TW202423027A - 具同步整流器的功率轉換器及其操作方法 - Google Patents
具同步整流器的功率轉換器及其操作方法 Download PDFInfo
- Publication number
- TW202423027A TW202423027A TW112143042A TW112143042A TW202423027A TW 202423027 A TW202423027 A TW 202423027A TW 112143042 A TW112143042 A TW 112143042A TW 112143042 A TW112143042 A TW 112143042A TW 202423027 A TW202423027 A TW 202423027A
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- current
- synchronous rectifier
- drain
- gate
- Prior art date
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 226
- 238000000034 method Methods 0.000 title claims abstract description 63
- 230000033228 biological regulation Effects 0.000 claims abstract description 90
- 230000004044 response Effects 0.000 claims abstract description 33
- 238000001514 detection method Methods 0.000 claims description 24
- 230000001105 regulatory effect Effects 0.000 claims description 10
- 238000007599 discharging Methods 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 abstract description 40
- 230000003247 decreasing effect Effects 0.000 abstract description 7
- 230000002441 reversible effect Effects 0.000 abstract description 7
- 239000008186 active pharmaceutical agent Substances 0.000 description 91
- 230000007423 decrease Effects 0.000 description 23
- 238000004804 winding Methods 0.000 description 20
- 239000003990 capacitor Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- UXUFTKZYJYGMGO-CMCWBKRRSA-N (2s,3s,4r,5r)-5-[6-amino-2-[2-[4-[3-(2-aminoethylamino)-3-oxopropyl]phenyl]ethylamino]purin-9-yl]-n-ethyl-3,4-dihydroxyoxolane-2-carboxamide Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC(NCCC=3C=CC(CCC(=O)NCCN)=CC=3)=NC(N)=C2N=C1 UXUFTKZYJYGMGO-CMCWBKRRSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0038—Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
一種包含同步整流器的功率轉換器,實現用於同步整流器的快速關斷的自適應閘極電壓調節。在一些實施例中,自適應閘極電壓調節電路和方法在同步整流器的導通週期期間監測同步整流器電流的斜率。響應於檢測到同步整流器電流快速下降,施加更大的閘極放電電流以快速放電同步整流器閘極電壓。響應於檢測到同步整流器電流更適度地減小,施加較小的閘極放電電流以適度的方式對同步整流器閘極電壓進行放電。當同步整流器可以快速關斷時,避免了同步整流器處的大反向電流和大汲極電壓尖峰。當功率轉換器在不連續導通模式下操作時,這種自適應閘極電壓調節電路和方法特別有用。
Description
本發明涉及開關調節器電路和方法,尤其涉及一種具有同步整流器的開關調節器,該開關調節器實現用於快速同步整流器關斷的自適應閘極電壓調節。
功率轉換器被用於廣泛的電子應用中,以將交流電壓轉換為直流電壓或將直流電壓從一個電壓值轉換為另一電壓值。常用的功率轉換器包括開關模式電源或開關模式轉換器,也稱為開關調節器或直流到直流轉換器。開關調節器透過低損耗元件(如電容器、電感器和變壓器)以及電源開關提供電源功能,電源開關被打開和關閉以將能量以離散分組的形式從輸入傳輸到輸出。反饋控制電路用於調節能量傳遞,以將恒定的輸出電壓保持在電路的期望負載極限內。
反激式轉換器是一種開關模式功率轉換器,應用於電子設備,如電視或電腦,或移動設備充電器。反激式轉換器也應用於電子設備(如電視或顯示器)中的高壓電源。
反激式轉換器是一種隔離功率轉換器,通常用於交流到直流和直流到直流轉換,在輸入和一個或複數個輸出之間具有電流隔離。更具體地說,反激式轉換器是降壓-升壓轉換器,其中電感器被分開以形成變壓器,使得電壓比與隔離的附加優點相乘。為了提高效率,通常採用同步整流來代替二極體整流器。第1圖是使用同步整流的反激式轉換器的示例。如第1圖所示,反激式轉換器的典型結構包括耦合到變壓器Lm的初級變壓器繞組的初級開關(SW)和耦合到變壓器Lm的次級變壓器繞組的同步整流開關(SR)。輸入電壓VIN被提供在初級繞組和初級開關之間。初級開關由控制電壓VGS控制以導通和關斷以傳導初級電流Ipri。初級開關和同步整流器在操作上是互補的,其中一個開關導通,而另一個開關關斷。初級開關SW和同步整流器SR的導通週期不重疊。在次級側流動的電流,稱為次級電流Isec,對輸出電容器C3充電以提供輸出電壓Vo。在一些情況下,可以在初級側實現有源箝位元,以便在初級開關SW關斷時箝位初級開關SW的汲極端子處的電壓。
第2圖表示在恒定頻率、連續導通模式(CF CCM)下操作第1圖的反激式轉換器的示例訊號波形。第3圖表示在恒定頻率、不連續導通模式(CF-DCM)下操作第1圖的反激式轉換器的示例訊號波形。M.T.Zhang、M.M.Jovanovic和F.C.Lee在"Design considerations and performance evaluations of synchronous rectification in flyback converters,"
Applied Power Electronics Conference and Exposition, 1997, APEC '97 Conference Proceedings 1997, pp. 623-630 vol.2.的論文中詳細描述了第1圖的反激式轉換器以及第2圖和第3圖的操作模式。簡而言之,當在CCM操作模式下操作時,二次電流Isec在下一個開關週期初始前不會歸零電流值(主開關SW接通),如第2圖所示。另一方面,當在DCM操作模式下操作時,二次電流Isec在下一個開關週期初始前降至零電流值,如第3圖所示。
