TW202425587A - Methods of two downlink channel state information and two uplink channel state information for full duplex system - Google Patents
Methods of two downlink channel state information and two uplink channel state information for full duplex system Download PDFInfo
- Publication number
- TW202425587A TW202425587A TW112144421A TW112144421A TW202425587A TW 202425587 A TW202425587 A TW 202425587A TW 112144421 A TW112144421 A TW 112144421A TW 112144421 A TW112144421 A TW 112144421A TW 202425587 A TW202425587 A TW 202425587A
- Authority
- TW
- Taiwan
- Prior art keywords
- sbfd
- csi
- time slot
- configuration
- srs
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000000737 periodic effect Effects 0.000 claims abstract description 12
- 238000005259 measurement Methods 0.000 claims description 43
- 238000010586 diagram Methods 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 230000011664 signaling Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本揭露係有關於無線通訊,並且更具體地,涉及用於全雙工系統的下行(DL)和上行(UL)通道狀態資訊(CSI)。The present disclosure relates to wireless communications and, more particularly, to downlink (DL) and uplink (UL) channel state information (CSI) for full-duplex systems.
本節中的陳述僅提供與本發明相關的背景資訊,並且可以不構成現有技術。The statements in this section merely provide background information related to the present invention and may not constitute prior art.
無線通訊技術的發展已經通過旨在增強資料速率、降低時延和增加網路容量的不斷進步得到注意。全雙工通信允許在同一頻率通道上同時進行發送和接收。在發展的無線網路領域內,子帶全雙工(Subband Full Duplex ,SBFD)作為一種有前途的解決方案出現,以解決對高速、低延遲無線連接的不斷增長的需求。全雙工通信本質上允許無線設備在同一頻帶上同時發送和接收資料,有效地使可用頻寬加倍並提高頻譜效率。傳統的通信系統採用半雙工操作,其中設備可以在給定時刻發送或接收資料。全雙工操作有希望通過減輕半雙工系統的限制(例如增加的時延和減小的網路容量)來大幅改進無線通訊。The development of wireless communication technology has been noted through continuous advancements aimed at enhancing data rates, reducing latency, and increasing network capacity. Full-duplex communication allows for simultaneous transmission and reception on the same frequency channel. Within the realm of evolving wireless networks, Subband Full Duplex (SBFD) has emerged as a promising solution to address the growing demand for high-speed, low-latency wireless connections. Full-duplex communication essentially allows wireless devices to simultaneously transmit and receive data on the same frequency band, effectively doubling the available bandwidth and increasing spectral efficiency. Traditional communication systems employ half-duplex operation, where a device can either transmit or receive data at a given moment. Full-duplex operation holds the promise of significantly improving wireless communications by alleviating the limitations of half-duplex systems, such as increased latency and reduced network capacity.
子帶全雙工系統通過利用子帶分配方法進一步發展了全雙工通信。不是在整個頻帶上發送和接收,該系統將可用頻譜劃分為較小的子帶。然後為特定的發送和接收任務分配各個子帶。雖然SBFD為無線系統提供了靈活性並提供了較高的效率,但是由於潛在的附加干擾,其在諸如通道狀態資訊估計的領域中提出了新的挑戰。並且存在一種需求,需要改進和增強全雙工系統的UL和DL通道狀態資訊。Sub-band full-duplex systems further develop full-duplex communications by utilizing a sub-band allocation approach. Instead of transmitting and receiving over the entire frequency band, the system divides the available spectrum into smaller sub-bands. Individual sub-bands are then assigned for specific transmit and receive tasks. While SBFD provides flexibility to wireless systems and offers higher efficiency, it poses new challenges in areas such as channel state information estimation due to potential additional interference. And there is a need to improve and enhance the UL and DL channel state information for full-duplex systems.
以下呈現了一個或多個實施例的簡化概述,以便提供對這些實施例的基本理解。該概述不是所有預期實施例的廣泛概述,並且旨在既不標識所有實施例的核心或關鍵元素也不標識任何或所有實施例的範圍。其唯一目的是以簡化形式呈現一個或多個實施例的一些概念,作為稍後呈現的更詳細描述的前序。The following presents a simplified summary of one or more embodiments in order to provide a basic understanding of these embodiments. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify the core or key elements of all embodiments nor the scope of any or all embodiments. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to a more detailed description that is presented later.
提供了用於全雙工系統的下行和上行CSI的裝置和方法。在一個新穎方面中,為下行(Downlink, DL)通道狀態資訊(Channel Status Information, CSI)配置了兩個CSI基準信號(CSI-RS)配置和兩個CSI報告,其中一個用於僅DL時隙,另一個用於SBFD時隙。在一個實施例中,UE接收用於僅DL時隙的第一CSI-RS配置和用於SBFD時隙的第二CSI-RS配置,其中,各個CSI-RS配置包括用於通道測量資源(CMR)和干擾測量資源(IMR)的配置;基於第一CSI-RS配置和第二CSI-RS配置,在僅DL時隙和SBFD時隙的DL資源上接收CSI-RS信號,並且執行CSI-RS信號的CSI測量。在一個實施例中,UE在用於僅DL時隙的干擾測量資源(Interference Measurement Resource, IMR)和用於SBFD時隙的IMR上單獨地估計干擾協方差。在另一實施例中,為僅DL時隙和SBFD時隙配置了共用通道測量資源(Channel Measurement Resources , CMR)。在一個實施例中,UE使用為SBFD時隙配置的CSI-RS來執行通道估計。在一個實施例中,對於第一RS配置和第二RS配置,CMR內容是不同的。UE使用為僅DL時隙配置的CSI-RS和為SBFD時隙配置的CSI-RS單獨地執行通道估計。在另一實施例中,CSI-RS信號是週期性的或非週期的,並且其中,對於週期性CSI-RS信號,對於SBFD時隙和僅DL時隙,CSI-RS的週期性是不同的。在一個實施例中,UE接收用於僅UL時隙的第一SRS配置和用於SBFD時隙的第二SRS配置,基於第一SRS配置和第二SRS配置,在僅UL時隙和SBFD時隙上發送SRS信號。在一個實施例中,SRS信號是週期性的或非週期的,並且其中,對於週期性SRS信號,對於SBFD時隙和僅UL時隙,SRS的週期性是不同的。An apparatus and method for downlink and uplink CSI for a full-duplex system are provided. In one novel aspect, two CSI reference signal (CSI-RS) configurations and two CSI reports are configured for downlink (DL) channel status information (CSI), one for a DL-only time slot and the other for a SBFD time slot. In one embodiment, a UE receives a first CSI-RS configuration for a DL-only time slot and a second CSI-RS configuration for a SBFD time slot, wherein each CSI-RS configuration includes a configuration for a channel measurement resource (CMR) and an interference measurement resource (IMR); based on the first CSI-RS configuration and the second CSI-RS configuration, a CSI-RS signal is received on DL resources of a DL-only time slot and a SBFD time slot, and CSI measurement of the CSI-RS signal is performed. In one embodiment, the UE estimates interference covariance separately on the Interference Measurement Resource (IMR) for the DL-only time slot and the IMR for the SBFD time slot. In another embodiment, common channel measurement resources (CMR) are configured for the DL-only time slot and the SBFD time slot. In one embodiment, the UE uses the CSI-RS configured for the SBFD time slot to perform channel estimation. In one embodiment, the CMR content is different for the first RS configuration and the second RS configuration. The UE performs channel estimation separately using the CSI-RS configured for the DL-only time slot and the CSI-RS configured for the SBFD time slot. In another embodiment, the CSI-RS signal is periodic or aperiodic, and wherein, for the periodic CSI-RS signal, the periodicity of the CSI-RS is different for the SBFD time slot and the DL-only time slot. In one embodiment, the UE receives a first SRS configuration for the UL-only time slot and a second SRS configuration for the SBFD time slot, and transmits an SRS signal on the UL-only time slot and the SBFD time slot based on the first SRS configuration and the second SRS configuration. In one embodiment, the SRS signal is periodic or aperiodic, and wherein, for the periodic SRS signal, the periodicity of the SRS is different for the SBFD time slot and the UL-only time slot.
