TW213504B - - Google Patents

Download PDF

Info

Publication number
TW213504B
TW213504B TW81107893A TW81107893A TW213504B TW 213504 B TW213504 B TW 213504B TW 81107893 A TW81107893 A TW 81107893A TW 81107893 A TW81107893 A TW 81107893A TW 213504 B TW213504 B TW 213504B
Authority
TW
Taiwan
Prior art keywords
photoconductive
item
electron
patent application
photoconductive composition
Prior art date
Application number
TW81107893A
Other languages
Chinese (zh)
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont filed Critical Du Pont
Application granted granted Critical
Publication of TW213504B publication Critical patent/TW213504B/zh

Links

Description

21350 1 A6 B6 經濟部中央標準局员工消费合作社印製· 五、發明説明(1 ) 發明節圍 本發明傜關於光導電性元件及用於此光導電性元件上 之組成物。 發明贺暑 在此技藝中,電荷轉移複體已為習知。請參考纽約的 Academic Press在 1 9 6 9 年出版、由 R. Foster所著的 '、Organic Charge-Trandfer Complexes "及紐約的 Acad-emic Press在 1 9 7 5 年出版,由 Μ· Gordon 和 W.R.Ware 编輯、A. Wei ler所謂的's Exciplex 〃。一種電荷轉移複 髏,如此技藝中已知者,是藉著二或多種組成分子之間之 可逆的交互作用而形成。在這些組成分子之間没有共價鍵 存在。一個以上的組成分子與另一値組成分子提供一部分 的電子,使得電荷轉移複體接在一起。 光導電性無機材料,如:氧化鋅和硒,因為它們的光. 敏性高,所以,多年來一直被認為用於靜電影像的應用上 。對於較佳、價格較低、用途更廣的光導電體的需求,促 使從事此技藝之人士開發有機材料來作為有用的光導電體 Ο 已經發現,多種有機材料(如:光導電性聚合物)及 包埋有低分子孝有機化合物的非光導電性聚合物之組成物 兼具有這些性質。這些材料的回顧詳述於H. Hoegl,、、J. Phys. Chern. " ,6 9, 755 — 766 (1 9 6 5) 〇 儘管以前曾針對有機化合物進行研究,對於光導電性與無 本紙張尺度適用中國國家樣準(CNS)平4规格(210 X 297公蹵) . 81.9.25,000 -3 - (請先閲讀背面之注意事項再填寫本頁) .篆. 訂. .緯. 213*^»! A6 B6 五、發明説明(2 ) 機材料相仿的有機材料仍有其需求存在。 最近,被稱為富樂芄(fulierene)之大體積的全碩 分子被分離出來。參考Diederoch等人,Science, 252 , 548-551 ( 199 1,4,26 )。 Sh i noha ra等人,J . Phys - Chem . ,8449-8451(1991); Smart 等人,J· Phys· Lett., 188 (3-4) , 171-176( 1992),及 Kikuchi等人,Chem. Phys .21350 1 A6 B6 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. V. Description of the Invention (1) Invention Summary This invention relates to photoconductive elements and the components used on the photoconductive elements. Invention of Heshu In this technique, charge transfer complexes are already known. Please refer to New York's Academic Press published in 1959, written by R. Foster's, Organic Charge-Trandfer Complexes " and New York's Acad-emic Press published in 1957, by Μ · Gordon and WRWare editor, A. Wei ler called 's Exciplex 〃. A charge transfer complex, as known in the art, is formed by the reversible interaction between two or more constituent molecules. There are no covalent bonds between these constituent molecules. More than one constituent molecule and another constituent molecule provide a part of the electrons, so that the charge transfer complexes are connected together. Photoconductive inorganic materials, such as zinc oxide and selenium, because of their high photosensitivity, have been considered for electrostatic imaging applications for many years. The demand for better, lower-priced, and more versatile photoconductors has prompted those engaged in this art to develop organic materials as useful photoconductors. A variety of organic materials (eg, photoconductive polymers) have been discovered And the composition of the non-photoconductive polymer embedded with the low molecular filial piety organic compound possesses these properties. These materials are reviewed in detail in H. Hoegl, J. Phys. Chern. &Quot; 6 9, 755 — 766 (1 9 6 5). Although organic compounds have previously been studied, the This paper scale is suitable for China National Standards (CNS) Flat 4 specifications (210 X 297 ram). 81.9.25,000 -3-(please read the precautions on the back before filling this page). Seal. Order. Wei. 213 * ^ »! A6 B6 V. Description of the invention (2) Organic materials with similar mechanical materials still have their needs. Recently, large, bulky molecules called fulierenes have been isolated. See Diederoch et al., Science, 252, 548-551 (199 1, 4, 26). Sh i noha ra et al., J. Phys-Chem., 8449-8451 (1991); Smart et al., J. Phys. Lett., 188 (3-4), 171-176 (1992), and Kikuchi et al. , Chem. Phys.

