TW202422840A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TW202422840A
TW202422840A TW113103477A TW113103477A TW202422840A TW 202422840 A TW202422840 A TW 202422840A TW 113103477 A TW113103477 A TW 113103477A TW 113103477 A TW113103477 A TW 113103477A TW 202422840 A TW202422840 A TW 202422840A
Authority
TW
Taiwan
Prior art keywords
active
metal layer
structures
gate layer
layer
Prior art date
Application number
TW113103477A
Other languages
Chinese (zh)
Other versions
TWI856920B (en
Inventor
康伯堅
周文昇
彭永州
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW113103477A priority Critical patent/TWI856920B/en
Priority claimed from TW113103477A external-priority patent/TWI856920B/en
Publication of TW202422840A publication Critical patent/TW202422840A/en
Application granted granted Critical
Publication of TWI856920B publication Critical patent/TWI856920B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

A semiconductor device includes a plurality of active area structures, one or more active devices, and a metal layer. One or more active devices include portions of the plurality of active area structures. A metal layer is formed on the plurality of active area structures and separated from the one or more active devices by one or more dummy gate layers. The metal layer is configured to measure, due to a change of resistance in the metal layer, a temperature of the plurality of active area structures.

Description

半導體元件Semiconductor components

本揭示案是關於一種半導體元件,特別是一種具有覆蓋有源區域結構之金屬層的半導體元件。The present disclosure relates to a semiconductor device, and more particularly to a semiconductor device having a metal layer covering an active area structure.

一種監控半導體元件溫度的方法包括在被測電晶體結構附近的基板的區域中使用二極體或雙極結型電晶體(BJT)的結。另一種監控半導體元件溫度的方法包括使用電晶體結構的閘極來感測溫度。One method of monitoring the temperature of a semiconductor device includes using a diode or a junction of a bipolar junction transistor (BJT) in an area of the substrate near the transistor structure being measured. Another method of monitoring the temperature of a semiconductor device includes using the gate of the transistor structure to sense the temperature.

根據本揭示案的一實施例是關於一種半導體元件,包括複數個有源區域結構、一或多個有源元件以及一金屬層。一或多個有源元件包括有源區域結構的各部分。金屬層覆蓋有源區域結構,並且藉由一或多個虛擬閘極層與一或多個有源元件分開,其中金屬層用以量測由於金屬層中的電阻變化而導致的有源區域結構的溫度。One embodiment of the present disclosure is directed to a semiconductor device including a plurality of active area structures, one or more active components, and a metal layer. The one or more active components include portions of the active area structures. The metal layer covers the active area structures and is separated from the one or more active components by one or more virtual gate layers, wherein the metal layer is used to measure the temperature of the active area structures caused by a resistance change in the metal layer.

根據本揭示案的一實施例,提供一種半導體元件,包含複數個有源區域結構、一或多個有源元件、第一虛擬閘極層、第二虛擬閘極層以及金屬層。一或多個有源元件包括有源區域結構的多個部分。金屬層覆蓋有源區域結構,配置在第一虛擬閘極層與第二虛擬閘極層之間; 並與有源區域電性隔離,其中金屬層用以量測由於金屬層中的一電阻變化而導致的有源區域結構的一溫度。According to an embodiment of the present disclosure, a semiconductor device is provided, comprising a plurality of active region structures, one or more active components, a first virtual gate layer, a second virtual gate layer, and a metal layer. The one or more active components include multiple portions of the active region structure. The metal layer covers the active region structure and is disposed between the first virtual gate layer and the second virtual gate layer; and is electrically isolated from the active region, wherein the metal layer is used to measure a temperature of the active region structure caused by a resistance change in the metal layer.

根據本揭示案的一實施例,提供一種半導體元件,包含有源區域結構以及第一有源元件與第二有源元件。第一有源元件與第二有源元件包括有源區域結構的多個部分,其中第一有源元件與第二有源元件為一串聯配置。半導體元件還包含第一虛擬閘極層、第二虛擬閘極層以及金屬層。第一虛擬閘極層與第二虛擬閘極層被配置在第一有源元件與第二有源元件之間。金屬層覆蓋有源區域結構,並配置在第一虛擬閘極層與第二虛擬閘極層之間。金屬層用以量測由於金屬層中的一電阻變化而導致的有源區域結構的一溫度。According to an embodiment of the present disclosure, a semiconductor device is provided, comprising an active region structure and a first active device and a second active device. The first active device and the second active device include multiple portions of the active region structure, wherein the first active device and the second active device are configured in series. The semiconductor device further comprises a first virtual gate layer, a second virtual gate layer and a metal layer. The first virtual gate layer and the second virtual gate layer are configured between the first active device and the second active device. The metal layer covers the active region structure and is configured between the first virtual gate layer and the second virtual gate layer. The metal layer is used to measure a temperature of the active area structure due to a resistance change in the metal layer.

以下揭露內容提供了用於實施所提供標的不同特徵的許多不同實施例或實例。以下描述了部件、值、步驟、材料、佈置等的特定實例以簡化本揭示案的一實施例內容。當然,該等僅僅是實例,而並且旨在為限制性的。可設想到其他部件、值、操作、材料、佈置等。例如,在以下描述中在第二特徵上方或之上形成第一特徵可以包括第一特徵和第二特徵形成為直接接觸的實施例,並且亦可以包括可以在第一特徵與第二特徵之間形成額外特徵,使得第一特徵和第二特徵可以不直接接觸的實施例。另外,本揭示案的一實施例可以在各種實例中重複參考數字及/或字母。該重複是為了簡單和清楚的目的,並且本身並不表示所論述的各種實施例及/或配置之間的關係。The following disclosure provides many different embodiments or examples for implementing the different features of the provided targets. Specific examples of components, values, steps, materials, arrangements, etc. are described below to simplify the content of an embodiment of the present disclosure. Of course, these are only examples and are intended to be restrictive. Other components, values, operations, materials, arrangements, etc. can be imagined. For example, forming a first feature above or on a second feature in the following description can include an embodiment in which the first feature and the second feature are formed to be in direct contact, and can also include an embodiment in which additional features can be formed between the first feature and the second feature so that the first feature and the second feature may not be in direct contact. In addition, an embodiment of the present disclosure can repeatedly refer to numbers and/or letters in various examples. This repetition is for the purpose of simplicity and clarity, and does not itself represent the relationship between the various embodiments and/or configurations discussed.

此外,在此可以使用空間相對術語,諸如「下方」、「以下」、「下部」、「上方」、「上部」等來簡化描述,以描述如圖中所示的一個元件或特徵與另一元件或特徵的關係。除了圖中所示的取向之外,空間相對術語意欲包括使用或操作中的裝置/元件的不同取向。設備可以以其他方式取向(旋轉90度或在其他方向上),並且可以類似地相應解釋在此使用的空間相對描述詞。Additionally, spatially relative terms such as "below," "below," "lower," "above," "upper," etc. may be used herein to simplify the description to describe the relationship of one element or feature to another element or feature as shown in the figures. Spatially relative terms are intended to encompass different orientations of the device/element in use or operation in addition to the orientation shown in the figures. The device may be otherwise oriented (rotated 90 degrees or in other orientations), and the spatially relative descriptors used herein may be similarly interpreted accordingly.

本揭示的一或多個實施例包括用於三維(3D)有源元件的晶片上溫度量測/監控的方法,該等三維有源元件為諸如3D金氧半導體場效電晶體(metal oxide semiconductor field effect transistors、MOSFET)、鰭式場效電晶體(fin field-effect transistors、FinFET)、環繞式閘極(gate-all-around、GAA) FET等。一種晶片上溫度量測/監控的方法包括用於偵測3D有源元件溫度的源極金屬電阻器。另一種方法利用雙多晶矽閘極佈置或共源共閘配置來偵測3D有源元件的溫度。One or more embodiments of the present disclosure include methods for on-chip temperature measurement/monitoring of three-dimensional (3D) active devices, such as 3D metal oxide semiconductor field effect transistors (MOSFET), fin field-effect transistors (FinFET), gate-all-around (GAA) FET, etc. One method for on-chip temperature measurement/monitoring includes a source metal resistor for detecting the temperature of the 3D active device. Another method uses a dual polysilicon gate arrangement or a common source and common gate configuration to detect the temperature of the 3D active device.

第1A圖是根據一實施例的可用於量測有源元件的溫度的半導體元件100的示意圖。在至少一些實施例中,半導體元件100用於量測3D有源元件的溫度。根據各種實施例,第1B圖是半導體裝置100的等效電路的示意圖,第1C圖是半導體元件100的感測金屬電阻器120的溫度與電阻之間的關係的曲線圖,並且第1D圖和第1E圖是半導體元件100沿著第1A圖的剖面線A-A’的橫截面的示意圖。FIG. 1A is a schematic diagram of a semiconductor device 100 that can be used to measure the temperature of an active device according to one embodiment. In at least some embodiments, the semiconductor device 100 is used to measure the temperature of a 3D active device. According to various embodiments, FIG. 1B is a schematic diagram of an equivalent circuit of the semiconductor device 100, FIG. 1C is a graph of the relationship between the temperature and the resistance of the sensing metal resistor 120 of the semiconductor device 100, and FIG. 1D and FIG. 1E are schematic diagrams of a cross-section of the semiconductor device 100 along the section line A-A' of FIG. 1A.

半導體元件100包括以在第一方向(Y軸)上延伸的基本上平行的行中佈置的有源區域結構102、103、104、105和106,以及在大致平行的列中佈置並在大致垂直於第一方向的第二方向(X軸)上延伸的複數個閘極層108、110、114、118、122和126。The semiconductor device 100 includes active area structures 102, 103, 104, 105 and 106 arranged in substantially parallel rows extending in a first direction (Y axis), and a plurality of gate layers 108, 110, 114, 118, 122 and 126 arranged in substantially parallel columns and extending in a second direction (X axis) substantially perpendicular to the first direction.