在另一個新穎方面中,基站配置用於僅上行(UL)時隙的第一SRS配置和用於子帶全雙工(SBFD)時隙的第二SRS配置,向無線網路中的一個或更多個UE發送第一SRS配置和第二SRS配置,基於第一SRS配置和第二SRS配置,在僅UL時隙和SBFD時隙的UL資源上接收SRS信號,並且基於所接收的SRS信號,使用通道測量結果和干擾協方差來估計兩個UL CSI。在一個實施例中,基站使用用於僅UL時隙的SRS和用於SBFD時隙的SRS來單獨執行通道估計。在另一實施例中,基站在至少兩個SBFD時隙上執行聯合通道估計(Joint Channel Estimation, JCE)。在又一實施例中,基站使用在僅UL時隙和SBFD時隙的UL資源上單獨地接收的解調基準信號(Demodulation Reference Signal, DMRS)來單獨地估計干擾協方差。在一個實施例中,SRS信號是週期性的或非週期的,並且其中,對於週期性SRS信號,對於SBFD時隙和僅UL時隙,SRS的週期性是不同的。In another novel aspect, a base station configures a first SRS configuration for an uplink only (UL) time slot and a second SRS configuration for a sub-band full duplex (SBFD) time slot, transmits the first SRS configuration and the second SRS configuration to one or more UEs in a wireless network, receives SRS signals on UL resources of the UL only time slot and the SBFD time slot based on the first SRS configuration and the second SRS configuration, and estimates two UL CSIs based on the received SRS signals using channel measurement results and interference covariance. In one embodiment, the base station performs channel estimation separately using the SRS for the UL only time slot and the SRS for the SBFD time slot. In another embodiment, the base station performs joint channel estimation (JCE) on at least two SBFD time slots. In yet another embodiment, the base station estimates interference covariance separately using a demodulation reference signal (DMRS) received separately on UL resources of the UL-only time slot and the SBFD time slot. In one embodiment, the SRS signal is periodic or aperiodic, and wherein, for the periodic SRS signal, the periodicity of the SRS is different for the SBFD time slot and the UL-only time slot.
在又一實施例中,UE接收用於僅上行(UL)時隙的第一功率控制參數集和用於子帶全雙工(SBFD)時隙的第二功率控制參數集,並且基於第一功率控制參數集和第二功率控制參數集來執行功率控制。在一個實施例中,第一P_0和第一P_boost被包括在第一功率控制參數集中,並且第二P_0和第二P_boost被包括在第二功率控制參數集中,並且其中,第一P_0不同於第二P_0。In yet another embodiment, the UE receives a first power control parameter set for an uplink only (UL) time slot and a second power control parameter set for a sub-band full duplex (SBFD) time slot, and performs power control based on the first power control parameter set and the second power control parameter set. In one embodiment, the first P_0 and the first P_boost are included in the first power control parameter set, and the second P_0 and the second P_boost are included in the second power control parameter set, and wherein the first P_0 is different from the second P_0.
為了實現前述和相關的目的,一個或多個實施例包括下文中充分描述並且在請求項中特別指出的特徵。以下描述和附圖詳細闡述了一個或多個實施例的某些說明性特徵。然而,這些特徵僅指示可以採用各個實施例的原理的各種方式中的一些方式,並且該描述旨在包括所有這樣的實施例及其等同物。To accomplish the foregoing and related ends, one or more embodiments include the features hereinafter fully described and particularly pointed out in the claims. The following description and the accompanying drawings set forth in detail certain illustrative features of one or more embodiments. However, these features are merely indicative of some of the various ways in which the principles of the various embodiments may be employed, and this description is intended to include all such embodiments and their equivalents.
下面結合附圖闡述的詳細描述旨在作為各種配置的描述,並且不旨在表示其中可以實踐本文描述的概念的唯一配置。該詳細描述包括目的在於提供對各種概念的透徹理解的具體細節。然而,對於本領域技術人員將顯而易見的是,可以在沒有這些具體細節的情況下實踐這些概念。在一些情況下,以區塊圖形式示出了公知的結構和元件,以避免模糊這樣的概念。The detailed descriptions set forth below in conjunction with the accompanying drawings are intended as descriptions of various configurations and are not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed descriptions include specific details intended to provide a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some cases, well-known structures and elements are shown in block diagram form to avoid obscuring such concepts.
現在將參考各種裝置和方法來呈現電信系統的若干實施例。這些裝置和方法將在以下詳細描述中描述並且在附圖中通過各種區塊、元件、電路、程序、演算法等(統稱為「元素」)示出。這些元素可以使用電子硬體、電腦軟體或其任何組合來實現。這樣的元素是實施為硬體還是軟體取決於施加在整個系統上的特定應用和設計約束。Several embodiments of telecommunication systems will now be presented with reference to various devices and methods. These devices and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, programs, algorithms, etc. (collectively referred to as "elements"). These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends on the specific application and design constraints imposed on the overall system.
作為示例,元素或元素的任何部分或元素的任何組合可以被實現為包括一個或多個處理器的「處理系統」。處理器的示例包括微處理器、微控制器、圖形處理單元(graphics processing unit,GPU)、中央處理單元(central processing unit,CPU)、應用處理器、數位訊號處理器(digital signal processor,DSP)、精簡指令集計算(reduced instruction set computing,RISC)處理器、晶片上系統(systems on a chip,SoC)、基帶處理器、現場可程式設計閘陣列(field programmable gate array,FPGA)、可程式設計邏輯器件(programmable logic device,PLD)、狀態機、閘控邏輯、分立硬體電路和其他被配置為執行貫穿本發明描述的各種功能的合適硬體。處理系統中的一個或多個處理器可以執行軟體。無論被稱為軟體、韌體、中介軟體、微碼、硬體描述語言或其它語言,軟體都應被廣義地解釋為意指指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體元件、應用、軟體應用、套裝軟體、常式、子常式、物件、可執行檔、程序、函數等。As an example, an element or any portion of an element or any combination of elements may be implemented as a "processing system" including one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs), central processing units (CPUs), application processors, digital signal processors (DSPs), reduced instruction set computing (RISC) processors, systems on a chip (SoCs), baseband processors, field programmable gate arrays (FPGAs), programmable logic devices (PLDs), state machines, gate logic, discrete hardware circuits, and other suitable hardware configured to perform the various functions described throughout the present invention. One or more processors in a processing system may execute software. Whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise, software should be construed broadly to mean instructions, instruction sets, codes, code segments, code, programs, routines, software components, applications, software applications, packages, routines, subroutines, objects, executable files, programs, functions, etc.
因此,在一個或多個示例實施例中,所描述的功能可以在硬體、軟體或其任何組合中實現。如果在軟體中實現,則功能可以存儲在電腦可讀媒體上或編碼為電腦可讀媒體上的一個或多個指令或代碼。電腦可讀媒體包括電腦存儲媒體。存儲媒體可以是能夠由電腦訪問的任何可用媒體。作為示例而非限制,這樣的電腦可讀媒體可以包括隨機存取記憶體(random-access memory,RAM)、唯讀記憶體(read-only memory,ROM)、電氣可抹除可程式設計ROM(electrically erasable programmable ROM,EEPROM)、光碟存儲裝置、磁碟存儲裝置、其他磁存放裝置、上述類型的電腦可讀媒體的組合、或可以用於以能夠由電腦訪問的指令或資料結構的形式存儲電腦可執行代碼的任何其他媒體。Thus, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on a computer-readable medium or encoded as one or more instructions or codes on a computer-readable medium. Computer-readable media include computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media may include random-access memory (RAM), read-only memory (ROM), electrically erasable programmable ROM (EEPROM), optical disk storage devices, magnetic disk storage devices, other magnetic storage devices, combinations of the foregoing types of computer-readable media, or any other medium that can be used to store computer-executable code in the form of instructions or data structures that can be accessed by a computer.
圖1是示出根據本發明實施例的配置有支援優化操作的SBFD的示例性無線網路的示意性系統圖。無線網路100包括通信地連接到gNB 121的使用者設備(UE)110,gNB 121操作接入網120,接入網120使用無線接入技術(RAT)提供無線接入。接入網120通過NG介面連接到核心網130,更具體地,通過NG使用者平面部分(NG user-plane part, NG-u)連接到用戶平面功能(User Plane Function, UPF),以及通過NG控制平面部分(NG-c)連接到移動性管理功能(Mobility Management Function, AMF)。為了負荷分擔和冗餘的目的,一個gNB可以連接到多個UPF/AMF。gNB 121可為地理覆蓋區域提供通信覆蓋,在地理覆蓋區域中,經由通信鏈路101支援與UE 110的通信。B5G/6G網路100中所示的通信鏈路101可以包括從UE 110到gNB 121的UL傳輸(例如,在物理上行控制通道(Physical Uplink Control Channel, PUCCH)或物理上行共用通道(Physical Uplink Shared Channel, PUSCH)上)或從gNB 121到UE 110的下行(DL)傳輸(例如,在物理下行控制通道(Physical Downlink Control Channel, PDCCH)或物理下行共用通道(Physical Downlink Shared Channel, PDSCH)上)。FIG1 is a schematic system diagram showing an exemplary wireless network configured with SBFD supporting optimized operation according to an embodiment of the present invention. The wireless network 100 includes a user equipment (UE) 110 communicatively connected to a gNB 121, which operates an access network 120, which provides wireless access using a radio access technology (RAT). The access network 120 is connected to the core network 130 through an NG interface, more specifically, to a user plane function (UPF) through an NG user-plane part (NG-u), and to a mobility management function (AMF) through an NG control plane part (NG-c). For load sharing and redundancy purposes, one gNB can be connected to multiple UPF/AMFs. The gNB 121 may provide communication coverage for a geographic coverage area, and support communication with the UE 110 via the communication link 101 in the geographic coverage area. The communication link 101 shown in the B5G/6G network 100 may include UL transmissions from the UE 110 to the gNB 121 (e.g., on a Physical Uplink Control Channel (PUCCH) or a Physical Uplink Shared Channel (PUSCH)) or downlink (DL) transmissions from the gNB 121 to the UE 110 (e.g., on a Physical Downlink Control Channel (PDCCH) or a Physical Downlink Shared Channel (PDSCH)).