Lett . , 188. (3-4) ,177-180( 1992)。本發明提出内含有 富樂芄的電荷轉移複體和内含有富樂Η的光導電性組成物 (請先閲讀背面之注意事項再填寫本頁) -装. 發明槪沭 本發明傜關於内含有富樂Κ及提供電子之組成分子的 電荷轉移複體,同時亦係關於其内僅含有富樂芄或同時含 有富樂芄與電荷轉移複體的光導電性組成物。這些組成物 可用於靜電影像的應用上。此光導電性組成物中,至少有 一種有機材料,此有機材料選自光導電性聚合物、低分子 量可提供電子的化合物或它們的混合物,及至少一種碩原 子數由2◦至1〇〇◦的富樂艽化合物,且富樂芄化合物 的量相當於以光導電性組成物總重計之0 . 1至5 0 . 0 重量%。在另一個實施例中,光導電性組成物含有一種以 上的有機材料,此有機材料選自非光導電性聚合物、低分 子量且可提供電子的化合物或它們的混合物,及,由碩原 子數為2 0至1 0 ◦ 〇的富樂Η化合物與提供電子組份所 形成的電荷轉移複髏,此電荷轉移複體的置相當於以光導 訂. 烴濟部中央標準局sx消費合作社印«. 本纸張尺度適用中國困家櫺準(CNS)甲4規格(210 X 297公騖) -4 - 81.9.25.000 B6 五、發明説明(3 ) (請先閲讀背面之注意事項再填寫本頁) 電性組成物總重計之0.1至50重量%。 ^本發明進一步地提出一種由提供電子的組份(包括一 種以上之含有2◦至1〇◦〇個碩原子的富樂芄化合物, 最好是含有6◦至70個碩原子者)與接受電子的組份所 形成的電荷轉移複體。提供電子的組份:富樂芄化合物之 比例由1 :3至6: 1,最好是1 : 1至3: 1。在其中 的富樂K含有6 0値碩的電荷轉移複體中,提供電子的組 份可以是任何一種有機分子,只要此有機分子相對於 AS/Ag*之氧化電位小於1. 38V即可。在其中的 富樂芄含有7 0個磺的電荷轉移複體中,提供電子的組份 可以是任何一種有機分子,只要此有機分子相對於A g / Ag —之氧化電位小於1. 29V即可。最佳的提供電子 的組份是N , N —二乙基苯胺和聚乙烯基忭唑。 在簡短的說明之後,本發明將以下面的說明及不具有 限制性質之實例作更詳細的說明。除非特別聲明,否則所 有的百分比及份數皆以重量計,所有的溫度單位皆為υ。 經 濟 部 中 央 標 準 局 員 消 費 合 作 杜 印 製 圖形之簡沭 圖1是用以測定本發明之光導電性材料之光導電性放 電量的設備圖。 圖2是本發明之光導電性材料之典型的放電情況。 圖3是本發明中稱Α的富樂艽/聚(甲基苯基矽烷) 和稱為B的聚(甲基.苯基矽烷)的放電情況。 圖4是本發明之富樂芄/聚(甲基苯基矽烷)的1撖 本纸張尺度適用中圃因家橒準(CNS)甲4规格(210 X 297公笨) -5 - 81.9.25,00° 213501 A6 B6 經濟部中央櫺準局B工消費合作社印«. 五、發明説明(4 ) 米薄膜的電荷形成效率與電場的關係圖。 本發明之詳沭 通常,將提供電子的組份和接受電子的組份分別溶解 在溶劑中形成兩種以上的溶液,然後將這些溶液混合在一 起,以這樣的方式製得本發明之電荷轉移複體。視情況地 ,也可以將一種組份溶解在一種溶劑中,然後將其他的組 份加入此溶液中。電荷轉移複髏的性質可以溶液的狀態測 定,也可以在溶液中加入不良溶劑使固髏沈澱下來後來測 定固體的性質。以富樂H/N, N—二乙基苯胺電荷轉移 複體為例,甲醇或乙醇可使電荷轉移複體沈澱下來。這些 複體的性質可藉著此技藝中已知的方法,如:EFISH (電場誘導第二諧波 second-harmonic),測得 〇 藉著電荷轉移複體固髏的昇華作用或使此複體的溶液 在基材(如:玻璃)上缓慢蒸發,可以得到薄膜狀的電荷 轉移複體。這樣的方法在此技藝中已為習知。此電荷轉移 複體也可以被加入聚合物(如:聚碩酸酯)中,以此技藝 中習知的旋轉模鑲方法作成薄膜。可參考,如:U . S . Patent 4,692»636〇 為了要形成電荷轉移複體,電荷轉移複體的能階(如 示(1)中所示的£°。應該低於電子提供者的第一激發 能階(Εβ ),或者,應該要比電子接受者的第一瀲發能 階(Ε ")要來得低才行,也就是說: 衣紙張尺度適用中a a家揉準(CNS) V 4规格(210 X 297公釐) 81.9.25.000 (請先閲讀背面之注意事項再填寫本頁) 丨裝. 訂. 緯. 6 A6 B6 經濟部中央標準局8工消費合作社印«. 五、發明説明(5 ) E cr < E 0 或 Ε Λ ( 1 ) 接受者或提供者的第一激發能階可由它們的吸收光譜的 一個吸收峰的位置而得知。電荷轉移複體的能量,E , 可由式(2 )得知: E cr= Ε E 二以 + 0 . 3 2 ± 〇.1 V (2) 式(2)摘自纽約的Academic Press在1 9 7 5年出販, 由 M. Gordon 和 W.R.Ware编輯、A. Weller 所 1 e X ’’ 〇 如式(2)所示者,λ,是提供電子的組份的氧化電 位,Ε 1 e d是接受電子的組份的還原力。氣化單位和還原 電位都可以藉著電化學的方法經由實驗測得。可參考,如 :Siegerman,'、Techniques of Electroorganic Syn t fees i s » Pair II,ed· N-L.Weinberg* in '、Technique-s of Chemistry’’,Vo 1 · V· John-Wily & Sons,New Y-ork, 1975〇 V 本發明中的電荷轉移複髏本身可被用來作為非線形的 光學元件,或者,可以被用來作為光導電體、可見光或红 外光敏感劑、光聚反應的引發劑、聚合物和顔料的增強劑 0 依照本發明之方法,形成電荷轉移複體的同時,在電 (請先閲讀背面之注意事項再填窝本頁) i裝· 訂. 線. 本纸張尺度適用中S國家樣準(CNS)甲4規格(210 X 297公騖) -7 - 81.9.25,000 A6 B6 213501 五、發明説明(6 ) (請先閲讀背面之注意事項再填寫本頁) 荷轉移複體的紫外光、紅外光或可見光吸收光譜中都會看 到有一値新的吸收帶生成。這一値新的吸收帶是因為此組 份躍遷到一値激發態而造成的,此一激發態使得電子由提 供電子者轉移至電子接受者的轉移行為更趨完全。在接受 電子的組份與提供電子的組份混合時,可由接受電子的組 份的吸收光譜得知電荷轉移複體生成與否。 本發明之電荷轉移複體之提供電子的組份最好是一種 本身有提供電子傾向的有機化合物。提供電子的組份在技 藝中已為習知。可與接受電子的組份形成電荷轉移複髏之 提供電子的組份在上述的A. Weller and R. Foster中也 曾提到過。N , N —二乙基苯胺因為經濟上的理由及易於 使用的緣故,所以特別喜歡用此化合物作為提供電子的組 份。此外,其他適用之提供電子的組份包括:多環芳族化 合物(持別是M、嵌二某),胺(如:N, N —二甲基苯 胺),1, 2 —二苯乙烯衍生物(如··反式1, 2 —二苯 經濟部中央櫺準局霣工消費合作社印製 乙嫌),二茂金屬絡合物(如:二茂鐵),及paracyclo-phane (如:〔2,2〕— paracyclophane。可用以形成 本發明之電荷轉移複髏之提供電子的組份之實例示於Fos-ter,Organic Charge-Transger Complexs,p- 63 » Ed· Blomquart(1969)。 提供電子的組份之選擇視式(1 )和(2 )中之接受 電子的組份的氣化電位而定。以C e。和C 7。富樂芄電子提 供者為例,它們的第一還原電位(E〜d )相對於A g / Ag ‘ 電極而言是一 ◦. 4V (Haufler等人,J. Phys. 衣紙張尺度通用中國國家樣準(CNS)甲4規格(210 X 297公梦·) -8 - 81.9.25,000 213¾^ - Α6 Β6 五、發明説明(7 )Lett., 188. (3-4), 177-180 (1992). The present invention proposes a charge-transfer complex containing Fule and a photoconductive composition containing Fule (please read the precautions on the back before filling in this page)-equipment. Inventions The charge-transfer complex of FuleK and the electron-providing constituent molecule also relates to a photoconductive composition containing only Fulex or both Fulex and charge-transfer complex. These compositions can be used for electrostatic imaging applications. In the photoconductive composition, there is at least one organic material selected from photoconductive polymers, low molecular weight electron-donating compounds, or mixtures thereof, and at least one large atom number ranging from 2◦ to 100. ◦ Fullerium compound, and the amount of Fullerium compound corresponds to 0.1 to 50.0% by weight based on the total weight of the photoconductive composition. In another embodiment, the photoconductive composition contains more than one organic material selected from the group consisting of non-photoconductive polymers, low molecular weight electron-donating compounds or mixtures thereof, and The charge transfer complex formed by the Fule Η compound from 20 to 10 ◦ 〇 and the electron supply component is equivalent to the light guide. The Central Standards Bureau of the Ministry of Hydrocarbon Economy printed by sx Consumer Cooperative « . The size of this paper is applicable to China ’s CNS Grade 4 (210 X 297 male) -4-81.9.25.000 B6 5. Description of invention (3) (Please read the precautions on the back before filling this page ) 0.1 to 50% by weight based on the total weight of the electrical composition. ^ The present invention further proposes an electron-donating component (including more than one fullerene compound containing 2◦ to 10◦ atoms), preferably containing 6◦ to 70 atoms) and acceptance Charge transfer complex formed by the components of electrons. The ratio of the electron-providing component: Fullerene compound ranges from 1: 3 to 6: 1, preferably 1: 1 to 3: 1. In the Fule K containing 60 charge transfer complexes, the electron-donating component may be any organic molecule as long as the oxidation potential of the organic molecule relative to AS / Ag * is less than 1.38V. In the charge transfer complex in which fullerene contains 70 sulfones, the electron-donating component may be any organic molecule, as long as the oxidation potential of the organic molecule relative to A g / Ag — is less than 1.29V . The best electron-donating components are N, N-diethylaniline and polyvinyl oxazole. After a brief description, the present invention will be explained in more detail with the following description and non-limiting examples. Unless otherwise stated, all percentages and parts are by weight and all temperature units are υ. The Ministry of Economic Affairs, Central Standards Bureau, consumer cooperation, and the simple printing of printed graphics. Figure 1 is a diagram of the equipment for measuring the photoconductive discharge amount of the photoconductive material of the present invention. Fig. 2 is a typical discharge situation of the photoconductive material of the present invention. Fig. 3 is a discharge situation of Fulagi / poly (methylphenylsilane) called A and poly (methyl.phenylsilane) called B in the present invention. Figure 4 of the present invention Fule / poly (methyl phenyl silane) 1 paper size of this paper is suitable for the Zhongpu Yinjia quasi (CNS) A 4 specifications (210 X 297 male stupid) -5-81.9. 25,00 ° 213501 A6 B6 Printed by the Ministry of Economic Affairs, Central Bureau of Industry and Commerce, B Industry and Consumer Cooperatives. «V. Description of the Invention (4) The relationship between the charge formation efficiency of the rice film and the electric field. DETAILED DESCRIPTION OF THE INVENTION Generally, the electron-donating component and the electron-accepting component are dissolved in a solvent to form two or more solutions, and then these solutions are mixed together to prepare the charge transfer of the present invention in this way Complex. Optionally, one component can be dissolved in a solvent, and then the other components can be added to this solution. The properties of the charge transfer compound skull can be measured by the state of the solution, or a poor solvent can be added to the solution to precipitate the solid skull and then the property of the solid can be measured. Taking Fule H / N, N-diethylaniline charge transfer complex as an example, methanol or ethanol can precipitate the charge transfer complex. The properties of these complexes can be measured by methods known in the art, such as: EFISH (electric field induced second harmonic second-harmonic), by sublimation of the solid body of the complex by charge transfer or the complex The solution slowly evaporates on the substrate (such as glass) to obtain a thin film charge transfer complex. Such a method is already known in this art. This charge transfer complex can also be added to a polymer (eg, polyester) to form a thin film using the rotational molding method known in the art. For reference, such as: U.S. Patent 4,692 »636. In order to form a charge transfer complex, the energy level of the charge transfer complex (£ ° as shown in (1). It should be lower than the electron provider ’s An excitation energy level (Εβ), or, it should be lower than the electron receiver's first emission level (Ε "), that is to say: the clothing paper scale is suitable for aa home rubbing (CNS) V 4 specifications (210 X 297 mm) 81.9.25.000 (please read the precautions on the back before filling in this page) 丨 installed. Ordered. Weft. 6 A6 B6 Printed by the Central Standards Bureau of the Ministry of Economic Affairs 8 Industrial and Consumer Cooperatives. Description of the invention (5) E cr < E 0 or Ε Λ (1) The first excitation energy level of the recipient or provider can be known from the position of an absorption peak of their absorption spectrum. The energy of the charge transfer complex, E, can be obtained from formula (2): E cr = Ε E 2 + + 0.3 2 ± 〇.1 V (2) Formula (2) was taken from Academic Press in New York in 1957, sold by M . Edited by Gordon and WRWare, 1 e X ”by A. Weller. As shown in formula (2), λ is the oxidation potential of the electron-providing component, and Ε 1 ed is The reducing power of the electron-accepting component. Both the gasification unit and the reduction potential can be measured through experiments by electrochemical methods. For reference, such as: Siegerman, ', Techniques of Electroorganic Synt fees is »Pair II, ed · NL. Weinberg * in 'Technique-s of Chemistry', Vo 1 · V · John-Wily & Sons, New Y-ork, 1975〇V The charge transfer complex in the present invention itself can be used as a non-linear Optical element, or, can be used as a photoconductor, visible or infrared light sensitizer, initiator of photopolymerization, polymer and pigment enhancer. 0 According to the method of the present invention, while forming a charge transfer complex , In the electricity (please read the precautions on the back before filling the nest page) i pack · order. Thread. This paper size is applicable to China National Standards (CNS) A 4 specifications (210 X 297 male) -7- 81.9.25,000 A6 B6 213501 V. Description of invention (6) (Please read the precautions on the back before filling this page) A new absorption band will be seen in the ultraviolet, infrared or visible light absorption spectrum of the charge transfer complex Generate. This new absorption Because this component is a transition to an excited state caused by Zhi, this excited state so that electrons are transferred from the transfer behavior of electrons provided by the electron acceptor to become more complete. When the electron-accepting component is mixed with the electron-donating component, the formation of the charge transfer complex can be known from the absorption spectrum of the electron-accepting component. The electron-donating component of the charge-transfer complex of the present invention is preferably an organic compound having a tendency to provide electrons. The electronic component is already known in the art. The electron-donating component that can form a charge-transfer complex with the electron-accepting component was also mentioned in A. Weller and R. Foster above. N, N-diethylaniline is particularly preferred for use as an electron-donating component for economic reasons and ease of use. In addition, other applicable electron-providing components include: polycyclic aromatic compounds (M and M), amines (eg, N, N-dimethylaniline), and 1,2-stilbene derivatives Substances (such as ·· trans 1, 2, — printed by the Central Institute of Biphenyls and the Ministry of Economics and Trade Cooperative Cooperatives), metallocene complexes (such as ferrocene), and paracyclo-phane (such as: [2, 2] — paracyclophane. Examples of electron-providing components that can be used to form the charge transfer compound of the present invention are shown in Fos-ter, Organic Charge-Transger Complexs, p-63 »Ed · Blomquart (1969). Provided The choice of the electronic component depends on the gasification potential of the electron-receiving component in formulas (1) and (2). Taking C e. And C 7. Fule electron supplier as an example, their first The reduction potential (E ~ d) is equal to that of the A g / Ag 'electrode. 4V (Haufler et al., J. Phys. Clothing paper scale universal Chinese national standard (CNS) A 4 specifications (210 X 297 Dreams) -8-81.9.25,000 213¾ ^-Α6 Β6 V. Description of the invention (7)