有源區域結構102~106是在例如第1D圖和第1E圖中描繪的基板(例如,基板170)之中或之上的連續區段,具有n型或p型摻雜並且包括各種半導體結構,包括源極-汲極(S/D)結構,例如第1D圖和第1E圖中所示的S/D結構102SD~106SD。在一些實施例中,有源區域結構102~106位於基板內的阱(未圖示) (亦即,n阱或p阱)內。The active region structures 102-106 are continuous sections in or on a substrate (e.g., substrate 170) such as depicted in FIG. 1D and FIG. 1E, have n-type or p-type doping and include various semiconductor structures, including source-drain (S/D) structures, such as S/D structures 102SD-106SD shown in FIG. 1D and FIG. 1E. In some embodiments, the active region structures 102-106 are located in a well (not shown) (i.e., an n-well or a p-well) in the substrate.

在一些實施例中,有源區域結構102~106藉由一或多個隔離結構(未圖示) (例如,一或多個淺溝槽隔離(STI)結構)與基板中的其他元件電性隔離。In some embodiments, the active area structures 102 - 106 are electrically isolated from other devices in the substrate by one or more isolation structures (not shown), such as one or more shallow trench isolation (STI) structures.

S/D結構是用以具有的摻雜類型與有源區域結構102~106的其他部分的摻雜類型相反的半導體結構。在一些實施例中,S/D結構用以具有比有源區域結構102~106的其他部分更低的電阻率。在一些實施例中,S/D結構包括一或多個部分,該一或多個部分的摻雜濃度大於否則在整個有源區域結構102~106中存在的一或多個摻雜濃度。在各種實施例中,S/D結構包括半導體材料(例如矽,矽鍺(SiGe)和/或碳化矽(SiC))的磊晶區域。The S/D structure is a semiconductor structure configured to have a doping type opposite to the doping type of other portions of the active area structures 102-106. In some embodiments, the S/D structure is configured to have a lower resistivity than other portions of the active area structures 102-106. In some embodiments, the S/D structure includes one or more portions having a doping concentration greater than one or more doping concentrations that would otherwise exist throughout the active area structures 102-106. In various embodiments, the S/D structure includes an epitaxial region of a semiconductor material such as silicon, silicon germanium (SiGe), and/or silicon carbide (SiC).

每個閘極層包含導電材料(例如,金屬或多晶矽),覆蓋在每個有源區域結構102~106上,在一些實施例中至少部分地圍繞每個有源區域結構102~106,並且藉由一或多層介電層而與每個有源區域結構102~106電性隔離。從而,複數個閘極層用以能夠基於施加的電壓來控制下層有源區域結構102~106中的導電通道的閘極結構部件。複數個閘極層包括虛擬閘極層108、110、118和122,以及有源閘極層114和126。Each gate layer includes a conductive material (e.g., metal or polysilicon), covers each active area structure 102-106, at least partially surrounds each active area structure 102-106 in some embodiments, and is electrically isolated from each active area structure 102-106 by one or more dielectric layers. Thus, the plurality of gate layers are used to control the gate structure components of the conductive channel in the underlying active area structure 102-106 based on the applied voltage. The plurality of gate layers include virtual gate layers 108, 110, 118 and 122, and active gate layers 114 and 126.

有源區域結構102~106至少在第一虛擬閘極層108與第二虛擬閘極層110之間延伸,並且包括與該複數個閘極層中的一些或全部相鄰的源極/汲極(S/D)結構(在第1A圖中未圖示),此將在下面關於第1D圖和第1E圖進一步論述。第一源極金屬層112覆蓋並接觸有源區域結構102~106的S/D結構,並在第二方向上延伸。第一源極金屬層112在第一虛擬閘極層108與第一有源閘極層114之間。第一汲極金屬層116覆蓋並接觸有源區域結構102~106的S/D結構,並且在基本上平行於第一虛擬閘極層108的第二方向上延伸。第一汲極金屬層116在第一有源閘極層114與第三虛擬閘極層118之間。因此,第一源極金屬層112、第一有源閘極層114、第一汲極金屬層116、位於第一有源閘極層114下方的有源區域結構102~106中的每一者的通道部分,以及相鄰的S/D結構用以形成第一有源元件MA1。The active region structures 102-106 extend at least between the first dummy gate layer 108 and the second dummy gate layer 110 and include source/drain (S/D) structures (not shown in FIG. 1A ) adjacent to some or all of the plurality of gate layers, which will be further discussed below with respect to FIG. 1D and FIG. 1E . The first source metal layer 112 covers and contacts the S/D structures of the active region structures 102-106 and extends in the second direction. The first source metal layer 112 is between the first dummy gate layer 108 and the first active gate layer 114 . The first drain metal layer 116 covers and contacts the S/D structures of the active area structures 102-106 and extends in a second direction substantially parallel to the first dummy gate layer 108. The first drain metal layer 116 is between the first active gate layer 114 and the third dummy gate layer 118. Therefore, the first source metal layer 112, the first active gate layer 114, the first drain metal layer 116, the channel portion of each of the active area structures 102-106 located below the first active gate layer 114, and the adjacent S/D structures are used to form a first active device MA1.

感測金屬電阻器120覆蓋並接觸在第三虛擬閘極層118與第四虛擬閘極層122之間的有源區域結構102~106的S/D結構。感測金屬電阻器120在第二方向(X)上延伸,該第二方向(X)與第一虛擬閘極層108基本上平行。The sensing metal resistor 120 covers and contacts the S/D structures of the active region structures 102-106 between the third dummy gate layer 118 and the fourth dummy gate layer 122. The sensing metal resistor 120 extends in a second direction (X) that is substantially parallel to the first dummy gate layer 108.

第二源極金屬層124覆蓋並接觸在第四虛擬閘極層122與第二有源閘極層126之間的有源區域結構102~106的S/D結構。第二源極金屬層124在第二方向(X)上延伸,並且基本上與第一虛擬閘極層108平行。第二汲極金屬層128覆蓋並接觸在第二有源閘極層126與第二虛擬閘極層110之間的有源區域結構102~106的S/D結構。第二汲極金屬層128在第二方向(X)上延伸,並且基本上與第一虛擬閘極層108平行。由此,第二源極金屬層124、第二有源閘極層126、第二汲極金屬層128、位於第二有源閘極層126下方的有源區域結構102~106中的每一者的通道部分,以及相鄰的S/D結構用以形成第二有源元件MA2。The second source metal layer 124 covers and contacts the S/D structures of the active region structures 102 to 106 between the fourth dummy gate layer 122 and the second active gate layer 126. The second source metal layer 124 extends in the second direction (X) and is substantially parallel to the first dummy gate layer 108. The second drain metal layer 128 covers and contacts the S/D structures of the active region structures 102 to 106 between the second active gate layer 126 and the second dummy gate layer 110. The second drain metal layer 128 extends in the second direction (X) and is substantially parallel to the first dummy gate layer 108. Thus, the second source metal layer 124, the second active gate layer 126, the second drain metal layer 128, the channel portion of each of the active region structures 102-106 located below the second active gate layer 126, and the adjacent S/D structure are used to form the second active device MA2.

從而,有源區域結構102~106被佈置為包括第一有源元件MA1和第二有源元件MA2的有源區域結構通道130。由於有源區域結構102~106相對於周圍的介電層(未圖示)具有較高的導熱率,因此有源閘極層114和126、汲極金屬層116和128、源極金屬層112和124和感測金屬電阻器120下方的有源區域結構102~106以及感測金屬電阻器本身的溫度基本上相同。Thus, the active area structures 102-106 are arranged as an active area structure channel 130 including the first active element MA1 and the second active element MA2. Since the active area structures 102-106 have a higher thermal conductivity than the surrounding dielectric layer (not shown), the temperature of the active gate layers 114 and 126, the drain metal layers 116 and 128, the source metal layers 112 and 124, the active area structures 102-106 under the sensing metal resistor 120, and the sensing metal resistor itself are substantially the same.

通孔132、134和136使第一源極金屬層112、第一有源閘極層114和第一汲極金屬層116電連接到各自相應的上覆金屬區段(未圖示),例如,第一金屬層區段,從而一個有源元件MA1用以包括在積體電路(IC)中。通孔138、140和142使第二源極金屬層124、第二有源閘極層126和第二汲極金屬層128電連接到各自相應的上覆金屬區段(未圖示),例如,第一金屬層區段,從而有源元件MA2用以包括在IC中。Vias 132, 134, and 136 electrically connect first source metal layer 112, first active gate layer 114, and first drain metal layer 116 to respective overlying metal sections (not shown), for example, the first metal layer section, so that an active device MA1 is included in an integrated circuit (IC). Vias 138, 140, and 142 electrically connect second source metal layer 124, second active gate layer 126, and second drain metal layer 128 to respective overlying metal sections (not shown), for example, the first metal layer section, so that an active device MA2 is included in an IC.

通孔144和146將感測金屬電阻器120的相對端電連接至上覆金屬區段(未圖示),例如第一金屬層區段,從而感測金屬電阻器120用以被包括在測試電路佈置中,使得如下所述,能夠量測感測金屬電阻器120的電阻值。Vias 144 and 146 electrically connect opposite ends of the sensing metal resistor 120 to an overlying metal section (not shown), such as a first metal layer section, so that the sensing metal resistor 120 is included in a test circuit layout so that the resistance value of the sensing metal resistor 120 can be measured as described below.

