TW202420852A - Migration of nodes in an iab communication system - Google Patents

Migration of nodes in an iab communication system Download PDF

Info

Publication number
TW202420852A
TW202420852A TW112141542A TW112141542A TW202420852A TW 202420852 A TW202420852 A TW 202420852A TW 112141542 A TW112141542 A TW 112141542A TW 112141542 A TW112141542 A TW 112141542A TW 202420852 A TW202420852 A TW 202420852A
Authority
TW
Taiwan
Prior art keywords
iab
donor
node
target
iab node
Prior art date
Application number
TW112141542A
Other languages
Chinese (zh)
Inventor
皮爾 維薩
派斯科 拉吉蘭吉
Original Assignee
日商佳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB2216391.9A external-priority patent/GB2624000A/en
Application filed by 日商佳能股份有限公司 filed Critical 日商佳能股份有限公司
Publication of TW202420852A publication Critical patent/TW202420852A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and apparatus for use in a migration process in which a Distributed Unit, DU, of an Integrated Access Backhaul, IAB, node is migrated from one IAB topology managed by a source IAB donor Central Unit, CU, to another IAB topology managed by a target IAB donor CU are disclosed. A method at the source IAB donor CU comprises determining the DU of the IAB node is to be migrated from the one IAB topology of the source IAB donor CU to the another IAB topology of the target IAB donor CU; sending, to the IAB node, a request for establishing a F1 connection between the IAB node and the target IAB donor CU. A method at the IAB node comprises receiving, from the source IAB donor CU, a request for establishing a F1 connection between a target IAB donor CU and the IAB node; sending, to the target IAB donor CU, a F1 setup request for requesting set up of the F1 connection.

Description

在IAB通訊系統中節點的遷移Node Migration in IAB Communication System

本發明整體關於使用於在涉及行動整合的存取與回載(IAB)節點之無線通訊系統中之IAB拓樸之間用於遷移節點及流量之程序中的方法。特定而言,本發明關於使用於其中IAB節點(例如,行動IAB節點)之分散式單元(DU)在IAB拓撲之間遷移之遷移程序中之方法。The present invention generally relates to methods used in a procedure for migrating nodes and traffic between mobile integrated access and backhaul (IAB) topologies in a wireless communication system involving IAB nodes. In particular, the present invention relates to methods used in a migration procedure in which a distributed unit (DU) of an IAB node (e.g., a mobile IAB node) migrates between IAB topologies.

無線通訊系統普遍部署以解決廣泛的應用,從行動寬頻、大規模機器類型通訊到超可靠低潛時通訊(URLLC)。這樣的系統允許多個使用者設備(UE)或行動終端可以共享無線媒體,以透過一或多個基地台在無線電存取網路(RAN)上交換若干類型的資料內容(例如,視訊、語音、發訊息等等)。基地台通常有線連接(例如透過光纖)到核心網路,形成稱為回載(BH)的中間網路。 這種無線多存取通訊系統的實例包括基於第三代合作夥伴計劃(3GPP-RTM)標準的系統,例如第四代(4G)長期演進(LTE)或最近的第五代(5G)新無線電(NR)系統,或基於IEEE 802.11標準,例如WiFi的系統。 由於使用者數量的增加及更高的通量要求,對網路緻密化的需求增加。 面對網路緻密化的有線回載網路高部署成本和時間的問題,3GPP在5G NR版本16中已提出一種無線回載,也稱為整合的存取與回載(IAB),其中部分無線(即,無線電)頻譜用於基地台的回載連接,而不是使用光纖。無線回載通訊(在基地台之間)可以使用與存取通訊(在基地台與UE之間)相同的無線電資源。 事實證明,IAB是在密集區域或難以覆蓋的區域中基於光纖的回載的一種具有競爭力的替代方案,因為它允許可擴展且快速的安裝,而無需為基地台佈線的負擔。 IAB最有可能在毫米波(mmWave)頻帶運行,以實現所需的Gbps(千兆位元/秒)資料速率。然而,已知毫米波在一些天氣條件(雨、霧)下會受到訊號強度的強烈衰減,並且在發射器和接收器之間的路徑中存在障礙物時會被阻塞。 為了應對這些潛在的無線電鏈路故障,可以在IAB框架內提供拓撲冗餘,其中在直接連接到核心網路的IAB基地台(亦稱為「IAB施體」)與為UE服務的IAB基地台(亦稱為UE的「存取IAB節點」)之間設置多條資料路徑。在IAB施體和存取IAB節點之間的多條路徑中的每條路徑都可能涉及多個中間IAB基地台(亦稱為IAB節點),從而在多中繼點(multi-hop)IAB拓撲內形成替代資料路徑。 此外,3GPP已考慮到施體間冗餘,其中IAB節點(稱為邊界IAB節點)可存取連接至兩個不同IAB施體之兩個不同父節點,其中該IAB施體之各者管理不同IAB拓撲(亦稱為IAB網路)。邊界IAB節點,即使屬於單一IAB拓撲,亦即,屬於單一IAB施體以用於組態及管理,因此能夠將封包從由第一IAB施體管理之一第一IAB拓撲路由至由第二IAB施體管理之一第二IAB拓撲。此等施體間冗餘之優點在於該第一IAB施體藉由將其一些封包路由通過該第二IAB拓撲而執行卸載的能力,因此減輕擁塞問題或克服第一IAB拓撲中可能出現之無線電鏈路故障問題。 存在IAB節點變為邊界節點之其他情形。例如,在由IAB施體決定之一IAB節點之部分遷移之情況中,其中IAB節點之行動終端(MT)變得連接至屬於由另一IAB施體控制之另一IAB拓撲之一單一父IAB節點。在經歷無線電鏈路故障(RLF)且已透過屬於另一IAB拓撲之父IAB節點而恢復之IAB節點之情況中亦可發生此情形。在彼等情況中,已遷移之IAB節點及其潛在子IAB節點仍屬於初始IAB拓撲,且此部分遷移可稱為MT遷移。為了確保流量可路由通過其他IAB拓撲,MT遷移後應跟隨流量遷移,其中與邊界節點及其子IAB節點相關之流量路由通過其他IAB拓撲直至邊界節點(即,該已遷移之IAB節點)。 固定式IAB節點應僅需要單一MT遷移。實際上,回載鏈路(定義於無線回載中之兩個連續IAB節點之間)可經歷歸因於無線電條件之波動之無線電故障,且對於不移動之IAB節點,其應為具有在一些時間之後可能鏈路恢復之一暫時狀況。因此,無需此等固定IAB節點在相同IAB拓撲中或朝向另一IAB拓撲執行多個MT遷移,且可避免多個協定訊息之傳輸及處置。出於相同原因,固定式節點無需IAB節點之分散式單元(DU)之遷移,從而將IAB節點之控制留給一新IAB施體。此外,注意,此DU遷移(可被稱為完全遷移)亦涉及由遷移行動IAB節點服務之UE之交遞。 通常,市區環境之特徵在於使用者之一高密度連同大量車輛(例如,公共/私人乘客運輸、貨物遞送、食品卡車等等)之存在。此等車輛之一些(例如,公車、電車、火車)可具有可預測路線及大量共置之UE(即,乘客裝置)。3GPP正考慮此等車輛可藉由將用作行動中繼器之這些車輛機載基地台(或基地台元件)安裝於車輛上而提供增加網路覆蓋範圍及連接至車輛內部UE或甚至靠近車輛之UE之機會。此等行動中繼器將依賴5G無線回載(通常為IAB或整合的存取與回載)以連接至一固定施體裝置。 因此,基於版本16及17之固定式IAB基礎,3GPP現在考慮行動IAB系統及架構作為版本18框架之一部分,以解決聚焦於安裝於車輛(諸如公車、火車、計程車)上之行動IAB節點之情境。在此等情境中,行動IAB節點可稱為車輛安裝式中繼器(VMR),從而向機載及/或周圍UE提供5G覆蓋/能力。 使用VMR之技術益處包含(除其他以外)該VMR對附近UE提供良好無線電鏈路條件之能力。此外,與使用UE作為中繼器(即,側向鏈路中繼解決方案)之解決方案相比,安裝於車輛上之IAB節點預期具有較佳RF/天線能力,且具有比中繼器UE更不嚴格之功率/電池限制。 對於行動IAB節點,可值得執行多個MT遷移或DU遷移,因為隨著行動IAB節點到處移動,至屬於第一IAB拓撲之父IAB節點之連接可能長時間不再發生或在行動IAB節點移動遠離父IAB節點之情況中永不再發生該連接。此外,對於靈活IAB網路管理,MT及DU遷移應是解相關的,此意謂IAB節點之DU遷移可在此IAB節點之一或若干MT遷移之前或之後獨立地發生。此外,可朝向不同於與此IAB節點之MT相關聯之IAB施體之IAB施體執行IAB節點之DU遷移。 因此,需要一些新機制以藉由支援IAB節點朝向任何其他施體CU之DU遷移與該IAB節點之(多個)MT遷移解相關而提供此靈活性。 Wireless communication systems are commonly deployed to address a wide range of applications, from mobile broadband, massive machine-type communications to ultra-reliable low latency communications (URLLC). Such systems allow multiple user equipment (UE) or mobile terminals to share the wireless medium to exchange several types of data content (e.g., video, voice, messaging, etc.) over a radio access network (RAN) through one or more base stations. The base stations are typically wired (e.g., via optical fiber) to the core network, forming an intermediate network called the backhaul (BH). Examples of such wireless multi-access communication systems include systems based on the 3rd Generation Partnership Project (3GPP-RTM) standards, such as the 4th Generation (4G) Long Term Evolution (LTE) or the more recent 5th Generation (5G) New Radio (NR) systems, or systems based on the IEEE 802.11 standards, such as WiFi. Due to the increase in the number of users and higher throughput requirements, the demand for network densification has increased. Faced with the high deployment cost and time of wired backhaul networks for network densification, 3GPP has proposed a wireless backhaul in 5G NR Release 16, also known as Integrated Access and Backhaul (IAB), in which part of the wireless (i.e., radio) spectrum is used for backhaul connections to base stations instead of using optical fibers. Wireless backhaul communications (between base stations) can use the same radio resources as access communications (between base stations and UEs). IAB has proven to be a competitive alternative to fiber-based backhaul in dense or hard-to-cover areas, as it allows for scalable and fast installations without the burden of cabling base stations. IAB will most likely operate in the millimeter wave (mmWave) band to achieve the required Gbps (gigabits per second) data rates. However, mmWave is known to suffer from strong attenuation of signal strength in some weather conditions (rain, fog) and can be blocked when there are obstacles in the path between the transmitter and receiver. To cope with these potential radio link failures, topological redundancy can be provided within the IAB framework, where multiple data paths are set up between the IAB base station directly connected to the core network (also known as the "IAB donor") and the IAB base station serving the UE (also known as the "access IAB node" of the UE). Each of the multiple paths between the IAB donor and the access IAB node may involve multiple intermediate IAB base stations (also known as IAB nodes), thereby forming alternative data paths within the multi-hop IAB topology. Furthermore, 3GPP has considered inter-donor redundancy, where an IAB node (called a border IAB node) has access to two different parent nodes connected to two different IAB donors, where each of the IAB donors manages a different IAB topology (also called an IAB network). The border IAB node, even though belonging to a single IAB topology, i.e., belonging to a single IAB donor for configuration and management purposes, is thus able to route packets from a first IAB topology managed by the first IAB donor to a second IAB topology managed by the second IAB donor. The advantage of such inter-donor redundancy is the ability of the first IAB donor to perform offloading by routing some of its packets through the second IAB topology, thus alleviating congestion problems or overcoming radio link failure problems that may occur in the first IAB topology. There are other situations where an IAB node becomes a boundary node. For example, in the case of a partial migration of an IAB node determined by an IAB donor, where the mobile terminal (MT) of the IAB node becomes connected to a single parent IAB node belonging to another IAB topology controlled by another IAB donor. This situation can also occur in the case of an IAB node that has experienced a radio link failure (RLF) and has recovered through a parent IAB node belonging to another IAB topology. In those situations, the migrated IAB node and its potential child IAB nodes still belong to the initial IAB topology, and this partial migration can be called MT migration. To ensure that traffic can be routed through other IAB topologies, MT migration should be followed by traffic migration, where traffic associated with a border node and its child IAB nodes is routed through other IAB topologies up to the border node (i.e., the migrated IAB node). Fixed IAB nodes should only require a single MT migration. In practice, a backhaul link (defined between two consecutive IAB nodes in a wireless backhaul) can experience radio failures due to fluctuations in radio conditions, and for non-moving IAB nodes, it should be a temporary condition with possible link recovery after some time. Therefore, there is no need for these fixed IAB nodes to perform multiple MT migrations within the same IAB topology or towards another IAB topology, and the transmission and handling of multiple protocol messages can be avoided. For the same reason, fixed nodes do not require migration of the distributed unit (DU) of the IAB node, thereby leaving the control of the IAB node to a new IAB donor. In addition, note that this DU migration (which can be called a full migration) also involves the handover of UEs served by the migrating mobile IAB node. Typically, urban environments are characterized by a high density of users along with the presence of a large number of vehicles (e.g., public/private passenger transportation, freight delivery, food trucks, etc.). Some of these vehicles (e.g., buses, trams, trains) may have predictable routes and a large number of co-located UEs (i.e., passenger devices). 3GPP is considering that these vehicles could provide opportunities to increase network coverage and connect to UEs inside the vehicle or even close to the vehicle by installing these vehicular base stations (or base station elements) acting as mobile repeaters on the vehicle. These mobile repeaters will rely on 5G wireless backhaul (usually IAB or Integrated Access and Backhaul) to connect to a fixed donor device. Therefore, building on the fixed IAB foundation of Release 16 and 17, 3GPP is now considering mobile IAB systems and architectures as part of the Release 18 framework to address scenarios focused on mobile IAB nodes installed in vehicles (such as buses, trains, taxis). In such scenarios, the mobile IAB nodes may be referred to as vehicle mounted repeaters (VMRs), providing 5G coverage/capability to onboard and/or surrounding UEs. The technical benefits of using a VMR include, among other things, the ability of the VMR to provide good radio link conditions to nearby UEs. In addition, vehicle mounted IAB nodes are expected to have better RF/antenna capabilities and less stringent power/battery constraints than repeater UEs compared to solutions using UEs as repeaters (i.e., sidelink repeating solutions). For mobile IAB nodes, it may be worthwhile to perform multiple MT migrations or DU migrations, because as mobile IAB nodes move around, the connection to the parent IAB node belonging to the first IAB topology may not occur for a long time or may never occur again in the case where the mobile IAB node moves far away from the parent IAB node. Furthermore, for flexible IAB network management, MT and DU migrations should be de-correlated, meaning that DU migration of an IAB node may occur independently before or after one or several MT migrations of this IAB node. Furthermore, DU migration of an IAB node may be performed towards an IAB donor different from the IAB donor associated with the MT of this IAB node. Therefore, some new mechanism is needed to provide this flexibility by supporting DU migration of an IAB node towards any other donor CU and decoupling the MT migration(s) of that IAB node.

