TW293024B - - Google Patents
Download PDFInfo
- Publication number
- TW293024B TW293024B TW084105492A TW84105492A TW293024B TW 293024 B TW293024 B TW 293024B TW 084105492 A TW084105492 A TW 084105492A TW 84105492 A TW84105492 A TW 84105492A TW 293024 B TW293024 B TW 293024B
- Authority
- TW
- Taiwan
- Prior art keywords
- item
- inorganic filler
- polymerizable component
- patent application
- thermal expansion
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/40—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3801—Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Description
經濟部中央標準局貝工消費合作社印製 293024 A7 B7 五、發明説明(I ) 發明領域: 本發明係關於聚合性組成份,Μ及特別是關於含有控 制熱膨漲係數(CTE)填充科之聚合性組成份。本發明亦闞 於使用該組成份於製造光學波導耦合器Κ及包含光學波導 继維之裝置。 發明背景: I、填充料 通常使用於黏接劑,塗料,密封材料等聚合物之熱膨漲 係數與玻璃,陶瓷,金鼷,Μ及金臑氧化物相比較顧得為相 當高。該膨漲性不相匹配將在内部Μ及界面處產生應力, 其時常會導致品質劣化或性能變差。該問題在溫度低於聚 合物之玻璃轉變溫度(Tg)時麥為最為嚴重,當時聚合物具 有最大彈性横數Μ及無法藉由潛變有效地釋出應力。因此 ,在使用溫度下聚合物通常為受張力狀態,同時較低熱膨漲 係数之基質為受壓應力狀態。 對該問題之一般解決途徑為添加低熱膨漲係數無機添 加物至聚合物中。在一些情況下,具有負的熱膨漲係數約 為-5xlO_7/«C之特殊填充物例如鋰鋁矽酸鹽已加Κ使用。 儘管該項官試,熱膨漲係數接近〇或低於〇(即負的熱膨漲係 數)之聚合性組成份為難Μ達成,甚至大量使用填充料時。 能夠加入各種形式聚合物之填充科Β揭示於C. F. Hofmann之美國第3547871號專利,W.A.等人之美國第35680 12號專利,M. Tsukui等人之美國第3658750號專利,C. R. Sporck美國第4043969號專利,Chenowetri等人之美國第410 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨0 X 297公釐) 4 I —裝 i (請先M讀背面之注意事一{ 哄爲本頁) ( S9S〇24 A7 B7 五、發明説明(7 ) 經濟部中央標準局貝工消費合作社印製 4238號專利,Shinohara等人之美國第4358552號專利,Miller 等人之美國第4987274號專利,Chellis等人之美國第51261 92號專利,Μ及H. Bayer等人之美國第5158990號専利。 II.结晶磷酸鹽玻璃 產生晶相轉化之结晶磷酸鹽玻璃已經被使用來控制鉛 及錫磷氧氟化物密封玻璃之熱膨漲係數。參閱Cornelius 等人之美國第5089446號專利(錫磷氧氟化物密封玻璃),Κ 及Francis之美國第5089446號專利(鉛密封玻璃)。 關於這些應用,结晶瞵酸鹽玻璃Μ及密封玻璃,特別是 錫磷氧氟化物密封玻璃已經利用有機物介質混合形成密封 組成份,例如密封帶。參閲Francis等人之美國第5179046 號專利。 包含這些密封組成份中之有機介質作為密封玻璃Μ及 结晶磷酸鹽玻璃之黏合劑(介質)。當密封組成份被使用時 ,黏合劑被特別設計Κ汽化;即黏合劑選擇使得在密封組成 份操作範圍内具有高蒸氣壓。特別是,Francis等人之專利 限定黏合劑沸點應該低於350它。 相對地,本發明聚合物構成完整可立即使用組成份之 主要部份Μ及在組成份操作範圍内實質上並不會汽化。即 Francis等人專利之有機介質為臨時性介質,然而本發明之 聚合物為非暫時性。除此,在Francis等人之專利中,結晶 磷酸鹽玻璃無法作為控制黏合劑之熱膨漲係數,但是在黏 合劑汽化後將控制密封玻璃之熱膨漲係數。如底下所說明 ,依據本發明结晶磷酸鹽玻璃被使用來控剌(減小)聚合物 請 A η 、面 意 事 填%裝 頁Printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 293024 A7 B7 V. Description of the invention (I) Field of the invention: The present invention relates to polymerizable components, Μ and in particular to the filling section containing the controlled thermal expansion coefficient (CTE) Polymerizable components. The present invention is also used in the manufacture of optical waveguide couplers K and devices containing optical waveguide relays. Background of the invention: I. Fillers are generally used in adhesives, coatings, sealing materials and other polymers. The coefficient of thermal expansion is considered to be considerably higher than that of glass, ceramics, gold halide, M and gold oxide. This mismatch in swelling will cause stress at the internal M and the interface, which often leads to deterioration of quality or deterioration of performance. This problem is most severe when the temperature is lower than the glass transition temperature (Tg) of the polymer, when the polymer has the maximum elastic transverse number M and cannot effectively release stress by creep. Therefore, the polymer is usually under tension at the operating temperature, while the matrix with a lower coefficient of thermal expansion is under compressive stress. The general solution to this problem is to add low thermal expansion coefficient inorganic additives to the polymer. In some cases, special fillers with a negative thermal expansion coefficient of about -5xlO_7 / «C, such as lithium aluminum silicate, have been used with K added. Despite this official test, polymerizable components with thermal expansion coefficients close to or below 0 (ie, negative thermal expansion coefficient) are difficult to achieve, even when large amounts of fillers are used. Fillers that can incorporate polymers in various forms are disclosed in CF Hofmann ’s US Patent No. 3547871, WA et al. US Patent No. 3568012, M. Tsukui et al. US Patent No. 3658750, CR Sporck US No. 4043969 Patent, Chenowetri et al. No. 410 in the United States. The paper size is in accordance with Chinese National Standard (CNS) Λ4 specification (2 丨 0 X 297 mm) 4 I — Install i (please read the notes on the back first. ) (S9S〇24 A7 B7 V. Description of the invention (7) Patent No. 4238 printed by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs, U.S. Patent No. 4,358,552 to Shinohara et al., U.S. Patent No. 4987274 to Miller et al., Chellis U.S. Patent No. 51261 92, et al., M. and H. Bayer et al., U.S. Patent No. 5158990. II. Crystalline Phosphate Glass Crystal Phase Phosphate Glass with Crystal Phase Transformation has been used to control lead and tin phosphorus oxyfluoride The coefficient of thermal expansion of the compound sealing glass. See Cornelius et al. US Patent No. 5089446 (Tin Phosphorus Oxide Fluoride Sealing Glass), K and Francis US Patent No. 5089446 (Lead Sealing Glass) Regarding these applications, crystalline silicate glass M and sealing glass, especially tin phosphorus oxyfluoride sealing glass, have been mixed with organic media to form sealing components, such as sealing tape. See US Patent No. 5179046 of Francis et al. The organic medium in these sealing components is used as the adhesive (medium) for the sealing glass M and crystalline phosphate glass. When the sealing component is used, the adhesive is specially designed to vaporize; that is, the selection of the adhesive makes it possible to operate on the sealing component It has a high vapor pressure within the range. In particular, the patent of Francis et al. Defines that the boiling point of the adhesive should be less than 350. In contrast, the polymer of the present invention constitutes a complete ready-to-use main part of the component M and the operating range of the component The substance does not vaporize in essence. That is, the organic medium patented by Francis et al. Is a temporary medium, but the polymer of the present invention is not temporary. In addition, in the patent of Francis et al., Crystalline phosphate glass cannot be used as a control The thermal expansion coefficient of the adhesive, but after the vaporization of the adhesive will control the thermal expansion coefficient of the sealing glass As described below, according to the present invention is a crystalline phosphate glasses are used to control stab (reduction) of polymer Please A η, what is intended to fill the side loading page%
IT 本紙張尺度適用中國國家標準(CNS ) Λ4現格(210X 297公t )夕IT This paper scale is applicable to Chinese National Standard (CNS) Λ4 present grid (210X 297g)
五' 經濟部中央#牟局貝工消费合作社印裝 發明説明(3) 組成份之熱膨漲係數,該應用與先前所提及Francis,Cornelius等人,>乂 及 Francis等人 之專利 顯然不 相同。 III.光學波導耦合器 在組裝光學波導耦合器中所使用黏接劑已揭示於例如 Miller等人之美國第5009692號専利。黏接劑亦使用於製 造集體光學組件中,在其中形成於基片中之光學波導被連 结至光學波導纖維之一端。參閲Vial等人之美國第518583 5號專利。 在製造光學波導耦合器中使用低熱膨漲係敝填充料已 在歐洲第553492號專利中說明。該公告之專利揭示出多種 填充料Μ使用於該黏接劑中,包含由負的熱膨漲係數鋰鋁 矽酸鹽所構成之填充料。不過該專利並未揭示出或建議基 於該用途而使用结晶磷酸鹽玻璃。 發明大要: 鑑於先前所說明的,本發明目標在於提供具有新穎的 瑣充料之聚合性組成份。本發明另外一個目標在於應用該 聚合性組成份Μ建造光學波専耦合器Μ及其他包含光學波 導纖維之元件。 為了達成這些Μ及其他目標,本孽明提供聚合性組成 份,其包含有櫬聚合物或聚合性摻雜物及無櫬填充料,其包 含一種或多種结晶磷酸鹽玻璃之顆粒,每一種玻璃主要由 五氧化二瞵Μ及一種由鎂,鈷,砷,鋅,撖,鋁,睹選取出之一 種或多種陽離子所構成。 使用於組成份之聚合物實質上在組成份操作溫度範圔 本紙張尺度適用中國國家標準(CNS〉Λ4現格(210 >:297公釐) (請先閲姊背面之注^^ 填鸡本頁) .裝· •va 線 293024 6 4 Λ7 Β7 經濟部中央梯準局員工消費合作社印製 五、發明説明(4 ) 内並不會汽化。結晶磷酸鹽玻璃在組成份操作溫度範圍内 將呈現出晶相轉化。當溫度上昇至结晶轉化溫度時該晶相 轉化(形態獎化)促使填充料顆粒收縮。與單獨地使用有機 聚合物之熱膨漲係數比較,因而該收縮將導致組成份較小 之熱膨漲係數。 視使用於聚合性組成份之特定組成物κ及組成物數量 (例如,聚合物,其Tg及強度,填充料數量,结晶磷酸鹽坡璃/ 轉化溫度,Μ及說明於底下各種可附加之組成物 >而決定, 假如需要之情況下,至少能夠在組成份操作溫度一部份範 圍内達成負的熱膨漲係數。 在許多應用中,聚合性組成份需要為抗水性。使用於 本發明之結晶磷酸题坡璃已發琨在自然狀態中對水份是敏 感的。依據本發明另外一方面,該對水份敏感現象能夠藉 由在使用作為填充料前將玻璃顆粒氮化處理而去除。該處 理優先地包含將坡璃顆粒暴露於溫度為8501C無水氨裂解 副產物之氣體中歷時一段時間例如為0.5小時至4小時,例 如為1小時,其發現將顯著地降低最終聚合性組成份對水份 之靈敏性。對顆粒氮化處理亦將改菩組成份聚合性成份之 埋接性。 本發明聚合性組成份一項非常重要之應用為製造光學 波専耦合器Μ及其他含有光學波導纖維之装置。光學波導 級維由非常低熱膨漲係數玻璃所構成。光級熱膨漲係數與 使用於製造含有光纖裝置之有機材料熱膨漲係數間不相匹 配將専致光學性能惡化。 請先閱讀背面之注意事ί,填商本頁 * Ψ 裝 訂 •Η線 本紙張尺度適用中國國家標率(CNS ) Λ4規格(210X 297公釐) Α7 Β7 五、發明说明(f) 依據先前所提及歐洲第553492專利所揭示的,已持績 地探求適合光學波導使用之聚合性材枓。本發明聚合性組 成份藉由採用能夠圼現出結晶轉化之结晶磷酸鹽玻璃而滿 足該需求。 附圖在此加入並構成說明之一部份,該附圖顯示出本 發明各項,其將作為說明本發明之原理。當然人們了解附 圖Μ及敘述只作為說明及並不是作為限制本發明。 附圖簡單說明: 圖1為說明於範例3中含有酚樹脂Μ及轉化填充料聚合 性組成份之膨漲性與溫度之關係曲線圖。 圖2為說明於範例4中聚合性組成份之膨漲性與溫度關 係曲線圖。 圖3為一示意圖,其顯示出使用本發明組成份於包裝光 學波導耦合器中。 優先使用實施例說明: 如先前所說明,本發明係關於含有结晶磷酸鹽玻璃顆 粒作為控制熱膨漲係數之組成份。 聚合性組成份能夠使用來生產多種製造物體,其包含 塑横物體,鏑造物體,片狀材料,密封劑,黏接劑,包膠,塗料 ,油漆(例如含有色素之塗料)等。本發明組成份特別有益 之應用除了先前所說明光學波導耦合器Μ及其他光學波導 組件外尚包括低熱膨漲係數黏接劑Μ结合低熱膨漲係數材 料,黏接劑之低熟膨漲係數將導致黏接劑與形成產品中材 科間界面處之應力減小;低熱膨漲係数材料之低熱膨漲係 本紙張尺度適用中國國家橾準(CNS ) Λ4規格(210X 297公釐) 8 --------'裝 Ί (請先閱讀背面之注意事填转本頁 ,1Τ 線 經濟部中央標準局員工消費合作社印策 8 6 A7 _________B7 五、發明説明(6) " 數塗層,其中能夠藉由降低界面應力大小而能夠達成較佳 黏附性以及減少彎曲不平;電子組件低熱膨漲係数之包膠 ,其中包膠低熱膨漲係數將使減小之應力傳移至包膠驵件 ;精確組件之成形,例如鋪横,精密公差之配合件等,其中尺 寸精確度為重要的;Μ及聚合物零件Μ插入以及配合由低 熱膨漲係數材料所製成之其他零件,因而在溫度範圍内能 夠匹配而不會產生機械性之干播或過度的間距延伸。 組成份聚合性成份能夠是熱凝性或熱塑性形式。