4 π2 ) x (As / Fs2) xas (2) When a ground wave system with maximum ground seismic acceleration ab (Ga 1) is input to the ground 5 near the structure 1, the horizontal component of the top surface 3 * is also That is, the inner layer displacement δ (cm) of the first layer is obtained by the following formula (3). 5 = I / k = Μ χ α / k

=(M/k) χ Asgx a b Z =(1/ω ) x Asgx a b =〔1/(2;iFs) ]x Asgx a b =(1/4 π2) x (Asg/Fs2) x a b (3) 其中M為與該頂面3之振動有闞的實效霣量,I為在遭受 到地震時於該實效質量Μ中所產生的慣性力,k為一剪力 强簧的强性係數(其代表有關該頂面3的剛度),以及ω -1 6- 本紙張尺度適用中國國家標隼(CNS ) Α4規格(210Χ 297公釐) I I n 裝— 11 I I I訂 線 (請先閲讀背面之注意事項再填寫本頁) A7 B7 經濟部中央標準局員工消費合作社印袈 五、發明説明( Λ) 1 1 I 為 該 頂面3 之 振 動 的 角 頻率 。在實 際上, 水 平位 移δ的計 1 1 I % 不 需要這 些 值 〇 在 遭 受到 地震時 該頂面 3 的位 移可依據 1 1 I 該 頂 面3的 主 頻 率 F s和放大因數A s或A sgM及 最大地基 請 先 1 1 閲 I 地 篇 加速度 α b而得 3 讀 背 1 1 將該欞 層 2 的 高 度 表示 為h 1 (m ) 該樓曆2的剪 面 之 1 應 變 7 ( 1 〇' - 6 ) 係 由 式子 (4 ) 而得, 其 中係 利用到最 ί 事 1 1 項 | 大 地 面地藤 加 速 度 α S 或是由式子(5 ) 而得 其中係 4 1 焉 裝 1 利 用 到地基 的 最 大 地 震 加速 度。式 子(4 ) 和( 5 )中出 ▲ 頁 現 的 10 0 0 0 為 一 係 數, 用來調 整所算 出 的剪 應變7 , Ν_^ 1 I 使 得 當用來 得 到 内 層 位 移δ 的地震 加逑度 a s和a b的量测 1 1 | 單 位 為G a 1 ( C m / s2) ,以及 樓餍2 的 高度 h 1的量 1 1 -έ 訂 1 測 軍 位為公 尺 ( m ) 時 ,剪 應爱7 的單位 為 1 0 〇 7 = 1 0 0 0 0 X 5 / h 1 1 1 — 1 0 0 0 0 X ( 1 / 4 π) X ( A s / F s“) X C (s/ h 1 1 I = (2 5 0 0 A S/ 7 2 1 F s h 1) X a s (4 ) 1 1 線 1 7 = 1 0 0 0 0 X δ X h 1 1 1 I = 1 0 0 0 0 X (1 / 4 /) X (As g/ F s 2) X a b/ h 1 1 1 I (2 5 0 0 A sg/ π2 F s2h 1) x a b . (5 ) 1 1 當使用 最 大 地 面 地 霣加 速度時 ,將被 產 生於 樓層2中 1 1 的 最 大剪懕 變 7 ( 1 m 0 ) (稍候 描述) 9 在遭 受到地震 1 | 時 1 可藉由 把 由 式 子 ( 6 ) 所表示 的地馬 弱 點指 數K s和 1 | 最 大 地面地 m 加 速 度 α s乘在一起而估算得。 1 1 I - 17- 1 1 1 本紙伕尺度適用中國國家標準(CNS ) A4規格(2丨OX 297公釐) 經濟部中央標準局負工消費合作社印製 A7 B7 五、發明説明(β) K s= 2 5 0 0 A s/ π2, F s2h 1 ( 6 ) 同樣的,當使用最大地基地蒽加速度時,將被產生於 樓層2中的最大剪應變7 (10 ),在遭受到地霣時* 可藉由把由式子(7)所表示的地震弱點指數Ksg和最大 地基地震加速度ab乘在一起而估算得。 Κ$3= 2 5 0 0 A sg/ πΖ¥ s2 h 1 ( 7 ) 接著將描逑一種用來獲得地震弱點指數和一结構之任 一檯層的剪應變之方法。 圖4顯示出本發明的第二實施例,其中振動係被加以 量測,Μ決定出一多層结構之任一樓層的地震弱點。 利用上述依摟第一實施例來獲得第一層樓(與地面接 觸的那一層)之地震弱點的方法,可得出一多層结構2 1 之第η層2 2的内層變形,以便決定出所述第η層2 2的 地震弱點指數。 從地面2 5行進到多層结構2 1之第η層2 2的頂面 2 3之振動的轉換方程式,係依據被記錄在該頂面2 3上 搌動之水平分量3 2和被記錄在該地面2 3上振動之水平 分量3 4之間的光譜比來估算。從地面2 5行進到頂面2 3之振動的主頻率F su和放大因數A su可依據此估算得的 轉換方程式而得。 同樣的,從地面2 5行進到第η層2 2之一底面24 之振動的轉換方程式,係依捶被記錄在該底面24上振動 之水平分量3 3和被記錄在該地面2 5上振動之水平分量 -1 8 _ 本紙張尺度適用中國國家標率(CNS ) A4说格(210X297公釐) ---------批衣------tT------# (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標隼局員工消费合作杜印装 A7 B7 五、發明説明(《>) 34之間的光譜比來估算。從地面2 5行進到底面24之 振動的主頻率F sd和放大因數Asd可依據此估算得的轉換 方程式而得。 從地基2 6行進到第η層2 2的頂面2 3之振動的轉 換方程式,可依據被記錄在該頂面2 3上振動之水平分量 3 2和被記錄在該地面2 5上振動之垂直分13 5之間的 光譜比來佑算。從地基2 5行進到頂面2 3之振動的放大 因數Asgu可依據此估算得的轉換方程式而得。 同樣的,從地基26行進到第η® 22的底面24之 振動的轉換方程式,可依據被記錄在該底面24上振動之 水平分量3 3和被記錄在該地面2 5上振動之垂直分量3 5之間的光譜比來估算。從地基2 6行進到底面24之振 動的放大因数A sgd可依據此估算得的轉換方程式而得。 參考標號2 7代表一表層,參考標號2 8代表被放置在第 η層2 2之頂面2 3上一振動感應器,參考摞號2 9代表 被放置在第η層2 2之底面24上一振動感懕器*參考檷 號3 0代表被放置在地面2 5上一振動感懕器,以及參考 標號3 1代表一地震弱點資料處理器,此地震弱點資料處 理器3 1具有相同於第一實施例之地震弱點資料處理器9 的结構。參考標號3 6代表在地基2 6處振動的水平分量 0 當—具有最大地面地震加速度as (Ga 1)的地震 波係输入到接近多層结構2 1的地面2 5時,該第η層2 -1 9- 本紙乐尺度適用中國國家標準(CNS ) Α4规格(210Χ297公釐) 裝 訂 線 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局爲工消費合作社印製 A7 B7 五、發明説明(η ) 2之頂面2 3的水平位移和該第η曆2 2之底面24的水 平位移係由式子(2)而得。該第η曆22的内曆位移S (cm)係由取此兩水平位移之間的差值而得,如下列式 子(8 )所示。 δ - (1/4 π2) x (Asu/Fsu*-) x a s ~ 2 2 (1 / 4 π ) x ( A sd/ F sd ) x a s =(1/4π2) x〔(Asu/Fsu2") - 2 (A sd/ F sd ) ] x a s ( 8 ) 當一具有最大地基地霣加速度ctb(Ga 1)的地露 波係輪入到該结構2 1之下的地基26時•該第η層2 2之頂面2 3的水平位移和該第η層2 2之底面24的水 平位移係由式子(2)而得。該第η層22的内層位移δ (cm)係由取此兩水平位移之間的差值而得,如下列式 子(9 )所示。 2 2. δ = (1/4π) x (A sgu/ F su ) x a b - 2. 2. (1 / 4 π ) x ( A sgd/ F sd ) x a b 2 2 =(1/4 π) x C (Asgu/Fsu)- (A sgd/ F sd^ ) ] x a s ( 9 ) 該第n層22的高度表示為hn(m),該第n)f22 的剪應變7 (1CT&)係由式子(10)而得•在此係使 用到最大地面地霣加速度*或是由式子(1 1)而得,在 此係使用到最大地基地震加速度。式子(10)和(1 1 )中出現的10000為一係數,用來調整所算出的剪應 -20- 本紙張尺度適用中國國家揉準(CNS ) A4规格(2丨0X297公釐) — II I I I I I I 裝— I I I I I 訂— 線 (請先閲讀背面之注意事項再填寫本頁) 298623 A7 B7 五、發明説明(/客) 變7 ,使得當用來得到内曆位移δ的地震加速度as和ab 的量測單位為Gal (cm/s2) ’以及該第η層22的 高度h η的量測單位為公尺(m)時’剪應變γ的單位為 一 6 10 ° 7= 1 0 0 0 0 X δ n/ h η = 10000 χ (1/4π2) x〔(Asu/Fsu2) -2 (A sd/ F sd )〕χ α s/ h η =(2 5 0 0/ π2 h η) x C ( A su/ F su )— (A sd/ F sd2) ] x a s (10) 7 =10000 χ δ n/ h n 2 2. = 10000 χ (1/4π) x 〔 (Asgu/Fsu) - ( A sgd/ F s d2-) ] X a b/ h n =( 2 5 0 0 / π2 h n) X C z (A Sgu/ F su ) ( A sgd/ F sdZ) ] X a b 當使用最大地面地震加速度時,將被產生於該第n層 22中的最大剪應變7 (1 Cf6 ),在遭受到地震時,可 藉由把由式子(12)所表示的地震弱點指數K sn和最大 地面地震加速度a s乘在一起而估算得。= (M / k) χ Asgx ab Z = (1 / ω) x Asgx ab = [1 / (2; iFs)] x Asgx ab = (1/4 π2) x (Asg / Fs2) xab (3) where M is the actual effective amount of vibration that has a negative effect on the top surface 3, I is the inertial force generated in the effective mass M when subjected to an earthquake, and k is the strength coefficient of a strong shear spring (which is related to The rigidity of the top surface 3), and ω -1 6- This paper scale is applicable to the Chinese National Standard Falcon (CNS) Α4 specification (210Χ 297 mm) II n package — 11 III line (please read the precautions on the back first (Fill in this page) A7 B7 Seal of Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of Invention (Λ) 1 1 I is the angular frequency of the vibration of the top 3. In practice, these values are not required for the horizontal displacement δ 1 1 I%. The displacement of the top surface 3 when subjected to an earthquake can be based on the main frequency F s of the top surface 3 and the amplification factor A s or A For the sgM and the maximum foundation, please first read 1 1 the ground acceleration α b and get 3 read the back 1 1 express the height of the mullion 2 as h 1 (m) 1 of the shear plane of the calendar 2 strain 7 (1 〇 '-6) is derived from the formula (4), where the most used item 1 1 is used | The ground ground vine acceleration α S or is derived from the formula (5) where the system 4 1 is installed 1 The maximum seismic acceleration to the foundation. In the equations (4) and (5), the ▲ page present 10 0 0 0 0 is a coefficient, used to adjust the calculated shear strain 7, Ν_ ^ 1 I makes it used to obtain the seismic displacement of the inner layer displacement δ Measurement of as and ab 1 1 | The unit is Ga 1 (C m / s2), and the height h 1 of the building 2 is the quantity 1 1-編 記 1 When the military position is measured in meters (m), the shear should be The unit of Love 7 is 1 0 〇7 = 1 0 0 0 0 X 5 / h 1 1 1 — 1 0 0 0 0 X (1/4 π) X (A s / F s) XC (s / h 1 1 I = (2 5 0 0 AS / 7 2 1 F sh 1) X as (4) 1 1 line 1 7 = 1 0 0 0 0 X δ X h 1 1 1 I = 1 0 0 0 0 X (1 / 4 /) X (As g / F s 2) X ab / h 1 1 1 I (2 5 0 0 A sg / π2 F s2h 1) xab. (5) 1 1 When the maximum ground ground acceleration is used, The maximum shear change 7 (1 m 0) that will be generated on the floor 2 1 1 (later described) 9 When an earthquake is encountered 1 | time 1 can be solved by taking the ground horse's weakness expressed by equation (6) Index K s and 1 | maximum ground acceleration m α s is estimated by multiplying together. 