Chem.,9£, 8634-8636 ( 1990 )和 A 1 1 emand等人,J. Am·Chem., 9 £, 8634-8636 (1990) and A 1 1 emand et al., J. Am ·

Chem. Soc. , 113,1050-1051 ( 1991 ))。由 C 6。和 C 7。富 樂芄的吸收光譜的第一個吸收峰(相當於其第一値激發態 )可以知道C 6。和C 7。富樂艽之第一激發態的能量依次為 0. 2eV和1. 9 1eV。因此,可與C60和C70富樂 芄一起被形成的電子提供者之條件如下:Chem. Soc., 113, 1050-1051 (1991)). By C 6. And C 7. The first absorption peak (equivalent to its first excited state) of Fule's absorption spectrum can know C 6. And C 7. The energy of the first excited state of Fule is in order 0. 2eV and 1. 9 1eV. Therefore, the conditions for an electronic provider that can be formed with C60 and C70 Fullerone are as follows:

對於C 6。而言,相對於A g / A g *之E。λ. < 1 · 3 8 VFor C 6. In terms of E relative to A g / A g *. λ. < 1 · 3 8 V

對於C7。而言,相對於Ag/Ag*之ED.Y<1. 38V (請先閲讀背面之注意事項再填寫本頁) 裝_ E 〇 X可依慣例以電化學的方式以標準電極(如:A g、甘 汞電極或一般氫電極)的電位為標準而測得。上面所提到 的Siegernam—文中,曾提到E %的測定,並列出一般的有 機分子之氧化電位。 本發明之電荷轉移複體所用的富樂Κ接受電子的組份 可藉著 Kratschmer 等人在 Nature,3 4 7 _ 3 5 4 ( 1 9 9 0 )中所述的程序而製得。關於富樂芄的電化學研 究,如;Haufler 等人,J. Phys. Chem.,94. 8634-8636 (1990)及 Allemand等人,J. Am. Chem. Soc·, 113. 1050 -1051 ( 1991 )中指出C 6。和C 7。富樂芄是極佳的電子接受 者。 本發明中所用的富樂Η所擁有的磺數範圍可有很大的 變化。此富樂芄最好含有60至7◦値磺原子。可用以形 成本發明之電苘轉移複體的富樂芄之其他的實例描述於ζ- 訂· 線· 經 濟 部 中 央 標 準 局 工 消 費 合 作 社 印 本紙張尺度適用中國國家橒準(CNS)甲4规格(210 X 297公笼) -9 - 81.9.25.000 A6 B6 經濟部中央樣準局貝工消費合作社印製. 五、發明説明(8 ) hang 等人,J . Phys. Che m · , 90 . 525( 1986) ;Newton 等人 » J. Am. Chcm· , 10 6. 1469(1984); Fowler. Chem. Phys Lett· » 131,444-450(1986) ; Diederich等人,Science ,252., 548-551 ( 1991 )。如果被取代的富樂芄仍然具有接 受電子的能力,則此被取代的富樂Η也可以使用。 、 本發明所提出之含有富樂艽的光導電性組成物中可以 含有多種光導電性聚合物、低分子量且可提供電子的化合 物或它們的混合物。所使用的光導電性聚合物可以有很大 的變化,典型的光導電性聚合物包括:聚矽氧烷、聚乙烯 基忭唑、聚苯乙烯、聚乙烯基二甲苯、聚一 1—乙烯基某 、聚一 2 —乙烯基棻、聚_4 一乙烯基聯苯、聚一9 一乙 烯基Μ、聚一 3_乙烯基芘、聚一2 —乙烯基喹啉、聚Ιί 、聚苊烯、聚(3, S' —二甲基一4, 4> —二苯撑) 、聚丙烯醯胺、聚異丁烯醯胺、它們的被取代物及其類似 物。 本發明之含有富樂芄的光導電性聚合物中所用之典型 的低分子量且可提供電子的化合物包括:棻、聯苯、笏、 葸、菲、醋菲、苊烯、层、芘、1 , 4 一二甲氧基苯、二 苯基胺、2,—二某基胺、1,5 -二乙氧基棻、2 一苯基D引跺、忭唑、夾硫氮雜《、2, 4 -雙(4 > 一二 乙基胺苯基)_1, 3, 4 —氣代二唑、2, 4 —雙( 4Z —二乙基胺苯基)— ;l,3,4 一三唑,及其類似物 。其他有用的光導電性聚合物和低分子量且可提供電子的 化合物包括述於 H. Hoegl, J. Phys. Chem.,69,755-766 (請先閲讀背面之注意事項再填窝本頁) .裝. 訂. -丨線· 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) -10 - 81.9.25,000 2135G4 A6 B6 經濟部t央標準局S工消費合作杜印製 五、發明説明(9 ) (1965)。 根據本發明,頃發現:加入其量相當於以光導電性組 成物總重計之〇·1至50.◦重量%,最好是相當於以 光導電性組成物總重計之1至20. 0重量%的富樂芄, 可以使每一個聚合的光導電體、低分子量且可提供電子的 化合物或它們的混合物的光導電性有明顯的改善。 如前面所述者,本發明之電荷轉移複體也可以被用來 作為非光導電性聚合物的添加物,以使得光導電性組成物 的性質獲得極大的改善,同時也可以改善内含有如前面所 述之低分子量且可提供電子的化合物之非光導電性聚合物 的光導電性。可與這些光導電性聚合物和電荷轉移複體一 起使用之提供電子的化合物包括:二芳基和三芳基甲烷染 料的無色母髏、1,1,1一三芳基烷(其中,烷基殘基 所擁有的碩原子數不小於2 )、四芳基甲烷(其中,至少 有一個接在烷基或甲烷殘基上的芳基被胺基所取代)及其 類似物。此提供電子的化合物最好是選自三芳基甲烷無色 染料(其中,芳基是未經取代的苯基或被碩數由1至8的 烷基、5篇數由1至8的烷氧基、羥基或鹵素原子之類的取 代基所取代的苯基),胺取代基是對-二烷胺基或 一 NL2 ,其中的L是碩數是由1至8的烷基。聚合反應 的黏合劑不具有光導電性時,提供電子的化合物之使用量 最好能過量。此非光導電性聚合物可包括:聚異丁烯酸酯 、聚(異丁烯酸甲酯)、聚芳醯胺、聚(乙烯醇)、異丁 烯酸甲酯和異丁烯酸之共聚物、苯乙烯和順丁烯二酸酐之 (請先閲讀背面之注意事項再填寫本頁) —裝. 訂· -線. 本紙張尺度適用中SH家標準(CNS)甲4規格(210 X 297公楚) -11 - 81.9.25,000 Α6 Β6 經濟部中央標準局員工消費合作社印« 五、發明説明(10) 共聚物及順丁烯二酸酐和聚碩酸酯的半酯-酸、及其類似 物。所用的非光導電性聚合物最好是可以溶解在電荷轉移 複體也有很高的溶解度的溶劑中,如甲苯和N,N —二乙 基苯胺之類的溶劑。因此,較佳的非光導電性聚合物是聚 碩酸酯。電荷轉移複體的使用量是以光導電性組成物組重 計之◦.1至50重量%,最好是以光導電性組成物組重 計之1至20重量%。 本發明的光導電性組成物使得照光區域的表面電荷部 分或完全地分散在照光區域上,對於未照光區域的電荷完 全没有影響,藉以提高光導電性。所得到的靜電潛伏的影 像可藉傳統的方式,如:靜電式調色劑(electronic toner) , 來顯影 。可以直 接看到顯影後 的影像 ,或者 ,如 此技藝中已知者,可藉著電場、揮發性溶劑或轉移技巧( 如 ' Schaffert . Electrophotography . Focal Press,L -ondon,1973),轉移至如紙或聚合基材之類的接收器上 Ο 光導電元件以自支撑膜或塗層的形式存在時,在此光 導電元件進行充電的時候,光導電元件的一側最好是與光 導電性的表面接觸。如果此光導電元件是自支撑膜,此膜 的一側可以使用像鋁、銀、銅、鎳之類的金屬予以金屬化 ,以便形成一個可在充電期間與導電表面接觸的導電層。 可以視情況地將金屬化的膜作成積層,形成金屬箔片,來 作為導電表面。也可以視情況地使光導電元件與導電表面 直接接觭而進行充電的程序。可以藉著以水或適當的有機 (請先閱讀背面之注意事項再填窝本頁) i裝· 訂· 線· 本纸張尺度適用中國囷家橒準(CNS)甲4规格(2]0X 297公釐) -12 - 81.9.25,000 A6 B6 經濟部中央揉準局工消費合作社印« 五、發明説明(11 ) 溶劑(如:乙醇或丙酮)潤濕的方式,來確保膜和導電表 面之間能有良好的接觸。 使光導電元件充電所用的導電表面可以是板塊、薄板 或薄Μ的形式存在,一般來説,它們的比電阻要比光導電 元件小1 0 3歐姆一公分,其間的差距最好是1 0 3歐姆 一公分或小於此值。因此,適當的導電表面包括:金屬板 或玻璃、聚合膜之類的絶緣體或經過導電性塗層塗覆或以 導電性的液體潤濕之後可以提供導電性的紙品。 使用本發明之光導電性組成物的光導電元件的表面可 藉著習知的技巧(如:電翬放電、接觸放電、電容放電及 類似者)來進行充電,以使影像留下來。充電的過程最好 是在黑暗中或在控制照度的情況下進行。可施用負電壓或 正電壓。使用正電荷顯影劑時,最好是使用負電壓。充電 期間,此光導電元件的導電表面應該要經過研磨。 在施行光成像方面,本發明之光導電性組成物可被負 載於載髏上或加工製成自支撑光導電層,研磨之後,得到 靜電充電表面。以慣用的照光方式,將此充電的表面暴於 照射光線下,可以形成靜電潛伏影像。 將含有本發明之光導電性組成物的光導電元件暴於電 磁射線下,照光的區域會放電,使得未照光的區域帶有較 多的電荷。使用標準的光電圖案顯影技術,可以將所得到 的靜電影像轉變成肉眼看得到的影像。適當的顯影劑或調 色劑包括:充過電的濕劑、粉末或内含充過電的細粒物質 的液體,此充過電的物質接在充電的影像區域上。最好是 (請先閲讀背面之注意事項再填寫本頁) —裝. 訂. -—線· 本紙張尺度適用中围國家樣準(CNS)甲4规格(210 X 297公蹵) -13 - 81.9.25,000 2l35Ci A6 B6 經濟部中央標準局貝工消費合作社印« 五、發明説明(12 ) 使載體和調色劑所形成的顯影劑與潛伏的影像接觸而使得 潛伏的影像顯現出來。適當的載體包括玻璃球、鐵粉、塑 膠球、或低沸點的介電液體。有用的調色劑包括粒徑介於 1至1 0 0微米之間的樹脂/染料混合物。燜於此技藝之 人士可以輕易地定出有用的其他載體和調色劑。 本發明之光導電性組成物可視光影像應用的需求而被 進一步地加工製成不同的光導電元件。含有本發明之光導 電性組成物的光導電元件可藉著不同的形式,如:自支撑 膜或是負載於載體上之塗層的形式,被使用。可藉著傳統 的方法,如:噴霧、旋轉塗覆、汲取塗覆之類的方法,在 負載材料上形成塗層。 無庸置疑地,嫻於此技藝之人士可以在讀過前面的描 述之後,對本發明作最大的利用。因此,下列的較佳實施 例僅為示範,將不對本發明造成任何限制。 富樂Η夕製備 依照Kratschmer 等人,Nature, 347-354( 1990)所描 述的方法,製得C6〇和C 7。富樂艽。1/8吋的石墨棒在 Denton DV-502蒸發器中於1 50托耳的氩氣壓下,通以 1 2 ◦安培的電流及2 0伏特的電壓而使石墨棒蒸發。將 所形成的煤灰收集起來,然後在Soxhlex管中以甲苯萃取 ,得到内含有Ce。和Cr。富樂芄和少量雜質的混合物。為 了要將Ce。和C7。富樂K分離出來,將這些富樂芄的混合 物溶解於己烷、5%甲苯/己烷或20%甲苯/己烷中。 (請先閲讀背面之注意事項再填寫本頁) —裝. 訂. -線. 本紙張尺度適用中as家櫺準(CNS)甲4規格(2】0 X 297公笼) 81.9.25,000 —14 _For C7. In terms of ED.Y < 1. 38V relative to Ag / Ag * (please read the precautions on the back and then fill out this page) _ E 〇X can be used in accordance with the conventional electrochemical standard electrode (eg: A g, calomel electrode or general hydrogen electrode). The Siegernam- article mentioned above mentioned the determination of E% and lists the oxidation potential of general organic molecules. The electron-accepting component of Fule K used in the charge transfer complex of the present invention can be prepared by the procedure described by Kratschmer et al. In Nature, 3 4 7 _ 3 5 4 (1 9 9 0). Regarding the electrochemical studies of Fullerene, such as; Haufler et al., J. Phys. Chem., 94.8634-8636 (1990) and Allemand et al., J. Am. Chem. Soc., 113. 1050-1051 ( 1991) pointed out C 6. And C 7. Fullerton is an excellent electronic recipient. The range of sulfo numbers possessed by Fuller H used in the present invention can vary greatly. This Fullerene preferably contains 60 to 7 ◦ sulfon atoms. Other examples of Fullerenes that can be used to form the electroporated transfer complexes of the present invention are described in ζ- 线 · 线 · Central Ministry of Economic Affairs Bureau of Industrial and Consumer Cooperatives. 210 X 297 male cage) -9-81.9.25.000 A6 B6 Printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. V. Description of the invention (8) hang et al., J. Phys. Chem., 90.525 ( 1986); Newton et al. »J. Am. Chcm., 10 6. 1469 (1984); Fowler. Chem. Phys Lett.» 131, 444-450 (1986); Diederich et al., Science, 252., 548- 551 (1991). If the substituted Fule still has the ability to accept electrons, the substituted Fule can also be used. The photoconducting composition containing Fulagi proposed in the present invention may contain a variety of photoconductive polymers, low molecular weight electron-donating compounds or mixtures thereof. The photoconductive polymer used can vary greatly. Typical photoconductive polymers include: polysiloxane, polyvinyl oxazole, polystyrene, polyvinyl xylene, poly-1-ethylene Kemou, poly-2-vinylbenzene, poly_4-vinylbiphenyl, poly-9-vinyl M, poly-3-vinylpyrene, poly-2-vinylquinoline, polyΙί, polyacenaphthene Olefin, poly (3, S'-dimethyl-4, 4> -diphenylene), polypropylene amide, polyisobutylene amide, their substitutes and the like. Typical low-molecular-weight and electron-donating compounds used in photoconducting polymers containing fullerene of the present invention include: fen, biphenyl, wat, quin, phenanthrene, phenanthrene, acenaphthene, layer, pyrene, 1 , 4 monodimethoxybenzene, diphenylamine, 2, -diphenylamine, 1,5-diethoxybenzyl, 2 monophenyl D, oxazole, thiazoline, 2, , 4-bis (4 > monodiethylamine phenyl) _1, 3, 4-aerodiazole, 2, 4-bis (4Z-diethylamine phenyl)-; l, 3, 4- Triazole, and its analogs. Other useful photoconductive polymers and low molecular weight electron-donating compounds include those described in H. Hoegl, J. Phys. Chem., 69,755-766 (please read the precautions on the back before filling in this page). . Order.-丨 Line · This paper scale is applicable to China National Standard (CNS) A 4 specifications (210 X 297 mm) -10-81.9.25,000 2135G4 A6 B6 Ministry of Economic Affairs t Central Standards Bureau S industrial and consumer cooperation du printing five , Description of the invention (9) (1965). According to the present invention, it has been found that the amount added is equivalent to 0.1 to 50% by weight based on the total weight of the photoconductive composition, preferably 1 to 20 based on the total weight of the photoconductive composition. . 