TW202423638A - Robot system, and control device - Google Patents
Robot system, and control device Download PDFInfo
- Publication number
- TW202423638A TW202423638A TW112143687A TW112143687A TW202423638A TW 202423638 A TW202423638 A TW 202423638A TW 112143687 A TW112143687 A TW 112143687A TW 112143687 A TW112143687 A TW 112143687A TW 202423638 A TW202423638 A TW 202423638A
- Authority
- TW
- Taiwan
- Prior art keywords
- robot
- workpiece
- action mode
- robot system
- control unit
- Prior art date
Links
- 230000009471 action Effects 0.000 claims description 109
- 238000001514 detection method Methods 0.000 claims description 62
- 238000003384 imaging method Methods 0.000 claims description 60
- 230000000007 visual effect Effects 0.000 claims description 53
- 230000004044 response Effects 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 8
- 230000006870 function Effects 0.000 description 28
- 238000000034 method Methods 0.000 description 20
- 238000012545 processing Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 16
- 230000015654 memory Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 241000282412 Homo Species 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 210000004247 hand Anatomy 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manipulator (AREA)
Abstract
Description
發明領域Invention Field
本揭示是有關於一種機器人系統及控制裝置。The present disclosure relates to a robot system and a control device.
發明背景Invention Background
已知將機器人設定為省電模式來使機器人的電力消耗減低之技術。專利文獻1記載有:關於互動機器人(interaction robot),檢測出人已離開,並當人已離開時轉移到節能模式。又,專利文獻2記載有機器人具有節能模式。
先行技術文獻
專利文獻
It is known that a robot is set to a power saving mode to reduce the power consumption of the robot.
專利文獻1:日本特開2016-95824號公報 專利文獻2:日本特開2019-18272號公報 Patent document 1: Japanese Patent Publication No. 2016-95824 Patent document 2: Japanese Patent Publication No. 2019-18272
發明概要 發明欲解決之課題 Invention Summary Problem to be solved by the invention
要構成可將機器人轉移到節能模式的系統時,一般可以採取的做法是當某固定的時間機器人不進行動作時,使機器人轉移到節能模式的做法。然而,該做法會有以下的不利面:由於到進入節能模式為止的時間是固定的,因此即使在對機器人不要求動作的狀況下,仍會向機器人供給電力,因此可能發生多餘地消耗電力的事態。期望可在能往節能模式轉移的機器人系統中,抑制如上述多餘地消耗電力的事態發生之技術。 用以解決課題之手段 When constructing a system that can switch a robot to a power-saving mode, a general approach is to switch the robot to a power-saving mode when the robot does not perform an action for a fixed period of time. However, this approach has the following disadvantages: Since the time until entering the power-saving mode is fixed, power is still supplied to the robot even when the robot is not required to perform an action, which may cause unnecessary power consumption. It is desired to provide a technology that can suppress the occurrence of such unnecessary power consumption in a robot system that can switch to a power-saving mode. Means for solving the problem
本揭示的一態樣為一種機器人系統,前述機器人系統具備:機器人;及動作模式控制部,基於與前述機器人的作業的繼續相關的資訊,來切換前述機器人、或構成包含前述機器人的機器人系統之其他機器的動作模式。One aspect of the present disclosure is a robot system comprising: a robot; and an action mode control unit, which switches the action mode of the robot or other machines constituting the robot system including the robot based on information related to the continuation of the robot's operation.
由附圖所示之本發明典型的實施形態之詳細說明,本發明的這些目的、特徵及優點、以及其他目的、特徵及優點將變得更加明確。These objects, features and advantages of the present invention, as well as other objects, features and advantages, will become more apparent from the detailed description of typical embodiments of the present invention as shown in the accompanying drawings.
用以實施發明之形態The form used to implement the invention
接著,參考圖式來說明本揭示的實施形態。於參考的圖式中,對同樣的構成部分或功能部分附上同樣的參考符號。為了易於理解,這些圖式適當地變更了比例。又,圖式所示的形態是用以實施本發明的一例,本發明不受圖示的形態所限定。Next, the embodiments of the present disclosure are described with reference to the drawings. In the drawings, the same components or functional parts are given the same reference symbols. For ease of understanding, the proportions of these drawings are appropriately changed. In addition, the embodiments shown in the drawings are examples for implementing the present invention, and the present invention is not limited to the embodiments shown in the drawings.
第1實施形態
圖1是表示一實施形態的機器人系統100的機器構成的圖。如圖1所示,機器人系統100具備:機器人10、控制機器人10的機器人控制裝置50、搬送工件的搬送裝置90、及用以拍攝工件並進行檢測的視覺感測器70。機器人系統100亦可進而具備連接於機器人控制裝置50之教示操作盤40。視覺感測器70以例如可拍攝搬送裝置90的上游側區域的方式,固定於作業空間中。再者,視覺感測器70亦可安裝於機器人10的臂前端部(端接器)。視覺感測器70連接於機器人控制裝置50。機器人控制裝置50構成為:與搬送裝置90連接而可取得來自搬送裝置90上之各種感測器(不圖示)的資訊(速度資訊等)。藉由這種構成,來將機器人系統100構成為:可藉由視覺感測器70,來檢測在搬送裝置90上搬送來的工件W,機器人10可跟隨在搬送裝置90上搬送的工件W並進行工件W的取出等處置(handling)。像這樣機器人可基於視覺感測器的檢測來跟隨工件並進行動作的功能,亦稱為視覺追蹤(visual tracking)。
First embodiment
FIG. 1 is a diagram showing the machine structure of a
如以下詳細說明,機器人系統100構成為:可控制構成包含機器人10、視覺感測器70的機器人系統之機器的動作模式,來減低機器人系統的多餘的電力消耗。As described in detail below, the
機器人10例如是垂直多關節機器人。再者,作為機器人10,亦可因應作業對象而使用水平多關節機器人、並聯(parallel link)型機器人、雙臂機器人等其他類型的機器人。The
機器人10可藉由安裝於腕部的端接器來執行所需的作業。在本實施形態,是使用手部11來作為端接器。作為手部11,可使用多指把持式手部、吸附式手部等各種類型的手部。The