1 1 I-17- 1 1 1 The paper scale is applicable to the Chinese National Standard (CNS) A4 specification (2 丨 OX 297 mm). The A7 is printed by the Consumer Labor Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. B7 5. Description of the invention (β) K s = 2 5 0 0 A s / π2, F s2h 1 (6) Similarly, when the maximum ground anthracene acceleration is used, the maximum shear strain will be generated in floor 2 7 (10), when it suffers from the ground encroachment *, it can be estimated by multiplying together the seismic weakness index Ksg represented by equation (7) and the maximum ground seismic acceleration ab. Κ $ 3 = 2 5 0 0 A sg / πZ ¥ s2 h 1 (7) Next, a method for obtaining the seismic weakness index and the shear strain of any platform of a structure will be described. Fig. 4 shows a second embodiment of the present invention, in which vibration is measured, M determines the seismic weakness of any floor of a multi-layer structure. Using the method of obtaining the seismic weakness of the first floor (the layer in contact with the ground) according to the first embodiment described above, the inner layer deformation of the n-th layer 2 2 of a multi-layer structure 2 1 can be obtained in order to determine The seismic weakness index of the n-th layer 22. The transfer equation of the vibration that travels from the ground 25 to the top surface 2 3 of the n-th layer 2 2 of the multilayer structure 21 is based on the horizontal component 3 2 recorded on the top surface 2 3 and recorded in the The spectral ratio between the horizontal component 34 of the vibration on the ground 23 is estimated. The main frequency F su and the amplification factor A su of the vibration traveling from the ground 25 to the top surface 23 can be obtained based on the estimated conversion equation. Similarly, the transfer equation of the vibration traveling from the ground surface 25 to the bottom surface 24 of one of the n-th layers 2 2 depends on the horizontal component 3 3 of the vibration recorded on the bottom surface 24 and the vibration recorded on the ground surface 25 The horizontal component of -1 8 _ This paper scale is applicable to the Chinese national standard (CNS) A4 said grid (210X297 mm) --------- approved clothing ------ tT ------ # (Please read the precautions on the back and then fill out this page) Ministry of Economic Affairs Central Standard Falcon Bureau Employee Consumption Cooperation Du Printed A7 B7 V. Invention description (《>) 34 Spectral ratio to estimate. The main frequency F sd and the amplification factor Asd of the vibration traveling from the ground 25 to the bottom 24 can be obtained based on the estimated conversion equation. The transfer equation for the vibration of the top surface 2 3 traveling from the foundation 26 to the n-th layer 2 2 can be based on the horizontal component 3 2 of the vibration recorded on the top surface 2 3 and the vibration recorded on the ground 25 The spectral ratio between 13 points and 5 points is calculated. The amplification factor Asgu of the vibration that travels from the foundation 25 to the top surface 23 can be obtained based on the estimated conversion equation. Similarly, the transfer equation for the vibration of the bottom surface 24 traveling from the foundation 26 to the η 22nd can be based on the horizontal component 3 3 of the vibration recorded on the bottom surface 24 and the vertical component 3 of the vibration recorded on the ground surface 25 Estimate the spectral ratio between 5. The amplification factor A sgd of the vibration traveling from the foundation 26 to the bottom surface 24 can be obtained based on the estimated conversion equation. Reference number 2 7 represents a surface layer, reference number 2 8 represents a vibration sensor placed on the top surface 2 3 of the nth layer 22, and reference number 29 represents the placement on the bottom surface 24 of the n layer 2 2 A vibration sensor * reference frame number 3 0 represents a vibration sensor placed on the ground 25, and reference numeral 3 1 represents a seismic weak point data processor, the seismic weak point data processor 3 1 has the same The structure of the seismic weakness data processor 9 of an embodiment. Reference numeral 3 6 represents the horizontal component of vibration at the foundation 26. When the seismic wave system with the maximum ground seismic acceleration as (Ga 1) is input to the ground 2 5 close to the multilayer structure 21, the n-th layer 2 -1 9- The standard of this paper is applicable to the Chinese National Standard (CNS) Α4 specification (210Χ297mm) binding line (please read the notes on the back before filling in this page). The Central Bureau of Standards of the Ministry of Economic Affairs printed A7 B7 for industrial and consumer cooperatives. V. Inventions The horizontal displacement of the top surface 23 of the (η) 2 and the horizontal displacement of the bottom surface 24 of the n-th calendar 2 2 are obtained by the formula (2). The internal calendar displacement S (cm) of the nth calendar 22 is obtained by taking the difference between these two horizontal displacements, as shown in the following formula (8). δ-(1/4 π2) x (Asu / Fsu *-) xas ~ 2 2 (1/4 π) x (A sd / F sd) xas = (1 / 4π2) x 〔(Asu / Fsu2 ")- 2 (A sd / F sd)] xas (8) When a ground dew wave system with the largest ground acceleration ctb (Ga 1) turns into the foundation 26 under the structure 2 1 • the η layer 2 The horizontal displacement of the top surface 2 3 of 2 and the horizontal displacement of the bottom surface 24 of the n-th layer 2 2 are obtained by equation (2). The inner layer displacement δ (cm) of the nth layer 22 is obtained by taking the difference between these two horizontal displacements, as shown in the following formula (9). 2 2. δ = (1 / 4π) x (A sgu / F su) xab-2. 2. (1/4 π) x (A sgd / F sd) xab 2 2 = (1/4 π) x C (Asgu / Fsu)-(A sgd / F sd ^)] xas (9) The height of the nth layer 22 is expressed as hn (m), the shear strain of the n) f22 7 (1CT &) is given by the formula (10) Derived • In this system, the maximum ground acceleration is used * or is derived from the formula (11), and in this system, the maximum ground acceleration is used. The 10000 appearing in formulas (10) and (1 1) is a coefficient, used to adjust the calculated shear should be -20- This paper scale is applicable to China National Standard (CNS) A4 specification (2 丨 0X297mm) — II IIIIII installation — IIIII booking — line (please read the precautions on the back before filling in this page) 298623 A7 B7 V. Description of invention (/ guest) Change 7 so that it can be used to obtain the seismic acceleration as and ab of the internal calendar displacement δ The unit of measurement is Gal (cm / s2) 'and the height h of the n-th layer 22 is measured in meters (m)' The unit of shear strain γ is a 6 10 ° 7 = 1 0 0 0 0 X δ n / h η = 10000 χ (1 / 4π2) x [(Asu / Fsu2) -2 (A sd / F sd)] χ α s / h η = (2 5 0 0 / π2 h η) x C (A su / F su) — (A sd / F sd2)] xas (10) 7 = 10000 χ δ n / hn 2 2. = 10000 χ (1 / 4π) x 〔(Asgu / Fsu)-(A sgd / F s d2-)] X ab / hn = (2 5 0 0 / π2 hn) XC z (A Sgu / F su) (A sgd / F sdZ)] X ab when the maximum ground seismic acceleration is used, The maximum shear strain 7 (1 Cf6) generated in the n-th layer 22 can be determined by the equation when subjected to an earthquake 12) earthquake vulnerability index represented by K sn earthquake and maximum ground acceleration a s multiplied together and get estimates.

