TW208672B - Pultrusion process for long fiber reinforced nylon composites - Google Patents

Pultrusion process for long fiber reinforced nylon composites Download PDF

Info

Publication number
TW208672B
TW208672B TW81108718A TW81108718A TW208672B TW 208672 B TW208672 B TW 208672B TW 81108718 A TW81108718 A TW 81108718A TW 81108718 A TW81108718 A TW 81108718A TW 208672 B TW208672 B TW 208672B
Authority
TW
Taiwan
Prior art keywords
catalyst
nylon
fiber
polymer
caprolactam
Prior art date
Application number
TW81108718A
Other languages
Chinese (zh)
Inventor
Ruey-Shyang Chen
Horng-Jou Kang
Ching-Ju Kang
Heng-Der Wu
Ru-Feng Liaw
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW81108718A priority Critical patent/TW208672B/en
Application granted granted Critical
Publication of TW208672B publication Critical patent/TW208672B/en

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

A pultrusion process for long fiber reinforcing nylon composites comprising: transferring caprolactam sodium salt catalyst and polymeric co-catalyst into a tubular mixing device at 80-110xC; in which the caprolactam sodium salt catalyst is obtained by reacting melt caprolactam with sodium hydride catalyst and the polymeric co-catalyst is obtainea by mixing polymeric co-catalyst with two NCO end group and melt caprolactam in a closed reinforced fiber impregnating tank with dry nitrogen gas, then impregnating reinforced fiber which is dried at 250xC in nylon reaction mixture, then pulling into a hot mold at 165-215xC while conducting nylon anionic polymerization and composites processing.