UE 110可以是智慧型電話、可穿戴設備、物聯網設備和平板電腦等。或者,UE 110可以是插入或安裝有資料卡的筆記本(NB)或個人電腦(PC),所述資料卡包括數據機和RF收發器以提供無線通訊功能。在一個新穎方面,SBFD被配置用於無線網路100。SBFD的主要有點是支持具有低往返時間的低時延和大覆蓋範圍。較頻繁的DL和UL資源的可用性可以減少DL和UL兩者的時延。例如,UL覆蓋通常是網路中的瓶頸。在連續或較頻繁的UL資源中使用UL資料的重複可以增加UL覆蓋。在一個實施例中,包括UE和gNB的網路實體被配備和/或配置有用於SBFD的不同能力。作為示例,無線網路100包括一個或更多個SBFD-支持gNB 181、一個或更多個SBFD-支持UE 185、一個或更多個SBFD-感知UE 186、以及一個或更多個SBFD-非感知UE 183。SBFD-支援gNB 181支援全雙工並使用SBFD特徵。SBFD-支援UE 185支援全雙工並使用SBFD特徵。SBFD-感知UE 186不能支持全雙工,但知道SBFD特徵。SBFD-非感知/SBFD-不感知UE 183不能支持全雙工並且不知道SBFD特徵。SBFD-不感知UE 183不能理解來自gNB的SBFD配置信令,並且不能在SBFD時隙中被調度用於上行。在一個實施例中,SBFD-支持UE 185和SBFD-感知UE 186被分類到SBFD-考慮UE 182。在一個新穎方面中,提供了SBFD操作,包括:用於SBFD-支援系統的DL CSI-RS配置和CSI測量報告配置;用於SBFD啟用系統的UL SRS配置和測量;用於SBFD啟用系統的UL覆蓋擴展和聯合通道估計(JCE);以及用於SBFD啟用系統的UL功率控制。UE 110 may be a smart phone, a wearable device, an IoT device, a tablet, etc. Alternatively, UE 110 may be a notebook (NB) or a personal computer (PC) with a data card inserted or installed, the data card including a modem and an RF transceiver to provide wireless communication capabilities. In one novel aspect, SBFD is configured for the wireless network 100. The main point of SBFD is to support low latency and a large coverage range with a low round-trip time. The availability of more frequent DL and UL resources can reduce latency for both DL and UL. For example, UL coverage is often a bottleneck in the network. Using repetition of UL data in continuous or more frequent UL resources can increase UL coverage. In one embodiment, network entities including UEs and gNBs are equipped and/or configured with different capabilities for SBFD. As an example, the wireless network 100 includes one or more SBFD-supporting gNBs 181, one or more SBFD-supporting UEs 185, one or more SBFD-aware UEs 186, and one or more SBFD-unaware UEs 183. The SBFD-supporting gNB 181 supports full duplex and uses SBFD features. The SBFD-supporting UE 185 supports full duplex and uses SBFD features. The SBFD-aware UE 186 cannot support full duplex but is aware of SBFD features. The SBFD-unaware/SBFD-unaware UE 183 cannot support full duplex and is not aware of SBFD features. The SBFD-unaware UE 183 cannot understand the SBFD configuration signaling from the gNB and cannot be scheduled in the SBFD timeslot for uplink. In one embodiment, the SBFD-supporting UE 185 and the SBFD-aware UE 186 are classified into the SBFD-considering UE 182. In one novel aspect, SBFD operations are provided, including: DL CSI-RS configuration and CSI measurement report configuration for a SBFD-supporting system; UL SRS configuration and measurement for a SBFD-enabled system; UL coverage extension and joint channel estimation (JCE) for a SBFD-enabled system; and UL power control for a SBFD-enabled system.
圖2是根據本發明實施例的gNB 121和UE 110的簡化框圖。對於gNB 121,天線177在MIMO網路下發送和接收無線電信號。與天線耦合的射頻(RF)收發器模組176從天線接收RF信號,將它們轉換為基帶信號並將它們發送到處理器173。RF收發器176還轉換從處理器173接收的基帶信號,將它們轉換為RF信號,並發送到天線177。處理器173處理接收到的基帶信號並調用不同的功能模組和電路來執行gNB 121中的特徵。記憶體172存儲用於控制gNB 121的操作的程式指令和資料170。2 is a simplified block diagram of a gNB 121 and a UE 110 according to an embodiment of the present invention. For the gNB 121, an antenna 177 transmits and receives radio signals under a MIMO network. A radio frequency (RF) transceiver module 176 coupled to the antenna receives RF signals from the antenna, converts them into baseband signals and sends them to the processor 173. The RF transceiver 176 also converts baseband signals received from the processor 173, converts them into RF signals, and sends them to the antenna 177. The processor 173 processes the received baseband signals and calls different functional modules and circuits to execute features in the gNB 121. The memory 172 stores program instructions and data 170 for controlling the operation of the gNB 121.
類似地,對於UE 110,天線197在MIMO網路下發送和接收RF信號。與天線耦合的RF收發器模組196從天線接收RF信號,將它們轉換為基帶信號並將它們發送到處理器193。RF收發器196還轉換從處理器193接收的基帶信號,將它們轉換為RF信號,並發送到天線197。處理器193處理接收到的基帶信號並調用不同的功能模組和電路來執行UE 110中的特徵。記憶體192存儲用於控制UE 110的操作的程式指令和資料190。雖然在圖2中描述了特定數量的天線177和197,但是可以設想在MIMO網路下可以引入任意數量的天線177和197。Similarly, for UE 110, antenna 197 transmits and receives RF signals under the MIMO network. RF transceiver module 196 coupled to the antenna receives RF signals from the antenna, converts them to baseband signals and sends them to processor 193. RF transceiver 196 also converts baseband signals received from processor 193, converts them to RF signals, and sends them to antenna 197. Processor 193 processes the received baseband signals and calls different functional modules and circuits to execute features in UE 110. Memory 192 stores program instructions and data 190 for controlling the operation of UE 110. Although a specific number of antennas 177 and 197 are described in FIG. 2, it is contemplated that any number of antennas 177 and 197 can be introduced under the MIMO network.
gNB 121和UE 110還包括可以被實現和配置為執行本發明實施例的多個功能模組和電路。在圖2的示例中,gNB 121包括一組控制功能模組和電路160。配置和控制電路161提供不同的參數來配置和控制UE 110。UE 110包括一組控制功能模組和電路180。DL SBFD處理器181接收用於僅下行(DL)時隙的第一通道狀態資訊(CSI)基準信號(RS)配置和用於子帶全雙工(SBFD)時隙的第二CSI-RS配置,並且其中各個CSI-RS配置包括用於通道測量資源(CMR)和干擾測量資源(IMR)的配置;基於第一CSI-RS配置和第二CSI-RS配置,在僅DL時隙和SBFD時隙的DL資源上接收CSI-RS信號;並且執行CSI-RS信號的通道狀態資訊(CSI)測量。UL SBFD處理器182接收用於僅上行(UL)時隙的第一探測基準信號(Sounding Reference Signal, SRS)配置和用於SBFD時隙的第二SRS配置;基於第一SRS配置和第二SRS配置,在僅UL時隙和SBFD時隙上發送SRS信號。UL功率控制處理器183接收用於僅上行(UL)時隙的第一功率控制參數集和用於子帶全雙工(SBFD)時隙的第二功率控制參數集,並基於第一功率控制參數集和第二功率控制參數集來執行功率控制。The gNB 121 and the UE 110 also include a plurality of functional modules and circuits that can be implemented and configured to perform embodiments of the present invention. In the example of FIG. 2 , the gNB 121 includes a set of control functional modules and circuits 160. The configuration and control circuits 161 provide different parameters to configure and control the UE 110. The UE 110 includes a set of control functional modules and circuits 180. The DL SBFD processor 181 receives a first channel state information (CSI) reference signal (RS) configuration for a downlink (DL) only time slot and a second CSI-RS configuration for a sub-band full duplex (SBFD) time slot, and each CSI-RS configuration includes a configuration for a channel measurement resource (CMR) and an interference measurement resource (IMR); based on the first CSI-RS configuration and the second CSI-RS configuration, receives a CSI-RS signal on the DL resources of the DL only time slot and the SBFD time slot; and performs channel state information (CSI) measurement of the CSI-RS signal. The UL SBFD processor 182 receives a first sounding reference signal (SRS) configuration for an uplink only (UL) time slot and a second SRS configuration for an SBFD time slot, and transmits SRS signals in the UL only time slot and the SBFD time slot based on the first SRS configuration and the second SRS configuration. The UL power control processor 183 receives a first power control parameter set for an uplink only (UL) time slot and a second power control parameter set for a sub-band full duplex (SBFD) time slot, and performs power control based on the first power control parameter set and the second power control parameter set.