通常 聚合性成份當低於其Tg應該具有最小為0.7xl09 Pa之模數, Μ及最好至少為2xl〇3 Pa。能夠使用於本發明中之一些熱 凝性材料之非限制性範例包含環氧基樹脂,環氧基-環氧基 混合物,環氧基-矽混合物,酚,三聚氰胺,壓克力,聚醢亞氨 ,堅硬的聚氨基甲酸乙酯,以及相互連结之聚酯。熱塑性材 料之一些非限制性範例包含聚丁烯對苯二甲酸,聚碳酸鹽, 聚苯乙烯,聚笨氧化物,聚苯二甲醯胺,聚烯,聚酯,聚丙烯酸 酯,尼龍,縮醛(acetal),液體結晶聚合物,纖維素,氯乙烯, 經濟部中央榇準务員工消費合作社印策 --------一| 裝 Ί (锖先閲讀背而之注意事ΐ 填寫本萸 線 聚苯Μ及高裝填性聚苯乙烯混合物,聚醯亞氨,聚磺醯基苯 ,聚酯酮(polyether ketone),Μ 及聚二酷嗣(Polyetherether ketone,PEEK)。聚合性成份亦能夠包含聚合性混合物,玻 璃-聚合物混合物,金屬-聚合物混合物,或聚合物合金。 、 聚合性成份在組成份操作溫度範圍内實質上必需不能 汽化。如在此所使用,組成份操作溫度範圍内包含組成份 達到所欲懕用目的(例如在鑲造,塑模,或其他應用形式}之 過程中達到最大之溫度,熱凝性樹脂情況之固化過程中組 本纸張尺度適用中國國家標準(CNS ) Λ4現格(210X297公釐) 9 7 經濟部中央標準局負工消費合作社印製 A7 B7 五、發明説明(1) 成份達到最大之溫度,Μ及其塗覆後在使用過程中組成份 gi夠預期達到之最大及最小溫度。 通常,本發明聚合性組成份應用時使用液體形式。熱 塑性樹脂係指聚合物或組成聚合成份之聚合物塗覆後溫度 高於玻璃轉變溫度。而熱凝性樹脂,在塗覆後進行固化將 組成份改變為最終之形式。進行固化之形式決定於特定聚 合物或所採用聚合物Μ及能夠包含例如加热固化,紫外線 照射固化等。 組成份使用溫度随著所製成產品形式而變化。例如, 必需滿足軍事規格之物品,使用溫度範圍通常在-6510至 +125¾之間。包含光學波導缴維之產品,一般工業界溫度 規格之範圍為-40至851C。使用溫度上限通常在100至300 υ範圍内,一些熱學非常穩定聚合物之上限可高達4〇〇π。 特別是許多聚合性材料使用溫度範圍能夠為-651C至300¾ ,然而一些芳香族聚合物,範圍之上限增加至35〇υ ,及PEKs ,PEEKS與一些聚醯亞氨則達到400Χ:。 本發明新穎的填充料(在此簡稱溫度轉化(TI)填充料) ,由一棰或多種结晶磷酸鹽玻璃顆粒所構成,每一種玻璃主 要包含P205W及一種或多棰由鎂,鈷,砷,梓,锇,紹,及皓選 取出之陽離子(在此稱為TI顆粒}。瑄些TI顆粒產生晶相轉 化,當其溫度上昇至轉化溫度時將促使顆粒收縮達到0.2%。 依據本發明,該收縮被使用來補償所有組成份之聚合性成份 較大正的膨漲性。 所選擇TI填充料能夠藉由分子式Mg2-xAxP2〇7說明,其 本紙张尺度適用中國國家標準(CNS ) Λ4規格(2I0X297公釐) I 〇 --------一I裝 Ί (婧先W1讀背面之注意事填两本页 •va 線 4 8 A7 B7 五、 發明説明(《) 經濟部中央標準局貝工消費合作社印製 中X界於〇至2 ,Μ及A能夠是Co以提高轉化溫度或是As ,Fe, A1,或zr以降低轉化溫度。賴由該替換轉化溫度範圍能夠 由室溫至300Ό。同時,賴由使用不同組成份顆粒混合物, 在聚合性組成份操作溫度範圍内之不同溫度下各種轉化能 夠達成。在該情況下,聚合性組成份K及低热膨漲係數基 質間之應力在溫度變動循環過程中能夠加Μ控制在相當狹 小之範圍内。 ΤΙ顆粒能夠Μ先前所提及Francis之美國第5089445號 專利,其相關部份在此加入作為參考(特別參閲第5播第15-38行)。另外一個CoMgP2〇7製造過程揭示於底下範例9中。 為了有效控制組成份整體熱膨漲係數,ΤΙ顆粒大小(主 要尺寸)至少為5微米。同時,顆粒轉化溫度應該小於聚合 物或構成聚合性成份聚合物之玻璃轉化溫度。在上限,ΤΙ 顆粒一般小於1〇〇微米,雖然在該應用中能夠使用較大之顆 粒,例如聚合性固结物。 如先前所説明,在許多應用中需要將顆粒氮化Μ使其 為抗水性。氮化作用能夠藉由例如將顆粒暴露於850Ί0無 水氨裂解副產物之氣體中歷時1小時而達成。該方式處理 Mg2P2〇7之X光光電攝譜儀顯示出顆粒已加入1.77%於表面 P 區域中。頻譜分析顯示出各種N種類包含P=N-P及〉P-N。 P 對相同試樣之富立葉轉換IR(FRIR)頻譜並沒有顯示出例如 NH3或 NH4+ ° 除了聚合性組成份Μ及TI填充料外,本發明聚合性組 成份能夠包含各種非限制性附加性成份包括界面活性劑, 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐) (請先閱讀背面之注意事,fc,填筠本頁) -5 線 1 1 9 經濟部中央標準局負工消費合作社印袈 A7 ___η 7__ 五、發明説明(ί)) 固化劑,啟始劑,偶合劑,色素,黏滯改良劑,晶相分離增強 劑,裝填改良劑,穩定劑,紫外線阻擋劑,Κ及不會圼琨出溫 度轉化之填充劑,包括滑石(含有或不含矽烷塗料),碳酸鈣 ,氧化鋅,雲母,氧化鈦,礬土,氧化銻,黏土,石英(结晶二氧 化矽)。 添加性填充料已發現特別有用於本發明聚合性姐成份 配方中,其最好包含Μ矽烷處理之矽石微球粒。這些微球 粒能夠由溶膠所構成Μ及市埸上可購得。最好,微球粒小 於ΤΙ顆粒,即微粒在1.5微米範圍内。除此微粒通常具有之 平均直徑為(i)小於2微米Μ及(ii)小於ΤΙ顆粒平均直徑至 少5倍。在該情況下微球粒將作為密閉填充劑以及允許所 有較高填充料之填充K達成組成份具有相同之黏滯係数。 除此,小的微球粒有助於保持較大TI顆粒懸浮於聚合性組 成份中,當時組成份在液體狀態下,例如在組成份固化前。 本發明組成份通常首先利用將有機成份例如聚合性成 份以及任何可附加上有機成份攪拌在一起,而後加上無機 成份例如TI填充料或填充料Μ及任何附加性無機物而加κ 混成。組成份基本上能夠使用任何所使用填充熱塑性或熱 凝性樹脂之混合技術加以混合,只要該方法並不會導致ΤΙ 顆粒尺寸過度減小。實施混合適當設備之一些範例包括葉 片攪拌機,雙及單螺旋擠壓櫬,行星攪拌機,輥简製粉櫬等。 有櫬組成份通常包含所有組成份之20-80%重量比,以 及ΤΙ填充料或填充料約為80-20%重量比。當使用添加性之 非ΤΙ填充料,其含量通常為ΤΙ重量之10-40%。當使用環氧 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨0 X 297公釐) --------斧,-I (請先閱讀背面之注意事^ί 填巧本頁) *-» 線 C 1 經濟部中央標準局負工消費合作社印製 A7 _ B7 五、發明説明(丨〇 ) 樹脂時,其含量通常在20-40%重量比範圃内。當使用裝填 改善劑時,其含量通常在5-20%範圍内。其餘附加性成份通 常包含最終組成份之5%重量比。 如先前所說明,本發明聚合性姐成份一項應用為姐裝 耦合器Μ及其他含有光學波導孅維之裝置。特別是,聚合 性組成份能夠配成黏接劑Μ及使用來將光學波専連结至耦 合器管件,其一般形式顯示於先前所提及Miller等人之美 國第5009692號專利中,其相關部份在此加人作為參考。特 別是,聚合性組成份能夠使用作為黏膠,其顯示於Miller等 人之專利圖3,6及8之參考數字47,49,54及56。當然組成份 能夠於異於Miller等人專利之耦合器構造K及其他採用光 學波導纖維之装置。例如參閲先前所提及Vial等人之美國 第5185835號專利之集體光學姐件中。 本發明另外一項應用在於包裝光學波導耦合器中。如 說明於先前所提及歐洲第553492號專利中,為了防止破壊 K及損及性能,光學波導耦合器需要被包装於堅硬之材料 中。揭示於該專利中之包裝研究包括將光學波専耦合器利 用低熱膨漲係數組成份包覆,該組成份由聚合性樹脂,最好 為負的熱膨漲係數填充料,Μ及最好沿著整個耦合器延伸 之纖維所構成。該包裝研究致使耦合器整體尺寸(直徑)增 大Μ及包含一系列步驟(形成包覆,包覆,固化等>。 依據本發明,人們發現能夠成功地利用較簡單塗覆過 程加Μ包裝以及不會增加耦合器直徑。該研究顯示出圖3 中,耦合器10耦合單一光學波導纖維12至兩條光學波導缴 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X297公釐) 13 (婧先閱讀背而之注意事,4、填寫本页) -裝· 293024 A7 B7 五、發明说明(丨1 ) 維14及16。耦合器10沿著其畏度實質上具有圓形斷面。 依據本發明,將發現耦合器適當之穗定Μ及保護能夠 藉由簡單地將聚合性組成份13填人耦合器收縮之部份而達 成。聚合性組成份13最好依據先前所說明之原理配製成, 雖然假如需要之情況下能夠使用其他配方。組成份最好具 有低熱膨漲係數,例如在-401與+8510間之熱膨漲係數小 於 50x10-7 /t: 0 能夠使用於耦合器聚合性組成份能夠藉由塑模例如兩 ,片塑棋,其與耦合器物體之端部15連接。一旦放置塑模後, 聚合性組成份被加入於塑橫内,即注入塑横内,以及在其中 固化,例如藉由紫外線經過塑模之壁板K形成最終包裝之 耦合器。·如圖3所顯示,所製成之產品實質上沿著其長度具 有均勻之直徑,其大體上等於端部15之直徑。 本發明將由下列範例更進一步加Μ說明,其並非在於 以任何方式加Μ限制。各種範例共同使用之材料表示於表 1中。 範例1 本範例說明出使用本發明在塗層固化溫度至室溫之操 作溫度範圍内Μ控制塗層與低熱膨漲像數基質間之應力。 經濟部中央橾準局貝工消費合作社印裝 聚合性組成份藉由混合下列成份形成柔軟混合物而配 製出,其中成份數量Μ重量之份數(Pbw)表示:5. The Ministry of Economic Affairs Central #Mou Bureau Beigong Consumer Cooperative Printed Invention Description (3) The thermal expansion coefficient of the group of components, the application is the same as the previously mentioned patents of Francis, Cornelius et al., & Francis et al. Not the same. III. Optical Waveguide Coupler The adhesive used in assembling the optical waveguide coupler has been disclosed in, for example, Miller et al., U.S. Patent No. 5009692. Adhesives are also used in the manufacture of collective optical components in which the optical waveguide formed in the substrate is connected to one end of the optical waveguide fiber. See US Patent No. 518583 5 by Vial et al. The use of low thermal expansion fillers in the manufacture of optical waveguide couplers has been described in European Patent No. 553492. The published patent discloses that a variety of fillers M are used in the adhesive, including fillers composed of lithium aluminum silicate with a negative thermal expansion coefficient. However, the patent does not disclose or suggest the use of crystalline phosphate glass for this purpose. SUMMARY OF THE INVENTION: In view of the foregoing description, the object of the present invention is to provide a polymerizable component with novel tri-fill. Another object of the present invention is to use the polymerizable component M to construct an optical wave coupler M and other components including optical waveguide fibers. In order to achieve these Μ and other goals, Ben Ming provides a polymerizable component, which contains a polymer or a polymer dopant and no filler, which contains particles of one or more crystalline phosphate glass, each glass It is mainly composed of pentoxide pentoxide and one or more cations selected from magnesium, cobalt, arsenic, zinc, aluminum, and aluminum. The polymer used in the composition is substantially within the operating temperature range of the composition. The paper standard is applicable to the Chinese National Standard (CNS> Λ4 present format (210 >: 297 mm) (please read the note on the back of the sister ^^ fill the chicken This page). Installed · • va line 293024 6 4 Λ7 Β7 Printed by the Employee Consumer Cooperative of the Central Bureau of Economic Affairs of the Ministry of Economic Affairs 5. The invention description (4) will not vaporize. Crystalline phosphate glass will be within the operating temperature range of the components A crystalline phase transition is exhibited. When the temperature rises to the crystallization transition temperature, the crystalline phase transition (morphological award) causes the filler particles to shrink. Compared with the thermal expansion coefficient of the organic polymer alone, the shrinkage will cause the component Small thermal expansion coefficient. Depends on the specific composition κ and the amount of the composition used for the polymerizable component (for example, polymer, its Tg and strength, the amount of filler, crystalline phosphate glass / conversion temperature, Μ and It is explained below that various additional compositions can be determined, and if necessary, a negative thermal expansion coefficient can be achieved within at least a part of the operating temperature of the components. In many applications The polymerizable component needs to be water-resistant. The crystalline phosphoric acid used in the present invention is sensitive to moisture in its natural state. According to another aspect of the present invention, this phenomenon of moisture sensitivity can be achieved by The glass particles are removed by nitriding treatment before being used as a filler. The treatment preferably includes exposing the glass particles to a gas with an anhydrous ammonia cracking by-product temperature of 8501C for a period of time such as 0.5 hours to 4 hours, such as 1 Hours, its discovery will significantly reduce the sensitivity of the final polymerizable component to water. Nitriding the particles will also change the embedding of the polymerizable component of the component. The polymerizable component of the invention is very important It is used to manufacture optical wave coupler M and other devices containing optical waveguide fibers. The optical waveguide stage dimension is composed of very low thermal expansion coefficient glass. The optical level thermal expansion coefficient and the thermal expansion of organic materials used in the manufacture of optical fiber devices The mismatch between the expansion coefficients will deteriorate the optical performance. Please read the notes on the back first, and