0% by weight of fullerene can significantly improve the photoconductivity of each polymerized photoconductor, low molecular weight electron-donating compound or mixtures thereof. As mentioned above, the charge transfer complex of the present invention can also be used as a non-photoconductive polymer additive, so that the properties of the photoconductive composition can be greatly improved, and the content of The photoconductivity of the aforementioned non-photoconductive polymer of low molecular weight and electron-donating compound. Electron-donating compounds that can be used with these photoconductive polymers and charge transfer complexes include: colorless mothers of diaryl and triarylmethane dyes, 1,1,1-triarylalkanes (wherein, alkyl The number of master atoms possessed by the residue is not less than 2), tetraarylmethane (where at least one aryl group attached to the alkyl or methane residue is replaced by an amine group) and the like. The electron-donating compound is preferably selected from triarylmethane leuco dyes (wherein the aryl group is unsubstituted phenyl or an alkyl group with a number of 1 to 8 and an alkoxy group with a number of 1 to 8 , A hydroxy group or a phenyl group substituted by a halogen atom), the amine substituent is p-dialkylamino or a NL2, where L is an alkyl group with a number from 1 to 8. When the polymerization adhesive does not have photoconductivity, the amount of electron-donating compound is preferably excessive. The non-photoconductive polymer may include: polymethacrylate, poly (methyl methacrylate), polyarylamido, poly (vinyl alcohol), copolymer of methyl methacrylate and methacrylate, styrene and maleic acid Of oxalic anhydride (please read the precautions on the back before filling in this page) —installed. Ordered-line. This paper size is applicable to the SH home standard (CNS) A 4 specifications (210 X 297 Gongchu) -11-81.9 .25,000 Α6 Β6 Printed by the Employees ’Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs« V. Description of the Invention (10) Copolymers and half-ester-acids of maleic anhydride and polyesters, and the like. The non-photoconductive polymer used is preferably soluble in a solvent having a high solubility for charge transfer complexes, such as toluene and N, N-diethylaniline. Therefore, the preferred non-photoconductive polymer is polyester. The amount of charge transfer complex used is based on the weight of the photoconductive composition. 1 to 50% by weight, preferably 1 to 20% by weight based on the weight of the photoconductive composition. The photoconductive composition of the present invention allows the surface charge of the illuminated area to be partially or completely dispersed on the illuminated area, and has no effect on the charge of the unilluminated area, thereby improving the photoconductivity. The resulting electrostatic latent image can be developed by traditional methods, such as: electrostatic toner (electronic toner). You can see the developed image directly, or, as known in this technique, you can transfer to Ruzhi by electric field, volatile solvent or transfer technique (such as' Schaffert. Electrophotography. Focal Press, L-ondon, 1973) Or on a receiver such as a polymeric substrate. When the photoconductive element is in the form of a self-supporting film or coating, when the photoconductive element is charged, the side of the photoconductive element is preferably Surface contact. If the photoconductive element is a self-supporting film, one side of the film can be metalized with metals such as aluminum, silver, copper, nickel, etc. to form a conductive layer that can contact the conductive surface during charging. The metallized film may be laminated as appropriate, forming a metal foil as the conductive surface. It is also possible to directly connect the photoconductive element to the conductive surface and perform the charging procedure as appropriate. You can use water or appropriate organic (please read the precautions on the back before filling the nest page) i Pack · Order · Thread · The paper size is suitable for China Jiajia Jiaju (CNS) A 4 specifications (2) 0X 297 mm) -12-81.9.25,000 A6 B6 Printed by the Ministry of Economic Affairs Central Bureau of Industry and Consumers Cooperatives «V. Description of invention (11) Wetting of the solvent (such as ethanol or acetone) to ensure that the film and the conductive surface There can be good contact. The conductive surface used to charge the photoconductive element may be in the form of a plate, a thin plate, or a thin M. Generally speaking, their specific resistance is 1.03 ohm and one centimeter smaller than the photoconductive element, and the gap between them is preferably 10 3 ohms one centimeter or less. Therefore, suitable conductive surfaces include: metal plates or insulators such as glass, polymer films, or papers that can provide conductivity after being coated with a conductive coating or wetted with a conductive liquid. The surface of the photoconductive element using the photoconductive composition of the present invention can be charged by conventional techniques (such as electric discharge, contact discharge, capacitor discharge, and the like) to leave an image. The charging process is best carried out in the dark or under controlled illumination. Negative or positive voltage can be applied. When using a positively charged developer, it is best to use a negative voltage. During charging, the conductive surface of this photoconductive element should be ground. In terms of performing photoimaging, the photoconductive composition of the present invention can be loaded on a carrier or processed into a self-supporting photoconductive layer, and after grinding, an electrostatically charged surface can be obtained. In the usual way of illuminating, exposing the charged surface to the irradiated light can form an electrostatic latent image. When the photoconductive element containing the photoconductive composition of the present invention is exposed to electromagnetic radiation, the illuminated area is discharged, so that the unilluminated area carries more electric charge. Using standard photoelectric pattern development technology, the resulting electrostatic image can be transformed into an image that can be seen with the naked eye. Suitable developers or toners include: charged moisturizers, powders, or liquids containing charged fine-grained materials, which are connected to the charged image area. The best is (please read the precautions on the back and then fill out this page) — Binding. Order.-Line · This paper size is applicable to the China National Standards (CNS) A 4 specifications (210 X 297 public stamp) -13- 81.9.25,000 2l35Ci A6 B6 Printed by Beigong Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs «V. Description of Invention (12) The developer formed by the carrier and toner is brought into contact with the latent image to make the latent image appear. Suitable carriers include glass balls, iron powder, plastic balls, or low-boiling dielectric liquids. Useful toners include resin / dye mixtures with particle sizes between 1 and 100 microns. Those skilled in this art can easily determine useful other carriers and toners. The photoconductive composition of the present invention can be further processed into different photoconductive elements according to the needs of photoimaging applications. The photoconductive element containing the photoconductive composition of the present invention can be used in various forms, such as a self-supporting film or a coating supported on a carrier. The coating can be formed on the load material by traditional methods, such as spraying, spin coating, dip coating and the like. Undoubtedly, those skilled in the art can make the most use of the present invention after reading the previous description. Therefore, the following preferred embodiments are only exemplary and will not cause any limitation to the present invention. Fuller Hexagon Preparation C60 and C7 were prepared according to the method described by Kratschmer et al., Nature, 347-354 (1990). Fuller. The 1 / 8-inch graphite rod was evaporated in a Denton DV-502 evaporator under an argon pressure of 150 Torr with a current of 12 ampere and a voltage of 20 volts. The formed coal ash was collected and then extracted with toluene in a Soxhlex tube to obtain Ce. And Cr. A mixture of Fule and a small amount of impurities. In order to be Ce. And C7. Fuller K was separated and the mixture of fullerene was dissolved in hexane, 5% toluene / hexane or 20% toluene / hexane. (Please read the precautions on the back before filling in this page) — Packing. Ordering.-Line. This paper size is applicable to the Chinese as a standard (CNS) A 4 specifications (2) 0 X 297 male cage 81.9.25,000 —14 _