注意,不同的功能模組和電路可以由軟體、固件、硬體及其任意組合來實現和配置。當由處理器193和173(例如,經由執行程式碼190和170)執行時,功能模組和電路允許gNB 121和UE 110執行本發明的實施例。Note that the different functional modules and circuits may be implemented and configured by software, firmware, hardware, and any combination thereof. When executed by processors 193 and 173 (e.g., via executing program code 190 and 170), the functional modules and circuits allow gNB 121 and UE 110 to perform embodiments of the present invention.
圖3示出了根據本發明實施例的子帶全雙工幀結構的不同配置的示意圖。在一個新穎方面中,無線網路配置有SBFD以減少時延並改善覆蓋。SBFD啟用系統具有不同的幀結構。示出了兩個示例性SBFD幀結構310和320。SBFD幀結構310是DUD結構,具有僅DL時隙311、SBFD時隙312和僅UL鏈路時隙313。SBFD幀結構320是DU 結構,具有僅DL時隙321、SBFD時隙322和僅UL時隙323。對於僅DL時隙,諸如311和321,時隙的頻率資源僅在下行方向上可用。對於僅UL時隙,諸如313和323,時隙的頻率資源可用於上行方向。對於SBFD時隙(X時隙),諸如312和322,在下行方向和上行方向兩者上共用時隙的頻率資源。例如,SBFD 312在頻域中被構造為DUD(下行、上行、下行),其間具有保護頻帶。SBFD 322在頻域中被構造為DU(下行和上行),其間具有保護頻帶。在一個新穎方面中,當SBFD與僅DL幀和/或僅UL幀一起配置時,配置兩組CSI-RS和SRS。FIG3 shows a schematic diagram of different configurations of a sub-band full-duplex frame structure according to an embodiment of the present invention. In one novel aspect, a wireless network is configured with SBFD to reduce latency and improve coverage. SBFD-enabled systems have different frame structures. Two exemplary SBFD frame structures 310 and 320 are shown. SBFD frame structure 310 is a DUD structure with only DL time slots 311, SBFD time slots 312, and only UL link time slots 313. SBFD frame structure 320 is a DU structure with only DL time slots 321, SBFD time slots 322, and only UL time slots 323. For DL-only time slots, such as 311 and 321, the frequency resources of the time slot are only available in the downlink direction. For UL-only time slots, such as 313 and 323, the frequency resources of the time slot are available for the uplink direction. For SBFD time slots (X-slots), such as 312 and 322, the frequency resources of the time slot are shared in both the downlink direction and the uplink direction. For example, SBFD 312 is structured as DUD (downlink, uplink, downlink) in the frequency domain with a guard band in between. SBFD 322 is structured as DU (downlink and uplink) in the frequency domain with a guard band in between. In one novel aspect, when SBFD is configured with DL-only frames and/or UL-only frames, two sets of CSI-RS and SRS are configured.
圖4示出了根據本發明實施例的包括單社區SBFD和多社區SBFD情形的SBFD部署情形的示意圖。在一個新穎方面,兩組CSI-RS配置和兩組CSI報告被配置用於SBFD啟用系統。傳統的CSI-RS、SRS和CSI報告和測量基於現有的干擾模型。對於SBFD啟用系統,引入了附加的跨鏈路干擾(Cross Link Interference, CLI)和自干擾(Self-Interference, SI)。示出了兩個示例性情形,包括單社區SBFD情形410和多社區SBFD情形460。對於單社區情形410,gNB 411與UE 415和UE 416通信。作為示例,伴隨從UE 415的UL發送,對UE 416上的DL接收發生社區內CLI 431。通過SBFD收發,伴隨在不同頻帶上的相同時隙中的UL和DL,gNB 411引起SI 432。在另一示例性情形460中,gNB 461與UE 465和UE 466通信,而相鄰社區gNB 462與UE 467通信。作為示例,UE 466引起來自UE 465的社區內CLI 481,例如從UE 465的UL干擾來自UE 466的DL。此外,在來自UE 466的DL和相鄰社區中的UE 467的UL之間出現社區間CLI 482。對於gNB 461,SI 483發生在相同時隙中的其UL和DL之間。從gNB 462的DL發送對gNB 461的UL接收發生社區間CLI 484,並且從gNB 461的DL發送對gNB 462的UL接收發生社區間CLI 485。在一個新穎方面,為SBFD時隙分別配置附加的CSI-RS和SRS配置,以對SI、社區內CLI和小區間CLI進行計數。4 shows a schematic diagram of SBFD deployment scenarios including single-community SBFD and multi-community SBFD scenarios according to an embodiment of the present invention. In one novel aspect, two sets of CSI-RS configurations and two sets of CSI reports are configured for an SBFD-enabled system. Traditional CSI-RS, SRS, and CSI reporting and measurements are based on existing interference models. For an SBFD-enabled system, additional cross-link interference (Cross Link Interference, CLI) and self-interference (Self-Interference, SI) are introduced. Two exemplary scenarios are shown, including a single-community SBFD scenario 410 and a multi-community SBFD scenario 460. For the single-community scenario 410, gNB 411 communicates with UE 415 and UE 416. As an example, intra-community CLI 431 occurs for DL reception on UE 416 following UL transmission from UE 415. With SBFD transceiving, gNB 411 causes SI 432 following UL and DL in the same time slot on different frequency bands. In another exemplary scenario 460, gNB 461 communicates with UE 465 and UE 466, while neighboring community gNB 462 communicates with UE 467. As an example, UE 466 causes intra-community CLI 481 from UE 465, e.g., UL from UE 465 interferes with DL from UE 466. In addition, inter-community CLI 482 occurs between DL from UE 466 and UL of UE 467 in the neighboring community. For gNB 461, SI 483 occurs between its UL and DL in the same timeslot. Inter-community CLI 484 occurs from DL transmission of gNB 462 to UL reception of gNB 461, and inter-community CLI 485 occurs from DL transmission of gNB 461 to UL reception of gNB 462. In a novel aspect, additional CSI-RS and SRS configurations are configured separately for SBFD timeslots to count SI, intra-community CLI, and inter-cell CLI.
圖5示出了根據本發明實施例的SBFD信令傳送到SBFD-考慮UE和SBFD-不感知UE的示意圖。在一個新穎方面中,在無線系統中啟用SBFD的情況下,網路基於UE能力利用共用信令和/或專用信令將收發資源配置給SBFD-考慮UE和SBFD-不感知UE。作為示例,gNB 501與SBFD-考慮UE 502、SBFD-不感知UE 505和SBFD-不感知UE 506連接。在一個實施例中,SBFD-考慮UE 502是SBFD-支持UE或SBFD-感知UE。在一個示例中,當配置了SBFD時,網路用DFFFU通知所有UE,包括SBFD-考慮UE和SBFD-不感知UE,其中D表示僅DL時隙,U表示僅UL時隙,F表示靈活時隙。作為示例,UE 505(SBFD-不感知UE)處於以DL為中心的組中,並且UE 506(SBFD-不感知UE)處於以UL為中心的組中。FIG5 shows a schematic diagram of SBFD signaling transmitted to SBFD-considering UE and SBFD-unaware UE according to an embodiment of the present invention. In one novel aspect, when SBFD is activated in a wireless system, the network configures transceiver resources to SBFD-considering UE and SBFD-unaware UE based on UE capabilities using common signaling and/or dedicated signaling. As an example, gNB 501 is connected to SBFD-considering UE 502, SBFD-unaware UE 505, and SBFD-unaware UE 506. In one embodiment, SBFD-considering UE 502 is a SBFD-supporting UE or a SBFD-aware UE. In one example, when SBFD is configured, the network notifies all UEs, including SBFD-considered UEs and SBFD-unaware UEs, with DFFFU, where D represents DL-only time slots, U represents UL-only time slots, and F represents flexible time slots. As an example, UE 505 (SBFD-unaware UE) is in a DL-centric group, and UE 506 (SBFD-unaware UE) is in a UL-centric group.