確切地說,當帶同步整流器的功率轉換器工作在不連續導通模式下時,在初級側導通之前,次級電流歸零。在實踐中,當同步整流器被訊號通知關閉時,傳播延遲和閘極驅動器放電時間導致閘極驅動電壓V
GS實際降低到關斷同步整流器的電壓電平的一定量的延遲。當同步整流器在次級電流過零電流後關斷時,可能會產生次級反向電流。在實踐中,如果同步整流器沒有足夠快地關斷,則可能產生大的反向電流,這可能導致同步整流器兩端的不期望的高汲極到源極電壓尖峰,這通常會影響同步整流器裝置和功率轉換器的可靠性。
本發明公開了一種用於同步整流器(rectifier)的具有自適應閘極電壓調節的功率轉換器(power converter),基本上如下面所示和/或描述的,例如結合附圖中的至少一個,如申請專利範圍中更完整地闡述的。
在一些實施例中,一種操作包含同步整流器的功率轉換器並接收輸入電壓並提供輸出電壓的方法包括:檢測同步整流器(SR)導通週期的初始;檢測指示該同步整流器的汲極電流的電壓;響應於指示汲極電流具有第一斜率值的檢測電壓,選擇第一閘極放電電流;響應於指示汲極電流具有小於第一斜率值的第二斜率值的檢測電壓,選擇小於第一閘極放電電流的第二閘極放電電流;以及響應於同步整流器的汲極端子處的汲極電壓達到第一調節閾值,使用所選擇的閘極放電電流來對同步整流器的閘極電壓進行放電。
在另一個實施例中,一種操作包含同步整流器的功率轉換器並接收輸入電壓並提供輸出電壓的方法包括檢測同步整流器(SR)導通週期的初始;在SR導通週期初始時啟動複數個持續時間,其中該持續時間至少為第一持續時間和比第一持續時間長的第二持續時間;檢測該同步整流器的汲極端子處的汲極電壓;響應於在該第一持續時間內檢測到的汲極電壓處於或超過第一閾值,選擇第一閘極放電電流;響應於在該第一持續時間期滿之後且在該第二持續時間內檢測到的汲極電壓處於或超過該第一閾值,選擇小於該第一閘極放電電流的第二閘極放電電流;以及響應於檢測到的汲極電壓達到第一調節閾值,使用所選擇的閘極放電電流對同步整流器的閘極電壓進行放電。
在另一個實施例中,功率轉換器包括接收輸入電壓的輸入端子和提供輸出電壓的輸出端子;同步整流器,該同步整流器耦合到該輸出端子;以及控制器,其經耦合以產生閘極控制訊號以在複數個同步整流器(SR)導通週期上驅動同步整流器的閘極端子。該控制器包括建立複數個持續時間的複數個計時器,該複數個持續期間包括至少第一持續時間和比該第一持續時間長的第二持續時間。在每個SR導通週期中,控制器檢測指示同步整流器的汲極電流的電壓。響應於指示具有第一斜率值的汲極電流的檢測電壓,控制器選擇第一閘極放電電流。響應於指示汲極電流具有小於第一斜率值的第二斜率值的檢測電壓,控制器選擇小於第一閘極放電電流的第二閘極放電電流。響應於同步整流器的汲極端子處的汲極電壓達到第一調節閾值,控制器使用所選擇的閘極放電電流來對同步整流器的閘極電壓進行放電。
透過以下描述和附圖,將更充分地理解本發明的此些和其他優點、方面和新穎特徵,以及本發明所示實施例的細節。
包含同步整流器的功率轉換器實現用於同步整流器的快速關斷的自適應閘極電壓調節。在一些實施例中,自適應閘極電壓調節電路和方法在同步整流器的導通週期期間監測同步整流器電流的斜率。響應於檢測到同步整流器電流快速下降,即具有大的向下斜率,自適應閘極電壓調節電路和方法施加更大的閘極放電電流以快速放電同步整流器閘極電壓。響應於檢測到同步整流器電流更適度地減小,即具有小的向下斜率,自適應閘極電壓調節電路和方法施加較小的閘極放電電流,以適度的方式對同步整流器閘極電壓進行放電。藉此配置,即使在汲極電流快速減少的情況下,同步整流器也可以快速關斷。當同步整流器可以快速關斷時,可以避免同步整流器處的大反向電流或負電流以及大汲極電壓尖峰。提高了同步整流器和功率轉換器的可靠性。當功率轉換器在不連續導通模式下操作時,自適應閘極電壓調節電路和方法特別有用。
在本實施例中,功率轉換器是反激式轉換器,其包括耦合到轉換器的次級繞組的同步整流器。在其他實施例中,功率轉換器可以是結合使用同步整流器的任何其他類型的開關模式電源。例如,功率轉換器可以是升壓或降壓-升壓轉換器,而不使用變壓器,或者任何直流到直流轉換器,或者LLC SSR轉換器,或者任何使用同步整流器電壓檢測的功率轉換器。在以下描述中,反激式轉換器被用作說明自適應閘極電壓調節電路和方法的實現的示例。反激式轉換器作為功率轉換器的使用僅是說明性的,而不是限制性的。
第4圖表示在本發明的實施例中,一種反激式轉換器的示意圖。參考第4圖,反激式轉換器10包括耦合到變壓器LP的初級變壓器繞組的初級開關M1(SW)和耦合到變壓器低壓的次級變壓器繞組的同步整流開關M2(SR)。輸入電壓V
IN跨接在輸入電壓節點12和接地節點18之間的初級繞組和初級開關之間。輸入去耦電容器Cin可以耦合到輸入電壓節點12。初級開關由控制電壓V
GS1控制以導通和關斷以傳導在初級變壓器繞組中流動的初級電流Ipri。同步整流器開關由控制電壓V
GS2控制以導通和關斷,從而傳導在次級變壓器繞組中流動的次級電流Isec。在本說明書中,術語“初級電流”是指在初級變壓器繞組中流動的電流,術語“次級電流”和“同步整流器電流”都用於指在變壓器LP的次級變壓器繞組中流過的電流,即在同步整流器中流過的電流。輸出電容器C
OUT耦合在次級繞組和同步整流器兩端,即,耦合在輸出節點16和接地節點18之間。在輸出節點16處產生輸出電壓V
OUT以驅動負載20。在一些實施例中,可以在初級側提供有源箝位元電路25,以在初級開關M1關斷時箝位初級開關M1的汲極端子(節點14)處的電壓。
在本發明的實施例中,初級開關M1和同步整流器M2是功率開關,通常是MOSFET器件。在本實施例中,初級開關M1和同步整流器M2都使用NMOS電晶體構成。初級開關M1的NMOS電晶體具有耦合到變壓器LP(節點14)的汲極端子、耦合到地(節點18)的源極端子以及由控制電壓V
GS1驅動的閘極端子。作為NMOS電晶體,主開關M1還具有跨電晶體的汲極和源極端子的相關寄生體二極體D1。在本圖示中,體二極體D1被示為以虛線連接在NMOS開關M1兩端,以指示體二極體D1僅是寄生二極體而不是附加的二極體元件。在次級側,同步整流開關M2的NMOS電晶體具有耦合到變壓器LP的汲極端(節點15)、耦合到地的源極端(節點18)以及由控制電壓V
GS2驅動的閘極極端。作為NMOS電晶體,同步整流器開關M2具有跨電晶體M2的汲極和源極端子的相關寄生體二極體D2。再次,體二極體D2被示為以虛線連接在NMOS開關M2兩端,以指示二極體D2是作為NMOS電晶體結構的一部分形成的寄生元件。在本說明書中,次級電流也被稱為作為同步整流器的MOSFET開關的汲極到源極電流I
DS(或“汲極電流I
DS”)。
藉此配置,初級開關M1和同步整流器M2各自由各自的控制器電路驅動,以控制開關的導通和關斷操作。確切地說,初級側控制器30被耦合以驅動初級開關M1的閘極端子,而次級側控制器40被耦合以驅動器同步整流器M2的閘極端子。初級側控制器30和次級側控制器40可以基於為反激式轉換器10選擇的控制方案以各種方式構造。換言之,反激式轉換器10是功率級,並且可以使用不同的控制方案來控制反激式變換器功率級。在操作中,初級開關的切換與同步整流器的切換同步。在大多數實施方式中,主側控制器是以副側控制器為從控制器的主控制器,或者副側控制器是主控制器,以主側控制器為從屬控制器。主控制器通常被實現為PWM控制器。可以在反激式轉換器10中使用的控制方案的示例包括准諧振模式控制、電壓模式控制、峰值電流模式控制和輸入電壓前饋控制。每個控制方案使用不同的反饋訊號來控制和保持恒定的輸出電壓並提供負載調節。反激式轉換器10中的控制方案的具體實施對於本發明的實踐來說不是關鍵的。本領域普通技術人員將理解,自適應閘極電壓調節電路和方法可以應用於任何控制方案中,以使同步整流器能夠在不連續導通模式下快速關斷。在本圖示中,提供了初級側控制器和次級側控制器。在其他實施例中,初級側控制器和次級側控制器可以被構造為單個控制器或控制電路,其產生用於初級開關和同步整流開關的控制訊號。