Description

Λ 6 |{6 〇8υ*ν^ 五、發明説明(1) (請先W讀背面之注意事項#艰寫本页) 本發明ί% —種使用長纖維補強尼龍陰離子聚合技術以 製出尼龍複合材料之尼龍拉擠成型加工法,傳統拉擠成型 加工法基本上偽使用低黏度熱固性樹脂,例如,不飽合聚 酯,酚醛樹脂及環氧樹脂等,針對這些熱固性樹脂条統, 目前已有許多商業化拉擠成型加工機械及製程已被開發出 來並進行商業化生産,而能産製各種具結構強度之熱固性 塑膠複合材成品。 經濟部中央楳準局A工消费合作社印51 對長纖維補強熱塑性塑膠複合材料而言,由於熱塑性 塑膠複合材儲存容易,沒有儲存壽命問題發生,並具有可 二次成型性,及良好之機械強度(與短纖維補強複合材比 較而言),因此長纖維補強熱塑性塑膠複合材市場成長相 當快速,而為工業技術先進國家競先開發研究之重點,傳 統上短纖維補強尼龍複合材由於具有相當慶異之使用性能 ,敌早已被廣泛的使用,同樣的在諸多種類長纖維補強熱 塑性複合材中,尼龍複合材之開發與産品應用研究亦是受 到相當的重視,為極具潛力之新一代纖維補強熱塑性複合 材,對於長纖維補強熱塑性複合材之製備方法而言,目前 商業化之製備方法絶大多數偽為多步驟間接法,通常是將 聚合完了之熱塑性塑膠料使用物理性方法,將熱塑性塑膠 料予以融熔或溶解後,再使用熱壓或含浸補強纖維,成形 最終之熱塑性塑膠複合材料半成品,以便進行二次成型加 工,由於採用熱壓方式所得之熱塑性複合材,因融熔之 聚合物黏度極高,無法得到對補強纖維良好之濕潤(Wet-out)效果,致使樹脂基材與補強纖維介面結合強度低下, 因而大大減低熱塑性複合材之機械強度與使用性能。至於 本紙張尺度边用中國Η家樣準(CNS)肀4規格(210x297公;«) 20B〇V2 Λ 6 Π 6 經濟部屮央梂準局13:工消费合作社印¾ 五、發明説明(2 ) 採用溶解後之高分子溶液(Polymer solution)含浸方式 之製程,則需將含浸後之複合材中之溶劑烘乾逐出,此種 作法不僅製程煩雜且耗費能源,並且容易造成環境污染, 因此此種含浸高分子溶液之纖維補強熱塑性複合材製備方 法,也不是一種理想之作法。 H. Ishida 與 G.Rotter 於 1988 年 43rd, Annual Conference, Composite Institute, The Society of the Plastic Industry發表熱塑性基材複合材料反應射出成型 -拉撰成型加工法(RIM-Pult「usion of Thermoplastic M a t r丨x C o in o s丨t e s),於此文獻中。ί s h i d a等人以己内gg 瞭做為反喔物單麗(monomer),使用氮化納(Sod i u!n hydr i de )做為陰離子聚合用觸媒,氫化鈉與部份己内醯胺作兩後 形成觸媒料(Catalyst Side),並使用 phenyl isocyanate 做為反應起始劑(Initiator),且與部份己内醛胺混合後 形成起始劑料(Initiator Side),繼之將‘Catalyst Side 與Initiator Side分別加入高溫反應射出成型機(High temperature Reaction Injection Mo 1d i ngmacn i ne)料 槽中,將 Catalyst Side 與 Initiator* Side 高魔混合後, 注入樹脂含浸槽中含浸玻璃纖維束(glass fiber roving). 繼之將含浸尼龍6反應物之纖維拉入一熱模具中,使尼龍 '基材聚合,而得到玻璃纖維補強尼龍6複合材,然此尼龍6 複合材並未掲示任何一種機械強度數據,因此令人無法了 解Ishida等人所述之加工方结於弯U:之可行性。 J.S.HWANG 和 S.N.T0NG 等人,在 44th Annu. Conf. (請先閲誚背而之注意事項再蜞窍本頁) 裝 訂_ 線. 81.6. 10,〇〇〇張(II) 20867^5 Λ 6 _______1^6 五、發明説明(3) 經濟部屮央梂準局A工消费合作社印製 RP/C, SPI,8-C (1988),掲露利用In-Situ拉擠成型加 工製作出纖維補強熱塑性複合材。其主要目的為以In-Situ 拉擠成型加工發展一種新的熱塑性条統和新穎的設備。在 本篇論文中,是以液態的acrylonitrile-butadiene共聚 物和styrene單體反應,生成ABS樹脂,再將此樹脂注入到 加熱模具内,使和補強纖維預浸以及固化,研究過程中, 發現因樹脂黏度低,能夠使纖維預浸良好,更重要的是, 最終産品可利用熱再成型。此種加工方式,能夠提供樹脂 既安全且方便處理。 MAYWOOD L. WILSON 及 John d. buck ley等人在 44th Annu. Conf. RP/C,SPI,8-C(1988.),掲露利用拉擠成型 方法製作出耐高溫且具高性能之碩纖維補強Po 1 yether iniicie複合材。其與傳統熱固性樹脂之拉擠成型加工不同 之處為,其在拉擠成型模中聚合時,沒有單體的反應物和 溶劑産生。另外傳統熱固性樹脂為了使補強纖維潤濕和固 化,其黏度約在500-1000CpS範圍,拉擠成型模模溫約在 300〜400°F間,而在高性能熱塑性拉擠成型加工法中, 在拉擠成型模内,黏度可達1,000,000cps或更高,而模 溫可高達δΟΟΤ1左右。 Xin Xing 與 Hatsuo Ishida 於1990年 Annu. Conf. ,Composite Institute, The Society of the Plastic Industry繼續引用與前述相同之RIM-Pultrusion方法以 製備尼龍複合材,而聚合反應物中之尼龍起始劑,則改用 分子量 4000之 Polypropylene-oxide 與 Hexamethylene diisocyanate所合成出之預聚合物,然而於此文獻中依然 (請先閲讀背而之注意亊項孙艰窍本頁) 裝- 訂· 線- 本紙5艮尺度逍用中BK家梂準(CNS)T4执格(210x297公;it} 81. 6. 10F000» (II) Λ 6 Η 6 五、發明説明( 未顯示出尼龍複合材成品之一般機械性質數據,無法確認 其加工可行性與實用性。 馬振基,鄞盟松則於19δ8年中華民國高分子研討會中 公開”連續型纖維補強尼龍6樹脂複合材料性質之研究”, 而其中尼龍6樹脂之聚合偽採水解聚合方式進行。 本發明則為一種新穎之長纖維補強熱塑性尼龍複合材 製造法,其特獻係將除水純化後之尼龍單體原料己内醯胺 融熔後,與強鹼性氫化鈉觸媒作用形成活性觸媒料,再使 用己内醯胺與具HCO末端基之高分子共觸媒熔融形成之共 觸媒料,繼之將活性觸媒料與高分子共觸媒料兩成份料使 | —. . ...... 用連續型混合裝置,在乾燥氮氣覆蓋狀態下,8'〇-110°c之 溫度間混合,將黏度介於10-1500cpS間之低黏度反應混合 物注入於具氮氣覆蓋之密閉式補強纖維含浸槽中,含浸經 . — .... ....-.......... 經濟部中央櫺準局Α工消伢合作社印製 預熱乾燥之補強纖維後,利用拉擠成型機將含浸尼龍反應 混合物之纖維拉入一熱模具内,同時進行尼龍陰離子開環 聚合反應與成型加工,就可得到一長纖維補強熱塑性尼龍 複合材,使用本發明之尼龍拉擠成型加工法製造所得之長 纖維補強尼龍複合材,由於樹脂基材傜使用低黏度之單體 ,因此可得到對纖維徹底完全之濕潤(Wet-out)效果,而 能使複合材内尼龍基材與補強纖維介面減少空孔缺陷( Void defects )存在,而使得利用本發明長纖維補強陰離 子聚合尼龍複合材拉擠成型加工法,製出之尼龍複合材表 現出最優異之機械強度與使用性能。 於本發明長纖雒補強陰離子聚合尼龍複合材拉擠成型 加工法中,由於尼龍基材之聚合反應係採用陰離子開環快 81. 6. !0,000?>; (Η) (請先閱讀背而之注意事項补蜞寫本頁) 冬紙張尺度边用中a η家標iMCNS) T4規格(210X297公《:) 〇8o*V^ Α6 Β6 五、發明説明(5) 經濟部t央標';11-局9工消''合作杜印贤 速聚合方法,因此對尼龍單體原料之含水率須特別純化控 制在接近無水狀態,且補強長纖雒在與己内醯胺單體接觸 含浸之前須預熱乾燥,徹底除水份,方能使尼龍陰離子聚 合反應順利進行,以得到聚合良好之尼龍複合材料製品。 本發明中,己内醛胺單體原料之含水率,依發明人的 研究所得知識了解,己内醯胺單體原料之含水率必需控制 在500ppm以下,方能使尼龍陰離子聚合反應順利進行。 由於一般工業级之己内馥胺單體原料其含水率通常在900 全lOOOppm以上,因此不能適用於尼鼴陰離子開琛聚合反 應条统,因此於本發明之尼龍拉擠成型如工製程中,己内 鏟胺單體原料皆使用減壓蒸餾技術將己内醯胺單體之含水 率降到 500 ppm以下,以符合尼龍陰離子聚合反悪之特 別要求。 適用於尼龍陰離子開環聚合反應条之鹼性觸媒,基本 上可分為三大類,第一類為鹼金屬元素例如鋰,納,鉀等 金屬型態元素或其相關之氫化物,第二類為第一類觸媒之 有機金屬衍生物例如丁基鋰,乙基鉀,丙基鈉。第三類觸 媒為格林鈉試劑(Grignard reagent)與己内醯胺單體形 成之鹽,例如溴纟1己内ϋ胺鹽。上述一,二,三類觸媒可 單獨使用亦可混合使用以調整聚合反應速率。 適用於本發明中尼龍陰離子聚合反應之共觸媒者偽為 多元醇(Pol^lycol)類化合物與二異氣酸鹽類化合物反 應所得分子末端具NC0官能基之高分子共觸媒,於高分子 共觸媒製備過程中,NC0基當量數與0H基當量數之比值( NC0/0H Index)可控制在1.2〜3.0範圍間,而以1.5〜2.2 (請先閱讀背面之注意事項再填寫本頁) .¾. .綠· 本纸張尺度適用中Η國家梂準(CNS) T4梘格(210X297公釐) 五、發明説明(6 ) A 6 B6 經濟部中央梂準局tsc工消费合作社印製 較佳,多元醇則可使用具OH末端基分子量400至4000間 之長鏈聚酸(Polyether),聚砂(polysilicone),聚酯 (polyester),聚己内醒酮(Polycaprolacton),聚丁二嫌 醇(Hydroxyl terminated polybutadiene)中之任意型態 多元醇或混合物,高分子共觸媒之製備反應中可使用之二 異氰酸鹽,可為脂肪族或芳香族之二異氰酸鹽,其中以脂肪 族之二異氰酸鹽為佳,適用於本發明之脂肪族二異氰酸鹽如 下所列: 1. 異彿爾二異氣酸鹽(Isophorone diisocyanate, IPDI) 2. 六亞甲基二異氡酸鹽(Hex a'm ethylene di isocyanate ,HDD 3 .雙環己院甲院二異氮酸鹽(D icyc 1 ohexy i me thane d i isocyanate) 4.環己院二異氰酸鹽(Cyclohexyl di isocyanate) 纖維補強熱塑性尼龍複合材,雖然目前商業化産品所 使用的纖維補強材種類相當多,例如無機的玻璃纖維,碳 ....... -- —— ^ 纖維及有機材質之聚_胺纖維或有機與無機纖雄併用之混 ' ··— ^ ............. . ·. . '·'· * 維,但依發明人研究之結果發現,適用於本發明長纖 維補強陰離子聚合尼龍複合材拉擠成型加工方法之補強長 纖維,以無機材質之..鼓瑪纖罐及磺纖維為最適用之選擇。 本發明中纖雒補強尼龍複合材機械強度測試規範如下所列: 抗張強度(Tensile strength) ------------ISO 3268 抗折強度(Flexural strength) ------------ASTM D790 熱變形溫度(Heat distortion temperature)-ASTM D648 本紙張尺度边《中困國家梂準(CNS)肀4垛格(210x297公龙) (請先閲讀背面之注意事項再堝寫木頁) 裝· .5T_ 線· 經濟部屮央楳準局KX工消費合作社印製 Λ 6 _Π6_ 五、發明説明(7 ) Izod 耐衝撃強度(Izod impact strength) -ASTM D256 本發明方法將藉著以下所述之實施例以說明本發明之 技術内容與重點,但不限制本發明之專利申請範圍。 實施例1 : / 低含水率己内醯胺單體之純化製備 本發明中己内醯胺純化除水方法,偽採減壓真空蒸腺 技術,純化除水處理目標是將己内醯胺單體含水率降低至 500pp m以下,使己内醯胺單體原料能適用於尼龍陰_子聚 合反應使用,本實施例中己内醯胺純化除水處理量為30 公斤/批次。實驗結果如表1為示: 表1 (請先閲讀背面之注意事項再填寫木页) 裝- .己内鏗胺單體原料來源:中化公司工業级固態Η狀 己内酸胺單體 .己内醯胺處理量:30公斤/批次 .己内醯胺純化除水處理條件: 1. 蒸餾槽内己内醯胺單體溫度:145°C, 2. 蒸餾迴流時間:迴流2小時 3. 蒸餾槽真空度:750mmHg .處理前己内醯胺含水率:1000 PPnt .處理後己内醯胺含水率:280 ppm 本紙張尺度边用中《 9家樣準(CNS) Ή規格(210x297公 經濟部屮央榣準局Α工消"合作社印31 A 6 ____ 五、發明説明(8 ) 由本例中己内醯胺單體之純化使用上述之減壓真空蒸 餾條件,可將己内醯胺單體含水率於2小時内由lOOOppm 降低至280 ppm,適用於本發明長纖維補強陰離子聚合尼 龍複合材拉擠成型加工中500 ppm 以下.低含水率己内醯 胺單體之要求。 ,施例2 : 長纖維補強陰離子聚合尼龍複合材拉擠成型加工 高分子共觸媒製備: 使用分子量1000 (g/mole)具兩値0H末端基之聚環氧 丙鋪(Poly-propylene Oxide)長鏈聚_多元醇1000克 (lmole)與444克(2m〇le)之異锞爾酮二異氰酸鹽(Iso phorone diisocyanate, IPDI)加入於反應槽内充分混合 後再加入二丁基錫二月桂酸酯0.06 g混合均勻後,加熱 至50°C攪拌反應4小時,即可得到透明澄清具NC0末端 基之高分子共觸媒编號IPPG1000-2備用。 活性己内醯胺鈉鹽觸媒料製備: 取實施例1中所示方法純化過之低含水率己内醯胺單 體,加熱昇溫至90°C後加入適量之氫化鈉(用量如表 2.1所示),攪拌20分鐘後形成活性己内醯胺鈉鹽觸媒料 後置於具氮氣覆蓋之活性己内醯胺鈉鹽觸媒料槽中,保 溫於9〇-11〇υ間備用。 (請先閲讀背而之注意事項#填寫本頁) 裝- 訂 本紙张尺度遑用中a明家孕(CNS)T4規格(210X297公址) 81. 6. 10.000張(II) Λ 6 II 6 五、發明説明(9 ) 高分子共觸媒料製備: 取實施例1中所示方法純化過之低含水率己内醯胺單 體與編號IPPG 1000-2高分子共觸媒(己内醯胺單體與 高分子共觸媒相對用量如表2.1所示)共同加入於具氣 氣覆蓋之高分子共觸媒料槽中,加熱昇溫至90〜110°C 後備用。 長纖雒補強陰離子聚合尼龍複合材拉擠成型加工: 經濟部+央榀準局EX工消#合作社印製 (請先閲讀背而之注意枣項#堝寫本頁) 圖2.1所示為本發明長纖維補強陰離子聚合尼龍複合 材拉擠成型加工法之示意圖,圖2.2所示則為本發明陰離 子聚合尼龍拉擠成型加工裝置設計細部示意圔,圖2.3所 示則為本發明尼龍拉擠成型加工裝置中補強繊維含浸槽與 熱模具結合方式設計圖,於本發明長_雒補強陰離子聚合 尼龍複合材拉擠成型加工法中.由於尼龍基材之聚合方式 偽採用陰離子快速聚合反應,而尼龍基材之聚合速度除了 與聚合反應溫度相關外亦直接受到樹脂配方中觸媒濃度與 高分子共觸媒濃度控制,然而除了上述聚合反應溫度,觸 媒濃度與高分子共觸媒濃度會影響尼龍基材之聚合速度外 ,陰離子聚合反應条内部與外部水氣之存在亦會影響尼龍 基材之反應性,因此在長纖維補強陰離子聚合尼龍複合材 拉擠成型法中,必須將補強長纖維澈底預熱烘乾除水,以 防止纖維表面吸附之撤量水氣被帶入反應条内。另外,在 加工過程中由於高溫之模具易將熱量傳遞到補強纖維含浸 槽内,使含浸槽内樹脂反應性增高,造成樹脂黏度逐漸昇 高而膠凝(gel)在含浸槽末端,如此將使纖維含浸效果降 本紙張尺度边用中SH家標準(CNS)T4規格(210x297公徒) 81. 6. 10,000^ (Ιί) ,06⑽ Λ 6 Π 6 五、發明説明(w) 低,甚至造成模塞而使製程中斷。因此本發明在補強纖維 含浸槽末端與模具間設計加入一種隔熱裝置,能使補強纖 維含浸槽末端與模具接合處之溫度保持在115°C以下,而 能使加工製程連續操作8小時以上順利進行。於圖2.1中補 強纖維於三米長之纖維預熱乾燥裝置中預熱乾燥,較適當 之溫度為控制熱風溫度150°C至250°C間。活性己内醯胺鈉 鹽觸媒料與共觸媒料則使用連續式管狀混合裝置混合,並 控制活性己内醯胺鈉鹽觸媒料與共觸媒料混合比例為 1:0.9-1.1間,於氮氣覆蓋狀態下9010至110它溫度間混 Λ Λ* 4 /W"山 ί.,,.【· —J— >-* >τ.*ν* 、C=I A Λ.Ι~Φ % Urn ~r.. ^ nrt fUtf JUA 广\ Λ 4 ·4 Λ 百.艇时1K w皮/<1;乂,忠庇甘物迪Ή·王皮任巾j肊a υ -丄丄υ ± 5t:間並具氮氣覆蓋之密閉式不锈綱補強纖維含浸槽内 ,與補強之玻璃長纖維(PPG公司#247之glass roving)於 鐵維含浸槽内含浸低粘度反應單體混合物後即進入模溫控 制於210 土 51之熱模具内進行尼龍陰離子聚合反慝,聚合 完成之成型材拉出後即為玻璃長繊雒補強之尼龍複合材。 於本例所示之加工條件下可保持建續δ小時正常操作,拉 出速度約為35至40cm/inin (模具長度1米長)。 經濟部屮央標準局CX工消赀合作社印31 經本例所述之加工條件製出之玻璃長纖維補強尼龍複 合材製品,測其機械性質列表如表 2.1所示.圖2.4所示 則為取表2.1中编號IPPG 1000-2-10-G75 —代表性玻璃長 纖維補強尼龍複合材成品試樣使用掃描式電子顯微鏡 (SEM),觀察成品尼龍基材與玻璃長纖維補強材之含浸與 結合情形,由圖2.4我們確認利用本發明所設計出之長纖維 補強尼龍拉擠成型加工法製造所得之尼龍複合材,具有尼 龍基材對補強玻璃長纖維澈底完全之濕潤(Wet-out)效果 ,同時尼龍基材與補強玻璃長纖維間亦具有優越之界面結 合效果。 81. 6. 10,000¾ (I!) (請先閲讀背而之注意枣項#埙寫本頁) 本紙51尺度逍用中a Η家標準(CHS) Τ4規怙(2】0Χ297公龙) •08㈣ A 6 Π 6 經濟部屮央榀準局β工消奸合作社印製 五、發明説明(11) 熱變形溫度(°C,264 psi) Notch Izod衝擊強度 (Ft.Ib/Inch) 抗折強度(MPa) 抗折模數(MPa) 抗張強度(MPa) ! 抗張模數(MPa) 纖維含量(重量幻 補強長纖雜種類 機械性質: mm 歡 TL· l,i 反應混合物粘度(CPS) 反應混合物溫度(°c) NaH用量(g/lKg反應混合物) 高分子共觸媒編號 成品編號 U [ίείΐ§ι mm 聯 ΜίΠ μ—^ ζ〇 Cn t—k c〇 42150 1305 47880 79.2 玻璃纖維 Η-» g 1—k s 0.13 IPPG1000-2 IPPG1000 -2-10-G79 s 55.0 g 41700 1185 46000 1—^ 玻璃纖維 I^ Ο 1««1* }—i 0.13 IPPG1000-2 IPPfilOOO -?-10-G75 o o 53,3 o Vi 40041 ...... ..i 1053 1 44198 75.5 玻璃纖維 一 〇 i~~* § 0.15 IPPG1000-2 IPPG1000 -2-10-G77 这 o 1 50.0 0*1 37800 g 42322 73.5 玻璃纖維 S 1—* g Ο IPPG1000-2 1PPG1000 -2-10-G75 ro cn ΓΟ — ο 37618 1001 43214 72.9 玻璃纖維 μ·α o Ο IPPG1000-2 IPPG1000 -2-6-G73 1~^ 〇0 ϋΊ 32908 g cn 41050 69.1 玻璃纖維 〇 5ί 1k o ο IPPG1000-2 IPPG1000 -2-6-G64 52.8 g ik 40800 1115 44310 74.5 玻璃纖維 CjO § ο oo IPPG1000-2 IPPG1000 | -2-3-G74 炮2.1 ........................裝.....:1·..線 (請先閲讀背而之注意事項洱填寫本頁) 本紙5艮尺度遑用中a S家標準(CNS) Ή規格(210x297公:¾) 81. ti. 10,000張(II) A 6 It 6 經濟部中央榣準局工消伢合作社印31 五、發明説明(12) 圖2.1長纖維補強陰離子聚合尼龍複合材拉擠成型加 工法示意圖 各標示記號說明 1. 纖維束 2. 纖維導引架(Guide) 3. 纖維預熱乾燥裝置(3米長,内部溫度150〜25(TC) 4. 乾燥熱風入口(熱風溫度150〜250°C) 5. 乾燥熱風出口 6. 密閉式不銹錮纖維含浸槽(乾燥氣氣覆蓋,槽體溫度 控剞於90〜110°C間) 7. 乾燥氮氣入口 8 .隔熱塾片(3 m m〜10 m πι厚) 9.活性己内醯胺鈉鹽馘媒料槽 10. 高分子共觸媒料槽 11. 乾燥氮氣覆蓋之連續式混合裝置(混合溫度90〜110 °c) 12. 計量控制閥 13. 進料控制閥 14. 保溫進料管(溫度控制於90〜ll(Tc) 15. 加熱模具(模溫170〜210 土 5°C) 16. 牽引器 17. 裁割器 18. 成品 (請先閱讀背而之注意事項孙塡"本頁) 裝· *?τ- 線- 冬紙5民尺度遑用中S Η家標準(CNS)T4規格(210X297公货) 81. 6. 10,000¾ (II) 經濟部中央標準,^Α工消赀合作社印製 Λ (5 Π6 五、發明説明(13) 圖2.2長纖維補強陰離子聚合尼龍拉擠成型裝置設· 計細部示意圖 各標示記號說明 1. 纖維預熱乾燥裝置(3米長,使用電熱保溫於150〜250°C) 2. 補強纖維 3. 乾燥熱風進口(熱風溫度150〜25(TC) 4. 乾燥熱風出口 5. 密閉式不銹銅纖維含浸槽(乾燥氮氣覆蓋,槽體以電熱 保溫控制於90〜n〇°C間) 6. 乾燥氣氣入口 7. 溘流孔 8. 隔熱塾片(3m〜IOm厚)| 9. 活性己内IS胺§6鹽馘媒料槽(乾燥氮氣覆蓋,槽體以熱 媒油保溫控制於90〜110 °C間) 10. 高分子共觸媒料槽(乾燥氮氣覆蓋,槽體以熱媒油保溫 控制於90〜110°C間 11. 乾燥氮氣覆蓋之連續式混合裝置(混合溫度90〜110°C) 12. 計量控制閥 13. 反應混合物進料控制閥 14. 保溫進料管 15. 熱模具 16. 尼龍複合材成型品 本紙51尺度边用中a國家樣準(CNS) Τ 4規怙(2κι X 297公龙) 81.6. 10,000» (II) (請先閲讀背而之注意事項#蜞舄木頁) 裝* 訂* 2086^2 Λ 6 ___Π6____ 五、發明説明(14) 圖2.3補強纖維含浸槽與熱模具結合方式設計圖 各標不sS號說明 1. 反應混合物進料口 2. 隔熱塾片(3mni〜10mm厚度,使纖雒含浸槽末端圖2.3中5 之位置保持溫度於115 °C以下) 3. 乾燥氮氣覆蓋之密閉式不銹鋼纖維含浸槽(槽體溫度控 制於90〜110°C間) 4. 電熱加熱之兩Η式上下熱模具 5. 纖維含浸槽末端措板 6. 補強長纖維 7. 5° < Θ < 25° 8. 8cm < L < 20cm (請先閲讀背而之注意事項再蜞寫本頁) 裝· 訂_ 線- 經濟部屮央榀準灼只工消赀合作社印製 81. 6. 10,〇〇〇張(||) 本紙張尺度边用中》困家標準(CNS) T4規怙(210x297公;¢) Λ 6 η 6Λ 6 | {6 〇8υ * ν ^ Fifth, the description of the invention (1) (please read the notes on the back # hard to write this page) This invention is a kind of technology that uses long fiber reinforced nylon anion polymerization technology to produce nylon The nylon pultrusion processing method of composite materials, the traditional pultrusion processing method basically uses low viscosity thermosetting resins, such as unsaturated polyester, phenolic resins and epoxy resins. For these thermosetting resins, currently, There are many commercial pultrusion processing machinery and processes that have been developed and commercialized, and can produce various thermosetting plastic composite products with structural strength. Ministry of Economic Affairs, Central Habitat Bureau A Industrial and Consumer Cooperative Seal 51 For long-fiber reinforced thermoplastic plastic composite materials, due to the ease of storage of the thermoplastic plastic composite materials, no storage life problems occur, and it has overmoldability and good mechanical strength (Compared with short-fiber reinforced composites), the market for long-fiber-reinforced thermoplastic plastic composites is growing very fast, and it is the focus of advanced research and development in industrially advanced countries. Traditionally, short-fiber-reinforced nylon composites have been very Different from the performance, the enemy has been widely used. Similarly, in many types of long-fiber-reinforced thermoplastic composites, the development of nylon composites and product application research are also paid considerable attention to reinforce the new generation of fibers with great potential. Thermoplastic composites, for the preparation method of long-fiber reinforced thermoplastic composites, most of the current commercial preparation methods are pseudo multi-step indirect methods. Usually, the polymerized thermoplastic plastic material is physically used to convert the thermoplastic plastic material. After melting or dissolving, use hot pressing again Or impregnated with reinforcing fibers, forming the final semi-finished thermoplastic plastic composite material for secondary molding process, because the thermoplastic composite material obtained by hot pressing method, because the viscosity of the melted polymer is extremely high, we can not get good wetting of the reinforcing fiber (Wet-out) effect, resulting in a low bonding strength between the resin substrate and the reinforcing fiber interface, thus greatly reducing the mechanical strength and serviceability of the thermoplastic composite material. As for the size of this paper, the Chinese Standard Standard (CNS) 4 specifications (210x297 g; «) 20B〇V2 Λ 6 Π 6 Ministry of Economic Affairs, Central Bureau of Economic Development 13: printed by the Industrial and Consumer Cooperative Co., Ltd. V. Description of invention (2 ) The process of impregnating polymer solution (Polymer solution) is required to dry out the solvent in the composite material after impregnation. This method is not only complicated and energy-consuming, but also easily causes environmental pollution. The preparation method of such fiber-reinforced thermoplastic composite material impregnated with polymer solution is also not an ideal method. H. Ishida and G. Rotter published in 43rd, 1988, Annual Conference, Composite Institute, The Society of the Plastic Industry, the thermoplastic substrate composite material reaction injection molding-drawing molding processing method (RIM-Pult "usion of Thermoplastic Matr 丨x C o in os 丨 tes), in this document. ί shida et al. used Ginne as an anti-monomer, and used sodium nitride (Sod iu! n hydr i de) as an anion Catalyst for polymerization, sodium hydride and part of caprolactam to form a catalyst side (Catalyst Side), and use phenyl isocyanate as the reaction initiator (Initiator), and mixed with part of caprolactam Form the initiator side (Initiator Side), then add the 'Catalyst Side and Initiator Side to the high temperature reaction injection molding machine (High temperature Reaction Injection Mo 1d i ngmacn i ne) feed tank, the Catalyst Side and the Initiator * Side high After the magic mixing, it is injected into the resin impregnation tank to impregnate the glass fiber roving. Then the fiber impregnated with the nylon 6 reactant is drawn into a hot mold to polymerize the nylon 'substrate, Obtained glass fiber reinforced nylon 6 composite material, but this nylon 6 composite material does not show any kind of mechanical strength data, so it is impossible to understand the feasibility of the processing method described by Ishida et al. At the bend U: JSHWANG and SN T0NG and others, at 44th Annu. Conf. (Please read the back-to-back precautions first and then click on this page) Binding_ Line. 81.6. 