在一個新穎方面,SBFD被配置用於無線網路。gNB 501希望在時域中使用具有僅DL時隙、僅UL時隙和SBFD時隙的混合體的SBFD。例如,希望的幀結構是DXXXU,其中X表示SBFD時隙。在步驟511,gNB 501用指示DFFFU的共用信令來發信號通知所有UE,包括SBFD-考慮UE 502、 SBFD-不感知UE 505和SBFD-不感知UE 506。對於SBFD-考慮UE 502,gNB向UE 502發送指示DXXXU的另一共用信令或專用信令。對於SBFD-不感知UE,gNB 501可以在SBFD時隙中調度UE 505和UE 506。在步驟551,gNB 501向以DL為中心的組中的UE 505發送指示DDDDU的專用信令。在步驟561,gNB 501向以UL為中心的組中的UE 506發送指示DUUU的專用信令。在一個實施例中,SBFD-考慮UE 502是SBFD-支援UE或SBFD-感知UE,其可以基於網路配置使用SBFD時隙中的DL和UL資源。在一個實施例中,對於使用SBFD時隙的UE,配置了兩組CSI-RS和CSI報告。In one novel aspect, SBFD is configured for a wireless network. The gNB 501 desires to use SBFD in the time domain with a mixture of DL-only timeslots, UL-only timeslots, and SBFD timeslots. For example, the desired frame structure is DXXXU, where X represents the SBFD timeslot. In step 511, the gNB 501 signals all UEs, including SBFD-considering UE 502, SBFD-unaware UE 505, and SBFD-unaware UE 506, with common signaling indicating DFFFU. For the SBFD-considering UE 502, the gNB sends another common signaling or dedicated signaling indicating DXXXU to the UE 502. For the SBFD-unaware UE, the gNB 501 may schedule UE 505 and UE 506 in the SBFD timeslot. In step 551, the gNB 501 sends dedicated signaling indicating DDDDU to the UE 505 in the DL-centric group. In step 561, the gNB 501 sends dedicated signaling indicating DUUU to the UE 506 in the UL-centric group. In one embodiment, the SBFD-considering UE 502 is a SBFD-supporting UE or a SBFD-aware UE, which can use DL and UL resources in the SBFD timeslot based on network configuration. In one embodiment, for the UE using the SBFD timeslot, two sets of CSI-RS and CSI reports are configured.
圖6示出了根據本發明實施例的用於SBFD啟用系統的DL CSI配置和CSI報告的示例性流程圖。在一個新穎方面,SBFD-考慮UE需要兩個DL CSI。UE 602與gNB 601連接。僅DL時隙和SBFD時隙的DL資源之間的干擾模式是不同的。UE在僅DL時隙上的DL接收受到小區間同通道干擾(CCI)的影響。UE在SBFD時隙的DL資源上的DL接收附加地受到小區間和社區內UE到UE子帶間CLI的影響。當調度和鏈路自我調整(Link Adaptation, LA)時,在僅DL時隙上的CSI估計不能用於SBFD時隙上的DL資源。Figure 6 shows an exemplary flow chart of DL CSI configuration and CSI reporting for a SBFD enabled system according to an embodiment of the present invention. In one novel aspect, an SBFD-considered UE requires two DL CSIs. UE 602 is connected to gNB 601. The interference pattern between the DL resources of the DL-only timeslot and the SBFD timeslot is different. The UE's DL reception on the DL-only timeslot is affected by the inter-cell co-channel interference (CCI). The UE's DL reception on the DL resources of the SBFD timeslot is additionally affected by the inter-cell and intra-community UE-to-UE subband CLI. When scheduling and link adaptation (LA) are performed, the CSI estimation on the DL-only timeslot cannot be used for the DL resources on the SBFD timeslot.
在步驟611處,gNB 601向UE 602發送兩個CSI-RS配置和兩個CSI報告配置。CSI-RS配置包括兩個主要配置,CSI-RS頻寬和CSI-RS週期性/CSI-RS非週期的。CSI-RS頻寬配置包括用於SBFD時隙的子帶CSI-RS和用於僅DL時隙的寬頻CSI-RS。在一個實施例中,SBFD時隙和僅DL時隙的CSI-RS的週期性是不同的,因為干擾簡檔(inference profile)是不同的。例如,SBFD時隙的CIS-RS的週期性高於僅DL時隙的週期性。在另一實施例中,為SBFD時隙配置非週期CSI-RS。在一個實施例中,CSI-RS配置至少包括通道測量資源(CMR)和干擾測量資源(IMR)。gNB 601為僅DL時隙和SBFD時隙的DL資源配置單獨的IMR。在一個實施例中,gNB 601給UE 602配置用於僅DL時隙和SBFD時隙的DL資源二者的相同CMR。在另一實施例中,gNB 601為僅DL時隙和SBFD時隙的DL資源配置單獨的CMR。At step 611, the gNB 601 sends two CSI-RS configurations and two CSI report configurations to the UE 602. The CSI-RS configuration includes two main configurations, CSI-RS bandwidth and CSI-RS periodicity/CSI-RS aperiodicity. The CSI-RS bandwidth configuration includes subband CSI-RS for SBFD time slots and wideband CSI-RS for DL-only time slots. In one embodiment, the periodicity of the CSI-RS for the SBFD time slot and the DL-only time slot is different because the inference profile is different. For example, the periodicity of the CSI-RS for the SBFD time slot is higher than the periodicity of the DL-only time slot. In another embodiment, aperiodic CSI-RS is configured for the SBFD time slot. In one embodiment, the CSI-RS configuration includes at least a channel measurement resource (CMR) and an interference measurement resource (IMR). The gNB 601 configures separate IMRs for DL resources of DL-only timeslots and SBFD timeslots. In one embodiment, the gNB 601 configures the UE 602 with the same CMR for both DL resources of DL-only timeslots and SBFD timeslots. In another embodiment, the gNB 601 configures separate CMRs for DL resources of DL-only timeslots and SBFD timeslots.
在步驟612,gNB 601基於CSI-RS配置,在僅DL時隙和SBFD時隙的DL資源上發送CSI-RS。在步驟621,UE 602使用CMR資源執行通道測量。在一個實施例中,為僅DL時隙和SBFD時隙的DL資源配置單獨的CMR,並且在UE處使用在僅DL時隙和SBFD時隙的DL資源上分別接收的CSI-RS來進行通道測量。在另一實施例中,為僅DL時隙和SBFD時隙的DL資源配置相同的CMR,並且在UE處使用在僅DL時隙上接收的CSI-RS來進行通道測量。在SBFD時隙的DL資源中重複使用相同的通道測量結果。在步驟622,UE 602使用用於僅DL時隙和SBFD時隙的DL資源的IMR資源來執行分開的干擾協方差測量。執行單獨的干擾協方差測量,因為預期干擾在僅DL時隙和SBFD時隙的DL資源中是不同的。在步驟623,UE 602對僅DL時隙和SBFD時隙的DL資源製作兩個CSI報告。在步驟631,UE 602基於兩個CSI報告配置來報告用於僅DL時隙和SBFD時隙的兩個DL CSI。在步驟632,gNB 601基於來自UE 602的兩個CSI報告來執行調度和LA。In step 612, the gNB 601 transmits CSI-RS on the DL resources of the DL-only time slot and the SBFD time slot based on the CSI-RS configuration. In step 621, the UE 602 performs channel measurement using the CMR resources. In one embodiment, separate CMRs are configured for the DL resources of the DL-only time slot and the SBFD time slot, and the CSI-RS received on the DL resources of the DL-only time slot and the SBFD time slot, respectively, are used at the UE for channel measurement. In another embodiment, the same CMR is configured for the DL resources of the DL-only time slot and the SBFD time slot, and the CSI-RS received on the DL-only time slot is used at the UE for channel measurement. The same channel measurement result is reused in the DL resources of the SBFD time slot. In step 622, UE 602 performs separate interference covariance measurement using IMR resources for DL resources of DL-only timeslots and SBFD timeslots. Separate interference covariance measurement is performed because the expected interference is different in DL resources of DL-only timeslots and SBFD timeslots. In step 623, UE 602 makes two CSI reports for DL resources of DL-only timeslots and SBFD timeslots. In step 631, UE 602 reports two DL CSI for DL-only timeslots and SBFD timeslots based on the two CSI reporting configurations. In step 632, gNB 601 performs scheduling and LA based on the two CSI reports from UE 602.
圖7示出了根據本發明實施例的用於SBFD啟用系統的UL SRS配置和SRS測量的示例性流程圖。在一個新穎方面,SBFD-考慮UE需要兩個UL CSI。UE 702與gNB 701連接。僅UL時隙和SBFD時隙的UL資源之間的干擾模式是不同的。gNB在僅UL時隙上的UL接收受到同通道干擾(Co-Channel Interference, CCI)的影響。gNB在SBFD時隙的UL資源上的UL接收附加地受到自干擾(SI)和gNB-gNB子帶間跨鏈路干擾(CLI)的影響。在調度和鏈路自我調整時,在僅UL時隙上估計的CSI不能用於SBFD時隙的UL資源。Figure 7 shows an exemplary flow chart for UL SRS configuration and SRS measurement for a SBFD enabled system according to an embodiment of the present invention. In one novel aspect, an SBFD-considering UE requires two UL CSIs. UE 702 is connected to gNB 701. The interference pattern between the UL resources of the UL-only timeslot and the SBFD timeslot is different. The UL reception of the gNB on the UL-only timeslot is affected by co-channel interference (CCI). The UL reception of the gNB on the UL resources of the SBFD timeslot is additionally affected by self-interference (SI) and cross-link interference (CLI) between gNB-gNB subbands. During scheduling and link self-adjustment, the CSI estimated on the UL-only timeslot cannot be used for the UL resources of the SBFD timeslot.
