TW202424584A - Fabrication of high-index encapsulated grating designs - Google Patents

Fabrication of high-index encapsulated grating designs Download PDF

Info

Publication number
TW202424584A
TW202424584A TW112130450A TW112130450A TW202424584A TW 202424584 A TW202424584 A TW 202424584A TW 112130450 A TW112130450 A TW 112130450A TW 112130450 A TW112130450 A TW 112130450A TW 202424584 A TW202424584 A TW 202424584A
Authority
TW
Taiwan
Prior art keywords
refractive index
optical element
layer
output coupler
covering
Prior art date
Application number
TW112130450A
Other languages
Chinese (zh)
Inventor
楊建基
大衛 塞爾
薩馬斯 巴爾嘉瓦
倉富敬
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202424584A publication Critical patent/TW202424584A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00769Producing diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Embodiments described herein relate to an outcoupler of a waveguide combiner includes a plurality of optical device structures and an overburden layer. The optical structures are disposed in or on an optical device substrate. The plurality of optical device structures have a structure refractive index less than or equal to 2.0. The overburden layer is disposed over a top surface and sidewalls of each optical device structure of the plurality of optical device structures. The overburden layer has an overburden refractive index greater than or equal to 2.0. A refractive index contrast between the overburden refractive index and the structure refractive index is about 0.3 to about 0.5. An overburden thickness variation is less than or equal to 20 nm. The overburden thickness variation is a difference between a maximum point and a minimum point of an uppermost surface of the overburden layer.

Description

高折射率包封光柵設計之製造Fabrication of high refractive index encapsulated grating design

本揭露案的實施例大致上關於用於擴增實境、虛擬實境及混合實境的波導組合器。更具體地,此處所述的實施例提供波導組合器的輸出耦合器以及形成波導組合器的輸出耦合器的方法。Embodiments of the present disclosure generally relate to waveguide combiners for augmented reality, virtual reality, and mixed reality. More specifically, embodiments described herein provide an output coupler of a waveguide combiner and a method of forming an output coupler of a waveguide combiner.

虛擬實境通常被認為是電腦生成的模擬環境,使用者在其中具有明顯的實體存在感。虛擬實境體驗可以以3D形式產生並以頭戴式顯示器(HMD)觀看,例如眼鏡或其他具有近眼顯示面板作為透鏡的可穿戴顯示元件,以顯示替代實際環境的虛擬實境環境。Virtual reality is generally considered to be a computer-generated simulated environment in which the user has a distinct sense of physical presence. The virtual reality experience can be generated in 3D and viewed with a head-mounted display (HMD), such as glasses or other wearable display elements with near-eye display panels as lenses to display a virtual reality environment that replaces the real environment.

然而,擴增實境帶來的體驗是,使用者仍然可以透過眼鏡或其他HMD元件的顯示鏡頭查看周圍環境,也可以看到生成的作為環境一部分出現的虛擬物件的影像。擴增實境可以包括任何類型的輸入,例如音訊及觸覺輸入,以及強化或增強使用者體驗的環境的虛擬影像、圖形及視訊。作為一項新興技術,擴增實境存在許多挑戰及設計限制。However, the augmented reality experience is that the user can still view the surrounding environment through the display lens of the glasses or other HMD components, and can also see the generated images of virtual objects that appear as part of the environment. Augmented reality can include any type of input, such as audio and tactile input, as well as virtual images, graphics, and video of the environment that enhance or enhance the user's experience. As an emerging technology, augmented reality has many challenges and design limitations.

其中一項挑戰是在周圍環境上疊加顯示虛擬影像。波導組合器的輸出耦合器,例如擴增實境波導組合器,用於輔助疊加影像。產生的光藉由波導組合器傳播直到輸出耦合器並疊加在周圍環境上。因此,本領域需要的是波導組合器的輸出耦合器以及形成波導組合器的輸出耦合器的方法。One of the challenges is to overlay a virtual image on the surrounding environment. An output coupler of a waveguide combiner, such as an augmented reality waveguide combiner, is used to assist in overlaying the image. The light generated propagates through the waveguide combiner until the output coupler and is overlaid on the surrounding environment. Therefore, what is needed in the art is an output coupler of a waveguide combiner and a method of forming an output coupler of a waveguide combiner.

在一個實施例中,波導組合器的輸出耦合器包括複數個光學元件結構及覆蓋層。光學結構設置在光學元件基板之中或之上。複數個光學元件結構具有小於或等於2.0的結構折射率。覆蓋層設置在複數個光學元件結構中的每個光學元件結構的頂表面及側壁上方。覆蓋層具有大於或等於2.0的覆蓋折射率。覆蓋折射率及結構折射率之間的折射率對比為約0.3至約0.5。覆蓋厚度變化小於或等於20nm。覆蓋厚度變化是覆蓋層的最上表面的最大點及最小點之間的差值。In one embodiment, the output coupler of the waveguide combiner includes a plurality of optical element structures and a covering layer. The optical structure is disposed in or on an optical element substrate. The plurality of optical element structures have a structural refractive index less than or equal to 2.0. The covering layer is disposed above the top surface and sidewalls of each of the plurality of optical element structures. The covering layer has a covering refractive index greater than or equal to 2.0. The refractive index contrast between the covering refractive index and the structural refractive index is about 0.3 to about 0.5. The covering thickness variation is less than or equal to 20 nm. The covering thickness variation is the difference between the maximum point and the minimum point of the uppermost surface of the covering layer.

在另一個實施例中,公開了一種形成波導組合器的輸出耦合器的方法。該方法包括在光學元件基板之中或之上形成複數個光學元件結構,該複數個光學元件結構具有小於或等於2.0的結構折射率;及在複數個光學元件結構中的每個光學元件結構的頂表面及側壁上方沉積覆蓋層,該覆蓋層具有大於或等於2.0的覆蓋折射率。覆蓋折射率及結構折射率之間的折射率對比為約0.3至約0.5。覆蓋厚度變化小於或等於20nm。覆蓋厚度變化是覆蓋層的最上表面的最大點及最小點之間的差值。In another embodiment, a method of forming an output coupler of a waveguide combiner is disclosed. The method includes forming a plurality of optical element structures in or on an optical element substrate, the plurality of optical element structures having a structural refractive index less than or equal to 2.0; and depositing a capping layer over a top surface and sidewalls of each of the plurality of optical element structures, the capping layer having a capping refractive index greater than or equal to 2.0. The refractive index contrast between the capping refractive index and the structural refractive index is about 0.3 to about 0.5. The capping thickness variation is less than or equal to 20 nm. The capping thickness variation is the difference between a maximum point and a minimum point of the uppermost surface of the capping layer.