10, 〇〇〇 Zhang (II) 20867 ^ 5 Λ 6 _______ 1 ^ 6 5 3. Description of the invention (3) RP / C, SPI, 8-C (1988) was printed by A Industrial and Consumer Cooperative of the Central Bureau of Economics, Ministry of Economic Affairs. Lulu used In-Situ pultrusion to produce fiber-reinforced thermoplastic composites. Its main purpose is to develop a new thermoplastic system and novel equipment by In-Situ pultrusion process. In this paper, liquid acrylonitrile-butadiene copolymer and styrene monomer are reacted to generate ABS resin, and then This resin was injected into the heating mold to pre-impregnate and solidify the fiber. During the research, it was found that the low viscosity of the resin can make the fiber pre-impregnated well. More importantly, the final product can be re-formed using heat. This processing method can provide resin that is safe and convenient to handle. MAYWOOD L. WILSON and John d. Buck ley and others in 44th Annu. Conf. RP / C, SPI, 8-C (1988.), Lulu used pultrusion method to produce high temperature resistant and high performance fiber Reinforce Po 1 yether iniicie composite. It is different from the conventional pultrusion process of thermosetting resin in that when it is polymerized in the pultrusion mold, no monomer reactants and solvents are generated. In addition, in order to wet and cure the reinforcing fibers, the traditional thermosetting resin has a viscosity in the range of 500-1000CpS and a pultrusion mold temperature of about 300 ~ 400 ° F. In the high-performance thermoplastic pultrusion process, in In the pultrusion mold, the viscosity can reach 1,000,000,000 cps or higher, and the mold temperature can reach as high as about δΟΟΤ1. Xin Xing and Hatsuo Ishida in 1990 Annu. Conf., Composite Institute, The Society of the Plastic Industry continue to use the same RIM-Pultrusion method as described above to prepare nylon composites, and the nylon initiator in the polymerization reaction, then The prepolymer synthesized from Polypropylene-oxide and Hexamethylene diisocyanate with a molecular weight of 4000 is used instead, but it is still in this document (please read the note on the back of this page first). BK Family Apparatus (CNS) T4 standard (210x297 g; it) 81. 6. 10F000 »(II) Λ 6 Η 6 V. Description of invention (general mechanical property data of finished nylon composite materials are not shown It is impossible to confirm the processing feasibility and practicability. Ma Zhenji and Yin Mengsong published the "Study on the Properties of Continuous Fiber Reinforced Nylon 6 Resin Composites" at the Polymer Seminar of the Republic of China in 19δ8, and the polymerization of nylon 6 resin It is carried out by pseudo-hydrolysis polymerization. The present invention is a novel method for manufacturing long-fiber-reinforced thermoplastic nylon composites. After the caprolactam melts, it forms an active catalyst with the strong alkaline sodium hydride catalyst, and then uses the co-catalyst formed by melting the caprolactam with the polymer co-catalyst with HCO end groups, followed by The two components of active catalyst material and polymer co-catalyst material are used.... ...... Mixing with a continuous type mixing device under the condition of 8'〇-110 ° C under the cover of dry nitrogen , Inject the low-viscosity reaction mixture with the viscosity between 10-1500cpS into the sealed reinforced fiber impregnating tank covered with nitrogen, impregnating. — ......-......... . After printing the preheated and dried reinforcing fibers by the Central Bureau of Economics and Trade Cooperative of the Ministry of Economic Affairs, the fiber impregnated with the nylon reaction mixture is drawn into a hot mold using a pultrusion machine, and the nylon anion ring-opening polymerization reaction is carried out at the same time. A long fiber-reinforced thermoplastic nylon composite material can be obtained by molding, and the long fiber-reinforced nylon composite material manufactured by the nylon pultrusion molding method of the present invention can be obtained because the resin base material uses low-viscosity monomers. Wet-out effect on fibers , And can make the interface between the nylon substrate and the reinforcing fiber in the composite material reduce the existence of void defects (Void defects), which makes the performance of the nylon composite material produced by the pultrusion processing method of the long fiber reinforced anionic polymerized nylon composite material of the present invention Out of the most excellent mechanical strength and performance. In the pultrusion process of the long fiber reinforced anion polymerized nylon composite material of the present invention, the polymerization reaction of the nylon substrate adopts anionic ring-opening fast 81. 6. 0,000? ≫; (Η) (please read the precautions to fill in this page first) Winter paper standard side use a η home standard iMCNS) T4 specifications (210X297 public ":) 〇8o * V ^ Α6 Β6 5. Invention Note (5) The Ministry of Economic Affairs' Central Standard '; 11-Bureau 9 Industry and Consumers' cooperation Du Yinxian rapid polymerization method, so the moisture content of the nylon monomer raw material must be specially purified and controlled to be near anhydrous state, and the long fiber reinforced The caprolactam monomer must be preheated and dried before contacting and impregnation, and the moisture should be completely removed before the nylon anion polymerization reaction can proceed smoothly to obtain a nylon composite product with good polymerization. In the present invention, the water content of the caprolactam monomer raw material is understood according to the knowledge obtained by the inventors' research. The water content of the caprolactam monomer raw material must be controlled below 500 ppm in order for the nylon anion polymerization reaction to proceed smoothly. Since the general industrial grade of caprolactam monomer raw material usually has a moisture content of more than 900 full 1000ppm, it cannot be applied to the Nylon anion Kaichen polymerization reaction system. Therefore, it is used in the nylon pultrusion molding process of the present invention. The raw materials of caprolactam monomers are reduced by vacuum distillation technology to reduce the water content of caprolactam monomers to below 500 ppm to meet the special requirements of nylon anion polymerization. Basic catalysts suitable for nylon anion ring-opening polymerization reaction strips can be basically divided into three categories, the first category is alkali metal elements such as lithium, sodium, potassium and other metal type elements or their related hydrides, the second The organometallic derivatives of the first type of catalyst are butyl lithium, ethyl potassium, and propyl sodium. The third type of catalyst is the salt formed by Grignard reagent and caprolactam monomers, such as bromide 1 caprolactam salt. The above-mentioned one, two and three types of catalysts can be used alone or mixed to adjust the polymerization rate. The co-catalyst suitable for the anion polymerization reaction of nylon in the present invention is a polymer co-catalyst with a NC0 functional group at the molecular terminal obtained by the reaction of a polyol (Pol ^ lycol) compound and a diisocyanate compound. During the preparation of molecular co-catalyst, the ratio of NC0-based equivalent number to 0H-based equivalent number (NC0 / 0H Index) can be controlled in the range of 1.2 ~ 3.0, and 1.5 ~ 2.2 (please read the precautions on the back before filling in this Page) .¾. .Green. This paper scale is applicable to China National Standard (CNS) T4 square (210X297 mm). V. Description of invention (6) A 6 B6 Printed by the Central Bureau of Economic Affairs of the Ministry of Economic Affairs TSC Industrial and Consumer Cooperatives. It is better to prepare, and the polyhydric alcohol can make the long-chain polyether (Polyether), polysilicone, polyester, polycaprolacton, polybutadiene with the molecular weight of OH terminal groups between 400 and 4000. Any type of polyhydric alcohol or mixture in dihydroxy alcohol (Hydroxyl terminated polybutadiene), diisocyanate that can be used in the preparation reaction of polymer co-catalyst, it can be aliphatic or aromatic diisocyanate, Among them, aliphatic diisocyanate is preferred, The aliphatic diisocyanates used in the present invention are listed as follows: 1. Isophorone diisocyanate (IPDI) 2. Hexamethylene diisoradonate (Hex a'm ethylene di isocyanate, HDD 3 .Dicyc 1 ohexy i me thane di isocyanate 4. Cyclohexyl di isocyanate fiber reinforced thermoplastic nylon composite, although currently There are quite a few types of fiber reinforced materials used in commercial products, such as inorganic glass fibers, carbon ......... --- ^ Fiber and organic materials of poly_amine fibers or a mixture of organic and inorganic fiber males '·· — ^ ................' · '· * Dimension, but according to the findings of the inventor's research, it is suitable for the long fiber reinforced anionic polymer nylon composite material of the present invention The reinforced long fibers of the pultrusion process are made of inorganic materials. Drum fiber cans and sulfonate fibers are the most suitable choices. The mechanical strength test specifications of the fiber reinforced nylon composites in the present invention are listed below: Tensile strength ( Tensile strength) ------------ ISO 3268 Flexural strength ) ------------ ASTM D790 Heat distortion temperature-ASTM D648 The edge of this paper is "CNS" (4x grid (210x297 male dragon) in the middle of the country (210x297)) (please Read the precautions on the back first and then write the wooden pages). Packing · .5T_ Line · Printed by KX Industrial and Consumer Cooperatives of the Ministry of Economic Affairs, KX Industry and Consumer Cooperatives Λ 6 _Π6_ V. Description of invention (7) Izod impact strength -ASTM D256 The method of the present invention will illustrate the technical content and focus of the present invention by the following embodiments, but does not limit the scope of the patent application of the present invention. Example 1: / Purification of caprolactam monomer with low water content The method of purifying and dewatering caprolactam in the present invention adopts the technique of vacuum decompression and vacuum evaporation, and the goal of purification and dewatering treatment is to separate the caprolactam The water content of the body is reduced to less than 500 pp m, so that the raw material of caprolactam monomer can be used for the polymerization of nylon anion. In this embodiment, the purified water treatment capacity of caprolactam is 30 kg / batch. The experimental results are shown in Table 1. Table 1 (Please read the precautions on the back before filling in the wooden page) Packing-. Caprolactam monomer raw material source: Industrial grade solid H-shaped caprolactam monomer of Sinochem Corporation. Caprolactam treatment capacity: 30 kg / batch. Caprolactam purification and dehydration treatment conditions: 1. Distillation tank