在步驟711處,gNB 701向UE 702發送兩個SRS配置。SRS配置包括兩個主要配置,SRS頻寬和SRS週期性/非週期SRS。SRS頻寬配置包括用於SBFD時隙的子帶SRS和用於僅UL時隙的寬頻SRS。在一個實施例中,SBFD時隙和僅UL時隙的SRS的週期性是不同的。例如,在調度和鏈路自我調整時,在僅UL時隙上估計的CSI不能用於SBFD時隙的UL資源。在另一實施例中,為SBFD時隙配置非週期SRS。每當gNB需要測量SBFD時隙的CSI時,gNB可以觸發UE進行非週期SRS傳輸。在步驟712,UE 702基於SRS配置在僅UL時隙和SBFD時隙的UL資源上發送SRS。在一個實施例中,用於CSI測量的單個SRS設定被配置用於僅UL時隙和SBFD時隙兩者。在另一實施例中,為僅UL時隙和SBFD時隙配置分開的SRS信號。At step 711, the gNB 701 sends two SRS configurations to the UE 702. The SRS configuration includes two main configurations, SRS bandwidth and SRS periodicity/aperiodic SRS. The SRS bandwidth configuration includes subband SRS for SBFD timeslots and wideband SRS for UL-only timeslots. In one embodiment, the periodicity of SRS for SBFD timeslots and UL-only timeslots is different. For example, during scheduling and link self-adjustment, the CSI estimated on the UL-only timeslot cannot be used for the UL resources of the SBFD timeslot. In another embodiment, aperiodic SRS is configured for the SBFD timeslot. Whenever the gNB needs to measure the CSI for the SBFD timeslot, the gNB can trigger the UE to perform aperiodic SRS transmission. At step 712, the UE 702 transmits SRS on UL resources of the UL-only time slot and the SBFD time slot based on the SRS configuration. In one embodiment, a single SRS setting for CSI measurement is configured for both the UL-only time slot and the SBFD time slot. In another embodiment, separate SRS signals are configured for the UL-only time slot and the SBFD time slot.
在一個實施例中,gNB 701使用用於各個UL CSI的通道和干擾協方差測量結果來估計信號與干擾加雜訊比(Signal-to-Interference-plus-Noise Ratio, SINR)。在步驟721,gNB 702使用所接收的SRS執行通道測量。在一個實施例中,單獨的SRS資源用於各個CSI測量。在另一實施例中,僅UL時隙上的SRS資源用於CSI測量兩者。在SBFD時隙的UL資源中重複使用相同的通道測量結果。在步驟722,gNB 701使用在僅UL時隙和SBFD時隙的UL資源上接收的解調基準信號(DMRS)來執行分開的干擾協方差測量。DMRS由被調度的UE在被調度的資源上發送。單獨的干擾協方差測量背後的構思是預期在僅UL時隙中和SBFD時隙的UL資源中的干擾是不同的。在步驟723,gNB 701對於僅UL時隙和SBFD時隙執行有效SINR確定。對各個子帶進行SINR估計。gNB使用所估計的SINR來計算物理上行共用通道(PUSCH)資源的有效SINR。估計PUSCH和SRS之間的功率密度偏移(Power Density Offset, PDO)。通過將PDO應用於所估計的SINR來計算有效SINR。In one embodiment, gNB 701 estimates the Signal-to-Interference-plus-Noise Ratio (SINR) using channel and interference covariance measurement results for each UL CSI. In step 721, gNB 702 performs channel measurement using the received SRS. In one embodiment, a separate SRS resource is used for each CSI measurement. In another embodiment, SRS resources on the UL-only timeslot are used for both CSI measurements. The same channel measurement results are reused in the UL resources of the SBFD timeslot. In step 722, gNB 701 performs separate interference covariance measurement using a demodulation reference signal (DMRS) received on the UL resources of the UL-only timeslot and the SBFD timeslot. DMRS is sent by the scheduled UE on the scheduled resources. The idea behind separate interference covariance measurements is that the interference in the UL resources in UL-only timeslots and SBFD timeslots is expected to be different. In step 723, the gNB 701 performs effective SINR determination for UL-only timeslots and SBFD timeslots. SINR estimation is performed for each subband. The gNB uses the estimated SINR to calculate the effective SINR of the physical uplink shared channel (PUSCH) resources. The Power Density Offset (PDO) between PUSCH and SRS is estimated. The effective SINR is calculated by applying the PDO to the estimated SINR.
在步驟731,gNB 701基於兩個UL CSI執行UL調度和鏈路自我調整。調度和LA是根據時隙類型基於SINR來確定的。gNB 701向被調度的UE 702授予UL調度資訊。In step 731, gNB 701 performs UL scheduling and link self-adjustment based on the two UL CSIs. Scheduling and LA are determined based on SINR according to the time slot type. gNB 701 grants UL scheduling information to the scheduled UE 702.
圖8示出了根據本發明實施例的利用在多個SBFD時隙上的重複傳輸進行覆蓋擴展的示意圖。在一個新穎方面中,多個SBFD時隙用於重複傳輸。可以通過使用多個SBFD時隙上的傳輸重複來擴展上行覆蓋。如圖所示,SBFD啟用幀結構包括僅DL時隙811、SBFD時隙812和僅UL時隙813。作為示例,SBFD時隙的上行資源821、822和823是為UE分配的三個連續的SBFD時隙。配置了第一SBFD時隙(資源821)來發送新的傳輸塊,並在接下來的兩個SBFD時隙(資源822和823)上重複相同的傳輸塊。gNB可以接收並組合所有三個接收以實現較好的解碼。該方案可以增加用於社區邊緣UE的上行覆蓋。在一個實施例820中,在gNB處跨多個SBFD時隙的UL資源應用聯合通道估計(JCE)。JCE可以改善通道估計品質。由於僅UL時隙和SBFD時隙的發送功率的差異、僅UL時隙和SBFD時隙的干擾電平的差異、以及僅UL時隙和SBFD時隙上的相位不連續性,不能跨僅UL時隙和SBFD時隙來應用JCE。可以跨多個SBFD時隙來應用JCE,因為預期在SBFD時隙中發送功率、干擾功率和相位連續性是相似的。FIG8 shows a schematic diagram of coverage extension using repeated transmissions on multiple SBFD time slots according to an embodiment of the present invention. In one novel aspect, multiple SBFD time slots are used for repeated transmissions. Uplink coverage can be extended by using transmission repetitions on multiple SBFD time slots. As shown in the figure, the SBFD-enabled frame structure includes only DL time slots 811, SBFD time slots 812, and only UL time slots 813. As an example, uplink resources 821, 822, and 823 of the SBFD time slots are three consecutive SBFD time slots allocated to the UE. The first SBFD time slot (resource 821) is configured to send a new transmission block, and the same transmission block is repeated on the next two SBFD time slots (resources 822 and 823). The gNB may receive and combine all three receptions for better decoding. This scheme may increase uplink coverage for community edge UEs. In one embodiment 820, joint channel estimation (JCE) is applied at the gNB across UL resources of multiple SBFD time slots. JCE may improve channel estimation quality. JCE may not be applied across UL-only time slots and SBFD time slots due to the difference in transmit power between UL-only time slots and SBFD time slots, the difference in interference levels between UL-only time slots and SBFD time slots, and the phase discontinuity across UL-only time slots and SBFD time slots. JCE may be applied across multiple SBFD time slots because transmit power, interference power, and phase continuity are expected to be similar in SBFD time slots.