fill in this page * Ψ binding • Η 线 本 纸Applicable to China National Standard Rate (CNS) Λ4 specification (210X 297mm) Α7 Β7 V. Description of the invention (f) According to the disclosure of the European Patent 553492 mentioned previously, it has been actively seeking polymerization suitable for the use of optical waveguides Property materials. The polymerizable component of the present invention meets this need by using crystalline phosphate glass capable of showing crystalline transformation. The drawings are added here and form part of the description, which shows the various aspects of the present invention. Item, which will be used to explain the principle of the present invention. Of course, people understand the drawings M and the description are only for illustration and not to limit the invention. Brief description of the drawings: FIG. 1 illustrates the inclusion of phenol resin M and conversion filling in Example 3 The graph of the relationship between the swelling of the polymerizable component and the temperature. Figure 2 is a graph illustrating the relationship between the swelling of the polymerizable component and the temperature in Example 4. Fig. 3 is a schematic diagram showing the use of the components of the present invention in a packaged optical waveguide coupler. DESCRIPTION OF PREFERRED EMBODIMENTS: As previously explained, the present invention is concerned with containing crystalline phosphate glass particles as a component for controlling the coefficient of thermal expansion. The polymerizable component can be used to produce a variety of manufactured objects, including plastic horizontal objects, dysprosium-made objects, sheet materials, sealants, adhesives, encapsulants, paints, paints (such as paints containing pigments), etc. Particularly useful applications of the components of the present invention include the low thermal expansion coefficient adhesive M combined with the low thermal expansion coefficient material in addition to the previously described optical waveguide coupler M and other optical waveguide components. The low maturity expansion coefficient of the adhesive will The stress at the interface between the adhesive and the product material is reduced; the low thermal expansion of the material with low thermal expansion coefficient is based on the paper standard applicable to the Chinese National Standard (CNS) Λ4 specification (210X 297 mm) 8- ------ 'installed Ί (please read the notes on the back first and fill in this page, 1T Line Ministry of Economic Affairs Central Standards Bureau Employee Consumer Cooperative Printed 8 8 A7 _________B7 V. Description of invention (6) " number coating , Which can achieve better adhesion and reduce bending unevenness by reducing the magnitude of interfacial stress; the encapsulation of electronic components with low thermal expansion coefficient, where the low thermal expansion coefficient of encapsulation will transfer the reduced stress to the encapsulant Parts; the formation of precise components, such as paving, precision tolerances, etc., where dimensional accuracy is important; Μ and polymer parts Μ inserted and matched with other materials made of low thermal expansion coefficient Other parts, so they can match in the temperature range without mechanical drying or excessive spacing extension. The polymer component of the component can be a thermosetting or thermoplastic form. Usually the polymer component should have below its Tg The minimum is a modulus of 0.7xl09 Pa, Μ and preferably at least 2xl〇3 Pa. Non-limiting examples of some thermosetting materials that can be used in the present invention include epoxy resins, epoxy-epoxy groups Mixtures, epoxy-silicon mixtures, phenol, melamine, acrylic, polyimide, rigid polyurethane, and interconnected polyesters. Some non-limiting examples of thermoplastic materials include polybutene Terephthalic acid, polycarbonate, polystyrene, polybenzoxide, polyxylylene amide, polyene, polyester, polyacrylate, nylon, acetal, liquid crystalline polymer, cellulose , Vinyl chloride, printed by the Central Ministry of Economic Affairs Employee Consumer Cooperatives -------- One | Install Ί (Read first and pay attention to matters l Fill in this line of polystyrene M and highly loaded polystyrene Ethylene mixture, polyimide, poly Acetylbenzene, Polyether ketone, M and Polyetherether ketone (PEEK). Polymerizable components can also contain polymerizable mixtures, glass-polymer mixtures, metal-polymer mixtures, or polymers Alloys. The polymerizable components must not be vaporized substantially within the operating temperature range of the components. As used herein, the operating temperature range of the components includes the components to achieve the desired purpose (for example, in setting, molding, or The maximum temperature is reached in the process of other application forms, and the standard of the paper in the curing process of the thermosetting resin is in accordance with the Chinese National Standard (CNS) Λ4 now (210X297mm) 9 7 Printed by the consumer cooperative A7 B7 V. Description of the invention (1) The composition reaches the maximum temperature, and the component gi in the use process after coating is sufficient for the expected maximum and minimum temperature. Generally, the polymerizable component of the present invention is used in liquid form when applied. Thermoplastic resin means that the temperature of the polymer or polymer constituting the polymer component after coating is higher than the glass transition temperature. The thermosetting resin, after coating, is cured to change the composition to its final form. The form of curing depends on the particular polymer or polymer M used and can include, for example, heat curing, ultraviolet radiation curing, and the like. The use temperature of the components varies with the product form. For example, items that must meet military specifications, the operating temperature range is usually between -6510 to + 125¾. Including products for optical waveguide payment, the general industrial temperature range is -40 to 851C. The upper temperature limit is usually in the range of 100 to 300 υ, and the upper limit of some thermally stable polymers can be as high as 400 π. In particular, many polymer materials can be used at temperatures ranging from -651C to 300¾, however, for some aromatic polymers, the upper limit of the range is increased to 35〇υ, and PEKs, PEEKS and some polyimides reach 400X :. The novel filler (hereinafter referred to as temperature conversion (TI) filler) of the present invention is composed of one or more crystalline phosphate glass particles, each glass mainly contains P205W and one or more of magnesium, cobalt, arsenic, The cations selected by Zi, Os, Shao, and Hao (herein referred to as TI particles). Some TI particles produce crystal phase transformation, and when their temperature rises to the transformation temperature, they will cause the particles to shrink by 0.2%. According to the present invention, The shrinkage is used to compensate the larger positive expansion of the polymerizable components of all components. The selected TI filler can be explained by the molecular formula Mg2-xAxP2〇7, and its paper size is applicable to the Chinese National Standard (CNS) Λ4 specification ( 2I0X297mm) I 〇 -------- I install Ί (Jing first W1 read the notes on the back fill two pages • va line 4 8 A7 B7 V. Description of the invention (《) Ministry of Economic Affairs Central Standards Bureau In the printing of Beigong Consumer Cooperative Society, X is between 0 and 2. M and A can be Co to increase the conversion temperature or As, Fe, A1, or zr to reduce the conversion temperature. The replacement conversion temperature range can be changed from room temperature To 300Ό. At the same time, depending on the use of different composition The particle mixture can achieve various transformations at different temperatures within the operating temperature range of the polymerizable component. In this case, the stress between the polymerizable component K and the matrix with a low thermal expansion coefficient can be controlled by M during the temperature fluctuation cycle. In a relatively narrow range. ΤΙ particles can be previously mentioned in the US Patent No. 5089445 of Francis, the relevant part of which is hereby incorporated by reference (see in particular the fifth broadcast line 15-38). Another CoMgP2〇 7 The manufacturing process is disclosed in Example 9. In order to effectively control the overall thermal expansion coefficient of the component, the particle size (main size) of the TI is at least 5 microns. At the same time, the particle conversion temperature should