Ks= (2500 / π2 h η) χ C ( A su/ F su2)-(A sd/ F sd2 ) ] (12) 同樣的,當使用最大地基地震加速度時,將被產生於 一•么 該第η層22中的最大剪愿變γ (10 ),在遭受到地 籐時’可藉由把由該式子(1 3)所表示的地霣弱點指數 -2 1- 本紙張尺度適用中國國家標隼(CNS ) A4规格(210X297公釐) I n I裝— I I I I I訂 線 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消费合作社印製 A7 B7 經濟部中央標準局員工消費合作社印裝 五、發明説明 ( ιΐ) 1 1 I K sgn和最大地基地霣加速度&lt; b乘 在 —— 起 而 估 算 得 0 1 1 I K S = = ( 2 5 0 0/ 2 η h Π) X C (/ \ sgu/ F S 1 ,2) — 1 | ( A sgd/ F £ .d2 ) ] ( 1 3 ) 請 先 1 1 閲 | 本 發 明 現將 藉 由 更 為 實 際 的 例 子 加 &gt;λ 描 述 〇 讀 背 | 利 面 I 用 微霣 動 之 二 層 播 木 屋 的 地 霣 診 斷 % 將 予 描 述 為 1 | 用 來 獲 得 一 结構 之 第 — 層 地 Μ 弱 點 之 方 法 的 — 個 例 子 0 事 1 項 1 圖 5 示 出本 發 明 的 第 三 實 施 例 &gt; 其 中 — 雙 層 木 屋 的 微 再 填 1 寫 裝 1 震 動 係 被 加 Μ量 測 0 本 頁 為 了 要 決定 導 源 自 ( 相 懕 於 一 雙 層 檑 木 屋 a 之 第 一 層 1 | 的 ) 檯 層 b 之變 形 的 地 震 弱 點 — 振 動 感 懕 器 被 放 置 在 1 I ( 檯 層 b 的 裳表 面 上 ) 第 二 層 檯 之 地 板 C 上 &gt; Μ 及 — 振 動 1 1 訂 1 感 應 器 h 被 放置 在 地 面 d 上 0 利 用 此 兩 振 動 感 應 器 S 和 h &gt; 地 板 c 和 地面 d 的 微 霣 動 係 被 同 時 量 測 因 而 獲 得 一 光 1 | 譖 比 0 符 號 f代 表 一 表 層 Μ 及 符 號 i 代 表 —* 地 m 弱 點 資 1 I 料 處 理 器 此地 霣 弱 點 資 料 處 理 器 具 有 與 上 述 地 篇 弱 點 1 1 資 料 處 理 器 9為 相 同 的 構 造 0 線 1 圖 6 顯 示出 被 記 錄 在 圈 5 屋 子 的 第 二 層 檯 地 板 C 上 微 1 I Μ 動 的 水 平 分量 和 被 記 錄 在 地 面 d 上 微 震 動 的 水 平 分 量 之 1 I 間 的 光 譜 比 (從 地 面 d 行 進 到 地 板 C 之 振 動 的 估 算 轉 換 方 1 1 程 式 ) 0 依 據 6 的 第 — 峰 值 &gt; 乃 可 獲 得 到 主 頻 率 F S = 1 1 3 • 3 9 Η 2和 放 大 因 數 A S =] 3 . 4 c 1 I 画 7 頚 示出 被 記 錄 在 圔 5 屋 子 第 二 層 播 之 地 板 C 上 微 1 1 m 動 的 水 平 分量 和 被 記 錄 在 地 面 d 上 微 藤 動 的 垂 直 分 量 之 1 1 - 22 - 1 1 1 本紙浪尺度適用中國國家樣隼(CNS〉A4说格(210X297公釐) 經濟部中央標隼局員工消费合作社印袈 29862B Λ7 B7 五、發明説明(,) 間的光譜比(從地荃e行進到地板c之振動的估算轉換方 程式)。依據圈7之一峰值,乃可獲得到放大因數A sg = 2 1 · 6 倍0 取相應於雙層木屋a第一樓層的欞面高度b為2 ♦ 8 公尺,得到地震弱點指數Ks=105 *其係在繾受到地 震時,當使用最大地面地琢加速度cts來決定地震弱點時 利用到。表1顯示出在遭受到地蒽時,對於最大地面地霣Ks = (2500 / π2 h η) χ C (A su / F su2)-(A sd / F sd2)] (12) Similarly, when the maximum ground acceleration is used, it will be generated in a The maximum shear change γ (10) in the η layer 22, when subjected to ground vines, can be obtained by applying the ground weakness index expressed by the formula (1 3)-2 1- This paper scale is applicable to China Standard Falcon (CNS) A4 specification (210X297mm) I n I installed-IIIII line (please read the precautions on the back before filling this page) A7 B7 Printed by the Ministry of Economic Affairs Central Consumer Bureau of Employees Consumer Cooperative Printed by the Employee Consumer Cooperative V. Description of the invention (ιl) 1 1 IK sgn and maximum ground base acceleration <b multiplied by-and estimated to be 0 1 1 IKS = = (2 5 0 0/2 η h Π) XC (/ \ sgu / FS 1, 2) — 1 | (A sgd / F £ .d2)] (1 3) Please read first 1 1 | The present invention will now be described by a more practical example plus λ 〇Reading back | Ramen I The second floor with micro-movement Diagnosis of the ground level of the sow house will be described as 1 | The method used to obtain the first layer of the structure-the weakness of the ground layer-an example 0 event 1 item 1 Figure 5 shows the third embodiment of the present invention &gt; — Micro refill of the double-storey wooden house 1 Writing 1 Vibration is added to the measurement 0 This page is to determine the source of the (from the first floor of a double-layer wooden house a | Deformed seismic weakness — the vibration sensor is placed on 1 I (on the surface of platform b) on the floor C of the second platform> Μ and — vibration 1 1 order 1 sensor h is placed on the ground d 0 Using these two vibration sensors S and h &gt; the micro-movement system of the floor c and the ground d are measured at the same time to obtain a light 1 | 氮 比 0 Symbol f represents a surface layer M and symbol i represents — * Ground m Weakness Zi 1 I material processor weak point here The data processor has the same structure as the above-mentioned ground weakness. 1 1 The data processor 9 has the same structure. 0 Line 1 Figure 6 shows the horizontal component and the motion of the micro 1 I M recorded on the second floor floor C of the house in circle 5 The spectral ratio between 1 I of the horizontal component of the micro-shock recorded on the ground d (the estimated converter of the vibration traveling from the ground d to the floor C 1 1 formula) 0 The first-peak value according to 6 is obtained to the main frequency FS = 1 1 3 • 3 9 Η 2 and magnification factor AS =] 3. 4 c 1 I Draw 7 頚 shows the horizontal component of the 1 1 m movement recorded on the floor C of the second floor of the house 5 The vertical component of the wisteria motion recorded on the ground d 1 1-22-1 1 1 This paper wave scale is applicable to the Chinese national falcon (CNS> A4 said grid (210X297 mm). Printed by the Employee Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economic Affairs.葈 29862B Λ7 B7 V. Description of the invention (,) Spectral ratio (from E Tsuen program proceeds to estimate conversion side of the vibration floor c). According to one of the peaks of circle 7, the amplification factor A sg = 2 1 · 6 times 0. The height b of the mullion corresponding to the first floor of the double-storey wooden house a is 2 ♦ 8 meters, and the seismic weakness index Ks = 105 * It is used when the maximum ground acceleration cts is used to determine the weak point of the earthquake when the earthquake is affected. Table 1 shows that when suffering from dianthracene,