根據本發明之第一態樣,提供一種使用於遷移程序之方法,在該遷移程序中,整合的存取回載(IAB)節點之分散式單元(DU)從由源IAB施體中央單元(CU)管理之一IAB拓撲遷移至由目標IAB施體CU管理之另一IAB拓撲,該方法在該源IAB施體CU處包括:判定該IAB節點之該DU要從該源IAB施體CU之一IAB拓撲遷移至該目標IAB施體CU之該另一IAB拓撲;將用於在該IAB節點與該目標IAB施體CU之間建立F1連接之請求發送至該IAB節點。 根據本發明之第二態樣,提供一種在IAB節點處執行以使用於其中IAB節點之DU從由源IAB施體中央單元(CU)管理之一IAB拓撲遷移至由目標IAB施體CU管理之另一IAB拓撲之遷移程序中的方法,如隨附申請專利範圍中陳述。 根據本發明之第三態樣,提供一種在目標IAB施體CU處執行以使用於其中IAB節點之DU從由源IAB施體中央單元(CU)管理之一IAB拓撲遷移至由目標IAB施體CU管理之另一IAB拓撲之遷移程序中的方法,如隨附申請專利範圍中陳述。 因此,藉由將用於在該IAB節點與該目標IAB施體CU之間建立F1連接之請求發送至該IAB節點,該源F1施體CU(例如,源IAB施體CU)促進在有或沒有(多個)MT遷移下之IAB節點之DU遷移。此外,回應於接收到要建立F1連接之請求,該IAB節點可識別(例如,經由由源施體CU發送之識別資訊或當沒有識別資訊由該源施體CU發送時,藉由判定非F1施體CU是該目標施體CU)該目標施體CU以致能將由該IAB節點服務之UE交遞至該目標施體CU。該非F1(終端)施體CU亦稱為RRC(終端)施體CU。 根據本發明之第四態樣,提供一種用於IAB通訊系統之IAB節點的設備,如隨附申請專利範圍中陳述。 根據本發明之第五態樣,提供一種用於IAB通訊系統之IAB施體CU(例如,源IAB施體CU或目標IAB施體CU)的設備,如隨附申請專利範圍中陳述。 根據本發明之另一態樣,提供一種使用於遷移程序之方法,在該遷移程序中,整合的存取回載(IAB)節點之分散式單元(DU)從由源IAB施體中央單元(CU)管理之一IAB拓撲遷移至由目標IAB施體CU管理之另一IAB拓撲,該方法包括:藉由該源IAB施體CU判定該IAB節點之DU要從由源IAB施體CU之一IAB拓撲遷移至目標IAB施體CU之另一IAB拓撲;藉由源IAB施體CU發送用以在該IAB節點與該目標IAB施體CU之間建立F1連接之請求至該IAB節點;在接收到用於建立F1連接之請求之後,藉由該IAB節點發送用於請求F1連接之設置之F1設置請求至該目標IAB施體CU;在從該IAB節點接收到用於請求F1連接之設置之該F1設置請求之後,藉由該目標IAB施體CU發送一回應至該IAB節點,該回應包含針對用於IAB節點之第二邏輯DU實體之要被啟用之一或多個胞元之請求。 本發明進一步實例特徵描述於其他的獨立與附屬請求項。 在以下將針對不同元件(諸如節點/拓撲)指稱源及目標。然而,應瞭解可使用術語第一及第二來代替源及目標。 在本發明一態樣中之任何特徵可以任何適當組合而應用於本發明之其他態樣中。明確而言,方法態樣可被應用於設備/裝置/單元態樣,且反之亦然。 此外,實施於硬體中的特徵可以被實施於軟體中,且反之亦然。本文中任何對軟體與硬體特徵之參考應被相應的解釋。例如,根據本發明的其他態樣,提供了一種包含指令的電腦程式,當該程式由處理單元執行時,使該處理單元執行上述任何態樣或例示性的方法,以及一種載有該電腦程式之電腦可讀儲存媒體。 According to a first aspect of the present invention, a method for use in a migration procedure is provided, in which a distributed unit (DU) of an integrated access backhaul (IAB) node is migrated from an IAB topology managed by a source IAB donor central unit (CU) to another IAB topology managed by a target IAB donor CU, and the method comprises at the source IAB donor CU: determining that the DU of the IAB node is to be migrated from one IAB topology of the source IAB donor CU to the other IAB topology of the target IAB donor CU; and sending a request for establishing an F1 connection between the IAB node and the target IAB donor CU to the IAB node. According to a second aspect of the present invention, a method is provided for executing at an IAB node to be used in a migration procedure in which a DU of the IAB node is migrated from an IAB topology managed by a source IAB donor central unit (CU) to another IAB topology managed by a target IAB donor CU, as described in the attached patent scope. According to a third aspect of the present invention, a method is provided for executing at a target IAB donor CU to be used in a migration procedure in which a DU of the IAB node is migrated from an IAB topology managed by a source IAB donor central unit (CU) to another IAB topology managed by a target IAB donor CU, as described in the attached patent scope. Thus, by sending a request to the IAB node to establish an F1 connection between the IAB node and the target IAB donor CU, the source F1 donor CU (e.g., source IAB donor CU) facilitates DU migration of the IAB node with or without MT(s) migration. Furthermore, in response to receiving the request to establish an F1 connection, the IAB node may identify (e.g., via identification information sent by the source donor CU or by determining that a non-F1 donor CU is the target donor CU when no identification information is sent by the source donor CU) the target donor CU so that the UE served by the IAB node can be handed over to the target donor CU. The non-F1 (terminal) donor CU is also referred to as an RRC (terminal) donor CU. According to the fourth aspect of the present invention, a device for an IAB node of an IAB communication system is provided, as described in the attached patent scope. According to the fifth aspect of the present invention, a device for an IAB donor CU (e.g., a source IAB donor CU or a target IAB donor CU) of an IAB communication system is provided, as described in the attached patent scope. According to another aspect of the present invention, a method for use in a migration procedure is provided. In the migration procedure, a distributed unit (DU) of an integrated access backhaul (IAB) node is migrated from an IAB topology managed by a source IAB donor central unit (CU) to another IAB topology managed by a target IAB donor CU. The method includes: determining by the source IAB donor CU that the DU of the IAB node is to be migrated from one IAB topology of the source IAB donor CU to another IAB topology of the target IAB donor CU; sending by the source IAB donor CU a message for migrating the DU of the IAB node from the IAB topology of the source IAB donor CU to the target IAB donor CU; A request to establish an F1 connection between an IAB node and the target IAB donor CU is sent to the IAB node; after receiving the request to establish the F1 connection, the IAB node sends an F1 setup request for requesting setup of the F1 connection to the target IAB donor CU; after receiving the F1 setup request for requesting setup of the F1 connection from the IAB node, the target IAB donor CU sends a response to the IAB node, the response including a request for one or more cells to be activated for a second logical DU entity for the IAB node. The present invention is further characterized in other independent and dependent request items. In the following, source and target will be referred to for different elements (such as nodes/topologies). However, it should be understood that the terms first and second can be used instead of source and target. Any features in one aspect of the present invention may be applied to other aspects of the present invention in any appropriate combination. Specifically, the method aspect may be applied to the device/apparatus/unit aspect, and vice versa. In addition, features implemented in hardware may be implemented in software, and vice versa. Any reference to software and hardware features herein should be interpreted accordingly. For example, according to other aspects of the present invention, a computer program comprising instructions is provided, which, when executed by a processing unit, causes the processing unit to execute any of the above aspects or exemplary methods, and a computer-readable storage medium carrying the computer program.

圖1說明例示性無線通訊系統100,特別是行動無線電通訊系統,例如包括支援行動IAB節點之無線整合的存取與回載網路的第五代(5G)新無線電(NR)系統。儘管在以下描述中,將針對5G NR系統描述本發明的實施例和實施例的實例,但是應當理解,本發明並不旨在限於5G NR系統並且可以用於任何具有行動基地台的無線通訊系統。特定言之,以下說明主要使用特定術語5G,但應瞭解,此術語亦適用於在其他通訊系統中執行等效功能之元件或程序。 系統100包含多個UE(使用者設備)132、133、131及134、遠端核心網路110、主基地台120及兩個整合的存取與回載(IAB)站或IAB節點121和122(以下亦稱為IAB節點),及安裝在車輛105上(例如,公車、火車、計程車、汽車等等)上之行動整合的存取與回載(IAB)站123。 主基地台120,亦稱為IAB施體120,透過有線鏈路101,較佳地是光纖或任何其他有線方式連接至核心網路110。在本發明的實施例與實施例的實例中,IAB施體120是具有附加功能性以支援IAB特徵的5G NR gNB,如3GPP TS 38.300 V17.2.0規範文件中所定義。 為了擴展IAB施體120的網路涵蓋率並到達遠端UE 132、133及131,運營商已經安裝IAB站121和122,亦稱為IAB節點121及122。透過充當IAB施體120與UE 132和133之間的中繼節點,IAB節點121及122允許克服由於建築物108的存在而導致的可達性問題,這是無線電波傳播的障礙,並且因此是UE和IAB施體120之間的直接連接和進一步通訊之無線電波傳播的障礙。當IAB施體120與UE 132和133之間的通訊以對遮蔽現象高度敏感的毫米波頻率操作時,尤其是如此。 IAB施體120還服務於直接連接到它的UE 134。 行動IAB站123(亦稱為行動IAB節點123或mIAB節點123)是安裝在車輛105上的IAB節點且提供網路覆蓋及容量擴展,允許IAB施體120到達機載遠端UE,如遠端UE 135,以及IAB節點123的周圍UE或鄰近IAB節點123的UE,如遠端UE 136。 IAB施體120及IAB節點121、122及123因此形成回載網路或IAB網路,或IAB拓撲,其容納UE 132、133、131、134、135及136。術語IAB網路及IAB拓撲在下文中是可互換地使用。 整合的存取與回載(IAB)規範分佈在多個3GPP標準文件中,包含: - TS 38.300 RAN架構(V17.2.0), - TS 38.321 MAC協定(V17.2.0), - TS 38.331無線電資源控制(RRC)協定(V17.2.0), - TS 38.340回載適配協定層(V17.2.0), - TS 38.401 RAN架構(V17.2.0), - TS 38.423 Xn應用協定(V17.2.0) - TS 38.473 F1應用協定(V17.2.0)。 由於IAB施體120與IAB節點121、122及123分別連接到UE 134、131、132、133、135及136,因此它們被視為它們各自連接的UE的存取IAB節點。 IAB施體120是提供基於NR的無線回載的邏輯節點並且由中央單元(CU或gNB-CU功能性)及連接的施體分散式單元(DU或gNB-DU功能)組成。IAB施體CU或施體CU(下文亦稱為IAB施體CU或IAB施體CU)承載更高層協定,例如PDCP(封包資料會聚協定)及RRC(無線電資源控制)協定,用於控制一或多個DU的操作以及一或多個IAB施體DU或施體DU(下文亦稱為IAB施體DU或IAB施體DU)中的每一個包括較低層協定,例如RLC、MAC及實體層協定。IAB施體CU或施體CU和IAB施體DU或施體DU可以遠離另一個或可以位於同一實體裝置中。gNB-DU功能在3GPP TS 38.401中定義。它目的在於端接到UE和下一中繼點IAB節點的NR存取介面,以及端接F1協定到IAB施體gNB-CU功能性,如下面討論的圖2a和2b所示。 可以服務於多個無線電扇區的IAB節點經由中間IAB節點上的一或多中繼點無線回載至IAB施體120。它們形成一個以IAB施體為根的有向無環圖(DAG)拓撲。 每個IAB節點由一個IAB-DU(IAB分散式單元)及一個IAB-MT(IAB行動終端)組成。IAB節點上的gNB-DU功能亦稱為IAB-DU,並且其允許下游(朝向UE)連接到下一中繼點IAB或至UE。IAB-MT功能性包含例如實體層、第2層、RRC及非存取層(NAS)功能性以連接到上游 IAB節點的gNB-DU(包含IAB施體120,在這種情況下它連接到IAB施體gNB-CU,因此連接到核心網路110,例如用於初始化、註冊及組態)。 在該DAG拓撲中,IAB-DU介面上的鄰居節點稱為子節點,IAB-MT介面上的鄰居節點稱為父節點。朝向子節點的方向進一步稱為下游,而朝向父節點的方向稱為上游。 IAB施體120(例如IAB施體CU)對整個IAB拓撲執行集中式資源、拓撲與路由管理。這包含根據網路拓撲組態IAB節點,例如,以便執行資料封包的適當路由。 圖2a和2b示意性說明與IAB操作中涉及的一些協定層的堆疊。 F1介面支援端點之間的發訊資訊(例如,控制流量)交換,以及向各個端點的資料傳輸(例如,使用者流量傳輸)。從邏輯上觀點來看,F1介面是端點之間的點對點介面。 在5G NR中,F1-C是控制平面(CP)中IAB施體CU與IAB節點DU(例如IAB節點2)之間以及IAB施體CU與IAB施體DU之間的功能介面。F1-U是同一單元在使用者平面(UP)中的功能介面。F1-C和F1-U在圖2a中由標號212表示。在此實例中,F1-U和F1-C透過兩個回載中繼點傳輸(從IAB施體到IAB節點1,然後從IAB節點1至IAB節點2)。 在使用者平面中,IAB施體CU和IAB節點DU處的方框210指的是GTP-U層,而方框211指的是UDP層。GTP-U代表GPRS隧道協定使用者平面。GTP-U隧道用於在給定的一對GTP-U隧道端點之間承載封裝的PDU及發訊訊息(有關更多細節,請參閱3GPP TS 29.281),此處為IAB施體CU和IAB節點DU的方框210。眾所周知的使用者資料協定(UDP)是一種傳輸層協定,提供儘可能最佳的資料塊服務並適配與IP協定一起使用。 在控制平面中,方框210表示F1AP(F1應用協定)層,而方框211表示SCTP(流控制傳輸協定)層。F1應用協定(如3GPP TS 38.473及TS 38.401中定義)提供IAB施體CU和IAB節點DU之間的發訊服務,或UE相關聯服務。這些服務例如是初始化、組態等。眾所周知的SCTP層透過擁塞控制提供可靠的、按順序的訊息傳輸。 F1-U與F1-C依賴IAB施體CU與IAB節點DU之間的IP傳輸層,如3GPP TS 38.401定義。 IAB施體DU及IAB施體CU之間的傳輸亦使用透過各種媒體(例如,電線或光纖)的IP傳輸層,例如當IAB施體CU對IAB施體DU為遠端時,或者在本地IAB施體CU和IAB施體DU在同一實體機器上的虛擬實例化。IAB施體CU和IAB施體DU之間的IAB特定傳輸在3GPP TS 38.401中界定。 圖2a中的L1及L2分別代表適合所使用之媒體的傳輸層和實體層。 IP層也可用於非F1流量,例如操作、管理和維護流量。 在無線回載中,IP層本身承載在回載適配協定(BAP)子層上,該子層致能多中繼點路由。BAP子層在TS 38.340中指定。 IAB-DU的IP流量透過無線回載路由經過BAP子層。在下游方向中,上層封包在IAB施體DU處被BAP子層封裝,從而形成BAP封包或封包資料單元(PDU)或資料封包。BAP封包由中間IAB節點(如果有)的BAP層或實體(以及IAB-DU和IAB-MT中的相應BAP實體)路由。BAP封包最終由目的地IAB節點處的BAP子層解封裝(如果BAP封包中的上層封包旨在用於UE,則該節點可能是存取IAB節點)。 在上游方向中,上層封包由BAP子層在發起者IAB節點(如果上層封包來自UE,則其可能是存取IAB節點)封裝,從而形成BAP封包或資料單元(PDU)或資料封包。BAP封包由中間IAB節點(如果有)的BAP層(以及IAB-DU和IAB-MT中的相應BAP實體)路由。BAP封包最終由IAB施體DU處的BAP子層解封裝。 在BAP子層上,封包基於BAP路由ID進行路由,該ID在BAP封包的BAP標頭中攜帶,由發出IAB施體DU或發起者IAB節點(例如IAB網路中產生BAP封包的網路節點)的BAP子層設置。圖3說明BAP資料協定資料單元(PDU)或封包的格式。它在3GPP TS 38.340版本17.2.0的標準化版本第6.2段落中指定。 酬載部分307通常是IP封包。標頭30包含欄位301到306。欄位301,命名為D/C欄位,是一個布林值,指示對應的BAP封包是BAP資料封包還是BAP控制封包。欄位302-304是1位元保留欄位,較佳設置為0(被接收器忽略)。 欄位305與306一起指示BAP封包的BAP路由ID。BAP位址欄位305,也稱為DESTINATION(目的地)欄位,位於最左邊的10位元,而BAP路徑身分欄位306,也稱為PATH (路徑)欄位,位於最右邊的10位元。 欄位305攜帶BAP封包的目的地IAB節點或IAB施體DU的BAP位址(即在BAP子層上)。出於路由的目的,IAB網路中的每個IAB節點和IAB施體DU(由IAB網路的IAB施體CU)組態有指定的唯一BAP位址。欄位306攜帶一個路徑ID,其識別BAP封包應遵循之到IAB拓撲中的該目的地的路由路徑。出於路由的目的,路由路徑(包含它們的路徑ID)在IAB網路之IAB節點中(由IAB網路的IAB施體CU)組態。 當封包從上層到達BAP層時,BAP標頭被添加到封包中,而當它到達其目的地節點時,該BAP標頭被BAP層剝離。所選的封包的BAP路由ID是由IAB施體CU組態。 例如,當BAP封包由節點產生時,即由IAB施體DU用於下游傳輸或由發起方(當上層封包來自UE時,發起方可以是存取IAB節點)用於上游傳輸時,該節點根據3GPP TS 38.340中定義的組態表以建構具有BAP路由ID的BAP標頭。此表在IAB施體DU中稱為下行鏈路流量到路由ID映射組態表或在發起方IAB節點中稱為上行鏈路流量到路由ID映射組態表。在中間IAB節點中,BAP標頭欄位已經在要轉發的BAP封包中指定。 如上所述,這些定義BAP路徑(因此在給定IAB網路拓撲的情況下,路由策略和IAB節點的組態)的組態表通常由IAB施體CU定義並傳輸到IAB節點以組態它們。 為了在5G NR無線電媒體上傳輸訊息,在BAP子層下方的每個IAB節點上實施了另外三個子層(RLC、MAC和PHY)。RLC(無線電鏈路控制)子層負責封包的分段或重構。它還負責請求重傳丟失的封包。RLC層在TS 38.322中有進一步的描述。MAC(媒體存取通道)協定子層負責為使用者資料選擇可用的傳輸格式,並負責將邏輯通道映射到傳輸通道。MAC還處理混合自動重複請求方案的一部分。