be less than the polymer or the polymer constituting the polymerizable component Glass transition temperature. At the upper limit, TI particles are generally less than 100 microns, although larger particles can be used in this application, such as polymeric consolidation. As previously explained, in many applications it is necessary to nitride the particles. Make it water resistant. Nitriding can be achieved by, for example, exposing the particles to a gas of 850Ί0 anhydrous ammonia cracking byproducts Achieved within 1 hour. The X-ray photoelectron spectrograph processing Mg2P207 shows that particles have been added to 1.77% of the surface P area. The spectrum analysis shows that various N types include P = NP and> PN. P The same test Such Fourier transform IR (FRIR) spectrum does not show, for example, NH3 or NH4 + ° In addition to the polymerizable component M and TI filler, the polymerizable component of the present invention can contain various non-limiting additional components including surfactants , This paper scale is applicable to the Chinese National Standard (CNS) Λ4 specification (210X 297mm) (please read the notes on the back first, fc, fill out this page) -5 Line 1 1 9 Ministry of Economic Affairs Central Standards Bureau Unemployment Consumer Cooperative印 袈 A7 ___ η 7__ V. Description of the invention (ί)) Curing agent, initiator, coupling agent, pigment, viscosity modifier, crystal phase separation enhancer, filling modifier, stabilizer, UV blocking agent, K and not Fillers that will convert temperature include talc (with or without silane coatings), calcium carbonate, zinc oxide, mica, titanium oxide, alumina, antimony oxide, clay, quartz (crystalline silica). Additive fillers have been found to be particularly useful in the formulation of the polymerizable ingredients of the present invention, which preferably contains SiO2 treated silica microspheres. These microspheres can be composed of sol M and commercially available. Preferably, the microspheres are smaller than the TI particles, i.e. the particles are in the range of 1.5 microns. In addition, the particles usually have an average diameter of (i) less than 2 microns M and (ii) less than 5 times the average diameter of the particles of the TI. In this case, the microspheres will act as an airtight filler and allow all higher fillers to achieve a K component with the same viscosity coefficient. In addition, the small microspheres help to keep the larger TI particles suspended in the polymerizable component when the component is in a liquid state, for example, before the component is cured. The components of the present invention are usually first mixed by kneading together organic components such as polymerizable components and any additional organic components, and then adding inorganic components such as TI filler or filler M and any additional inorganic substances. The components can basically be mixed using any mixing technique used to fill thermoplastic or thermosetting resins, as long as this method does not cause excessive reduction in the particle size of the TI. Some examples of suitable equipment for implementing mixing include blade mixers, double and single screw extruders, planetary mixers, roller mills, etc. The composition of the compound usually contains 20-80% by weight of all the components, and the T1 filler or filler is about 80-20% by weight. When using additive non-TI filler, its content is usually 10-40% by weight of TI. When using epoxy paper, the standard of the Chinese National Standard (CNS) Λ4 (2 丨 0 X 297 mm) is applicable -------- axe, -I (please read the notes on the back ^ ί Page) *-»Line C 1 A7 _ B7 printed by the Consumer Labor Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of the invention (丨 〇) When the resin is contained, its content is usually within the range of 20-40% by weight. When loading modifiers are used, their content is usually in the range of 5-20%. The remaining additional ingredients usually contain 5% by weight of the final composition. As previously explained, one application of the polymerizable component of the present invention is as a coupler M and other devices containing optical waveguides. In particular, the polymerizable component can be formulated into an adhesive M and used to connect the optical wave to the coupler tube. The general form is shown in the previously mentioned US Patent No. 5009692 of Miller et al. The copies are added here for reference. In particular, the polymerizable component can be used as a viscose, which is shown in the reference numbers 47, 49, 54 and 56 of Miller et al. Patent Figures 3, 6 and 8. Of course, the composition can be different from the coupler structure K and other devices using optical waveguide fibers that are different from the Miller et al. Patent. See, for example, the collective optical component of U.S. Patent No. 5,185,835 to Vial et al. Mentioned earlier. Another application of the invention is in packaging optical waveguide couplers. As explained in the previously mentioned European Patent No. 553492, in order to prevent damage to K and damage performance, the optical waveguide coupler needs to be packed in a hard material. The packaging research disclosed in this patent includes covering the optical wave coupler with a low thermal expansion coefficient component, which is composed of a polymer resin, preferably a negative thermal expansion coefficient filler, Μ and preferably along It consists of fibers that extend the entire coupler. This packaging study resulted in an increase in the overall size (diameter) of the coupler and included a series of steps (forming a coating, coating, curing, etc.). According to the present invention, it has been found that a simpler coating process can be used to successfully add M packaging And it will not increase the diameter of the coupler. The study shows that in Figure 3, the coupler 10 couples a single optical waveguide fiber 12 to two optical waveguides. The paper size is applicable to the Chinese National Standard (CNS) Λ4 specification (210X297 mm) 13 ( Jing first read the notes on the back, 4. fill in this page)-installed · 293024 A7 B7 5. Description of the invention (丨 1) Dimensions 14 and 16. The coupler 10 has a substantially circular cross-section along its awesomeness. According to the present invention, it will be found that proper coupling and protection of the coupler can be achieved by simply filling the retractable portion of the coupler 13 with the polymerizable component 13. The polymerizable component 13 is preferably based on the principles previously described Formulated, although other formulations can be used if necessary. The components preferably have a low thermal expansion coefficient, for example, the thermal expansion coefficient between -401 and +8510 is less than 50x10-7 / t: 0 can be used in The polymerizable component of the coupler can be connected to the end 15 of the coupler object by a mold such as a two-piece plastic chess. Once the mold is placed, the polymerizable component is added into the plastic horizontal, that is, injected into the plastic horizontal , And curing in it, for example, the molded packaging wall panel K is formed by ultraviolet rays to form the final packaging coupler. As shown in FIG. 3, the manufactured product has a substantially uniform diameter along its length, which is generally It is equal to the diameter of the end 15. The present invention will be further illustrated by the following example, which is not limited by adding M in any way. The materials commonly used in various examples are shown in Table 1. Example 1 This example illustrates the use of the present invention in The operating temperature range of the coating curing temperature to room temperature M controls the stress between the coating and the low thermal expansion image matrix. The Ministry of Economic Affairs Central Bureau of Industry and Technology Co., Ltd. Beigong Consumer Cooperative Printed Polymeric Component is made soft by mixing the following ingredients The mixture is prepared, in which the number of ingredients M weight parts (Pbw) means:
Dow Corning DEN 531 環氧樹脂 100Dow Corning DEN 531 Epoxy 100
Nadic甲酐(硬化劑) 90 三(二甲胺基甲}酚(觸媒> 1〇 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨0 X 297公釐) 14 1 經濟部中央標準局貞工消费合作社印掣 A7 B7 五、發明説明(u)Nadic dianhydride (hardener) 90 Tris (dimethylaminomethyl) phenol (catalyst > 10) The paper standard is applicable to the Chinese National Standard (CNS) Λ4 specification (2 丨 0 X 297 mm) 14 1 Central Ministry of Economy Bureau of Standards Zhen Gong Consumer Cooperatives A7 B7 V. Description of Invention (u)