在操作中,第三虛擬閘極層118和第四虛擬閘極層122在電阻量測期間將感測金屬電阻器120與第一有源元件MA1和第二有源元件MA2電性隔離。感測金屬電阻器120、第一有源元件MA1和第二有源元件MA2之間的電性隔離使得能夠藉由基本上防止來自第一有源元件MA1和第二有源元件MA2的電流影響經由通孔144和146在感測金屬電阻器120處量測的結果來進行精確的電阻量測。In operation, the third dummy gate layer 118 and the fourth dummy gate layer 122 electrically isolate the sensing metal resistor 120 from the first active device MA1 and the second active device MA2 during resistance measurement. The electrical isolation between the sensing metal resistor 120, the first active device MA1 and the second active device MA2 enables accurate resistance measurement by substantially preventing current from the first active device MA1 and the second active device MA2 from affecting the result measured at the sensing metal resistor 120 through the vias 144 and 146.

在量測操作中,通孔144和146電耦合到一或多個量測儀器(未圖示),基於經由感測金屬電阻器120施加的電流而在感測金屬電阻器120上產生電壓降,並且計算感測金屬電阻器120的電阻值。在一些實施例中,感測金屬電阻器120的電阻與溫度具有線性關係,並且藉由找到感測金屬電阻器120的電阻來確定在有源區域結構通道130上分佈的有源區域結構102~106的溫度。In a measurement operation, the vias 144 and 146 are electrically coupled to one or more measuring instruments (not shown), a voltage drop is generated across the sensing metal resistor 120 based on a current applied through the sensing metal resistor 120, and the resistance value of the sensing metal resistor 120 is calculated. In some embodiments, the resistance of the sensing metal resistor 120 has a linear relationship with temperature, and the temperature of the active area structures 102-106 distributed on the active area structure channel 130 is determined by finding the resistance of the sensing metal resistor 120.

在一些實施例中,有源區域結構102~106被配置用於PMOS技術、NMOS技術、CMOS技術、FinFET技術等。In some embodiments, the active region structures 102-106 are configured for PMOS technology, NMOS technology, CMOS technology, FinFET technology, etc.

在一些實施例中,感測金屬電阻器120包括諸如鎳鉻合金或碳的電阻金屬材料。在一些實施例中,感測金屬電阻器120是金屬氧化物膜。在一些實施例中,感測金屬電阻器120包含銅(Cu)。In some embodiments, the sensing metal resistor 120 includes a resistive metal material such as nickel-chromium alloy or carbon. In some embodiments, the sensing metal resistor 120 is a metal oxide film. In some embodiments, the sensing metal resistor 120 includes copper (Cu).

在一些實施例中,通孔132、134、136、138、140、142、144和146對應於在層間電介質中蝕刻的孔,該等孔填充有一或多種金屬。在各種實施例中,通孔132、134、136、138、140、142、144和146是相對於彼此相似或不同形式的通孔結構。In some embodiments, vias 132, 134, 136, 138, 140, 142, 144, and 146 correspond to holes etched in an interlayer dielectric that are filled with one or more metals. In various embodiments, vias 132, 134, 136, 138, 140, 142, 144, and 146 are via structures that are similar or different in form relative to each other.

第1B圖是根據一實施例的半導體元件100的電路模型150的示意圖。電路模型150包括與電阻器R串聯的電流源Iref。電流源Iref連接在功率電壓源Vc與節點152之間。電阻器R連接在節點152與接地之間。電壓Vr是電阻R上的電壓降。電流源Iref對應於施加到感測金屬電阻器120的電流。電壓Vr對應於感測金屬電阻器120上的電壓。電阻器R是量測的感測金屬電阻器120的電阻。讀出電路156連接到節點152,並量測節點152處的電壓Vr。等式(1):FIG. 1B is a schematic diagram of a circuit model 150 of a semiconductor device 100 according to an embodiment. The circuit model 150 includes a current source Iref connected in series with a resistor R. The current source Iref is connected between a power voltage source Vc and a node 152. The resistor R is connected between the node 152 and ground. The voltage Vr is the voltage drop across the resistor R. The current source Iref corresponds to the current applied to the sensing metal resistor 120. The voltage Vr corresponds to the voltage across the sensing metal resistor 120. The resistor R is the measured resistance of the sensing metal resistor 120. The readout circuit 156 is connected to the node 152 and measures the voltage Vr at the node 152. Equation (1):

R = Vr/Iref   等式(1)R = Vr/Iref   Equation (1)

用於計算感測金屬電阻器120的電阻值。Used to calculate the resistance value of the sensing metal resistor 120.

第1C圖包括感測金屬電阻器120的電阻R和溫度之間的線性關係的曲線圖158。曲線圖158包括溫度軸(X軸)和電阻軸(Y軸)。在使用上面的等式(1)計算電阻R之後,基於感測金屬電阻器的電阻R與溫度之間的關係(例如,曲線圖158所示的線性關係)來判斷感測金屬電阻器120的溫度。不同的材料具有對應於特定電阻值的不同溫度。可以使用標準工具(諸如MATLAB等)計算不同電阻下的溫度。FIG. 1C includes a graph 158 of the linear relationship between the resistance R of the sensing metal resistor 120 and the temperature. The graph 158 includes a temperature axis (X axis) and a resistance axis (Y axis). After calculating the resistance R using the above equation (1), the temperature of the sensing metal resistor 120 is determined based on the relationship between the resistance R of the sensing metal resistor and the temperature (e.g., the linear relationship shown in the graph 158). Different materials have different temperatures corresponding to specific resistance values. The temperature at different resistances can be calculated using standard tools (such as MATLAB, etc.).

讀出電路156量測節點152處的電壓Vr。在一些實施例中,讀出電路156顯示量測的電壓。在一些實施例中,讀出電路156僅顯示電阻值R。在一些實施例中,讀出電路156基於計算出的電阻值而僅顯示溫度的值。在一些實施例中,讀出電路156包括類比數位轉換器(analog to digital converter、ADC),該ADC允許讀出電路156將電壓Vr的類比讀數轉換為數位以便與其他數位系統一起操作。在一些實施例中,讀出電路156包括放大器佈置,諸如運算放大器,以放大電壓Vr以供偵測和量測。The readout circuit 156 measures the voltage Vr at the node 152. In some embodiments, the readout circuit 156 displays the measured voltage. In some embodiments, the readout circuit 156 displays only the resistance value R. In some embodiments, the readout circuit 156 displays only the value of the temperature based on the calculated resistance value. In some embodiments, the readout circuit 156 includes an analog to digital converter (ADC) that allows the readout circuit 156 to convert the analog reading of the voltage Vr into digital for operation with other digital systems. In some embodiments, the readout circuit 156 includes an amplifier arrangement, such as an operational amplifier, to amplify the voltage Vr for detection and measurement.

在第1D圖的橫截面中描繪的非限制性示例中,半導體元件100對應於FinFET技術,在該FinFET技術中有源區域結構102~106用以由介電層160彼此分離並且從下層基板170向上延伸的鰭結構。有源區域結構102~106包括與感測金屬電阻器120接觸並電連接到該感測金屬電阻器的相應S/D結構102SD~106SD。In the non-limiting example depicted in the cross-section of FIG. 1D , the semiconductor device 100 corresponds to FinFET technology in which active area structures 102-106 are used as fin structures separated from each other by a dielectric layer 160 and extending upward from an underlying substrate 170. The active area structures 102-106 include corresponding S/D structures 102SD-106SD that contact and are electrically connected to a sense metal resistor 120.

在第1E圖的橫截面中描繪的非限制性示例中,半導體元件100對應於GAA技術,在該GAA技術中S/D結構102SD~106SD是有源區域結構102~106在橫截平面中的僅有部分。S/D結構102SD~106SD與感測金屬電阻器120接觸並電連接,並藉由介電層160與基板170的延伸部分102E~106E分離。延伸部分102E~106E對應於形成有源區域結構102~106的製造方法,並且不是半導體元件100的有源部件。In the non-limiting example depicted in the cross-section of FIG. 1E , the semiconductor device 100 corresponds to GAA technology in which the S/D structures 102SD-106SD are the only portions of the active area structures 102-106 in the cross-sectional plane. The S/D structures 102SD-106SD are in contact with and electrically connected to the sense metal resistor 120 and are separated from the extension portions 102E-106E of the substrate 170 by the dielectric layer 160. The extension portions 102E-106E correspond to the manufacturing method of forming the active area structures 102-106 and are not active components of the semiconductor device 100.

在第1D圖和第1E圖的每個非限制性示例中,有源區域結構102~106的通道區(未圖示)鄰近與感測金屬電阻器120接觸的S/D結構102SD~106SD。在各種實施例中,半導體元件100包括除了第1D圖和第1E圖中描繪的那些之外的配置,由此感測金屬電阻器120與鄰近有源區域結構102~106的通道區域的S/D結構接觸。In each of the non-limiting examples of FIG. 1D and FIG. 1E , the channel regions (not shown) of the active area structures 102 to 106 are adjacent to the S/D structures 102SD to 106SD that are in contact with the sense metal resistor 120. In various embodiments, the semiconductor device 100 includes configurations other than those depicted in FIG. 1D and FIG. 1E , whereby the sense metal resistor 120 is in contact with the S/D structures adjacent to the channel regions of the active area structures 102 to 106.