在另一個實施例中,波導組合器的輸出耦合器包括複數個光學元件結構、封裝層及覆蓋層。複數個光學元件結構形成在光學元件基板之中或之上。複數個光學元件結構具有大於或等於2.0的結構折射率。封裝層設置在複數個光學元件結構中的每個光學元件結構的頂表面及側壁之上。封裝層具有小於或等於2.0的封裝折射率。封裝折射率與結構折射率之間的第一折射率對比為約0.3至約0.5。覆蓋層設置在封裝層上方。覆蓋層具有大於或等於2.0的覆蓋折射率。封裝折射率與覆蓋折射率之間的第二折射率對比為約0.3及約0.5。覆蓋厚度變化小於或等於20nm。覆蓋厚度變化是覆蓋層的最上表面的最大點及最小點之間的差值。In another embodiment, the output coupler of the waveguide combiner includes a plurality of optical element structures, a packaging layer and a covering layer. The plurality of optical element structures are formed in or on an optical element substrate. The plurality of optical element structures have a structural refractive index greater than or equal to 2.0. The packaging layer is disposed on the top surface and side walls of each of the plurality of optical element structures. The packaging layer has a packaging refractive index less than or equal to 2.0. A first refractive index contrast between the packaging refractive index and the structural refractive index is about 0.3 to about 0.5. The covering layer is disposed above the packaging layer. The covering layer has a covering refractive index greater than or equal to 2.0. A second refractive index contrast between the packaging refractive index and the covering refractive index is about 0.3 and about 0.5. The coverage thickness variation is less than or equal to 20nm. The coverage thickness variation is the difference between the maximum point and the minimum point on the top surface of the coverage layer.

在另一個實施例中,公開了一種形成波導組合器的輸出耦合器的方法。該方法包括形成設置在光學元件基板之上或之中的複數個光學元件結構;在複數個光學元件結構中的每個光學元件結構的頂表面及側壁上方沉積封裝層;以及在封裝層上沉積覆蓋層。複數個光學元件結構具有大於或等於2.0的結構折射率。封裝層具有小於或等於2.0的封裝折射率。封裝折射率與結構折射率之間的第一折射率對比為約0.3至約0.5。覆蓋折射率大於或等於2.0。覆蓋折射率與封裝折射率之間的第二折射率對比為約0.3至約0.5。覆蓋厚度變化小於20nm,其中覆蓋厚度變化是覆蓋層的最上表面的最大點及最小點之間的差值。In another embodiment, a method of forming an output coupler of a waveguide combiner is disclosed. The method includes forming a plurality of optical element structures disposed on or in an optical element substrate; depositing a packaging layer over a top surface and a side wall of each of the plurality of optical element structures; and depositing a covering layer on the packaging layer. The plurality of optical element structures have a structural refractive index greater than or equal to 2.0. The packaging layer has a packaging refractive index less than or equal to 2.0. A first refractive index contrast between the packaging refractive index and the structural refractive index is about 0.3 to about 0.5. The covering refractive index is greater than or equal to 2.0. A second refractive index contrast between the covering refractive index and the packaging refractive index is about 0.3 to about 0.5. The coverage thickness variation is less than 20 nm, where the coverage thickness variation is the difference between the maximum point and the minimum point on the top surface of the coverage layer.

本揭露案的實施例大致上關於用於擴增實境、虛擬實境及混合實境的波導組合器。更具體地,此處所述的實施例提供波導組合器的輸出耦合器以及形成波導組合器的輸出耦合器的方法。Embodiments of the present disclosure generally relate to waveguide combiners for augmented reality, virtual reality, and mixed reality. More specifically, embodiments described herein provide an output coupler of a waveguide combiner and a method of forming an output coupler of a waveguide combiner.

圖1A是波導組合器100的示意性頂視圖。波導組合器100用於擴增實境、虛擬實境及混合實境。波導組合器100包括設置在光學元件基板101的表面103上的複數個光學元件結構102。光學元件結構102可以是具有次微米維度(例如,奈米尺寸的維度)的奈米結構。波導組合器100至少包括輸入耦合器104A及輸出耦合器104C。根據可與此處所述的其他實施例組合的實施例的波導組合器100包括瞳孔擴展器104B。FIG. 1A is a schematic top view of a waveguide combiner 100. The waveguide combiner 100 is used for augmented reality, virtual reality, and mixed reality. The waveguide combiner 100 includes a plurality of optical element structures 102 disposed on a surface 103 of an optical element substrate 101. The optical element structures 102 may be nanostructures having sub-micrometer dimensions (e.g., nanometer-sized dimensions). The waveguide combiner 100 includes at least an input coupler 104A and an output coupler 104C. The waveguide combiner 100 according to an embodiment that may be combined with other embodiments described herein includes a pupil dilator 104B.

光學元件基板101可以由任何適當的材料形成,只要光學元件基板101能夠充分地傳輸期望波長或波長範圍內的光並且能夠供以作為此處所述的波導組合器100的充分支撐。在可與此處所述的其他實施例組合的一些實施例中,光學元件基板101的材料具有與複數個光學元件結構102的折射率相比相對較低的折射率。光學元件基板101選擇可以包括任何合適材料的基板,包括但不限於非晶介電質、非非晶介電質、晶體介電質、氧化矽、聚合物及其組合。在可與此處所述的其他實施例組合的一些實施例中,光學元件基板101包括透明材料。在一個範例中,光學元件基板101包括矽(Si)、二氧化矽(SiO 2)、碳化矽(SiC)、鍺(Ge)、矽鍺(SiGe)、磷化銦(InP)、砷化鎵(GaAs)、氮化鎵(GaN)、熔融二氧化矽、石英、藍寶石以及高折射率玻璃等高折射率透明材料。形成在光學元件基板101之中或之上的光學元件結構102包括氮化矽(SiN)、氮氧化矽(SiON)、氧化鋁(Al 2O 3)、氧化矽(SiO 2)、二氧化鈦(TiO 2)、氧化鈮(V)(Ni 2O 5)、氮化矽(SiN)、氧化鉭(V)(Ta 2O 5)或其組合。 The optical element substrate 101 may be formed of any suitable material, as long as the optical element substrate 101 is capable of sufficiently transmitting light within a desired wavelength or wavelength range and is capable of providing sufficient support for the waveguide combiner 100 described herein. In some embodiments that may be combined with other embodiments described herein, the material of the optical element substrate 101 has a relatively low refractive index compared to the refractive index of the plurality of optical element structures 102. The optical element substrate 101 may be selected to include a substrate of any suitable material, including but not limited to amorphous dielectrics, non-amorphous dielectrics, crystalline dielectrics, silicon oxide, polymers, and combinations thereof. In some embodiments that may be combined with other embodiments described herein, the optical element substrate 101 includes a transparent material. In one example, the optical device substrate 101 includes a high refractive index transparent material such as silicon (Si), silicon dioxide (SiO 2 ), silicon carbide (SiC), germanium (Ge), silicon germanium (SiGe), indium phosphide (InP), gallium arsenide (GaAs), gallium nitride (GaN), fused silicon dioxide, quartz, sapphire, and high refractive index glass. The optical device structure 102 formed in or on the optical device substrate 101 includes silicon nitride (SiN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), titanium dioxide (TiO 2 ), niobium (V) oxide (Ni 2 O 5 ), silicon nitride (SiN), tantalum (V) oxide (Ta 2 O 5 ) or a combination thereof.