Mgi · eCoo . 4P2O7顆粒 39 在組成份中所使用環氧樹脂在25<C Μ及160*C之Tg下 具有之彈性模數為300000Psi。ΤΙ填充料具有之顆粒尺寸 將通過100孔目網蹄,但是無法通過120孔目網篩。其轉化 溫度為90¾ ,該溫度為中等溫度並界於聚合物TgM及室溫 之間。 柔耽混合物塗覆至熔融矽石K及在200T下固化1.5小 時。複合物當其由200TC冷卻至25C時Μ偏極計檢視顯示 出熔融矽石為承受張力吠態,相當於複合物為負的膨漲性 。由於環氧樹脂本身冷卻時會收縮,此结果顯示出ΤΙ填充 料能夠控制(減小)組成份之熱膨漲像數。 範例2 此範例顯示出使用本發明將控制在室溫至-50C之操 作溫度範画内塗層與低熱膨漲係数基質間之應力。 聚合性組成份藉由混合下列成份形成柔软混合物而配 製出,其中成份數量W重量之份數(Pbw)表示:Mgi · eCoo. 4P2O7 particles 39 The epoxy resin used in the composition has an elastic modulus of 300,000 Psi at a Tg of 25 < C M and 160 * C. The particle size of the ΤΙ filler will pass through a 100-mesh mesh hoof, but cannot pass through a 120-mesh mesh sieve. The conversion temperature is 90¾, which is a medium temperature and is between the polymer TgM and room temperature. The velvet mixture was applied to fused silica K and cured at 200T for 1.5 hours. When the composite was cooled from 200TC to 25C, the inspection of the M polarimeter showed that the fused silica was under tensile bark, which was equivalent to the negative swelling of the composite. Since the epoxy resin itself shrinks when cooled, this result shows that the TI filler can control (reduce) the thermal expansion of the component. Example 2 This example shows the use of the present invention to control the operating temperature range from room temperature to -50C to show the stress between the undercoat layer and the low thermal expansion coefficient matrix. The polymerizable component is prepared by mixing the following components to form a soft mixture, where the number of components W is expressed in parts by weight (Pbw):
Borden紫外線固化矽基樹脂#278-284-2 100Borden UV-curable silicone-based resin # 278-284-2 100
Mgi. 6 Zno . 4 P2 〇7 150 矽基樹脂具有40¾之TgM及ΤΙ填充料顆粒尺寸為小於 44微米Κ及轉化溫度為0TC ,該溫度為中等溫度並界於聚 合物TgM及-5〇t;之間。 柔軟混合物塗覆至熔融矽石Μ及在室溫下Μ絮外線照 射加Μ固化。複合物當其由25t:冷卻至-50t:以偏極計檢 視顯示出熔融矽石在-5〇υ時為承受張力狀態,相當於複合 本紙張尺度通用中國國家標準(CNS ) Λ4現格(210'〆297公釐) (請先閱讀背而之注意事ir.填艿本頁)6 Zno. 4 P2 〇7 150 silicon-based resin has a TgM and T1 filler particle size of 40¾ less than 44 microns K and a conversion temperature of 0TC, the temperature is a medium temperature and is bound to the polymer TgM and -50t ;between. The soft mixture is applied to fused silica M and cured at room temperature by external irradiation with M. When the compound is cooled from 25t: to -50t: viewing with a polarimeter shows that the fused silica is under tension at -50 °, which is equivalent to the general Chinese national standard (CNS) Λ4 of the standard of the composite paper. 210'〆297mm) (Please read the notes before you ir. Fill in this page)
-裝T 線 A7 B7 五、發明説明(β) 物為負的膨漲性。由於矽基樹脂本身冷卻時會收縮,此结 果顯示出TI填充料能夠控制(減小)組成份之熱膨漲係數。 範例3 適合製造低膨漲性低收縮性精密聚合物零件之聚合性 組成份利用乾式混合35重量單位之Durez ' s酚Μ及65重量 單位尺寸範圍在5至44微米Mg2P2〇7顆粒所構成之ΤΙ填充料 。混合物在聚合物處理溫度下加K熱擠壓,Μ及所形成之 物品膨漲性使用Perkin-Elmer 7系列之熱分析系統加Μ量 測。 结果顯示於圖1中。顯示於曲線中之下降相對於ΤΙ顆 粒晶相轉化。組成份界於25Ί〇與108¾間使用圖1水平與垂 直直線決定出之組成份熱膨漲係數為-54.4x10〃 /C。如 該结果所顯示,ΤΙ填充料將顯著地減小組成份整體膨漲性。 利用下列聚合物重複作相同之試驗:Amoco之Kadel Ε-1000聚嗣,Amoco之 Xydar SRT-900聚酯,Phillips Ryton P-4聚酿硫化物(polyphenelene sulfide),G.E.之 BHPP801 聚 碳化物,以及G.E.之BHP821聚酚氧化物。在每一情況下,組 成份整體膨漲性顯著地受到TI填充料所減小。 範例4 經濟部中央橾準局員工消費合作社印製 具有低熱膨漲係數黏接劑由下列成份配製成,其中成份 數量Μ重量之份數(Pbw)表示: UVR6105環氧樹脂 1000 三經甲基丙烧(trimethyolpropane) 48 Z6040砂烷 10 本紙張尺度適用中國國家標準(CNS ) Λ4规格(210 X 297公釐)-Install T-line A7 B7 5. Description of the invention (β) The object has negative expansion. Since the silicone-based resin itself shrinks when cooled, this result shows that the TI filler can control (reduce) the thermal expansion coefficient of the components. Example 3 The polymerizable components suitable for the manufacture of low swelling and low shrinkage precision polymer parts are composed of dry mixing 35 weight units of Durez's phenol M and 65 weight units of Mg2P207 particles with a size range of 5 to 44 microns. ΤΙ filler. The mixture was hot extruded at a polymer treatment temperature with K, and the expansion of M and the resulting article was measured using a Perkin-Elmer 7 series thermal analysis system with M added. The results are shown in Figure 1. The decrease shown in the curve is relative to the crystalline phase transition of TI particles. The composition boundary is between 25Ί〇 and 108¾. The thermal expansion coefficient of the component determined by using the horizontal and vertical lines in Fig. 1 is -54.4x10〃 / C. As shown in the results, the TI filler will significantly reduce the overall swelling of the components. The same test was repeated using the following polymers: Amoco ’s Kadel Ε-1000 polyheir, Amoco ’s Xydar SRT-900 polyester, Phillips Ryton P-4 polyphenelene sulfide, GE ’s BHPP801 polycarbide, and GE's BHP821 polyphenol oxide. In each case, the overall swelling of the components is significantly reduced by the TI filler. Example 4 Adhesives with low thermal expansion coefficient printed by the Employees ’Consumer Cooperative of the Central Department of Economic Affairs of the Ministry of Economic Affairs are made up of the following ingredients, of which the number of ingredients Μ weight fraction (Pbw) indicates: UVR6105 epoxy resin 1000 trimethyl Propane (trimethyolpropane) 48 Z6040 vorane 10 This paper scale is applicable to Chinese National Standard (CNS) Λ4 specification (210 X 297 mm)
I 16 1 經濟部中央標準局員工消費合作社印製 A7 B7_ 五、發明説明(\十) UVI6974光啟始劑 25I 16 1 Printed by the Employees Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A7 B7_ V. Description of Invention (\ X) UVI6974 Photoinitiator 25
Mg2P2〇7 TI 顆粒 704 使用於該組成份中不含填充料之環氧樹脂在25C之彈 性横數為8.4xl09K及Tg為17〇t:。TI填充料顆粒尺寸範園 為5至37微米Μ及轉化溫度為68TC。作為控钊用,相同之配 方使用低膨漲性矽石粉末替代ΤΙ顆粒而配製出。 兩種配方之膨漲特性使用Perkin-Elmer 7系列熱分析 系統量測Μ及結果顯示於圖2中,其中實線為實驗配方之膨 漲曲線Μ及虛線為控制配方之膨漲曲線。如該圖所顯示, 由251C至1251C整體膨漲性賴由使用Mg2P2〇7填充料以替代 低膨漲性熔融矽石填充料而減小。 範例5 該範例顯示出將TI顆粒氮化而達成抗水性。該氮化作 用使用先前所說明之處理步驟實施於裝置inconel蒸豳器 箱型高溫埔中,例如將顆粒暴兹於8501C無水氨裂解副產物 之氣體中歷時1小時。氨氣體賴由液態氨茼來提供。TI顆 粒由Mg2P207所構成Μ及轉化溫度為68C。 環氧樹脂配方由含有未改春以及Μ氨改善ΤΙ顆粒配製 出。配方使用來連接具有相同斷面積小直徑桿件至矽石板 上。將桿件由矽石板分開所需要之力量被使用來量测黏接 強度。 對未改善或Μ氨處理ΤΙ顆粒所新配製成試樣進行分離 力量之量測。其他試樣暴露於於85C下85%相對濕度(RH> 歷時65小時,Μ及再量測分離力量。结果顯示於表2中。如 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨0 X 297公釐) ΙΊ (請先閱讀.背面之注意事填艿本頁) 裝τ- -5 17 11 經濟部中央楯準局員工消費合作社印製 A7 _____B7_ 五、發明説明(\〇 · 其中所顯示,當使用未改善填充料時暴露於水蒸氣後分離 力量顯著地減小,同時Μ氨改菩填充料之分離力虽明顯地 較小之減少。 水份沾附大小亦使用不相同試驗來量測。第一,處理 或未處理Mg2P2〇7粉末放置於85TC Μ及85%相對濕度之濕度 箱歷時一週Μ及量測增加之重虽。未處理粉末增加重量7% ,同時以氨處理粉末增加重量小於0.01%。即氨處理實質上 完全地去除水份沾附。處理Μ及未處理粉末在暴露於高濕 度氣體後紅外線頻譜亦顯示出實質上吸附較少水份於Κ氨 處理之Mg2P2〇7顆粒。 在第二测試中,在分離試驗中所使用含填充料環氧樹 脂配方試樣暴露於42TC 100%相對湄度歷時24小時。人們發 現利用氨處理之填充料吸附水份數量與樹脂本身而沒有任 何填充料所吸收水份數量並不相同,因而顯示出改良填充 料並不吸收任何顯著數量之水份。 範例6 氮化處理效果使用下列三種填充料而更進一步確認: (1) 4:1 Mg2P2〇7 (未處理 > :Geltech 2.2 (2) 4:1 Mg2P2〇7 (以氨處理 > :Geltech 2.2 (3) 3:1 Aceto:Geltech 2.2 每一填充料加人具有下列組成份環氧樹脂,其中成份 數量以重量之份數(pbw)表示:Mg2P2〇7 TI particles 704 The epoxy resin used in this composition without filler has an elastic transverse number at 25C of 8.4x109K and a Tg of 17〇t :. The TI filler particle size range is 5 to 37 microns M and the conversion temperature is 68TC. For the control of Zhaozhao, the same formula is prepared using low-expansion silica powder instead of TI particles. The expansion characteristics of the two formulations were measured using Perkin-Elmer 7 series thermal analysis system and the results are shown in Figure 2, where the solid line is the expansion curve M of the experimental formula and the dashed line is the expansion curve of the control formula. As shown in this figure, the overall swelling from 251C to 1251C is reduced by using Mg2P207 filler instead of low-swell fused silica filler. Example 5 This example shows the nitridation of TI particles to achieve water resistance. This nitriding effect was implemented in the inconel steamer box-type high-temperature apparatus using the previously described processing steps. For example, the particles were blasted in 8501C anhydrous ammonia cracking by-product gas for 1 hour. The ammonia gas is supplied by liquid ammonia. TI particles are composed of Mg2P207 and the conversion temperature is 68C. The epoxy resin formulation is formulated from particles containing unmodified spring and M ammonia to improve TI. The formula is used to connect small-diameter rods with the same cross-sectional area to silica plates. The force required to separate the rod from the silica plate is used to measure the bond strength. The separation force was measured on the newly prepared samples of the unimproved or M ammonia-treated TI particles. The other samples were exposed to 85% relative humidity at 85C (RH> 65 hours, Μ and the separation force was measured again. The results are shown in Table 2. If the paper scale is applicable to the Chinese National Standard (CNS) Λ4 specifications (2 丨0 X 297 mm) ΙΊ (please read first. Please pay attention to the back and fill in this page) Install τ- -5 17 11 Printed A7 _____B7_ Employee's Consumer Cooperative of the Central Department of Economic