因為感測金屬電阻器120與鄰近有源區域結構102~106的通道區的S/D結構102SD~106SD接觸,所以感測金屬電阻器120的溫度與通道區的溫度基本上相同。因此,根據感測金屬電阻器120的電阻量測值計算出的溫度值比經由不是基於感測金屬電阻器的電阻量測值的方法(例如,基於基板二極體特性的方法)獲得的溫度值更加準確。Because the sensing metal resistor 120 contacts the S/D structures 102SD-106SD of the channel region adjacent to the active region structures 102-106, the temperature of the sensing metal resistor 120 is substantially the same as the temperature of the channel region. Therefore, the temperature value calculated based on the resistance measurement of the sensing metal resistor 120 is more accurate than the temperature value obtained by a method not based on the resistance measurement of the sensing metal resistor (e.g., a method based on substrate diode characteristics).

第2A圖是根據一實施例的作為共源共閘電晶體配置的一部分的具有雙閘極層佈置的半導體元件200的示意圖,該雙閘極層佈置可用於量測3D有源元件的溫度。半導體元件200包括有源區域結構202、203、204、205和206,該等有源區域結構基本上平行地佈置成行並沿著第一方向(Y)延伸。有源區域結構202、203、204、205和206在第一閘極層208與第二虛擬閘極層210之間延伸。第一虛擬閘極層208和第二虛擬閘極層210基本上平行地佈置成列,並且在基本上垂直於第一方向(Y)的第二方向(X)上延伸。汲極金屬層212形成在有源區域結構202、203、204、205和206上,並在第二方向(X)上延伸。汲極金屬層212位於第一虛擬閘極層208與感測閘極層214之間。感測閘極層214在第二方向上延伸,並且基本上平行於第一虛擬閘極層208。第一金屬層216形成在有源區域結構202、203、204、205和206上,並在第二方向上延伸並且基本上平行於第一虛擬閘極層208。第一金屬層216位於感測閘極層214與切換閘極層218之間。切換閘極層218在第二方向上延伸並且基本上平行於第一虛擬閘極層208。因此,第一金屬層216、感測閘極層214、汲極金屬層212、位於感測閘極層214下方的每個有源區域結構202~206的通道部分,以及有源區域結構202~206中的相鄰S/D結構(未圖示)用以形成第一有源元件M1。FIG. 2A is a schematic diagram of a semiconductor device 200 having a dual gate layer arrangement as part of a common source common gate transistor configuration according to an embodiment, which can be used to measure the temperature of a 3D active device. The semiconductor device 200 includes active area structures 202, 203, 204, 205, and 206, which are arranged in a row substantially in parallel and extend along a first direction (Y). The active area structures 202, 203, 204, 205, and 206 extend between a first gate layer 208 and a second dummy gate layer 210. The first dummy gate layer 208 and the second dummy gate layer 210 are arranged in a row substantially in parallel and extend in a second direction (X) substantially perpendicular to the first direction (Y). The drain metal layer 212 is formed on the active region structures 202, 203, 204, 205 and 206 and extends in the second direction (X). The drain metal layer 212 is located between the first dummy gate layer 208 and the sense gate layer 214. The sense gate layer 214 extends in the second direction and is substantially parallel to the first dummy gate layer 208. The first metal layer 216 is formed on the active region structures 202, 203, 204, 205 and 206 and extends in the second direction and is substantially parallel to the first dummy gate layer 208. The first metal layer 216 is located between the sense gate layer 214 and the switch gate layer 218. The switch gate layer 218 extends in the second direction and is substantially parallel to the first dummy gate layer 208. Therefore, the first metal layer 216, the sense gate layer 214, the drain metal layer 212, the channel portion of each active area structure 202-206 under the sense gate layer 214, and the adjacent S/D structures (not shown) in the active area structures 202-206 are used to form the first active device M1.

源極金屬層220形成在有源區域結構202、203、204、205和206上,並在第二方向上延伸並且基本上平行於第一虛擬閘極層208。源極金屬層220位於切換閘極層218與第二虛擬閘極層210之間。因此,源極金屬層220、切換閘極層218、第一金屬層216、位於切換閘極層218下方的每個有源區域結構202~206的通道部分,以及有源區域結構202~206中的相鄰S/D結構(未圖示)用以形成第二有源元件M2。第一金屬層216用以用作第一有源元件M1的源極和第二有源元件M2的汲極,由此有源元件M1和M2被佈置在共源共閘配置中。第一金屬層216將第一有源元件M1的源極耦合到第二有源元件M2的汲極。而且,第一金屬層216允許電流在第一有源元件M1的源極與第二有源元件M2的汲極之間流動。The source metal layer 220 is formed on the active area structures 202, 203, 204, 205 and 206, and extends in the second direction and is substantially parallel to the first dummy gate layer 208. The source metal layer 220 is located between the switch gate layer 218 and the second dummy gate layer 210. Therefore, the source metal layer 220, the switch gate layer 218, the first metal layer 216, the channel portion of each active area structure 202-206 located under the switch gate layer 218, and the adjacent S/D structure (not shown) in the active area structures 202-206 are used to form the second active element M2. The first metal layer 216 is used as the source of the first active element M1 and the drain of the second active element M2, so that the active elements M1 and M2 are arranged in a common source and common gate configuration. The first metal layer 216 couples the source of the first active element M1 to the drain of the second active element M2. Moreover, the first metal layer 216 allows current to flow between the source of the first active element M1 and the drain of the second active element M2.

通孔226、228、230、232和234使第一有源元件M1和第二有源元件M2電連接到上覆金屬區段(未圖示),例如第一金屬層區段,從而有源元件M1和M2用以包括在測試電路佈置中。The vias 226, 228, 230, 232, and 234 electrically connect the first active device M1 and the second active device M2 to an overlying metal section (not shown), such as a first metal layer section, so that the active devices M1 and M2 are included in a test circuit layout.

位於第一有源元件M1的感測閘極層214的相對端的通孔228和230使得能夠在量測操作中量測切換閘極層218的電阻。由於感測閘極層214接近有源區域結構202、203、204、205和206的通道區,因此感測閘極層214的溫度量測值指示通道區溫度。Vias 228 and 230 located at opposite ends of the sense gate layer 214 of the first active device M1 enable measurement of the resistance of the switching gate layer 218 during a measurement operation. Since the sense gate layer 214 is close to the channel region of the active area structures 202, 203, 204, 205, and 206, the temperature measurement of the sense gate layer 214 indicates the channel region temperature.

在量測操作中,第二有源元件M2用以接收AC信號,從而在AC操作下作為開關操作。第二有源元件M2耦合到AC信號源,該AC信號源用以使得AC操作模擬IC電路的一或多個有源元件的操作。在一些實施例中,第二有源元件M2在AC信號源的AC信號為正時接通,而在AC信號為負時斷開。在上述共源共閘配置中,第一有源元件M1在具有高輸出電阻的飽和區域中操作。第二有源元件M2在具有低輸出電阻的線性區域中操作。如第2A圖所示,第一有源元件M1和第二有源元件M2經由第一金屬層216串聯連接,其中當第二有源元件接通時,AC電流I_ac流過第一有源元件M1的源極和第二有源元件M2的汲極。由於基於共源共閘配置,第一有源元件M1的通道電阻實質上大於第二有源元件M2的通道電阻,所以在第一有源元件M1中消耗了大部分功率。In the measurement operation, the second active element M2 is used to receive an AC signal, thereby operating as a switch under AC operation. The second active element M2 is coupled to an AC signal source, which is used to make the AC operation simulate the operation of one or more active elements of the IC circuit. In some embodiments, the second active element M2 is turned on when the AC signal of the AC signal source is positive, and is turned off when the AC signal is negative. In the above-mentioned common source and common gate configuration, the first active element M1 operates in a saturation region with high output resistance. The second active element M2 operates in a linear region with low output resistance. As shown in Figure 2A, the first active element M1 and the second active element M2 are connected in series via the first metal layer 216, wherein when the second active element is turned on, the AC current I_ac flows through the source of the first active element M1 and the drain of the second active element M2. Since the channel resistance of the first active device M1 is substantially greater than the channel resistance of the second active device M2 based on the common source and common gate configuration, most of the power is consumed in the first active device M1.

感測閘極層214的通道電阻與感測閘極層214下方的有源區域結構202、203、204、205和206的通道區域的溫度成線性比例。一旦計算出感測閘極層214的電阻,就使用線性關係來判斷有源區域結構202、203、204、205和206的通道區域的溫度。The channel resistance of the sense gate layer 214 is linearly proportional to the temperature of the channel regions of the active area structures 202, 203, 204, 205, and 206 beneath the sense gate layer 214. Once the resistance of the sense gate layer 214 is calculated, the linear relationship is used to determine the temperature of the channel regions of the active area structures 202, 203, 204, 205, and 206.

在操作中,在一些實施例中,第一有源元件M1的感測閘極層214的電阻是藉由以下方式量測的:將AC信號施加到切換閘極層218,同時以高於第一有源元件M1的閾值電壓的DC電壓偏置感測閘極層214,從而將第一有源元件M1切換為接通。在電流I_ac由此經由共源共閘配置而感生時,施加測試電流,並經由通孔228和230量測感測閘極層214上的電壓降。使用在感測閘極層214上測得的電壓降和測試電流來計算感測閘極層214的電阻值。使用感測閘極層214的電阻值,使用本文論述的閘極層的電阻與溫度之間的線性關係來判斷有源區域結構202、203、204、205和206的通道區域的溫度。因為第一有源元件M1由此回應於AC信號而在飽和區域中操作,所以所判斷的溫度對應於由AC信號模擬的IC電路的一或多個有源元件的溫度。In operation, in some embodiments, the resistance of the sense gate layer 214 of the first active device M1 is measured by applying an AC signal to the switching gate layer 218 while biasing the sense gate layer 214 with a DC voltage higher than the threshold voltage of the first active device M1, thereby switching the first active device M1 on. When the current I_ac is thereby induced via the common source and common gate configuration, a test current is applied and the voltage drop across the sense gate layer 214 is measured via the vias 228 and 230. The resistance value of the sense gate layer 214 is calculated using the voltage drop measured across the sense gate layer 214 and the test current. The temperature of the channel regions of the active region structures 202, 203, 204, 205, and 206 is determined using the resistance value of the sensing gate layer 214 using the linear relationship between the resistance of the gate layer and the temperature discussed herein. Because the first active element M1 thus operates in the saturation region in response to the AC signal, the determined temperature corresponds to the temperature of one or more active elements of the IC circuit simulated by the AC signal.