加速度 as=100Ga 1 、200Ga 1 、和 300G —έ&gt; a 1所得到的剪懕變7 (10 )。 對於一木屋造成損壊的剪應變係大約為1 /6 0理度 (約1 7 0 0 0 X 1 CT# )。因此,此雙層木屋a於最大 地面地震加速度as時在1 〇〇G a 1下將不會被損壊, 但是在200Ga 1和300Ga 1下將被損壞。 表1 最大地面地震 加速度 cts(Gal) 1 0 0 2 0 0 3 0 0 —^ 剪應麥 7S(xlO ) 1 0 5 0 0 2 1 0 0 0 3 1 5 0 0 取相應於雙層木屋a第一播層的檯面高度b為2 · 8 公尺’得到地震弱點指數K sg= 1 7 0,其係在遭受到地 震時’當使用最大地基地震加速度ctb來決定地震弱點時 -23- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 裝 訂 線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消费合作社印製 A7 B7 五、發明説明(&gt;/ ) 利用到。表2顯示在遭受到地霣時,對於最大地面地霣加Acceleration as = 100Ga 1, 200Ga 1, and 300G — the shearing change obtained by a 1> 7 (10). The shear strain for a wooden house is about 1/6 0 degrees (about 1 7 0 0 0 X 1 CT #). Therefore, this double-storey wooden house a will not be damaged at 100 G a 1 at the maximum ground seismic acceleration as, but will be damaged at 200 Ga 1 and 300 Ga 1. Table 1 Maximum ground seismic acceleration cts (Gal) 1 0 0 2 0 0 3 0 0 — ^ She Yingmai 7S (xlO) 1 0 5 0 0 2 1 0 0 0 3 1 5 0 0 The mesa height b of the first broadcast layer is 2 · 8 meters 'to obtain the earthquake vulnerability index K sg = 1 7 0, which is when the earthquake is encountered' when the maximum ground seismic acceleration ctb is used to determine the seismic weakness -23- this The paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) binding line (please read the notes on the back before filling this page) A7 B7 printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of invention (&gt;; /) To use. Table 2 shows that when suffering from ground encroachment, the

速度 ctb=50Ga 1 、lOOGa 1 、和 150Ga I —έ&gt; 所得到的剪應變(10 )。 對於一木屋造成損壞的剪應變係大約為1 / 6 05?度 (約17000x1 0*^)。因此•此雙層木屋a於最大 地基地Μ加速度otb時在5 0G a 1下將不會被損壞,但 是在lOOGa 1和150Ga 1下將被損壞。 表2 最大地面地震 加速度 ct b ( G a 1 ) 5 0 1 0 0 1 5 0 一 6 剪懕變 7Sg(xl〇) 8500 17000 25500 現將描述本發明的第四霣施例。 在下述的例子中,依據第四實施例一種用來決定一结 構之地震弱點的方法係被應用到一具有一層地基和1 9層 樓的高層建築物。 其地震弱點將被加K決定的高層建築物係座落在一九 Λ. ^ ·: 乂 . 九五年Hyogo-Ken Nanbu大地篇的中心區並遭受到具地惠 強度為7级的地震振動。因為此高層建築物無察見明顯的 損壊,故此建築物仍在使用中。然而•此建築物極可能在 反地震強度時受到損壊。 -24- 本紙張尺度遑用中國國家橾车(CNS &gt; A4規格(210X297公* ) I n n —裝 訂 線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(y&gt;) 圈8顯示出Μ本發明第四實施例的方法來量測此建築 物。 在此霣施例中,高層建築物j的三層樓係取為一蘑, 即第一到第三層樓取為第一層k 1 ,第四到第六層樓取為 第二層k2,第t到第九層欞取為第三層k3,第十到第 十二層檯取為第四層k4,第十三到第十五層播取為第五 5 *第十六到第十八層播取為第六層k6。這些層的 平均剪懕變7已先得出,因而決定出高層建築物j的地震 弱點。 表3顯示出從地面m行進到一層樓的地板之振動的主 頻率Fs和放大因數As,以及從地基η行進到一層播的地 板之振動的放大因數Asg。這些值係利用依據被記錄在高 層建築物j之每一層樓上振動的水平分量和被記錄在地面 m上振動的垂直分量之間光譜比的第一峰值而得。表4顯 示出每一層的地震弱點指數Ksg η和剪懕變7 。每一層播 的高度為9 * 6公尺,Μ及在遭受到地震時,最大地基地 震加速度ab取為l〇〇Ga1 。 對於一強化混凝土建築物造成損埭的剪懕變7係大約 1/25055度(約4000x1 (Γ6 )。由於此剪應變 7非常大,約1 / 2 5 0强度的6到2 0倍,對於第一到 第五曆,此高層建築物j在遭受到即使是具有大約1 0 〇 G a 1的最大地基地麻加速度ab之地裔時,亦可能嚴重 損壊。尤其是,第二屬的地霣弱點是高的,表示第二層可 -25- 本紙伕尺度適用中國國家標準(CNS ) A4规格(210X297公釐) ---------裝------訂------線 (請先閱讀背面之注意事項再填寫本頁) A7 B7 五、發明説明(&gt;4) 能崩塌。 表3 F s ( Η zVelocity ctb = 50Ga 1, 100Ga 1, and 150Ga I — the shear strain obtained (10). The shear strain for a wooden house is about 1/6 05? Degrees (about 17000x10 0 * ^). Therefore, the double-storey wooden house a will not be damaged at 50 G a 1 at the maximum ground acceleration M otb, but will be damaged at 100 Ga 1 and 150 Ga 1. Table 2 Maximum ground seismic acceleration ct b (G a 1) 5 0 1 0 0 1 5 0-6 shear shear 7Sg (xl〇) 8500 17000 25500 The fourth embodiment of the present invention will now be described. In the following example, a method for determining the seismic weakness of a structure according to the fourth embodiment is applied to a high-rise building with a one-story foundation and 19 floors. The seismic weakness will be determined by the K-added high-rise building system located in Jiu Λ. ^ ·: 乂. In 1995, the central area of the Hyogo-Ken Nanbu Dadi Chapter was subjected to seismic vibration with a ground-benefit intensity of 7 . Because there is no obvious damage to this high-rise building, the building is still in use. However, it is very likely that this building will be damaged during the anti-seismic intensity. -24- The size of this paper is not using the Chinese National Pickup Truck (CNS &gt; A4 specification (210X297) *) I nn —binding line (please read the precautions on the back before filling out this page) Printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs System A7 B7 5. Description of the invention (y &gt;) Circle 8 shows the method of the fourth embodiment of the present invention to measure this building. In this embodiment, the three-story building of high-rise building j is taken as one Mushrooms, that is, the first to third floors are taken as the first floor k 1, the fourth to sixth floors are taken as the second floor k2, the tth to ninth floors are taken as the third floor k3, and the tenth to the first floor The twelfth floor is taken as the fourth floor k4, and the thirteenth to fifteenth floors are broadcast as the fifth 5 * The sixteenth to eighteenth floors are broadcast as the sixth floor k6. The average shear change of these floors is 7 It has been obtained first, and thus the seismic weakness of the high-rise building j is determined. Table 3 shows the main frequency Fs and the amplification factor As of the vibration of the floor traveling from the ground m to the first floor, and the floor traveling from the foundation η to the first floor The vibration amplification factor Asg. These values are based on the horizontal component of the vibration recorded on each floor of the high-rise building j It is obtained by recording the first peak of the spectral ratio between the vertical components of vibration on the ground m. Table 4 shows the seismic weakness index Ksg η and shear change of each layer 7. The height of each layer is 9 * 6 meters , Μ and when subjected to an earthquake, the maximum ground seismic acceleration ab is taken as 100Ga1. For a reinforced concrete building, the shear deformation caused by damage to the 7th series is about 1/25055 degrees (about 4000x1 (Γ6). Because of this The shear strain 7 is very large, about 6 to 20 times the strength of about 1/250. For the first to fifth calendars, this high-rise building j is suffering from even the largest base with about 100 G a 1 It may also cause serious damage to the descendants of the acceleration ab. In particular, the weak points of the second genus are high, indicating that the second layer may be -25- This paper is applicable to the Chinese National Standard (CNS) A4 specification (210X297 Ali) --------- installed ------ ordered ------ line (please read the precautions on the back before filling in this page) A7 B7 5. Description of the invention (&gt; 4) Can collapse. Table 3 F s (Η z