caprolactam monomer temperature: 145 ° C, 2. Distillation reflux time: reflux 2 hours 3 . Vacuum degree of distillation tank: 750mmHg. Moisture content of caprolactam before treatment: 1000 PPnt. Moisture content of caprolactam after treatment: 280 ppm This paper is used in the "9 standard (CNS) Ή specifications (210x297 31 A 6 ____ V. The description of the invention (8) Purification of caprolactam monomers in this example Using the above-mentioned vacuum vacuum distillation conditions, the caprolactam can be used The water content of the amine monomer is reduced from 100 ppm to 280 ppm within 2 hours, which is suitable for the pultrusion process of the long fiber reinforced anionic polymerized nylon composite material of the invention below 500 ppm. The requirement of the low water content caprolactam monomer. Example 2: Long fiber reinforced anion polymer nylon composite pultrusion molding processing high score Preparation of sub-cocatalyst: 1000-gram (g / mole) molecular weight 1000 (g / mole) poly-propylene oxide (Poly-propylene Oxide) long-chain poly-polyol 1000 grams (lmole) and 444 grams (2mole) ) Iso phorone diisocyanate (IPDI) is added to the reaction tank and mixed thoroughly, then dibutyltin dilaurate 0.06 g is added and mixed well, heated to 50 ° C and stirred for 4 hours. The transparent and clear polymer co-catalyst with IP0 end group number IPPG1000-2 can be obtained for use. Preparation of active caprolactam sodium salt catalyst material: the low water content purified by the method shown in Example 1 The amide monomer is heated to 90 ° C, and then an appropriate amount of sodium hydride is added (the amount is shown in Table 2.1). After 20 minutes of stirring, the active acetamide sodium salt catalyst material is formed and then placed in the active hexane with nitrogen coverage. In the catalyst tank of internal acetamide sodium salt, keep it between 9〇-11〇υ spare (please read the back and the precautions # fill out this page) Binding-the paper size is not used in the Mingjia pregnancy ( CNS) T4 specification (210X297 public address) 81. 6. 10.000 sheets (II) Λ 6 II 6 V. Description of the invention (9) Preparation of media: Take the low-moisture content caprolactam monomer purified by the method shown in Example 1 and the coded IPPG 1000-2 polymer co-catalyst (the relative amount of caprolactam monomer and polymer co-catalyst) (As shown in Table 2.1) Co-added in the polymer co-catalyst tank covered with gas, heated to 90 ~ 110 ° C for use. Long fiber reinforced anion polymerized nylon composite pultrusion molding process: Printed by the Ministry of Economy + Central Bureau of Engineering EX Gongxiao # Cooperative (please read the back and pay attention to the date item # 锅 写 this page) Figure 2.1 shows this The invention is a schematic diagram of the pultrusion processing method of long fiber reinforced anionic polymer nylon composites. Figure 2.2 shows the design details of the anion polymer nylon pultrusion processing device of the invention, and Figure 2.3 shows the nylon pultrusion molding of the invention. The design diagram of the combination of the reinforced dimensional impregnation tank and the hot mold in the processing device is in the pultrusion processing method of the long _ Luo reinforced anionic polymerized nylon composite material of the present invention. Because the polymerization method of the nylon substrate pseudo adopts anionic rapid polymerization, nylon In addition to the polymerization temperature, the polymerization rate of the substrate is also directly controlled by the catalyst concentration and polymer co-catalyst concentration in the resin formulation. However, in addition to the above polymerization temperature, the catalyst concentration and polymer co-catalyst concentration will affect nylon In addition to the polymerization rate of the substrate, the presence of moisture inside and outside the anionic polymerization reaction strip will also affect the reactivity of the nylon substrate, This long fiber reinforced composite material nylon anionic polymerization method, pultrusion, the reinforcing filaments must be preheated Chedi drying to remove water adsorbed on the surface of the fiber to prevent the withdrawal of the amount of water vapor is brought into the reaction conditions. In addition, due to the high temperature of the mold during the processing process, it is easy to transfer heat to the reinforcing fiber impregnation tank, which increases the reactivity of the resin in the impregnation tank, causing the resin viscosity to gradually increase and gel at the end of the impregnation tank. The fiber impregnation effect reduces the size of the paper to use the SH standard (CNS) T4 specification (210x297 gong) 81. 6. 10,000 ^ (Ιί), 06⑽ Λ 6 Π 6 V. The invention description (w) is low, even causing mold Stopped the process. Therefore, the invention adds a heat insulation device between the end of the reinforcing fiber impregnating tank and the mold, which can keep the temperature of the joint between the end of the reinforcing fiber impregnating tank and the mold below 115 ° C, and can make the processing process continue to operate smoothly for more than 8 hours. get on. In Figure 2.1, the reinforcing fiber is preheated and dried in a three-meter-long fiber preheating and drying device. The more appropriate temperature is to control the temperature of the hot air between 150 ° C and 250 ° C. The active caprolactam sodium salt catalyst and the co-catalyst are mixed using a continuous tubular mixing device, and the mixing ratio of the active caprolactam sodium salt catalyst and the co-catalyst is controlled between 1: 0.9-1.1 , Under the nitrogen blanketing state, the temperature is between 9010 and 110 Λ Λ * 4 / W " 山 ί. ,,. [· —J— >-* > τ. * Ν *, C = IA Λ.Ι ~ Φ% Urn ~ r .. ^ nrt fUtf JUA wide \ Λ 4 · 4 Λ hundred. Boat time 1K w // lt; 1; 佂, loyal to Gan Dudi Ή · 王 皮 任 巾 j 肊 a υ-丄 丄υ ± 5t: in a sealed stainless steel reinforcing fiber impregnating tank with nitrogen coverage, and reinforced glass long fiber (PPG company # 247 of glass roving) after impregnating the low-viscosity reactive monomer mixture in the iron-dimensional impregnating tank That is, it enters into a hot mold whose mold temperature is controlled at 210 ± 51 for nylon anion polymerization reaction, and after the polymerization is completed, the molded material is pulled out to be a nylon composite reinforced by glass. Under the processing conditions shown in this example, the normal operation can be maintained for δ hours, and the drawing speed is about 35 to 40 cm / inin (the mold length is 1 meter long). Printed by the CX Gongxiaozheng Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 31 The glass long fiber reinforced nylon composite products manufactured under the processing conditions described in this example are listed in Table 2.1. The mechanical properties are shown in Table 2.1. IPPG 1000-2-10-G75 in Table 2.1 — Representative glass long fiber reinforced nylon composite finished product samples using a scanning electron microscope (SEM) to observe the impregnation and combination of the finished nylon substrate and glass long fiber reinforced material In this case, from Figure 2.4, we confirmed that the nylon composite material manufactured by the pultrusion method of long-fiber reinforced nylon designed by the present invention has a complete wet-out effect of the nylon substrate on the reinforced glass long fiber. At the same time, the nylon substrate and the reinforced glass long fiber also have a superior interface combination effect. 81. 6. 10,000¾ (I!) (Please read back to the attention of jujube item # 埙 write this page) 51 pages of this standard for easy use a Η family standard (CHS) Τ4 regulations (2) 0Χ297 male dragon) • 08㈣ A 6 Π 6 Printed by the β Workers' Co-operative Cooperative Society of the Central Bureau of Economics of the Ministry of Economic Affairs V. Description of the invention (11) Heat distortion temperature (° C, 264 psi) Notch Izod impact strength (Ft.Ib / Inch) Bending strength (MPa) Flexural modulus (MPa) Tensile strength (MPa)! Tensile modulus (MPa) Fiber content (weight-improved long fiber miscellaneous types Mechanical properties: mm Huan TL · l, i Reaction mixture viscosity (CPS) Reaction mixture temperature (° c) NaH dosage (g / lKg reaction mixture) Polymer co-catalyst number Product number U [ίείΐ§ι mm 联 ΜίΠ μ— ^ ζ〇Cn t—kc〇42150 1305 47880 79.2 Glass fiber Η- »G 1—ks 0.13 IPPG1000-2 IPPG1000 -2-10-G79 s 55.0 g 41700 1185 46000 1— ^ glass fiber I ^ Ο 1« «1 *}-i 0.13 IPPG1000-2 IPPfilOOO-?-10-G75 oo 53,3 o Vi 40041 ...... ..i 1053 1 44198 75.5 glass fiber 〇i ~~ * § 0.15 IPPG1000-2 IPPG1000 -2-10-G77 this o 1 50.0 0 * 1 37800 g 42322 73.5 Glass fiber Dimension S 1— * g Ο IPPG1000-2 1PPG1000 -2-10-G75 ro cn ΓΟ — ο 37618 1001 43214 72.9 Glass fiber μ · α o Ο IPPG1000-2 IPPG1000 -2-6-G73 1 ~ ^ 〇0 ϋΊ 32908 g cn 41050 69.1 glass fiber 〇5ί 1k o ο IPPG1000-2 IPPG1000 -2-6-G64 52.8 g ik 40800 1115 44310 74.5 glass fiber CjO § ο oo IPPG1000-2 IPPG1000 | -2-3-G74 gun 2.1 ... ..................... installed .....: 1 .. line (please read the notes before filling in this page) this paper 5 Gen Standards are used in the China National Standards (CNS) Ή specifications (210x297 mm: ¾) 81. ti. 10,000 sheets (II) A 6 It 6 Printed by the Ministry of Economic Affairs Central Bureau of Industry and Commerce Cooperative 31 31. Description of invention (12 ) Figure 2.1 Schematic diagram of the pultrusion molding method of long fiber reinforced anionic polymer nylon composites 1. Explanation of the fiber bundle 2. Fiber guide 3. Fiber preheating and drying device (3 meters long, internal temperature 150 ~ 25 (TC) 4. Dry hot air inlet (hot air temperature 150 ~ 250 ° C) 5. Dry hot air outlet 6. Closed stainless steel fiber impregnation tank (covered by dry gas, temperature of the tank is controlled between 90 ~ 110 ° C) ) 7. Dry nitrogen inlet 8. Insulation plate (3 mm ~ 10 m thick) 9. Active caprolactam sodium salt media tank 10. Polymer co-catalyst tank 11. Continuous mixing device covered by dry nitrogen (Mixing temperature 90 ~ 110 ° c) 12. Metering control valve 13. Feed control valve 14. Insulation feed pipe (temperature control at 90 ~ ll (Tc) 15. Heating mold (mold temperature 170 ~ 210 ± 5 ° C ) 16. Tractor 17. Cutter 18. Finished product (please read the precautions first Sun Sun " this page) installed · *? Τ- line-winter paper 5 people standard use standard S H home standard ( CNS) T4 specification (210X297 public goods) 81. 6. 10,000¾ (II) Central Standard of the Ministry of Economic Affairs, printed by ^ Α 工 消 貀 cooperative society (5 Π6 V. Description of the invention (13) Figure 2.2 Long fiber reinforced anionic polymerized nylon Design of pultrusion equipment · Schematic diagram of the detailed description of the symbols. 1. Fiber preheating and drying device (3 meters long, using electric heating to keep at 150 ~ 250 ° C) 2. Reinforcing fiber 3. Drying hot air inlet (hot air temperature 150 ~ 25 ( TC) 4. Dry hot air outlet 5. Closed stainless steel fiber impregnation tank (covered with dry nitrogen, the tank body is controlled by electric heat preservation at 90 ~ n〇 ° C 6. Dry gas inlet 7. Flow hole 8. Heat-insulating sheet (3m ~ 10m thick) | 9. Active caprolactone IS amine § 6 salt steam media tank (covered by dry nitrogen, the tank body is insulated with heat medium oil Controlled between 90 ~ 110 ° C 10. Polymer co-catalyst tank (covered with dry nitrogen, the tank body is controlled by heat medium oil between 90 ~ 110 ° C) 11. Continuous mixing device covered with dry nitrogen (mixed Temperature 90 ~ 110 ° C) 12. Metering control valve 13. Reaction mixture feed control valve 14. Insulation feed tube 15. Hot mold 16. Nylon composite molded product This paper 51 scale side is used in the national standard (CNS) Τ 4 regulations (2κι X 297 male dragon) 81.6. 10,000 »(II) (please read the back-end notes # 蜞 舄 木 页) outfit * order * 2086 ^ 2 Λ 6 ___ Π6 ____ 5. Description of the invention (14) Figure 2.3 The design of the combination of the reinforcing fiber impregnation tank and the hot mold is not marked with the sS number. 1. The reaction mixture inlet 2. The thermal insulation plate (3mni ~ 10mm thickness, the end of the fiber impregnation tank 5 in Figure 2.3 Keep the temperature below 115 ° C) 3. Closed stainless steel fiber impregnation tank covered by dry nitrogen (temperature of the tank is controlled at 90 ~ 110 Room C) 4. Two-H type upper and lower hot molds heated by electric heating 5. Fiber end impregnating tank end measures 6. Reinforcing long fibers 7. 5 ° < Θ < 25 ° 8. 8cm < L < 20cm (please first Read the precautions and then write this page) Binding · Order _ Line-Printed by the Ministry of Economic Affairs of the Central Committee of the Ministry of Economic Affairs, printed by 81. 6. 10, 〇〇〇 sheets (||) In Use "Standard for the Sleepy Family (CNS) T4 Regulation (210x297 g; ¢) Λ 6 η 6