在一個示例中,反激式轉換器功率級實現次級側為主控制器的控制方案。在這種情況下,次級側控制器是被配置為調節輸出電壓V
OUT的PWM控制器。可替換地,反激式轉換器功率級可以用作為主控制器的初級側控制器來實現。在這種情況下,初級側控制器包括PWM控制器,該PWM控制器被配置為例如透過反饋電壓V
OUT_FB來調節輸出電壓V
OUT。次級側控制器包括邏輯電路,用於響應於在同步整流器MOSFET的汲極端子處檢測到的汲極電壓V
DS來控制同步整流器。
第5圖表示在本發明的實施例中,第4圖所示的反激式轉換器中的二次側控制器的示意圖。參考第5圖,用於產生閘極電壓V
GS2以控制同步整流器MOSFET M2的次級側控制器40包括用於傳感同步整流器M2的汲極電壓V
DS的汲極電流V
DS傳感電路42。被傳感到的汲極電壓,表示為VD,被耦合到一對比較器COMP1和COMP2,以與各自的檢測閾值電壓進行比較,從而產生用於同步整流器M2的閘極導通/關斷控制訊號。特別地,比較器COMP1將傳感到的汲極電壓VD(在負輸入端)與SR導通檢測電壓V
THGOFF(在正輸入端)進行比較,以確定同步整流器M2何時應該導通(在負輸入端),以確定同步整流器M2何時應該關斷。在該操作狀態中,傳感的汲極電壓VD具有負電壓值,並且SR導通檢測電壓V
THGON以及SR關斷檢測電壓V
THGOFF都是負電壓值。次級側控制器40包括閘極導通/截止控制邏輯電路44,其接收來自比較器COMP1和COMP2的輸出訊號並產生導通/關斷控制訊號。導通/關斷控制訊號被耦合到三態閘極驅動器46,該三態閘極驅動46在被使能訊號tri-EN使能時提供閘極電壓V
GS2以驅動同步整流器M2的閘極端子。在本示例中,次級側控制器40還包括比較器COMP3,用於將傳感到的汲極電壓VD(在正輸入端)與調節閾值電壓V
THREG(在負輸入端)進行比較。當傳感到的汲極電壓VD達到調節閾值電壓V
THREG時,比較器COMP3閉合開關S1,以便允許放電電流控制電路48響應於減小的次級電流將閘極電壓VGS2調節到較低的電壓值,這將在下麵更詳細地解釋。
反激式轉換器10可以在不連續導通模式或連續導通方式下操作。當在連續導通操作模式下操作時,在次級電流Isec達到零電流值之前,初級開關導通下一個開關週期。另一方面,當以不連續導通操作模式操作時,在初級開關導通以初始下一個開關週期之前,次級電流Isec減小到零電流值。在本發明的實施例中,次級側控制器40包括自適應閘極電壓調節電路(圖中沒有表示出),以調節為使同步整流器的閘極電壓放電而提供的放電電流,這將在下面更詳細地解釋。
現在將介紹反激式轉換器10的一般操作。參考第4圖和第5圖,可以使用各種控制方案來控制反激式轉換器10。無論使用何種控制方案,初級開關SW(M1)和同步整流器SR(M2)在操作上都是互補的,其中一個開關導通,而另一個開關關斷。初級開關SW和同步整流器SR的導通週期不重疊。當初級開關SW導通時,變壓器L
P的初級繞組連接到輸入電壓V
IN,並且初級電流Ipri隨著變壓器中磁通量的增加而線性增加。能量存儲在變壓器L
P中。此時,在次級繞組中感應的電壓V
SEC相對於初級繞組具有相反的極性,以使得同步整流器SR的體二極體D2被反向偏置。沒有次級電流Isec流動,並且存儲在輸出電容器C
OUT上的電荷提供給負載20。在主開關SW導通的情況下,在節點14處的主開關SW的汲極到源極電壓V
DS ( SW )處於零伏或接近零伏。同時,同步整流器SR(節點15)的次級電壓V
SEC,其也是同步整流器的汲極-源極電壓V
DS ( SR )或V
DS,被驅動到作為輸入電壓V
IN的比率的正電壓。
在初級開關的導通週期結束之後,初級開關關斷,並且同步整流器在非重疊週期之後導通。當初級開關斷開時,初級電流Ipri減小,磁通量下降。次級繞組兩端的電壓反向,使得次級電壓在虛線端子處具有正極性,或者在同步整流器(節點15)的汲極處具有負極性,以使得同步整流器SR的體二極體D2變為正向偏置。結果,電流作為次級電流Isec流過次級繞組。次級電流Isec增加到峰值電流值。由於同步整流器的汲極處的負極性電壓,同步整流器SR在非重疊時段之後導通,以傳導次級電流Isec並説明將存儲的能量從變壓器芯轉移到輸出電容器C
OUT。輸出電容器C
OUT被再充電並提供給負載20。輸出電壓V
OUT(節點16)由輸出電容器C
OUT上的電荷維持。當主開關SW關斷時,主開關SW(節點14)的汲極到源極電壓V
DS ( SW )擺動到高電壓值。在一些示例中,電壓箝位電路,例如有源箝位電路25,用於將初級開關處的汲極電壓箝位到最大允許電壓值,以保護初級開關。
在反激式轉換器中實現的控制方案包括用於監測輸出電壓V
OUT的反饋控制回路。所應用的控制方案控制同步整流器的接通時間或主開關的斷開時間,以在各種負載條件下將輸出電壓保持在所需的電壓值。在規定的時間,反激式轉換器的初級側或次級側控制器透過關斷同步整流器並接通初級開關來啟動下一個開關週期。重複上述操作。
在反激式轉換器10的操作中,在規定的時間,次級側控制器向同步整流器發出訊號以關斷。然而,由於傳播延遲和閘極驅動器放電時間,同步整流器M2的閘極電壓V
GS2在關斷同步整流器時經常延遲。因此,就像參考第6圖進一步詳細解釋的那樣,二次電流Isec經歷負電流或反向電流偏移。
第6圖表示在某些示例中,第4圖所示的反激式轉換器中的同步整流器在同步整流器導通期間的開關週期中的訊號波形。參考第6圖,在開關週期的時間T0,初級開關已斷開,次級繞組兩端的電壓已反轉,次級電流或汲極-源極電流I
DS ( SR )(也稱為汲極電流I
DS)(曲線56)傳導透過同步整流器M2的正向偏置體二極體,並且同步整流器M2汲極端子處的汲極電壓V
DS ( SR )下降到負電壓值。當汲極電壓V
DS ( SR )下降到大於SR導通檢測電壓V
THGON的負電壓值時,同步整流器M2被發訊號導通,並且驅動同步整流器的閘極電壓V
GS ( SR )(曲線52)斜坡上升。在本說明書中,第4圖和第5圖中的汲極體積V
DS ( SR )指的是汲極電壓VDS,閘極電壓V
GS ( SR )是指閘極電壓V
GS2。因此,同步整流器導通並將汲極電流I
DS ( SR )傳導到輸出電容器。在實踐中,同步整流器的汲極電壓V
DS是同步整流器開關的汲極電流I
DS ( SR )和導通電阻RDSon的函數。換言之,汲極電壓V
DS ( SR )跟隨汲極電流I
DS ( SR )。
在同步整流器的導通時段期間,汲極電流I
DS ( SR )傳導電流以將存儲在變壓器LP的次級繞組中的能量轉移到輸出電容器C
OUT。隨著能量的轉移,汲極電流I
DS ( SR )減小,並且汲極電壓V
DS ( SR )相應地減小。在一些實施例中,測量汲極電壓以用作同步整流器的汲極電流的代理。在本示例中,當電壓V
DS ( SR )降低到調節閾值V
THREG(時間T1)時,閘極電壓V
GS ( SR )被調節以在汲極電流繼續降低時支持汲極電流。只要閘極電壓能夠被降低以滿足汲極電流需求,汲極電壓V
DS ( SR )就被調節在調節電壓電平V
THREG附近。在時間T2,汲極電流已降至零電流電平,汲極電壓V
DS ( SR )降至SR關斷檢測電壓V
THGOFF,這向同步整流器M2發出關斷訊號。然而,由於次級側控制器(第5圖)中的固有傳播延遲以及閘極驅動器放電所需的時間,同步整流器M2實際關斷存在延遲。此外,在這段時間內,汲極電流的斜率可能相當大。這導致汲極電流穿過零電流,成為負電流(或反向電流),如第6圖所示。當初級開關(M1)導通時,必須耗散負汲極電流,這導致同步整流器(M2)的汲極電壓V