MAC層在TS 38.321中有詳細說明。在發射器或發射器側,MAC將從RLC發出的資料封包進行封裝。它添加一個帶有MAC功能所需資訊的標頭。在接收器側,MAC對從PHY發出的資料封包進行解封裝,刪除其標頭並將剩餘資料傳遞給RLC。PHY子層透過將資訊流轉換為實體調變訊號,在發射器側調變載波頻率,為傳輸媒體(空氣)提供電介面。在接收器側,PHY子層將實體調變訊號轉換回資訊流。PHY層在TS 38.201、TS 38.211、TS 38.212、TS 38.213、TS 38.214中進行描述。 為了向使用者或控制平面傳遞訊息,在UE和IAB施體CU中使用了另外兩個子層:PDCP(封包資料匯聚協定)子層和用於使用者平面通訊的SDAP(服務資料適配協定)子層或用於控制平面通訊的RRC(無線電資源控制)子層。 PDCP子層處理IP標頭壓縮/解壓縮、加密/解密,並在必要時處理資料封包的完整性。它強制對發射器側的封包進行編號,並在接收器側對封包重新排序。PDCP子層在3GPP TS 38.323中描述。 使用者平面的SDAP子層220處理服務品質。在TS 38.324中進行說明。在UE側,SDAP子層與使用者應用程式(語音、視訊等,未在圖中顯示)交換酬載資料。在IAB施體CU側,SDAP子層與核心網路110交換資料(網際網路流量、雲端等等)。 控制平面的RRC子層220處理使用者平面協定堆疊的協定實體的組態。在TS 38.331中進行說明。它負責處理UE與胞元(cell)通訊所需的廣播資訊等;傳輸呼叫訊息,管理連接,包含設置載送(bearer);行動性功能;測量組態與報告;裝置能力。 使用PDCP、RLC、MAC及PHY層的節點之間的介面(用於CP及UP)被稱為NR-Uu。這主要涉及與UE介接。 使用BAP、RLC、MAC和PHY層的節點之間的介面(用於CP和UP)被稱為回載RLC通道(BH RLC通道)。這主要涉及IAB節點之間的介面。 NR-Uu是UE和無線電存取網路之間的介面,即它的存取IAB節點(對於CP和UP)。 圖2b來自3GPP TS 38.300 V17.2.0,說明了支持IAB-MT的RRC和NAS連接的協定堆疊。非存取階層(NAS)協定處理核心網路和使用者設備或IAB節點之間的訊息。它管理通訊對話的建立,並在IAB節點或使用者設備移動時保持與它的通訊。3GPP TS 24.501中描述了5G NAS。5G核心存取和行動性管理功能(AMF)是核心網路內的一項功能,它從連接到IAB節點的UE接收所有連接和對話相關資訊,以及IAB節點的類似資訊。AMF只負責處理連接和行動性管理任務。 IAB-MT建立與IAB施體CU的發訊無線電載送SRB(承載RRC和NAS訊息的載送)。這些SRB通過NR-Uu介面在IAB-MT與其父節點之間傳輸。 圖4顯示根據本揭露的一或多個例示性實施例的例示性通訊裝置(設備)或站的示意圖。 通訊裝置400可以是諸如微電腦、工作站或輕便可攜式裝置之裝置。通訊裝置400包括通訊匯流排413,該匯流排較佳連接至: - 中央處理單元411,諸如微處理器,表示為CPU。中央處理單元411可以是單一處理單元或處理器或可包括兩個或更多個處理單元或處理器,其執行用於操作通訊裝置400所需之處理。關於中央處理單元411之處理器之數目及處理功能之分配係習於此技者之設計選擇的問題; - 用於儲存資料和電腦程式的記憶體,該電腦程式包括用於操作通訊裝置400的指令。電腦程式可以包括許多不同的程式元件(模組)或包括用於各種操作和實施根據本發明之一或多個實施例之方法的各種操作之指令的子常式;以及 - 至少一個通訊介面402,用於與通訊系統中的其他裝置或節點通訊,諸如圖1之通訊系統。該至少一通訊介面402可連接至無線電通訊網路403,諸如用於5G NR之無線通訊網路(例如,根據版本17及/或後續版本),透過該網路傳輸數位資料封包或訊框或控制訊框。訊框是從RAM 412中的FIFO發送記憶體寫入至通訊介面以用於傳輸,或從通訊介面讀取以用於接收與寫入RAM 412中的FIFO接收記憶體中,這受CPU 411中運行之軟體應用程序的控制。 施體CU、施體DU、IAB節點及UE的每一個可包括這樣的通訊裝置/設備100。 記憶體可包含: - 唯讀記憶體407,表示為ROM,用於儲存用於實施根據本發明之一或多個實施例之方法的電腦程式; - 隨機存取記憶體412,表示為RAM,用於儲存根據本發明一或多實施例之方法的可執行碼,以及暫存器適配以記錄用於實施根據本發明一或多實施例方法所需的變數及參數。 可選地,通訊裝置400亦可包含以下組件: - 資料儲存構件404,諸如硬碟,用於儲存用於實施根據本發明一或多實施例的方法之電腦程式; - 用於磁碟406之磁碟機405,該磁碟機適用於從磁碟1106讀取資料或寫入資料到該磁碟上; - 螢幕409,用於顯示解碼的資料及/或藉由鍵盤410或任何其他輸入/輸出構件而作用為與使用者之圖形介面。 在一例示性配置中,通訊匯流排413在通訊裝置400中所包含或連接到通訊裝置的各種元件之間提供通訊及互通性。匯流排之表示並不是限制性的,且明確而言中央處理單元可操作以直接或藉由通訊裝置400之其他元件將指令通訊到通訊裝置400之任何元件。 磁碟406可選地可替換成任何資訊媒體,諸如可覆寫或不可覆寫之光碟片(CD-ROM)、ZIP磁碟、USB金鑰或記憶卡,以及以一般用語而言,替換成可被微電腦或微處理器讀取之資訊儲存構件,該構件可整合於通訊裝置中或不整合於通訊裝置中,可能是可卸式且適用於儲存一或多程式,其中執行該程式致能實施根據本實施例之方法。 可執行碼可選地可被儲存在唯讀記憶體407中、在硬碟404上或在諸如例如前述磁碟406等可卸式數位媒體上。根據一選用變體,經由介面402,程式之可執行碼可以藉由通訊網路403而被接收,以為了在執行之前被儲存在通訊裝置400之儲存構件之一者中,該儲存構件是諸如硬碟404。 中央處理單元411可適用於控制並且指導根據本發明的一或多程式之指令或是軟體碼的部分之執行,其指令被儲存在上述儲存構件之一者中。一旦通電後,儲存於例如硬碟404或唯讀記憶體407之非揮發性記憶體中的一或多程式被轉移到隨機存取記憶體412中,其接著將一或多程式之可執行碼保存,以及包括暫存器,以用於儲存實施本發明所需之變數與參數。 在一例示性實施方案中,通訊裝置(設備)是可程式裝置/設備,其使用軟體以實施本發明。可以由設備之一或多處理器執行指令,諸如一或多個數位訊號處理器(DSP)、通用微處理器、特殊應用積體電路(ASIC)、現場可程式化邏輯陣列(FPGA)或其他等效積體或離散邏輯電路,以針對網路節點(例如,IAB節點、IAB施體CU,等等)實施本發明。據此,本文所用術語「中央處理單元」可指任何前述結構或適合於實現本文描述技術的任何其他結構。然而,替代地,本發明可以硬體實施(例如,以特殊應用積體電路或ASIC或其他邏輯元件)。 圖5圖解說明可實施本發明之實施例及實施例之實例之IAB通訊系統(或IAB網路系統)500之實例。在一實例實施方案中,IAB節點之間及IAB節點與IAB施體DU之間的無線電鏈路(稱為BH無線電鏈路)在毫米波頻帶(即高於30GHz)上操作,其對無線電頻道干擾高度敏感。IAB網路亦將被稱作一IAB拓撲或拓撲,因此在本申請案中,術語IAB網路及IAB拓撲及拓撲將可交換地使用。 IAB通訊系統500由三個IAB網路或IAB拓撲5001、5002及5003組成,其中每一IAB拓撲包括一組IAB節點(例如,該組可包括複數個IAB節點或至少一IAB節點)以及用於控制或管理該複數個IAB節點之一IAB施體CU。該組IAB節點可包含一或多個IAB節點,諸如產生BAP封包之起始器IAB節點且亦包含中間或中繼IAB節點。該等IAB節點之各者經由無線回載(BH)鏈路與至少另一IAB節點通訊。雖然圖5展示三個IAB拓撲5001、5002及5003,但是本發明不限於三個IAB拓撲且可實施於包括多於兩個IAB拓撲之一IAB通訊系統中,其中各拓撲包括如上文所述之一組IAB節點及IAB施體CU。 如上文論述,各IAB節點包括由使用如3GPP TS 38.331中所定義之RRC傳訊之IAB施體控制及組態之行動終端(MT)部分或單元及由使用如3GPP TS 38.473中所定義之F1-AP傳訊之IAB施體控制及組態之分散式單元(DU)部分。例如,IAB節點510包括MT部分或單元511及DU部分512。 IAB拓撲5001包含IAB施體CU 501(在圖5中識別為施體1-CU),及其相關聯IAB施體DU 504(在圖5中識別為施體1-DU 1),及類似於IAB節點121及122之複數個IAB節點510及520。 IAB拓撲5002包含IAB施體CU 502(在圖5中被識別為施體2-CU)、其相關聯IAB施體DU、IAB施體DU 505(在圖5中被識別為施體2-DU 1)及IAB施體DU 506(在圖5中被識別為施體2-DU 2),及類似於IAB節點121及122之複數個IAB節點530、540、550,及可類似於行動IAB節點123之IAB節點570。所有IAB節點可存取服務UE之節點,如由行動IAB節點570服務之UE 580。IAB拓撲5002針對透過行動IAB節點570之DU部分或單元572連接至施體CU 502之UE 580係通透的。儘管圖5僅展示一個UE 580,應瞭解將存在連接至IAB通訊系統500之網路節點之複數個UE。 IAB拓撲5003包含IAB施體CU 503(在圖5中被識別為施體3-CU)、其相關聯IAB施體DU 507(在圖5中被識別為施體3-DU1)、及一IAB節點560,如IAB節點121及122。 有線回載IP網路透過有線回載508互連IAB施體CU 501、502及503,及IAB施體DU 504、505、506及507。例如,此有線回載508由光纖電纜組成。 IAB施體CU 501、IAB施體DU 504以及IAB節點510及520係相同IAB網路或IAB拓撲5001之部分,其由IAB施體CU 501組態及管理或控制。 IAB施體CU 502、IAB施體-DU 505及506、IAB節點530、540、550係相同IAB網路或IAB拓撲5002之部分,其由IAB施體CU 502組態及管理或控制。 IAB施體CU 503、IAB施體-DU 507及IAB節點560係相同IAB網路或IAB拓撲5003之部分,其由IAB施體CU 803組態及管理或控制。 各個IAB-DU及IAB施體DU在稱作胞元之覆蓋區域(未展示於圖5中)中支援無線通訊。換言之,各個IAB-DU及IAB施體DU係與胞元相關聯。位於一胞元內之無線通訊裝置(諸如UE,或其他IAB節點)可建立與服務該胞元之節點(即,IAB-DU或IAB施體DU)之通訊鏈路以經由該節點與其他裝置(例如,其他UE、IAB節點、提供對該網際網路之存取之伺服器等等)通訊。 假設行動IAB節點570最初具有一單個父IAB節點520,且IAB節點570屬於由IAB施體CU 501控制之IAB拓撲5001。因此,IAB施體CU係作為F1終端施體CU(其亦可稱為F1終端IAB施體CU或F1施體CU)操作。當移動時且鑑於其靠近於IAB拓撲5002,特定言之IAB節點530當行動IAB節點570處於圖5中虛線所示之位置中時,行動IAB節點570可建立與IAB節點530之無線BH鏈路。此BH鏈路對於固定IAB節點係可能的,且對於例如,在IAB拓撲5002之方向(圖5中由箭頭590展示)上移動之如IAB節點570之行動IAB節點係非常可能的。 接著,F1施體CU 501可已決定執行IAB節點570之MT部分571朝向由施體CU 502控制之IAB拓撲之遷移,該施體CU 502變成IAB節點570之非F1終端施體CU(其亦可稱為非F1終端IAB施體CU或非F1施體CU或RRC終端施體CU或RRC施體CU)(即,IAB節點570之MT部分571朝向父IAB節點530遷移)。出於此目的,F1施體CU 501可開始在TS 38.401 V17.2.0章節8.17.3.1或章節8.17.3.2(當IAB節點570具有前繼IAB節點時)中所述之CU間拓撲調適程序。因此,IAB節點501在其F1連接至施體CU 501之情況下仍屬於IAB拓撲5001,但其RRC連接現在係至施體CU2 502。在該程序之後,該IAB施體CU 501可請求與IAB節點570有關之回載流量(例如,使用者流量、控制流量)朝向IAB拓撲5002(即,透過該施體DU 505)之遷移。在此情況中,施體CU 501觸發TS 38.423 V17.2.0章節8.5.2中規定之IAB運輸遷移管理程序。在IB通訊系統中,經由回載鏈路通訊之所有流量在IAB施體CU與IAB-DU之間使用F1介面(F1-C或F1-U)。因此,經卸載或遷移之流量或回載流量為F1流量且可包含控制及使用者流量。 在行動IAB節點870仍在在箭頭590所示之方向中移動時,IAB節點570之MT部分571接著可藉由非F1施體CU 502朝向父IAB節點550移動,使用IAB節點550與IAB節點570之間之回載鏈路5050。出於此目的,非F1施體CU 502可應用TS 38.401 V17.2.0章節8.2.3.1(或章節8.17.3.2)中所述之CU內拓撲調適程序,從而導致利用新的單一父IAB節點550之IAB節點570之連續MT遷移(或另一MT遷移至另一IAB節點)。再者,IAB節點501使其與施體CU 501之F1連接及使其與施體CU2 502之RRC連接。 在被通知使用施體DU 506代替施體DU 505以路由與IAB節點570有關之F1流量之後,施體CU 501可請求將與IAB節點570有關之流量朝向IAB拓撲5002遷移。在此情況中,施體CU 501觸發TS 38.423 V17.2.0章節8.5.2中規定之IAB運輸遷移管理程序。 在進一步移動的同時,此時在由施體CU 503控制之IAB拓撲5003之方向中,IAB節點570可變成處於其中具有IAB節點560之回載鏈路5060可具有比具有IAB節點550之回載鏈路5050更好品質之位置。因此,施體CU 502可應用TS 38.401 V17.2.0章節8.17.3.1或8.17.3.2中所述之CU間拓撲調適程序。在此連續MT遷移之後,IAB節點501仍屬於IAB拓撲5001,其具有與施體CU 501之F1連接,但其現在與施體CU 503是RRC連接,且因此施體CU 503變為非F1終端施體CU(或非F1施體CU或RRC施體CU)。然而,必須通知施體CU 501針對IAB節點570及新施體DU 507之新非F1施體CU 503以透過施體DU 507而非施體DU 506重新引導經卸載流量(F1流量、控制及使用者流量)。 在上文所描述之所有MT遷移情況中,UE 580仍透過行動IAB節點570之DU部分或單元572連接至施體CU 501。若IAB節點570具有一些子IAB節點,則此等子IAB節點仍屬於IAB拓撲5001,且其仍藉由施體CU 501(透過F1及RRC連接)完全控制。 在IAB節點570之MT部分571之任何遷移狀態處,因此不管IAB節點570之MT部分571是遷移至IAB拓撲5002或IAB拓撲5003,且因此不管IAB節點570是否具有非F1終端施體CU,且若具有,不管其非F1終端施體CU 502或503,F1施體CU 501可決定執行IAB節點570之DU部分之遷移。執行DU遷移之原因可以是減少F1施體CU 501處之處理負載,或因為IAB節點570在地理位置上遠離F1施體CU 501且接近於其中在F1施體CU 501與目標施體CU之間不存在更多Xn連接性之區域。在決定執行該IAB節點570之DU遷移之後,該F1施體CU 501亦必須決定將朝向哪一施體CU(其被稱為目標F1施體CU)來執行DU遷移。若存在當前非F1終端施體CU則其可以是朝向當前非F1終端施體CU(即,預設選擇)之DU遷移且在此情況中該非F1終端施體CU變為目標F1施體CU或朝向另一目標F1施體CU之DU遷移。例如,若IAB節點570是行動的且其軌跡是可預測的(例如,用於公車或火車),則F1施體CU 501可知道IAB節點570將不久透過其連接至網路之控制胞元的合適目標F1施體CU。例如,雖然IAB節點570之非F1終端施體CU是施體CU 502,但是F1施體CU可決定IAB節點570之DU遷移應直接朝向施體CU 503,因為IAB節點570可快速跨越且不駐留於由施體CU 502控制之IAB拓撲5002中。為不朝向施體CU 502執行DU遷移,且反而朝向施體CU 503執行DU遷移,將避免對IAB節點570之中間DU遷移協定訊息。當執行DU遷移時,亦必須執行由IAB節點570服務之UE之交遞。因此,為不執行朝向施體CU 502之DU遷移,在朝向施體CU 503之新的DU遷移及UE交遞之前,亦將避免由IAB節點570服務之UE至施體CU 502之中間交遞。 參考隨後圖式更詳細地描述執行DU遷移之程序及朝向一選定目標F1施體CU之UE交遞。 圖6圖解說明致能IAB節點之DU從源IAB拓撲至目標IAB拓撲之遷移(DU遷移)之IAB節點架構600之實例。 IAB節點601(其可為如IAB節點570之行動IAB節點)是由IAB-MT部分或單元IAB-MT 610(如圖5之IAB節點570之MT部分571)、部分或單元IAB-DU1 611及部分或單元IAB-DU2 612組成。IAB-DU1及IAB-DU2係針對BAP、RLC及MAC層共用相同硬體之兩個邏輯DU實體。在一實例中,其共用相同實體層(即,相同硬體資源),而在另一實例中其等依賴不同的實體層。在IAB節點601之DU遷移處,兩個邏輯DU均是現用(active):邏輯DU之一者端接與源F1施體CU(如圖5中之施體CU 501)之F1介面,而另一邏輯DU端接與目標F1施體CU(如圖5中之施體CU 502或503)之F1介面。否則(即,當不執行DU遷移時),僅一個邏輯DU便足以用於IAB操作。作為一實例且參考圖5之IAB通訊系統,IAB節點601之F1終端施體CU(即,IAB節點570)可為因此操作為源F1施體CU之施體CU 501。當該源F1施體CU 501判定該IAB節點570正移動朝向/通過該IAB拓撲5002時,該源F1施體CU 501可將IAB施體CU 502識別為合適目標F1施體CU,該IAB拓撲5002包含由該IAB施體CU 502管理之網路節點(例如,IAB施體DU 505、506、IAB節點530、540、550),該網路節點服務該IAB節點570即將連接至其之IAB拓撲5002中之胞元。替代地,對於連接至由作為F1終端施體CU之施體CU 501管理之IAB拓撲5001之父IAB節點或父IAB施體DU且係固定的但靠近或鄰近一相鄰IAB拓撲(諸如IAB拓撲5002)中之一或多個IAB節點之IAB節點,當源F1施體CU 501判定(例如,基於在IAB節點處對在該IAB節點處從靠近該IAB節點的所有IAB節點接收之無線電信號執行之信號量測且其可包含相鄰IAB拓撲5002中之IAB節點)該IAB節點可即將連接至相鄰IAB拓撲5002中之IAB節點時之適合目標F1施體CU源F1施體CU 501可判定該IAB施體CU 502是合適目標F1施體CU。 在DU遷移之前,例如,UE 602(如圖5之UE 580)透過邏輯DU IAB-DU1 611與由邏輯DU IAB-DU1 611服務之胞元中之存取鏈路621連接至源F1施體CU 501,且邏輯DU IAB-DU2 612被停用。在DU遷移處,啟用邏輯DU IAB-DU2 612且將其連接至目標F1施體CU 502,UE 602亦可透過邏輯DU IAB-DU2 612與由邏輯DU IAB-DU2 612服務之胞元中之鏈路622連接至該目標F1施體CU 502。可藉由源F1施體CU觸發邏輯DU IAB-DU2 612之啟用且藉助參考圖8a及圖8b描述之程序執行。一旦完成來從由邏輯DU IAB-DU1 611控制之胞元交遞至由邏輯DU IAB-DU2 612控制之胞元之UE 602,則可停用邏輯DU IAB-DU1 611。可在偵測用於由IAB-DU1 611服務之所有UE之交遞之完成之後,藉由源F1施體CU 501參考圖8c描述之程序來觸發停用。 現將描述根據本發明之一或多個實施例之方法之實例,其致能在有或沒有(多個)MT遷移下執行IAB節點之DU遷移,且其包含通知該等IAB節點關於目標施體CU之身分以致能將由該IAB節點服務之UE交遞至該目標施體CU。雖然以下方法/設備,將主要關於行動IAB節點描述,但是應明白本發明並不意在限於行動IAB節點。根據本發明之一或多項實施例之方法可應用於固定IAB節點,例如,該等固定IAB節點係在一IAB拓撲之邊緣處且靠近或鄰近相鄰IAB拓撲中之一或多個IAB節點。 圖7係圖解說明根據本發明之一或多個實施例之一些例示性訊息流以執行在有或沒有(多個)MT遷移下之IAB節點之DU遷移之示意簡化圖700,且其包含通知IAB節點關於目標施體CU以致能藉由遷移IAB節點服務之UE交遞至目標施體CU。 此圖7繪示如UE 580之UE 708、如施體CU 501之源F1施體CU 703、如施體CU 503之目標F1施體CU 707、如圖1之核心網路110之核心網路(5GC)702。此圖7亦展示可為如IAB節點570之行動IAB節點之IAB節點701,其由MT部分或單元IAB-MT 704、DU部分或單元IAB-DU1 705(例如,源或第一邏輯DU實體)及DU部分或單元IAB-DU2 706(例如,目標或第二邏輯DU實體)組成。該第一705及該第二706DU邏輯實體之各者服務於一或多個胞元。IAB-DU1 705之胞元藉由IAB-DU1 705之胞元之不同識別符(例如,實體胞元識別符(PCI)、新無線電胞元群組識別符(NCGI))識別。IAB-DU1 705及且IAB-DU2 706是針對BAP、RLC及MAC層共用相同硬體之兩個邏輯DU實體。在一實例中,它們共用相同實體層(即,相同硬體資源),而在另一實例中它們依賴不同之實體層。若IAB-MT 704未遷移,則IAB節點701之非F1施體CU可為源F1施體CU 703本身。若IAB-MT 704先前朝向目標F1施體CU 707遷移,則IAB節點701之非F1施體CU可為目標F1施體CU 707,或若IAB-MT 704先前朝向另一施體CU遷移,則為此另一施體CU(圖中未表示)。 在流開始時,IAB節點701屬於由源F1施體CU 703控制之源IAB拓撲。UE 708係藉由IAB節點701透過IAB-DU1 705之胞元服務(例如,IAB節點701之DU具有現用IAB-DU1 705,其具有與源F1 IAB施體CU 703之F1連接),而邏輯IAB-DU2 706不活動(inactive)。下游方向中之使用者資料係藉由5GC 702透過載送710提供至源F1施體CU 703,接著資料透過回載載送711傳輸至IAB節點701之邏輯DU IAB-DU1 705,且最終透過資料無線電載送712傳輸至UE 708。回載載送711可建立於由源F1施體CU 703控制之源IAB拓撲中或由IAB節點701之非F1施體CU控制之IAB拓撲(若IAB-MT 704先前朝向此非F1施體CU遷移)中。在該上游方向(未展示在圖中)中之使用者資料透過在相反方向中之類似載送傳輸。 若IAB-MT 704先前已朝向此非F1施體CU(圖7中未展示)遷移或若其尚未從其F1終端施體CU遷移至其F1終端施體CU(例如,源F1施體CU 703),則IAB-MT 704可將量測報告(圖7中未展示)發送至其非F1終端施體CU,作為IAB-MT 704規則性地對從服務胞元及一或多個目標胞元(諸如在服務胞元中及目標胞元中傳輸之信號同步區塊(SSB))接收之信號執行量測之結果。目標胞元可為相鄰於服務或源胞元(即,當前服務胞元)之胞元。一旦IAB-MT 704發現滿足預定義準則(例如超過預定義臨限值之接收功率)之至少一RSB,可產生並傳輸量測報告以針對鄰近IAB節點701之不同胞元提供無線電鏈路品質資訊。量測報告中包含各胞元之身分以允許若IAB-MT 704已遷移則非F1施體CU或若IAB-MT 704尚未遷移則F1終端施體CU 703識別與胞元相關聯之目標施體CU。實際上,可從以同步化信號在由此施體CU管理之各胞元中廣播之實體胞元身分(PCI)及/或從以系統資訊區塊(SIB)訊息亦在由此施體CU管理之各胞元中廣播之新無線電胞元群組識別符(NCGI)推導施體CU之識別。該PCI及/或NCGI可藉由量測報告中之IAB節點701而報告。 基於所接收量測報告,則非F1施體CU(若IAB-MT 704已遷移)或F1終端施體CU 703((若IAB-MT 704尚未遷移)可偵測到IAB節點701以比源服務胞元中之品質更好之品質來接收在目標父IAB節點之目標胞元中的無線電信號。非F1施體CU(若IAB-MT 704已遷移)或F1終端施體CU 703(若IAB-MT 704尚未遷移)可決定應用一程序以執行IAB-MT 704遷移朝向屬於相同IAB拓撲(CU內拓撲調適)或另一IAB拓撲(CU間拓撲調適)之目標父IAB節點。在任一情形下,源F1施體CU 703將被通知關於藉由非F1施體CU之此MT遷移(若IAB-MT 704已遷移),或源F1施體CU 703將被通知因為其從由IAB節點701接收之量測報告直接作出執行MT遷移之決定(若IAB-MT 704尚未遷移),且此資訊可由源F1施體CU 703使用以觸發IAB節點701之DU遷移。在另一實例中,非F1施體CU可將從IAB節點701接收之量測報告中之資訊轉送(中繼)至源F1施體CU 703。因此,源F1施體CU 703可基於由非F1施體CU轉送之直接從此等量測報告之IAB節點701之DU遷移之決定。 因此,源F1施體CU 703判定IAB節點之DU要從源F1施體CU 703之IAB拓撲遷移至目標IAB施體CU之另一IAB拓撲。