(〇8〇V 五、發明説明(15) 實施例3 : (請先閲讀背而之注总事項孙構寫木頁) 高分子共觸媒製備: 分別使用分子量400, 2000, 4000 g/mole)具兩個0H 末端基之聚環氧丙烯長鍵聚醚多元醇1 mole與2 mole之異 佛爾酮二異氖酸鹽共同加入於反應槽内充分攪拌混合後, 再加入二丁基錫二月桂酸酯〇.〇6g混合均勻後,加熱至50 °C攪拌反應4小時,即可得到高分子共觸媒分別編號為 IPPG400-2, IPPG2000-2, IPPG4000-2 備用。 v活性己内醯胺納鹽觸媒料製備: 取除水純化過含水率500ΡΡΠ1以下之低含水率己内醯胺 C3CJ 丄—+丄 SSt ' f λ n… I %-Α. It A-L. / *-i—» .1·一 T 八 -—— 毕腔训热开脑王y υ u ι·κ训人姻m <1 m 1L· i itj里如衣o. i m 示),M拌後形成活性己内酸胺鈉鹽觸媒料後置於具氮氣 覆蓋之活性己内醯胺銷鹽_媒料槽中,保溫於90-110 i〇 間備用。 高分子共觸媒料製備: 取除水純化過含水率500ppm以下之低含水率己内醯胺 單體分別與高分子共觸媒(高分子共觸媒種類與用量如表 3.1所示)共同加入於置具氪氣覆蓋之高分子共觸媒料槽中 ,加熱昇溫至90-1101C後備用。 長纖維補強陰離子聚合尼龍複合材拉擠成型加工: 經浒部中央榀準而A工消费合作社印製 利用與圖2. 1所示相同之尼龍複合材拉擠成型加工法, 並使用PPG公司#247之glass roving補強玻璃長纖維,如 表3 . 1之尼龍基材配方與反應條件下,可得到34至38cm/m i η 拉出速度玻璃長纖維補強尼龍複合材(模具長度1米長,模 溫為200±5°C),本例中拉擠成型加工製成之玻璃長纖維 補強尼龍複合材製品,測其機械性質列表如表3.1所示。 81.6.10,000張(||) 本紙張尺度逍用中明Η家楳爭(CNS>T 4規格(210X297公;Ϊ) ΰ ο r-2 ώ 6 6 <!} 五、發明説明(16) 表3.1 經濟部中央標準局β工消费合作社印製 繼獻 IPPG400-2 -30-G74 IPPG400-2 -10-G75 IPPG2000-2 -10-G76 IPPG4000-2 -10-G77 高分子井^»顱 IPPG400-2 IPPG400-2 IPPG2000-2 IPPG4000-2 Na晒量(g/lKg反應混合物) 0.15 0.13 0.2 0.3 反應混偷贼(。〇 90 105 100 100 teM混劍辦占度(cps) 1100 250 100 220 高分子共纏 30 10 10 10 瓛纖隹 臌纖隹 赚邏 mmmi 腿纖軍· 73.5 74.6 76.1 76.8 擺鐵(MPa) —— 44500 44850 —— 漏撼(MPa) —— 1069 1180 — 撕讎(MPa) — 39800 — —— /^(MPa) —— 488 —— — Notch Izod 113¾¾¾ (Ft.lb/Inch) 54.2 51.0 56.1 55.8 熱麵264 psi) 194 197 202 204 (請先閲讀背而之注意事項#塡寫本頁) 裝· 訂 線 本紙张尺度边用中a Η家標準(CNS) ΤΜ規怙(210X297公及) 81. 6. 10,000張(ίί) Λ 6 _____Π6_ 五、發明説明(17) 實施例4 : \y’ 高分子共觸媒製備: 分別使用分子量1000及2000 (g/mo 1 e)具兩個0H末端基 之聚四亞甲基醇(Polytetramethylene glycol,PTMG)長 鏈聚醚多元醇1 mole分別與2 mole之異佛爾酮二異氰酸鹽 加入於反應槽内充分攪拌混合後,再加入二丁基錫二月桂 酸酯0.03g混合均勻後,加熱至50°C攪拌反應4小時,即可 得到編號為IPTG1000-2, IPTG2000-2之高分子共觸媒備 活性己内醯胺銷鹽觸媒料製備: 取除水純化過含水率500ppm以下之低含水率己内醯胺 單體,加熱昇溫至90Ό後加入適量之氫化鈉(甬量如表 4. 1所示)攪拌後形成活性己内_胺鈉鹽觸媒料後置於具氮 氣覆蓋之活性己内醯胺鈉鹽觸媒料槽中,保溫於9〇_ll〇°C 間備用。 (請先閱讀背而之注意事項#艰寫木頁) 經濟部屮央標準局CX工消仲合作杜印製 81. 6. 10,000¾ ([[) 本紙尺度遑用中明國家楳準(CHS) Ή規格(210X297公:¢) 2 08673 B6 五、發明説明(18) 高分子共觸媒料製備: 取除水純化過含水率500ΡΡΠ1以下之低含水率己内醯胺 單體分別與高分子共觸媒(高分子共觸媒種類與用量如表 4.1所示)共同加入於置具氮氣覆蓋之高分子共觸媒料槽中 ,加熱昇溫至90-110°C後備用。 長纖維補強陰離子聚合尼龍複合材拉擠成型加工: 利用與圖2.1所示相同之尼龍複合材拉擠成型加工法 ,並使用TOHO RAYON公司Besfight ΗΤΑ级補強碳繊$ (Filament count = 12000, Yield =800 Tex),在表 4.1 所 示之尼龍基材配方與反應條件下,可得到35至40cm/m in 拉出速度之碳鐵維補強尼龍複合材(模具長度1米長,模 溫為210 ± 51C ),本例中拉擠成型加工製成之碳長纖維補 強尼龍複合材製品,測其機械性質列表如表4.1所示。 (請先閲讀背面之注意事項再瑱寫本頁) •装· 經濟部中央標;|1-局5=工消讣合作汰卬製 主 /1 1 成品編號 IPTG1000-2 -10-C75 IPTG2000-2 -10-C76 禹分卞共肖每媒编號 IPTG1000-2 IPTG2000-2 Na!i用量(g/lKg反慝混合物) 0.2 0.2 反應混合物溫度(°C ) 110 110 反藶混合物粘度(CPS) 55 65 高分子共觸媒於尼龍 基材中之重量分率U) 15 10 機械性質: 補強長纖維種類 碳纖維 碩纖維 纖維含量(重量%) 75.1 76.2 抗張強度(MPa) 1630 1785 熱變形溫度(t,264 ps i) 204 206 •線· 木纸張尺度適用中Η國家》準(CNS) Ή規格(2丨0X297公釐) Λ 6 Β 6 五、發明説明(W) 實施例5 : 高分子共觸媒製備: 使用分子量1000及3205 (g/mole)具兩個0Η末端基之 聚矽(P〇ly-silicone)長鐽多元醇,聚矽長鏈多元醇之分 子結構如下式所示。 C Η 3 HO-R-S丨 i - 0 C Η C Η 3 I Si — I C H 3 C H 3(〇8〇V V. Description of the invention (15) Example 3: (please read the general notes to the contrary, Sun Gou wrote the wooden page) Preparation of polymer co-catalyst: Use molecular weights of 400, 2000, 4000 g / mole respectively ) Polyoxypropylene long-bond polyether polyol with two 0H end groups 1 mole and 2 mole of isophorone diiso-neonate are added together in the reaction tank and mixed thoroughly, then dibutyltin dilaurate is added After mixing 6.0g of the acid esters uniformly, heating to 50 ° C and stirring for 4 hours, the polymer co-catalysts can be obtained and coded as IPPG400-2, IPPG2000-2, IPPG4000-2 respectively. vActivated caprolactam sodium salt catalyst preparation: Remove water and purify caprolactam C3CJ 丄 — + 丄 SSt 'f λ n… I% -Α. It AL. / * -i— ».1 · 一 T 八 -—— Bi Qian Xun training hot open brain king y υ u ι · κTraining marriage m < 1 m 1L · i itj li Ruyi o. im show), M mix After the formation of the active caprolactam sodium salt catalyst, it is placed in an active caprolactam pin salt-medium tank covered with nitrogen and kept in a temperature of 90-110 ° C for use. Preparation of polymer co-catalyst material: After removing water and purifying the low-moisture content caprolactam monomer with a water content of less than 500ppm, it should be combined with polymer co-catalyst (the types and dosage of polymer co-catalyst are shown in Table 3.1) Add to the polymer co-catalyst tank covered with krypton gas, heat up to 90-1101C and stand by. Long fiber reinforced anionic polymer nylon composite pultrusion molding process: Printed by the Central Committee of the Ministry of Margins and printed by A Industrial Consumer Cooperative, using the same nylon composite pultrusion molding process as shown in Figure 2.1, and using PPG company # 247's glass roving reinforced glass long fiber, as shown in Table 3.1, under the nylon substrate formulation and reaction conditions, can obtain 34 to 38cm / mi η pull-out speed glass long fiber reinforced nylon composite (mold length 1 meter long, mold temperature 200 ± 5 ° C). In this example, the long glass fiber reinforced nylon composite product manufactured by pultrusion molding is tested in Table 3.1. 81.6.10,000 sheets (||) The standard of this paper is easy to use in the Ming Dynasty (CNS > T 4 specifications (210X297; Ϊ) ΰ ο r-2 ώ 6 6 <!} V. Description of invention (16) Table 3.1 Printed by IPPC400-2 -30-G74 IPPG400-2 -10-G75 IPPG2000-2 -10-G76 IPPG4000-2 -10-G77 Polymer Well ^ »Cranial IPPG400 -2 IPPG400-2 IPPG2000-2 IPPG4000-2 Na exposure (g / lKg reaction mixture) 0.15 0.13 0.2 0.3 Reaction mixed thieves (.〇90 105 100 100 teM mixed sword office occupancy (cps) 1100 250 100 220 high Molecule entangled 30 10 10 10 瓛 紛 裹 隹 貌 裌 隹 Earn the logic mmmi Leg Slim Army 73.5 74.6 76.1 76.8 Pendulum iron (MPa) —— 44500 44850 —— Leakage (MPa) —— 1069 1180 — Ripper (MPa) — 39800 — —— / ^ (MPa) —— 488 —— — Notch Izod 113¾¾¾ (Ft.lb/Inch) 54.2 51.0 56.1 55.8 hot surface 264 psi) 194 197 202 204 (please read the precautions # 塡Write this page) Binding and binding paper for the standard use of a Η house standard (CNS) ΤΜ standard (210X297) 81. 6. 10,000 sheets (ίί) Λ 6 _____ Π6_ V. Description of the invention (17) Example 4: \ y 'preparation of macromolecular co-catalyst: Polytetramethylene glycol (PTMG) long-chain polyether with two molecular weights 1000 and 2000 (g / mo 1 e) with two 0H end groups respectively Add 1 mole of polyol and 2 moles of isophorone diisocyanate to the reaction tank and mix thoroughly. Then add 0.03g of dibutyltin dilaurate and mix well. Heat to 50 ° C and stir to react4 Hours, you can get the polymer co-catalysts with the numbers IPTG1000-2, IPTG2000-2 to prepare active caprolactam pin salt catalyst preparation: Take out the water and purify the caprolactam with a low water content of less than 500ppm Monomer, after heating to 90Ό, add an appropriate amount of sodium hydride (the amount of 甬 is shown in Table 4.1) and stir to form active caprolactam sodium salt catalyst, then put it into active caprolactam sodium covered with nitrogen In the salt catalyst feed tank, keep the temperature between 90 and 110 ° C for standby. (Please read the back and the notes # hard to write wooden pages) CX Gongxiao Zhong, Cooperated with the Central Standards Bureau of the Ministry of Economic Affairs, Co., Ltd. Du Printing 81. 6. 10,000¾ ([[) This paper scale uses the Zhongming National Standards (CHS ) Ή specification (210X297 g: ¢) 2 08673 B6 V. Description of the invention (18) Preparation of polymer co-catalyst: The dehydrated purified low-moisture content caprolactam monomers with polymer content of less than 500PPΠ1 are separately from the polymer Co-catalyst (types and dosage of polymer co-catalyst are shown in Table 4.1) are added to the polymer co-catalyst tank equipped with nitrogen, heated to 90-110 ° C for use. Long fiber reinforced anionic polymerized nylon composite pultrusion process: using the same nylon composite pultrusion process as shown in Figure 2.1, and using TOHO RAYON's Besfight ΗΤΑ grade reinforced carbon $ (Filament count = 12000, Yield = 800 Tex), under the nylon substrate formulation and reaction conditions shown in Table 4.1, carbon-iron reinforced nylon composites with a pull-out speed of 35 to 40 cm / min can be obtained (the mold length is 1 meter long, and the mold temperature is 210 ± 51C ), In this example, the carbon long fiber reinforced nylon composite product made by pultrusion molding process, the mechanical properties are listed in Table 4.1. (Please read the precautions on the back before writing this page) • Installation · Central Standard of the Ministry of Economic Affairs; | 1-Bureau 5 = Working Consumers and Cooperatives to Eliminate the Master / 1 1 Product Number IPTG1000-2 -10-C75 IPTG2000- 2 -10-C76 Yu Fen Bian Bian Xiao Xiao No. IPTG1000-2 IPTG2000-2 Na! I dosage (g / lKg reaction mixture) 0.2 0.2 Reaction mixture temperature (° C) 110 110 Reaction mixture viscosity (CPS) 55 65 Weight fraction of polymer co-catalyst in nylon substrate U) 15 10 Mechanical properties: Reinforcing long fiber type Carbon fiber Master fiber content (wt%) 75.1 76.2 Tensile strength (MPa) 1630 1785 Heat distortion temperature ( t, 264 ps i) 204 206 • Thread and wood paper scales are applicable to China National Standards (CNS) Ή specifications (2 丨 0X297mm) Λ 6 Β 6 V. Description of invention (W) Example 5: Polymer Co-catalyst preparation: Polysiloxane (Poly-silicone) with a molecular weight of 1000 and 3205 (g / mole) with two 0H end groups is used. The molecular structure of the polysilicon long-chain polyol is shown in the following formula. C Η 3 HO-R-S 丨 i-0 C Η C Η 3 I Si — I C H 3 C H 3