As A s 第1 9 層 樓 0 · 5 9 3 5 • 1 3 3 · 5 第1 6 層 檯 0 · 5 9 3 5 • 1 3 3 . 6 第1 3 層 樓 0 · 6 1 3 2 .6 2 9 · 1 第1 0 層 播 〇. 6 1 2 8 • 5 2 5 · 4 第 7 層 樓 0 . 5 9 1 8 .3 1 7 · 1 第 4 層 播 0 · 5 9 6 .7 6 . 2 第 1 層 播 0 · 5 9 1 • 1 1 , 0 表4 K s gn 7(10 ---------扣衣------IT------# (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標隼局員工消費合作社印製 第 6 層 ( 1 6 -1 8 層 檯 ) — 8 — 8 0 0 第 5 層 ( 1 3 -1 5 層 樓 ) 3 4 6 3 4 6 0 0 第 4 層 ( 1 0 -1 2 層 樓 ) 2 6 0 2 6 0 0 0 第 3 層 ( 7 -9 層 樓 ) 5 8 9 5 8 9 0 0 第 2 層 ( 4 一 6 層 樓 ) 8 2 5 8 2 5 0 0 第 1 層 ( 1 -3 層 摟 ) 3 9 6 3 9 6 0 0 -26- 本紙張尺度適用令國國家標準(CNS ) A4規格(210X297公釐) A7 B7 五、發明説明(_) 本發明並非侷限於上述實施例。在本發明的精神下, 可有本發明的各項修改和變化設計,並且其靥於本發明的 範圍内。 ---------^------,订------# (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標李(CNS ) A4規格(210X 297公嫠)As A s Floor 1 9 0 · 5 9 3 5 • 1 3 3 · 5 Floor 1 6 0 · 5 9 3 5 • 1 3 3. 6 Floor 1 3 0 · 6 1 3 2 .6 2 9 · 1 layer 10 0. 6 1 2 8 • 5 2 5 · 4 layer 7 0. 5 9 1 8 .3 1 7 · 1 layer 4 0. 5 9 6 .7 6. 2 The first layer of broadcast 0 · 5 9 1 • 1 1, 0 Table 4 K s gn 7 (10 --------- button down ------ IT ------ # (please Read the precautions on the back first and then fill out this page) Printed the 6th floor (1 6 -1 8 floor platform) — 8 — 8 0 0 5th floor (1 3 -1 5 floor) printed by the Employees Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economic Affairs Floor) 3 4 6 3 4 6 0 0 4th floor (1 0 -1 2 floors) 2 6 0 2 6 0 0 0 3rd floor (7 -9 floors) 5 8 9 5 8 9 0 0 2nd floor Floor (4-6 floors) 8 2 5 8 2 5 0 0 1st floor (1 -3 layer arm) 3 9 6 3 9 6 0 0 -26- This paper size is applicable to the national standard (CNS) A4 specification (210X297mm) A7 B7 V. Description of the invention (_) The present invention is not limited to the above-mentioned embodiments. Within the spirit of the present invention, there can be various modifications and variations of the design of the present invention, and it is within the scope of the present invention Inside --------- ^ ------, subscribe ------ # (Please read the precautions on the back before filling in this page) Printed copy of the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs The paper size is applicable to China National Standard Li (CNS) A4 (210X 297 gong)

Claims (1)