視覺感測器70例如是拍攝灰階圖像或彩色圖像的照相機,或是可取得距離圖像或三維點雲的立體照相機或三維感測器均可。假設機器人控制裝置50搭載有:控制視覺感測器70的功能;及對視覺感測器70的攝像圖像進行檢測處理等圖像處理的功能。機器人控制裝置50保持工件的模型型樣(model pattern),可執行藉由攝像圖像中之工件的圖像與模型型樣的型樣匹配(pattern matching)來檢測出工件的圖像處理。在本實施形態,視覺感測器70已校正(calibration)完畢,機器人控制裝置50保有定義視覺感測器70與機器人10的相對位置關係之校正資料。藉此,機器人控制裝置50可將以視覺感測器70拍攝到之圖像上的位置,轉換成固定在作業空間中之座標系統(機器人座標系統等)上的位置。The
再者,在此雖採用將控制視覺感測器70來進行圖像處理的功能,搭載於機器人控制裝置50的構成,但亦可將具備控制視覺感測器70來進行圖像處理的功能之圖像處理裝置,作為與機器人控制裝置50互為獨立的裝置來配置於機器人系統內。Furthermore, although the function of controlling the
機器人控制裝置50按照動作程式或來自教示操作盤40的指令,來控制機器人10的動作。機器人控制裝置50亦可具有作為一般的電腦的硬體構成,前述一般的電腦具有處理器51(圖2)、記憶體(ROM、RAM、非揮發性記憶體等)、記憶裝置、操作部、輸出入介面、網路介面等。The robot control device 50 controls the actions of the
教示操作盤40是作為用以進行機器人10的教示或各種設定的操作終端來使用。作為教示操作盤40,亦可使用藉由平板終端等來構成的教示裝置。教示操作盤40亦可具有作為一般的電腦的硬體構成,前述一般的電腦具有處理器、記憶體(ROM、RAM、非揮發性記憶體等)、記憶裝置、操作部、顯示部41(圖2)、輸出入介面、網路介面等。The teaching operation panel 40 is used as an operation terminal for teaching or various settings of the
圖2是機器人控制裝置50的功能方塊圖。如圖2所示,機器人控制裝置50具有動作控制部151、檢測部152及動作模式控制部153。機器人控制裝置50亦可進一步具備學習部154。這些功能方塊亦可藉由機器人控制裝置50的處理器51執行軟體來實現。FIG2 is a functional block diagram of the robot control device 50. As shown in FIG2, the robot control device 50 has an action control unit 151, a detection unit 152, and an action mode control unit 153. The robot control device 50 may further include a learning unit 154. These functional blocks may also be implemented by the processor 51 of the robot control device 50 executing software.
機器人控制裝置50具備記憶部155。記憶部155例如是由非揮發性記憶體或硬式磁碟裝置所構成的記憶裝置。於記憶部155儲存有:控制機器人10的機器人程式、基於藉由照相機拍攝到的圖像來進行工件檢測等圖像處理之程式(視覺程式)、其他各種設定資訊等。於記憶部155,亦可進一步記憶有校正資料、工件的模型資料等之圖像處理所需的資料。The robot control device 50 has a memory unit 155. The memory unit 155 is a memory device composed of, for example, a non-volatile memory or a hard disk device. The memory unit 155 stores: a robot program for controlling the
動作控制部151按照機器人程式、或按照來自教示操作盤40的指令,來控制機器人的動作。機器人控制裝置50具備伺服控制部(不圖示),前述伺服控制部按照動作控制部151所生成之對各軸的指令,來執行對各軸的伺服馬達之伺服控制。The motion control unit 151 controls the motion of the robot according to the robot program or the command from the teaching operation panel 40. The robot control device 50 includes a servo control unit (not shown) which performs servo control on the servo motor of each axis according to the command for each axis generated by the motion control unit 151.
檢測部152提供基於藉由視覺感測器70拍攝到的圖像來檢測工件W的功能。檢測部152可檢測在搬送裝置90上搬送來的工件W,並將其檢測位置提供給動作控制部151。又,動作控制部151可從搬送裝置90上的各種感測器(脈衝編碼器等),取得搬送裝置90的搬送速度等資訊。藉由此功能,動作控制部151可基於視覺感測器70之工件W的檢測結果,執行一面跟隨工件W的移動一面取出工件W的動作。The detection unit 152 provides a function of detecting the workpiece W based on the image captured by the
動作模式控制部153可基於檢測部152的檢測結果,來控制機器人10或視覺感測器70的動作模式。藉由動作模式控制部153所進行之動作模式的控制包含:
(A)使機器人10的動作模式轉換的控制;及
(B)使視覺感測器70的動作模式轉換的控制。
如此,動作模式控制部153除了進行機器人10的動作模式的控制以外,亦可進行視覺感測器70的動作模式的控制,藉此可減低機器人系統100全體的多餘的電力消耗。
The action mode control unit 153 can control the action mode of the
說明藉由動作模式控制部153控制機器人10的動作模式之功能(A)。藉由動作模式控制部153所進行之控制機器人10的動作模式的控制包含以下。
(A1)使機器人從一般模式轉移到節能模式的功能。
(A2)使機器人從節能模式往一般動作模式轉移的功能。
The function (A) of controlling the action mode of the
參考圖3來說明上述功能(A1)。當機器人10處於一般動作模式時,檢測部152以一定的時間間隔(第1攝像間隔T
1)進行攝像,進行工件W的檢測。在此,設想工件W是如圖3所示之一成群的工件群G以不固定的時間間隔抵達的狀況。亦即,工件群G有時大致以一定的時間間隔搬送來,有時以隨機的時間間隔搬送來。此情況下,作為一例,若假設工件群G抵達的間隔最小的時間間隔為INT,動作模式控制部153亦可將視覺感測器70進行攝像的第1攝像間隔T
1設定為比INT短的間隔(成為T
1<INT)。此時間間隔INT亦可基於實測值來設定。時間間隔INT亦可藉由透過教示操作盤40的使用者操作,來設定於機器人控制裝置50。
The above function (A1) is explained with reference to FIG3 . When the
當視覺感測器70以一定時間間隔(第1攝像間隔T
1)進行攝像時,例如未檢測出工件持續了一定次數時,動作模式控制部153使機器人10轉移到讓電力消耗減低的動作模式。在本說明書中,把使機器人10的電力消耗減低的動作模式稱為機器人的節能模式。作為一例,在機器人10的節能模式下,會停止向機器人的各關節部的伺服馬達供給電力,對機器人的各關節施以制動以保持機器人的姿勢。又,亦可對機器人的節能模式加上使與控制機器人相關的機器(教示操作盤或機器人控制裝置)的電力消耗減低之控制。例如,亦可加上在機器人的節能模式下將教示操作盤40的顯示器的背光熄燈的控制。
When the
說明功能(A2)(使機器人從節能模式往一般動作模式轉移的功能)。即使在使機器人10轉移到節能模式之後,機器人控制裝置50仍使視覺感測器70以一定的時間間隔(第2攝像間隔T
2)執行攝像及檢測。再者,關於機器人10在節能模式下的第2攝像間隔T
2的設定,會於後面敘述。假設在機器人10處於節能模式的狀況下,工件群G如圖4所示地抵達,藉由視覺感測器70(檢測部152)檢測到工件W。此情況下,動作模式控制部153使機器人10回到一般動作模式,並開始對工件W的取出動作。
Description of function (A2) (function for shifting the robot from the energy saving mode to the general action mode). Even after shifting the
說明藉由動作模式控制部153控制視覺感測器70的動作模式之功能(B)。如上述出現未檢測出工件W的狀態並且機器人10進入節能模式時,設想未檢測出工件W的狀態會繼續某程度的期間。動作模式控制部153具有以下功能:在使機器人10轉移到節能模式之後,將視覺感測器70的攝像間隔變更為第2攝像間隔T
2。藉此,在機器人10進入節能模式之後,使攝像間隔比一般動作模式時更長以減低視覺感測器70的電力消耗,讓機器人系統100之多餘的電力消耗進一步減低。如此,動作模式控制部153除了具有使機器人10轉移到節能模式的功能以外,亦具有使視覺感測器70轉移到讓電力消耗減低的動作模式之功能。
The function (B) of controlling the action mode of the
動作模式控制部153具有以下功能,來作為用以設定機器人10往節能模式轉移後的第2攝像間隔T
2之功能:
(C1)受理來自外部的輸入(使用者輸入或來自外部裝置的輸入);及
(C2)藉由學習來取得第2攝像間隔T
2。
The action mode control unit 153 has the following functions as a function for setting the second imaging interval T2 after the
受理第2攝像間隔T 2的使用者輸入之功能,亦能以透過教示操作盤40的操作部受理使用者操作的形式來實現。 The function of accepting the user input of the second imaging interval T2 can also be realized in the form of accepting user operation through the operation unit of the teaching operation panel 40.