切換閘極層218的通孔232用以允許在AC操作下或回應於階躍函數來觸發第二有源元件M2。在操作中,在一些實施例中,將AC或階躍信號施加到第二有源元件M2的閘極以進行觸發,使得取決於AC或階躍信號的值來接通或斷開第二有源元件M2以進行測試。使用該方法,可以在AC操作下或回應於階躍信號來量測瞬態溫度值。在一些實施例中,第二有源元件M2的閘極一直被接通以在DC操作條件下進行測試。The through hole 232 of the switching gate layer 218 is used to allow the second active element M2 to be triggered under AC operation or in response to a step function. In operation, in some embodiments, an AC or step signal is applied to the gate of the second active element M2 for triggering, so that the second active element M2 is turned on or off for testing depending on the value of the AC or step signal. Using this method, transient temperature values can be measured under AC operation or in response to a step signal. In some embodiments, the gate of the second active element M2 is always turned on for testing under DC operating conditions.

在一些實施例中,半導體元件200允許基於第一虛擬閘極層208和第二虛擬閘極層210在有源區域結構202~206上形成其他有源元件或重複結構。若在有源區域結構202~206上形成了新的有源元件,則第一虛擬閘極層208和第二虛擬閘極層210提供足夠的電性隔離。In some embodiments, the semiconductor device 200 allows other active devices or repeated structures to be formed on the active region structures 202-206 based on the first dummy gate layer 208 and the second dummy gate layer 210. If new active devices are formed on the active region structures 202-206, the first dummy gate layer 208 and the second dummy gate layer 210 provide sufficient electrical isolation.

在各種實施例中,第一有源元件M1和第二有源元件M2被配置用於PMOS技術、NMOS技術、CMOS技術、FinFET技術等。In various embodiments, the first active device M1 and the second active device M2 are configured for PMOS technology, NMOS technology, CMOS technology, FinFET technology, etc.

在一些實施例中,通孔226、228、230、232、234和236對應於在層間電介質中蝕刻的孔,該等孔填充有一或多種金屬。在各種實施例中,通孔226、228、230、232、234和236是彼此相似或不同形式的通孔結構。In some embodiments, vias 226, 228, 230, 232, 234, and 236 correspond to holes etched in an interlayer dielectric that are filled with one or more metals. In various embodiments, vias 226, 228, 230, 232, 234, and 236 are via structures that are similar or different in form from one another.

第2B圖是根據一實施例的半導體元件200的等效電路242、244和246的示意圖。第2B圖包括半導體元件200的第一等效電路242。等效電路242包括耦合到AC開關248的第一有源元件M1,該AC開關248指示在AC操作下的第二有源元件M2。如本文所論述的,在AC操作下使用AC信號249將第二有源元件M2的切換閘極層218切換為接通和關斷以指示開關248。FIG. 2B is a schematic diagram of equivalent circuits 242, 244, and 246 of a semiconductor device 200 according to an embodiment. FIG. 2B includes a first equivalent circuit 242 of the semiconductor device 200. The equivalent circuit 242 includes a first active element M1 coupled to an AC switch 248, which indicates a second active element M2 under AC operation. As discussed herein, the switching gate layer 218 of the second active element M2 is switched on and off using an AC signal 249 under AC operation to indicate the switch 248.

當AC開關248接通時,第二等效電路244對何時第一有源元件M1在飽和區域中操作並且第二有源元件M2在線性區域中操作進行建模。第二等效電路244包括電阻器Ron M1,該電阻器Ron M1對應於飽和區域中的第一有源元件M1的輸出通道電阻。電阻器Ron M1耦合在第一有源元件M1的汲極和第二電阻器Ron M2之間,第二電阻器Ron M2對應於線性區域中第二有源元件M2的輸出通道電阻。基於共源共閘佈置,電阻器Ron M1大於電阻器Ron M2。在一些實施例中,第一有源元件M1的尺寸與由半導體元件200模擬的一或多個有源元件的尺寸匹配,由此電阻器Ron M1與一或多個有源元件的輸出通道電阻匹配。When the AC switch 248 is turned on, the second equivalent circuit 244 models when the first active element M1 operates in the saturation region and the second active element M2 operates in the linear region. The second equivalent circuit 244 includes a resistor Ron M1, which corresponds to the output channel resistance of the first active element M1 in the saturation region. The resistor Ron M1 is coupled between the drain of the first active element M1 and the second resistor Ron M2, which corresponds to the output channel resistance of the second active element M2 in the linear region. Based on the common source and common gate arrangement, the resistor Ron M1 is larger than the resistor Ron M2. In some embodiments, the size of the first active device M1 matches the size of one or more active devices emulated by the semiconductor device 200, so that the resistor Ron M1 matches the output channel resistance of the one or more active devices.

第三等效電路246基於半導體元件200的共源共閘佈置將半導體元件200建模為電阻器Ron M1,因為Ron M1>>Ron M2。The third equivalent circuit 246 models the semiconductor device 200 as a resistor Ron M1 based on the common source and common gate arrangement of the semiconductor device 200 because Ron M1 >> Ron M2.

在一些實施例中,讀出電路量測感測閘極層214上的電壓並顯示結果。在一些實施例中,讀出電路是如結合第1B圖所描述的讀出電路。在一些實施例中,讀出電路被編程為基於感測閘極層214的電阻的計算值而僅顯示溫度的值。在一些實施例中,讀出電路包括類比數位轉換器(ADC)以量測感測閘極層214上的電壓。在一些實施例中,讀出電路包括opAmp佈置以量測跨感測閘極層214上的電壓。In some embodiments, the readout circuit measures the voltage across the sense gate layer 214 and displays the result. In some embodiments, the readout circuit is a readout circuit as described in conjunction with FIG. 1B . In some embodiments, the readout circuit is programmed to display only the value of the temperature based on the calculated value of the resistance of the sense gate layer 214 . In some embodiments, the readout circuit includes an analog-to-digital converter (ADC) to measure the voltage across the sense gate layer 214 . In some embodiments, the readout circuit includes an opAmp arrangement to measure the voltage across the sense gate layer 214 .

第3圖是根據一實施例的可用於在AC或瞬態操作下量測溫度的半導體元件300的示意圖。半導體元件300包括有源區域結構302、304、306、308和310,該等有源區域結構基本上平行地佈置成行並沿著第一方向(Y)延伸。半導體元件300包括各自設置在有源區域結構302、304、306、308和310上的溫度監控器元件314和有源元件M0。溫度監控器元件314等效於相對於第一方向(Y)倒置的以上關於第2A圖論述的半導體元件200。有源元件M0包括在溫度監控器元件314的第二虛擬閘極層210與有源閘極層320之間的源極金屬層318。汲極金屬層322位於有源閘極層320與第三虛擬閘極層324之間。FIG. 3 is a schematic diagram of a semiconductor device 300 that can be used to measure temperature under AC or transient operation according to one embodiment. The semiconductor device 300 includes active area structures 302, 304, 306, 308, and 310, which are arranged in a row substantially in parallel and extend along a first direction (Y). The semiconductor device 300 includes a temperature monitor element 314 and an active element M0, each disposed on the active area structures 302, 304, 306, 308, and 310. The temperature monitor element 314 is equivalent to the semiconductor device 200 discussed above with respect to FIG. 2A, which is inverted relative to the first direction (Y). The active device M0 includes a source metal layer 318 between the second dummy gate layer 210 and the active gate layer 320 of the temperature monitoring device 314. The drain metal layer 322 is located between the active gate layer 320 and the third dummy gate layer 324.

如以上關於半導體元件200所論述的,溫度監控器元件314用以可用於量測在瞬態和/或AC操作條件下位於感測閘極層214下方的有源區域結構302、304、306、308和310的通道區的溫度。在操作中,基於溫度監控器元件314和具有匹配配置的有源元件M0和M1的共源共閘佈置,藉由將有源元件M2切換為接通並將相同的AC和/或瞬態信號施加到有源元件M0的有源閘極層320和第二有源元件M1的切換閘極層218,在有源元件M0和M2的每一者中感生出相同的電流I_ac。因此,在與有源元件M0和M2相對應的有源區域結構302、304、306、308和310的每個通道區域中產生了相同的溫度,並且藉由量測感測閘極層214判斷的溫度對應於有源元件M0的溫度。As discussed above with respect to the semiconductor device 200, the temperature monitor element 314 can be used to measure the temperature of the channel region of the active region structures 302, 304, 306, 308, and 310 located below the sense gate layer 214 under transient and/or AC operating conditions. In operation, based on the temperature monitor element 314 and the common source and common gate arrangement of the active devices M0 and M1 having a matching configuration, by switching the active device M2 to turn on and applying the same AC and/or transient signal to the active gate layer 320 of the active device M0 and the switching gate layer 218 of the second active device M1, the same current I_ac is induced in each of the active devices M0 and M2. Therefore, the same temperature is generated in each channel region of the active region structures 302, 304, 306, 308 and 310 corresponding to the active devices M0 and M2, and the temperature determined by measuring the sensing gate layer 214 corresponds to the temperature of the active device M0.