DS ( SR )上的大電壓擺動。同步整流器的汲極電壓V
DS ( SR )上的大電壓擺動是不希望的,因為它可能影響同步整流器開關的可靠性。
值得注意的是,當汲極電流(或次級電流)減少時使用調節閾值V
THREG來向下調節閘極電壓V
GS ( SR )具有至少部分地在同步整流器關斷之前降低閘極電壓電平的額外益處,因為只有剩餘量的閘極電壓需要被放電。
第7圖表示在可選的示例中,第4圖所示的反激式轉換器中的同步整流器在同步整流器導通期間的開關週期中的訊號波形。確切地說,第7圖表示在調節閾值電壓中使用滯後現象。在一些應用中,包括高調節閾值電壓V
th_H和低調節閾值電壓V
sh_L的滯後調節閾值用於在調節時段期間降低閘極電壓,同時保持減小的汲極電流(或次級電流)I
DS。同步整流器的汲極電壓V
DS被允許在高調節閾值電壓和低調節閾值電壓之間的乒乓,同時同步整流器的閘極電壓V
GS以階梯方式減小,以便調節汲極電流的減小。
參考第7圖,在時間T1,同步整流器的汲極電壓V
DS下降,超過SR導通檢測電壓V
THGON,同步整流器閘極電壓V
GS上升,以導通同步整流器。在同步整流器的導通時段期間,汲極電流I
DS減小,並且汲極電壓V
DS相應地減小。在時間T1,汲極電壓V
DS達到高調節閾值電壓Vth_H。結果,閘極電壓V
GS被降低以維持減小的汲極電流I
DS,並且汲極電壓V
DS增加或變得更負。在時間T2,當汲極電壓V
DS已經增加到低調節閾值電壓Vth_L時,閘極電壓V
GS被固定,並且汲極電壓V
DS被允許隨著汲極電流I
DS而再次減小。在時間T3,汲極電壓V
DS再次達到高調節閾值電壓Vth_H,並且閘極電壓V
GS被降低以維持減小的汲極電流I
DS,同時汲極電壓V
DS增加或變得更負。在時間T4,汲極電壓V
DS已經增加到低調節閾值電壓Vth_L,並且閘極電壓V
GS再次被固定以允許汲極電壓降低。在時間T5,次級側控制器檢測到汲極電壓已經降低到高調節閾值電壓Vth_H以下並且已經越過SR關斷檢測閾值V
THGOFF。同步整流器被發訊號關斷,閘極電壓被迅速拉至地電壓。藉此方式,磁滯調節閾值電壓以階梯方式降低閘極電壓,同時保持汲極電流減小。
在第6圖和第7圖中的控制方案中,SR關斷檢測電壓V
THGOFF被選擇為非常接近0V。通常,SR關斷檢測電壓V
THGOFF約為-3mV。SR關斷檢測電壓V
THGOFF被設置為接近0V,以便在開關週期之間具有更短的停滯時間。然而,由於關斷檢測閾值電壓值如此接近0V,並且當時次級電流的向下斜率很大,次級電流Isec可以產生大的負電流,這導致大的汲極電壓擺動。磁滯調節閾值的使用並不能解決負二次電流問題。
在本發明的實施例中,功率轉換器,例如反激式轉換器,實現自適應閘極電壓調節方法,其中監測同步整流器電流的斜率,並且自適應地調節閘極放電電流,以施加作為同步整流器電流下降率的函數的更大或更小的放電電流。例如,當同步整流器電流的下降率大時,施加更大的閘極放電電流以更快地降低閘極電壓。另一方面,當同步整流器電流的下降率較小時,施加較小的閘極放電電流以適度的方式降低閘極電壓。
第8圖表示在本發明的實施例中,自適應閘極電壓調節方法的反激式轉換器中的同步整流器的開關週期中的訊號波形。在一些實施例中,反激式轉換器是使用第4圖所示的反激式變換器10的拓撲結構來實現的。值得注意的是,第8圖中的波形部分被誇大了,以便更好地說明訊號轉換。可以理解的是,第8圖中的波形並不是按比例繪製的。參考第8圖,在開關週期的時間T0,同步整流器M2的汲極電壓V
DS(曲線64)下降到負電壓電平,以訊號導通同步整流器。驅動同步整流器的閘極電壓V
GS(曲線62)斜坡上升以導通同步整流器。第8圖中的閘極電壓V
GS是指第4圖和第5圖中的閘極電流V
GS2。同步整流器M2導通並將次級電流或汲極電流IDS(曲線66)傳導到輸出電容器。如上所述,同步整流器的汲極電壓V
DS是同步整流器開關的汲極電流I
DS和導通電阻RDSon的函數。也就是說,汲極電壓V
DS跟隨汲極電流I
DS。
在同步整流器的導通時段期間,汲極電流I
DS傳導電流以將存儲在變壓器LP的次級繞組中的能量轉移到輸出電容器C
OUT。隨著能量的轉移,汲極電流I
DS減小,並且汲極電壓V
DS相應地減小。值得注意的是,汲極電壓V
DS在同步整流器的導通時段或導通時段期間是負電壓值。在本說明書中,在同步整流器導通時段期間減小的汲極電壓是指電壓V
DS的幅度減小或變得不那麼負,而在同步整流器導電時段期間增大的汲極電流是指電壓V
DS的幅度增大或變得更負。在本實施例中,汲極電壓的降低由磁滯調節閾值電壓調節,磁滯調節閾值包括高調節閾值電壓Vth_H和低調節閾值電壓Vsh_L。汲極電壓V
DS在閾值電壓Vth_ H和Vth_L之間乒乓,而閘極電壓V
GS以階梯方式減小,以便保持減小的汲極電流I
DS。確切地說,當汲極電壓V
DS降低到高調節閾值電壓Vth_H時,閘極電壓V
GS被放電,並且當汲極壓力V
DS增加到低調節閾值電壓Vsh_L時,閘極電壓V
GS停止放電,而代之以降低汲極電壓。
在同步整流器的接通期間,同步整流器的減小的汲極電流I
DS的斜率是輸出電壓Vout、變壓器設計(例如變壓器匝數比N)和變壓器磁化電感L
P的函數,其中這些因素對於不同的功率轉換器設計或應用可能是不同的。在一些應用中,在功率轉換器的操作期間,輸出電壓可以動態地改變,例如,在5V到20V之間。結果,根據變壓器設計或輸出電壓值,減小的汲極電流I
DS可以具有不同的斜率值(或不同的減小率)。驅動同步整流器的控制器不知道變壓器設計的參數或所使用的特定輸出電壓。
傳統的同步整流器控制器設計沒有考量同步整流器電流的不同下降率,而是應用相同的閘極放電控制來對同步整流器閘極電壓進行放電。傳統的控制器設計的缺點在於,當汲極電流下降的斜率大時,關斷同步整流器的延遲可能允許產生大的負汲極電流,從而導致同步整流器兩端的不希望的電壓擺動。
根據本發明的實施例,在同步整流器控制器中實現自適應閘極電壓調節電路和方法,以根據汲極電流減小的斜率自適應地調節閘極放電控制。作為解釋,第8圖表示具有三種不同下降率或斜率的汲極電流I
DS。特別地,曲線66a(點劃線)表示具有大的斜率或大的下降率的汲極電流I
DS,曲線66b(實線)表示具有中等的斜率或中等的下降率,並且曲線66c(長短虛線)表示具有小的斜率或小的下降率。在一些實施例中,本發明的自適應閘極電壓調節電路和方法與電流斜率閾值V
DTH一起實現一個或複數個時間計時器,以確定同步整流器汲極電流的減小速率。此外,本發明的自適應閘極電壓調節電路和方法使用同步整流器的汲極電壓V
DS作為汲極電流的代理——即,在由計時器定義的持續時間內測量汲極電壓V
DS並將其與電流斜率閾值V
DTH進行比較,以便確定同步整流器汲極電流的下降率。自適應閘極電壓調節電路和方法使用檢測到的電流斜率資訊來確定閘極電壓應該放電多快或多慢。
在本發明的實施例中,自適應閘極電壓調節電路和方法使用一組一個或複數個計時器和電流斜率閾值來檢測汲極電流減小的斜率。在第8圖所示的實施例中,兩個計時器——計時器1和計時器2——用於評估兩個持續時間的汲極電流斜率。第8圖中兩個計時器的使用只是說明性的,並非限制性的。在實際實現中,可以使用任何數量的計時器。在本實施例中,計時器1具有第一持續時間,計時器2具有比第一持續時間長的第二持續時間。在一些實施例中,第三計時器(例如,計時器3)可以用於表示計時器2期滿和當前切換週期結束之後的時間段。自適應閘極電壓調節電路和方法應用電流斜率閾值V
DTH與計時器一起使用,以測量汲極電流減小的斜率。相對於閾值V
DTH(線63)測量汲極電壓V