學習第2攝像間隔T 2的功能是藉由學習部154來進行。在未檢測出工件而轉移到節能模式的狀況下,未檢測出工件的狀況應會繼續某程度的時間。又,設想未檢測出工件的狀態持續的繼續時間會取決於例如時間帶而變動。例如,在一天(24小時)當中,某特定的時間帶可能發生工件被搬送來的時間間隔變長或變短的狀況。例如,亦設想會發生以下狀況:在中午前後,工件被搬送來的時間間隔變得較長,在上午或下午的一定時間帶,工件被搬送來的時間間隔變得較短。 The function of learning the second imaging interval T2 is performed by the learning unit 154. In the case where the workpiece is not detected and the mode is switched to the energy saving mode, the state of not detecting the workpiece should continue for a certain period of time. In addition, it is assumed that the duration of the state of not detecting the workpiece will vary depending on, for example, the time period. For example, in a day (24 hours), the time interval for the workpiece to be transported may become longer or shorter in a certain time period. For example, it is also assumed that the following situation may occur: around noon, the time interval for the workpiece to be transported becomes longer, and at a certain time period in the morning or afternoon, the time interval for the workpiece to be transported becomes shorter.
如此,基於未檢測出工件的開始時刻與其繼續時間可能產生相關性,學習部154藉由學習來取得機器人轉移到節能模式後的第2攝像間隔T
2。具體而言,學習部154藉由學習資料154b來進行機械學習(監督式學習),前述學習資料154b是將未檢測出工件的開始時刻當作輸入資料,將其繼續時間當作回答資料(教師資料)。學習部154將未檢測出工件的開始時刻及其繼續時間的學習資料154b收集並保存例如數日份。然後,使推論機154a學習該學習資料154b來建構學習模型154c。推論機154a例如可利用非線性迴歸模型,或藉由類神經網路(NN)來構成。
Thus, based on the possible correlation between the start time of not detecting the workpiece and its duration, the learning unit 154 acquires the second imaging interval T 2 after the robot shifts to the energy saving mode through learning. Specifically, the learning unit 154 performs mechanical learning (supervisory learning) using learning data 154b, which uses the start time of not detecting the workpiece as input data and the duration as answer data (teacher data). The learning unit 154 collects and stores the learning data 154b of the start time of not detecting the workpiece and its duration, for example, for several days. Then, the
當建構了學習模型154c時,如圖5所示,推論機154a可藉由輸入未檢測出工件的開始時刻,來輸出其繼續時間的推定值。動作模式控制部153亦可把藉由推論機154a推定的繼續時間,直接作為第2攝像間隔T
2的設定值來使用。或者,動作模式控制部153亦可基於藉由推論機154a推定的繼續時間,來調整該繼續時間,並設定為第2攝像時間T
2。例如,亦可把從推定的繼續時間減去預定的時間之時間,設定為第2攝像間隔T
2。
When the
如此,藉由採用學習並推定機器人轉移到節能模式後之視覺感測器的攝像間隔之構成,可因應生產設備實際的狀況來拉長視覺感測器的攝像間隔,使視覺感測器的電力消耗減低。In this way, by adopting a learning method and estimating the imaging interval of the vision sensor after the robot switches to the power saving mode, the imaging interval of the vision sensor can be lengthened according to the actual conditions of the production equipment, thereby reducing the power consumption of the vision sensor.