21350 I A6 B6 經濟部中央揉準局8工消費合作杜印製. 五、發明説明(13 ) 將所得到的溶液通過内含有中性鋁土的管柱。c e。(紫色 )先由管柱中流出,然後,C 7。(橘棕色)流出。 C 6。和C 7。雷茼鮪移複體之製備 將富樂芄溶解於N, N—二乙基苯胺中,形成富樂芄 / N , N —二乙基苯胺電荷轉移複體。在此溶液中加入乙 醇,此電荷轉移複體會沈澱下來。由Ce。和C 富樂K的 可見光吸收光譜所産生之新的紅位移電荷轉移吸收帶,讓 吾人可以確定已有C 和C 7。電荷轉移複體形成。C 7〇/ N, N—二乙基苯胺電荷轉移複體在77K時也會在 828nm處有一値發光帶。此吸收帶的位置與原來的 C 7。發光帶不同。 C 6。雷茴轉移複體的平衛常數之測定 如前面所述的K.A.Connors.Binding Constants. The Measurement of Molecular Complex Stability ” , John Wiley & Sons, New York, 1987,—書中所提到技 巧,對於N, N-二乙基苯胺的濃度與其吸收光譜的相依 性進行研究,可以得到C^/N, N—二乙基苯胺電荷轉 移複體的平衡常數。假設C6。富樂芄與N, N —二乙基苯 胺之間的化學計量比為1 : 1 ,那麼所測得的平衡常數是 O. 18±0. 04。此電荷轉移複體在600nm的消 光傺數是由N, N —二乙基苯胺在3 6 9 01^-^111^處 的吸收光譜的光學密度而得知的。 (請先閲讀背面之注意事項再填寫本頁) -裝. 訂. -—線· 本紙張尺度適用中國國家樣準(CNS)甲4規格(210 X 297公釐) 81.9.25,000 ~ 15 ~ 213^C ; A6 B6 經濟部中央標準局W工消費合作杜印:I衣- 五、發明説明(14 ) C 7。雷茴轉趑複體的平衡常數之測定 如前面所述的 K.A.Connors,'' Binding Constants. The Measurement of Molecular Complex Stability » John Wiley & Sons, New York,1987, —書中所提到技 巧,對於N, N-二乙基苯胺的濃度與其吸收光譜的相依 性進行研究,可以得到C7i)/N, N_二乙基苯胺電荷轉 移複體的平衡常數。假設C7。富樂艽與N, N —二乙基苯 胺之間的化學計量比為1 : 1,那麼所測得的平衡常數是 0 . 4 ± ◦. 0 6。此電荷轉移複體在4 6 8 n m的消光 傺數是由N, N —二乙基苯胺在1. exlO^Mdcrr^ 處的吸收光譜的光學密度而得知的。 關於C 5。雷茴轉移複體的E F I S Η研究 實行前面所述之由L.T. Cheng所提出的電場誘導第二 諧波振盪(EF I SH)。使用在N, N —二乙基苯胺中 濃度為1 . 2 X 1 ◦ - 2M的C 溶液。所測得的二次極化 及偶極矩積為9xi〇-46esu。 光導性放雷分析 使用圖1所示的光導性放電裝置來測定本發明之光導 電性組成物的光導電性。通常,使用已知的方法(如:旋 轉塗覆法)將光導電膜6 0 (典型的厚度是〇. 1至2〇 微米)鏵在金屬電極70 (通常是鋁或氧化錫)上。使用 木纸張尺度適用中®S私揉準(CNS)甲4規格(2〗〇 X 297公笼) 16 - 81.9.25,000 (請先閲讀背面之注意事項再填寫本頁) 裝. 訂. 線· 213^304 A6 B6 經濟部中央標準局S工消費合作杜印«. 五、發明説明(15 ) 電暈充電器5 0對膜6 0的表面進行充電。如此技藝中已 知者,膜6 0表面已充電與否由靜電計6 0測得。在照光 之後,咸信會在膜6 0上形成電子和電洞,電子和電洞會 轉移到膜6 0的表面上,促使膜6 0放電。膜6 0的光導 電性取決於光導性放電的速率快慢及完全與否。 光導性放電實驗的典型放電情況圖示於圖2,圖中已 將充電及光導性放電處標出。 奮例1 含有富樂K的聚八烯某卩卡_腾製備及其袢皙 將〇.5克的聚乙烯基卩卞唑加入7毫升的甲苯中。在 聚乙烯基昨唑完全溶解之後,將0 . 0 4克的富樂芄(其 中,C 6。和C 7。的比例大約是8 5 : 1 5 )加入此溶液中 。使用旋轉塗覆的方式以800至3〇〇〇r pm的速率 將所得到的溶液塗覆在鋁板上,得到厚度為1 . 8 5微米 的光導電膜。此膜在1 〇 〇 °C的爐中乾燥3 — 4小時。 光導性放電分析顯示此膜具有光導電性。前面所述之 此厚度為1. 85微米的膜,以約35伏特的電壓充電後 ,於距離5公分處以5 0瓦特的鋳絲燈照射時,會在不到 0 . 5秒的時間内全放電。 使用不含有富樂艽的聚乙烯基忭唑膜進行同樣的試驗 以資比較。就光導性放電性質而言,聚乙烯基忭唑膜要比 内含有富樂芄的聚乙烯基忭唑膜差了許多。在上述的光導 性放電情況下,相對於完全放電的時間不超過5秒鐘之含 (請先閲讀背面之注意事項再填寫本頁) -—裝. 訂· .線. 本紙張尺度適用中困Η家橒準(CNS)甲4規格(210 X 297公釐) -17 - 81.9.25,000 2l3bGi A6 B6 經濟部中央標準局員工消費合作社印製. 五、發明説明(16 ) 有富樂芄的聚乙烯基Uf唑膜,不含有富樂芄者所須的放電 時間超過2 ◦秒鐘。此足以證明在光導電性聚合物中加入 富樂艽可以使光導電性獲得極大的改善。 奮例2 含有富樂节/ N,N —二乙甚荣胺雷茴轉移複髏的聚碳酴 酯膜之製備及其件皙 將1克的聚(4,4 ' 一異丙叉苯基碩酸酯)和 ◦ . 6克的苯基一雙(4 —二乙胺基一 2 —甲基一苯基) 甲烷(LG—1)溶解於12毫升的二氯甲烷中。此溶液 以1 : 1的比例與Ν,Ν —二乙基苯胺(此溶液事先以比 例為8 5 : 1 5的C e。和C 7。予以飽和)混合。在此溶液 中加入足量的(4, 4 ~ 一異丙叉苯基碩酸酯)和富樂K ,直到溶液飽和為止。使用旋轉塗覆的方式以 7 5 0 r p m的轉速將所得到的溶液塗覆在鋁板上,得到 厚度為1. 80微米的光導電膜。 光導性放電分析的結果顯示此膜具有光導電性。前面 所述之此厚度為1 . 8 0微米的膜,以約4 0 0伏特的電 壓充電後,於距離5公分處以5 0瓦恃的鋳絲燈照射時, 在約1 8秒鐘後放電至剩下2 0 0瓦持的電力。此結果顯 示:在非光導電性聚合物中加入富樂艽,可使光導電性獲 得極大的改善。 奮例3 (請先閲讀背面之注意事項再填寫本頁) |裝· 訂· -線. 夂纸張尺度適用中國國家樣準(CNS)甲4规格(210 X 297公釐) 81.9.25,000 -18 _ 經濟部中央標準局κκ工消費合作社印« A6 ^- 五、發明説明(17 ) 僉有富缇芄的聚(甲甚荣基矽烷)膜之製備及其性質 將0. 0 1克混合的富樂芄(〜85%的c60, 〜1 5 %的C 7。)溶解於6毫升的甲苯中。將◦ . 1克的 聚(甲基苯基矽烷)加入3毫升的此溶液中。此溶液以 1 0 0 0 r p m的轉速、8 0秒鐘的時間塗覆在鋁基材上 。此樣品在6 0 °C的真空爐中乾燥1小時。所得到的膜厚 為1. 05微米。在2. 5毫升前述的富樂H/聚(甲基 苯基矽烷)/甲苯溶液中再加入◦. 15克的聚(甲基苯 基矽烷),形成更黏稠的溶液。經過相同的旋轉塗覆及乾 燥步驟之後,得到厚度為4微米的膜。由光導性放電試驗 得知此二種膜都有不錯的光導電性。如圖3所示者,此膜 在充電為5 X 1 0 5伏恃/公分之後,以錆絲燈照射( 5 0微瓦特/平方公分)的0 . 5秒鐘之内就會完金放電 。以類似的狀況進行實驗,得知純粹的聚(甲基苯基矽院 )膜並沒有明顯的光導電性。(圖3)。 圖4顯示摻有富樂艽的聚(甲基苯基矽烷)膜的放電 效率與電場的相關性。此膜的厚度1微米。照射的光源是 波長340nm的氙燈,此燈的光子流量為1. 2X 1 0 ; 3光子/(平方公分*秒)。電場強度約7 X 1 ◦ 5 時,放電效率是〇.17。 經由前面的描述,嫻與於此技藝之人士,可在不違背 本發明之精神和目的情況下,輕易地捕捉到本發明的基本 持歡,他們可以依照本發明作多種變化或對本發明進行修 飾,而將本發明用於不同的應用及狀況上。 (請先閲讀背面之注意事項再塡寫本頁) —裝. 訂. 丨線· 本紙張尺度適用中國围家櫺準(CNS)甲4規格(210 X 297公蹵) 一 19 - 81.9.25,00021350 I A6 B6 Printed by the Ministry of Economic Affairs, Central Bureau of Industry and Commerce, Cooperative Printing and Printing. V. Description of the Invention (13) Pass the resulting solution through a column containing neutral bauxite. c e. (Purple) First flow out of the column, then, C 7. (Orange-brown) flowing out. C 6. And C 7. Preparation of Lei Tuna Transfer Complex The Fule is dissolved in N, N-diethylaniline to form Fule / N, N-diethylaniline charge transfer complex. Adding ethanol to this solution will precipitate the charge transfer complex. By Ce. The new red-shifted charge-transfer absorption band generated by the visible light absorption spectrum of C and F Fuller K allows us to determine the existence of C and C 7. Charge transfer complex formation. C 7〇 / N, N-diethylaniline charge transfer complex will also have a luminescent band at 828 nm at 77K. The position of this absorption band is the same as the original C 7. The luminous band is different. C 6. The measurement of the Pingwei constant of the transfer compound of thunder anise is as described above in KAConnors. Binding Constants. The Measurement of Molecular Complex Stability ”, John Wiley & Sons, New York, 1987,-the techniques mentioned in the book, for By studying the dependence of the concentration of N, N-diethylaniline on its absorption spectrum, the equilibrium constant of C ^ / N, N-diethylaniline charge transfer complex can be obtained. Assume C6. Fullerene and N, N —The stoichiometric ratio between diethylaniline is 1: 1, then the measured equilibrium constant is O. 18 ± 0.04. The extinction y number of this charge transfer complex at 600nm is determined by N, N — II The optical density of the absorption spectrum of ethyl aniline at 3 6 9 01 ^-^ 111 ^ is known. (Please read the precautions on the back before filling in this page) -Installation. Order. -—Line · The paper size Applicable to China National Standards (CNS) A4 specifications (210 X 297 mm) 81.9.25,000 ~ 15 ~ 213 ^ C; A6 B6 Central Ministry of Economic Affairs W Industrial and Consumer Cooperation Du Yin: I clothing-V. Description of invention ( 14) C 7. The determination of the equilibrium constants for the conversion of thunder antlers to KAConnors as described above, '' Binding C On Measurements. The Measurement of Molecular Complex Stability »John Wiley & Sons, New York, 1987, — the technique mentioned in the book, the dependence of the concentration of N, N-diethylaniline on its absorption spectrum can be obtained by studying C7i) / N, N_diethylaniline charge transfer complex equilibrium constant. Assuming C7. The stoichiometric ratio between Fule and N, N-diethylaniline is 1: 1, then the measured The equilibrium constant is 0.4 ± ◦. 