+ 0- S 丨 i-R-OH C H 3 (請先間讀背而之注意事項再项寫木頁) n 裝< 經濟部中央櫺準局CX工消伢合作社印製 分子量1000及3205 (g/mo 1 e)之長鏈聚矽多元醇1 mo le分別 與2 mo 1 e之異佛爾二異氤酸鹽加入於反應槽内充分攪拌 混合後,再加入二丁基錫二月桂酸酯〇.〇8g混合均勻後, 加熱至50¾攪拌反應6小時,即可得到之高分子共觸媒分 別編號為IS1000-2, IS3205-2備用。 使用分子量1000之長鐽聚矽多元醇0.5 mole與0.5 mo 1 e分子量1000之聚環氧丙嫌(Po 1 ypropy 1 ene Oxide)長 鏈聚_多元醇混合均勻後,再與2 mole之異彿爾酮二異 内充分攪拌混合後,再加入二丁 訂_ 線- 本紙张尺度边用中Η囷家標毕(CNS) T4規格(210x297公;tt·) 81.6. 10,000» (II)+ 0- S 丨 iR-OH CH 3 (Please read the notes before you write the wooden pages) n Install < Printed molecular weight 1000 and 3205 (g / The long-chain polysilicon polyol 1 mo le of mo 1 e) and 2 mo 1 e of isophor diisobronate were added into the reaction tank and mixed thoroughly, and then dibutyltin dilaurate was added. After 8g is mixed evenly, heat to 50¾ and stir to react for 6 hours, the polymer co-catalysts obtained can be numbered IS1000-2 and IS3205-2 respectively. Use long-chain polysiloxane polyol with a molecular weight of 1000 mole 0.5 mole and 0.5 mo 1 e with a molecular weight of 1000 polyepoxypropylene (Po 1 ypropy 1 ene Oxide) long-chain poly_polyol, and then mix it with 2 mole. After the ketone diisonine is fully stirred and mixed, add dibutadiene _ line-This paper is used in the standard side (CNS) T4 specification (210x297 g; tt ·) 81.6. 10,000 »(II)