在一些實施例中,在操作中,半導體元件300中的所有有源元件都不在操作中,並且使用溫度監控器元件314來量測基板的溫度。In some embodiments, in operation, all active components in semiconductor device 300 are not in operation, and temperature monitor component 314 is used to measure the temperature of the substrate.

虛擬閘極層208、210和324在溫度監控器元件314與包括有源元件M0的其他有源元件之間提供電性隔離。在一些實施例中,除了有源元件M0之外,亦存在許多有源元件(未圖示)與溫度監控器元件314共享有源區域結構302~310,並且除了虛擬閘極層208、210和324之外,亦存在一或多個虛擬閘極層(未圖示)將附加有源元件與溫度監控器元件314電性隔離。Virtual gate layers 208, 210, and 324 provide electrical isolation between the temperature monitor element 314 and other active elements including the active element M0. In some embodiments, in addition to the active element M0, there are many active elements (not shown) that share the active area structures 302-310 with the temperature monitor element 314, and in addition to the virtual gate layers 208, 210, and 324, there are one or more virtual gate layers (not shown) that electrically isolate the additional active elements from the temperature monitor element 314.

在不同實施例中,有源元件M0被配置用於PMOS技術、NMOS技術、CMOS技術、GAA FET技術、FinFET技術等。In different embodiments, the active device M0 is configured for PMOS technology, NMOS technology, CMOS technology, GAA FET technology, FinFET technology, etc.

第4圖是根據一或多個實施例的量測通道區域的溫度的方法400的流程圖。在各種實施例中,方法400可用於量測由一或多個有源元件共享的有源區域結構的通道區的溫度或用以模擬一或多個有源元件的操作。4 is a flow chart of a method 400 for measuring the temperature of a channel region according to one or more embodiments. In various embodiments, the method 400 can be used to measure the temperature of a channel region of an active region structure shared by one or more active devices or to simulate the operation of one or more active devices.

在步驟402中,在一些實施例中,在有源區域結構(諸如有源區域結構102、103、104、105和106 (第1A圖)、有源區域結構202、203、204、205和206 (第2A圖)或有源區域結構302、304、306、308和310)上形成金屬層,諸如感測金屬電阻器120 (第1A圖)或感測閘極層214 (第2A圖)。在一些實施例中,金屬層是覆蓋金屬層。在一些實施例中,金屬層是多晶矽或金屬閘極層。在一些實施例中,金屬層是汲極金屬層。在一些實施例中,金屬層是源極金屬層。In step 402, in some embodiments, a metal layer, such as a sense metal resistor 120 (FIG. 1A) or a sense gate layer 214 (FIG. 2A), is formed on an active area structure, such as active area structures 102, 103, 104, 105, and 106 (FIG. 1A), active area structures 202, 203, 204, 205, and 206 (FIG. 2A), or active area structures 302, 304, 306, 308, and 310. In some embodiments, the metal layer is a cap metal layer. In some embodiments, the metal layer is polysilicon or a metal gate layer. In some embodiments, the metal layer is a drain metal layer. In some embodiments, the metal layer is a source metal layer.

在步驟404中,將電流施加到金屬層,諸如感測金屬電阻器120 (第1A圖)或感測閘極層214 (第2A圖)。在一些實施例中,將電流施加到金屬層包括經由一對通孔(諸如,通孔144和146 (第1A圖)或通孔228和230(第2A圖))將電流提供給金屬層。In step 404, a current is applied to a metal layer, such as the sensing metal resistor 120 (FIG. 1A) or the sensing gate layer 214 (FIG. 2A). In some embodiments, applying the current to the metal layer includes providing the current to the metal layer through a pair of vias, such as vias 144 and 146 (FIG. 1A) or vias 228 and 230 (FIG. 2A).

施加電流包括施加DC電流,如上面關於第1A圖至第3圖所論述的。在一些實施例中,施加電流包括將DC電流施加至共源共閘佈置的第一有源元件的第一閘極層,以及將AC和/或瞬態信號施加至共源共閘佈置的第二有源元件的第二閘極層,如以上關於第2A圖至第3圖所論述的。Applying the current includes applying a DC current, as discussed above with respect to FIGS. 1A to 3. In some embodiments, applying the current includes applying a DC current to a first gate layer of a first active element in a common source and common gate arrangement, and applying an AC and/or transient signal to a second gate layer of a second active element in the common source and common gate arrangement, as discussed above with respect to FIGS. 2A to 3.

在步驟406中,諸如藉由讀出電路(第1A圖)量測金屬層(諸如感測金屬電阻器120 (第1A圖)或感測閘極層214 (第2A圖))上的電壓。在一些實施例中,讀出電路用以量測上述金屬層上的電壓。在一些實施例中,讀出電路是電阻讀出電路。在一些實施例中,讀出電路是具有雙橋配置的4點開爾文(Kelvin)結構,以量測低於1 ohm的電阻水平。在一些實施例中,讀出電路包括類比數位轉換器。在一些實施例中,讀出電路包括運算放大器。In step 406, a voltage on a metal layer (such as sensing metal resistor 120 (FIG. 1A) or sensing gate layer 214 (FIG. 2A)) is measured, such as by a readout circuit (FIG. 1A). In some embodiments, the readout circuit is used to measure the voltage on the above-mentioned metal layer. In some embodiments, the readout circuit is a resistive readout circuit. In some embodiments, the readout circuit is a 4-point Kelvin structure with a dual bridge configuration to measure resistance levels below 1 ohm. In some embodiments, the readout circuit includes an analog-to-digital converter. In some embodiments, the readout circuit includes an operational amplifier.

在一些實施例中,量測金屬層上的電壓包括經由一對通孔(諸如通孔144和146 (第1A圖)或通孔228和230(第2A圖))來量測電壓。In some embodiments, measuring the voltage on the metal layer includes measuring the voltage through a pair of vias, such as vias 144 and 146 (FIG. 1A) or vias 228 and 230 (FIG. 2A).

在步驟408中,使用金屬層上的量測電壓和施加到該金屬層的電流來判斷該金屬層(諸如感測金屬電阻器120 (第1A圖)或感測閘極層214 (第2A圖))的電阻,如上文關於第1A圖至第3圖所論述的。In step 408, the resistance of the metal layer (such as the sense metal resistor 120 (FIG. 1A) or the sense gate layer 214 (FIG. 2A)) is determined using the measured voltage on the metal layer and the current applied to the metal layer, as discussed above with respect to FIGS. 1A-3.

在步驟410中,使用上述金屬層的溫度與電阻之間的線性關係來計算位於金屬層(諸如感測金屬電阻器120 (第1A圖)或感測多晶矽閘極層214 (第2A圖))下方的有源區域結構的通道區的溫度,如上文關於第1A圖至第3圖所論述的。在一些實施例中,計算通道區的溫度包括計算由多個有源元件共享的有源區域結構的通道區。在一些實施例中,計算溫度包括計算在AC或DC操作下有源元件的瞬態溫度變化。在一些實施例中,計算溫度包括當佈置在有源區域結構上的所有有源元件都關斷時計算基板的溫度。In step 410, the temperature of a channel region of an active area structure located below a metal layer (such as sensing metal resistor 120 (FIG. 1A) or sensing polysilicon gate layer 214 (FIG. 2A)) is calculated using the linear relationship between the temperature and resistance of the metal layer, as discussed above with respect to FIGS. 1A to 3. In some embodiments, calculating the temperature of the channel region includes calculating the channel region of an active area structure shared by multiple active elements. In some embodiments, calculating the temperature includes calculating a transient temperature change of the active element under AC or DC operation. In some embodiments, calculating the temperature includes calculating the temperature of the substrate when all active elements disposed on the active area structure are turned off.

本說明書的一個態樣涉及一種包括複數個有源區域結構的監控半導體元件溫度的裝置。一或多個有源元件包括複數個有源區域結構的各部分。金屬層覆蓋複數個有源區域結構,並且藉由一或多個虛擬閘極層與一或多個有源元件分開,其中該金屬層用以量測由於金屬層中的電阻變化而導致的該複數個有源區域結構的溫度。One aspect of the present specification relates to an apparatus for monitoring the temperature of a semiconductor device including a plurality of active area structures. One or more active devices include portions of the plurality of active area structures. A metal layer covers the plurality of active area structures and is separated from the one or more active devices by one or more virtual gate layers, wherein the metal layer is used to measure the temperature of the plurality of active area structures caused by a change in resistance in the metal layer.

在一些實施例中,監控半導體元件溫度的裝置其中該些有源區域結構包括一鰭式場效電晶體(FinFET)的鰭片。In some embodiments, an apparatus for monitoring temperature of a semiconductor device is provided wherein the active area structures include fins of a fin field effect transistor (FinFET).

在一些實施例中,監控半導體元件溫度的裝置其中該些有源區域結構包括一環繞式閘極(GAA)場效應電晶體(FET)的通道。In some embodiments, an apparatus for monitoring temperature of a semiconductor device is provided wherein the active area structures include a channel of a gate-all-around (GAA) field effect transistor (FET).

在一些實施例中,監控半導體元件溫度的裝置其中該金屬層包括鎳鉻合金、碳、金屬氧化物,或銅(Cu)。In some embodiments, the device for monitoring the temperature of a semiconductor device includes a nickel-chromium alloy, carbon, a metal oxide, or copper (Cu).