經濟部中央標準局負工消費合作社印裂 A8 B8 C8 D8六、申請專利範圍 1 · 一種用來決定一结構之地震弱點的方法,其包括 的步驟有: (a) 放置一振動感懕器在該结構之一曆的頂面和接 近該结構之地面二者上,K便記錄振動; (b) 依據被記錄在該结構之該層頂面上的振動和被 記錄在接近該结構之地面上的振動之間的光譜比,估算該 结構之該層頂面的振動之轉換方程式,Μ便獲得該结構之 該層頂面的振動之主頻率和放大因數; (c) 依據所獲得該结構之該曆頂面的振動之主頻率 和放大因數和依據該结構之該層的高度,獲致一導源自該 層之變形,該结構之該層的地震弱點指數;Μ及 (d) 將該地震弱點指數乘上一假設的地震加速度, 因而在遭受到地震時*獲得該结構之該S的最大剪應變。 2 ·如申請專利範圃第1項所述用來決定一结構之地 震弱點的方法,其中該结構之該層的地霣弱點指數*係利 用依據被記錄在該结構之該層頂面上的振動之水平分量和 被記錄在接近該结構之地面上的振動之水平分量二者之間 的光譜比所獲得的主頻率和放大因數而得,並且在遭受到 地震時*此地麄弱點指數係乘上一假設的最大地面地震加 速度,因而獲得該结構之該層的剪應變。 3 *如申請專利範圃第1項所述用來決定一结構之地 篇弱點的方法,其中該结構之該層的地震弱點指數係利用 —主頻率和利用一放大因數而獲致,其中該主頻率則係依 裝 訂 务 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(21 〇 X 297公釐) 經濟部中央標準局員工消费合作社印裝 A8 B8 C8 D8六、申請專利範園 據被記錄在該结構之該層頂面上的振動之水平分量和被記 錄在接近該结構之地面上的振動之水平分量二者之間的光 譜比而獲得*而該放大因數則係依據被記錄在該结構之該 層頂面上的振動之水平分量和被記錄在接近該结構之地面 上的振動之垂直分量二者之間的光譜比而獲得,其中一表 層之地震理動的放大偽被列入考慮,並且在遭受到地霣時 ,所述地霣弱點指數係乘上一假設的最大地基地藤加速度 ,因而獲致該结構之該層的剪應變。 4 · 一種用來決定一结構之地震弱點的方法,其包括 的步驟有: (a) 放置一振動感應器在該结構之一曆的頂面、該 结構之該層的底面、Μ及接近該结構之地面三者上,以便 記錄振動; (b) 依據被記錄在該结構之該層頂面上的振動和被 記錄在接近該结構之地面上的振動之間的光譜比,估算該 结構之該層頂面的振動之轉換方程式* Μ便獲得該结構之 該層頂面的振動之主頻率和放大因數; (c) 依捶被記錄在該结構之該層底面上的振動和被 記錄在接近該结構之地面上的振動之間的光譜比,估算該 结構之該層底面的振動之轉換方程式* Μ便獾得該结構之 該層底面的振動之主頻率和放大因數; (d) 依據所獲得該结構之該層頂面的振動之主頻率 和放大因数、依據所獲得該结構之該層頂面的振動之主頻 -2- (請先閲讀背面之注意事項再填寫本頁) 裝. --° 本紙張尺度適用中國國家標準(CNS ) A4洗格(210X29?公釐) 經濟部中央標準局貝工消费合作社印製 A8 B8 C8 D8六、申請專利範圍 率和放大因數、以及依據該结構之該曆的高度,來獾致一 導源自該層之變形,該结構之該層的地震弱點指數;Μ及 (e)將該地霣弱點指數乘上一假設的地震加速度* 因而獲得該结構之該層的剪應變。 5 ·如申請專利範圍第4項所述用來決定一结構之地 震弱點的方法,其中該结構之該層的地震弱黏指數*係利 用依捶被記錄在該结構之該層頂面和底面上的振動之水平 分量和被記錄在接近該结構之地面上的振動之水平分量二 者之間的光譜比所獲得的主頻率和放大因數而得,並且在 遭受到地震時,此地葸弱點指數係乘上一假設的最大地面 地震加速度*因而獲得該结構之該層的剪懕變。 6·如申請專利範圍第4項所述用來決定一结構之地 震弱點的方法,其中該结構之該層的地震弱點指數係利用 一主頻率和利用一放大因數而獲致,其中該主頻率則係依 據被記錄在該结構之該層頂面和底面上的振動之水平分量 和被記錄在接近該结構之地面上的振動之水平分量二者之 間的光譜比而獲得,而該放大因數則係依據被記錄在該结 構之該層頂面和底面上的振動之水平分量和被記錄在接近 該结構之地面上的振動之垂直分量二者之間的光譜比而獲 得,其中一表層之地麻運動的放大儀被列入考慮,並且在 遭受到地震時,所述地震弱點指數係乘上一假設的最大地 基地震加速度,因而獲致該结構之該層的剪應變。 7 ‘如申請專利範圍第1 、2、3、4、5或6項所 裝 Ί 矣 (請先Μ讀背面之注意事項再填寫本頁) 本紙張尺度逋用中國國家標隼(CNS ) Α4規格(210X297公釐) 經濟部中央標準局員工消費合作社印製 A8 B8 C8 D8六、申請專利範圍 述用來決定一结構之地麄弱點的方法,其中所述振動係微 落動。 8 ♦—種用來決定一结構之地震弱點的裝置,其包括 有: (a) —用來記錄振動的第一振動感應器,其被放置 在一结構之一層的頂面上; (b) —用來記錄振動的第二振動感應器,其被放置 在接近該结構之地面上;Μ及 (c) 一地震弱點資料處理器,其被埋到該等振動感 應器並且依捶所記錄的振動來決定出該结構的地霣弱點· 其中該地ϋ弱點資料處理器實施一些處理,用來依據 被記錄在該结構之該層頂面上的振動和被記錄在接近該结 構之地面上的振動之間的光譜比,估算該结構之該層頂面 的振動之轉換方程式,以便獲得該结構之該層頂面的振動 之主頻率和放大因數;用來依據所獲得該结構之該層頂面 的振動之主頻率和放大因數和依據該结構之該層的高度, 獲致一導源自該層之變形,該结構之該層的地震弱點指數 ;Κ及用來將該地震弱點指數乘上一假設的地霣加速度, 因而在遭受到地謨時,獲得該结構之該層的最大剪懕變。 9 ·如申請專利範圍第8項所述用來決定一结構之地 震弱點的装置,其中該地震弱點資料處理器係利用依捶被 記錄在該结構之該層頂面上的振動之水平分量和被記錄在 接近該结構之地面上的振動之水平分董二者之間的光譜比 -4- 裝 線 (請先聞讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 經濟部中央橾準局員工消費合作社印製 A8 Βδ C8 D8 六、申請專利範圍 所獾得的主頻率和放大因數來獲得該结構之該層的地震弱 點指數,並且在遭受到地麄時*此地霣弱點指數係乘上一 假設的最大地面地篇加速度,因而獾得該结構之該層的剪 應變。 10·如申請專利範圍第8項所述用來決定一结構之 地霣弱點的装置,其中該地震弱點資料處理器係利用一主 頻率和利用一放大因數來獲致該结構之該層的地震弱點指 數,其中該主頻率係依據被記錄在該结構之該層頂面上的 振動之水平分量和被記錄在接近該结構之地面上的振動之 水平分量二者之間的光譜比而獲得,而該放大因數則係依 捶被記錄在該结構之該層頂面上的振動之水平分量和被記 錄在接近該结構之地面上的振動之垂直分量二者之間的光 譜比而獲得,其中一表層之地震運動的放大係被列入考慮 *並且在遭受到地震時,所述地震弱點指數係乘上一假設 的最大地基地震加速度,因而獲致該结構之該層的剪應赛 〇 1 1 ·—種用來決定一结構之地震弱點的装置,其包 括有: (a) —用來記錄振動的第一振動感懕器,其被放置 在該结構之一層的頂面上; (b) —用來記錄振動的第二振動感懕器,其被放置 在該结構之該層的底面上; (c) 一用來記錄振動的第三振動感應器,其被放置 -5- 本紙張尺度適用中國國家標準(CNS &gt; A4現格(210X297公釐) — I — I I 裝 I n .f 11 11 線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央揲準局員工消费合作社印製 A8 BS C8 D8六、申請專利範圍 在接近該结構之地面上;从及 (d)—地震弱點資料處理器,其被連到該等振動感 愿器並且依據所記錄的振動來決定出該结構的地震弱點, 其中該地震弱點霣料處理器實施一些處理,用來依據 被記錄在該结溝之該層頂面上的振動和被記錄在接近該结 構之地面上的振動之間的光譜比,估算該结構之該層頂面 的振動之轉換方程式,Μ便獲得該结構之該層頂面的振動 之主頻率和放大因數;用來依據被記錄在該结構之該層底 面上的振動和被記錄在接近該结構之地面上的振動之間的 光譜比,估算該结構之該層底面的振動之轉換方程式,Κ 便獲得該结檐之該層底面的振動之主頻率和放大因數;用 來依據所獲得該结構之該層頂面的振動之主頻率和放大因 數、依據該结構之該層底面的振動之主頻率和放大因數、 以及依據該结構之該層的高度,獲致一専源自該層之變形 ,該结構之該層的地震弱點指數;Μ及用來將該地震弱點 指數乘上一假設的地震加速度*因而在遭受到地震時,獲 得該结構之該層的剪應變。 12·如申請專利範圍第11項所述用來決定一结構 之地震弱點的装置|其中該地震弱點資料處理器係利用依 據被記錄在該结構之該層頂面和底面上的振動之水平分量 和被記錄在接近該结構之地面上的振動之水平分量二者之 間的光譜比所獲得的主頻率和放大因數來獲得該结構之該 層的地蒽弱點指數,並且在遣受到地震時,此地Μ弱點指 -6 - I I 裝 訂— 纟 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS〉Α4規格(210Χ297公釐) 298623 A8 B8 C8 D8 六、申請專利範圍 構構一 點和上因之分放指構 2 所 结结用弱面面大動直的點结 1 中 該一利震頂地放振垂動弱該 、其 得定係地層之該的之運震致 1, 獲決器的該構而上動震地獲 1 置 而 來理層之结,面振地述而 、裝 因用處該構該得底的之所因 ο 的 , 述料之结近獲和上層 ,, 1 點 度所資構該接而面面表時度 、弱 速項點結在在比頂地 一震速 9 震。 加 1 弱該錄錄譜層之中地加 、地者 Μ1 震致記記光該構其到震 8 之動 地第地獲被被的之结,受地 第構震 面圍該來據和間構該得遭基 圍结微 地範中數依量之结近獲在地 範一知 大 利其因係分者該接而且大 利定檢 最 專· 大率平二在在比並最 專決於 的。請置放頻水1錄錄譜,的。請來用 設變申裝一 主之分記記光應設變申用係 假懕如的用該動平被被的考假應如述器 1 剪.點利中振水據和間入一剪.所應 上的 3 弱和其的之依董之列上的 4 項感 乘層 1 萬率,上動係分者被乘層 13 動 係該 地頻數面振則平二係係該 1 振 數之 之主指底的數水量大數之 或述 裝 訂 線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標隼(CNS ) Μ说格(210X297公釐)A8 B8 C8 D8 printed by the Consumer Labor Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs VI. Patent Scope 1 · A method for determining the seismic weakness of a structure, which includes the following steps: (a) Place a vibration sensor in On both the top surface of the structure and the ground close to the structure, K records the vibration; (b) According to the vibration recorded on the top surface of the layer of the structure and recorded on the ground close to the structure The spectral ratio between the vibrations of the structure is estimated to be the conversion equation of the vibration of the top surface of the layer of the structure, and then the main frequency and amplification factor of the vibration of the top surface of the layer of the structure are obtained; (c) According to the obtained structure The main frequency and amplification factor of the vibration of the top surface and the height of the layer of the structure lead to a deformation derived from the layer, and the seismic weakness index of the layer of the structure; Μ and (d) the earthquake The vulnerability index is multiplied by a hypothetical seismic acceleration, so the maximum shear strain of the S of the structure is obtained when an earthquake is encountered. 2 · The method used to determine the seismic weakness of a structure as described in item 1 of the patent application, where the ground weakness index of the layer of the structure * is based on the record of the top surface of the layer of the structure The main frequency and amplification factor obtained from the spectral ratio between the horizontal component of the vibration and the horizontal component of the vibration recorded on the ground close to the structure are obtained, and when an earthquake is encountered The last assumed maximum ground seismic acceleration, thus obtaining the shear strain of that layer of the structure. 3 * The method used to determine the ground weakness of a structure as described in item 1 of the patent application, where the seismic weakness index of the layer of the structure is obtained by using-the main frequency and using an amplification factor, where the main The frequency depends on the bookbinding (please read the precautions on the back before filling in this page). The paper size is applicable to the Chinese National Standard (CNS) A4 specification (21 〇X 297 mm). A8 printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs B8 C8 D8 VI. Patent application Fan Yuan obtained from the spectral ratio between the horizontal component of the vibration recorded on the top surface of the layer of the structure and the horizontal component of the vibration recorded on the ground close to the structure * The amplification factor is obtained based on the spectral ratio between the horizontal component of the vibration recorded on the top surface of the layer of the structure and the vertical component of the vibration recorded on the ground close to the structure, where The magnification pseudo-seismic motion of a surface layer is taken into consideration, and when it is subjected to the ground trap, the index of vulnerability of the ground trap is multiplied by a hypothetical maximum acceleration of the ground base, resulting in Shear strain of the layer structure. 4. A method for determining the seismic weakness of a structure, which includes the steps of: (a) placing a vibration sensor on the top surface of one of the structures, the bottom surface of the layer of the structure, Μ and the proximity to the On the ground of the structure to record the vibration; (b) estimate the structure of the structure based on the spectral ratio between the vibration recorded on the top surface of the layer of the structure and the vibration recorded on the ground close to the structure The conversion equation of the vibration of the top surface of the layer * Μ obtains the main frequency and amplification factor of the vibration of the top surface of the layer of the structure; (c) the vibration recorded on the bottom surface of the layer of the structure and recorded in The spectral ratio between the vibrations on the ground close to the structure, and the transfer equation for estimating the vibration of the bottom surface of the layer of the structure * Μ would be the main frequency and amplification factor of the vibration of the bottom surface of the layer of the structure; (d) Basis The main frequency and amplification factor of the vibration of the top surface of the layer of the obtained structure, according to the main frequency of the vibration of the top surface of the layer of the obtained structure-2- (please read the precautions on the back before filling this page) .-° Paper size Applicable to the Chinese National Standard (CNS) A4 wash grid (210X29? Mm) Printed by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 VI. Patent application rate and magnification factor, and the height of the calendar based on the structure , Lai badger induced a deformation derived from the layer, the seismic weakness index of the layer of the structure; Μ and (e) multiply the local weakness index by a hypothetical seismic acceleration * Shear strain. 5 · The method used to determine the seismic weakness of a structure as described in item 4 of the patent application scope, in which the seismic weak viscosity index of the layer of the structure is recorded on the top and bottom surfaces of the layer of the structure using the hammer The horizontal component of the vibration on the ground and the horizontal component of the vibration recorded on the ground close to the structure are derived from the main frequency and the amplification factor obtained from the spectral ratio, and when an earthquake is encountered, the weak point index It is multiplied by a hypothetical maximum ground seismic acceleration * to obtain the shear deformation of that layer of the structure. 