該判定可基於判定該IAB節點之MT朝向新父IAB節點之遷移已完成。用於判定IAB節點之DU要被遷移之觸發事件之另一實例可包含DU遷移之決定可基於從第一IAB拓撲朝向第二IAB拓撲之MT遷移之偵測,及基於該IAB節點之已知(預定義)軌跡,該軌跡向源F1施體CU指示該MT將在稍後遷移至第三IAB拓撲。在此情況中,為避免用於朝向第二IAB拓撲之DU遷移/UE交遞之發信訊息,將DU直接朝向第三IAB拓撲遷移。用於判定IAB節點之DU要被遷移之觸發事件之另一實例可包含在源F1施體CU中偵測到處理負載位準高於一預定義臨限值。接著觸發DU遷移,且目標F1施體CU之選擇係基於連接至源F1施體CU之其他施體CU之處理負載。 在由源F1施體CU 703決定或判定以執行IAB節點701之DU遷移朝向由變為目標F1施體CU 707之另一施體CU管理之另一IAB拓撲,第一步驟720對應於將用以在目標F1施體CU 707與行動IAB節點701之間建立新F1連接之請求發送至IAB節點701。此可需要啟用行動IAB節點701中之第二邏輯IAB-DU2 706且因此第一步驟720可包含啟用行動IAB節點701中之第二邏輯DU IAB-DU2 706。使用(例如)參考圖8a及圖8b描述之程序來執行此操作。特定言之,藉由源F1施體CU 703發送至IAB節點701以用於啟用IAB-DU2 706(例如,圖8a中之803)之訊息可包含用於識別目標施體CU(諸如目標F1施體CU 707之TNL位址(即,IP位址))之識別資訊,使得可與目標施體CU 707(在IAB-DU2 706與目標施體CU 707之間)設定新的F1連接或F1關聯(例如,F1AP介面連接)。若用於啟用之請求中不包含目標F1施體CU之位址,則藉由預設且在IAB-MT 704已遷移至非F1施體CU之情況中,將非F1施體CU視作目標F1施體CU。在此情況中,當IAB-MT 704遷移至非F1施體CU時IAB節點701已被通知目標施體CU之身分(例如,TNL位址/IP位址)。換言之,源F1施體CU 703可發送用於識別目標IAB施體CU之識別資訊,除非IAB-MT 704已遷移至非F1施體CU。替代地,源F1施體CU 703可發送用於識別作為目標IAB施體CU之非F1施體CU之識別資訊。 在判定IAB節點701之DU要被遷移之後且一旦已啟用IAB-DU2 706,則IAB-DU2 706可將F1設置請求訊息(例如,圖8b中之813)發送至目標F1施體CU 707以請求在IAB節點701與目標F1施體CU 707之間建立F1連接。此訊息可包含用於識別源IAB施體CU之識別資訊,諸如TNL位址(即,IP位址)或IAB節點701之源F1施體CU 703之識別符(即,如在TS 38.423V.17.2.0章節9.2.2.3中規定之全域NG-RAN節點ID)。若IAB節點701之IAB-MT 704先前已朝向此非F1施體CU(圖7中未展示)遷移,則此訊息亦可包含TNL位址(即,IP位址)或IAB節點701之非F1施體CU之識別符(即,如TS 38.423 V17.2.0章節9.2.2.3中規定之全域NG-RAN節點ID)。F1設置請求訊息之目的地位址是目標F1施體CU 707,且當此IP封包在用於IAB節點701之F1路徑中由施體DU接收時,其可在有線回載(圖5中之508)中被路由至目標F1施體CU 707。例如,在IAB節點701是經由回載鏈路5050連接至IAB節點550之圖5之IAB節點570之實例中且其中IAB節點570之MT(MT 571,其對應於圖7中之IAB-MT 704)已遷移至非F1施體CU 502且IAB施體CU 501是源F1施體CU之一實例中,F1施體CU 501至IAB節點570之間的F1路徑使用施體DU 506。在其中已(藉由F1施體CU 501)將IAB施體CU 503識別為目標F1施體CU(例如,目標F1施體CU 707)之情況中,將目標F1施體CU(例如,施體CU 503)之F1設置請求訊息透過IAB節點550、540發送且接著至施體DU 506,從該處其可在有線回載(圖5之508)中路由至目標F1施體CU 503。在F1設定回應(例如,圖8b中之814)中,目標F1施體CU 707(例如,上文參考圖5描述之實例中之施體CU 503)可請求IAB-DU2 706以啟用具有相關聯識別符(PCI、NCGI)之(若干)新胞元。通常在控制DU之施體CU之控制下該DU啟用/停用胞元。例如,參見TS 38.473章節8.2.3.2。 在參考圖8b描述之程序之後,且使用(例如)參考圖9a描述之程序,目標F1施體CU 707可通知源F1施體CU 705有關從IAB節點701之IAB-DU2 706啟用(若干)新的胞元。 下一步驟730由將由IAB節點701服務之UE(例如,圖7中之UE 708)從第一邏輯DU IAB-DU1 705之胞元交遞至第二邏輯DU IAB-DU2 706之(諸)胞元組成。此程序可為TS 38.300章節9.2.3.2(交遞)中所述之標準化程序或TS 38.300章節9.2.3.4(條件式交遞)中所述之標準化程序。在一實例中,為了觸發UE 708之交遞,源F1施體CU 703將包含與UE 708相關之必要資訊之交遞請求訊息發送至目標F1施體CU 707以交遞(例如,識別UE、UE內容資訊(諸如安全內容(例如,安全參數(諸如安全金鑰、UE安全能力)、量測組態、無線電組態(例如,UE無線電能力)、關於載送之資訊等等)之識別資訊)。TS 38.423章節9.1.1.1提供關於一交遞請求訊息之內容之細節。在目標F1施體CU 707判定施體CU是否可接受UE 708之交遞之接受控制步驟之後,當目標F1施體CU 707接受請求時,目標F1施體CU 707將交遞確認訊息發送至源F1施體CU 705,包括用於交遞之UE 708之組態資訊。組態可包含指示由UE 708使用以在第二邏輯DU IAB-DU2 706之經識別目標胞元中連接至IAB節點701之第二邏輯DU IAB-DU2 706之無線電組態之無線電組態資訊(例如,無線電組態可包含頻率、無線電載送組態等等)。交遞確認可包含已在第二邏輯DU IAB-DU2 706處啟用之一或多個新胞元(例如,目標胞元)之各者之一識別符。接著,源F1施體CU 705在一RRC重新組態訊息中經由IAB節點701將此組態資訊發送至UE 708,包含UE 708連接至其之IAB-DU2 706之目標胞元之識別符。RRC重新組態訊息(在TS 38.331中規定)嵌入於發送至IAB-DU1 705且由IAB-DU1 705中繼至UE 708之F1訊息DLRRC訊息傳送(在TS 38.473中規定)中。一旦接收到此組態資訊,UE 708在指示之IAB-DU2 706之目標胞元中執行隨機存取程序以獲得上行鏈路資源,且接著將RRC重新組態完成訊息傳輸至目標F1施體CU 707。將RRC重新組態完成訊息(在TS 38.331中規定)發送至IAB-DU2 706,且接著將RRC重新組態完成訊息嵌入至發送至目標F1施體CU 707之一F1訊息UL RRC訊息傳送(在TS 38.473中規定)中。可透過從目標F1施體CU 707接收之交遞成功訊息(在TS 38.423中規定)來通知源F1施體CU 705有關UE 708交遞之完成。 目標F1施體CU 707可執行朝向核心網路702之一路徑切換程序以請求與UE 708有關之使用者資料之遞送。例如,目標F1施體CU 707可執行3GPP TS 38.413 V17.2.0章節8.4.4中所描述之路徑切換交遞程序。 接著,目標F1施體CU 707必須設置往返於已遷移之IAB節點701之回載路徑若存在用以在由目標F1施體CU 707控制之IAB拓撲中到達IAB節點701之一回載路徑(即,目標F1施體CU 707是IAB節點701之非F1終端施體CU,因為先前已將IAB-MT 704遷移至目標F1施體CU 707),則在其自己的拓撲中,或若不存在用以在由目標F1施體CU 707控制之IAB拓撲中到達IAB節點701之回載路徑(即,IAB-MT 704及IAB-DU2 706連接至不同施體CU),則透過IAB節點701之非F1施體CU(圖7中未展示)之IAB拓撲。在後一情況中,目標F1施體CU 707可觸發參考圖9b所闡述之程序以請求流量遷移至IAB節點701之非F1施體CU。作為參考圖5之此後一情況的實例,IAB節點701係經由回載鏈路5050連接至IAB節點550的圖5之IAB節點570,且其中IAB節點570之MT(MT 571,其對應於圖7中之IAB-MT 704)已遷移至非F1施體CU 502,且IAB施體CU 501是F1施體CU。當已將IAB節點570之DU(對應於圖7中之IAB-DU2 706之DU 572)遷移至目標施體CU 503且因此具有至F1施體CU 503之F1連接但是MT 571保持透過其RRC連接而連接至非F1施體CU 502(其RRC連接)時,往返於IAB節點570之回載路徑是藉由執行流量遷移程序(例如,如參考圖9b所述)而在由IAB施體CU 502控制之IAB拓撲5002中設置(即,通過IAB施體DU 506、IAB節點540及550至IAB節點570之回載路徑)。 在已執行UE 708及路徑切換之交遞之後,下游方向中之使用者資料由核心網路702透過載送740傳輸至目標F1施體CU 707,然後其透過回載載送741傳輸至IAB節點701之邏輯DU IAB-DU2 706,且最終透過資料無線電載送742傳輸至UE 708。回載載送741可建立於由目標F1施體CU 707控制之IAB拓撲中或由IAB節點707之非F1施體CU控制之IAB拓撲中(例如,取決於IAB節點701之IAB-MT 704及IAB-DU2 706是否連接至不同施體CU)。在該上游方向(未展示在圖中)中之使用者資料透過類似載送在相反方向中傳輸。 一旦完成由IAB節點701之IAB-DU1 705服務之所有UE之交遞,源F1施體CU 703可透過參考圖8c描述之程序停用行動IAB節點701之邏輯DU IAB-DU1 705。此整體由圖7中之程序735表示。 同時,源F1施體CU 705可透過IAB-DU1 705釋放與由IAB節點701服務之UE有關之流量(使用者流量、控制流量)。若流量在由另一施體CU控制之IAB拓撲中卸載,則源F1施體CU 705可應用參考圖9b所述之程序來請求將流量釋放至另一施體CU。此整體由圖7中之程序735表示。 圖8a是繪示根據本發明之實施例之執行邏輯DU之啟用之程序之例示性訊息流之示意簡化圖800流程圖。 此圖展示: - 一RAN節點DU 801,其可為如圖5之IAB節點570之IAB-DU 572(及圖7之IAB節點701之IAB-DU1 705)之IAB節點之DU, - 一RAN節點CU 802,其可為如圖5之IAB施體CU 501(及圖7之源F1施體CU 703)之IAB施體CU。 訊息組態請求803是藉由RAN節點CU 802發送至RAN節點DU 801以請求由RAN節點DU 801控制之(若干)新胞元之啟用或請求一邏輯DU之啟用或請求RAN節點DU 801中之(若干)胞元之停用。在一邏輯DU啟用之情況中,訊息803可包含一旦啟用將連接至邏輯DU之RAN節點CU(例如,圖7之目標F1施體CU 707)之TNL位址(即,IP位址)。例如,可藉由源IAB施體CU將組態請求803發送至IAB節點(例如,具有與源IAB施體CU之F1連接之第一邏輯DU實體705)以用於請求建立目標IAB施體CU與IAB節點之間之F1連接。 RAN節點DU 801可利用被發送至RAN節點CU 802之訊息組態回應804來確認請求。 根據一實例,圖8a中之流程對應於TS 38.473 V17.0.0章節8.2.5中描述之程序gNB-CU組態更新程序,且訊息803對應於TS 38.473 V17.2.0章節9.2.1.10中描述之訊息GNB-CU組態更新,而訊息804對應於TS 38.473 V17.2.0章節9.2.1.11中描述之訊息GNB-CU組態更新確認。 訊息GNB-CU組態更新包含資訊元素(IE)要啟用之胞元列表以指示要在RAN節點DU 801處啟用之(若干)新胞元。例如且參考圖7,GNB-CU組態更新包含用以啟用在IE要啟用之胞元列表中指示之(若干)新的胞元之資訊,該(等)新的胞元可在IAB節點701處由第一邏輯DU實體705服務。要啟用之胞元是指由接收請求之RAN節點DU 801控制之胞元。亦可提供要由RAN節點DU 801使用之相關聯PCI及NCGI值。 訊息GNB-CU組態更新亦可包含資訊元素(IE)要停用之胞元列表以指示要停用之(若干)胞元。要停用之胞元是指由接收請求之RAN節點DU 801控制之胞元。例如且參考圖7,GNB-CU組態更新可包含用以停用在IE要停用之胞元列表中指示之胞元之資訊,該(等)胞元在IAB節點701處當前是藉由第一邏輯DU實體705服務。 根據一實例,可以布林(Boolean)(例如,一位元IE)之形式在訊息803中添加一新的IE第二DU啟用以請求第二邏輯DU之啟用。該一位元IE之一值(即,「0」或「1」)意指未請求與該第二邏輯DU相關之特定動作且另一值(即,「1」或「0」)意指請求啟用第二邏輯DU。可藉由用於指示F1設置是用於朝向目標RAN節點CU之DU遷移之目的之新的IE(換言之,用於指示用於建立F1連接之請求係關於IAB節點之DU遷移之一IE)及/或藉由指示在第二邏輯DU中要啟用之胞元之一數目之一新的IE來完成此IE。在不存在指示胞元之數目之此IE的情況下,要啟用之胞元之數目當前對應於在RAN節點DU 801中已啟用之胞元之數目。另一IE亦可提供胞元之識別符(例如,PCI及/或NCGI)之列表,該胞元是在IAB節點701處由第一邏輯DU 705控制,為此,將提供與要啟用之胞元之識別符之一映射:例如,映射可能並非為由第一邏輯DU 705控制之所有現用胞元所需要,且因此僅將被映射至要啟用且由第二邏輯DU 706控制之胞元之識別符之彼等胞元之識別符被包含在訊息803中。 此外,可添加一新的IE(例如,目標TNL位址IE)以識別應藉由其來設置F1連接之目標RAN節點CU。 為完成在IAB節點處之新邏輯DU之設置,可使用參考圖8b描述之程序。 圖8b係根據本發明之一實施例圖解說明用以設置一邏輯DU以與目標IAB施體CU建立F1連接之程序之例示性訊息流之示意簡化圖810。 此圖展示: - 一RAN節點DU 811,其可為如圖5之IAB節點570之IAB DU 572(及圖7之IAB節點701之IAB-DU2 706)之IAB節點DU之DU, - 一RAN節點CU 812,其可為如圖5之IAB施體CU 503(及圖7之目標F1施體CU 707)之IAB施體CU。 訊息設置請求813係藉由RAN節點DU 811發送至RAN節點CU 812以請求針對邏輯DU之F1設置。例如,可藉由IAB節點(例如,藉由已在IAB節點701處啟用之第二邏輯DU實體706)將設置請求813發送至目標IAB施體CU 707以用於請求在目標IAB施體CU與IAB節點之間建立一F1連接(例如,利用IAB節點701之第二邏輯DU實體706))。如參考圖8a所述,可在一啟用請求之後發送該設置請求訊息813。此設置請求訊息813可包含F1設置係關於嵌入RAN節點DU 811之RAN節點之DU遷移之指示(例如,用於指示用於建立F1連接之請求係關於IAB節點之DU之DU遷移之資訊)及/或將連同邏輯DU之啟用而啟用之胞元之數目。此設置請求訊息813可選地包含由第一邏輯DU 705控制之(若干)現用胞元之識別符(例如,PCI及/或NCGI)及/或由第一邏輯DU 705控制之(若干)現用胞元之識別符(例如,PCI及/或NCGI),為此,將提供與要啟用之(若干)胞元之識別符之映射(如上文所述)。此設置請求訊息813可選地可包含用於由第一邏輯DU控制之(若干)現用胞元之識別符(例如,PCI及/或NCGI)與要啟用(例如,在IAB節點之第二邏輯DU處)之(若干)胞元之識別符之間之映射之請求。此設置請求訊息813可包含端接RAN節點DU 811(例如,源IAB施體CU 703)之F1連接之RAN節點CU之TNL位址(即,IP位址)或識別符(即,如TS 38.423 V17.2.0章節9.2.2.3)中規定之全域NG-RAN節點ID)。此訊息可包含在MT(例如,IAB節點570之mMT 571或IAB節點701之704之對應IAB-MT)已遷移至RAN節點CU(其現在為非F1施體CU)之情況下端接RAN節點DU 811之非F1(即,RRC)連接之RAN節點CU之TNL位址(即,IP位址)或識別符(即,如TS 38.423 V17.2.0章節9.2.2.3規定之全域NG-RAN節點ID)。 RAN節點CU 812對發送至RAN節點DU 811之訊息設置回應814作出回應。其可包含與邏輯DU啟用之胞元之一列表,連同要使用之相關聯之PCI值及NGSI值。其亦可包含要藉由RAN節點DU 811啟用之(若干)胞元之識別符(PCI及/或NCGI)與藉由第一邏輯DU 705控制之(若干)現用胞元之識別符之間之映射。 根據一實例,圖8b中之流程對應於TS 38.473 V17.2.0章節8.2.3中描述之程序F1設置,且訊息813對應於TS 38.473 V17.2.0章節9.2.1.4中描述之訊息F1設置請求,而訊息814對應於TS 38.473 V17.2.0章節9.2.1.5中描述之訊息F1設置回應。訊息F1設置回應包含指示要啟用之新胞元之列表之資訊元素(IE)要啟用之胞元列表。要啟用之胞元是指由接收回應之RAN節點DU 811控制之胞元。 圖8c係繪示移除邏輯DU之程序之實例訊息流之示意簡化圖820。 此圖展示: - 一RAN節點DU 821,其可為如圖5之IAB節點570之IAB-DU 572(及圖7之IAB節點701之IAB-DU1 705)之IAB節點DU之DU, - 一RAN節點CU 822,其可為如圖5之IAB施體CU 501(及圖7之源F1施體CU 703)之一IAB施體CU。 訊息移除請求823是藉由RAN節點CU 822發送至RAN節點DU 821以請求邏輯DU之移除(其相當於停用)。 RAN節點DU 821以發送至RAN節點CU 822之訊息移除回應814作為回應。 根據一實例,圖8c中之流程對應於TS 38.473 V17.2.0章節8.2.8中描述之程序F1移除,且訊息823對應於TS 38.473 V17.2.0章節9.2.1.16中描述之訊息F1移除請求,而訊息824對應於TS 38.473 V17.2.0章節9.2.1.7中描述之訊息F1移除回應。 圖8d係根據一實例圖解說明由邏輯DU使用以通知IAB施體CU關於組態之改變之程序之實例訊息流之示意簡化圖830。 此圖展示: - 一RAN節點DU 831,其可為如圖5之IAB節點570之IAB-DU 572(及圖7之IAB節點701之IAB-DU1 705)之IAB節點DU之DU, - 一RAN節點CU 832,其可為如圖5之IAB施體CU 501(及圖7之源F1施體CU 703)之IAB施體CU。 訊息組態更新833是藉由RAN節點DU 831發送至RAN節點CU 832以指示嵌入RAN節點DU 831之RAN節點(例如,IAB節點570、701)之組態改變。組態更新訊息833可由RAN節點DU 831發送以用於向RAN節點CU 832指示在嵌入RAN節點DU 831之RAN節點之DU遷移處藉助目標RAN節點CU完成F1設置程序,即,報告在嵌入RAN節點DU 831之RAN節點(例如,IAB節點701)中啟用之第二邏輯DU與目標F1終端施體CU(例如,目標F1終端施體CU 707)之間之一新F1連接。此訊息833可包含目標RAN節點CU(例如,目標F1施體CU 707)之識別符。其亦可包含在嵌入RAN節點DU 831之RAN節點之第二邏輯DU中啟用之胞元之識別符(例如,PCI及/或NCGI)。此外或替代地,訊息833可包含由RAN節點DU 831控制之胞元之識別符與隨著此第二邏輯DU而被啟用之胞元之識別符之間之一映射。例如,參考圖7,訊息833是藉由已在IAB節點701處啟用之第一邏輯DU實體705發送至源IAB施體CU 703以指示朝向目標IAB施體CU 707完成F1設置程序,且可選地連同在第二邏輯DU 706處啟用之胞元之識別符及可選地連同在第二邏輯DU 706處啟用之胞元之識別符與由第一邏輯DU 705控制之胞元之識別符之間之一映射。此組態更新訊息833可包含端接嵌入RAN節點DU 831之RAN節點之新F1連接之RAN節點CU(例如,目標F1施體CU 707)之TNL位址(即,IP位址)及/或識別符(即,如TS 38.423 V17.2.0章節9.2.2.3規定之全域NG-RAN節點ID)。 訊息833可指示F1設置程序之成功或失敗。若F1設置程序失敗(例如,無法建立F1連接),則訊息833亦可指示建立F1連接失敗之原因。 RAN節點CU 832可用發送至RAN節點DU 831之訊息組態確認834來作出應答或回應。 根據一實例,圖8d中之流程對應於TS 38.473 V17.2.0章節8.2.4中描述之程序gNB-DU組態更新,其經修正以包含上文描述之資訊元素。訊息833對應於TS 38.473 V17.2.0章節9.2.1.7中描述之訊息GNB-DU組態更新,而訊息834對應於TS 38.473 V17.2.0章節9.2.1.8中描述之訊息GNB-DU組態更新確認。 可在F1設置程序之後發送訊息833,參考圖8c描述且藉由RAN節點CU 832(利用參考圖8a描述之程序)或藉由嵌入RAN節點DU 831具有基於一預組態之目標RAN節點CU之選擇之RAN節點來觸發。預組態可發生於(例如)嵌入RAN節點DU 831之RAN節點之網路整合處。例如,可藉由RAN節點CU 832(例如,源IAB施體CU 703/501)或藉由嵌入RAN節點DU 831(例如,IAB-DU1 572)之RAN節點(IAB節點701/570)判定RAN節點DU 831要被遷移至目標RAN節點CU(例如,目標IAB施體CU 707/503)來觸發F1設置程序。 圖9a是繪示根據本發明之一實施例之由RAN節點CU使用以用於向另一RAN節點CU報告胞元之啟用之程序之例示性訊息流之示意簡化圖900。 此圖展示兩個RAN節點,RAN節點CUa 901及RAN節點CUb 902,其可為兩個IAB施體CU,如圖5之IAB施體CU 501、502及503之兩者。關於圖7中所示之實例,RAN節點CUa 901是目標F1施體CU 707且RAN節點CUb 902是源F1施體CU 703。 訊息組態更新903是藉由RAN節點CUa 901發送至RAN節點CUb 902以通知RAN節點CUb 902關於啟用如IAB節點701之IAB-DU2 706之RAN節點DU之邏輯DU中之(若干)新的胞元。例如,源F1施體CU 703從目標F1施體CU 707接收組態更新訊息903且組態更新訊息903包含識別已在IAB節點701之DU之第二邏輯DU實體(IAB-DU2 706)處啟用之一或多個新胞元之識別資訊(例如,PCI、NCIGI)。此外,訊息903可包含在第二邏輯DU(IAB-DU2 706)處啟用之(若干)胞元之識別符(PCI及/或NCGI)與由第一邏輯DU(IAB-DU1 705)控制之(若干)現用胞元之識別符之間之一映射。 RAN節點CUb 902以發送至RAN節點CUa 901之訊息組態確認904作出應答。 根據一實例,圖9a對應於TS 38.423 V17.2.0章節8.42中描述之程序NG-RAN節點組態更新,且訊息903對應於TS 38.423 V17.2.0章節9.1.3.4中描述之訊息NG-RAN節點組態更新,而訊息904對應於TS 38.423 V17.2.0章節9.1.3.5中描述之訊息NG-RAN節點組態更新確認。 圖9b係圖解說明根據本發明之實施例之由RAN節點CU使用以與另一RAN節點CU協調管理運輸遷移(例如,F1流量之遷移或釋放,諸如使用者/控制流量)之程序之例示性訊息流之示意簡化圖910。 此圖展示兩個RAN節點,RAN節點CUa911及RAN節點CUb912,其可為兩個IAB施體CU,如圖5之IAB施體CU 501、502及503中之兩者。 訊息運輸遷移請求913係藉由RAN節點CUa911發送至RAN節點CUb912以在由RAN節點CUb912控制之IAB拓撲中請求流量遷移或釋放。例如,參考圖7,在IAB節點701之MT 704已遷移至一非F1施體CU(圖7中未展示)之情況中,源F1施體CU 703可將一運輸遷移請求913發送至非F1施體CU以請求遷移至非F1施體CU之拓撲之流量(例如F1流量)之釋放(即,當F1流量現在要從目標F1施體CU 707路由通過由非F1施體CU管理之IAB拓撲)。或者,在IAB節點701之MT 704已遷移至非F1施體CU(圖7中未展示)之情況中,目標F1施體CU 707可將一運輸遷移請求913發送至非F1施體CU以請求將流量(例如F1流量)遷移至非F1施體CU之拓撲(即,當F1流量現在要從目標F1施體CU 707被路由通過由非F1施體CU管理之IAB拓撲)。 RAN節點CUb912以發送至RAN節點CUa 901之訊息運輸遷移回應914作出應答以接受或拒絕請求。 取決於情況,圖9b可對應於TS 38.423 V17.2.0章節8.5.2中規定之IAB運輸遷移管理程序。訊息913對應於TS 38.423 V17.2.0章節9.1.4.2中規定之IAB運輸遷移管理請求訊息,且訊息914對應於TS 38.423 V17.2.0章節9.1.4.3中規定之IAB運輸遷移管理回應訊息。圖9b亦可對應於TS 38.423 V17.2.0章節8.5.3中規定之IAB運輸遷移修改程序。