Λ β ___n_G 五、發明説明(20) 經濟部中央標準’局β工消费合作社印51 基錫二月桂酸酯0.08g混合均勻後,加熱至50°CM拌反應 6小時,即可得到高分子共觸媒編號IPS1000-2備用。 活性己内醯胺鈉鹽觸媒料製備: 取除水純化過含水率500ppm以下之低含水率己内醯胺 單體,加熱昇溫至901C後加入適量之氫化鈉(用量如表5 .1 所示)攪拌後形成活性己内醯胺鈉鹽觸媒料後置於具氮氣 覆蓋之活性己内醯胺銷鹽觸媒料槽中,保溫於90-110°C間 備用。 高分子共鐲媒料製備: 取除水純化過含水率500ppm以下之低含水率己内藹胺 單體分別與高分子共觸媒(高分子共觸媒種類與闬量如表 5 .1所示)共同加入於具氮氣覆蓋之高分子共觸媒料槽中, 加熱昇溫至90-11010後備用。 長纖維補強陰離子聚合尼龍複合材拉擠成型加工: 利用與圖2.1所示相同之尼龍複合材拉擠成型加工法, 並使用PPG公司47之glass roving補強玻璃長纖維,在 表5.1所示之尼龍基材配方與反應條件下,可得到35至40 cm/mi η拉出速度之玻璃長纖維補強尼龍複合材(模具長度1 米長),本例中拉擠成型加工製成之玻璃長纖維補強尼龍 複合材製品,測其機械性質列表如表5.1所示。 (請先間請背而之注意枣項朴塡寫本頁) 本紙51 尺度逍用中 81. 6. 10,000» (II) 4 -c- ύ 6 ο C1 6 6 Λι{ 五、發明説明(21) 經濟部屮央榀準局β工消伢合作社印製 表 5·1 成品編號 IPS1000-2 -10-G76 IS1000-2 -10-G75 IS3205-2 -10-G75 高分子共觸媒编號 IPS1000-2 IS1000-2 IS3205-2 NaH用量(g/lKg反應混合物) 0.25 0.25 0.3 λ|=7 A jU* i.K?由 / 、 /—又 VSi f 比口 t7J «m /又 Ά / 1 ΑΓ ι\)ο 105 1 a r 反窸混合物粘度(cps) 55 35 45 高分子共篛媒於尼龍 基材甲之重量分率(%) ΙΟ 10 ΙΟ 機械性質: 補強長纖維種類 玻璃纖維 玻璃纖維 玻璃纖雒 纖維含量(重量%) 75.6 74.7 75.2 抗張模數(MPa) 44150 42950 43150 抗張強度(MPa) 1090 930 970 熱變形溫度(°C, 264 psi) 200 198 200 (請先閲讀背而之注意事項孙塡荇木頁) 裝. 訂 線- 本紙张尺度遑用中a Η家«UMCNS) 1Μ規ΙΜ210Χ297公龙) 81. 6. 10,000張⑻Λ β ___n_G V. Description of the invention (20) The Ministry of Economic Affairs, Central Standards' Bureau β Industry and Consumers Cooperative Printed 51 base tin dilaurate 0.08g mixed, heated to 50 ° CM and reacted for 6 hours to obtain a total of polymer The catalyst number IPS1000-2 is reserved. Preparation of active caprolactam sodium salt catalyst material: Remove water and purify the low-moisture content caprolactam monomer with a water content of less than 500ppm. After heating to 901C, add an appropriate amount of sodium hydride (the dosage is shown in Table 5.1) Note) After stirring, the active caprolactam sodium salt catalyst is formed and placed in the active caprolactam pin salt catalyst tank covered with nitrogen, and kept at 90-110 ° C for use. Preparation of Polymer Co-Bracelet Media: Remove water and purify the low-moisture content caprolactam monomer with a water content of less than 500ppm and polymer co-catalyst (types and amount of polymer co-catalyst are shown in Table 5.1 (Shown) Joined together in a polymer co-catalyst feed tank covered with nitrogen, heated to 90-11010 before use. Long fiber reinforced anionic polymer nylon composite pultrusion process: Using the same nylon composite pultrusion process as shown in Figure 2.1, and using glass roving reinforced glass long fiber of PPG Company 47, the nylon shown in Table 5.1 Under the formulation of the substrate and the reaction conditions, a glass long fiber reinforced nylon composite with a pull-out speed of 35 to 40 cm / mi η (mold length of 1 meter) can be obtained. In this example, the glass long fiber reinforced nylon made by pultrusion processing For composite products, the mechanical properties are listed in Table 5.1. (Please pay attention to the date and time, please write the page on this page) The 51 pages of this paper are used for 81. 6. 10,000 »(II) 4 -c- ύ 6 ο C1 6 6 Λι {V. Description of invention (21 ) The Ministry of Economic Affairs, Bureau of Standards and Technology, β Industrial Consumer Cooperatives Co., Ltd. prints the table 5.1 Finished product number IPS1000-2 -10-G76 IS1000-2 -10-G75 IS3205-2 -10-G75 polymer co-catalyst number IPS1000 -2 IS1000-2 IS3205-2 NaH dosage (g / lKg reaction mixture) 0.25 0.25 0.3 λ | = 7 A jU * iK? You /, / — and VSi f ratio t7J «m / 又 Ά / 1 ΑΓ ι \ ) ο 105 1 ar Reverse mixture viscosity (cps) 55 35 45 The weight fraction of polymer co-powder on nylon base material (%) ΙΟ 10 ΙΟ Mechanical properties: Reinforcement of long fiber types, glass fiber, glass fiber, glass fiber, fiber Content (% by weight) 75.6 74.7 75.2 Tensile modulus (MPa) 44150 42950 43150 Tensile strength (MPa) 1090 930 970 Heat distortion temperature (° C, 264 psi) 200 198 200 (Please read the precautions beforehand Sun 塡 荇Wooden page) Packing. Binding-This paper is used in a standard Η home «UMCNS) 1Μ standard ΙΜ210Χ297 male dragon) 81. 6. 10,000 sheets ⑻