圖1B是波導組合器100的輸出耦合器104C的一部分的示意性剖面圖。輸出耦合器104C包括設置在光學元件基板101之中或之上的複數個光學元件結構102。複數個光學元件結構102具有小於或等於2.0的結構折射率。在一個實施例中,複數個光學元件結構102的材料可以包括氮化矽(SiN)、氮氧化矽(SiON)、氧化鋁(Al 2O 3)、氧化矽(SiO 2)或其組合。光學元件結構102具有約80nm至約200nm的深度d。光學元件結構102具有小於150nm的臨界尺寸,其對應於每個光學元件結構102的剖面的寬度或直徑。間隙g對應於複數個光學元件結構102的相鄰光學元件結構之間的距離。間隙g對深度d的縱橫比介於約4:1及約1:1之間。 1B is a schematic cross-sectional view of a portion of an output coupler 104C of the waveguide combiner 100. The output coupler 104C includes a plurality of optical element structures 102 disposed in or on an optical element substrate 101. The plurality of optical element structures 102 have a structural refractive index less than or equal to 2.0. In one embodiment, the material of the plurality of optical element structures 102 may include silicon nitride (SiN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) or a combination thereof. The optical element structure 102 has a depth d of about 80 nm to about 200 nm. The optical element structure 102 has a critical dimension less than 150 nm, which corresponds to the width or diameter of a cross section of each optical element structure 102. The gap g corresponds to the distance between adjacent optical element structures of the plurality of optical element structures 102. The aspect ratio of the gap g to the depth d is between about 4:1 and about 1:1.

覆蓋層110設置在複數個光學元件結構102中的每個光學元件結構的頂表面120及側壁122上方。覆蓋層110具有大於或等於2.0的覆蓋折射率。折射率對比,即覆蓋折射率與結構折射率之間的差值,為約0.3至約0.5。在一些實施例中,折射率對比為約0.3。折射率對比使得傳播通過波導組合器100的紅光、綠光及藍光能夠以相同的速率從輸出耦合器104C輸出耦合。例如,紅光以比藍光更大的角度傳播。此導致藍光與複數個光學元件結構102具有更多相互作用。與複數個光學元件結構102更多相互作用導致藍光更多的輸出耦合事件,但效率較低。相反,紅光與光學元件結構102相互作用的頻率較低,但效率較高。結果,由波導組合器100產生的影像在使用者的視野上更加清晰。覆蓋層110包括二氧化鈦(TiO 2)、氧化鈮(V)(Ni 2O 5)、氮化矽(SiN)、氧化鉭(V)(Ta 2O 5)或其組合。覆蓋層110具有介於約150nm至約250nm之間的厚度t 1。覆蓋層110具有覆蓋厚度變化130。覆蓋厚度變化130是覆蓋層110的最上表面136的最大點132及最小點134之間的差值。覆蓋厚度變化130小於或等於20nm。最小化覆蓋厚度變化130防止厚度變化穿過沉積在覆蓋層110頂部上的任何層。此外,諸如覆蓋厚度變化130之類的變化可以充當額外的光學元件結構。此等額外的光學元件結構可以使傳播通過波導組合器100的光扭曲並反射,從而導致在使用者的視野上產生不太清晰的影像。 The cover layer 110 is disposed over the top surface 120 and the sidewalls 122 of each of the plurality of optical element structures 102. The cover layer 110 has a cover refractive index greater than or equal to 2.0. The refractive index contrast, i.e., the difference between the cover refractive index and the structure refractive index, is about 0.3 to about 0.5. In some embodiments, the refractive index contrast is about 0.3. The refractive index contrast enables red light, green light, and blue light propagating through the waveguide combiner 100 to be output coupled from the output coupler 104C at the same rate. For example, red light propagates at a larger angle than blue light. This causes the blue light to have more interactions with the plurality of optical element structures 102. More interactions with the plurality of optical element structures 102 result in more output coupling events for the blue light, but at a lower efficiency. In contrast, red light interacts with the optical element structure 102 at a lower frequency but with a higher efficiency. As a result, the image produced by the waveguide combiner 100 is clearer in the user's field of vision. The cover layer 110 includes titanium dioxide (TiO 2 ), niobium (V) oxide (Ni 2 O 5 ), silicon nitride (SiN), tantalum (V) oxide (Ta 2 O 5 ), or a combination thereof. The cover layer 110 has a thickness t 1 between about 150 nm and about 250 nm. The cover layer 110 has a cover thickness variation 130. The cover thickness variation 130 is the difference between a maximum point 132 and a minimum point 134 of an uppermost surface 136 of the cover layer 110. The cover thickness variation 130 is less than or equal to 20 nm. Minimizing the cover thickness variations 130 prevents the thickness variations from passing through any layers deposited on top of the cover layer 110. Additionally, variations such as the cover thickness variations 130 can act as additional optical element structures. Such additional optical element structures can distort and reflect light propagating through the waveguide combiner 100, resulting in a less clear image in the user's field of view.

在一個實施例中,額外層可以設置在覆蓋層110上方。例如,額外低折射率層(未示出)可以設置在覆蓋層110上方,低折射率層具有小於2.0的折射率。在另一個實施例中,如下圖1C所示及所述,其他層設置在覆蓋層110上,例如漸變折射率層150、抗反射塗佈(ARC)層160或鏡面層170。In one embodiment, additional layers may be disposed over the capping layer 110. For example, an additional low refractive index layer (not shown) may be disposed over the capping layer 110, the low refractive index layer having a refractive index less than 2.0. In another embodiment, other layers are disposed over the capping layer 110, such as a gradient refractive index layer 150, an anti-reflective coating (ARC) layer 160, or a mirror layer 170, as shown and described below in FIG. 1C.

圖1C是波導組合器100的輸出耦合器104C的一部分的示意性剖面圖。輸出耦合器104C包括形成在光學元件基板101之中或之上的複數個光學元件結構102。複數個光學元件結構102具有大於或等於2.0的結構折射率。在一個實施例中,複數個光學元件結構102的材料可以包括二氧化鈦(TiO 2)、氧化鈮(V)(Ni 2O 5)、氮化矽(SiN)、氧化鉭(V)(Ta 2O 5)或其組合。光學元件結構102具有約80nm至約200nm的深度d。光學元件結構102具有小於150nm的臨界尺寸,其對應於每個光學元件結構102的剖面的寬度或直徑。此外,間隙g對應於複數個光學元件結構102的相鄰光學元件結構之間的距離。間隙g對深度d的縱橫比介於約4:1及約1:1之間。 1C is a schematic cross-sectional view of a portion of an output coupler 104C of the waveguide combiner 100. The output coupler 104C includes a plurality of optical element structures 102 formed in or on an optical element substrate 101. The plurality of optical element structures 102 have a structural refractive index greater than or equal to 2.0. In one embodiment, the material of the plurality of optical element structures 102 may include titanium dioxide (TiO 2 ), niobium (V) oxide (Ni 2 O 5 ), silicon nitride (SiN), tantalum (V) oxide (Ta 2 O 5 ) or a combination thereof. The optical element structure 102 has a depth d of about 80 nm to about 200 nm. The optical element structure 102 has a critical dimension of less than 150 nm, which corresponds to the width or diameter of a cross section of each optical element structure 102. In addition, the gap g corresponds to the distance between adjacent optical element structures of the plurality of optical element structures 102. The aspect ratio of the gap g to the depth d is between about 4:1 and about 1:1.