DS,該閾值V
DTH對應於汲極電流I
DS中的閾值(線67)。特別地,自適應閘極電壓調節電路和方法確定汲極電壓VDS在哪個持續時間內達到電流斜率閾值V
DTH。
在一個實施例中,高調節閾值電壓Vth_H和低調節閾值電壓Vth_L以及電流斜率閾值V
DTH都是負電壓值。L比高調節閾值電壓Vth_H更負,並且電流斜率閾值V
DTH在高調節閾值Vth_L和低調節閾值Vth_H之間。
例如,當汲極電壓在計時器1到期之前達到電流斜率閾值V
DTH時,則認為汲極電流具有大的斜率。如果汲極電壓在計時器1期滿之後,但在時間2期滿之前達到電流斜率閾值V
DTH,則認為汲極電流具有中等斜率。如果在計時器2期滿之後,汲極電壓達到電流斜率閾值V
DTH,則認為汲極電流具有小的斜率。自適應閘極電壓調節電路和方法根據檢測到的電流斜率應用不同的閘極放電控制。對於大的電流斜率,施加更快的閘極放電,例如透過使用更大量的閘極放電電流。對於較小的電流斜率,可以使用較慢的閘極放電,例如透過使用較小量的閘極放電電流。藉此方式,無論同步整流器電流的斜率如何,都可以實現快速閘極關斷。
在第8圖所示的示例中,對應於汲極電流I
DS66a的汲極電壓V
DS64a在計時器1的持續時間1到期之前的時間T1跨過電流斜率閾值。汲極電流I
DS66a的電流斜率被認為是大的。因此,如箭頭65a所示,當汲極電壓V
DS64a最終達到高調節閾值電壓Vth_H時(在時間T1’),閘極電壓V
GS62a被放電3X或3倍單位放電電流。
同時,對應於汲極電流I
DS66b的汲極電壓V
DS64b在時間T2跨過電流斜率閾值,在計時器1的持續時間1期滿之後,但在計時器2的持續時間2期滿之前。汲極電流I
DS66b的電流斜率被認為是中等的。因此,如箭頭65b所示,當汲極電壓V
DS64b最終達到高調節閾值電壓Vth_H時(在時間T2’),閘極電壓V
GS62b被放電2X或2倍單位放電電流。
最後,對應於汲極電流I
DS66c的汲極電壓V
DS64c在計時器1和2的持續時間1和2期滿之後的時間T3處跨過電流斜率閾值。汲極電流I
DS66c的電流斜率被認為是小的。因此,如箭頭65c所示,當汲極電壓V
DS64c最終達到高調節閾值電壓Vth_H時(在時間T3’),閘極電壓V
GS62c被放電1X或單位放電電流。
在第8圖所示的實施例中,功率轉換器使用磁滯調節閾值Vth_H和Vth_L來降低閘極電壓,以保持同步整流器的汲極電流。同步整流器的汲極電壓被調節在滯後調節閾值之間。在其他實施例中,功率轉換器可以使用單個調節閾值,例如第6圖的調節閾值V
THREG,來控制閘極電壓的降低,同時將汲極電壓調節在調節閾值V
THRAG附近。自適應閘極電壓調節方法可以應用於使用單個調節閾值或滯後調節閾值的功率轉換器。在使用單個調節閾值的功率轉換器的情況下,電流斜率閾值V
DTH被設置為比調節閾值V
THREG更負,或者具有更大的負電壓值。
下麵將參照第9圖更詳細地解釋本發明的自適應閘極電壓調節方法的操作。第9圖表示在本發明的實施例中,可以在功率轉換器(例如第4圖所示的反激式轉換器)中實現的自適應閘極電壓調節方法的流程圖。參考第9圖,方法80在同步整流器導通週期初始時開始(82)。同步整流器的閘極電壓V
GS是斜坡上升的。響應於同步整流器的閘極電壓V
GS被斜坡上升,方法80啟動至少N-1個計時器(84),與先前的計時器相比,每個定時器具有增加的持續時間。例如,N是3,並且方法80啟動定義第一持續時間和第二持續時間的至少2個計時器,第二持續持續時間比第一持續時間長。
方法80監測同步整流器(86)的汲極電壓V
DS。確切地說,方法80將檢測到的同步整流器汲極電壓與電流斜率閾值V
DTH進行比較。方法80評估同步整流器的汲極電壓V
DS在哪個時間段內達到或超過電流斜率閾值V
DTH。方法80首先確定同步整流器的汲極電壓V
DS是否在第一持續時間(持續時間1)內達到(即,達到或超過)電流斜率閾值V
DTH(88)。如果汲極電壓VDS在第一持續時間內已經達到電流斜率閾值V
DTH,則方法80選擇第一閘極放電電流來對同步整流器(90)的閘極電壓進行放電,閘極電壓將使用所選擇的閘極放電電流來放電。在本實施例中,第一閘極放電電流是N倍單位放電電流或NX放電電流。
然後,方法80確定同步整流器的汲極電壓V
DS是否在第一持續時間之後但在第二持續時間內達到電流斜率閾值V
DTH(持續時間2)(92)。如果汲極電壓V
DS在第二持續時間內已經達到電流斜率閾值V
DTH,則方法80選擇小於第一閘極放電電流的第二閘極放電電流(94)。最終,當汲極電壓V
DS達到調節閾值(V
THREG或Vth_H)時,閘極電壓將使用所選擇的閘極放電電流來放電。在本實施例中,第二閘極放電電流是單位放電電流的(N-1)倍,或者是(N-1)X放電電流。
該過程在每個持續時間內持續,直到最後一個持續時間。在96,方法80確定同步整流器的汲極電壓V
DS在最後持續時間(例如N-1持續時間)之後達到電流斜率閾值V
DTH,並且方法80選擇小於第二閘極放電電流的第三閘極放電電流(98)。最終,當汲極電壓V
DS達到調節閾值(V
THREG或Vth_H)時,閘極電壓將使用所選擇的閘極放電電流來放電。在本實施例中,第三閘極放電電流是(N-(N-1))倍單位放電電流或X放電電流。
然後,方法80返回到下一個同步整流器導通週期的初始(82)。該過程再次繼續,以便啟動N-1個計時器並監測同步整流器的汲極電壓V
DS。透過將閘極放電電流作為同步整流器的汲極電流的斜率或下降率的函數來改變,方法80即使在汲極電流下降率大的情況下也可以確保同步整流器的快速關斷。因此避免了同步整流器上的負電流偏移和大電壓擺動。
第10圖表示第4圖所示的反激式轉換器中的次級側控制器的示意圖,該反激式變換器結合了本發明實施例中的自適應關斷電壓控制電路。在一些實施例中,自適應閘極電壓調節電路實現第9圖的自適應閘極電壓調整方法。參考第11圖,用於產生閘極電壓V
GS2以控制同步整流器MOSFET M2的次級側控制器100包括用於傳感同步整流器M2的汲極電壓V
DS的汲極電流V
DS傳感電路102。傳感到的汲極電壓(節點103),表示為VD,被耦合到一對比較器Comp1和Comp2,以與各自的檢測閾值電壓進行比較,從而產生用於同步整流器M2的閘極導通/關斷控制訊號。特別地,比較器Comp1將傳感的汲極電壓VD(節點103)與SR導通檢測電壓V
THGON進行比較以確定同步整流器M2何時應當導通,並且比較器Comp2將傳感到的汲極壓力VD(節點104)與SR關斷檢測電壓V
THGOFF進行比較以確定同步整流器M2應當何時關斷。次級側控制器100包括閘極導通/關斷控制邏輯電路104,其接收來自比較器Comp1和Comp2的輸出訊號,並產生導通/斷控制訊號。導通/截止控制訊號耦合到閘極驅動器10,閘極驅動器10提供閘極電壓V
GS2,以便驅動同步整流器M2。
在本實施例中,次級側控制器100實現滯後調節閾值,並且包括用於將傳感到的汲極電壓VD(節點103)與高調節閾值Vth_H進行比較的比較器Comp4和用於將傳感量到的汲極電壓VD(結點103)與低調節閾值Vth _L進行比較的比較器Comp5。比較器Comp4和Comp5的輸出訊號被耦合以分別驅動置位-復位觸發器108的置位和復位輸入。比較器Comp4和Comp5以及置位-復位觸發器108以逐步向下的方式控制同步整流器的閘極電壓V
GS2,以輸送必要的汲極電流I
DS,同時將同步整流器的汲極電壓V
DS調節在滯後調節閾值內,如上文參考第7圖和第8圖所述。更具體地,置位-復位觸發器108產生輸出訊號109,該輸出訊號109具有由比較器Comp4的輸出設置的第一邏輯狀態,以便使閘極電壓V
GS2放電,並且具有由比較器Comp5的輸出重置的第二邏輯狀態,以便保持閘極電壓V