Affairs of the Ministry of Economic Affairs. As shown, when using unimproved fillers, the separation force is significantly reduced after being exposed to water vapor, and the separation force of M ammonia to Bo fillers is significantly reduced. The moisture adhesion size is also different. To measure. First, the treated or untreated Mg2P207 powder was placed in a humidity chamber of 85TC Μ and 85% relative humidity for one week and the measured weight increased. Although the untreated powder increased 7% weight, it was also treated with ammonia The weight increase of the powder is less than 0.01%. That is, the ammonia treatment substantially completely removes the water adhesion. The infrared spectrum of the treated M and untreated powder after exposure to high humidity gas also shows that it substantially absorbs less water in the ammonia treatment. Mg2P2〇7 In the second test, the epoxy resin formulation sample containing filler used in the separation test was exposed to 42TC 100% relative maho for 24 hours. It was found that the amount of moisture absorbed by the filler treated with ammonia and the resin The amount of moisture absorbed by the filler itself is not the same, so it shows that the modified filler does not absorb any significant amount of moisture. Example 6 The effect of nitriding treatment is further confirmed using the following three fillers: (1) 4: 1 Mg2P207 (untreated>: Geltech 2.2 (2) 4: 1 Mg2P207 (treated with ammonia>: Geltech 2.2 (3) 3: 1 Aceto: Geltech 2.2 each filler has the following Group component epoxy resin, where the number of components is expressed in parts by weight (pbw):
Cyracure UVI-6974 1.5 Z6040 4 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2l〇x297公釐) d 裝"ϊ 訂 7"線 (請先閲讀背而之注意事★4填寫本頁) 一 - · 293024 18 16 A7 B7 五、發明説明(\b) UVR-6105 65 Eponex 1510 25 UVR 6200 10 經濟部中央標準局員工消費合作社印製 每一情況,填充料負載為72%重量比。 該實驗之结果顯示於如表3中。在其中顯示出,氨處理 將減少水份吸附數量至含有由δ夕石微球粒所構成之填充料 之情況。 範例7 表4揭示出一糸列配方,其發琨適合使用作為製造光學 波導耦合器之黏接劑。配方Α及Β在操作性能上實質上為相 等的以及優先使用。顯示於該表中耦合器應力數據K偏光 儀旋轉度数表示光線通過耦合器之減媸,其由於黏接劑與 將被耦合之光學波導間之應力所致。 使用於配方中焦磷酸鎂顆粒(Mg2P2〇7顆粒)Μ先前所 說明方式加Μ氮化Μ及Μ篩選通過325孔目之篩網Μ去除 袓的材料,随後Κ空氣分離Κ去除微细顆粒Μ及使得顆粒 大於35微米。所產生顆粒尺寸分佈界於8至35微米之間。 能夠使用一種液體之浮選技術Μ替代空氣分類。為了製造 目的優先使用空氣分離方式。 姐成份配製說明如下。首先,有機材料Μ及Geltech填 充料在三輥茼製粉椴研磨,直到混合物顆粒為微米或更 小,其使用Hegman量测儀置測。而後加人TI顆粒Μ及混合 物再被研磨於使用粗的裝置之三輥茼製粉機中,直到顆粒 尺寸為40微米或更小時,其利用Hegman虽測儀量測。最後 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X297公釐) I I I I I I I I I 裝-Tf— I I I i I ^ (請先閱讀背面之注意事/.彳填寫本頁) 《 19 17 經濟部中央榡準局貝工消費合作社印製 A7 B7 五、發明説明(Π ) ,產品利用裝置真空抽除之Helic〇n授拌器來去除空氣。表 4配方特別設計使用於先前所提及美國第5009692號専利所 顯示一般形式之耦合器。下列配方能夠被使用作為組裝先 前所提及美國第5185835號專利中所顧示集體光學組件之 黏接劑: LCR-00V瓌氧樹脂 1〇〇 Pbw 微孔隙一1.5微米;A 187-0.5 13.01 pbw 氮化之焦磷酸鎂顆粒 91.07 pbw 在組成份中所使用LCR-00V環氧樹脂為市埸上可採購到的 。氮化之焦磷酸鎂顆粒與使用於表4中配方相同。 範例8 表5顯示出兩種配方適合使用於圖3之包裝光學波等耦 合器,該圖已在前面加以說明。表5中成份數量Μ重量份數 來表示。 圖3構造之包装耦合器使用表5之配方μ及先前所說明 塑模技術製造出。在及65t:間在波長為1550nnTF測試 兩種耦合器平均最大介入損耗(I.L.),兩者在43t:下浸於 及不浸於水中一週。測試依據歐洲第553492號製成之包裝 耦合器Μ作為比較用。 结果顯示於表6中。如其中所顯示的,兩種配方達到較 低之介入損耗,F配方之介入損耗與Μ歐洲第553492號専利 之包裝方法所得到之介入損耗一樣低。經過浸水處理後之 介入損耗將提高,但是仍然為可接受的,特別是F配方之情 況。基於該數據,F配方在本發明中為纜先使用的。 本紙張尺度逋用中國國家標準(CNS ) Λ4規格(210X 297公釐) 0-〇 ^裝 訂 ~ 踩 (請先閱讀背面之注意事見再填寫本頁) 293024 ^ A7 _ B7 五、發明説明〇 8:) 範例9 本範例說明製造含有鎂及鈷之结晶磷酸鹽玻璃Μ及適 合於配製具有167ΊΟ轉化溫度之ΤΙ填充料。 63.72公克(0:〇3〇4如3)2 6 112〇被溶解於10〇1111水中,以及 6.95公克MgO與43.9公克磷酸混合。溶解鈷被加入磷酸/氧 化鎂混合物中,Μ及在48小時將產生清澈藍色溶液。 該溶液媛慢地加熱至40CTC以及將觀察到Μ色粉末,其 以X光分析 '顯示出幾乎非结晶的。而後材料Κ每分鐘2TC 速率加熱到900Ί〇 ,Μ及所觀察到之試樣並不是非常燒結的 。該試樣之X光分析顯示出只有焦磷酸鹽晶相。 材料而後Κ相同速率加熱至1100C Μ及保持2小時。 在此刻其為均勻之顔色,結晶,Μ及良好之燒结。對試樣進 行微差掃瞄熱量計分析,其顯示出在167Ό時轉化。 雖然本發明已說明優先使用以及其他實施例,其他實 施例能夠為業界热悉該技藝者理解,其並不會脫離申請専 利範圍所界定出之本發明範圍。 經濟部中央橾準局貝工消费合作社印裴 本紙張尺度適用中國國家榇準(CNS ) Λ4規格(2ΙΟΧ297公釐) >1 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(Η )Cyracure UVI-6974 1.5 Z6040 4 This paper scale is applicable to Chinese National Standard (CNS) Λ4 specification (2l〇x297mm) d Pack " ϊ Order 7 " line (please read the notes beforehand ★ 4 fill in this page) 1.-293024 18 16 A7 B7 5. Description of the invention (\ b) UVR-6105 65 Eponex 1510 25 UVR 6200 10 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs, the filler load is 72% by weight. The results of this experiment are shown in Table 3. It is shown that the ammonia treatment will reduce the amount of water adsorbed to contain the filler composed of δ evening stone microspheres. Example 7 Table 4 discloses a series of formulations, which are suitable for use as adhesives for manufacturing optical waveguide couplers. Formulations A and B are substantially equal in terms of operational performance and are used preferentially. The coupler stress data K shown in the table indicates the degree of rotation of the light through the coupler due to the stress between the adhesive and the optical waveguide to be coupled. Magnesium pyrophosphate particles (Mg2P2O7 particles) used in the formulation. M. Add M.N. and M. Screen the material removed through the 325 mesh screen M. Then remove the fine particles by air separation. And make the particles larger than 35 microns. The resulting particle size distribution is between 8 and 35 microns. It is possible to use a liquid flotation technology M instead of air classification. For manufacturing purposes, air separation is preferred. Sister ingredients preparation instructions are as follows. First, the organic materials M and Geltech fillers were ground in a three-roll chrysanthemum linden until the mixture particles were micrometers or smaller, which were set using a Hegman measuring instrument. Then, the TI particles M and the mixture were added and then ground in a three-roll mill mill using a coarse device until the particle size was 40 microns or less, which was measured using a Hegman measuring instrument. Finally, the size of this paper is in accordance with Chinese National Standard (CNS) Λ4 specification (210X297 mm) IIIIIIIII Pack-Tf— III i I ^ (please read the precautions on the back first / .Fill in this page) 《19 17 Central Ministry of Economic Affairs A7 B7 printed by the Bureau Cooperative Consumer Co., Ltd. V. Description of the invention (Π), the product uses a vacuum-extracted Helicon mixer to remove air. The formula in Table 4 is specially designed to be used in the general form of the coupler shown in US No. 5009692 mentioned earlier. The following formulations can be used as adhesives for assembling the collective optical components mentioned in the previously mentioned US Patent No. 5185835: LCR-00V Oxygen Resin 100〇Pbw Micropores-1.5 microns; A 187-0.5 13.01 pbw Nitrided magnesium pyrophosphate particles 91.07 pbw The LCR-00V epoxy resin used in the composition is commercially available on the market. The nitrided magnesium pyrophosphate particles are the same as the formula used in Table 4. Example 8 Table 5 shows that two formulations are suitable for use in the packaged optical wave coupler of Fig. 3, which has been explained above. Table 5 shows the number of components M by weight. The packaging coupler constructed in FIG. 3 is manufactured using the formula μ of Table 5 and the previously described molding technique. Between 65t: at the wavelength of 1550nnTF test. The average maximum insertion loss (I.L.) of the two couplers, both immersed in 43t: and not immersed in water for a week. The test is based on the packaging coupler M made in European No. 553492 for comparison. The results are shown in Table 6. As shown therein, the two formulations achieve lower insertion loss, and the insertion loss of Formula F is as low as the insertion loss obtained by the packaging method of M Europe No. 553492. After water immersion treatment, the insertion loss will increase, but it is still acceptable, especially in the case of F formula. Based on this data, the F formula is used first in the present invention. This paper uses the Chinese National Standard (CNS) Λ4 specifications (210X 297mm) 0-〇 ^ Binding ~ Distress (please read the notes on the back side and then fill out this page) 293024 ^ A7 _ B7 V. Description of invention 〇 8 :) Example 9 This example illustrates the manufacture of crystalline phosphate glass M containing magnesium and cobalt and is suitable for formulating a TI filler with a 167ΊΟ transition temperature. 63.72 g (0: 〇3〇4 such as 3) 2 6 112〇 was dissolved in 10〇1111 water, and 6.95 g MgO was mixed with 43.9 g of phosphoric acid. The dissolved cobalt is added to the phosphoric acid / magnesium oxide mixture, and at 48 hours a clear blue solution will be produced. This solution was slowly heated to 40 CTC and M color powder was observed, which showed almost amorphous by X-ray analysis. The material K was then heated to 900 ° C at a rate of 2TC per minute. M and the observed samples were not very sintered. X-ray analysis of this sample showed only pyrophosphate crystal phase. The material was then heated to 1100 C M at the same rate and held for 2 hours. At this moment it is a uniform color, crystalline, M and good sintering. The sample was subjected to a differential scanning calorimeter analysis, which showed conversion at 167 °. Although the present invention has described preferred use and other embodiments, other embodiments can be understood by those skilled in the art, and they will not deviate from the scope of the present invention defined by the scope of application. The paper standard printed by the Beigong Consumer Cooperative of the Ministry of Economic Affairs of the Ministry of Economic Affairs is applicable to the Chinese National Standard (CNS) Λ4 specification (2 ΙΟΧ297 mm) > 1 A7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs Η)