Claims (1)

六、 中請專利範園 {請先閱讀背面之注意事項再填寫本頁) 1. 一種長纖維補強陰離子聚合尼龍複合材拉擠成型加工法 ,其製法傺將活性己内醯胺鈉鹽觸媒料與高分子共觸媒 料,個別獨立輸送至一具乾燥氤氣覆蓋之管狀混合裝置 内,於80-110°C溫度間連續性混合,其中活性己内醯胺 鈉鹽觸媒料傺由含水率低於500ppm以下之融熔己内醯胺 與氫化鈉觸媒反應所形成,高分子共觸媒料偽由具NCO 末端基之高分子共觸媒與含水率低於500ppm以下之融熔 己内醯胺混合所形成;混合後就成為黏度介於10至1500 cps之尼龍反應混合物,此混合物立即餵入一乾燥氮氣 覆蓋之密閉式補強纖維含浸槽中,繼之將經150-250°C 熱風乾燥預熱過之補強纖維含浸於尼龍反應混合物中, 隨即拉入一模溫介於165至215°C之熱模具内,同時進行 尼龍陰離子聚合與複合材成型,即可得一長纖維補強尼 龍複合材成型品。 2. 如申請專利範圍第1項所述之加工法,其中活性己内醯 胺鈉鹽觸媒料與高分子共觸媒料製備後,需分別置於具 氮氣覆蓋之料槽中保溫於90-110°C間備用。 經 濟 部 t 央 標 率 局 貝 X- 消 费 合 作 社 印 製 3. 如申請專利範圍第1項所述之加工法,其中氫化鈉觸媒 之用量傜佔尼龍反應混合物總重量百分比之〇 . 13〜0.3% ,而高分子共觸媒之用量像佔尼龍反應混合物總重量百 分比之3〜30%。 夺.如申請專利範圍第1項所述之加工法,其中具N C 0末端 /基之高分子共觸媒偽指由異彿爾酮二異氰酸鹽與具兩個 0H末端基之長鏈二元醇,於NC0基與0H基之摩爾數比 控制於1.5〜2.2間反應所形成,其中長鏈二元醇可使用 „本紙張尺度適用中國國家標準(CNS) ΐ4規格(210x297公發) A7 B7 C7 D7 六、申請專利範園 分子量400至4000之聚環氧丙烯(Polypropylene Oxide)長鏈聚酸二元醇,或分子量1000至2000之聚四 亞甲基二元醇(Polytetramethylene Glycol, PTMG ), 或分子量1000至3205之聚矽(P〇lysilicone)長鏈二 元醇,或聚環氣丙烯二元醇與聚矽二元醇之混合物。 5 .如申請專利範圍第1項所述之加工法,其中補強長纖維 傜先經由150-250 之乾燥熱風纖綞預熱乾燥裝置預 熱乾燥處理,補強纖維含浸槽末端與熱模具間夾著耐熱 22(TC以上之陶磁或高分子材質之隔熱塾Η後再予以結 合,其中隔熱墊片之適度厚度為3mm-ΙΟππη厚,並具有 使補強纖維含浸槽末端與隔熱塾Η接合處溫度保持低於 115t之效杲。 6.如申請專莉範圍第1項所述之加工法,其中補強之長纖 維傜指無機材質連續性之玻璃纖維或碩纖維。 (請先閱請背面之注意事頊再填寫本頁 -· .訂. 經濟部屮央榀準局员工消贽合作社印¾ 本紙a尺度適用中國國家標準(CNS)甲4規格(210x297公釐)Sixth, please patent patent garden (please read the precautions on the back and fill in this page) 1. A long-fiber reinforced anionic polymer nylon composite pultrusion molding method, the preparation method of which will be activated caprolactam sodium salt catalyst The material and the polymer co-catalyst material are individually conveyed to a tubular mixing device covered with dry air and continuously mixed at a temperature of 80-110 ° C. The active caprolactam sodium salt catalyst material consists of Melted caprolactam with a moisture content of less than 500ppm is reacted with sodium hydride catalyst. The polymer co-catalyst is presumably composed of a polymer co-catalyst with NCO end groups and melted with a moisture content of less than 500ppm. It is formed by the mixing of caprolactam; after mixing, it becomes a nylon reaction mixture with a viscosity of 10 to 1500 cps. This mixture is immediately fed into a closed nitrogen-reinforced fiber impregnation tank covered with dry nitrogen, followed by 150-250 ° C Hot air drying and preheated reinforcing fibers are impregnated in the nylon reaction mixture, and then drawn into a hot mold with a mold temperature between 165 and 215 ° C. At the same time, nylon anion polymerization and composite molding are performed to obtain a long fiber. Make up Nylon composite material molded product. 2. The processing method as described in item 1 of the patent application scope, in which the active caprolactam sodium salt catalyst and the polymer co-catalyst are prepared, they must be placed in a nitrogen-covered material tank and kept warm at 90 -110 ° C spare. Printed by the Ministry of Economy t Central Standardization Bureau Bei X-Consumer Cooperative 3. The processing method as described in item 1 of the patent application scope, in which the amount of sodium hydride catalyst is 5% of the total weight of the nylon reaction mixture. 13 ~ 0.3 %, And the amount of polymer co-catalyst accounts for 3 ~ 30% of the total weight of the nylon reaction mixture. The process as described in item 1 of the patent application scope, in which the polymer co-catalyst with NC 0 terminal / group pseudo-finger refers to a long chain with isophorone diisocyanate and two 0H terminal groups Glycol, formed by the reaction of the mole ratio of NC0 group to 0H group controlled between 1.5 ~ 2.2, where long-chain glycol can be used „This paper standard is applicable to China National Standard (CNS) l4 specifications (210x297 public) A7 B7 C7 D7 6. Apply for a patent Fanyuan Polypropylene Oxide with a molecular weight of 400 to 4000 (Polypropylene Oxide) long-chain polyacid glycol, or a polytetramethylene glycol with a molecular weight of 1000 to 2000 (Polytetramethylene Glycol, PTMG ), Or polysilicon (Polysilicone) long-chain diol with a molecular weight of 1000 to 3205, or a mixture of polycyclic gas propylene glycol and polysilicon glycol. 5. As described in item 1 of the patent application scope Processing method, in which the reinforced long fiber is first pre-heated and dried by a 150-250 dry hot air fiber preheating and drying device, and the end of the reinforced fiber impregnation tank and the hot mold are sandwiched by a heat-resistant 22 (TC or above ceramic or polymer material) Insulate the 塾 Η before combining them, of which The appropriate thickness of the hot gasket is 3mm-ΙΟππη thick, and it has the effect of keeping the temperature of the junction between the end of the reinforcing fiber impregnating tank and the heat insulation base H below 115t. 6. Processing as described in item 1 of the application range Law, in which the reinforced long fiber 傜 refers to the continuous glass fiber or strontium fiber of inorganic material. (Please read the precautions on the back first and then fill out this page-·. Order. Employee Consumers Cooperative of the Ministry of Economic Affairs Printing ¾ This paper a scale is applicable to China National Standard (CNS) A 4 specifications (210x297 mm)
TW81108718A 1992-10-29 1992-10-29 Pultrusion process for long fiber reinforced nylon composites TW208672B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW81108718A TW208672B (en) 1992-10-29 1992-10-29 Pultrusion process for long fiber reinforced nylon composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW81108718A TW208672B (en) 1992-10-29 1992-10-29 Pultrusion process for long fiber reinforced nylon composites

Publications (1)

Publication Number Publication Date
TW208672B true TW208672B (en) 1993-07-01

Family

ID=51356881

Family Applications (1)

Application Number Title Priority Date Filing Date
TW81108718A TW208672B (en) 1992-10-29 1992-10-29 Pultrusion process for long fiber reinforced nylon composites

Country Status (1)

Country Link
TW (1) TW208672B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107033589A (en) * 2017-06-12 2017-08-11 江苏科技大学 A kind of preparation method of the composite of continuous fibre reinforced nylon 6

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107033589A (en) * 2017-06-12 2017-08-11 江苏科技大学 A kind of preparation method of the composite of continuous fibre reinforced nylon 6

Similar Documents

Publication Publication Date Title
US5424388A (en) Pultrusion process for long fiber-reinforced nylon composites
KR920000168B1 (en) Frp composite and its making method
DE2200669C2 (en) Polymerizable mixture and its use
TW414803B (en) Polyurethane elastomer and foam exhibiting improved abrasion resistance
CN103360564A (en) Hyperbranched non-ionic waterborne polyurethane and application thereof in fibreglass sizing agent
Liu et al. Fully recyclable and high performance phenolic resin based on dynamic urethane bonds and its application in self-repairable composites
CN107163214B (en) Enhanced cross-linked polyurethane elastomer and preparation method thereof
CN102666683A (en) Fiber-reinforced composite material
CA2108242A1 (en) Bonding agent
US3464935A (en) Rigid,non - elastomeric,non - cellular,fiber reinforced polyether-urethane compositions
Mohammadi et al. Synthesis and investigation of properties of thiacalix [4] arene‐based polyurethane elastomers
JP2002506897A (en) Method for producing polyether polyol and polyol produced therefrom
TW208672B (en) Pultrusion process for long fiber reinforced nylon composites
CN107216608B (en) A kind of compositions of thermosetting resin of highly corrosion resistant and its application
CA1151667A (en) Bis(half ester) and compositions containing the same
TW200413429A (en) Matrix resin composition for fiber-reinforced plastics and process for production of fiber-reinforced plastics
Sang et al. Application of blocked isocyanate in preparation of polyurethane (urea) elastomers
CN107603202A (en) A kind of rubber pocket former polyurethane rubber bolster
US5064600A (en) Process for production of moldings or films from polyisocyanate polyadducts by rim procedure
US5004789A (en) Resin compositions based on phenolic resins
Wu et al. Pultruded fiber‐reinforced polyurethane‐toughened phenolic resin, I. Reactivity and morphology
EP3102622A1 (en) Fast curing high glass transition temperature epoxy resin system
DE2030980A1 (en) Shaped object from a polymer
US20210171728A1 (en) Fiber-reinforced thermoplastic resin sheet, molded body of fiber-reinforced thermoplastic resin sheet, and manufacturing method of fiber-reinforced thermoplastic resin sheet
CN109563288B (en) Storage stable epoxy prepregs from dicyandiamide solutions and methods of making the same