0 6. The extinction y number of this charge transfer complex at 4 6 8 nm is the optical density of the absorption spectrum of N, N — diethylaniline at 1. exlO ^ Mdcrr ^ It is known that about C 5. The EFIS Η study of the Thyroid Transfer Complex is based on the electric field induced second harmonic oscillation (EF I SH) proposed by LT Cheng as described above. It is used in N, N-diethyl The concentration of phenylaniline is 1.2 X 1 ◦-2M in C. The measured second polarization and dipole moment product are 9xi〇-46esu. The photoconductive discharge analysis uses the photoconductive discharge shown in Figure 1 The device measures the photoconductivity of the photoconductive composition of the present invention. Generally, the photoconductive film 60 (typical thickness is 0.1 to 20 microns) is applied to the metal electrode 70 (usually aluminum or tin oxide) using a known method (e.g., spin coating method). Use the standard of wood paper for medium ®S private kneading (CNS) A 4 specifications (2〗 〇X 297 male cage) 16-81.9.25,000 (please read the precautions on the back before filling this page). Binding. Thread · 213 ^ 304 A6 B6 Central Ministry of Economic Affairs, Central Standards Bureau, S Industry and Consumer Cooperation Du Yin «. V. Description of the invention (15) The corona charger 50 charges the surface of the membrane 60. As known in the art, whether the surface of the film 60 has been charged is measured by the electrometer 60. After illumination, Xianxin will form electrons and holes on the film 60, and the electrons and holes will be transferred to the surface of the film 60, causing the film 60 to discharge. The photoconductivity of the film 60 depends on the rate of photoconductive discharge and its completeness. The typical discharge of the photoconductive discharge experiment is shown in Figure 2, where the charge and photoconductive discharge have been marked. Example 1 Preparation of polyoctadecene containing Fule K and its appearance: 0.5g of polyvinylpyrazole was added to 7ml of toluene. After the polyvinylpyrrolidone was completely dissolved, 0.04 g of fullerene (of which C 6 and C 7 were in a ratio of approximately 8 5: 15) was added to this solution. The obtained solution was coated on an aluminum plate at a rate of 800 to 3,000 rpm using a spin coating method to obtain a photoconductive film with a thickness of 1.8 5 microns. The film was dried in an oven at 100 ° C for 3-4 hours. Photoconductive discharge analysis showed that the film had photoconductivity. The film with a thickness of 1.85 microns as described above, after being charged with a voltage of about 35 volts, is irradiated with a 50-watt wire lamp at a distance of 5 centimeters, in less than 0.5 seconds. Discharge. The same test was carried out using a polyvinyl oxazole film that does not contain fullerium for comparison. In terms of the photoconductive discharge properties, the polyvinyl oxazole film is much worse than the polyvinyl oxazole film containing fullerene. In the case of the photoconductive discharge mentioned above, the time relative to the full discharge does not exceed 5 seconds (please read the precautions on the back before filling out this page)--Pack. Order ·. Line. This paper size is suitable for sleepy Η Jia Lu Zhun (CNS) A 4 specifications (210 X 297 mm) -17-81.9.25,000 2l3bGi A6 B6 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. Fifth, the description of the invention (16) has a rich poly The vinyl Uf azole film, which does not contain fullerene, requires a discharge time of more than 2 ◦ seconds. This is enough to prove that the addition of Fulagi to the photoconductive polymer can greatly improve the photoconductivity. Example 2 Preparation of Polycarbonate Film Containing Fuller Festival / N, N-Diethylshironamine Thyroid Transfer Compound and Its Pieces 1 g of poly (4,4′-isopropylidene phenyl group) Master ester) and ◦. 6 grams of phenyl-bis (4-diethylamino-2-methyl-phenyl) methane (LG-1) was dissolved in 12 ml of dichloromethane. This solution was mixed with Ν, Ν-diethylaniline in a ratio of 1: 1 (this solution was previously in a ratio of 8 5: 15 C e. And C 7. Saturated). To this solution, add enough (4, 4 ~ monoisopropylidene bisphenolate) and Fule K until the solution is saturated. The obtained solution was coated on an aluminum plate at a rotation speed of 7 5 0 r p m using a spin coating method to obtain a photoconductive film with a thickness of 1.80 μm. The results of photoconductive discharge analysis showed that the film had photoconductivity. The above-mentioned film with a thickness of 1.8 microns was charged at a voltage of about 400 volts and then discharged at a distance of 5 centimeters with a 50-watt-long silk lamp, and discharged after about 18 seconds. Until 200 watts of power remain. This result shows that the addition of Fulagi to non-photoconductive polymers can greatly improve the photoconductivity. Example 3 (Please read the precautions on the back before filling in this page) | Binding · Order ·-Line. The paper size is applicable to China National Standards (CNS) Grade 4 (210 X 297 mm) 81.9.25,000- 18 _ Printed by the Central Bureau of Standards of the Ministry of Economic Affairs κκIndustry and Consumer Cooperatives «A6 ^-V. Description of the invention (17) Preparation and properties of poly (methine silane) film with futium The fullerene (~ 85% C60, ~ 15% C7.) Was dissolved in 6 ml of toluene. Add ◦. 1 g of poly (methylphenylsilane) to 3 ml of this solution. This solution was applied to the aluminum substrate at a speed of 100,000 rpm for 80 seconds. This sample was dried in a vacuum oven at 60 ° C for 1 hour. The resulting film thickness was 1.05 microns. In 2.5 ml of the aforementioned Fule H / poly (methylphenylsilane) / toluene solution, add 15 g of poly (methylphenylsilane) to form a more viscous solution. After the same spin coating and drying steps, a film with a thickness of 4 microns was obtained. It is known from the photoconductive discharge test that these two films have good photoconductivity. As shown in Figure 3, after the film is charged to 5 X 105 volts / cm, it will be completely discharged in 0.5 seconds after being irradiated with a filament lamp (50 microwatts / cm2) . The experiment was conducted in a similar situation, and it was found that the pure poly (methylphenyl silicon) film had no obvious photoconductivity. (image 3). Figure 4 shows the correlation between the discharge efficiency and the electric field of poly (methylphenyl silane) film doped with Fule. The thickness of this film is 1 micron. The light source irradiated is a xenon lamp with a wavelength of 340nm. The photon flux of this lamp is 1.2X 1 0; 3 photons / (square centimeter * second). When the electric field strength is about 7 X 1 ◦ 5, the discharge efficiency is 0.17. Through the foregoing description, those skilled in this skill can easily capture the basic support of the present invention without violating the spirit and purpose of the present invention. They can make various changes or modify the present invention in accordance with the present invention. , And the invention is used in different applications and situations. (Please read the precautions on the back before writing this page) — Packing. Ordering. 丨 Line · This paper size is applicable to the Chinese Weijia Standard (CNS) A 4 specifications (210 X 297 public stamp) 1 19-81.9.25,000