表1 材科 材料 功能 來源 A-187 矽烷化合物 ? Cyracure UVI-6974 光啟始劑 Eastech Chemical Philadelphia, PA DEN 531環氧樹脂 環氧樹脂 Dow ChemicaI , M i d land, ΜI ELC-2500有機鹼 環氧樹脂/ 光啟始劑混合 E1ectro 1 ί te Corp . Danbury * CT Eponex 1510 環氧樹脂 Miller Stephenson Danbury , CT ERL 4206 環脂肪雙環氧樹脂 ? -400孔目 Aceto 微球粒A187-0.5 無TI填充料;M0.5wt% A-187矽烷化合物處理 Ace to Corp. Lake Success, NY 〇6^6(^2.2微球粒 1.5微米;A187-0.5 無TI填充料;M 0.5wtS: A-187矽烷化合物處理 Ge 1 tech Corp. Machus. FL Niax LHT-240 多羥酵(相互連结劑) Eastch Chemical Philadelphia, PA Photonol Ph〇-7127 多羥醇(相互連结劑) Henkel Co. Ambler,PA Photono 1 7149 多羥醇(相互連结劑) ? Quatrex 1010 2,2二對酚甲烷 ? 三羥甲基丙烷 多羥醇(相互連結劑) 7 UVR-6974 光啟始劑 Eastech Chemical Philadelphia, PA UVR-6105 環氧樹脂 Eastech Chemical Ph i lade 1 ph i a , PA UVR-6200 環氧樹脂 Eastech Chemical Philadelphia, PA Z6040 矽烷化合物 氧化物 Dow Chemical Midland, MI (請先閲讀背面之注意平,4填将本頁) -裝· 、\se 線 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐) 22 2Table 1 Material sources of functional materials A-187 Silane compound? Cyracure UVI-6974 Photoinitiator Easytech Chemical Philadelphia, PA DEN 531 epoxy resin epoxy resin Dow ChemicaI, Mid land, MI ELC-2500 organic base epoxy resin / Photoinitiator mixed E1ectro 1 ί te Corp. Danbury * CT Eponex 1510 epoxy resin Miller Stephenson Danbury, CT ERL 4206 cycloaliphatic double epoxy resin? -400 mesh Aceto microspheres A187-0.5 without TI filler; M0.5wt% A-187 silane compound treatment Ace to Corp. Lake Success, NY 〇6 ^ 6 (^ 2.2 microspheres 1.5 microns; A187-0.5 without TI filler; M 0.5wtS: A-187 silane compound treatment Ge 1 tech Corp. Machus. FL Niax LHT-240 polyhydroxylase (interlinking agent) Eastch Chemical Philadelphia, PA Photonol Ph〇-7127 polyhydric alcohol (interlinking agent) Henkel Co. Ambler, PA Photono 1 7149 polyhydroxyl Alcohol (interlinking agent)? Quatrex 1010 2,2 di-p-phenolmethane? Trimethylolpropane polyhydric alcohol (interlinking agent) 7 UVR-6974 photoinitiator Easytech Chemical Philadelphia, PA UVR-6105 epoxy resin Eastech Chemica l Ph i lade 1 ph ia, PA UVR-6200 epoxy resin Easytech Chemical Philadelphia, PA Z6040 Silane compound oxide Dow Chemical Midland, MI (please read the note on the back first, 4 fill this page) -installed The size of se line paper is applicable to the Chinese National Standard (CNS) Λ4 specification (210X 297mm) 22 2
A B 五、發明説明(iD ) 表2 δ夕石/環氧樹脂連接之分離力量 試樣 分離力量(磅) K填充料改善及未改善之新試樣 20 在暴露於水汽後含有改菩填充料 15 在暴露於水汽後含有改善填充料 7 表3 水份吸附 填充料編號 重量增加 5K可抽出的 %吸附 1 1.52 0.06 1.58 2 0.80 0.01 0.81 3 0.71 0.02 0.73 -------】 -裝^------訂-----1 線一* (請先閲讀背雨之注意事項再填艿本页) 經濟部中央標準局員工消費合作社印策 本紙張尺度逋用中國國家標準(CNS ) Λ4規格(210 X 297公嫠) 23 3 A7 B7 五、發明説明(W ) 經濟部中央橾準局員工消費合作社印製 表4 配方 成份 A B c D ELC-2500有機鹼 -- 31.36 -- — UVR-6105 75 -- 75 75 Eponex 1510 25 -- 25 25 Photono 1 Ph〇-7127 7.3 -- — -- Niax LHT-240 -- -- 16.2 10.8 Cyracure UV 1-6974 2.5 0.32 2.5 1.5 Z6040 1 -- 1 -- 〇6116<^2.2微粒--1.5微米 A187-0.5 29.5 8.42 31.86 29.9 焦瞵酸鎂顆粒(TI填充料) 206.49 58.91 223.03 209.90 耦合器應力在25TC 5 14 26 13 125〇C -20 -10 -20 -30 Tan delta Tg(1〇) 159.1 170.3 135.5 164.6 E ’在 25t: (108) 106.0 106.0 89.7 95.1 E’在 125t (108) 52.2 54.6 15.8 43.4 (請先閲讀背面之注意市is-j填转本頁) 裝 線 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨Ο X 297公釐) 2^ 24 1 五、發明説明(αΤ·) 經濟部中央橾準局員工消費合作社印製 表5 配方 成份 E F Cyracure UVI-6974 2.50 2.50 Z6040 1.00 1.00 氮化焦瞵酸HI Mg2 P2 〇7 71.21 71.02 氮化焦瞵酸鋅鎂Zno . 4Mgi. 6P2〇7 142.31 141.93 Geltech 2.2微球粒-1.5微米;六187-0.5 -- —— UVR-6105 50.00 30.00 Quatrex 1010 30.00 50.00 ERL 4206 20.00 20.00 三羥甲基丙烷 2.60 2.50 Photonol 7149 4.60 4.40 表6 介入損耗 配方 在 1550nm下 Ot:至 65¾ 平均最大介人損耗差值 DB 在43¾水中浸潰一週後在 1550nm下〇υ至65t:平均 最大介入惧耗差值Db E 0.16 0.50 F 0.07 0.16 ΕΡ0 553,492 0.07 -- ml ml ml ϋ (請先閲讀背雨之注意事項沔填艿本頁) 訂 線J丨· 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210 X 297公釐〉 4AB V. Description of the invention (iD) Table 2 Separation force of the delta evening stone / epoxy resin connection Separation force (lbs) K Filler improved and unimproved new sample 20 Contains modified filler after exposure to water vapor 15 Contains improved filler after exposure to water vapor 7 Table 3 Moisture adsorption filler number Weight increase 5K Extractable% adsorption 1 1.52 0.06 1.58 2 0.80 0.01 0.81 3 0.71 0.02 0.73 -------】 -Package ^ ------ Subscribe ----- 1 Line 1 * (Please read the precautions before raining and then fill in this page) The Central Standards Bureau of the Ministry of Economic Affairs, Employee and Consumer Cooperatives printed this paper to use the Chinese national standard ( CNS) Λ4 specification (210 X 297 gong) 23 3 A7 B7 V. Description of invention (W) Printed table 4 Employee Consumer Cooperative of Central Central Bureau of Economics of the Ministry of Agriculture 4 Formulation ingredients AB c D ELC-2500 Organic base-31.36- — UVR-6105 75-75 75 Eponex 1510 25-25 25 Photono 1 Ph〇-7127 7.3---Niax LHT-240--16.2 10.8 Cyracure UV 1-6974 2.5 0.32 2.5 1.5 Z6040 1- -1-〇6116 < ^ 2.2 particles-1.5 microns A187-0.5 29.5 8.42 31.86 29.9 magnesium pyrogallate particles (TI Charge) 206.49 58.91 223.03 209.90 Coupler stress at 25TC 5 14 26 13 125〇C -20 -10 -20 -30 Tan delta Tg (1〇) 159.1 170.3 135.5 164.6 E 'at 25t: (108) 106.0 106.0 89.7 95.1 E 'at 125t (108) 52.2 54.6 15.8 43.4 (please read the note on the back of the city and fill in this page first) The paper size of this thread is applicable to China National Standard (CNS) Λ4 specification (2 丨 Ο X 297mm) 2 ^ 24 1 V. Description of Invention (αΤ ·) List printed by the Employee Consumer Cooperative of the Central Department of Economic Affairs of the Ministry of Economic Affairs 5 Formulation Ingredients EF Cyracure UVI-6974 2.50 2.50 Z6040 1.00 1.00 Nitropyronitrile HI Mg2 P2 〇7 71.21 71.02 Nitrogen Zno. 4Mgi. 6P2〇7 142.31 141.93 Geltech 2.2 microspheres-1.5 microns; six 187-0.5 --- UVR-6105 50.00 30.00 Quatrex 1010 30.00 50.00 ERL 4206 20.00 20.00 trimethylolpropane 2.60 2.50 Photonol 7149 4.60 4.40 Table 6 Intervention loss formula at 1550 nm Ot: to 65¾ average maximum intermediary loss difference DB at 43¾ after one week of immersion in water at 1550 nm 〇υ to 65t: average maximum intervention fear difference Db E 0.16 0.50 F 0.0 7 0.16 ΕΡ0 553,492 0.07-ml ml ml ϋ (please read the precautions for rain before filling this page) Thread J 丨 · The paper size is applicable to China National Standard (CNS) Λ4 specification (210 X 297mm) 4
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25132694A | 1994-05-31 | 1994-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW293024B true TW293024B (en) | 1996-12-11 |
Family
ID=22951471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW084105492A TW293024B (en) | 1994-05-31 | 1995-05-28 |
Country Status (9)
Country | Link |
---|---|
US (2) | US5552092A (en) |
EP (1) | EP0685515B1 (en) |
JP (1) | JPH0848809A (en) |
KR (1) | KR950032471A (en) |
CN (1) | CN1047393C (en) |
AU (1) | AU693876B2 (en) |
CA (1) | CA2146400A1 (en) |
DE (1) | DE69524287T2 (en) |
TW (1) | TW293024B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19800460A1 (en) * | 1998-01-08 | 1999-04-29 | Siemens Ag | Plastic material for electronic applications contains a negative thermal expansion coefficient filler |
US6157480A (en) * | 1998-09-21 | 2000-12-05 | Gentex Corporation | Seal for electrochromic devices |
US6349165B1 (en) | 1999-12-13 | 2002-02-19 | Corning Incorporated | Methods and apparatus for cylindrical packaging of fiber gratings to provide temperature compensation |
US6440266B1 (en) | 2000-09-05 | 2002-08-27 | Ahlstrom Paper Group Research And Competence Center | Production of reactive material containing webs |
US20030044118A1 (en) * | 2000-10-20 | 2003-03-06 | Phosistor Technologies, Inc. | Integrated planar composite coupling structures for bi-directional light beam transformation between a small mode size waveguide and a large mode size waveguide |
US7005135B2 (en) * | 2001-01-30 | 2006-02-28 | Ethicon Inc. | Glass scaffolds with controlled resorption rates and methods for making same |
US6879757B1 (en) | 2001-12-11 | 2005-04-12 | Phosistor Technologies, Inc. | Connection between a waveguide array and a fiber array |