訊息913對應於TS 38.423 V17.2.0章節9.1.4.4中規定之IAB傳輸遷移修改請求訊息,且訊息914對應於TS 38.423 V17.2.0章節9.1.4.5中規定之IAB運輸遷移修改回應訊息。 圖10a係展示根據本發明之一或多個實施例之例示性方法1000之流程圖,其是在源IAB施體CU處執行以用於其中IAB節點之分散式單元DU從由源IAB施體CU管理之一IAB拓撲遷移至由目標IAB施體CU管理之另一IAB拓撲之遷移程序中(或用於遷移程序之部分中)。方法1000用於在IAB節點之源F1終端施體CU處管理該IAB節點之DU遷移朝向目標IAB拓撲。例如,參考參考圖5中所示且描述之IAB通訊系統,執行方法1000之源IAB施體CU可為IAB施體CU 501(例如,IAB節點570藉由其而保持F1連接之IAB節點570之F1終端施體CU)。該IAB節點可為屬於由IAB施體CU 501控制之IAB拓撲5001之行動IAB節點570。遷移程序可涉及IAB節點570之DU 572從IAB拓撲5001遷移至由IAB施體CU 503(其為目標IAB施體CU)管理之IAB拓撲5003。參考圖7,IAB節點可為IAB節點701且遷移程序可涉及IAB節點701之DU從源F1施體CU 703至目標F1施體CU 707之遷移。如圖10a所示且描述之方法1000可由軟體元件及/或硬體元件執行。源IAB施體CU可在如圖4所示且參考圖4描述之通訊裝置400中實施,其中如圖10a所示且參考圖10a描述之方法是藉由諸如中央處理單元411之一或多個處理單元執行。 在步驟1001處,源F1終端施體CU(如圖5之施體CU 501(圖7之703))判定IAB節點(如圖5之IAB節點570(圖7的701)之DU要從源F1施體CU 501、703遷移至目標F1施體CU,如圖5之施體CU 503(圖7之707)。例如,源F1施體CU 503、707決定IAB節點之DU(如IAB節點570)朝向目標F1施體CU,如施體CU 503遷移。例如,源F1施體CU 501、703可回應判定IAB節點570、701朝向新父IAB節點(其可為一新IAB節點或一新IAB施體DU)之MT之遷移已完成而判定IAB節點570、701之DU要被遷移。上文描述用於判定DU要被遷移之其他觸發之實例。上文亦描述源F1施體CU 501、703如何判定目標F1施體CU 503、707之細節。 在步驟1002處,源F1終端施體CU 501、703將用於建立目標IAB施體CU 503、707與IAB節點570、701之間之F1連接(即,新F1連接)(例如,與目標IAB施體CU相關聯之新的F1)之請求發送至IAB節點。例如,源F1終端施體CU 501、703將針對新F1連接之請求發送至要被遷移之IAB節點570、701。請求可為參考圖8a所描述之組態請求803。源F1施體CU 501、703可將指示F1連接是出於朝向目標IAB施體CU(例如,指示用於建立F1連接之請求之資訊是關於IAB節點之DU之DU遷移)遷移之DU遷移之目的之資訊及/或指示於IAB節點之DU之一第二邏輯DU實體處要被啟用之胞元之數目之資訊發送至IAB節點。源F1施體CU 501、703可選地可發送由第一邏輯DU 705控制之(諸)現用胞元之識別符(例如,PCI及/或NCGI),為此,將提供與要啟用之胞元(例如,在第二要啟用之邏輯DU)之識別符之一映射。 可選地,在步驟1003處,源F1終端施體CU 501、703將用於識別目標IAB施體CU 503、707之識別資訊發送至IAB節點570、701。識別資訊可為目標IAB施體CU 503、707之TNL位址(即,IP位址)。例如,源F1終端施體CU 501、703將用於新F1連接之目標F1施體CU之位址發送至要遷移的IAB節點。在IAB-MT 704已遷移至非F1施體CU(其可被稱為RRC施體CU)之情況中,藉由源F1終端施體CU 501、703發送之識別資訊可包含非F1施體CU之位址(儘管IAB節點701可能已具有此資訊)以將非F1施體CU識別為目標F1施體CU。 源F1終端施體CU 703可從目標F1施體CU 707或從IAB節點570、701接收識別資訊(例如,識別符),識別資訊識別已在IAB節點之DU之第二邏輯DU實體處啟用之一或多個新胞元,可選地連同指示在第二邏輯DU處啟用之一或多個新的或目標胞元之識別資訊(例如,識別符)與由第一邏輯DU控制之源胞元或現用胞元之識別資訊(例如,識別符)之間之一映射之映射資訊。如上文所述,IAB節點之DU具有帶有與源F1終端施體CU 703之F1連接之一第一邏輯DU實體,且啟用一第二邏輯DU實體以執行DU遷移(例如,建立目標F1施體CU 707與IAB節點701之間的新F1連接)。例如,識別資訊及選用映射資訊可接收在上文所描述之組態更新訊息903中。 在一實例中,源F1終端施體CU 703可將一交遞請求發送至目標F1施體CU 707,該交遞請求用於請求將由IAB節點701服務之一或多個使用者設備(UE,(諸如UE 708))從源F1終端施體CU 703交遞到目標F1施體CU 707且用於識別用於各UE之一或多個目標胞元(例如,候選目標胞元)。UE之目標胞元之選擇可基於由UE提供之量測報告(例如,針對一個或若干胞元由UE偵測到之信號強度之指示)或基於在第二邏輯DU處啟用之目標胞元之識別符與由第一邏輯DU控制之(若干)源胞元之識別符之間的映射。例如,源F1終端施體CU 703可基於從目標F1施體CU 707或IAB節點701接收之映射資訊來選擇已在第二邏輯DU實體706處啟用之新胞元之一或多者作為用於由IAB節點服務之一或多個UE之各UE一或多個候選目標胞元。映射之使用避免等待來自UE之量測報告來觸發交遞程序。回應於從目標F1施體CU 707接收指示已接受一或多個UE之交遞及識別用於各UE之一目標胞元之交遞確認,源F1終端施體CU 703將用於針對各自目標胞元組態一或多個UE之各者之組態資訊發送至IAB節點701。來自目標F1施體CU 707之交遞確認亦可包含用於針對各自目標胞元組態一或多個UE之各者之組態資訊。可針對此等步驟執行上文所述之交遞程序730。 在完成將一個或多個UE 708交遞至目標F1施體CU 707之後,源F1終端施體CU 703可將用於停用IAB節點701之DU之第一邏輯DU實體(例如,IAB-DU1 705)之請求發送至IAB節點701。該請求可為發送於組態請求訊息803中之停用請求或發送於訊息823中之移除請求。 在完成將一或多個UE 708交遞至目標F1施體CU 707之後,且當IAB節點701之行動終端MT(例如,IAB-MT 704)已遷移至非F1施體CU時,源F1終端施體CU 703可將用於請求針對在由非F1施體CU管理之IAB拓撲中經由一或多個路徑路由之與IAB節點相關聯之流量的流量釋放之流量遷移請求(例如,訊息913)發送至非F1施體CU。 圖10b是展示根據本發明之一或多個實施例之在一IAB節點(例如,一行動IAB節點或mIAB節點)執行之用於遷移程序(或用於遷移程序之部分)之一例示性方法1010之一流程圖,在該程序中IAB節點之分散式單元DU從由源IAB施體CU管理之IAB拓撲遷移至由目標IAB施體CU管理之另一IAB拓撲。方法1010用於在IAB節點處管理朝向目標F1終端施體CU之DU遷移。例如,參考參考圖5所示且描述之IAB通訊系統,執行方法1010之IAB節點可為屬於由為源IAB施體CU之IAB施體CU 501(例如,行動IAB節點570藉由其而保持F1連接之行動IAB節點570之F1終端施體CU)控制之IAB拓撲5001之行動IAB節點570。遷移程序可涉及IAB節點570之DU 572從IAB拓撲5001至由之IAB施體CU 503(其為目標IAB施體CU)管理之IAB拓撲5003之遷移。參考圖7,IAB節點可為行動IAB節點701且遷移程序可涉及IAB節點701之DU從源F1施體CU 703至目標F1施體CU 707之遷移。如圖10b所示及描述之方法1010可由軟體元件及/或硬體元件執行。IAB節點可實施於如參考圖4所示及描述之通訊裝置400中,其中如參考圖10b所示及描述之方法是藉由諸如中央處理單元411之一或多個處理單元執行。 在步驟1011處,一IAB節點(如圖5之IAB節點570(圖7之701)從源F1終端施體CU(如圖5之施體CU 501(圖7之703)接收一新F1連接之請求(例如,於IAB節點570、701與目標F1施體CU(如圖5之施體CU 503(圖7之707))之間之F1連接)。請求可為參考圖8a所描述之組態請求803。 回應於接收新F1連接之請求,IAB節點570、701接著將請求F1連接之設置之F1設置請求發送至目標F1施體CU 503、707(步驟1018)。例如,設置請求可為上文所述之設置請求813。由IAB節點發送之F1設置請求訊息可包含用於識別該源F1終端施體CU之識別資訊或用於當該IAB節點之行動終端MT已遷移至該非F1施體CU時識別非F1施體CU(其可稱為RRC施體CU)之識別資訊。 IAB節點570、701可回應接收用於建立F1連接之請求而識別或判定目標F1施體CU 503、707之身分(步驟1017),且接著將F1設置請求發送至已識別之目標F1施體CU。IAB節點570、701可基於針對目標F1施體CU 503、707之識別資訊(諸如從源F1施體CU 501、703接收之目標F1施體CU 503、707之位址(例如,TNL位址/IP位址)(例如,在與組態請求803之訊息中或單獨發送)識別目標F1施體CU,如選用步驟1012所示。在IAB-MT 704已遷移至非F1施體CU之情況中,在IAB節點處接收之識別資訊可包含在該情況中之非F1施體CU之位址,IAB節點將識別非F1施體CU為目標F1施體CU。替代地,若未從源F1施體CU 501、703接收目標F1施體CU之位址,且在IAB-MT 704已遷移至非F1施體CU之情況中,則IAB節點570、701藉由將非F1施體CU視為/識別為目標F1施體CU來識別或判定目標施體CU 503、707之身分(例如,在接收到用以建立F1連接之請求後)。例如,在此情況中,當IAB-MT 704被遷移至非F1施體CU時已通知IAB節點701目標施體CU之位址(例如,TNL位址/IP位址)且因此可識別非F1施體CU之位址作為目標施體CU之位址。 可選地,在步驟1012處,IAB節點570、701從源F1終端施體CU 501、703接收用於識別目標F1施體CU 503、707之識別資訊。識別資訊可包含用於新F1連接之目標F1終端施體CU之位址(例如,TNL位址/IP位址)。 作為另一方法(例如,取代步驟1011、1012),圖中未展示該另一方法,IAB節點570、701亦可本身觸發以發送針對新F1連接之請求且基於預組態來識別目標F1施體CU。因此,IAB節點570、701本身可判定要設置新F1連接且可識別要基於在IAB節點處預組態之預組態資訊而與其設置連接之IAB施體CU且接著可將用於請求F1連接之設置之F1設置請求發送至已被識別之目標IAB施體CU。作為一第一實例,觸發條件可為藉由鄰近IAB節點之一胞元或若干胞元之IAB節點570、701藉由與屬於目標施體CU之預組態列表之施體CU相關聯之識別符(NCGI)偵測。換言之,IAB節點570、701可回應於或偵測鄰近IAB節點570、701之一或多個胞元之後判定要設置(例如,因為IAB節點570/701之DU(例如,572)要遷移)新F1連接且可識別要基於預組態資訊而與其設置該連接之IAB施體CU,該一或多個胞元與包含於在IAB節點處預組態之候選目標IAB施體CU列表中之IAB施體CU相關聯。作為一第二實例,當必須在建立IAB-MT與IAB施體CU之RRC連接之後(其取決於IAB節點之實體位置)設置與藉由預組態識別之IAB施體CU之第一F1連接時,觸發條件是在IAB節點之網路整合處。換言之,IAB節點570、701可判定在IAB節點570/701之網路整合(例如,當IAB節點570/701連接至網路時)處要設置新F1連接且IAB節點570/701識別將基於在IAB節點處預組態之候選IAB施體CU之列表及IAB節點位置而要與其設置F1連接之IAB施體CU。 圖10c展示根據本發明之一或多個實施例之在IAB節點(例如,行動IAB節點或mIAB節點)處執行以識別目標IAB施體CU之例示性步驟。在一實例中,可藉由實施圖10c之步驟1013至1015來執行圖10b之步驟1017,步驟1013至1015一起被稱為步驟1016。在IAB節點570、701自身可判定將要設置新F1連接(不需接收針對新F1連接之請求)之替代方法中,可在IAB節點處執行步驟1013至1015以基於在IAB節點處預組態之預組態資訊識別要與其設置連接之IAB施體CU。 在步驟1013處,IAB節點701藉由檢查是否已接收到針對該新的F1連接之目標F1終端施體CU之位址來判定是否已從該源IAB施體CU(或藉由預組態)接收到用於識別該F1連接之目標IAB施體CU之識別資訊。若是,則在步驟1015處,IAB節點701識別來自所接收識別資訊之目標F1終端施體CU且IAB節點將F1設置請求發送至所識別目標F1終端施體CU。若否,則在步驟1014處,該IAB節點701將非F1終端施體CU(其可被稱為RRC施體CU)識別為來自該所接收識別資訊之目標F1終端施體CU且該IAB節點將F1設置請求發送至其非F1終端施體CU(例如,施體CU 502)。 在IAB節點701處接收之用於新F1連接之請求(例如,組態請求803中)可包含針對用於第二邏輯DU實體(例如,IAB-DU2 706)之要被啟用之一或多個胞元之請求,且可選地包含由第一邏輯DU控制之(若干)現用胞元之識別符(PCI及/或NCGI)及/或具有為此將提供與要啟用之胞元之識別符之一映射之現用胞元之識別符(諸如,PCI及/或NCGI)。如上文所述,IAB節點之DU具有具備與源F1終端施體CU 703之F1連接之第一邏輯DU實體,且啟用第二邏輯DU實體以執行DU遷移(例如,建立目標F1施體CU 707與IAB節點701之間的新F1連接)。在一實例中,IAB節點701回應於接收用於建立F1連接之請求(例如,組態請求803中)而啟用第二邏輯DU實體(例如,IAB-DU2 706)。在兩種此等情況中,F1設置請求(例如,訊息813)是藉由第二邏輯DU實體發送。發送至目標F1終端施體CU 707之F1設置請求訊息可包含指示隨著在IAB節點處第二邏輯DU之啟用而要被啟用之胞元之數目之資訊及/或指示用於建立F1連接之請求係關於IAB節點之DU之DU遷移之資訊。可選地,F1設置請求訊息包含用於由第一邏輯DU控制之(若干)現用胞元之識別符(例如,PCI及/或NCGI)與要啟用之(若干)胞元之識別符之間之映射之請求。在一實例中,在發送F1設置請求之後,IAB節點701從目標F1終端施體CU 707接收包含針對用於第二邏輯DU實體之要被啟用之一或多個胞元之請求之回應(諸如設置回應814)。回應可包含識別資訊,諸如要啟用之胞元之各者之識別符。 IAB節點701可從源F1施體CU 703接收用於停用IAB節點701之DU之第一邏輯DU實體(例如,IAB-DU1 705)之請求(例如,移除請求823或組態請求803中之停用請求)且回應於該請求,IAB節點701停用第一邏輯DU實體(例如,IAB-DU1 705)。 圖10d是展示根據本發明之一或多個實施例之例示性方法1020之流程圖,其是在目標IAB施體CU處執行以用於其中IAB節點之分散式單元DU從由源IAB施體CU管理之IAB拓撲遷移至由目標IAB施體CU管理之另一IAB拓撲之遷移程序(或以用於遷移程序之部分)中。方法1020用於在目標F1終端施體CU處管理IAB節點之DU遷移朝向由目標F1終端施體CU管理之目標IAB拓撲。例如,參考參考圖5中所展示及描述之IAB通訊系統,執行方法1020之目標IAB施體CU可為控制IAB拓撲5003之IAB施體CU 503。該IAB節點可為屬於由IAB施體CU 501控制之IAB拓撲5001之行動IAB節點570。遷移程序可涉及IAB節點570之DU 572從IAB拓撲5001至IAB拓撲5003之遷移。參考圖7,IAB節點可為IAB節點701且遷移程序可涉及IAB節點701之DU從源F1施體CU 703至目標F1施體CU 707之遷移。如圖10d所示及關於圖10d描述之方法1020可藉由軟體元件及/或硬體元件執行。目標IAB施體CU可在如圖4所示且參考圖4描述之通訊裝置400中實施,其中如圖10中所示且參考圖10d描述之方法是藉由諸如中央處理單元411之一或多個處理單元執行。 在步驟1021處,目標IAB施體CU(如圖5之IAB施體CU 503(圖7之707))從一IAB節點(如圖5之IAB節點570(圖7之701))接收用於請求在目標IAB施體CU與IAB節點之間建立F1連接之F1設置請求。例如,設置請求可為上文所述之設置請求813。由IAB節點發送之F1設置請求訊息可包含用於識別該源F1終端施體CU之識別資訊或用於當該IAB節點之行動終端MT已遷移至該非F1施體CU時識別非F1施體CU(其可稱為RRC施體CU)之識別資訊。F1設置請求訊息可包含指示隨著在IAB節點處第二邏輯DU之啟用而要被啟用之胞元之數量的資訊及/或指示用於建立F1連接之請求係關於IAB節點之DU之DU遷移的資訊。可選地,F1設置請求訊息可包含由第一邏輯DU控制之現用胞元之識別符(諸如,PCI及/或NCGI)及/或具有為此將提供與要啟用之胞元之識別符之一映射之現用胞元之識別符(諸如,PCI及/或NCGI)。F1設置請求訊息可額外地或替代地包含針對由第一邏輯DU控制之(若干)現用胞元之識別符(例如,PCI及/或NCGI)與要啟用之(若干)胞元之(若干)識別符(例如,在IAB節點之一第二邏輯DU處)之間之一映射之請求。 在步驟1022處,目標IAB施體CU 503、707回應於接收F1設置請求而將一回應(諸如設置回應814)發送至IAB節點570、701,該回應包含針對用於IAB節點570、701之第二邏輯DU實體之要被啟用之一或多個胞元之請求。如上文所述,IAB節點之DU具有具備與源F1終端施體CU 703之F1連接之第一邏輯DU實體,且啟用第二邏輯DU實體以執行DU遷移(例如,以在目標F1施體CU 707與IAB節點701之間建立新F1連接)。回應可包含識別要啟用之一或多個胞元之識別資訊(例如,要啟用之胞元之各者之識別符)。可選地,回應亦可包含由第一邏輯DU控制之(若干)現用胞元之識別符(例如,PCI及/或NCGI)與要啟用之(若干)胞元之識別符之間之映射。目標IAB施體CU 503、707或IAB節點570、701可將識別已在IAB節點570、701之DU之第二邏輯DU實體處啟用之一或多個新胞元之各者之識別資訊發送至源IAB施體CU 501、703。目標IAB施體CU 503、707或IAB節點570、701亦可將映射資訊發送至源IAB施體CU 501、703。 在一實例中,目標F1施體CU 707可從源F1終端施體CU 703接收用於請求將由IAB節點701服務之一或多個使用者設備(UE,(諸如UE 708))從源F1終端施體CU 703交遞至目標F1施體CU 707,且用於識別用於各UE之一或多個目標胞元(例如,候選目標胞元)之交遞請求。UE之目標胞元之選擇可基於由UE提供之量測報告(例如,針對一個或若干胞元由UE偵測之信號強度之指示),或基於在第二邏輯DU處啟用之目標胞元之識別符與由第一邏輯DU控制之源胞元之識別符之間的映射。例如,源F1終端施體CU 703可基於從目標F1施體CU 707或IAB節點701接收之映射資訊來選擇已在第二邏輯DU實體706啟用之新胞元之一或多者作為用於由IAB節點701服務之一或多個UE之各UE一或多個候選目標胞元。映射之使用避免等待來自UE之量測報告以觸發交遞程序。當目標F1施體CU 707判定可接受一或多個UE之交遞時,目標F1施體CU 707將指示一或多個UE之交遞已被接受且識別用於各UE之目標胞元之交遞確認發送至源F1終端施體CU 703。交遞確認亦可包含用於針對各自目標胞元組態一或多個UE之各者之組態資訊。可針對此等步驟執行上文所述之交遞程序730。 在完成將一或多個UE 708交遞至目標F1施體CU 707之後,且當IAB節點701之行動終端MT(例如,IAB-MT 704)已遷移至非F1施體CU時,目標F1施體CU 707可將用於請求針對在由非F1施體CU管理之IAB拓撲中經由一或多個路徑路由之與IAB節點相關聯之流量之流量遷移之流量遷移請求(例如,訊息913)發送至非F1施體CU。 因此,藉由將用於建立IAB節點與目標IAB施體CU之間之F1連接之請求發送至IAB節點,源F1施體CU(例如,源IAB施體CU)促進在有或沒有(多個)MT遷移下之IAB節點之DU遷移。此外,回應於接收用以建立F1連接之請求,IAB節點可識別(例如,經由由源施體CU發送之識別資訊或當未由源施體CU發送識別資訊時,藉由判定非F1施體CU為目標施體CU)目標施體CU以致能由IAB節點服務之UE至目標施體CU之交遞。 可藉由一事件觸發IAB節點之DU要被遷移之判定。可將觸發IAB節點之DU要被遷移之判定之事件或若干事件留到實施方案。例如,DU遷移之決定可基於從第一IAB拓撲朝向第二IAB拓撲之MT遷移之偵測,及基於指示該源F1施體CU該MT將稍後遷移至第三IAB拓撲之IAB節點之已知(預定義)軌跡。在此情況中,為避免用於朝向第二IAB拓撲之DU遷移/UE交遞之發訊訊息,將DU直接朝向第三IAB拓撲遷移。另一觸發事件可為當處理負載位準被偵測高於該源F1施體CU中之一預定臨限值時。接著觸發DU遷移,且目標F1施體CU之選擇是基於連接至源F1施體CU之其他施體CU之處理負載。 換言之且作為一概述,用於F1終端施體CU之觸發事件及決定程序以執行行動IAB節點之行動IAB-DU(mIAB-DU)遷移可留到實施方案。此外,對於彈性IAB網路管理,應容許使該mIAB-DU朝向不同於服務共置之行動IAB-MT(mIAB-MT)之非F1終端施體CU(其可稱為RRC終端施體CU)之目標F1終端施體CU遷移。 因此,行動IAB節點之IAB-DU可朝向不同於服務共置之IAB-MT之非F1終端施體CU之目標F1終端施體CU遷移。 接著,當服務該mIAB-DU之該F1施體CU決定是否執行mIAB-DU遷移時,其可請求該行動IAB節點去啟用要由在該請求中識別之目標F1施體CU服務之第二邏輯DU。 例如,F1施體CU可觸發gNB-CU組態更新程序以請求行動IAB節點設置與識別的目標F1施體CU新F1連接。接著,啟用的邏輯DU觸發與目標F1施體CU之F1設置程序。若來自F1施體CU之請求不識別目標F1施體CU,則啟用之邏輯DU觸發與行動IAB節點之非F1終端施體CU之F1設置程序。 因此,當由其服務F1施體CU請求以設置新F1連接時,一行動IAB節點可執行與請求中指示之目標F1施體CU之F1設置程序。在不存在此指示之情況下,行動IAB節點執行與非F1終端施體CU之F1設置程序。 為觸發在該mIAB-DU遷移期間由行動IAB節點服務之UE之交遞,目標F1施體CU可通知源F1施體CU關於行動IAB節點之第二邏輯DU中之(若干)新的胞元之啟用。為此,目標F1施體CU可執行與源F1施體CU之NG-RAN節點之組態更新程序。一旦通知,源F1施體CU可將交遞命令發送至由遷移行動IAB節點服務之UE。 因此,NG-RAN節點組態更新程序可由行動IAB節點之目標F1終端施體CU使用以通知源F1終端施體CU關於由行動IAB節點之第二邏輯DU服務之胞元之ID。 關於用於在DU遷移處觸發、執行及報告F1設置之程序,可觀察到,為觸發由源F1施體CU決定之行動IAB節點之DU遷移,可將下列資訊傳遞至行動IAB節點: - 請求DU遷移之指示(規定),意謂應與目標邏輯DU起始F1設置程序。 - 目標F1施體CU之識別符(選用)。當朝向不同於服務共置之行動IAB-MT之非F1施體CU之目標F1施體CU遷移DU時,此資訊元素係相關的。在不存在此指示之情況下,行動IAB節點應執行朝向非F1終端施體CU之F1設置程序。 鑑於用於此發訊之位元數目較低,可能無需建立新F1AP程序。此外,這是關於F1介面管理,因此gNB-CU組態更新程序似乎適用於此發訊。 接著提出GNB-CU組態更新程序可由一源CU使用以觸發出於DU遷移朝向目標CU目的之F1設置程序。 在F1設置請求訊息中,行動IAB節點應將下列資訊傳遞至目標F1施體CU: - 該F1設置請求是關於DU遷移之指示。由於此資訊元素,目標F1施體CU瞭解內容且可正確地處置請求。 - 源邏輯DU處之現用胞元之PCI。此資訊元素有助於目標F1施體CU選擇用於在目標邏輯DU處啟用之胞元之適當PCI。 接著,提出在行動IAB節點之DU遷移之範疇中,發送至目標F1施體CU之F1設置請求應包含F1設置與行動IAB節點之DU遷移相關之明確指示,且其應包含在此行動IAB節點之源邏輯DU處之PCI之列表。 為報告出於行動IAB節點之DU遷移之目的之F1設置程序之結果,行動IAB節點可將下列資訊傳遞至源F1施體CU: -F1設置之成功或失敗指示,且在發生失敗之情況下,可指示失敗原因。 -藉由目標F1施體CU在目標邏輯DU處啟用之胞元之ID。 -在該目標邏輯DU處啟用之胞元ID與在該源邏輯DU處現用之胞元之ID之間的映射作為一選用資訊元素。由於此映射,應可限制在該UE處要執行之量測範圍,其甚至可避免來自該UE之量測報告來發起該等交遞。因為gNB-CU組態更新程序似乎適合於觸發F1設置,所以gNB-DU組態更新程序似乎亦係現有F1AP程序之良好候選者以報告F1設置之結果。 接著,提出GNB-DU組態更新程序可由行動IAB節點使用以將朝向目標CU之F1設置程序的結果向DU遷移之源極CU報告,且提出在目標邏輯DU處啟用之胞元ID與在源極邏輯DU處之現用胞元ID之間的映射被包含作為F1設置結果之報告中之一選用資訊元素。 