封裝層112設置在複數個光學元件結構102中的每個光學元件結構的頂表面120及側壁122上方。封裝層112具有小於或等於2.0的封裝折射率。第一折射率對比,即封裝折射率與結構折射率之間的差值,為約0.3至約0.5。在一些實施例中,第一折射率對比為約0.3。折射率對比使得傳播通過波導組合器100的紅光、綠光及藍光能夠以相同的效率從輸出耦合器104C輸出耦合。例如,紅光以比藍光更大的角度傳播。此導致藍光與複數個光學元件結構102具有更多相互作用。與複數個光學元件結構102更多相互作用導致藍光更多的輸出耦合事件,但效率較低。相反,紅光與光學元件結構102相互作用的頻率較低,但效率較高。結果,由波導組合器100產生的影像在使用者的視野上更加清晰。封裝層112的材料包括氮化矽(SiN)、氮氧化矽(SiON)、氧化鋁(Al 2O 3)、氧化矽(SiO 2)或其組合。在一個實施例中,封裝層112可具有約100nm至約110nm之間的封裝厚度t 2。在另一實施例中,將封裝層112設置在光學元件結構102上方之後,經由蝕刻或化學機械平坦化(CMP)移除封裝厚度t 2The encapsulation layer 112 is disposed above the top surface 120 and the sidewall 122 of each of the plurality of optical element structures 102. The encapsulation layer 112 has an encapsulation refractive index less than or equal to 2.0. The first refractive index contrast, i.e., the difference between the encapsulation refractive index and the structure refractive index, is about 0.3 to about 0.5. In some embodiments, the first refractive index contrast is about 0.3. The refractive index contrast enables red light, green light, and blue light propagating through the waveguide combiner 100 to be output coupled from the output coupler 104C with the same efficiency. For example, red light propagates at a larger angle than blue light. This causes the blue light to have more interactions with the plurality of optical element structures 102. More interactions with the plurality of optical element structures 102 result in more output coupling events for the blue light, but with lower efficiency. In contrast, red light interacts with the optical element structure 102 at a lower frequency but with a higher efficiency. As a result, the image produced by the waveguide combiner 100 is clearer in the user's field of vision. The material of the encapsulation layer 112 includes silicon nitride (SiN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) or a combination thereof. In one embodiment, the encapsulation layer 112 may have an encapsulation thickness t 2 between about 100 nm and about 110 nm. In another embodiment, after the encapsulation layer 112 is disposed above the optical element structure 102, the encapsulation thickness t 2 is removed by etching or chemical mechanical planarization (CMP).

覆蓋層110設置在封裝層112上方。覆蓋層110具有大於或等於2.0的覆蓋折射率。第二折射率對比,即,封裝折射率與覆蓋折射率之間的差值,為約0.3及約0.5。在一些實施例中,第二折射率對比為約0.3。如上所述,折射率對比使得傳播通過波導組合器100的紅光、綠光及藍光能夠以相同的效率從輸出耦合器104C輸出耦合。結果,由波導組合器100產生的影像在使用者的視野上更加清晰。The cover layer 110 is disposed above the encapsulation layer 112. The cover layer 110 has a cover refractive index greater than or equal to 2.0. The second refractive index contrast, i.e., the difference between the encapsulation refractive index and the cover refractive index, is about 0.3 and about 0.5. In some embodiments, the second refractive index contrast is about 0.3. As described above, the refractive index contrast enables the red light, green light, and blue light propagating through the waveguide combiner 100 to be output coupled from the output coupler 104C with the same efficiency. As a result, the image generated by the waveguide combiner 100 is clearer in the user's field of view.

覆蓋層110具有覆蓋厚度變化130。覆蓋厚度變化130是覆蓋層110的最上表面136的最大點132與最小點134之間的差值。覆蓋厚度變化130小於或等於20nm。最小化覆蓋厚度變化130防止厚度變化穿過沉積在覆蓋層110頂部上的任何層。此外,諸如覆蓋厚度變化130之類的變化可以有效地充當額外光學元件結構。此等額外的光學元件結構可以使傳播通過波導組合器100的光扭曲並反射,從而導致在使用者的視野上產生不太清晰的影像。覆蓋層110的材料可以包括二氧化鈦(TiO 2)、氧化鈮(V)(Ni 2O 5)、氮化矽(SiN)、氧化鉭(V)(Ta 2O 5)或其組合。在一個實施例中,覆蓋層110的材料及光學元件結構102的材料是相同的材料。 The cover layer 110 has a cover thickness variation 130. The cover thickness variation 130 is the difference between a maximum point 132 and a minimum point 134 of an uppermost surface 136 of the cover layer 110. The cover thickness variation 130 is less than or equal to 20 nm. Minimizing the cover thickness variation 130 prevents the thickness variation from passing through any layer deposited on top of the cover layer 110. In addition, variations such as the cover thickness variation 130 can effectively act as additional optical element structures. Such additional optical element structures can distort and reflect light propagating through the waveguide combiner 100, resulting in a less clear image in the user's field of view. The material of the capping layer 110 may include titanium dioxide (TiO 2 ), niobium (V) oxide (Ni 2 O 5 ), silicon nitride (SiN), tantalum (V) oxide (Ta 2 O 5 ) or a combination thereof. In one embodiment, the material of the capping layer 110 and the material of the optical device structure 102 are the same material.

在一個實施例中,額外層可以設置在覆蓋層110上。例如,額外低折射率層(未示出)可以設置在覆蓋層110上,低折射率層的折射率小於或等於到2.0。在另一實施例中,如圖1C所示,其他層設置在覆蓋層110上,例如漸變折射率層150、抗反射塗佈(ARC)層160或鏡面層170。In one embodiment, an additional layer may be disposed on the cover layer 110. For example, an additional low refractive index layer (not shown) may be disposed on the cover layer 110, the refractive index of the low refractive index layer being less than or equal to 2.0. In another embodiment, as shown in FIG. 1C , other layers are disposed on the cover layer 110, such as a gradient refractive index layer 150, an anti-reflective coating (ARC) layer 160, or a mirror layer 170.

圖2是用於形成如圖1B所示的波導組合器100的輸出耦合器104C的方法200的流程圖。圖3A及圖3B是在形成輸出耦合器104C的方法期間,光學元件基板101的一部分的示意性剖面圖。Fig. 2 is a flow chart of a method 200 for forming the output coupler 104C of the waveguide combiner 100 shown in Fig. 1B. Fig. 3A and Fig. 3B are schematic cross-sectional views of a portion of the optical device substrate 101 during the method of forming the output coupler 104C.

在操作202處,如圖3A所示,光學元件結構102形成在光學元件基板101之上或之中。在一個實施例中,在光學元件基板101上沉積圖案阻劑並且蝕刻光學元件基板101。在另一個實施例中,光學元件層沉積在光學元件基板101上,圖案阻劑沉積在光學元件層上,並且蝕刻光學元件層。在另一實施例中,光學元件層沉積在光學元件基板101上,奈米壓印印模使用奈米壓印光刻(NIL)將光學元件圖案壓印在光學元件層上,並且固化光學元件層。複數個光學元件結構102具有小於2.0的結構折射率。光學元件結構102的材料可以包括氮化矽(SiN)、氮氧化矽(SiON)、氧化鋁(Al 2O 3)、氧化矽(SiO 2)或其組合。光學元件結構102具有約80nm至約150nm的深度d。光學元件結構102具有小於150nm的臨界尺寸,其對應於每個光學元件結構102的剖面的寬度或直徑。間隙g對應於複數個光學元件結構102中的相鄰光學元件結構之間的距離。間隙g對深度d的縱橫比介於約4:1及約1:1之間。 At operation 202, as shown in FIG. 3A, an optical element structure 102 is formed on or in an optical element substrate 101. In one embodiment, a pattern resist is deposited on the optical element substrate 101 and the optical element substrate 101 is etched. In another embodiment, an optical element layer is deposited on the optical element substrate 101, a pattern resist is deposited on the optical element layer, and the optical element layer is etched. In another embodiment, an optical element layer is deposited on the optical element substrate 101, a nanoimprint stamp uses nanoimprint lithography (NIL) to imprint an optical element pattern on the optical element layer, and the optical element layer is cured. The plurality of optical element structures 102 have a structural refractive index less than 2.0. The material of the optical element structure 102 may include silicon nitride (SiN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) or a combination thereof. The optical element structure 102 has a depth d of about 80 nm to about 150 nm. The optical element structure 102 has a critical dimension less than 150 nm, which corresponds to the width or diameter of the cross section of each optical element structure 102. The gap g corresponds to the distance between adjacent optical element structures in the plurality of optical element structures 102. The aspect ratio of the gap g to the depth d is between about 4:1 and about 1:1.