GS2恒定,即不使閘極電壓放電。
在本發明的實施例中,次級側控制器100還包括自適應閘極電壓調節電路110,以根據由汲極電壓V
DS測量的同步整流器的汲極電流的斜率來選擇期望量的閘極放電電流。自適應閘極電壓調節電路110包括一個或複數個單觸發計時器電路112-1至112-P(統稱為“單觸發計時器線路112”),每個單觸發計時器回路112具有不同的持續時間。例如,單觸發計時器電路112-1(單觸發計時器1)可以被配置為具有第一持續時間(持續時間1)、單觸發計時器電路112-2(單觸發計時器2)可以被設置為具有比第一持續時間長的第二持續時間(時間持續時間2),並且單觸發計時器電路112-3(單觸發計時器3)可以被配置為具有比第二持續時間長的第三持續時間(持續時間3)。例如,第三持續時間可以與同步整流器的導通週期一樣長。單觸發計時器電路112由比較器Comp1的輸出觸發,比較器Comp1產生接通同步整流器M2的訊號。因此,響應於比較器Comp1被確定,所有的單觸發計時器電路112被激活。
第11圖是一個時序圖,說明了一些示例中的單觸發計時器電路112提供的持續時間。參考第11圖,在時間T0,響應於比較器Comp1的輸出被確定,包括單觸發計時器1(112-1)、單觸發計時器2(112-2)和單觸發計時器3(112-3)在內的所有單觸發計時器電路被激活,並在其各自的持續時間內被確定。單次計時器1具有持續時間1,並且將在單次計時器2的持續時間2之前到期。單觸發計時器3的持續時間可以是同步整流器的預期導通週期。也就是說,持續時間3可以延長到同步整流器的整個導通週期。
回到第10圖,自適應閘極電壓調節電路110包括一組D觸發器114,每個觸發器耦合到一個單觸發計時器電路。特別地,單觸發計時器電路112-1將其輸出提供給D觸發器114-1的資料輸入端,單觸發計時器電路112-2將其輸出提供給D觸發器114-2的資料輸入端子,並且單觸發計時器回路112-3將其輸出推供給D觸發器114-3的資料輸入終端。響應於時鐘輸入(C)被確定,輸入到每個D觸發器的資料被傳遞到資料輸出端(Q)。
自適應閘極電壓調節電路110包括比較器Comp3,比較器Comp3將傳感到的汲極電壓VD(節點103)與電流斜率閾值V
DTH進行比較。比較器Comp3的輸出耦合到包括D觸發器114-1至114-3的D觸發器114的時鐘輸入端。如這樣配置的,由比較器Comp3的比較輸出計時的單觸發計時器電路112和D觸發器電路114透過確定汲極電壓在哪個持續時間內跨過電流斜率閾值V
DTH來測量汲極電流減小的斜率。參考第11圖,在比較器Comp3在持續時間1期間被確定的情況下,那麼所有三個D觸發器114-1至114-3將其處於邏輯高電平的數據輸入傳遞到數據輸出端子。在比較器Comp3在持續時間1之後但在持續時間2期滿之前被確定的情況下,則只有D觸發器114-2和114-3將邏輯高電平傳遞到它們的資料輸出端子。因為持續時間1已經過期,所以D觸發器114-1將邏輯低傳遞到其輸出端子。最後,在比較器Comp3在持續時間2之後被確定的情況下,則只有D觸發器114-3將邏輯高電平傳遞到其數據輸出端子。因為持續時間1和持續時間2已經過期,所以D觸發器114-1和114-2都將邏輯低傳遞到其輸出端子。
自適應閘極電壓調節電路110包括一組邏輯與閘116,包括邏輯與閘116-1至116-3。特別地,每個D觸發器114的輸出被耦合到相應的邏輯與閘116。在每個邏輯與閘116處,每個D觸發器114的輸出與置位-復位觸發器108的輸出109進行邏輯“與”運算,指示門電壓是否應該被放電。邏輯與閘116的輸出訊號被耦合到相應的電流源CS1至CS3。電流源CS1至CS3耦合到同步整流器M2的閘極端子,並且當導通時,提供放電電流以對MOSFET開關M2的閘極端處的電壓進行放電。在一些實施例中,電流源CS1至CS3提供相同量的放電電流,使得每個電流源CS2至CS3都提供單位放電電流。在其他實施例中,電流源CS1至CS3具有不同的電流值,並且可以選擇單個電流源或者可以選擇兩個或複數個電流源的組合,以便提供所需的放電電流。
在操作中,當比較器Comp3的輸出被確定時,響應於傳感到的汲極電壓VD達到電流斜率閾值V
DTH,D觸發器114-1至114-3被計時,並且向各個邏輯與閘116的輸入提供邏輯高或邏輯低輸出訊號。在比較器Comp3的輸出在持續時間1期間被確定的情況下,所有三個D觸發器114-1至114-3向邏輯與閘116提供邏輯高訊號。結果,當訊號109被確定時,所有三個電流源CS1、CS2和CS3被導通以釋放閘極電壓V
GS2。因此,放電電流是電流源CS1、CS2和CS3的總和。在這種情況下,汲極電流被確定為具有陡峭的斜率,因此使用更大的放電電流來確保同步整流器被快速關斷,並且汲極電流不具有大的負電流偏移。
在比較器Comp3的輸出在持續時間1之後且在持續時間2期滿之前被確定的情況下,兩個D觸發器114-2和114-3向邏輯與閘116提供邏輯高訊號。結果,當訊號109被確定時,兩個電流源CS2和CS3被導通,以釋放閘極電壓V
GS2。因此,放電電流是電流源CS2和CS3的總和。電流源CS2和CS3的總和的電流值小於所有三個電流源CS1至CS3的總數。邏輯與閘116-1由於其一個輸入處於邏輯低電平而保持無效。在這種情況下,汲極電流被確定為具有適度的斜率,因此使用適度的放電電流來快速關斷同步整流器。
在比較器Comp3的輸出在持續時間1和2都期滿之後被確定的情況下,只有D觸發器114-3向邏輯與閘116提供邏輯高訊號。結果,當訊號109被確定時,一個電流源CS3被導通以釋放閘極電壓V
GS2。由電流源CS3提供的放電電流小於電流源CS2和CS3之和,或所有三個電流源CS1至CS3之總和。邏輯與閘116-1和116-2由於它們的一個輸入處於邏輯低電平而保持無效。在這種情況下,汲極電流被確定為具有小的斜率,並且僅需要小的放電電流來快速關斷同步整流器。
在本發明的實施例中,電流源CS1至CS3中的每一個可以提供單位放電電流,使得兩個或複數個電流源的組合提供單位放電電壓的倍數。在其他實施例中,電流源CS1至CS3可以具有不同的電流值,並且兩個或複數個電流源的組合提供比單獨的電流源更大的電流值。例如,所有三個電流源CS1、CS2和CS3的激活提供了第一放電電流值,該值大於任何兩個電流源或任何單個電流源的激活。類似地,啟動三個電流源中的任何兩個電流源提供比任何單個電流源大的第二放電電流。
藉此配置,操作自適應閘極電壓調節電路110,以便根據汲極電流斜率或下降率自適應地選擇閘極放電電流。反激式變換器可以實現同步整流器的快速關斷,從而具有減小二次電流負漂移和減小同步整流器汲極電壓大電壓擺動的效果。
透過以上說明,描述了包括變壓器的反激式轉換器。應當理解,自適應關斷電壓控制電路和方法可以應用於具有或不具有變壓器隔離的其他類型的功率轉換器或開關調節器。此處使用的術語“初級電流”和“次級電流”分別指流經初級開關的電流和流經同步整流器的電流。本說明書中變壓器隔離功率轉換器的使用僅是說明性的,而不是限制性的。
在該詳細描述中,為一個實施例描述的工藝步驟可以用於不同的實施例,即使在不同的實施方案中沒有明確描述工藝步驟。當本文提及包括兩個或複數個定義的步驟的方法時,定義的步驟可以以任何順序或同時進行,除非上下文指示或本文另行提供特定指令。此外,除非上下文指示或以其他方式提供明確的指令,否則該方法還可以包括在任何定義的步驟之前、在兩個定義的步驟之間或在所有定義的步驟之後執行的一個或複數個其他步驟。