Claims (1)

Α7 Β7 C7 D7 經濟部中央標準局貝工消費合作杜印* 六、申請專利範团 1 ·—種光導電性組成物,其特徵為其中含有一種有 機材料,此有機材料選自光導電性聚合物、低分子量且可 提供電子的化合物或它們的混合物,及,至少一種碩原子 數由約2 ◦至1 ◦ 0 0的富樂芄化合物,且富樂芄化合物 的量相當於以光導電性組成物總重計之〇 . 1至5 0 . 0 重量%。 2 .如申請專利範圍第1項之光導電性組成物,其中 ,該富樂K化合物的量相當於以該組成物總重計之約1至 約2 0重量%。 3. 如申請專利範圍第1項之光導電性組成物,其中 ,該光導電性聚合物選自包括:聚矽氧烷、聚乙烯基D卞唑 、聚苯乙烯、聚乙烯基二甲苯、聚一1一乙烯基棻、聚一 2 —乙烯基棻、聚一 4 —乙烯基聯苯、聚一 9 —乙烯基Μ 、聚一 3 —乙烯基芘、聚一 2 —乙烯基喹啉、聚芘、聚苊 烯、聚(3,3,一二甲基一4,4' 一二苯撑)、聚丙 烯醯胺和聚異丁烯醯胺。 4. 如申請專利範圍第1項之光導電性組成物,其中 ,該低分子量且可提供電子的化合物包括:棻、聯苯、笏 、蒽、菲、醋菲、苊烯、蓋、芘、1 , 4 一二甲氧基苯、 二苯基胺、2,-二某基胺、1, 5-二乙氧基棻、 2 -苯基吲跺、忭唑、夾硫氮雜Μ、2, 4 —雙(4 — 一 二乙基胺苯基)—1, 3, 4 —氧代二唑及2, 4 —雙( 4"—二乙基胺苯基)一1, 3, 4 —三唑。 5. —種光導電性組成物,其特擻為其中含有至少一 東紙張尺度遍用中面國家樣準(CNS)甲4规格(2】0 X 297公釐) -20 - 81.9.10.000 (請先閲讀背面之注意事項再填寫本頁) --裝- 訂- .線- A7 B7 C7 D7 經濟部t央標準局貝工消費合作社印製 六、申請專利範圍 種有機材料,此有機材料選自非光導電性聚合物,低分子 量且可提供電子的化合物或它們的混合物,及,由富樂贫 和提供電子的組份所組成的電荷轉移複體,且此電荷轉移 複體的量相當於以光導電性組成物總重計之〇 . 1至 5 0 · 0重量%。 6 ·如申請專利範圍第1項之光導電性組成物,其中 ,該富樂艽的碩原子數不低於2〇。 7 .如申請專利範圍第6項之光導電性組成物,其中 ,該富樂K的碩原子數不低於6 0。 8. 如申請專利範圍第6項之光導電性組成物,其中 ,該提供電子的組份之相對於A g / A g <之氣化電位小 於約1 · 3 8伏特。 9. 如申請專利範圍第3項之光導電性組成物,其中 ,該提供電子的組份之相對於A g /A g *之氧化電位小 於約1 . 2 9伏持。 1 0 .如申請專利範圍第1項之光導電性組成物,.其 中,提供電子的組份:富樂艽化合物之比例約1 : 3至6 :1 〇 1 1 .如申請專利範圍第1項之光導電性組成物,其 中,提供電子的組份:富樂K化合物之比例約1 : 1至3 :1 〇 1 2 .如申請專利範圍第1項之光導電性組成物,其 中,該富樂K擁有60或70値碩原子,該提供電子的组 份是N, N—二乙基苯胺,該N, N—二乙基苯胺與該富 (請先《讀背面之注意事項再塡寫本頁) -裝. 訂. -丨線· 本纸張尺度適用中88¾榡準(CNS)甲4规格(210 X 297公釐) -21 - 81.9.10.000 蜒濟郜中央揉準局員工消费合作社印爹 A7 B7 • C7 ‘ ___D7___ 六、申請專利範園 樂艽的比例介於約1 : 1至3 : 1之間。 13. 如申請專利範圍第i項之光導電性組成物,其 中,該富樂艽擁有20至1 000個碩原子。 14. 如申請專利範圍第5項之光導電性組成物,其 中,該電荷轉移複體的量相當於以該組成物總重計之約1 至約2 0重量%。 1 5 .如申請專利範圍第1 4項之光導電性組成物, 其中,該非光導電性聚合物選自包括:聚異丁烯酸酯、聚 (異丁烯酸甲酯)、聚芳醯胺、聚(乙烯醇)、異丁烯酸 甲酯和異丁烯酸之共聚物、苯乙烯和順丁烯二酸酐之共聚 物及順丁烯二酸酐和聚碩酸酯的半酯-酸。 1 6 .如申請專利範圍第1 4項之光導電性組成物, 其中,該低分子量且可提供電子的化合物包括:茭、聯苯 、笏、Μ、菲、醋菲、苊烯、|、芘、1,4 一二甲氧基 苯、二苯基胺、2,2/ —二某基胺、1, 5 —二乙氧基 棻、2 —苯基吲跺、Df唑、夾硫氮雜葸、2 , 4 —雙(4 一一二乙基胺苯基)—1,3, 4 —氣代二唑、2, 4 — 雙(4Z —二乙基胺苯基)一 i, 3,4_三唑。 17.—種光導電性元件,其持徽在於使用申請專利 範圍第1或5項的光導電性組成物。 1 8 . —種影像的加工方法,其持徽在於:將表面靜 電荷施加於内含有申請專利範圍第1至17項中任何一項 之光導電性組成物的光導電元件上, 將此充過電的元件暴於電磁射線上,形成潛伏的靜電 (請先閲讀背面之注意事項再填寫本頁) •裝. 訂· •嫁. 本纸張尺度適用中困國家橒準(CNS)甲4规格(210 X 297公犛) -22 - 81.9.10,000 213〇^ 六、申請專利範圍 影像,然後使該潛伏的影像顯影 A7 B7 C7 D7 (請先閲讀背面之注意事項再填寫本頁) 裝. 訂. .線. 經濟部中央標準局貝工消费合作杜印製 表紙張尺度適用中國國家櫺準(CNS)甲4规格(210 X 297公釐) -23 ~ 81.9.10,000Α7 Β7 C7 D7 Beigong Consumer Cooperation of the Central Standards Bureau of the Ministry of Economic Affairs Du Yin * 6. Patent application group 1-A photoconductive composition, characterized in that it contains an organic material selected from photoconductive polymerization Substances, low-molecular-weight electron-donating compounds or mixtures thereof, and at least one fullerene compound with a number of atoms ranging from about 2 ◦ to 1 ◦ 0 0, and the amount of fullerene compound is equivalent to photoconductivity The total weight of the composition is 0.1 to 50.0% by weight. 2. The photoconductive composition as claimed in item 1 of the patent application, wherein the amount of the Fuller K compound corresponds to about 1 to about 20% by weight based on the total weight of the composition. 3. The photoconductive composition as claimed in item 1 of the patent application, wherein the photoconductive polymer is selected from the group consisting of: polysiloxane, polyvinyl Dbazole, polystyrene, polyvinyl xylene, Poly-1 vinyl chloride, poly-2-vinyl phosphate, poly-4-vinylbiphenyl, poly-9-vinyl M, poly-3-vinylpyrene, poly-2-vinylquinoline, Polypyrene, polyacenaphthylene, poly (3,3, -dimethyl-4,4'-diphenylene), polypropylene amide and polyisobutylene amide. 4. The photoconductive composition as claimed in item 1 of the patent scope, wherein the low molecular weight electron-donating compound includes: fen, biphenyl, wat, anthracene, phenanthrene, acephenanthrene, acenaphthylene, cap, pyrene 1, 4-dimethoxybenzene, diphenylamine, 2, -diphenylamine, 1,5-diethoxybenzyl, 2-phenylindole, oxazole, thiazide M, 2 , 4-bis (4-diethylaminophenyl) -1, 3, 4-oxodiazole and 2, 4-bis (4 " -diethylaminophenyl) -1, 3, 4- Triazole. 5. A kind of photoconductive composition, which contains at least one national standard (CNS) A4 specification (2) 0 X 297 mm) which is widely used in the eastern paper scale -20-81.9.10.000 ( Please read the precautions on the back before filling in this page) --Installation- Order- .Line- A7 B7 C7 D7 Printed by Beigong Consumer Cooperative of Central Standards Bureau, Ministry of Economic Affairs From non-photoconductive polymers, low molecular weight electron-donating compounds or their mixtures, and charge transfer complexes composed of fulleran and electron-donating components, and the amount of this charge transfer complex is equivalent From 0.1 to 50.0% by weight based on the total weight of the photoconductive composition. 6. The photoconductive composition as claimed in item 1 of the patent scope, in which the number of master atoms of the Fule is not less than 20. 7. The photoconductive composition as claimed in Item 6 of the patent scope, wherein the number of the master atoms of the Fule K is not less than 60. 8. The photoconductive composition as claimed in item 6 of the patent application, wherein the gasification potential of the electron-providing component relative to A g / A g < is less than about 1.38 volts. 9. The photoconductive composition as claimed in item 3 of the patent application, wherein the oxidation potential of the electron-providing component relative to A g / A g * is less than about 1.29 volts. 1 0. The photoconductive composition as described in item 1 of the patent application scope, in which the ratio of the electron-providing component: the fuller compound is about 1: 3 to 6: 1 〇1 1. If the patent application scope is 1st Item of the photoconductive composition, wherein the ratio of the electron-providing component: Fuller K compound is about 1: 1 to 3: 1 〇12. As the photoconductive composition of item 1 of the patent application scope, wherein, The Fule K has 60 or 70 atoms, and the electron-providing component is N, N-diethylaniline, the N, N-diethylaniline and the rich (please read the notes on the back塡 write this page) -Installation. Order.-丨 Line · This paper size is suitable for 88¾ standard (CNS) A 4 specifications (210 X 297 mm) -21-81.9.10.000 絜 济 餜 Central Kneading Bureau staff Consumer Cooperative Indy A7 B7 • C7 '___D7___ 6. The ratio of applying for a patent Fanyuan Lejian is about 1: 1 to 3: 1. 13. For example, the photoconductive composition according to item i of the patent scope, in which the Fule has 20 to 1 000 atoms. 14. The photoconductive composition as claimed in item 5 of the patent application, wherein the amount of the charge transfer complex corresponds to about 1 to about 20% by weight based on the total weight of the composition. 15. The photoconductive composition according to item 14 of the patent application scope, wherein the non-photoconductive polymer is selected from the group consisting of: polymethacrylate, poly (methyl methacrylate), polyaromatic amide, poly ( Vinyl alcohol), copolymers of methyl methacrylate and methacrylic acid, copolymers of styrene and maleic anhydride, and half-ester-acid of maleic anhydride and polyesters. 16. The photoconductive composition as claimed in item 14 of the patent application scope, wherein the low molecular weight electron-donating compound includes: zin, biphenyl, wat, Μ, phenanthrene, acephenanthrene, acenaphthylene, |, Pyrene, 1,4-dimethoxybenzene, diphenylamine, 2,2 / -diaminoamine, 1,5-diethoxybenzyl, 2-phenylindole, Dfazole, thiazide Heterophytes, 2, 4, bis (4-diethylamine phenyl)-1,3, 4-oxadiazole, 2, 4, bis (4Z-diethylamine phenyl)-i, 3 , 4_triazole. 17.—A type of photoconductive element whose emblem lies in the use of the photoconductive composition of the patent application item 1 or 5. 1 8. A method of image processing, the emblem of which is to apply a surface static charge to a photoconductive element containing the photoconductive composition of any one of the patent application items 1 to 17, and charge this Over-charged components are exposed to electromagnetic rays, forming latent static electricity (please read the precautions on the back before filling out this page) • Install. Order • • Marry. This paper size is suitable for CNS A 4 Specifications (210 X 297 male yak) -22-81.9.10,000 213〇 ^ 6. Apply for the patent scope image, and then develop the latent image A7 B7 C7 D7 (please read the precautions on the back before filling this page). Set .. Line. The scale of the paper printed by DuPont Printing Co., Ltd. of the Central Standards Bureau of the Ministry of Economic Affairs is applicable to the Chinese National Standard (CNS) A 4 specifications (210 X 297 mm) -23 ~ 81.9.10,000
TW81107893A 1991-10-16 1992-10-05 TW213504B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77784991A 1991-10-16 1991-10-16