圖9示出了根據本發明實施例的利用為僅UL時隙和SBFD時隙配置的不同UL功率控制參數進行的上行控制的示意圖。在一個新穎方面中,對於UL功率控制,配置了兩個功率控制參數集,一個功率控制參數集用於僅UL時隙,另一功率控制參數集用於SBFD時隙。在步驟901,用僅UL時隙和SBFD時隙對UE進行配置。在步驟910,配置用於僅UL時隙的第一功率控制參數集,包括P_0_U 911和P_boost_U 912中的至少一個。在步驟920,配置用於SBFD時隙的第二功率控制參數集,包括P_0_SBFD 921和P_boost_SBFD 922中的至少一個。在一個實施例中,第一功率控制參數集不同於第二功率控制參數集。在一個實施例中,SBFD時隙需要功率提升以確保較好的覆蓋並克服重(heavy)SI和gNB-gNB CLI。為了實現功率提升,在一個實施例中,對僅UL時隙和SBFD時隙使用諸如P_0和α的不同功率控制參數。在另一實施例中,gNB用信號通知明確的功率提升值P_boost。在又一實施例中,使用閉環功率控制。為了累積TPC,對於僅UL時隙和SBFD時隙分別執行累積。對於絕對TPC,僅可實現最大+4dB。在一個實施例中,基於CLI測量結果來優化P_0參數。假設了P_0_U 911。與CLI-RSSI測量結果成比例對P_0_SBFD 921進行如下調節: 其中,I_SB和I_U是由UE測量的在SBFD時隙和僅UL時隙中的CLI-RSSI測量結果,R_SB和R_U是從其他UE測量的在SBFD時隙和僅UL時隙中的SRS-RSRP測量結果之和。為了得到較好的網路UL輸送量,微調兩個調節量a和b。在步驟930,基於第一功率控制參數集和第二功率控制參數集執行功率控制。在一個實施例中,進一步基於相應的功率控制假設UL CSI測量結果和LA(排序(Rank)和MCS)。 FIG9 shows a schematic diagram of uplink control using different UL power control parameters configured for UL-only timeslots and SBFD timeslots according to an embodiment of the present invention. In one novel aspect, for UL power control, two power control parameter sets are configured, one power control parameter set for UL-only timeslots and the other power control parameter set for SBFD timeslots. In step 901, a UE is configured with UL-only timeslots and SBFD timeslots. In step 910, a first power control parameter set for UL-only timeslots is configured, including at least one of P_0_U 911 and P_boost_U 912. In step 920, a second power control parameter set for SBFD timeslots is configured, including at least one of P_0_SBFD 921 and P_boost_SBFD 922. In one embodiment, the first set of power control parameters is different from the second set of power control parameters. In one embodiment, the SBFD timeslots require power boosting to ensure better coverage and overcome heavy SI and gNB-gNB CLI. To achieve the power boost, in one embodiment, different power control parameters such as P_0 and α are used for UL-only timeslots and SBFD timeslots. In another embodiment, the gNB signals an explicit power boost value P_boost. In yet another embodiment, closed-loop power control is used. For accumulated TPC, accumulation is performed separately for UL-only timeslots and SBFD timeslots. For absolute TPC, only a maximum of +4dB can be achieved. In one embodiment, the P_0 parameter is optimized based on CLI measurement results. P_0_U 911 is assumed. Proportional to the CLI-RSSI measurement result, P_0_SBFD 921 is adjusted as follows: Wherein, I_SB and I_U are CLI-RSSI measurement results measured by the UE in the SBFD time slot and the UL-only time slot, and R_SB and R_U are the sum of SRS-RSRP measurement results measured from other UEs in the SBFD time slot and the UL-only time slot. In order to obtain better network UL throughput, the two adjustment amounts a and b are fine-tuned. In step 930, power control is performed based on the first power control parameter set and the second power control parameter set. In one embodiment, UL CSI measurement results and LA (rank and MCS) are further assumed based on the corresponding power control.
圖10示出了根據本發明實施例的UE對SBFD啟用通道執行CSI的示例性流程圖。在步驟1001,UE接收用於僅下行(DL)時隙的第一通道狀態資訊(CSI)基準信號(RS)配置和用於子帶全雙工(SBFD)時隙的第二CSI-RS配置,並且其中,各個CSI-RS配置包括用於通道測量資源(CMR)和干擾測量資源(IMR)的配置。在一個實施例中,UE是SBFD-考慮UE。在步驟1002,UE基於第一CSI-RS配置和第二CSI-RS配置,在僅DL時隙和SBFD時隙的DL資源上接收CSI-RS信號。在步驟1003,UE進行CSI-RS信號的通道狀態資訊(CSI)測量。Figure 10 shows an exemplary flow chart of a UE performing CSI on a SBFD-enabled channel according to an embodiment of the present invention. In step 1001, the UE receives a first channel state information (CSI) reference signal (RS) configuration for a downlink (DL) time slot only and a second CSI-RS configuration for a sub-band full duplex (SBFD) time slot, and wherein each CSI-RS configuration includes a configuration for a channel measurement resource (CMR) and an interference measurement resource (IMR). In one embodiment, the UE is a SBFD-considering UE. In step 1002, the UE receives a CSI-RS signal on DL resources of a DL-only time slot and a SBFD time slot based on the first CSI-RS configuration and the second CSI-RS configuration. In step 1003, the UE performs channel state information (CSI) measurement of the CSI-RS signal.
圖11示出了根據本發明實施例的gNB對SBFD啟用通道執行CSI的示例性流程圖。在步驟1101,gNB配置用於僅上行(UL)時隙的第一探測基準信號(SRS)配置和用於子帶全雙工(SBFD)時隙的第二SRS配置。在步驟1102,gNB向無線網路中的一個或更多個UE發送第一SRS配置和第二SRS配置。在步驟1103,gNB基於第一SRS配置和第二SRS配置,在僅UL時隙和SBFD時隙的UL資源上接收SRS信號。在步驟1104,gNB基於所接收的SRS信號使用通道測量結果和干擾協方差來估計兩個UL通道狀態資訊(CSI)。Figure 11 shows an exemplary flow chart of a gNB performing CSI on a SBFD-enabled channel according to an embodiment of the present invention. In step 1101, the gNB configures a first sounding reference signal (SRS) configuration for an uplink-only (UL) time slot and a second SRS configuration for a sub-band full duplex (SBFD) time slot. In step 1102, the gNB sends the first SRS configuration and the second SRS configuration to one or more UEs in a wireless network. In step 1103, the gNB receives SRS signals on UL resources of a UL-only time slot and a SBFD time slot based on the first SRS configuration and the second SRS configuration. In step 1104, the gNB estimates two UL channel state information (CSI) based on the received SRS signal using channel measurement results and interference covariance.
圖12示出了根據本發明實施例的UE對SBFD啟用通道執行UL功率控制的示例性流程圖。在步驟1201,UE接收用於僅上行(UL)時隙的第一功率控制參數集和用於子帶全雙工(SBFD)時隙的第二功率控制參數集。在步驟1202,UE基於第一功率控制參數集和第二功率控制參數集執行功率控制。FIG12 shows an exemplary flow chart of a UE performing UL power control on an SBFD enabled channel according to an embodiment of the present invention. In step 1201, the UE receives a first power control parameter set for an uplink only (UL) time slot and a second power control parameter set for a sub-band full duplex (SBFD) time slot. In step 1202, the UE performs power control based on the first power control parameter set and the second power control parameter set.
應當理解,所揭露的程序/流程圖中的區塊的特定順序或層級是示例性方法的示意圖示。基於設計偏好,應當理解,可以重新佈置程序/流程圖中的區塊的特定順序或層級。此外,一些區塊可以被組合或省略。所附方法請求項以樣本次序呈現各個區塊的元素,且不意在限制於所呈現的特定次序或層級。It should be understood that the specific order or hierarchy of blocks in the disclosed process/flowchart is a schematic illustration of an exemplary method. Based on design preferences, it should be understood that the specific order or hierarchy of blocks in the process/flowchart can be rearranged. In addition, some blocks can be combined or omitted. The attached method claims present the elements of each block in a sample order and are not intended to be limited to the specific order or hierarchy presented.
提供前面的描述以使本領域技術人員能夠實踐本文描述的各個實施例。對這些實施例的各種修改對於本領域技術人員將是顯而易見的,並且本文定義的一般原理可以應用於其他實施例。因此,請求項不旨在限於本文所示的實施例,而是被賦予與語言請求項一致的全部範圍,其中對單數形式的元素的引用不旨在意指「一個和僅一個」(除非具體如此陳述),而是「一個或多個」。詞語「示例性」在本文中意指「用作示例、實例或例示」。本文中描述為「示例性的」的任何實施例不一定被解釋為比其他實施例更優選或有利。除非另外特別說明,否則術語「一些」是指一個或多個。諸如「A、B或C中的至少一個」、 「A、B或C中的一個或多個」、 「A、B和C中的至少一個」、 「A、B和C中的一個或多個」和「A、B、C或其任何組合」的組合包括A、B及/或C的任何組合,並且可以包括A的倍數、B的倍數或C的倍數。具體地,諸如「A、B或C中的至少一個」、 「A、B或C中的一個或多個」、 「A、B和C中的至少一個」、 「A、B和C中的一個或多個」和「A、B、C或其任何組合」的組合可以僅是A、僅B、僅C、A和B、A和C、B和C、或A和B和C,其中任何這樣的組合可以包括A、B或C的一個或多個成員或多個成員。本領域普通技術人員已知或稍後將已知的、貫穿本發明描述的各個實施例的元素的所有結構和功能等同物通過引用明確地併入本文並且旨在由請求項涵蓋。此外,本文所揭露的任何內容都不旨在專用於公眾,而不管在請求項中是否明確記載了這樣的揭露內容。詞語「模組」、 「機制」、 「元素」、 「設備」等不能代替詞語「裝置」。因此,除非使用短語「裝置」明確陳述該元素,否則請求項元素不得被解釋為裝置加功能。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing description is provided to enable those skilled in the art to practice the various embodiments described herein. Various modifications to these embodiments will be apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments. Therefore, the claims are not intended to be limited to the embodiments shown herein, but are given the full scope consistent with the language claims, wherein references to elements in the singular are not intended to mean "one and only one" (unless specifically stated), but "one or more". The word "exemplary" means "serving as an example, instance, or illustration" in this article. Any embodiment described as "exemplary" herein is not necessarily to be construed as being preferred or advantageous over other embodiments. Unless otherwise specifically stated, the term "some" refers to one or more. Combinations such as “at least one of A, B, or C,” “one or more of A, B, or C,” “at least one of A, B and C,” “one or more of A, B, and C,” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C,” “one or more of A, B, or C,” “at least one of A, B, and C,” “one or more of A, B, and C,” and “A, B, C, or any combination thereof” may be only A, only B, only C, A and B, A and C, B and C, or A and B and C, wherein any such combination may include one or more members or multiple members of A, B, or C. All structural and functional equivalents of the elements of the various embodiments described herein that are known or later known to a person of ordinary skill in the art are expressly incorporated herein by reference and are intended to be covered by the claims. In addition, nothing disclosed herein is intended to be exclusive to the public, regardless of whether such disclosure is expressly recorded in the claims. The words "module", "mechanism", "element", "equipment", etc. cannot replace the word "device". Therefore, unless the element is expressly stated using the phrase "device", the claim element shall not be interpreted as a device plus function. The above is only a preferred embodiment of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall be covered by the present invention.