在操作204處,如圖3B所示,在複數個光學元件結構102的每個光學元件結構的頂表面120及側壁122上方沉積覆蓋層110。使用熔爐化學氣相沉積(FCVD)或噴墨印刷(IJP)來沉積覆蓋層110。覆蓋層110的覆蓋折射率大於或等於2.0。折射率對比,即覆蓋折射率與結構折射率之間的差值,為約0.3至約0.5。在另一實施例中,折射率對比為約0.3。覆蓋層110具有約150nm至約250nm之間的厚度t 1。在一個實施例中,覆蓋層110具有小於或等於20nm的覆蓋厚度變化130。覆蓋厚度變化130被測量為覆蓋層110的最上表面136的最大點132及最小點134之間的差值。在一個實施例中,覆蓋厚度變化130透過使用蝕刻、化學機械平坦化(CMP)或循環沉積及蝕刻來達成。覆蓋層110的材料可以包括二氧化鈦(TiO 2)、氧化鈮(V)(Ni 2O 5)、氮化矽(SiN)、氧化鉭(V)(Ta 2O 5)或其組合。 At operation 204, as shown in FIG. 3B, a capping layer 110 is deposited over the top surface 120 and the sidewalls 122 of each of the plurality of optical element structures 102. The capping layer 110 is deposited using furnace chemical vapor deposition (FCVD) or ink jet printing (IJP). The capping layer 110 has a capping refractive index greater than or equal to 2.0. The refractive index contrast, i.e., the difference between the capping refractive index and the structure refractive index, is about 0.3 to about 0.5. In another embodiment, the refractive index contrast is about 0.3. The capping layer 110 has a thickness t 1 between about 150 nm and about 250 nm. In one embodiment, the capping layer 110 has a capping thickness variation 130 less than or equal to 20 nm. The capping thickness variation 130 is measured as the difference between a maximum point 132 and a minimum point 134 of an uppermost surface 136 of the capping layer 110. In one embodiment, the capping thickness variation 130 is achieved by using etching, chemical mechanical planarization (CMP), or cyclic deposition and etching. The material of the capping layer 110 may include titanium dioxide (TiO 2 ), niobium (V) oxide (Ni 2 O 5 ), silicon nitride (SiN), tantalum (V) oxide (Ta 2 O 5 ), or a combination thereof.

在一個實施例中,額外層可以設置在覆蓋層110上方。例如,額外低折射率層(未示出)可以設置在覆蓋層110上方,低折射率層具有小於2.0的折射率。在另一個實施例中,如圖1C所示及所述,其他層設置在覆蓋層110上,例如漸變折射率層150、抗反射塗佈(ARC)層160或鏡面層170。In one embodiment, additional layers may be disposed over the capping layer 110. For example, an additional low refractive index layer (not shown) may be disposed over the capping layer 110, the low refractive index layer having a refractive index less than 2.0. In another embodiment, as shown and described in FIG. 1C , other layers are disposed over the capping layer 110, such as a gradient refractive index layer 150, an anti-reflective coating (ARC) layer 160, or a mirror layer 170.

圖4是用於形成波導組合器100的輸出耦合器104C的方法400的流程圖。圖5A-5C是在形成輸出耦合器104C的方法400期間,光學元件基板101的一部分的示意性剖面圖。Figure 4 is a flow chart of a method 400 for forming an output coupler 104C of the waveguide combiner 100. Figures 5A-5C are schematic cross-sectional views of a portion of the optical device substrate 101 during the method 400 of forming the output coupler 104C.

在操作402處,如圖5A所示,複數個光學元件結構102形成在光學元件基板101之上或之中。在一個實施例中,在光學元件基板101上沉積圖案阻劑並且蝕刻光學元件基板101。在另一個實施例中,光學元件層沉積在光學元件基板101上,圖案阻劑沉積在光學元件層上,並且蝕刻光學元件層。在另一實施例中,光學元件層沉積在光學元件基板101上,奈米壓印印模使用奈米壓印光刻(NIL)將光學元件圖案壓印在光學元件層上,並且固化光學元件層。複數個光學元件結構102中的光學元件結構具有大於或等於2.0的結構折射率。光學元件結構102具有約80nm至約150nm的深度d。光學元件結構102具有小於150nm的臨界尺寸,其對應於每個光學元件結構102的剖面的寬度或直徑。此外,間隙g對應於複數個光學元件結構102的相鄰光學元件結構之間的距離。間隙g對深度d的縱橫比介於約4:1及約1:1之間。At operation 402, as shown in FIG5A, a plurality of optical element structures 102 are formed on or in an optical element substrate 101. In one embodiment, a pattern resist is deposited on the optical element substrate 101 and the optical element substrate 101 is etched. In another embodiment, an optical element layer is deposited on the optical element substrate 101, a pattern resist is deposited on the optical element layer, and the optical element layer is etched. In another embodiment, an optical element layer is deposited on the optical element substrate 101, a nanoimprint stamp uses nanoimprint lithography (NIL) to imprint an optical element pattern on the optical element layer, and the optical element layer is cured. The optical element structures in the plurality of optical element structures 102 have a structural refractive index greater than or equal to 2.0. The optical element structures 102 have a depth d of about 80 nm to about 150 nm. The optical element structures 102 have a critical dimension less than 150 nm, which corresponds to a width or diameter of a cross section of each optical element structure 102. In addition, the gap g corresponds to a distance between adjacent optical element structures of the plurality of optical element structures 102. The aspect ratio of the gap g to the depth d is between about 4:1 and about 1:1.

在操作404處,如圖5B所示,封裝層112沉積在複數個光學元件結構102的頂表面120及側壁122上方。使用熔爐化學氣相沉積(FCVD)或噴墨印刷(IJP)來沉積封裝層112。封裝層112的封裝折射率小於或等於2.0。第一折射率對比,即結構折射率與封裝折射率之間的差值,為約0.3至約0.5。在另一實施例中,第一折射率對比為約0.3。封裝層112的材料可以包括氮化矽(SiN)、氮氧化矽(SiON)、氧化鋁(Al 2O 3)、氧化矽(SiO 2)或其組合。在一個實施例中,封裝層112可具有約100nm至約110nm之間的封裝厚度t 2。在另一實施例中,將封裝層112設置在光學元件結構102上方之後,經由蝕刻或化學機械平坦化(CMP)移除封裝厚度t 2At operation 404, as shown in FIG. 5B, an encapsulation layer 112 is deposited over the top surface 120 and the sidewalls 122 of the plurality of optical element structures 102. The encapsulation layer 112 is deposited using furnace chemical vapor deposition (FCVD) or ink jet printing (IJP). The encapsulation refractive index of the encapsulation layer 112 is less than or equal to 2.0. The first refractive index contrast, i.e., the difference between the structural refractive index and the encapsulation refractive index, is about 0.3 to about 0.5. In another embodiment, the first refractive index contrast is about 0.3. The material of the encapsulation layer 112 may include silicon nitride (SiN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) or a combination thereof. In one embodiment, the encapsulation layer 112 may have an encapsulation thickness t 2 between about 100 nm and about 110 nm. In another embodiment, after the encapsulation layer 112 is disposed over the optical device structure 102 , the encapsulation thickness t 2 is removed by etching or chemical mechanical planarization (CMP).