Publications (1)

Publication Number Publication Date
TW213504B true TW213504B (en) 1993-09-21

Family

ID=51357127

Family Applications (1)

Application Number Title Priority Date Filing Date
TW81107893A TW213504B (en) 1991-10-16 1992-10-05

Country Status (1)

Country Link
TW (1) TW213504B (en)

Similar Documents

Publication Publication Date Title
US5250378A (en) Charge transfer complexes and photoconductive compositions containing fullerenes
Borsenberger Organic photoreceptors for xerography
CA2076837C (en) Photoconductive imaging members
US5238607A (en) Photoconductive polymer compositions and their use
US8507901B2 (en) Organic material and electrophotographic device
US5063125A (en) Electrically conductive layer for electrical devices
JPS60254142A (en) Electrophotographic recording material
TW213504B (en)
JPS63158560A (en) Electrophotographic sensitive body
JPH05333575A (en) Electrophotographic sensitive body
JPH07199487A (en) Electrophotographic photoreceptor
Ulański et al. Electrical properties of polymers doped with charge transfer complexes forming additives
JPH02275464A (en) Recording material suitable for use in electro photography
JPS63158556A (en) Electrophotographic sensitive body
JPS59224846A (en) Electrophotographic sensitive body
JPS59104657A (en) Electrophotographic sensitive body
JP2794849B2 (en) Electrophotographic photoreceptor
JP2778121B2 (en) Electrophotographic photoreceptor
JPS63158558A (en) Electrophotographic sensitive body
JPS5999442A (en) Electrophotographic sensitive body
JPS63158557A (en) Electrophotographic sensitive body
JPS63157160A (en) Electrophotographic sensitive body
JPS60207143A (en) Electrophotographic sensitive body
JPH05232722A (en) Electrophotographic sensitive member having sensitivity both in positive and negative polarity
JPS5944052A (en) Electrophotographic receptor