再者,在收集學習資料時,亦可事先保存未檢測出工件的開始時刻及其結束時刻,在進行學習時,求出繼續時間來作為開始時刻與結束時刻的差分。學習的做法亦可採取以下做法:一面使機器人系統100運轉一面取得學習資料並且進行學習,來逐漸建構學習模型154c。Furthermore, when collecting learning data, the start time and the end time of the undetected workpiece can be saved in advance, and when learning is performed, the duration can be calculated as the difference between the start time and the end time. The learning method can also be as follows: while the
再者,在此,作為輸入資料雖說明了使用未檢測出工件的開始時刻之例,但由於設想作業對象的工件是從食物、藥品、生活用品到機械零件之各種物品,因此在可能與節能模式的繼續時間(成為未檢測出工件的狀態之繼續時間)的長度具有相關之輸入資料中,可包含未檢測出工件時的日期、星期幾、月份、季節、氣象條件(包含天氣、氣溫、濕度)等資訊。又,關於機器人程式或機器人的內部狀態,亦可能包含機器人的作業的類型或內容、機器人程式的進行狀況、與程式執行相關的各種資料或訊號的狀態、機器人或作業工具的動作狀態等可能與節能模式的繼續時間有關聯的資訊。故,亦可將該等資料之一者以上,連同開始時刻一同作為輸入資料來學習,或取代開始時刻作為輸入資料來學習。又,亦可設想藉由外部訊號在節能模式中強制啟動機器人來執行作業的事件(例如有人按下按鈕要使機器人強制啟動的情況)。這種外部訊號也可能成為影響節能模式的繼續時間的長度之主因。故,與這種外部訊號相關的資訊亦可作為輸入資料來取入到學習中。如此,學習部154亦可把與未檢測出工件的狀態的繼續時間相關的資料,作為輸入資料來進行學習。再者,在使用如以上所例示的輸入資料時,為了有效率地學習有用的資料,亦可適當地進行輸入資料的預加工。學習部154的學習亦可導入深層學習(深度學習(deep learning))的手法。Furthermore, although the example of the start time of using the undetected workpiece is described here as the input data, since the workpieces of the assumed operation objects are various items ranging from food, medicine, daily necessities to mechanical parts, the input data that may be related to the duration of the energy saving mode (the duration of the state of undetected workpiece) may include information such as the date, day of the week, month, season, and meteorological conditions (including weather, temperature, and humidity) when the workpiece is not detected. Furthermore, the robot program or the internal state of the robot may also include information that may be related to the duration of the energy saving mode, such as the type or content of the robot's operation, the progress of the robot program, the status of various data or signals related to the program execution, the movement status of the robot or the work tool, etc. Therefore, one or more of these data may be learned together with the start time as input data, or may replace the start time as input data. Furthermore, it is also possible to imagine an event in which an external signal is used to force the robot to start up in the energy saving mode to perform an operation (for example, someone presses a button to force the robot to start up). This external signal may also become the main factor affecting the duration of the energy saving mode. Therefore, information related to such external signals can also be taken into learning as input data. In this way, the learning unit 154 can also use data related to the duration of the state in which the workpiece is not detected as input data for learning. Furthermore, when using input data as exemplified above, in order to efficiently learn useful data, the input data can also be appropriately pre-processed. The learning of the learning unit 154 can also introduce deep learning techniques.
又,為了取得如以上的輸入資料,於機器人控制裝置50,亦可如圖2所示連接有感測器62或外部訊號63。此情況下,感測器62例如是用以取得氣象條件的溫度感測器、濕度感測器等。機器人控制裝置50亦可從內部計時器取得有關開始時刻、日期、星期幾、月份、季節的資訊。Furthermore, in order to obtain the above input data, the robot control device 50 may also be connected to a sensor 62 or an external signal 63 as shown in FIG2 . In this case, the sensor 62 is, for example, a temperature sensor or a humidity sensor for obtaining weather conditions. The robot control device 50 may also obtain information about the start time, date, day of the week, month, and season from an internal timer.
圖6將機器人系統100的上述動作模式控制處理表示為流程圖。圖6的控制是在機器人控制裝置50的處理器51的控制下進行。再者,於圖6的流程中,左側的各處理對應於一般動作模式下的處理,右側的各處理對應於機器人在節能模式下的處理。Fig. 6 shows the above-mentioned action mode control processing of the
當一般動作模式下的處理啟動時,進行如上述以第1攝像間隔T
1重複攝像與檢測的處理直到檢測出工件W為止。詳言之,視覺感測器70進行攝像(步驟S1),檢測部152進行基於攝像圖像來檢測出工件W的處理(步驟S2)。接著,在步驟S3,作為檢測部152的檢測結果,判定是否檢測出工件W。當檢測出工件W時(S3:是),藉由動作控制部151進行工件的取出動作(步驟S5)。
When the processing in the general operation mode is started, the processing of repeating the imaging and detection at the first imaging interval T1 as described above is performed until the workpiece W is detected. Specifically, the
當未檢測出工件W時(S3:否),動作模式控制部153判定未檢測出工件的次數是否成為一定的次數以上(步驟S4)。當未檢測出的次數未成為一定的次數以上時(S4:否),重複攝像及檢測(步驟S1、S2)的處理。亦即,重複藉由視覺感測器70的攝像及檢測直到檢測出工件W為止。處理器51控制為:以第1攝像週期T
1進行步驟S1至S4(S4:否判定)的循環(攝像及檢測的重複)。
When the workpiece W is not detected (S3: No), the action mode control unit 153 determines whether the number of times the workpiece is not detected is greater than a certain number (step S4). When the number of times the workpiece is not detected is less than a certain number (S4: No), the processing of imaging and detection (steps S1, S2) is repeated. That is, imaging and detection by the
當未檢測出工件W的次數成為一定的次數以上時(S4:是),動作模式控制部153使機器人10轉移到節能模式(步驟S6)。接著,動作模式控制部153將視覺感測器70的攝像間隔變更為第2攝像間隔T
2(步驟S7)。藉由使用者輸入來設定第2攝像間隔T
2的動作(非學習模式)的情況下,動作模式控制部153將第2攝像間隔T
2設定為預先藉由使用者輸入所設定的值(步驟S8)。
When the number of times the workpiece W is not detected exceeds a certain number (S4: Yes), the action mode control unit 153 causes the
另,藉由學習來設定第2攝像間隔T
2的動作(學習模式)的情況下,動作模式控制部153藉由將未檢測出工件W的開始時刻輸入於推論機154a,來取得繼續時間。再者,在此,假設學習預先完成,已建構學習模型154c。然後,動作模式控制部153基於推定的繼續時間,來設定第2攝像間隔T
2(步驟S9)。
In the case of setting the second imaging interval T2 by learning (learning mode), the action mode control unit 153 obtains the duration time by inputting the start time of not detecting the workpiece W into the
然後,藉由視覺感測器70及檢測部152所進行的攝像及檢測(步驟S10、S11、S12:否判定的循環)以第2攝像間隔T
2進行(步驟S10、S11、S12:否)。在以第2攝像間隔T
2進行攝像及檢測的期間,當檢測出工件W時(S12:是),動作模式控制部153使機器人10回到一般動作模式(步驟S13)。然後,藉由機器人10進行取出動作(步驟S5)。
Then, the imaging and detection (steps S10, S11, S12: No judgment loop) performed by the
在上述動作模式控制處理中,採用以下的構成:在機器人的一般動作模式及節能模式的任一模式下,都能以預定的時間間隔,藉由視覺感測器進行工件的攝像及檢測,並因應檢測結果來轉換動作模式。藉此,可迅速掌握工件狀況的變化,適時地進行機器人系統的動作模式的轉移。In the above-mentioned motion mode control processing, the following structure is adopted: in any mode of the robot's general motion mode and energy-saving mode, the workpiece can be photographed and detected by the visual sensor at a predetermined time interval, and the motion mode can be switched according to the detection result. In this way, the change of the workpiece condition can be quickly grasped, and the motion mode of the robot system can be transferred in a timely manner.