在操作406處,如圖5C所示,覆蓋層110沉積在封裝層112上方,以形成輸出耦合器104C。覆蓋層110的覆蓋折射率大於或等於2.0。第二折射率對比,即覆蓋折射率與封裝折射率之間的差值,為約0.3至約0.5。在另一實施例中,第二折射率對比為約0.3。覆蓋層110具有小於20nm的覆蓋厚度變化130。覆蓋厚度變化130是覆蓋層110的最上表面136的最大點132及最小點134之間的差值。覆蓋厚度變化130透過使用蝕刻或化學機械平坦化(CMP)來達成。覆蓋層110的材料可以包括二氧化鈦(TiO 2)、氧化鈮(V)(Ni 2O 5)、氮化矽(SiN)、氧化鉭(V)(Ta 2O 5)或其組合。在一個實施例中,覆蓋層110的材料及光學元件結構102的材料是相同的材料。 At operation 406, as shown in Figure 5C, a capping layer 110 is deposited over the encapsulation layer 112 to form the output coupler 104C. The capping layer 110 has a capping refractive index greater than or equal to 2.0. The second refractive index contrast, i.e., the difference between the capping refractive index and the encapsulation refractive index, is about 0.3 to about 0.5. In another embodiment, the second refractive index contrast is about 0.3. The capping layer 110 has a capping thickness variation 130 that is less than 20 nm. The capping thickness variation 130 is the difference between a maximum point 132 and a minimum point 134 of the uppermost surface 136 of the capping layer 110. The capping thickness variation 130 is achieved by using etching or chemical mechanical planarization (CMP). The material of the capping layer 110 may include titanium dioxide (TiO 2 ), niobium (V) oxide (Ni 2 O 5 ), silicon nitride (SiN), tantalum (V) oxide (Ta 2 O 5 ) or a combination thereof. In one embodiment, the material of the capping layer 110 and the material of the optical device structure 102 are the same material.

在一個實施例中,額外的層可以設置在覆蓋層110上。例如,額外低折射率層(未示出)可以設置在覆蓋層110上,低折射率層的折射率小於或等於到2.0。在另一實施例中,如圖1C所示,其他層設置在覆蓋層110上,例如漸變折射率層150、抗反射塗佈(ARC)層160或鏡面層170。In one embodiment, additional layers may be disposed on the cover layer 110. For example, an additional low refractive index layer (not shown) may be disposed on the cover layer 110, the refractive index of the low refractive index layer being less than or equal to 2.0. In another embodiment, as shown in FIG. 1C , other layers are disposed on the cover layer 110, such as a gradient refractive index layer 150, an anti-reflective coating (ARC) layer 160, or a mirror layer 170.

綜上所述,此處所描述的實施例提供了波導組合器的輸出耦合器以及形成波導組合器的輸出耦合器的方法。在一個實施例中,輸出耦合器及形成此輸出耦合器的方法在光學元件結構及覆蓋層之間具有0.3至0.5之間的折射率對比。在另一個實施例中,輸出耦合器及形成此輸出耦合器的方法具有在光學元件結構及封裝層之間在0.3及0.5之間的第一折射率對比,以及在封裝層及覆蓋層之間在0.3及0.5之間的第二折射率對比。In summary, the embodiments described herein provide an output coupler of a waveguide combiner and a method of forming an output coupler of a waveguide combiner. In one embodiment, the output coupler and the method of forming the output coupler have a refractive index contrast between an optical component structure and a cover layer between 0.3 and 0.5. In another embodiment, the output coupler and the method of forming the output coupler have a first refractive index contrast between an optical component structure and a packaging layer between 0.3 and 0.5, and a second refractive index contrast between a packaging layer and a cover layer between 0.3 and 0.5.

雖然前述內容針對本揭露案的範例,但是在不脫離其基本範圍的情況下可以衍生本揭露案的其他及進一步的範例,並且其範圍由所附請求項來決定。Although the foregoing is directed to examples of the present disclosure, other and further examples of the present disclosure may be derived without departing from the basic scope thereof, and the scope thereof shall be determined by the appended claims.

100:波導組合器 101:光學元件基板 102:光學元件結構 103:表面 110:層 112:封裝層 120:頂表面 122:側壁 130:厚度變化 132:最大點 134:最小點 136:表面 150:漸變折射率層 160:抗反射塗佈(ARC)層 170:鏡面層 200:方法 202:操作 204:操作 400:方法 402:操作 404:操作 406:操作 104A:輸入耦合器 104B:瞳孔擴展器 104C:輸出耦合器 100: waveguide combiner 101: optical element substrate 102: optical element structure 103: surface 110: layer 112: packaging layer 120: top surface 122: side wall 130: thickness variation 132: maximum point 134: minimum point 136: surface 150: graded refractive index layer 160: antireflection coating (ARC) layer 170: mirror layer 200: method 202: operation 204: operation 400: method 402: operation 404: operation 406: operation 104A: input coupler 104B: pupil dilator 104C: output coupler

為了能夠詳細地理解本揭露案的上述特徵,可以參考實施例對上面簡要概括的本公開進行更具體的描述,其中一些實施例在附圖中示出。然而,應注意的是,附圖僅示出了示例性實施例,因此不應被視為對其範圍的限制,並且可以允許其他均等效果的實施例。In order to understand the above features of the present disclosure in detail, the present disclosure briefly summarized above can be described in more detail with reference to the embodiments, some of which are shown in the accompanying drawings. However, it should be noted that the accompanying drawings only show exemplary embodiments and should not be considered as limiting the scope thereof, and other equally effective embodiments may be allowed.

圖1A是根據實施例的波導組合器的示意性頂視圖。FIG. 1A is a schematic top view of a waveguide combiner according to an embodiment.

圖1B是根據實施例的波導組合器的輸出耦合器的一部分的示意性剖面圖。Figure 1B is a schematic cross-sectional view of a portion of an output coupler of a waveguide combiner according to an embodiment.

圖1C是根據實施例的波導組合器的輸出耦合器的一部分的示意性剖面圖。Figure 1C is a schematic cross-sectional view of a portion of an output coupler of a waveguide combiner according to an embodiment.

圖2是根據實施例的形成波導組合器的輸出耦合器的方法的流程圖。FIG. 2 is a flow chart of a method of forming an output coupler of a waveguide combiner according to an embodiment.

圖3A及圖3B是根據實施例的在形成波導組合器的輸出耦合器的方法期間光學元件基板的一部分的示意性剖面圖。3A and 3B are schematic cross-sectional views of a portion of an optical element substrate during a method of forming an output coupler of a waveguide combiner according to an embodiment.

圖4是根據實施例的用於形成波導組合器的輸出耦合器的方法的流程圖。4 is a flow chart of a method for forming an output coupler of a waveguide combiner according to an embodiment.