本詳細描述中,本發明的各種實施例或實例可以以多種方式實現,包括作為工藝;儀器;一個系統;以及物質的組成。上面提供了本發明的一個或複數個實施例的詳細描述以及說明本發明原理的附圖。結合該等實施例描述了本發明,惟本發明不限於任何實施例。在本發明的範圍內的許多修改和變化是可能的。本發明的範圍僅受發明申請專利範圍的限制,並且本發明包括許多替代方案、修改和等效方案。為了提供對本發明的全面理解,在說明書中闡述了許多具體細節。該等細節是出於示例的目的而提供的,並且本發明可以根據發明申請專利範圍來實踐,而不需要該等特定細節中的一些或全部。為了清楚起見,在與本發明相關的技術領域中已知的技術材料沒有被詳細描述,從而本發明不會被不必要地模糊。本發明由所附發明申請專利範圍限定。
10:反激式轉換器
12:輸入電壓節點
14:節點
15:節點
16:輸出節點
18:接地節點
20:負載
25:有源箝位電路
30:初級側控制器
40:次級側控制器
42:傳感電路
44:控制邏輯電路
46:三態閘極驅動器
48:放電電流控制電路
52:曲線
54:曲線
56:曲線
62:曲線
62a:閘極電壓V
GS62b:閘極電壓V
GS62c:閘極電壓V
GS63:線
64:曲線
64a:汲極電壓V
DS64b:汲極電壓V
DS64c:汲極電壓V
DS65a:箭頭
65b:箭頭
65c:箭頭
66:曲線
66a:曲線
66b:曲線
66c:曲線
67:線
80:方法
82:步驟
84:步驟
86:步驟
88:步驟
90:步驟
92:步驟
94:步驟
96:步驟
98:步驟
100:次級側控制器
102:傳感電路
103:節點
104:節點
106:閘驅動器
108:置位-復位觸發器
109:輸出信號
110:自適應閘極電壓調節電路
112-1:單觸發定時器電路
112-2:單觸發定時器電路
112-3:單觸發定時器電路
114-1:D觸發器
114-2:D觸發器
114-3:D觸發器
116-1:邏輯與閘
116-2:邏輯與閘
116-3:邏輯與閘
在以下詳細描述和附圖中公開了本發明的各種實施例。儘管附圖描繪了本發明的各種實例,惟本發明不受所描繪的實例的限制。應當理解,在附圖中,相同的附圖標記表示相同的結構元件。此外,可以理解的是,圖中的描述不一定是按比例的。
第1圖表示一種使用同步整流的反激式轉換器的示例。
第2圖表示在恒定頻率、連續導通模式(CF CCM)下操作第1圖所示的反激式轉換器的示例訊號波形。
第3圖表示在恒定頻率、不連續導通模式(CF CCM)下操作第1圖所示的反激式轉換器的示例訊號波形。
第4圖表示在本發明的示例中,一種反激式轉換器的示意圖。
第5圖表示在本發明的示例中,第4圖所示的反激式轉換器中的二次側控制器的示意圖。
第6圖表示在一些示例中,第4圖所示的反激式轉換器中的同步整流器在同步整流器導通期間的開關週期中的訊號波形。
第7圖表示在可選示例中,第4圖所示的反激式轉換器中的同步整流器在同步整流器導通期間的開關週期中的訊號波形。
第8圖表示在本發明的實施例中,自適應閘極電壓調節方法的反激式轉換器中同步整流器開關週期中的訊號波形。
第9圖表示在本發明的實施例中,可以在功率轉換器(例如第4圖所示的反激式轉換器)中實現的自適應閘極電壓調節方法的流程圖。
第10圖表示在本發明的實施例中,第4圖所示的反激式轉換器中的二次側控制器結合了自適應關斷電壓控制電路的示意圖。
第11圖表示在一些示例中,單次計時器電路提供的持續時間的一個時序圖。
10:反激式轉換器
12:輸入電壓節點
14:節點
15:節點
16:節點
18:接地節點
20:驅動負載
25:有源箝位元電路
30:初級側控制器
40:次級側控制器
Claims (20)
- 一種操作包含同步整流器的功率轉換器,用以接收輸入電壓並提供輸出電壓的方法,該方法包括: 檢測該同步整流器(SR)導通週期的初始; 檢測指示該同步整流器的汲極電流的電壓; 響應於指示汲極電流具有第一斜率值的檢測電壓,選擇第一閘極放電電流; 響應於指示汲極電流具有小於該第一斜率值的第二斜率值的檢測電壓,選擇小於該第一閘極放電電流的第二閘極放電電流;以及 響應於該同步整流器的汲極端子處的汲極電壓達到第一調節閾值,使用所選擇的閘極放電電流來對該同步整流器的閘極電壓進行放電。
- 如請求項1所述之方法,其中檢測指示同步整流器的汲極電流的電壓包括檢測該同步整流器汲極端子處的汲極電壓。
- 如請求項2所述之方法,還包括: 在該同步整流器(SR)導通週期初始時啟動複數個持續時間,該複數個持續持續時間至少包括第一持續時間和比該第一持續時間長的第二持續時間; 透過在該第一持續時間內確定處於或超過第一閾值的檢測電壓來確定指示具有該第一斜率值的汲極電流的檢測電壓;以及 透過在該第一持續時間期滿之後且在該第二持續時間內確定該檢測電壓處於或超過該第一閾值來確定指示具有該第二斜率值的該汲極電流的該檢測到的電壓。
- 如請求項3所述之方法,其中該第一閾值和該第一調節閾值都包括負電壓值,該第一閾值具有比該第一調整閾值更大的負電壓值。
- 一種操作包含同步整流器的功率轉換器,用以接收輸入電壓並提供輸出電壓的方法,該方法包括: 檢測該同步整流器(SR)導通週期的初始; 在該同步整流器(SR)導通週期初始時啟動複數個持續時間,該複數個持續時間至少包括第一持續時間和比該第一持續時間長的第二持續時間; 檢測該同步整流器的汲極端子處的汲極電壓; 響應於在該第一持續時間內檢測到的汲極電壓處於或超過第一閾值,選擇第一閘極放電電流; 響應於在該第一持續時間期滿之後且在該第二持續時間內檢測到的汲極電壓處於或超過該第一閾值,選擇小於該第一閘極放電電流的第二閘極放電電流;以及 響應於檢測到的汲極電壓達到第一調節閾值,使用所選擇的閘極放電電流對該同步整流器的閘極電壓進行放電。
- 如請求項5所述之方法,其中該第一閘極放電電流包括單位閘極放電電流的N倍,並且該第二閘極放電電流包含單位閘極放電電壓的N-1倍。
- 如請求項5所述之方法,其中該檢測到的汲極電壓與該第一閾值相比指示該同步整流器的汲極電流在該同步整流器(SR)導通週期期間的斜率。
- 如請求項5所述之方法,其中該第一閾值和該第一調節閾值都包括負電壓值,該第一閾值具有比該第一調整閾值更大的負電壓值。
- 如請求項8所述之方法,還包括: 響應於檢測到的汲極電壓達到比該第一閾值更負的第二調節閾值,停止該同步整流器的閘極電壓的放電; 繼續檢測該同步整流器的汲極端子處的汲極電壓; 響應於檢測到的汲極電壓達到第一調節閾值,使用所選擇的閘極放電電流對該同步整流器的閘極電壓進行放電;以及 重複檢測汲極電壓、放電和停止閘極電壓的放電直到SR導通週期結束。
- 如請求項5所述之方法,其中啟動複數個持續時間包括: 啟動至少N-1個計時器,該N-1個計時器建立該複數個持續時間。
- 一種功率轉換器,包括: 一接收輸入電壓的輸入端子和一提供輸出電壓的輸出端子; 一同步整流器,該同步整流器耦合到該輸出端子;以及 一控制器,其經耦合以產生閘極控制訊號以在複數個同步整流器(SR)導通週期上驅動該同步整流器的閘極端子,該控制器包括建立複數個持續時間的複數個計時器,該複數個持續時間包括至少第一持續時間和比該第一持續時間長的第二持續時間, 其中在每個該同步整流器(SR)導通週期中,該控制器檢測指示該同步整流器的汲極電流的一個電壓;響應於檢測電壓指示汲極電流具有第一斜率值,該控制器選擇第一閘極放電電流;響應於檢測電壓指示汲極電流具有小於該第一斜率值的第二斜率值,該控制器選擇小於該第一閘極放電電流的第二閘極放電電流;並且響應於該同步整流器的汲極端子處的汲極電壓達到第一調節閾值該控制器使用所選擇的閘極放電電流來對該同步整流裝置的閘極電壓進行放電。
- 如請求項11所述之功率轉換器,其中該控制器檢測該同步整流器的汲極端子處的汲極電壓作為指示該汲極電流的電壓。
- 如請求項12所述之功率轉換器,其中該控制器透過在該第一持續時間內確定該檢測電壓處於或超過第一閾值來確定該檢測電壓指示該汲極電流具有該第一斜率值;並且該控制器透過在該第一持續時間期滿之後並且在該第二持續時間內確定該檢測電壓處於或超過該第一閾值來確定該檢測電壓指示該汲極電流具有該第二斜率值。