關於向F1施體CU提供識別資訊,可觀察到,在此CU處,在行動IAB節點之DU遷移朝向不同於共置之行動IAB-MT之非F1施體CU之目標F1施體CU,非F1施體CU之識別符及行動IAB-MT之XnAP UE ID應提供至目標F1施體CU。由於此等資訊元素,目標F1施體CU將能夠執行朝向非F1施體CU之運輸遷移管理程序。 此外,在mIAB MT與共置之mIAB-DU整合至不同施體CU之網路整合期間,由MT之CU指派之mIAB-MT之UE XnAP ID且MT之CU之gNB-ID應為mIAB-DU之CU所知。 考慮網路整合情況,存在兩個選項: -選項1:行動IAB節點基於從非F1施體CU(即,mIAB-MT之CU)接收之資訊提供識別資訊, -選項2:一旦非F1施體CU從行動IAB節點知道F1施體CU(即,mIAB-DU之CU)之識別符,非F1施體CU即提供識別資訊。 選項2之缺點在於其需要F1施體CU產生用於該mIAB-MT之UE XnAP ID,以將其提供至將連同該F1施體CU之識別符將其傳遞至非F1施體CU之行動IAB節點。藉由F1施體CU產生之此UE XnAP ID將由運用選項2發送至F1施體CU之XnAP訊息中之非F1施體CU使用。因此,選項1似乎比選項2具有較少規範影響。 若採用選項1,且為一致性起見,行動IAB節點在DU遷移處亦應提供與非F1施體CU相關之識別資訊至目標F1施體CU。可透過與針對網路整合情況相同之F1AP發訊完成此。 繼續進行,行動IAB節點亦應將在(連續)MT遷移時仍在使用相同F1AP發訊處與目標非F1施體CU相關之識別資訊提供至其F1施體CU。 為涵蓋上文所考慮之所有情境,F1AP程序gNB-DU組態更新係適當的,因為其可於任何時間觸發。 接著,提出可藉由行動IAB節點使用gNB-DU組態更新程序以在此CU處通知F1施體CU關於非F1施體CU之識別符及行動IAB-MT之XnAP UE ID。此程序可在行動IAB節點之網路整合、DU遷移及MT遷移時應用。 可注意到,該mIAB-MT之源施體CU可在完成IAB-MTHO之後將該mIAB-MT之目標施體CU上之資訊發送至該mIAB-DU之施體CU。 實際上,提出與此說明相容,因為源非F1施體CU(即,mIAB-MT之源施體CU)將把資訊,非直接,而是透過行動IAB節點傳遞至F1施體CU(即,mIAB-DU之施體CU)。 此外,提出不排除在此CU處之行動IAB-MT之非F1施體CU及XnAP UE ID之識別符可包含於在DU遷移處發送至目標F1施體CU之F1設置請求中。F1設置請求中不存在這些資訊元素可指示非F1施體CU亦為目標F1施體CU。 接著,提出在行動IAB節點之DU遷移之範疇中,發送至目標F1施體CU之F1設置請求亦可包含在此CU處之行動IAB-MT之非F1施體CU及XnAP UE ID之識別符。 雖然本發明已透過參照實施例而說明,惟應瞭解本發明並未受限於所揭示實施例。在該技術領域中具有通常知識者應能瞭解可對其做出各種改變與修改而不會脫離由所附申請專利範圍所界定之本發明的範疇。本說明書(包含任何所附申請專利範圍、摘要、及圖式)中揭示之所有特徵及/或所揭示任何方法或過程之所有步驟,可以以任何組合方式被結合,除了會使這些特徵及/或步驟中的至少若干者是互斥的組合以外。揭示於本說明書(包含任何所附申請專利範圍、摘要、及圖式)中的各特徵可被提供相同、等效或類似功用之替代特徵所替換,除非被明確指明這是禁止的。因此,除非被明確指明被禁止,否則各揭示之特徵僅係通用系列的等效或相似特徵中之一實例。 在申請專利範圍中,用字「包括」並不會排除其他元素或步驟,且不定冠詞「一(a或an)」並不排除複數個。在相互不同的附屬項中記載不同特徵之純粹事實並不表示不能有利地使用該等特徵的組合。 在前述實施例中,所述功能可被實作於硬體、軟體、韌體、若其任意組合中。若實作於軟體中,則功能可作為一或多個指令或程式碼被儲存或傳輸於電腦可讀媒體中,以及由基於硬體處理單元執行。 電腦可讀媒體可包含電腦可讀儲存媒體,其對應於諸如資料儲存媒體等有形媒體,或包含任何促進電腦程式從一處到另一處(例如根據通訊協定)的轉移之媒體的通訊媒體。透過此方式,電腦可讀媒體通常可對應於(1)非暫時性之有形電腦可讀儲存媒體;或(2)諸如訊號或載波之通訊媒體。資料儲存媒體可以是可由一或多電腦或一或多處理器存取以取回指令、碼及/或資料結構之任何可用媒體,該指令、碼及/或資料結構用於實作本揭露所述技術。電腦程式產品可包含電腦可讀媒體。 作為實例,且非限定,此等電腦可讀儲存媒體可包含RAM、ROM、EEPROM、CD-ROM或其他光學磁碟儲存器、磁碟儲存器、或其他磁性儲存裝置、快閃記憶體、或可用以將期望程式碼儲存成指令或資料結構之形式且可由電腦存取之任何其他媒體。另外,任何連接被適當定義成電腦可讀媒體。舉例而言,若指令是從網站、伺服器或其他遠端來源透過使用同軸電纜、光纖電纜、雙絞線、數位用戶線路(DSL)或無線技術(諸如紅外線、無線電與微波)來傳輸,則該同軸電纜、光纖電纜、雙絞線、數位用戶線路(DSL)或無線技術(諸如紅外線、無線電與微波)被包含在媒體之定義中。惟,應瞭解,電腦可讀儲存媒體以及資料儲存媒體並不包含連接、載波、或其他暫態媒體,且反而是涉及非暫態、有形儲存媒體。本文所用之磁碟或碟片,包含微型碟片(CD)、雷射光碟、光碟、數位多功能碟片(DVD)、軟磁碟、以及藍光碟片,其中磁碟(disk)通常是指透過磁性原理來再生資料,而碟片(disc)透過雷射光學方式來再生資料。上述者之組合亦可被包含於電腦可讀媒體之範疇內。 FIG. 1 illustrates an exemplary wireless communication system 100, particularly a mobile wireless communication system, such as a fifth generation (5G) new radio (NR) system including a wireless integrated access and backhaul network supporting mobile IAB nodes. Although in the following description, embodiments and examples of embodiments of the present invention will be described with respect to a 5G NR system, it should be understood that the present invention is not intended to be limited to a 5G NR system and may be used in any wireless communication system having a mobile base station. Specifically, the following description mainly uses the specific term 5G, but it should be understood that this term also applies to components or processes that perform equivalent functions in other communication systems. The system 100 includes a plurality of UEs (user equipment) 132, 133, 131 and 134, a remote core network 110, a master base station 120 and two integrated access and backhaul (IAB) stations or IAB nodes 121 and 122 (hereinafter also referred to as IAB nodes), and a mobile integrated access and backhaul (IAB) station 123 installed on a vehicle 105 (e.g., bus, train, taxi, car, etc.). The master base station 120, also referred to as an IAB donor 120, is connected to the core network 110 via a wired link 101, preferably an optical fiber or any other wired method. In embodiments and examples of embodiments of the present invention, the IAB donor 120 is a 5G NR gNB with additional functionality to support the IAB feature, as defined in the 3GPP TS 38.300 V17.2.0 specification document. In order to expand the network coverage of the IAB donor 120 and reach the remote UEs 132, 133 and 131, the operator has installed IAB stations 121 and 122, also referred to as IAB nodes 121 and 122. By acting as relay nodes between the IAB donor 120 and the UEs 132 and 133, the IAB nodes 121 and 122 allow to overcome the reachability issues caused by the presence of the building 108, which is a barrier to radio wave propagation and, therefore, a barrier to radio wave propagation for direct connection and further communication between the UE and the IAB donor 120. This is especially true when the communication between the IAB donor 120 and the UEs 132 and 133 operates at millimeter wave frequencies that are highly sensitive to shadowing phenomena. The IAB donor 120 also serves the UE 134 that is directly connected to it. The mobile IAB station 123 (also referred to as mobile IAB node 123 or mIAB node 123) is an IAB node installed on the vehicle 105 and provides network coverage and capacity expansion, allowing the IAB donor 120 to reach onboard remote UEs, such as remote UE 135, as well as UEs surrounding the IAB node 123 or UEs adjacent to the IAB node 123, such as remote UE 136. The IAB donor 120 and the IAB nodes 121, 122, and 123 thus form a backhaul network or IAB network, or IAB topology, which accommodates UEs 132, 133, 131, 134, 135, and 136. The terms IAB network and IAB topology are used interchangeably hereinafter. The Integrated Access and Backhaul (IAB) specification is distributed in multiple 3GPP standard documents, including: - TS 38.300 RAN architecture (V17.2.0), - TS 38.321 MAC protocol (V17.2.0), - TS 38.331 Radio Resource Control (RRC) protocol (V17.2.0), - TS 38.340 Backhaul Adaptation Protocol Layer (V17.2.0), - TS 38.401 RAN architecture (V17.2.0), - TS 38.423 Xn application protocol (V17.2.0) - TS 38.473 F1 application protocol (V17.2.0). Since IAB donor 120 and IAB nodes 121, 122, and 123 are connected to UEs 134, 131, 132, 133, 135, and 136, respectively, they are considered as access IAB nodes for their respective connected UEs. IAB donor 120 is a logical node that provides NR-based radio backhaul and consists of a central unit (CU or gNB-CU functionality) and connected donor distributed units (DU or gNB-DU functionality). The IAB donor CU or donor CU (hereinafter also referred to as IAB donor CU or IAB donor CU) carries higher layer protocols such as PDCP (Packet Data Convergence Protocol) and RRC (Radio Resource Control) protocols for controlling the operation of one or more DUs and each of one or more IAB donor DUs or donor DUs (hereinafter also referred to as IAB donor DUs or IAB donor DUs) includes lower layer protocols such as RLC, MAC and physical layer protocols. The IAB donor CU or donor CU and the IAB donor DU or donor DU may be remote from one another or may be located in the same physical device. The gNB-DU function is defined in 3GPP TS 38.401. Its purpose is to terminate the NR access interface to the UE and the next relay IAB node, and to terminate the F1 protocol to the IAB donor gNB-CU functionality, as shown in Figures 2a and 2b discussed below. The IAB node, which can serve multiple radio sectors, is wirelessly backloaded to the IAB donor 120 via one or more relays on the intermediate IAB node. They form a directed acyclic graph (DAG) topology with the IAB donor as the root. Each IAB node consists of an IAB-DU (IAB distributed unit) and an IAB-MT (IAB mobile terminal). The gNB-DU function on the IAB node is also called IAB-DU, and it allows downstream (towards the UE) connection to the next relay IAB or to the UE. IAB-MT functionality includes, for example, physical layer, layer 2, RRC and non-access layer (NAS) functionality to connect to the gNB-DU of the upstream IAB node (including the IAB donor 120, which in this case is connected to the IAB donor gNB-CU and therefore to the core network 110, for example for initialization, registration and configuration). In this DAG topology, the neighbor nodes on the IAB-DU interface are called child nodes and the neighbor nodes on the IAB-MT interface are called parent nodes. The direction towards the child node is further referred to as downstream, while the direction towards the parent node is referred to as upstream. The IAB donor 120 (e.g., the IAB donor CU) performs centralized resource, topology and routing management for the entire IAB topology. This includes configuring the IAB nodes according to the network topology, for example, in order to perform appropriate routing of data packets. Figures 2a and 2b schematically illustrate the stacking of some protocol layers involved in IAB operation. The F1 interface supports the exchange of messaging information (e.g., control traffic) between endpoints, and the transmission of data to each endpoint (e.g., user traffic transmission). From a logical point of view, the F1 interface is a point-to-point interface between endpoints. In 5G NR, F1-C is the functional interface between the IAB donor CU and the IAB node DU (e.g., IAB node 2) in the control plane (CP) and between the IAB donor CU and the IAB donor DU. F1-U is the functional interface of the same unit in the user plane (UP). F1-C and F1-U are represented by reference numeral 212 in Figure 2a. In this example, F1-U and F1-C are transmitted via two backhaul relays (from IAB donor to IAB node 1 and then from IAB node 1 to IAB node 2). In the user plane, block 210 at IAB donor CU and IAB node DU refers to the GTP-U layer, while block 211 refers to the UDP layer. GTP-U stands for GPRS Tunneling Protocol User Plane. GTP-U tunnels are used to carry encapsulated PDUs and messaging messages between a given pair of GTP-U tunnel endpoints (see 3GPP TS 29.281 for more details), here block 210 of IAB donor CU and IAB node DU. The well-known User Data Protocol (UDP) is a transport layer protocol that provides the best possible data block service and is adapted for use with the IP protocol. In the control plane, box 210 represents the F1AP (F1 Application Protocol) layer, and box 211 represents the SCTP (Stream Control Transmission Protocol) layer. The F1 Application Protocol (as defined in 3GPP TS 38.473 and TS 38.401) provides messaging services between the IAB donor CU and the IAB node DU, or UE-related services. These services are, for example, initialization, configuration, etc. The well-known SCTP layer provides reliable, in-order message transmission through congestion control. F1-U and F1-C rely on the IP transport layer between the IAB donor CU and the IAB node DU, as defined in 3GPP TS 38.401. Transport between the IAB donor DU and the IAB donor CU also uses the IP transport layer over various media (e.g., wire or optical fiber), such as when the IAB donor CU is remote to the IAB donor DU, or when the local IAB donor CU and the IAB donor DU are virtualized on the same physical machine. IAB-specific transport between the IAB donor CU and the IAB donor DU