圖5A-5C是根據實施例的在形成波導組合器的輸出耦合器的方法期間光學元件基板的一部分的示意性剖面圖。5A-5C are schematic cross-sectional views of a portion of an optical element substrate during a method of forming an output coupler of a waveguide combiner according to an embodiment.

為了便於理解,在可能的情況下,使用相同的元件符號來表示附圖中共有的相同元件。可以預期,一個實施例的元件及特徵可以有利地併入其他實施例中,而無需進一步敘述。To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is anticipated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Overseas storage information (please note in the order of storage country, institution, date, and number) None

100:波導組合器 100: Waveguide combiner

101:光學元件基板 101: Optical component substrate

102:光學元件結構 102: Optical element structure

103:表面 103: Surface

104A:輸入耦合器 104A: Input coupler

104B:瞳孔擴展器 104B:Pupil dilator

104C:輸出耦合器 104C: Output coupler

Claims (20)

一種一波導組合器的輸出耦合器,包含: 複數個光學元件結構,設置於一光學元件基板之中或之上,該複數個光學元件結構具有小於或等於2.0的一結構折射率;及 一覆蓋層,設置於該複數個光學元件結構的每個光學元件結構的一頂表面及側壁上方,該覆蓋層具有: 大於或等於2.0的一覆蓋折射率,其中該覆蓋折射率及該結構折射率之間的一折射率對比為約0.3至約0.5;及 小於或等於20nm的一覆蓋厚度變化,其中該覆蓋厚度變化是該覆蓋層的一最上表面的一最大點及一最小點之間的一差值。 An output coupler of a waveguide combiner, comprising: A plurality of optical element structures disposed in or on an optical element substrate, the plurality of optical element structures having a structural refractive index less than or equal to 2.0; and A covering layer disposed above a top surface and sidewalls of each of the plurality of optical element structures, the covering layer having: A covering refractive index greater than or equal to 2.0, wherein a refractive index contrast between the covering refractive index and the structural refractive index is about 0.3 to about 0.5; and A covering thickness variation less than or equal to 20 nm, wherein the covering thickness variation is a difference between a maximum point and a minimum point of an uppermost surface of the covering layer. 如請求項1所述之輸出耦合器,其中該複數個光學元件結構包含氮化矽(SiN)、氮氧化矽(SiON)、氧化鋁(Al 2O 3)、氧化矽(SiO 2)或其組合。 The output coupler of claim 1, wherein the plurality of optical element structures comprises silicon nitride (SiN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) or a combination thereof. 如請求項1所述之輸出耦合器,其中該覆蓋層包含二氧化鈦(TiO 2)、氧化鈮(V)(Ni 2O 5)、氮化矽(SiN)、氧化鉭(V)(Ta 2O 5)或其組合。 The output coupler of claim 1, wherein the capping layer comprises titanium dioxide (TiO 2 ), niobium (V) oxide (Ni 2 O 5 ), silicon nitride (SiN), tantalum (V) oxide (Ta 2 O 5 ) or a combination thereof. 如請求項1所述之輸出耦合器,其中該覆蓋層具有約150nm至約250nm的一厚度。An output coupler as described in claim 1, wherein the capping layer has a thickness of about 150 nm to about 250 nm. 如請求項1所述之輸出耦合器,其中該光學元件結構具有約80nm至約150nm的一深度d。An output coupler as described in claim 1, wherein the optical element structure has a depth d of about 80 nm to about 150 nm. 如請求項1所述之輸出耦合器,其中對應於每個光學元件結構的一剖面的一寬度或一直徑的一臨界尺寸小於150nm。An output coupler as described in claim 1, wherein a critical dimension corresponding to a width or a diameter of a cross section of each optical element structure is less than 150 nm. 如請求項1所述之輸出耦合器,其中一間隙對應於複數個光學元件結構的相鄰光學元件結構之間的一距離,其中該間隙對一深度d的一縱橫比介於約4:1及約1:1之間。An output coupler as described in claim 1, wherein a gap corresponds to a distance between adjacent optical element structures of a plurality of optical element structures, wherein an aspect ratio of the gap to a depth d is between about 4:1 and about 1:1. 如請求項1所述之輸出耦合器,其中該折射率對比為0.3。An output coupler as described in claim 1, wherein the refractive index contrast is 0.3. 一種形成一波導組合器的一輸出耦合器的方法,包含以下步驟: 在一光學元件基板之中或之上形成複數個光學元件結構,該複數個光學元件結構具有小於或等於2.0的一結構折射率;及 在該複數個光學元件結構中的每個光學元件結構的一頂表面及側壁上方沉積一覆蓋層,該覆蓋層具有: 大於或等於2.0的一覆蓋折射率,其中該覆蓋折射率及該結構折射率之間的一折射率對比為約0.3至約0.5;及 小於或等於20nm的一覆蓋厚度變化,其中該覆蓋厚度變化是該覆蓋層的一最上表面的一最大點及一最小點之間的一差值。 A method of forming an output coupler of a waveguide combiner, comprising the steps of: forming a plurality of optical element structures in or on an optical element substrate, the plurality of optical element structures having a structural refractive index less than or equal to 2.0; and depositing a covering layer over a top surface and sidewalls of each of the plurality of optical element structures, the covering layer having: a covering refractive index greater than or equal to 2.0, wherein a refractive index contrast between the covering refractive index and the structural refractive index is about 0.3 to about 0.5; and a covering thickness variation less than or equal to 20 nm, wherein the covering thickness variation is a difference between a maximum point and a minimum point of a topmost surface of the covering layer. 如請求項9所述之方法,其中該複數個光學元件結構包含氮化矽(SiN)、氮氧化矽(SiON)、氧化鋁(Al 2O 3)、氧化矽(SiO 2)或其組合。 The method of claim 9, wherein the plurality of optical element structures comprises silicon nitride (SiN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) or a combination thereof. 如請求項9所述之方法,其中該覆蓋層包含二氧化鈦(TiO 2)、氧化鈮(V)(Ni 2O 5)、氮化矽(SiN)、氧化鉭(V)(Ta 2O 5)或其組合。 The method of claim 9, wherein the capping layer comprises titanium dioxide (TiO 2 ), niobium (V) oxide (Ni 2 O 5 ), silicon nitride (SiN), tantalum (V) oxide (Ta 2 O 5 ) or a combination thereof. 一種一波導組合器的輸出耦合器,包含: 複數個光學元件結構,形成於一光學元件基板之中或之上,該複數個光學元件結構具有大於或等於2.0的一結構折射率; 一封裝層,設置於該複數個光學元件結構的每個光學元件結構的一頂表面及側壁上方,該封裝層具有: 小於或等於2.0的一封裝折射率,其中該封裝折射率及該結構折射率之間的一第一折射率對比為約0.3至約0.5;及 一覆蓋層,設置於該封裝層上方,該覆蓋層具有: 大於或等於2.0的一覆蓋折射率,其中該封裝折射率及該覆蓋折射率之間的一第二折射率對比為約0.3至約0.5;及 小於或等於20nm的一覆蓋厚度變化,其中該覆蓋厚度變化是該覆蓋層的一最上表面的一最大點及一最小點之間的一差值。 An output coupler of a waveguide combiner comprises: A plurality of optical element structures formed in or on an optical element substrate, the plurality of optical element structures having a structural refractive index greater than or equal to 2.0; A packaging layer disposed above a top surface and a side wall of each of the plurality of optical element structures, the packaging layer having: A packaging refractive index less than or equal to 2.0, wherein a first refractive index contrast between the packaging refractive index and the structural refractive index is about 0.3 to about 0.5; and A covering layer disposed above the packaging layer, the covering layer having: A covering refractive index greater than or equal to 2.0, wherein a second refractive index contrast between the packaging refractive index and the covering refractive index is about 0.3 to about 0.5; and A coating thickness variation less than or equal to 20 nm, wherein the coating thickness variation is a difference between a maximum point and a minimum point of an uppermost surface of the coating layer. 如請求項12所述之輸出耦合器,其中該封裝層包含氮化矽(SiN)、氮氧化矽(SiON)、氧化鋁(Al 2O 3)、氧化矽(SiO 2)或其組合。 The output coupler of claim 12, wherein the encapsulation layer comprises silicon nitride (SiN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ) or a combination thereof. 如請求項12所述之輸出耦合器,其中該複數個光學元件結構及該覆蓋層包含二氧化鈦(TiO 2)、氧化鈮(V)(Ni 2O 5)、氮化矽(SiN)、氧化鉭(V)(Ta 2O 5)或其組合。 An output coupler as described in claim 12, wherein the plurality of optical element structures and the cover layer comprise titanium dioxide (TiO 2 ), niobium (V) oxide (Ni 2 O 5 ), silicon nitride (SiN), tantalum (V) oxide (Ta 2 O 5 ) or a combination thereof. 如請求項12所述之輸出耦合器,其中該覆蓋層具有約150nm至約250nm的一厚度。An output coupler as described in claim 12, wherein the capping layer has a thickness of about 150 nm to about 250 nm. 如請求項12所述之輸出耦合器,其中該光學元件結構具有約80nm至約150nm的一深度。An output coupler as described in claim 12, wherein the optical element structure has a depth of about 80nm to about 150nm. 如請求項12所述之輸出耦合器,其中對應於每個光學元件結構的一剖面的一寬度或一直徑的一臨界尺寸小於150nm。An output coupler as described in claim 12, wherein a critical dimension corresponding to a width or a diameter of a cross-section of each optical element structure is less than 150 nm. 如請求項12所述之輸出耦合器,其中一間隙g對應於該複數個光學元件結構的相鄰光學元件結構之間的一距離,其中該間隙g對一深度d的一縱橫比介於約4:1及約1:1之間。An output coupler as described in claim 12, wherein a gap g corresponds to a distance between adjacent optical element structures of the plurality of optical element structures, wherein an aspect ratio of the gap g to a depth d is between approximately 4:1 and approximately 1:1. 如請求項12所述之輸出耦合器,其中該第一折射率對比為0.3,且其中該第二折射率對比為0.3。An output coupler as described in claim 12, wherein the first refractive index contrast is 0.3 and wherein the second refractive index contrast is 0.3. 一種形成一波導組合器的一輸出耦合器的方法,包含以下步驟: 在一光學元件基板之中或之上形成複數個光學元件結構,該複數個光學元件結構具有大於或等於2.0的一結構折射率;及 在該複數個光學元件結構中的每個光學元件結構的一頂表面及側壁上方沉積一封裝層,該封裝層具有: 小於或等於2.0的一封裝折射率,其中該封裝折射率及該結構折射率之間的一第一折射率對比為約0.3至約0.5;及 在該封裝層上方沉積一覆蓋層,具有: 大於或等於2.0的一覆蓋折射率,其中該覆蓋折射率及該封裝折射率之間的一第二折射率對比為約0.3至約0.5;及 小於20nm的一覆蓋厚度變化,其中該覆蓋厚度變化是該覆蓋層的一最上表面的一最大點及一最小點之間的一差值。 A method for forming an output coupler of a waveguide combiner, comprising the following steps: Forming a plurality of optical element structures in or on an optical element substrate, the plurality of optical element structures having a structural refractive index greater than or equal to 2.0; and Depositing a packaging layer over a top surface and sidewalls of each of the plurality of optical element structures, the packaging layer having: A packaging refractive index less than or equal to 2.0, wherein a first refractive index contrast between the packaging refractive index and the structural refractive index is about 0.3 to about 0.5; and Depositing a covering layer over the packaging layer, having: A covering refractive index greater than or equal to 2.0, wherein a second refractive index contrast between the covering refractive index and the packaging refractive index is about 0.3 to about 0.5; and A coating thickness variation of less than 20 nm, wherein the coating thickness variation is a difference between a maximum point and a minimum point of an uppermost surface of the coating layer.
TW112130450A 2022-08-15 2023-08-14 Fabrication of high-index encapsulated grating designs TW202424584A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263398030P 2022-08-15 2022-08-15
US63/398,030 2022-08-15