在上述動作模式控制處理中,採用以下的構成:在機器人的一般動作模式下,以預定的時間間隔藉由視覺感測器進行攝像及檢測,當未檢測出工件達預定的次數以上時,使機器人往節能模式轉換。若依據這種構成,可適時地進行往節能模式的轉移,與把進入到節能模式的時間設為固定的構成相比較,可減低機器人消耗多餘的電力之時間。In the above-mentioned motion mode control processing, the following configuration is adopted: in the general motion mode of the robot, the visual sensor performs imaging and detection at predetermined time intervals, and when the workpiece is not detected for more than a predetermined number of times, the robot is switched to the energy saving mode. According to this configuration, the switch to the energy saving mode can be performed in a timely manner, and compared with the configuration in which the time to enter the energy saving mode is set to a fixed time, the time that the robot consumes excess power can be reduced.
又,若依據以上的動作模式控制處理,轉換到節能模式之後,可減低藉由視覺感測器進行攝像及檢測的負載,可刪減電力消耗。亦即,可因應機器人系統的狀況,儘可能地刪減多餘的電力消耗。Furthermore, if the operation mode is switched to the energy saving mode according to the above operation mode control process, the load of the visual sensor for imaging and detection can be reduced, and the power consumption can be reduced. In other words, the redundant power consumption can be reduced as much as possible according to the status of the robot system.
圖7是表示學習部154一面收集學習資料一面進行學習之學習處理的流程圖。該處理是在學習部154(處理器51)的控制下執行。本處理是與圖6的動作模式控制處理並行地執行。再者,在到學習完成之前的階段,圖6的動作模式控制處理的第2攝像間隔T 2亦可基於使用者輸入來設定。 FIG. 7 is a flow chart showing a learning process in which the learning unit 154 collects learning data while performing learning. This process is executed under the control of the learning unit 154 (processor 51). This process is executed in parallel with the action mode control process of FIG. 6. Furthermore, in the stage before the learning is completed, the second imaging interval T2 of the action mode control process of FIG. 6 can also be set based on the user input.
當本處理啟動時,學習部154檢查機器人10從一般動作模式往節能模式的轉移是否已發生(步驟S101)。學習部154等到機器人10從一般動作模式往節能模式的轉移發生(S101:否)。當檢測出機器人10往節能模式的轉移時(S101:是),學習部154記錄未檢測出工件W的開始時刻t1(步驟S102)。When this process is started, the learning unit 154 checks whether the
然後,學習部154檢查機器人10從節能模式往一般動作模式的轉移是否已發生(步驟S103)。學習部154等到機器人10從節能模式往一般動作模式的轉移發生(S103:否)。當檢測出機器人10從節能模式往一般動作模式的轉移時(S103:是),學習部154記錄當時的時刻t2(亦即,未檢測出工件的狀態的結束時刻)(步驟S104)。然後,學習部154藉由t2-t1來求出未檢測出的繼續時間,使推論機154a學習未檢測出的開始時刻t1及其繼續時間(t2-t1)(步驟S105)。然後,處理回到步驟S101。Then, the learning unit 154 checks whether the transition of the
學習部154亦可構成為:圖7的學習處理的移動後,在已經過預定的期間(例如數日的期間)的階段,或者在已學習到足夠量的學習資料的階段,結束圖7的學習處理。The learning unit 154 may also be configured to terminate the learning process of FIG. 7 after a predetermined period (e.g., several days) has passed after the transfer of the learning process of FIG. 7 or when a sufficient amount of learning data has been learned.
再者,在圖7中,雖記載一面收集學習資料一面逐步執行學習時的動作例,但亦可在收集到足夠量的學習資料之後進行推論機154a的學習。Furthermore, although FIG. 7 shows an operation example in which learning is performed step by step while learning data is collected, the learning of the
第2實施形態
以下說明第2實施形態的機器人系統100A。圖8是表示機器人系統100A的機器構成,並且表示第2實施形態的機器人控制裝置50的功能方塊的圖。在本實施形態,機器人10A具備檢測施加於機器人10A的外力之外力檢測器61。這種構成的情況下,可將機器人10A構成為例如協同合作機器人。再者,在第2實施形態亦可省略搬送裝置90或視覺感測器70。
Second embodiment
The following describes a robot system 100A of the second embodiment. FIG. 8 is a diagram showing the machine configuration of the robot system 100A and the functional blocks of the robot control device 50 of the second embodiment. In this embodiment, the robot 10A is provided with an external force detector 61 for detecting an external force applied to the robot 10A. In this configuration, the robot 10A can be configured as, for example, a cooperative robot. Furthermore, in the second embodiment, the conveying
外力檢測器61例如是安裝於機器人10A的腕凸緣之力感測器。此情況下,力感測器亦可為例如6軸力感測器,前述6軸力感測器檢測出X、Y、Z各軸方向之力、及繞著各軸的力矩。或者,外力檢測器61亦可藉由配置於機器人10A的各關節部之扭矩感測器來構成。The external force detector 61 is, for example, a force sensor mounted on the wrist flange of the robot 10A. In this case, the force sensor may also be, for example, a 6-axis force sensor, which detects forces in the directions of the X, Y, and Z axes, and torques around the axes. Alternatively, the external force detector 61 may also be constituted by torque sensors disposed at the joints of the robot 10A.
又,機器人控制裝置50具備接觸檢測部156,前述接觸檢測部156基於藉由外力檢測器61檢測出的外力,來檢測是否為人接觸到機器人10A的狀態。接觸檢測部156例如當藉由外力檢測器61所檢測出的外力的大小為預定的閾值以上時,可判定為人與機器人10A接觸中的狀態(亦即正進行協同合作作業的狀態)。Furthermore, the robot control device 50 has a contact detection unit 156, which detects whether a person is in contact with the robot 10A based on the external force detected by the external force detector 61. The contact detection unit 156 can determine that the person and the robot 10A are in contact (i.e., they are working in a collaborative manner) when the magnitude of the external force detected by the external force detector 61 is greater than a predetermined threshold, for example.
於本實施形態,動作模式控制部153A提供以下功能:將來自外力檢測器61的輸出,作為與機器人10A的作業的繼續相關的資訊來使用,而切換機器人10A的動作模式。In the present embodiment, the action mode control unit 153A provides a function of switching the action mode of the robot 10A by using the output from the external force detector 61 as information related to the continuation of the operation of the robot 10A.