is defined in 3GPP TS 38.401. L1 and L2 in Figure 2a represent the transport layer and physical layer, respectively, appropriate to the media used. The IP layer may also be used for non-F1 traffic, such as operation, management and maintenance traffic. In wireless backhaul, the IP layer itself is carried over the Backhaul Adaptation Protocol (BAP) sublayer, which enables multi-hop routing. The BAP sublayer is specified in TS 38.340. The IP traffic of the IAB-DU traverses the BAP sublayer over wireless backhaul routing. In the downstream direction, upper layer packets are encapsulated by the BAP sublayer at the IAB donor DU, thereby forming BAP packets or packet data units (PDUs) or data packets. The BAP packets are routed by the BAP layer or entity of the intermediate IAB nodes (if any) (and the corresponding BAP entities in the IAB-DU and IAB-MT). The BAP packets are finally decapsulated by the BAP sublayer at the destination IAB node (which may be an access IAB node if the upper layer packets in the BAP packet are intended for a UE). In the upstream direction, upper layer packets are encapsulated by the BAP sublayer at the originator IAB node (which may be an access IAB node if the upper layer packet comes from a UE) to form BAP packets or data units (PDUs) or data packets. BAP packets are routed by the BAP layer (and corresponding BAP entities in IAB-DU and IAB-MT, if any) of intermediate IAB nodes. The BAP packets are ultimately decapsulated by the BAP sublayer at the IAB Donor DU. At the BAP sublayer, packets are routed based on a BAP routing ID, which is carried in the BAP header of the BAP packet and is set by the BAP sublayer of the issuing IAB Donor DU or originator IAB node (e.g., a network node in an IAB network that generates the BAP packet). Figure 3 illustrates the format of a BAP data protocol data unit (PDU) or packet. It is specified in the standardized version of 3GPP TS 38.340 version 17.2.0, paragraph 6.2. The payload portion 307 is typically an IP packet. Header 30 contains fields 301 to 306. Field 301, named the D/C field, is a Boolean value indicating whether the corresponding BAP packet is a BAP data packet or a BAP control packet. Fields 302-304 are 1-bit reserved fields, preferably set to 0 (ignored by the receiver). Fields 305 and 306 together indicate the BAP routing ID of the BAP packet. The BAP address field 305, also known as the DESTINATION field, is located in the leftmost 10 bits, while the BAP path identity field 306, also known as the PATH field, is located in the rightmost 10 bits. Field 305 carries the BAP address (i.e., on the BAP sublayer) of the destination IAB node or IAB donor DU of the BAP packet. For routing purposes, each IAB node and IAB donor DU in the IAB network is configured (by the IAB donor CU of the IAB network) with an assigned unique BAP address. Field 306 carries a path ID that identifies the routing path that the BAP packet should follow to that destination in the IAB topology. For routing purposes, routing paths (including their path IDs) are configured in the IAB nodes of the IAB network (by the IAB donor CU of the IAB network). When a packet reaches the BAP layer from upper layers, the BAP header is added to the packet and when it reaches its destination node, the BAP header is stripped by the BAP layer. The BAP Routing ID of the selected packet is configured by the IAB donor CU. For example, when a BAP packet is generated by a node, i.e. by an IAB donor DU for downstream transmission or by an initiator (when the upper layer packet comes from a UE, the initiator can be an access IAB node) for upstream transmission, the node constructs a BAP header with the BAP Routing ID according to the configuration table defined in 3GPP TS 38.340. This table is called the Downlink Traffic to Routing ID Mapping Configuration Table in the IAB Donor DU or the Uplink Traffic to Routing ID Mapping Configuration Table in the initiator IAB node. In the intermediate IAB nodes, the BAP header field is already specified in the BAP packets to be forwarded. As mentioned above, these configuration tables that define the BAP paths (and therefore the routing policies and configuration of the IAB nodes given a given IAB network topology) are typically defined by the IAB Donor CU and transmitted to the IAB nodes to configure them. In order to transmit information on the 5G NR radio medium, three other sublayers (RLC, MAC and PHY) are implemented on each IAB node below the BAP sublayer. The RLC (Radio Link Control) sublayer is responsible for the segmentation or reconstruction of packets. It is also responsible for requesting retransmission of lost packets. The RLC layer is further described in TS 38.322. The MAC (Media Access Channel) protocol sublayer is responsible for selecting an available transmission format for user data and for mapping logical channels to transmission channels. The MAC also handles part of the Hybrid Automatic Repeat Request scheme. The MAC layer is described in detail in TS 38.321. On the transmitter or transmitter side, the MAC encapsulates the data packets sent from the RLC. It adds a header with the information required for the MAC function. On the receiver side, the MAC decapsulates the data packets sent from the PHY, removes its header and passes the remaining data to the RLC. The PHY sublayer provides the electrical interface to the transmission medium (air) by converting the information stream into a physical modulated signal, modulating the carrier frequency on the transmitter side. On the receiver side, the PHY sublayer converts the physical modulated signal back into an information stream. The PHY layer is described in TS 38.201, TS 38.211, TS 38.212, TS 38.213, TS 38.214. To deliver messages to the user or control plane, two other sublayers are used in the UE and IAB donor CU: the PDCP (Packet Data Convergence Protocol) sublayer and the SDAP (Service Data Adaptation Protocol) sublayer for user plane communication or the RRC (Radio Resource Control) sublayer for control plane communication. The PDCP sublayer handles IP header compression/decompression, encryption/decryption, and integrity of data packets when necessary. It enforces packet numbering on the transmitter side and reordering of packets on the receiver side. The PDCP sublayer is described in 3GPP TS 38.323. The SDAP sublayer 220 of the user plane handles quality of service. It is described in TS 38.324. On the UE side, the SDAP sublayer exchanges payload data with user applications (voice, video, etc., not shown in the figure). On the IAB donor CU side, the SDAP sublayer exchanges data (Internet traffic, cloud, etc.) with the core network 110. The RRC sublayer 220 of the control plane handles the configuration of the protocol entities of the user plane protocol stack. Described in TS 38.331. It is responsible for processing broadcast information required for UE to communicate with cells, etc.; transmitting call messages, managing connections, including setting up bearers; mobility functions; measurement configuration and reporting; device capabilities. The interface between nodes using PDCP, RLC, MAC and PHY layers (for CP and UP) is called NR-Uu. This mainly involves interfacing with the UE. The interface between nodes using BAP, RLC, MAC and PHY layers (for CP and UP) is called the backload RLC channel (BH RLC channel). This mainly involves the interface between IAB nodes. NR-Uu is the interface between the UE and the radio access network, that is, its access IAB node (for CP and UP). Figure 2b is from 3GPP TS 38.300 V17.2.0 and illustrates the protocol stack for RRC and NAS connections supporting IAB-MT. The Non-Access Stratum (NAS) protocol handles the messaging between the core network and the user equipment or IAB node. It manages the establishment of a communication session and maintains communication with the IAB node or user equipment as it moves. The 5G NAS is described in 3GPP TS 24.501. The 5G Core Access and Mobility Management Function (AMF) is a function within the core network that receives all connection and session related information from the UE connected to the IAB node, and similar information from the IAB node. The AMF is responsible for handling connection and mobility management tasks only. The IAB-MT establishes a signaling radio bearer SRB (which carries the RRC and NAS messages) with the IAB donor CU. These SRBs are transmitted between the IAB-MT and its parent node via the NR-Uu interface. Figure 4 shows a schematic diagram of an exemplary communication device (equipment) or station according to one or more exemplary embodiments of the present disclosure. The communication device 400 can be a device such as a microcomputer, a workstation or a lightweight portable device. The communication device 400 includes a communication bus 413, which is preferably connected to: - A central processing unit 411, such as a microprocessor, represented as a CPU. The central processing unit 411 can be a single processing unit or processor or may include two or more processing units or processors, which perform the processing required to operate the communication device 400. The number of processors and the allocation of processing functions of the central processing unit 411 are a matter of design choice for those skilled in the art; - memory for storing data and computer programs including instructions for operating the communication device 400. The computer program may include many different program elements (modules) or subroutines including instructions for various operations and various operations of implementing the method according to one or more embodiments of the present invention; and - at least one communication interface 402 for communicating with other devices or nodes in a communication system, such as the communication system of Figure 1. The at least one communication interface 402 may be connected to a radio communication network 403, such as a radio communication network for 5G NR (e.g., according to Release 17 and/or later), through which digital data packets or frames or control frames are transmitted. Frames are written from a FIFO send memory in a RAM 412 to the communication interface for transmission, or read from the communication interface for reception and written to a FIFO receive memory in the RAM 412, under the control of a software application running in the CPU 411. Each of the donor CU, donor DU, IAB node and UE may include such a communication device/apparatus 100. The memory may include: - a read-only memory 407, represented as ROM, for storing a computer program for implementing a method according to one or more embodiments of the present invention; - a random access memory 412, represented as RAM, for storing executable code of a method according to one or more embodiments of the present invention, and registers adapted to record variables and parameters required for implementing a method according to