在一些實施例中,監控半導體元件溫度的裝置亦包括在該金屬層的相對端處的一對通孔,由此該金屬層用以接收一電流。In some embodiments, the device for monitoring the temperature of a semiconductor device also includes a pair of through holes at opposite ends of the metal layer, whereby the metal layer is configured to receive a current.

在一些實施例中,監控半導體元件溫度的裝置其中該金屬層由此用以具有回應於該電流而在該一對通孔之間具有一電壓降。In some embodiments, the apparatus for monitoring temperature of a semiconductor device wherein the metal layer is configured to have a voltage drop between the pair of vias in response to the current.

在一些實施例中,監控半導體元件溫度的裝置其中該金屬層的一電阻與該些有源區域結構的該溫度呈線性比例。In some embodiments, the apparatus for monitoring temperature of a semiconductor device includes a resistance of the metal layer that is linearly proportional to the temperature of the active area structures.

在一些實施例中,監控半導體元件溫度的裝置其中該一或多個有源元件中的至少一個為一三維(3D)有源元件。In some embodiments, the apparatus for monitoring temperature of a semiconductor device includes at least one of the one or more active devices being a three-dimensional (3D) active device.

在一些實施例中,監控半導體元件溫度的裝置其中該金屬層包括形成在該些有源區域結構上的一汲極金屬層。In some embodiments, the apparatus for monitoring temperature of a semiconductor device includes a drain metal layer formed on the active area structures.

在一些實施例中,監控半導體元件溫度的裝置其中該一或多個有源元件用以在量測包括該些有源區域結構的一基板的一溫度時被關斷。In some embodiments, the apparatus for monitoring the temperature of a semiconductor device wherein the one or more active devices are configured to be turned off when measuring a temperature of a substrate including the active area structures.

本說明書的另一態樣涉及包括第一虛擬閘極層和第二虛擬閘極層的半導體元件。複數個有源區域結構在第一虛擬閘極層與第二虛擬閘極層之間延伸。第一金屬層覆蓋複數個有源區域結構。第一有源元件包括在第一虛擬閘極層與第一金屬層之間的複數個有源區域結構的各部分。第一有源元件包括在複數個有源區域結構上並且在第一虛擬閘極層與第一金屬層之間的汲極金屬層,以及在汲極金屬層與第一金屬層之間覆蓋該複數個有源區域結構的第一有源閘極層。第二有源元件包括在第一金屬層與第二虛擬閘極層之間的複數個有源區域結構的各部分。第二有源元件包括在第一金屬層與第二虛擬閘極層之間的複數個有源區域結構上的源極金屬層;以及覆蓋在第一金屬層與源極金屬層之間的複數個有源區域結構上的第二有源閘極層。第一有源元件和第二有源元件串聯耦合。第一有源元件的第一有源閘極層用以感測該複數個有源區域結構的溫度。Another aspect of the specification relates to a semiconductor device including a first virtual gate layer and a second virtual gate layer. A plurality of active area structures extend between the first virtual gate layer and the second virtual gate layer. A first metal layer covers the plurality of active area structures. The first active device includes portions of the plurality of active area structures between the first virtual gate layer and the first metal layer. The first active element includes a drain metal layer on the plurality of active area structures and between the first dummy gate layer and the first metal layer, and a first active gate layer covering the plurality of active area structures between the drain metal layer and the first metal layer. The second active element includes portions of the plurality of active area structures between the first metal layer and the second dummy gate layer. The second active element includes a source metal layer on the plurality of active area structures between the first metal layer and the second dummy gate layer; and a second active gate layer covering the plurality of active area structures between the first metal layer and the source metal layer. The first active element and the second active element are coupled in series. The first active gate layer of the first active element is used to sense the temperature of the plurality of active region structures.

在一些實施例中,半導體元件其中該第一有源元件包括一鰭式場效電晶體(FinFET)。In some embodiments, the semiconductor device wherein the first active device comprises a fin field effect transistor (FinFET).

在一些實施例中,半導體元件其中該第一有源元件包括一環繞式閘極(GAA)場效電晶體(FET)。In some embodiments, the semiconductor device wherein the first active device comprises a gate-all-around (GAA) field effect transistor (FET).

在一些實施例中,半導體元件其中基於該串聯耦合佈置,該第一有源元件的操作通道電阻大於該第二有源元件的該操作通道電阻。In some embodiments, the semiconductor device wherein based on the series coupling arrangement, the operating channel resistance of the first active device is greater than the operating channel resistance of the second active device.

在一些實施例中,半導體元件其中該第一有源元件由此用以在一飽和區域中操作。In some embodiments, the semiconductor device wherein the first active device is thereby configured to operate in a saturation region.

在一些實施例中,半導體元件其中該第二有源元件由此用以在線性區域中操作。In some embodiments, the semiconductor device wherein the second active device is thereby configured to operate in a linear region.

在一些實施例中,半導體元件其中該第一有源閘極層的一電阻與該些有源區域結構的該溫度呈線性比例。In some embodiments, a semiconductor device wherein a resistance of the first active gate layer is linearly proportional to the temperature of the active region structures.

說明書的另一態樣包括一種量測半導體元件的溫度的方法。該方法包括:向與第二元件串聯連接的第一元件的閘極層施加電流;切換第二元件的閘極結構以控制第二元件與第一元件之間的電流流動;以及量測第一元件的閘極結構上的電壓降。Another aspect of the specification includes a method for measuring the temperature of a semiconductor device. The method includes: applying a current to a gate layer of a first device connected in series with a second device; switching a gate structure of the second device to control the flow of current between the second device and the first device; and measuring a voltage drop across the gate structure of the first device.

在一些實施例中,其中該切換該第二元件的該閘極結構包括施加一AC信號到該第二元件的該閘極結構。In some embodiments, wherein the switching the gate structure of the second component includes applying an AC signal to the gate structure of the second component.

在一些實施例中,其中該切換該第二元件的該閘極結構包括施加一階躍函數信號到該第二元件的該閘極結構。In some embodiments, switching the gate structure of the second device includes applying a step function signal to the gate structure of the second device.

先前概述了若干實施例的特徵,使得本領域技藝人士可以更好地理解本揭示案的一實施例的各態樣。本領域技藝人士應當理解,他們可以容易地使用本揭示案的一實施例作為設計或修改其他製程和結構的基礎,以實現與本文介紹的實施例相同的目的及/或實現與本文介紹的實施例相同的優點。本領域技藝人士亦應當認識到,此類等同構造不脫離本揭示案的一實施例的精神和範圍,並且在不脫離本揭示案的一實施例的精神和範圍的情況下,他們可以在本文中進行各種改變、替換和變更。The features of several embodiments have been previously summarized so that those skilled in the art can better understand the various aspects of an embodiment of the present disclosure. Those skilled in the art should understand that they can easily use an embodiment of the present disclosure as a basis for designing or modifying other processes and structures to achieve the same purposes and/or achieve the same advantages as the embodiments described herein. Those skilled in the art should also recognize that such equivalent structures do not depart from the spirit and scope of an embodiment of the present disclosure, and that they can make various changes, substitutions and modifications herein without departing from the spirit and scope of an embodiment of the present disclosure.

100、200、300:半導體元件 102,103,104,105,106,202,203,204,205,206,302,304,306,308,310:有源區域結構 102SD~106SD:S/D極結構 108,110,126:閘極層 112:第一源極金屬層 114:第一有源閘極層 116:第一汲極金屬層 118:第三虛擬閘極層 120:感測金屬電阻器 122:第四虛擬閘極層 124:第二源極金屬層 128:第二汲極金屬層 130:有源區域結構通道 132,134,136,138,140,142,144,146,226,228,230,232,234:通孔 102E~106E:延伸部分 MA1,M1:第一有源元件 MA2,M2:第二有源元件 150:電路模型 152:節點 156:讀出電路 158:曲線圖 Vc:功率電壓源 Vr:電壓 Iref:電流源 I_ac:AC電流 X,Y:方向 A-A’:剖面線 R:電阻器 160:介電層 170:基板 208:第一虛擬閘極層 210:第二虛擬閘極層 212,322:汲極金屬層 214:感測閘極層 216:第一金屬層 218:切換閘極層 220,318:源極金屬層 242,244,246:等效電路 248:AC開關 249:AC信號 314:溫度監控器元件 320:有源閘極層 324:虛擬閘極層 400:方法 402,404,406,408,410:步驟 100, 200, 300: semiconductor element 102, 103, 104, 105, 106, 202, 203, 204, 205, 206, 302, 304, 306, 308, 310: active region structure 102SD~106SD: S/D pole structure 108, 110, 126: gate layer 112: first source metal layer 114: first active gate layer 116: first drain metal layer 118: third virtual gate layer 120: sensing metal resistor 122: fourth virtual gate layer 124: Second source metal layer 128: Second drain metal layer 130: Active area structure channel 132,134,136,138,140,142,144,146,226,228,230,232,234: Through hole 102E~106E: Extension part MA1,M1: First active element MA2,M2: Second active element 150: Circuit model 152: Node 156: Read circuit 158: Curve graph Vc: Power voltage source Vr: Voltage Iref: Current source I_ac: AC current X,Y: Direction A-A’: Section line R: Resistor 160: Dielectric layer 170: substrate 208: first virtual gate layer 210: second virtual gate layer 212,322: drain metal layer 214: sense gate layer 216: first metal layer 218: switch gate layer 220,318: source metal layer 242,244,246: equivalent circuit 248: AC switch 249: AC signal 314: temperature monitoring element 320: active gate layer 324: virtual gate layer 400: method 402,404,406,408,410: Steps