WO2003070817A1 (en) * | 2002-02-19 | 2003-08-28 | Photon-X, Inc. | Athermal polymer nanocomposites |
WO2003079082A2 (en) * | 2002-03-14 | 2003-09-25 | Corning Incorporated | Fiber array and methods of fabrication |
US20030187117A1 (en) * | 2002-03-29 | 2003-10-02 | Starkovich John A. | Materials and method for improving dimensional stability of precision electronic optical photonic and spacecraft components and structures |
US7303339B2 (en) * | 2002-08-28 | 2007-12-04 | Phosistor Technologies, Inc. | Optical beam transformer module for light coupling between a fiber array and a photonic chip and the method of making the same |
US8538208B2 (en) * | 2002-08-28 | 2013-09-17 | Seng-Tiong Ho | Apparatus for coupling light between input and output waveguides |
US7426328B2 (en) * | 2002-08-28 | 2008-09-16 | Phosistor Technologies, Inc. | Varying refractive index optical medium using at least two materials with thicknesses less than a wavelength |
CA2504951A1 (en) * | 2002-11-22 | 2004-06-10 | Omniguide Communications Inc. | Dielectric waveguide and method of making the same |
US20040188859A1 (en) * | 2003-03-25 | 2004-09-30 | Intel Corporation | Filler compositions, apparatus, systems, and processes |
US20040214377A1 (en) * | 2003-04-28 | 2004-10-28 | Starkovich John A. | Low thermal expansion adhesives and encapsulants for cryogenic and high power density electronic and photonic device assembly and packaging |
US7230046B2 (en) * | 2004-08-19 | 2007-06-12 | General Electric Company | Flame-retardant polyphenylene ether compositions, and related articles |
DE102005005750B4 (en) * | 2005-02-07 | 2009-06-04 | Infineon Technologies Ag | A method of bonding a thermoplastic material to a thermoset material and thermoplastic thermoset composite |
US7414770B2 (en) * | 2006-05-03 | 2008-08-19 | Gentex Corporation | Contollably dissolving spacing member and associated electrochromic device and method for manufacturing the same |
US20100095705A1 (en) * | 2008-10-20 | 2010-04-22 | Burkhalter Robert S | Method for forming a dry glass-based frit |
DE102009016834A1 (en) * | 2009-04-10 | 2010-10-14 | Hottinger Baldwin Messtechnik Gmbh | Optical solid core |
EP2992063B1 (en) * | 2013-05-03 | 2019-06-26 | FMC Kongsberg Subsea AS | Elastomeric seal |
CN113571926A (en) * | 2016-10-11 | 2021-10-29 | 昭和电工材料株式会社 | Connection structure, circuit connection member, and adhesive composition |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3547871A (en) * | 1968-08-02 | 1970-12-15 | Westinghouse Electric Corp | Highly filled casting composition |
US3568012A (en) * | 1968-11-05 | 1971-03-02 | Westinghouse Electric Corp | A microminiature circuit device employing a low thermal expansion binder |
US3658750A (en) * | 1969-02-13 | 1972-04-25 | Hitachi Ltd | Thermosetting resin composition and electrical appliances using the same |
US4043969A (en) * | 1973-04-23 | 1977-08-23 | National Semiconductor Corporation | Casting compound for semiconductor devices |
US4104238A (en) * | 1976-11-23 | 1978-08-01 | Westinghouse Electric Corp. | Silica-alumina trihydrate filled epoxy castings resistant to arced SF6 |
JPS55157631A (en) * | 1979-05-28 | 1980-12-08 | Mitsubishi Petrochem Co Ltd | Synthetic resin material having improved light transmission property and heat retaining property |
US4358552A (en) * | 1981-09-10 | 1982-11-09 | Morton-Norwich Products, Inc. | Epoxy resinous molding compositions having low coefficient of thermal expansion and high thermal conductivity |
US5009692A (en) * | 1988-07-25 | 1991-04-23 | Corning Incorporated | Method of making fiber optic coupler |
DE59010594D1 (en) * | 1989-03-08 | 1997-01-23 | Siemens Ag | Drop masking compounds for electrical and electronic components |
US4987274A (en) * | 1989-06-09 | 1991-01-22 | Rogers Corporation | Coaxial cable insulation and coaxial cable made therewith |
JP2855672B2 (en) * | 1989-07-13 | 1999-02-10 | 日本電信電話株式会社 | Housing for optical fiber branch coupler |
US5126192A (en) * | 1990-01-26 | 1992-06-30 | International Business Machines Corporation | Flame retardant, low dielectric constant microsphere filled laminate |
US5045508A (en) * | 1990-04-30 | 1991-09-03 | The United States Of America As Represented By The United States Department Of Energy | Ammonia-treated phosphate glasses useful for sealing to metals metals |
US5089446A (en) * | 1990-10-09 | 1992-02-18 | Corning Incorporated | Sealing materials and glasses |
US5089445A (en) * | 1990-10-09 | 1992-02-18 | Corning Incorporated | Fusion sealing materials |
FR2674033B1 (en) * | 1991-03-14 | 1993-07-23 | Corning Inc | INTEGRATED OPTICAL COMPONENT LINKED BETWEEN AN INTEGRATED WAVEGUIDE AND AN OPTICAL FIBER, OPERATING IN A WIDE AREA OF TEMPERATURE. |
US5179046A (en) * | 1991-10-07 | 1993-01-12 | Corning Incorporated | Sealing material and method |
CA2083983A1 (en) * | 1992-01-27 | 1993-07-28 | Kishor P. Gadkaree | Low expansion composition for packaging optical waveguide couplers |
US5243680A (en) * | 1992-06-01 | 1993-09-07 | Soane Technologies, Inc. | Package for optical fiber couplers |
-
1995
- 1995-03-23 US US08/408,791 patent/US5552092A/en not_active Expired - Lifetime
- 1995-04-05 CA CA002146400A patent/CA2146400A1/en not_active Abandoned
- 1995-05-17 EP EP95107502A patent/EP0685515B1/en not_active Expired - Lifetime
- 1995-05-17 DE DE69524287T patent/DE69524287T2/en not_active Expired - Fee Related
- 1995-05-22 AU AU20214/95A patent/AU693876B2/en not_active Ceased
- 1995-05-28 TW TW084105492A patent/TW293024B/zh active
- 1995-05-30 CN CN95105636A patent/CN1047393C/en not_active Expired - Fee Related
- 1995-05-30 JP JP7154095A patent/JPH0848809A/en active Pending
- 1995-05-31 KR KR1019950014408A patent/KR950032471A/en active IP Right Grant
- 1995-06-07 US US08/473,611 patent/US5609660A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE69524287D1 (en) | 2002-01-17 |
CN1047393C (en) | 1999-12-15 |
AU693876B2 (en) | 1998-07-09 |
CA2146400A1 (en) | 1995-12-01 |
EP0685515B1 (en) | 2001-12-05 |
US5609660A (en) | 1997-03-11 |
CN1114968A (en) | 1996-01-17 |
US5552092A (en) | 1996-09-03 |
DE69524287T2 (en) | 2002-08-08 |
AU2021495A (en) | 1995-12-07 |
EP0685515A1 (en) | 1995-12-06 |
KR950032471A (en) | 1995-12-20 |
JPH0848809A (en) | 1996-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW293024B (en) | ||
DE69104859T2 (en) | Epoxy resin compositions containing highly transparent silica-titanium dioxide glass balls. | |
KR20070045967A (en) | Method of producing high molecular weight organopolysiloxane, composition comprising the high molecular weight organopolysiloxane, and optical semiconductor device sealed with cured product thereof | |
KR20110096059A (en) | Uv-curable inorganic-organic hybrid resin and method for preparation thereof | |
WO1994024052A1 (en) | Metal oxide-polymer composites | |
JP4460968B2 (en) | Method for producing resin composition | |
US11976179B2 (en) | Particle material and manufacturing method therefor, and transparent resin composition | |
Zhang et al. | In situ solvothermal synthesis and characterization of transparent epoxy/TiO2 nanocomposites | |
JP7171829B2 (en) | Aluminum nitride filler | |
JP6543778B1 (en) | Light absorbing composition and optical filter | |
Hara et al. | Improvement of the transparency, mechanical, and shape memory properties of polymethylmethacrylate/titania hybrid films using tetrabutylphosphonium chloride | |
US10752790B2 (en) | UV blocking coatings for lens assemblies | |
Gvishi et al. | UV-curable glassy material for the manufacture of bulk and nano-structured elements | |
Dworak et al. | Effect of Mixed Sol‐Gel Precursors on the Metal‐Oxo Phase Within a UV‐Curable Silicone Hybrid Material | |
JP2007070411A (en) | Highly adhesive ultraviolet-curable resin composition | |
JP2005298796A (en) | Organic metal polymer material and its preparation process | |
Koti Reddy et al. | Preparation and characterization of poly (chlorotrifluoroethylene‐co‐ethylvinyl ether)/poly (styrene acrylate) core–shells and SiO2 nanocomposite films via a solution mixing method | |
AU726725B2 (en) | Waveguide coupler | |
KR950005312B1 (en) | Transparent epoxy resin compositions | |
JP7523943B2 (en) | Particulate material and resin composition | |
KR102595797B1 (en) | Self-extinguishing sheet comprising fire extinguishing microcapsules and manufacturing method thereof | |
JP7343321B2 (en) | Hard coat layer, method for manufacturing the same, transparent member, and method for manufacturing the same | |
Moon et al. | High transparent thermal curable hybrid polycarbonate films prepared by the sol–gel method | |
JP2021017050A (en) | Hard coat layer, transparent member, and its manufacturing method | |
WO2022189430A2 (en) | Composite material |