6. The method for determining the seismic weakness of a structure as described in item 4 of the patent application scope, wherein the seismic weakness index of the layer of the structure is obtained by using a main frequency and an amplification factor, where the main frequency is It is obtained based on the spectral ratio between the horizontal component of the vibration recorded on the top and bottom surfaces of the layer of the structure and the horizontal component of the vibration recorded on the ground close to the structure, and the amplification factor is It is obtained based on the spectral ratio between the horizontal component of the vibration recorded on the top and bottom surfaces of the layer of the structure and the vertical component of the vibration recorded on the ground close to the structure, where one surface layer Amplifiers for hemp movement are taken into consideration, and when an earthquake is encountered, the seismic weakness index is multiplied by a hypothetical maximum ground seismic acceleration, thus resulting in the shear strain of the layer of the structure. 7 'If it is installed in items 1, 2, 3, 4, 5 or 6 of the patent scope (please read the precautions on the back and then fill out this page) this paper standard uses the Chinese National Standard Falcon (CNS) Α4 Specifications (210X297 mm) A8 B8 C8 D8 printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 6. The scope of the patent application describes the method used to determine the weakness of a structure, where the vibration is slightly moved. 8 ♦ —A device used to determine the seismic weakness of a structure, which includes: (a) —The first vibration sensor used to record vibrations, which is placed on the top surface of one layer of the structure; (b) -A second vibration sensor for recording vibrations, which is placed on the ground close to the structure; Μ and (c) a seismic weakness data processor, which is buried in these vibration sensors and beats the recorded Vibration to determine the weak point of the structure's ground; where the data processor of the ground's weak point implements some processing based on the vibration recorded on the top surface of the layer of the structure and recorded on the ground close to the structure The spectral ratio between the vibrations and the conversion equation to estimate the vibration of the top surface of the layer of the structure in order to obtain the main frequency and amplification factor of the vibration of the top surface of the layer of the structure; The main frequency and amplification factor of the vibration of the surface and the height of the layer of the structure are derived from the deformation of the layer, the seismic weakness index of the layer of the structure; K and the seismic weakness index are multiplied by A hypothesis Rainstorm to acceleration, and thus when subjected to Mo, obtaining the maximum shear layer structure of the variable Ye. 9. The device for determining the seismic weak point of a structure as described in item 8 of the patent application scope, wherein the seismic weak point data processor uses the horizontal component of the vibration recorded on the top surface of the layer of the structure The level of vibration recorded on the ground close to the structure is divided by the spectral ratio between the two. -4- Threading (please read the precautions on the back before filling in this page) This paper scale is applicable to the Chinese National Standard (CNS ) Α4 specification (210X297 mm) A8 Βδ C8 D8 printed by the Employee Consumer Cooperative of the Central Department of Economics of the Ministry of Economic Affairs 6. The main frequency and amplification factor obtained from the patent application scope to obtain the seismic weakness index of this layer of the structure, and When suffering from the ground, the weak point index of this place is multiplied by an assumed maximum ground ground acceleration, so that the badger obtains the shear strain of this layer of the structure. 10. A device for determining the weak points of a structure as described in item 8 of the scope of the patent application, wherein the seismic weakness data processor uses a primary frequency and an amplification factor to obtain the seismic weakness of the layer of the structure Index, where the main frequency is obtained based on the spectral ratio between the horizontal component of the vibration recorded on the top surface of the layer of the structure and the horizontal component of the vibration recorded on the ground close to the structure, and The amplification factor is obtained from the spectral ratio between the horizontal component of the vibration recorded on the top surface of the layer of the structure and the vertical component of the vibration recorded on the ground close to the structure, one of which The amplification of the seismic motion of the surface layer is taken into consideration * and when an earthquake is encountered, the seismic weakness index is multiplied by a hypothetical maximum ground-based seismic acceleration, thus resulting in a shear competition for that layer of the structure. -A device for determining the seismic weakness of a structure, which includes: (a)-A first vibration sensor for recording vibrations, which is placed on top of one layer of the structure Top; (b)-a second vibration sensor for recording vibrations, which is placed on the bottom surface of the layer of the structure; (c) a third vibration sensor for recording vibrations, which is placed- 5- This paper scale is applicable to the Chinese National Standard (CNS &gt; A4 format (210X297 mm) — I — II with I n .f 11 11 lines (please read the precautions on the back before filling out this page). A8 BS C8 D8 printed by the Bureau of Consumers ’Cooperatives of the P.S. VI. The scope of patent application is on the ground close to the structure; from and (d) —seismic weakness data processor, which is connected to these vibration sensors and based on the records To determine the seismic weak point of the structure, where the seismic weak point predictor processor performs some processing to record the vibration on the top surface of the layer of the trench and recorded on the ground close to the structure The spectral ratio between the vibrations of the structure and the conversion equation of the vibration of the top surface of the layer of the structure is estimated, and the main frequency and amplification factor of the vibration of the top surface of the layer of the structure are obtained; The bottom of the layer The spectral ratio between the vibration and the vibration recorded on the ground close to the structure, to estimate the transfer equation of the vibration of the bottom surface of the layer of the structure, κ obtains the main frequency and amplification factor of the vibration of the bottom surface of the layer of the eaves ; Used to obtain the main frequency and amplification factor of the vibration of the top surface of the layer of the structure obtained, the main frequency and amplification factor of the vibration of the bottom surface of the layer of the structure, and the height of the layer of the structure, resulting in a It is derived from the deformation of the layer, the seismic weakness index of the layer of the structure; Μ and the seismic weakness index multiplied by a hypothetical seismic acceleration * so that when an earthquake is encountered, the shear of the layer of the structure is obtained Strain 12. The device used to determine the seismic weakness of a structure as described in item 11 of the patent application scope | wherein the seismic weakness data processor is based on the vibrations recorded on the top and bottom surfaces of the layer of the structure The main frequency and the amplification factor obtained by the spectral ratio between the horizontal component and the horizontal component of the vibration recorded on the ground close to the structure to obtain the layer of the structure Dianthrene weakness index, and in the event of an earthquake, the weak point in this place refers to -6-II Binding-纟 (please read the precautions on the back before filling in this page) This paper scale is applicable to the Chinese national standard (CNS> Α4 specification (210Χ297 Mm) 298623 A8 B8 C8 D8 VI. Scope of patent application Structure point and the above-mentioned distributing index structure 2 The knot of the knot with the weak surface is large and straight, and the vibration of the top of the earthquake is weak. The structure of the stratum should be caused by the movement of the earthquake, the structure of the finalizer should be moved up to the earthquake to get the structure of the layer, and the structure of the layer should be described by the surface vibration, and the structure should be used for the purpose. The reason for this is that the structure of the material is close to the upper layer, and the structure of 1 point should be connected to the surface surface time and the weak velocity item at a speed of 9 earthquakes at the top of the ground. Plus 1 weaker in the recorded spectrum layer, plus the Earth Μ1 Earthquake Recorder, the structure was moved to the place where earthquake 8 was captured, and the area affected by the structure was surrounded by the source and time. The structure should be close to the base of the ground, and the number of points in the field is closely related to the number of people in the field. The one who knows the Italian should be connected with the factors and the most qualified for the inspection. The rate is the most special. of. Please put a record of frequency water 1 recording ,. Please come to use the device to apply for a master's score. The light should be used to change the application to be false. Use the movement to be tested by the test should be cut as described in the device. Shearing. The 3 weak points that should be applied and the 4 items on the list of Dong's sense of multiplication layer 10,000 rate, the upper dynamic system is divided by the multiplication layer 13. The main reference number of the vibration number is the large amount of water or the binding line (please read the precautions on the back before filling out this page). The paper standard printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs is applicable to the Chinese National Standard Falcon (CNS ) Μ said grid (210X297 mm)
TW85107393A 1996-05-27 1996-06-19 Method and apparatus for determining seismic vulnerability of a structure TW298623B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13170496A JP3105450B2 (en) 1995-07-27 1996-05-27 Method and apparatus for determining risk of earthquake damage to structures