當結合附圖閱讀時,從以下詳細描述可以最好地理解本揭示案的一實施例的各態樣。應注意,根據行業中的標準實踐,各種特徵未按比例繪製。實際上,為了論述的清楚性,可以任意地增大或縮小各種特徵的尺寸。 第1A圖是根據一實施例的使用感測金屬電阻器來量測溫度的半導體元件的示意圖; 第1B圖是根據一實施例的第1A圖的半導體元件的等效電路的示意圖; 第1C圖是根據一實施例的感測金屬電阻器的溫度與電阻之間的關係的曲線圖; 第1D圖和第1E圖是根據一實施例的第1A圖的半導體元件的橫截面示意圖; 第2A圖至第2B圖是根據一實施例的使用感測閘極來量測溫度的半導體元件的示意圖; 第3圖是根據一實施例的用於量測瞬態溫度變化的半導體元件的示意圖; 第4圖是根據一或多個實施例的量測溫度的方法的流程圖。 Various aspects of an embodiment of the present disclosure are best understood from the following detailed description when read in conjunction with the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, various features are not drawn to scale. In fact, the sizes of the various features may be arbitrarily increased or decreased for clarity of discussion. FIG. 1A is a schematic diagram of a semiconductor element for measuring temperature using a sensing metal resistor according to an embodiment; FIG. 1B is a schematic diagram of an equivalent circuit of the semiconductor element of FIG. 1A according to an embodiment; FIG. 1C is a curve diagram of the relationship between temperature and resistance of a sensing metal resistor according to an embodiment; FIG. 1D and FIG. 1E are cross-sectional schematic diagrams of the semiconductor element of FIG. 1A according to an embodiment; FIG. 2A to FIG. 2B are schematic diagrams of a semiconductor element for measuring temperature using a sensing gate according to an embodiment; FIG. 3 is a schematic diagram of a semiconductor element for measuring transient temperature changes according to an embodiment; FIG. 4 is a flow chart of a method for measuring temperature according to one or more embodiments.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

100:半導體元件 100:Semiconductor components

102~106:有源區域結構 102~106: Active region structure

108,110,126:閘極層 108,110,126: Gate layer

112:第一源極金屬層 112: First source metal layer

114:第一有源閘極層 114: First active gate layer

116:第一汲極金屬層 116: First drain metal layer

118:第三虛擬閘極層 118: The third virtual gate layer

120:感測金屬電阻器 120: Sensing metal resistor

122:第四虛擬閘極層 122: Fourth virtual gate layer

124:第二源極金屬層 124: Second source metal layer

128:第二汲極金屬層 128: Second drain metal layer

130:有源區域結構通道 130: Active area structure channel

132,134,136,138,140,142,144,146:通孔 132,134,136,138,140,142,144,146:Through hole

MA1:第一有源元件 MA1: first active component

MA2:第二有源元件 MA2: Second active element

X,Y:方向 X,Y: direction

A-A’:剖面線 A-A’: section line

Claims (10)

一種半導體元件,包括: 複數個有源區域結構; 一或多個有源元件,包括該些有源區域結構的多個部分;以及 一金屬層,該金屬層覆蓋該些有源區域結構,並且藉由一或多個虛擬閘極層與該一或多個有源元件分開,其中該金屬層用以量測由於該金屬層中的一電阻變化而導致的該些有源區域結構的一溫度。 A semiconductor device comprises: a plurality of active area structures; one or more active elements, including multiple parts of the active area structures; and a metal layer, the metal layer covering the active area structures and separated from the one or more active elements by one or more virtual gate layers, wherein the metal layer is used to measure a temperature of the active area structures caused by a resistance change in the metal layer. 如請求項1所述之半導體元件,其中該些有源區域結構包括一鰭式場效電晶體的鰭片。A semiconductor device as described in claim 1, wherein the active region structures include fins of a fin field effect transistor. 如請求項1所述之半導體元件,其中該些有源區域結構包括一環繞式閘極場效應電晶體的溝道。A semiconductor device as described in claim 1, wherein the active region structures include a trench of a wrap-around gate field effect transistor. 如請求項1所述之半導體元件,其中該金屬層包括鎳鉻合金、碳、金屬氧化物,或銅。A semiconductor device as described in claim 1, wherein the metal layer includes nickel-chromium alloy, carbon, metal oxide, or copper. 如請求項1所述的半導體元件,進一步包括一對通孔,該對通孔在該金屬層的相對端處,由此該金屬層用以接收一電流。The semiconductor element as described in claim 1 further includes a pair of through holes at opposite ends of the metal layer, whereby the metal layer is used to receive a current. 如請求項5所述之半導體元件,其中該金屬層由此用以具有回應於該電流而在該一對通孔之間具有一電壓降。A semiconductor device as described in claim 5, wherein the metal layer is configured to have a voltage drop between the pair of through holes in response to the current. 如請求項1所述之半導體元件,其中該金屬層的一電阻與該些有源區域結構的該溫度呈線性比例。A semiconductor device as described in claim 1, wherein a resistance of the metal layer is linearly proportional to the temperature of the active region structures. 如請求項1所述的半導體元件,其中該金屬層包括一汲極金屬層,該汲極金屬層形成在該些有源區域結構上。A semiconductor device as described in claim 1, wherein the metal layer includes a drain metal layer formed on the active area structures. 一種半導體元件,包括: 複數個有源區域結構; 一或多個有源元件,包括該些有源區域結構的多個部分; 一第一虛擬閘極層; 一第二虛擬閘極層;以及 一金屬層,該金屬層覆蓋該些有源區域結構,配置在該第一虛擬閘極層與該第二虛擬閘極層之間; 並與該些有源區域電性隔離,其中該金屬層用以量測由於該金屬層中的一電阻變化而導致的該些有源區域結構的一溫度。 A semiconductor device comprises: a plurality of active region structures; one or more active devices, including multiple parts of the active region structures; a first virtual gate layer; a second virtual gate layer; and a metal layer, the metal layer covers the active region structures, is arranged between the first virtual gate layer and the second virtual gate layer; and is electrically isolated from the active regions, wherein the metal layer is used to measure a temperature of the active region structures caused by a resistance change in the metal layer. 一種半導體元件,包括: 複數個有源區域結構; 一第一有源元件與一第二有源元件,包括該些有源區域結構的多個部分,其中該第一有源元件與該第二有源元件為一串聯配置; 一第一虛擬閘極層; 一第二虛擬閘極層,其中該第一虛擬閘極層與該第二虛擬閘極層被配置在該第一有源元件與該第二有源元件之間;以及 一金屬層,該金屬層覆蓋該些有源區域結構,並配置在該第一虛擬閘極層與該第二虛擬閘極層之間; 其中該金屬層用以量測由於該金屬層中的一電阻變化而導致的該些有源區域結構的一溫度。 A semiconductor device comprises: a plurality of active region structures; a first active device and a second active device, comprising a plurality of portions of the active region structures, wherein the first active device and the second active device are arranged in series; a first virtual gate layer; a second virtual gate layer, wherein the first virtual gate layer and the second virtual gate layer are arranged between the first active device and the second active device; and a metal layer, the metal layer covers the active region structures and is arranged between the first virtual gate layer and the second virtual gate layer; The metal layer is used to measure a temperature of the active region structures caused by a resistance change in the metal layer.
TW113103477A 2020-02-21 Semiconductor device TWI856920B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113103477A TWI856920B (en) 2020-02-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113103477A TWI856920B (en) 2020-02-21 Semiconductor device

Publications (2)

Publication Number Publication Date
TW202422840A true TW202422840A (en) 2024-06-01
TWI856920B TWI856920B (en) 2024-09-21

Family

ID=

Similar Documents

Publication Publication Date Title
US8412487B2 (en) Self heating monitor for SiGe and SOI CMOS devices
Jain et al. Modeling of effective thermal resistance in sub-14-nm stacked nanowire and FinFETs
US6948847B2 (en) Temperature sensor for a MOS circuit configuration
US11810813B2 (en) System for designing thermal sensor arrangement
US20240159599A1 (en) Temperature monitoring device and method
JP2012204840A (en) Method of measuring interface contact resistance, semiconductor device for measuring interface contact resistance, and method of manufacturing the same
JP2002523902A (en) Power transistor device
JPH0268946A (en) Semiconductor integrated circuit wafer
US20210223307A1 (en) Power semi-conductor module, mask, measurement method, computer software, and recording medium
CN101915624B (en) Heat characterization method and structure for monitoring temperature of transistor in real time
Huizinga et al. Integrated cryo-CMOS temperature sensors for quantum control ICs
Paliwoda et al. Ambient temperature and layout impact on self-heating characterization in FinFET devices
JPH0964139A (en) Evaluating element of insulated-gate field-effect transistor and evaluating circuit using evaluating element thereof and evaluating method
TW202422840A (en) Semiconductor device
JP2007225398A (en) Thermal infrared detector and thermal infrared sensor
US20210164845A1 (en) On-chip temperature sensing with non-volatile memory elements
Khandelwal et al. Scalable thermal resistance model for single and multi-finger silicon-on-insulator MOSFETs
Chen et al. New Measurement Method for Self-Heating in Silicon-on-Insulator MOSFETs Based on Shared Series Resistance
Galy et al. In-situ thermal assist recovery thanks to active silicide source on NMOS transistor in FD-SOI technology
US20230417604A1 (en) Self heating extraction design and methodology with power consumption correction
Lethiecq et al. Extended investigation of a novel MOS device for in-situ heating in 28 nm UTBB FD-SOI CMOS technology
US8723528B2 (en) Active 2-dimensional array structure for parallel testing
CN111044873A (en) Self-heating effect test method and circuit based on shared series resistor
CN110610871B (en) Metal gate temperature measuring method
JP2011059085A (en) Semiconductor device and method of inspecting the same