作為具體的動作例,假設機器人控制裝置50正在執行用以進行機器人10A與人的協同合作作業之程式。此情況下,動作模式控制部153A是:(k1)基於在接觸檢測部156的檢測結果,當人未與機器人10A接觸的時間成為預定時間以上時,使機器人10A轉移到節能模式。As a specific example of operation, assume that the robot control device 50 is executing a program for performing collaborative work between the robot 10A and a human. In this case, the operation mode control unit 153A is: (k1) based on the detection result of the contact detection unit 156, when the time when the human does not contact the robot 10A becomes longer than a predetermined time, the robot 10A is shifted to the energy saving mode.
在人與機器人的協同合作作業中,人未與機器人接觸的狀態,可視為未向機器人要求作業的狀況。若依據上述程序(k1),可準確地掌握未向機器人要求作業這類的狀況發生,使機器人迅速地轉移到節能模式。因此,可抑制機器人多餘地消耗電力這類的狀況發生。In the collaborative work between humans and robots, the state where humans are not in contact with the robot can be regarded as a state where no work is requested from the robot. If the above procedure (k1) is followed, it is possible to accurately grasp the occurrence of such a state that no work is requested from the robot, and the robot can be quickly transferred to the energy saving mode. Therefore, it is possible to prevent the robot from consuming power unnecessarily.
然後,動作模式控制部153A亦可當藉由接觸檢測部156再次檢測到人觸碰到機器人10A時,使機器人10A回到一般動作模式。Then, the action mode control unit 153A may return the robot 10A to the normal action mode when the contact detection unit 156 detects again that a person has touched the robot 10A.
再者,在上述第2實施形態,雖基於外力檢測器61的輸出,來檢測是否為人與機器人接觸的狀況,但亦可能有藉由安裝於機器人10A的臂之機械開關,來檢測是否為人與機器人接觸中的狀態之構成例。Furthermore, in the above-mentioned second embodiment, although the output of the external force detector 61 is used to detect whether a person and a robot are in contact, there may also be an example of a structure in which a mechanical switch installed on the arm of the robot 10A is used to detect whether a person and a robot are in contact.
如上述,當機器人10A處於節能模式下,藉由接觸檢測部156檢測出人與機器人10A接觸時,機器人10A會啟動。此情況下,藉由接觸檢測部156檢測出人與機器人10A接觸的事件,可能成為會影響節能模式的繼續時間的長度之主因。故,關於接觸檢測部156的輸出訊號,亦可作為會影響節能模式的繼續時間的長度之輸入資料,來取入到學習部154的學習中。As described above, when the robot 10A is in the energy saving mode, the robot 10A will start when the contact detection unit 156 detects that a person is in contact with the robot 10A. In this case, the event that the contact detection unit 156 detects that the person is in contact with the robot 10A may become the main factor that affects the duration of the energy saving mode. Therefore, the output signal of the contact detection unit 156 can also be taken into the learning of the learning unit 154 as input data that affects the duration of the energy saving mode.
再者,以上說明了在使機器人10A作為協同合作機器人而動作時,因應一定時間以上未檢測出機器人10A與人的接觸,來變更機器人10A的動作模式之例。亦可使機器人10A,作為基於外力檢測器61的輸出來執行力控制(精密嵌合作業等)之機器人而動作。又,當機器人10A構成為搭載容器型手部裝置來當作端接器,且前述容器型手部裝置具有作為用以搬運工件的容器的功能時,可藉由外力檢測器61,以重量的變化(亦即,對機器人10A作用之力的變化)來檢測出工件往容器型手部裝置內的投入。於該等情況下,一定時間以上未檢測出對機器人10A之外力的變化之事件,可認為是發生未對機器人10A要求作業的狀況。故,動作模式控制部153A亦可進行以下控制:當一定時間以上未檢測出對機器人10A之外力的變化時,使機器人10A的動作模式轉移到節能模式。藉由進行這種控制,亦可得到與上述情況同樣的效果。Furthermore, the above describes an example of changing the action mode of the robot 10A in response to the fact that the robot 10A has not detected contact with a person for a certain period of time when the robot 10A is operated as a cooperative robot. The robot 10A can also be operated as a robot that performs force control (precision fitting operations, etc.) based on the output of the external force detector 61. In addition, when the robot 10A is configured to carry a container-type hand device as a terminator, and the aforementioned container-type hand device has the function of serving as a container for transporting workpieces, the external force detector 61 can be used to detect the introduction of the workpiece into the container-type hand device by the change in weight (that is, the change in the force acting on the robot 10A). In such cases, if the change of the external force on the robot 10A is not detected for a certain period of time, it can be considered that the robot 10A is not required to perform any operation. Therefore, the action mode control unit 153A can also perform the following control: when the change of the external force on the robot 10A is not detected for a certain period of time, the action mode of the robot 10A is transferred to the energy saving mode. By performing such control, the same effect as the above situation can be obtained.
圖2、圖8所示的機器人控制裝置50的功能分配是例示,關於功能分配可構成各種變形例。例如,亦可能有像是將配置於機器人控制裝置50內之功能方塊的一部分,配置於教示操作盤40側的構成例。The function allocation of the robot control device 50 shown in Fig. 2 and Fig. 8 is an example, and various modifications can be made to the function allocation. For example, there may also be a configuration example in which a part of the function block arranged in the robot control device 50 is arranged on the teaching operation panel 40 side.
亦可將教示操作盤40所具有的功能及機器人控制裝置50所具有的功能全體,定位為機器人控制裝置。The functions of the teaching operation panel 40 and the functions of the robot control device 50 may be collectively positioned as a robot control device.
上述實施形態的構成可應用於控制產業機械的動作模式,前述產業機械是藉由視覺感測器檢測工件來執行對工件的作業之各種類型的產業機械。The configuration of the above-mentioned embodiment can be applied to controlling the motion mode of industrial machinery, which is various types of industrial machinery that performs operations on workpieces by detecting workpieces with visual sensors.
圖2、圖8所示的機器人控制裝置的功能方塊,亦可藉由機器人控制裝置的處理器執行儲存於記憶裝置的各種軟體來實現,或者亦可藉由以ASIC(Application Specific Integrated Circuit(特殊應用積體電路))等硬體作為主體的構成來實現。The functional blocks of the robot control device shown in FIG. 2 and FIG. 8 may also be implemented by the processor of the robot control device executing various software stored in a memory device, or may also be implemented by a configuration mainly based on hardware such as an ASIC (Application Specific Integrated Circuit).
執行上述實施形態的動作模式控制處理(圖6)、學習處理(圖7)等各種處理的程式,可記錄於電腦可讀取的各種記錄媒體(例如ROM、EEPROM、快閃記憶體(flash memory)等半導體記憶體、磁性記錄媒體、CD-ROM、DVD-ROM等光碟片)。The programs for executing various processing such as the action mode control processing (FIG. 6) and the learning processing (FIG. 7) of the above-mentioned implementation form can be recorded in various computer-readable recording media (e.g. semiconductor memories such as ROM, EEPROM, flash memory, magnetic recording media, CD-ROM, DVD-ROM and other optical discs).