- 如請求項11所述之功率轉換器,其中第一閾值和該第一調節閾值都包括負電壓值,該第一閾值具有比該第一調整閾值更大的負電壓值。
- 如請求項11所述之功率轉換器,其中該控制器包括至少包括提供第一電流值的第一電流源和提供第二電流值的第二電流源的複數個電流源,該第一閘極放電電流透過激活該第一電流源和該第二電流源來提供,並且該第二閘極放電電流藉此僅啟激活該第一電流源來提供。
- 如請求項15所述之功率轉換器,其中該第一電流源和該第二電流源具有作為單位閘極放電電流的相同電流值,並且該第一閘極放電電流是提供該單位閘極放電電壓的N倍的該第一電流源和該第二電流源的總和。
- 如請求項15所述之功率轉換器,其中該第一電流源和該第二電流源具有不同的電流值。
- 如請求項11所述之功率轉換器,其中該控制器響應於該汲極電壓達到比第一閾值更負的第二調節閾值而停止對該同步整流器的閘極電壓放電。
- 如請求項18所述之功率轉換器,其中該控制器繼續檢測該同步整流器的汲極端子處的汲極電壓;響應於檢測到的汲極電壓達到該第一調節閾值,該控制器使用所選擇的閘極放電電流對該同步整流器的閘極電壓進行放電;並且該控制器重複檢測汲極電壓、放電和停止閘極電壓的放電直到SR導通週期結束。
- 如請求項11所述之功率轉換器,其中該複數個計時器包括具有不同持續時間的複數個單觸發計時器,該複數個單觸發計時器在每個該同步整流器(SR)導通週期初始時啟動。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/058,219 US20240171083A1 (en) | 2022-11-22 | 2022-11-22 | Switch mode power converter with synchronous rectifier implementing adaptive gate voltage regulation for fast turn-off |
US18/058,219 | 2022-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202423027A true TW202423027A (zh) | 2024-06-01 |
Family
ID=91079415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112143042A TW202423027A (zh) | 2022-11-22 | 2023-11-08 | 具同步整流器的功率轉換器及其操作方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240171083A1 (zh) |
CN (1) | CN118074528A (zh) |
TW (1) | TW202423027A (zh) |
-
2022
- 2022-11-22 US US18/058,219 patent/US20240171083A1/en active Pending
-
2023
- 2023-11-01 CN CN202311442371.0A patent/CN118074528A/zh active Pending
- 2023-11-08 TW TW112143042A patent/TW202423027A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
US20240171083A1 (en) | 2024-05-23 |
CN118074528A (zh) | 2024-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106411135B (zh) | 具有次级侧调节的反激式转换器 | |
TWI796419B (zh) | 具有多模式啟動之開關模式電力控制器 | |
JP6634089B2 (ja) | ソフトスイッチングフライバックコンバータ | |
US9490706B2 (en) | Power supply controller with input voltage compensation for efficiency and maximum power output | |
EP3664295B1 (en) | Two-level switch driver for preventing avalanche breakdown for a synchronous rectification switch in a power converter operating in a low-power burst mode | |
US11336190B2 (en) | Input voltage dependent control for active clamp flyback | |
US20150124495A1 (en) | Reducing power consumption of a synchronous rectifier controller | |
WO2015065592A1 (en) | Adaptive synchronous rectifier control | |
WO2001082460A1 (fr) | Convertisseur continu-continu de commutation | |
US10461644B1 (en) | Synchronous rectification switch control with automatic compensation and reset | |
WO2015181351A2 (en) | Synchronous rectification | |
CN108696135B (zh) | 具有用于控制输出晶体管的自适应参考电压的开关模式电源 | |
US11527961B2 (en) | Isolated switching power converter with data communication between primary and secondary sides | |
CN107979286B (zh) | 隔离式dc-dc转换器及其控制方法 | |
EP3340451B1 (en) | Switched mode power supply with reduced delay time | |
TW202423027A (zh) | 具同步整流器的功率轉換器及其操作方法 | |
US11637499B2 (en) | Power converter with adaptive active clamp | |
TW201918006A (zh) | 強迫式零電壓開關返馳變換器及其運行方法 | |
US20240154535A1 (en) | Switch mode power converter with synchronous rectifier implementing adaptive turn-off voltage | |
TW202420722A (zh) | 具有實現自適應關斷電壓的同步整流器的開關模式功率轉換器及其方法 | |
CN118041076A (zh) | 具有实现自适应关断电压的同步整流器的开关模式电源转换器 | |
WO2024201170A1 (en) | Flyback converter active clamp control system and methods | |
TW202439758A (zh) | 返馳式轉換器主動箝位控制系統及方法 |