Publications (1)

Publication Number Publication Date
TW202424584A true TW202424584A (en) 2024-06-16

Family

ID=89942201

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112130450A TW202424584A (en) 2022-08-15 2023-08-14 Fabrication of high-index encapsulated grating designs

Country Status (2)

Country Link
TW (1) TW202424584A (en)
WO (1) WO2024039622A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10929667B2 (en) * 2017-10-13 2021-02-23 Corning Incorporated Waveguide-based optical systems and methods for augmented reality systems
EP4162306A4 (en) * 2020-06-03 2024-07-10 Applied Materials Inc Gradient encapsulation of waveguide gratings
CN113721320A (en) * 2021-09-06 2021-11-30 宁波舜宇奥来技术有限公司 Optical waveguide structure and display device
CN215833697U (en) * 2021-09-23 2022-02-15 苏州苏大维格科技集团股份有限公司 Color waveguide and augmented reality display device
CN114217438B (en) * 2021-11-29 2023-11-21 歌尔股份有限公司 Grating structure, lens and head-mounted display device

Also Published As

Publication number Publication date
WO2024039622A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
US10409001B2 (en) Waveguide fabrication with sacrificial sidewall spacers
US20190369321A1 (en) Method of imprinting tilt angle light gratings
TWI827934B (en) Waveguide combiner and method of fabricating the same
WO2019103871A1 (en) Method of fabrication of waveguide combiners
TW202206941A (en) Method for manufacturing optical device structures
TW202424584A (en) Fabrication of high-index encapsulated grating designs
WO2023241253A1 (en) Optical waveguide lens and packaging method therefor
TW202244550A (en) Metalens stack on waveguide combiners for ar/vr glasses
US20230118081A1 (en) Multilayer transmission structures for waveguide display
JP2024538975A (en) Multilayer transmission structures for waveguide displays.
US11886111B2 (en) Freeform optical substrates in waveguide displays
US20230119056A1 (en) Partially metallized grating as high-performance waveguide incoupler
CN112805613A (en) Controlled hardmask shaping to produce tapered angled fins
US11892676B2 (en) Self-aligned formation of angled optical device structures
US20230375919A1 (en) Pitch and orientation uniformity for nanoimprint stamp formation
US20220252779A1 (en) Method for amorphous, high-refractive-index encapsulation of nanoparticle imprint films for optical devices
US20220299677A1 (en) Airgap structures for improved eyepiece efficiency
US20240142693A1 (en) Methods to reduce optical loss of an ar waveguide
TW202235960A (en) Duty cycle transition zone mask correction
JP2024538977A (en) Partially metallized gratings as high-performance waveguide intercouplers.
CN118119865A (en) Metallized high-index blazed grating coupler
WO2024091363A1 (en) Inkjet gradient index material to modulate grating diffraction efficiency