如以上所說明,若依據各實施形態,可準確地掌握與機器人的作業相關的狀況之變化,適時地進行機器人系統的動作模式的轉移。亦即,可基於與機器人的作業的繼續相關的資訊,來準確地切換機器人或構成機器人系統之其他機器的動作模式。又,藉此,可於機器人系統中,抑制多餘地消耗電力的事態發生。As described above, according to each embodiment, the change of the status related to the operation of the robot can be accurately grasped, and the action mode of the robot system can be transferred in a timely manner. That is, the action mode of the robot or other machines constituting the robot system can be accurately switched based on the information related to the continuation of the robot's operation. In addition, in this way, the occurrence of unnecessary power consumption in the robot system can be suppressed.
雖詳述了本揭示,但本揭示不限定於上述的各個實施形態。這些實施形態可在不脫離本揭示的要旨的範圍內,或在不脫離由記載於申請專利範圍的內容及其均等物所導出之本揭示的旨趣的範圍內,進行各種追加、替換、變更、部分刪除等。又,這些實施形態亦可加以組合而實施。例如,於上述的實施形態中,各動作的順序或各處理的順序是作為一例來表示,並不限定於該等順序。又,在上述的實施形態的說明中使用數值或數式的情況亦同。Although the present disclosure is described in detail, the present disclosure is not limited to the above-mentioned embodiments. These embodiments may be subject to various additions, replacements, changes, partial deletions, etc., without departing from the gist of the present disclosure or the intent of the present disclosure derived from the contents recorded in the scope of the patent application and its equivalents. Furthermore, these embodiments may also be combined and implemented. For example, in the above-mentioned embodiments, the order of each action or the order of each processing is represented as an example and is not limited to such order. Furthermore, the same applies to the use of numerical values or formulas in the description of the above-mentioned embodiments.
關於上述實施形態及變形例進一步記載以下的附註。
(附註1)
一種機器人系統(100),具備:機器人(10);及動作模式控制部(153),基於與前述機器人(10)的作業的繼續相關的資訊,來切換前述機器人(10)、或構成包含前述機器人(10)的機器人系統(100)之其他機器的動作模式。
(附註2)
如附註1所記載的機器人系統(100),其具備感測器,前述感測器用以檢測與前述機器人的作業的繼續相關的狀況,前述動作模式控制部(153)基於前述感測器的檢測結果,來切換前述機器人(10)或構成前述機器人系統(100)之其他機器的動作模式。
(附註3)
如附註2所記載的機器人系統(100),其中前述感測器是能以預定的攝像間隔來拍攝工件的視覺感測器(70),前述機器人系統進一步具備檢測部(152),前述檢測部(152)基於前述視覺感測器(70)的攝像圖像來檢測前述工件,前述動作模式控制部(153)基於前述檢測部(152)的檢測結果,來切換前述機器人(10)或前述視覺感測器(70)的動作模式。
(附註4)
如附註3所記載的機器人系統(100),其中前述動作模式控制部(153)因應未檢測出前述工件的前述檢測結果,來使前述機器人(10)轉移到可減低電力消耗的節能模式。
(附註5)
如附註4所記載的機器人系統(100),其中前述動作模式控制部(153)因應在藉由前述檢測部(152)對於以前述預定的攝像間隔取得的攝像圖像所進行的檢測中,未將前述工件檢測出預定的次數之前述檢測結果,來使前述機器人(10)轉移到前述節能模式。
(附註6)
如附註4或5所記載的機器人系統(100),其中前述動作模式控制部(153)因應檢測出前述工件的前述檢測結果,來使前述機器人(10)從前述節能模式轉移到一般動作模式。
(附註7)
如附註3至6中任一項所記載的機器人系統(100),其中前述動作模式控制部(153)因應未檢測出前述工件的前述檢測結果,來變更前述視覺感測器(70)的前述攝像間隔。
(附註8)
如附註7所記載的機器人系統(100),其中前述動作模式控制部(153)因應在藉由前述檢測部(152)對於以前述視覺感測器(70)以第1攝像間隔拍攝前述工件的攝像圖像所進行的檢測中,未將前述工件檢測出預定的次數之檢測結果,來將前述視覺感測器(70)的攝像間隔變更為第2攝像間隔。
(附註9)
如附註8所記載的機器人系統(100),其中前述動作模式控制部(153)受理用以設定前述第2攝像間隔之使用者輸入。
(附註10)
如附註8所記載的機器人系統(100),其進一步具備學習部(154),前述學習部(154)基於與成為未檢測出前述工件的狀態之繼續時間相關的輸入資料來進行學習,藉此設定前述第2攝像間隔。
(附註11)
如附註10所記載的機器人系統(100),其中前述學習部(154)藉由學習學習資料來建構學習模型,前述學習資料是以未檢測出前述工件時之開始時刻、日期、星期幾、月份、季節、氣象條件、感測器輸入、外部訊號、機器人程式、機器人的內部狀態之至少一者以上作為輸入資料,並以未檢測出前述工件之後的繼續時間作為教師資料。
(附註12)
如附註11所記載的機器人系統(100),其中前述學習部(154)對學習完畢的前述學習模型,輸入未檢測出前述工件時之開始時刻、日期、星期幾、月份、季節、氣象條件、感測器輸入、外部訊號、機器人程式、機器人的內部狀態之至少一者以上,藉此取得未檢測出前述工件之後的繼續時間的推定值,並基於該推定值來設定前述第2攝像間隔。
(附註13)
如附註11所記載的機器人系統(100),其中前述學習部(154)在前述機器人系統(100)運轉中,以預定的期間,記錄未檢測出前述工件時之開始時刻、日期、星期幾、月份、季節、氣象條件、感測器輸入、外部訊號、機器人程式、機器人的內部狀態之至少一者以上、及成為未檢測出前述工件的狀態的結束時刻或繼續時間,藉此取得前述學習資料。
(附註14)
如附註8至13中任一項所記載的機器人系統(100),其中前述第2攝像間隔比前述第1攝像間隔長。
(附註15)
如附註2所記載的機器人系統(100A),其中前述感測器是用以檢測對前述機器人作用的力之感測器(61),前述動作模式控制部(153A)是當一定時間以上未檢測出對前述機器人(10A)作用的力的變化時,將前述機器人(10A)切換為節能模式。
(附註16)
如附註15所記載的機器人系統(100A),其中前述動作模式控制部(153A)是當基於前述感測器(61)的輸出,一定時間以上未檢測出物體對前述機器人(10A)的接觸時,將前述機器人(10A)切換為節能模式。
(附註17)
一種控制裝置(50),是控制機器人(10)的控制裝置(50),前述控制裝置(50)具備動作模式控制部(153),前述動作模式控制部(153)基於與前述機器人(10)的作業的繼續相關的資訊,來切換前述機器人(10)、或構成包含前述機器人(10)的機器人系統(100)之其他機器的動作模式。
The following notes are further described with respect to the above-mentioned embodiments and variations.