100:無線網路 121,411,461,462,501,601,701:gNB 110,415,416,465,466,467,602,702:使用者設備(UE) 120:操作接入網 130:核心網 160,180:控制功能模組和電路 161:配置和控制電路 170,190:程式指令和資料 172:記憶體 173,193:處理器 176,196:射頻(RF)收發器模組 177,197:天線 181:SBFD-支持gNB 182,502:SBFD-考慮UE 183,505,506:SBFD-不感知UE 185:SBFD-支持UE 186:SBFD-感知UE 310,320:SBFD幀結構 311,321,811:僅DL時隙 312,322,812:SBFD時隙 313,323,813:僅UL鏈路時隙 410:單社區SBFD情形 431,481:社區內CLI 482,484,485:社區間 432,483:自干擾(Self-Interference,SI) 460:多社區SBFD情形 462:相鄰社區gNB 502:SBFD-考慮UE 611,612,621,622,623,631,632,711,712,721,722,723,731,901,910,920,930,1001,1002,1003,1101,1102,1103,1104,1201,1202:步驟 821,822,823:資源 911,912:第一功率控制參數集 921,922:第二功率控制參數集 100: Wireless network 121,411,461,462,501,601,701: gNB 110,415,416,465,466,467,602,702: User equipment (UE) 120: Operational access network 130: Core network 160,180: Control function modules and circuits 161: Configuration and control circuits 170,190: Program instructions and data 172: Memory 173,193: Processor 176,196: Radio frequency (RF) transceiver module 177,197: Antenna 181: SBFD-support gNB 182,502: SBFD-consider UE 183,505,506:SBFD-unaware UE 185:SBFD-supporting UE 186:SBFD-aware UE 310,320:SBFD frame structure 311,321,811:DL time slot only 312,322,812:SBFD time slot 313,323,813:UL link time slot only 410:Single community SBFD scenario 431,481:Intra-community CLI 482,484,485:Inter-community 432,483:Self-Interference (SI) 460:Multi-community SBFD scenario 462:Neighboring community gNB 502:SBFD-considering UE 611,612,621,622,623,631,632,711,712,721,722,723,731,901,910,920,930,1001,1002,1003,1101,1102,1103,1104,1201,1202: steps 821,822,823: resources 911,912: first power control parameter set 921,922: second power control parameter set
圖1示出根據本發明實施例的配置有支援優化操作的SBFD的示例性無線網路的示意性系統圖。 圖2是根據本發明實施例的gNB和UE的簡化框圖。 圖3示出了根據本發明實施例的子帶全雙工幀結構的不同配置的示意圖。 圖4示出了根據本發明實施例的包括單社區SBFD和多社區SBFD情形的SBFD部署情形的示意圖。 圖5示出了根據本發明實施例的SBFD信令傳送到SBFD-考慮UE和SBFD-非感知UE的的示意圖。 圖6示出了根據本發明實施例的用於SBFD啟用系統的DL CSI配置和CSI報告的示例性流程圖。 圖7示出了根據本發明實施例的用於SBFD啟用系統的UL SRS配置和SRS測量的示例性流程圖。 圖8示出了根據本發明實施例的利用在多個SBFD時隙上的重複傳輸進行覆蓋擴展的示意圖。 圖9示出了根據本發明實施例的利用為僅UL時隙和SBFD時隙配置的不同UL功率控制參數進行的上行控制的示意圖。 圖10示出了根據本發明實施例的UE對SBFD啟用通道執行CSI的示例性流程圖。 圖11示出了根據本發明實施例的gNB對SBFD啟用通道執行CSI的示例性流程圖。 圖12示出了根據本發明實施例的UE對SBFD啟用通道執行UL功率控制的示例性流程圖。 FIG. 1 shows a schematic system diagram of an exemplary wireless network configured with SBFD supporting optimized operation according to an embodiment of the present invention. FIG. 2 is a simplified block diagram of a gNB and a UE according to an embodiment of the present invention. FIG. 3 shows a schematic diagram of different configurations of a subband full-duplex frame structure according to an embodiment of the present invention. FIG. 4 shows a schematic diagram of SBFD deployment scenarios including single-community SBFD and multi-community SBFD scenarios according to an embodiment of the present invention. FIG. 5 shows a schematic diagram of SBFD signaling transmitted to SBFD-considering UEs and SBFD-unaware UEs according to an embodiment of the present invention. FIG. 6 shows an exemplary flow chart of DL CSI configuration and CSI reporting for an SBFD-enabled system according to an embodiment of the present invention. FIG. 7 shows an exemplary flow chart of UL SRS configuration and SRS measurement for an SBFD-enabled system according to an embodiment of the present invention. FIG8 shows a schematic diagram of coverage extension using repeated transmission on multiple SBFD time slots according to an embodiment of the present invention. FIG9 shows a schematic diagram of uplink control using different UL power control parameters configured for UL-only time slots and SBFD time slots according to an embodiment of the present invention. FIG10 shows an exemplary flow chart of CSI performed by a UE on an SBFD activation channel according to an embodiment of the present invention. FIG11 shows an exemplary flow chart of CSI performed by a gNB on an SBFD activation channel according to an embodiment of the present invention. FIG12 shows an exemplary flow chart of UL power control performed by a UE on an SBFD activation channel according to an embodiment of the present invention.
310,320:SBFD幀結構 310,320: SBFD frame structure
311,321,811:僅DL時隙 311,321,811: DL time slot only
312,322,812:SBFD時隙 312,322,812: SBFD time slot
313,323,813:僅UL鏈路時隙 313,323,813: UL link time slot only
Claims (15)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN202221066337 | 2022-11-18 | ||
IN202221066337 | 2022-11-18 | ||
US18/508,169 US20240178967A1 (en) | 2022-11-18 | 2023-11-13 | Methods of two downlink channel state information and two uplink channel state information for full duplex system |
US18/508,169 | 2023-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202425587A true TW202425587A (en) | 2024-06-16 |
Family
ID=92539909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112144421A TW202425587A (en) | 2022-11-18 | 2023-11-17 | Methods of two downlink channel state information and two uplink channel state information for full duplex system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW202425587A (en) |
-
2023
- 2023-11-17 TW TW112144421A patent/TW202425587A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240323858A1 (en) | Sounding reference signal power control for multiple input multiple output wireless system | |
JP7364004B2 (en) | Instruction method, device and communication system for measuring purpose of channel state information | |
US10148335B2 (en) | Method and apparatus for determining optimal beam in a multi-input multi-output system | |
US10050734B2 (en) | Network node and method for enabling interference alignment of transmissions to user equipments | |
CN112703685B (en) | Mitigation of calibration errors | |
US8442579B2 (en) | Distributed adaptive resource allocation to enhance cell edge throughput | |
US11658706B2 (en) | CSI processing for fine CSI granularity | |
KR101578133B1 (en) | Inter-cell interference avoidance for downlink transmission | |
EP3860091B1 (en) | Information receiving method and device and information sending method and device | |
US12069592B2 (en) | Data transmission method and device | |
EP4144122A1 (en) | Multiple channel quality indicator (cqi) reports for link adaptation | |
US11817929B2 (en) | Channel state information measurement method and apparatus and network side device | |
WO2021221963A9 (en) | Multiple channel state feedback reports for mu-mimo scheduling assistance | |
US20210399783A1 (en) | Method and apparatus for uplink transmit beam selection | |
WO2021109137A1 (en) | Robustness considerations for 2-stage dci for frequency domain compressed uplink subband precoding | |
US20230327798A1 (en) | Link adaptation method and device for dynamic time division duplex in wireless communication system | |
WO2020215328A1 (en) | Configuration of intermediate set size for frequency domain basis reporting | |
TW202425587A (en) | Methods of two downlink channel state information and two uplink channel state information for full duplex system | |
CN111194040B (en) | Method and device for reporting beam | |
US20240178967A1 (en) | Methods of two downlink channel state information and two uplink channel state information for full duplex system | |
CN118057755A (en) | Method for channel state information for full duplex system | |
WO2021243632A1 (en) | Decoupled port selection and coefficients reporting | |
CN109802786B (en) | User equipment and channel measuring method | |
US20240032009A1 (en) | Iab indication method, device, and medium | |
CN117254889A (en) | Beam information determining method and device and communication equipment |