Publications (1)

Publication Number Publication Date
TW298623B true TW298623B (en) 1997-02-21

Family

ID=51565495

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85107393A TW298623B (en) 1996-05-27 1996-06-19 Method and apparatus for determining seismic vulnerability of a structure

Country Status (1)

Country Link
TW (1) TW298623B (en)

Similar Documents

Publication Publication Date Title
Foti et al. Output‐only identification and model updating by dynamic testing in unfavorable conditions of a seismically damaged building
JP3105450B2 (en) Method and apparatus for determining risk of earthquake damage to structures
Lam et al. Operational modal identification of a boat-shaped building by a Bayesian approach
JP4253435B2 (en) Method and apparatus for estimating seismic intensity
Ceroni et al. Assessment of seismic vulnerability of a historical masonry building
Ryden et al. Lamb wave analysis for non-destructive testing of concrete plate structures
González et al. Effect of parking lanes on assessing the impact of road traffic noise on building façades
Rashetnia et al. Quantifying prestressing force loss due to corrosion from dynamic structural response
Li et al. Simplified derivation of a damage curve for seismically induced beam fractures in steel moment-resisting frames
Guillier et al. Establishing empirical period formula for RC buildings in Lima, Peru: Evidence for the impact of both the 1974 Lima earthquake and the application of the Peruvian seismic code on high‐rise buildings
Alaboz et al. Dynamic identification and modal updating of S. Torcato church
TW298623B (en) Method and apparatus for determining seismic vulnerability of a structure
Larsson et al. Dynamic evaluation of a nine-storey timber-concrete hybrid building during construction
Ortega et al. Correlation between sonic pulse velocity and flat-jack tests for the estimation of the elastic properties of unreinforced brick masonry: Case studies from Croatia
Tomaszewska et al. Study on applicability of two modal identification techniques in irrelevant cases
López et al. Diagnosis and assessment of a historic timber structure in La Casa del Corregidor, using non-destructive techniques
Garattini et al. Durata e costo delle visite in medicina generale: il progetto DYSCO
JP3475312B2 (en) Ground cavity detection method and apparatus
Ceroni et al. SSI on the dynamic behaviour of a historical masonry building: experimental versus numerical results
Dowding et al. Crack response to long-term environmental and blast vibration effects
Michel et al. Observed non-linear soil-structure interaction from low amplitude earthquakes and forced-vibration recordings
Liang et al. Identification of human body dynamics from a human-structure system: an experimental study
CN107167230A (en) The method that building secondary radiation noise is assessed using building construction vibration attenuation rate
Pitilakis et al. System identification of soil-foundation structure systems by means of ambient noise records: the case of EuroProteas model structure in Euroseistest
Diaferio et al. Experimental Investigations and Numerical Simulations for the Seismic Assessment of a Masonry Building