(Note 1)
A robot system (100) comprises: a robot (10); and an action mode control unit (153) for switching the action mode of the robot (10) or other machines constituting the robot system (100) including the robot (10) based on information related to the continuation of the operation of the robot (10).
(Note 2)
The robot system (100) as described in
10,10A:機器人
11:手部
40:教示操作盤
41:顯示部
50:機器人控制裝置
51:處理器
61:外力檢測器
62:感測器
63:外部訊號
70:視覺感測器
90:搬送裝置
100,100A:機器人系統
151:動作控制部
152:檢測部
153,153A:動作模式控制部
154:學習部
154a:推論機
154b:學習資料
154c:學習模型
155:記憶部
156:接觸檢測部
G:工件群
S1~S13,S101~S105:步驟
t1:開始時刻
t2:時刻
T
1:第1攝像間隔
T
2:第2攝像間隔
W:工件
10,10A: robot 11: hand 40: teaching operation panel 41: display unit 50: robot control device 51: processor 61: external force detector 62: sensor 63: external signal 70: visual sensor 90: conveying device 100,100A: robot system 151: motion control unit 152: detection unit 153,153A: motion mode control unit 154: learning
圖1是表示一實施形態的機器人系統的機器構成的圖。 圖2是機器人控制裝置的功能方塊圖。 圖3是用以說明機器人的動作狀況的圖。 圖4是用以說明機器人的動作狀況的圖。 圖5是表示推論機的構成的圖。 圖6是表示動作模式控制處理的流程圖。 圖7是表示學習部的學習處理的流程圖。 圖8是表示第2實施形態的機器人系統的機器構成的圖。 FIG. 1 is a diagram showing the machine configuration of a robot system of one embodiment. FIG. 2 is a functional block diagram of a robot control device. FIG. 3 is a diagram for explaining the action status of a robot. FIG. 4 is a diagram for explaining the action status of a robot. FIG. 5 is a diagram showing the configuration of an inference engine. FIG. 6 is a flowchart showing the action mode control process. FIG. 7 is a flowchart showing the learning process of a learning unit. FIG. 8 is a diagram showing the machine configuration of a robot system of a second embodiment.
10:機器人 10:Robots
11:手部 11: Hands
40:教示操作盤 40: Teaching operation panel
41:顯示部 41: Display unit
50:機器人控制裝置 50:Robot control device
51:處理器 51: Processor
62:感測器 62:Sensor
63:外部訊號 63: External signal
70:視覺感測器 70: Visual sensor
90:搬送裝置 90: Transport device
100:機器人系統 100:Robotic system
151:動作控制部 151: Motion control unit
152:檢測部 152: Testing Department
153:動作模式控制部 153: Action mode control unit
154:學習部 154: Study Department
154a:推論機 154a: Inference Engine
154b:學習資料 154b: Study materials
155:記憶部 155: Memory Department
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/045682 WO2024127465A1 (en) | 2022-12-12 | 2022-12-12 | Robot system, and control device |
WOPCT/JP2022/045682 | 2022-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202423638A true TW202423638A (en) | 2024-06-16 |
Family
ID=91484524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112143687A TW202423638A (en) | 2022-12-12 | 2023-11-13 | Robot system, and control device |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202423638A (en) |
WO (1) | WO2024127465A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5631749B2 (en) * | 2011-01-04 | 2014-11-26 | 大和製衡株式会社 | Operation method of boxing equipment |
JP5887073B2 (en) * | 2011-06-06 | 2016-03-16 | 株式会社イシダ | X-ray inspection equipment |
JP6496353B2 (en) * | 2017-05-18 | 2019-04-03 | ファナック株式会社 | Robot system |
JP2019125095A (en) * | 2018-01-15 | 2019-07-25 | シャープ株式会社 | Robot, person detection system, control device, control program and method for controlling control device |
JP2021137898A (en) * | 2020-03-03 | 2021-09-16 | 株式会社Ihi | Robot system |
-
2022
- 2022-12-12 WO PCT/JP2022/045682 patent/WO2024127465A1/en unknown
-
2023
- 2023-11-13 TW TW112143687A patent/TW202423638A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024127465A1 (en) | 2024-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6031202B1 (en) | Cell control device for finding the cause of abnormalities in manufacturing machines | |
US10852710B2 (en) | Thermal displacement compensation apparatus | |
Haddadin et al. | Towards the robotic co-worker | |
JP3002097B2 (en) | Visual tracking method | |
JP6811465B2 (en) | Learning device, learning method, learning program, automatic control device, automatic control method and automatic control program | |
Rahman | Cognitive cyber-physical system (C-CPS) for human-robot collaborative manufacturing | |
WO2020158239A1 (en) | Work determination device and work determination method | |
JP2000271886A (en) | Industrial robot | |
US11945115B2 (en) | Machine learning device and robot system provided with same | |
JP2004001122A (en) | Picking device | |
Saen et al. | Action-intention-based grasp control with fine finger-force adjustment using combined optical-mechanical tactile sensor | |
CN113547525A (en) | Control method of robot controller special for stacking | |
US20220001537A1 (en) | Control system, robot system and control method | |
JP6490132B2 (en) | Robot control device, machine learning device, and machine learning method | |
TW202423638A (en) | Robot system, and control device | |
JP2021084210A (en) | Robot, end effector, system, method and program | |
Kroger et al. | A manipulator plays Jenga | |
Huang et al. | Intelligent humanoid mobile robot with embedded control and stereo visual feedback | |
KR101820241B1 (en) | Apparatus for motion estimation of object using gripper and method thereof | |
JPS63255701A (en) | Controller provided with inference function | |
JPH10225885A (en) | Multi-collaboration work method, and system device | |
Mohammed et al. | Modeling and simulation of industrial scara robot arm | |
Varkey et al. | Learning robotic grasp using visual-tactile model | |
Klecker et al. | Robotic trajectory tracking: Bio-inspired position and torque control | |
WO2022030405A1 (en) | Control system, control device, and program |