one or more embodiments of the present invention. Optionally, the communication device 400 may also include the following components: - a data storage component 404, such as a hard disk, for storing a computer program for implementing a method according to one or more embodiments of the present invention; - a disk drive 405 for a disk 406, which is suitable for reading data from the disk 1106 or writing data to the disk; - a screen 409 for displaying decoded data and/or acting as a graphical interface with the user through a keyboard 410 or any other input/output component. In an exemplary configuration, a communication bus 413 provides communication and interoperability between various components included in or connected to the communication device 400. The representation of a bus is not restrictive, and expressly states that the central processing unit is operable to communicate instructions to any component of the communication device 400, directly or through other components of the communication device 400. The disk 406 may alternatively be replaced by any information medium, such as a rewritable or non-rewritable optical disk (CD-ROM), a ZIP disk, a USB key or a memory card, and in general terms, by an information storage component that can be read by a microcomputer or a microprocessor, which may be integrated in the communication device or not, may be removable and is suitable for storing one or more programs, wherein the execution of the program enables the implementation of the method according to the present embodiment. The executable code may optionally be stored in the read-only memory 407, on the hard disk 404 or on a removable digital medium such as, for example, the aforementioned disk 406. According to an alternative variant, via the interface 402, the executable code of the program may be received via the communication network 403 in order to be stored in one of the storage means of the communication device 400 before execution, such as the hard disk 404. The central processing unit 411 may be adapted to control and direct the execution of the instructions of one or more programs according to the invention or parts of the software code, the instructions of which are stored in one of the aforementioned storage means. Once powered on, one or more programs stored in non-volatile memory such as hard disk 404 or read-only memory 407 are transferred to random access memory 412, which then saves the executable code of the one or more programs, as well as registers for storing variables and parameters required to implement the present invention. In an exemplary embodiment, the communication device (equipment) is a programmable device/equipment that uses software to implement the present invention. Instructions may be executed by one or more processors of a device, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuits, to implement the present invention for network nodes (e.g., IAB nodes, IAB donors CUs, etc.). Accordingly, the term "central processing unit" as used herein may refer to any of the aforementioned structures or any other structure suitable for implementing the techniques described herein. Alternatively, however, the present invention may be implemented in hardware (e.g., with application specific integrated circuits or ASICs or other logic elements). FIG. 5 illustrates an example of an IAB communication system (or IAB network system) 500 in which embodiments of the present invention and examples of embodiments may be implemented. In an example implementation, the radio links between IAB nodes and between IAB nodes and IAB donor DU (referred to as BH radio links) operate in the millimeter wave band (i.e., above 30 GHz), which is highly sensitive to radio channel interference. The IAB network will also be referred to as an IAB topology or topology, so in this application, the terms IAB network and IAB topology and topology will be used interchangeably. The IAB communication system 500 is composed of three IAB networks or IAB topologies 5001, 5002, and 5003, each of which includes a group of IAB nodes (e.g., the group may include a plurality of IAB nodes or at least one IAB node) and an IAB donor CU for controlling or managing the plurality of IAB nodes. The set of IAB nodes may include one or more IAB nodes, such as an initiator IAB node that generates a BAP packet and also include intermediate or relay IAB nodes. Each of the IAB nodes communicates with at least one other IAB node via a wireless backhaul (BH) link. Although FIG. 5 shows three IAB topologies 5001, 5002, and 5003, the present invention is not limited to three IAB topologies and may be implemented in an IAB communication system including more than two IAB topologies, each of which includes a set of IAB nodes and an IAB donor CU as described above. As discussed above, each IAB node includes a mobile terminal (MT) portion or unit controlled and configured by the IAB donor using RRC messaging as defined in 3GPP TS 38.331 and a distributed unit (DU) portion controlled and configured by the IAB donor using F1-AP messaging as defined in 3GPP TS 38.473. For example, IAB node 510 includes an MT portion or unit 511 and a DU portion 512. IAB topology 5001 includes an IAB donor CU 501 (identified as donor 1-CU in FIG. 5 ), and its associated IAB donor DU 504 (identified as donor 1-DU 1 in FIG. 5 ), and a plurality of IAB nodes 510 and 520 similar to IAB nodes 121 and 122. The IAB topology 5002 includes an IAB donor CU 502 (identified as donor 2-CU in FIG. 5 ), its associated IAB donor DUs, IAB donor DU 505 (identified as donor 2-DU 1 in FIG. 5 ) and IAB donor DU 506 (identified as donor 2-DU 2 in FIG. 5 ), and a plurality of IAB nodes 530, 540, 550 similar to IAB nodes 121 and 122, and an IAB node 570 which may be similar to mobile IAB node 123. All IAB nodes may access nodes serving UEs, such as UE 580 served by mobile IAB node 570. The IAB topology 5002 is transparent to UE 580 connected to donor CU 502 via a DU portion or unit 572 of mobile IAB node 570. Although FIG5 shows only one UE 580, it should be understood that there will be multiple UEs connected to the network nodes of the IAB communication system 500. The IAB topology 5003 includes an IAB donor CU 503 (identified as donor 3-CU in FIG5 ), its associated IAB donor DU 507 (identified as donor 3-DU1 in FIG5 ), and an IAB node 560, such as IAB nodes 121 and 122. The wired backhaul IP network interconnects the IAB donor CUs 501, 502, and 503, and the IAB donor DUs 504, 505, 506, and 507 via a wired backhaul 508. For example, the wired backhaul 508 is composed of optical fiber cables. IAB donor CU 501, IAB donor DU 504, and IAB nodes 510 and 520 are part of the same IAB network or IAB topology 5001, which are configured and managed or controlled by IAB donor CU 501. IAB donor CU 502, IAB donor-DUs 505 and 506, and IAB nodes 530, 540, and 550 are part of the same IAB network or IAB topology 5002, which are configured and managed or controlled by IAB donor CU 502. IAB donor CU 503, IAB donor-DU 507, and IAB node 560 are part of the same IAB network or IAB topology 5003, which are configured and managed or controlled by IAB donor CU 803. Each IAB-DU and IAB donor DU supports wireless communication in a coverage area called a cell (not shown in FIG. 5 ). In other words, each IAB-DU and IAB donor DU is associated with a cell. A wireless communication device (such as a UE, or other IAB node) located in a cell can establish a communication link with a node (i.e., an IAB-DU or an IAB donor DU) serving the cell to communicate with other devices (e.g., other UEs, IAB nodes, servers providing access to the Internet, etc.) through the node. It is assumed that the mobile IAB node 570 initially has a single parent IAB node 520, and the IAB node 570 belongs to an IAB topology 5001 controlled by an IAB donor CU 501. Thus, the IAB donor CU operates as an F1-terminal donor CU (which may also be referred to as an F1-terminal IAB donor CU or an F1 donor CU). When moving and given its proximity to the IAB topology 5002, specifically the IAB node 530, when the mobile IAB node 570 is in the position shown by the dashed line in FIG. 5 , the mobile IAB node 570 may establish a wireless BH link with the IAB node 530. This BH link is possible for a fixed IAB node, and is very possible for a mobile IAB node such as the IAB node 570 that moves, for example, in the direction of the IAB topology 5002 (shown by arrow 590 in FIG. 5 ). Then, the F1 donor CU 501 may have decided to perform a migration of the MT portion 571 of the IAB node 570 toward the IAB topology controlled by the donor CU 502, which becomes a non-F1 terminal donor CU (which may also be referred to as a non-F1 terminal IAB donor CU or a non-F1 donor CU or an RRC terminal donor CU or an RRC donor CU) of the IAB node 570 (i.e., the MT portion 571 of the IAB node 570 migrates toward the parent IAB node 530). For this purpose, the F1 donor CU 501 may start the inter-CU topology adaptation procedure described in TS 38.401 V17.2.0 section 8.17.3.1 or section 8.17.3.2 (when the IAB node 570 has a predecessor IAB node). Therefore, the IAB node 501 still belongs to the IAB topology 5001 with its F1 connection to donor CU 501, but its RRC connection is now to donor CU2 502. After this procedure, the IAB donor CU 501 can request the migration of backload traffic (e.g., user traffic, control traffic) associated with the IAB node 570 towards the IAB topology 5002 (i.e., through the donor DU 505). In this case, the donor CU 501 triggers the IAB transport migration management procedure specified in TS 38.423 V17.2.0 section 8.5.2. In the IB communication system, all traffic communicated via the backload link uses the F1 interface (F1-C or F1-U) between the IAB donor CU and the IAB-DU. Thus, the offloaded or migrated traffic or backloaded traffic is F1 traffic and may include control and user traffic. While the mobile IAB node 870 is still moving in the direction indicated by arrow 590, the MT portion 571 of the IAB node 570 may then be moved by the non-F1 donor CU 502 toward the parent IAB node 550, using the backload link 5050 between the IAB node 550 and the IAB node 570. For this purpose, the non-F1 donor CU 502 may apply the intra-CU topology adaptation procedure described in TS 38.401 V17.2.0 section 8.2.3.1 (or section 8.17.3.2), resulting in a continuous MT migration of the IAB node 570 (or another MT migration to another IAB node) utilizing a new single parent IAB node 550. Furthermore, the IAB node 501 makes its F1 connection to donor CU 501 and its RRC connection to donor CU2 502. After being informed to use donor DU 506 instead of donor DU 505 to route F1 traffic associated with IAB node 570, donor CU 501 may request to migrate traffic associated with IAB node 570 towards IAB topology 5002. In this case, donor CU 501 triggers the IAB transport migration management procedure specified in TS 38.423 V17.2.0 section 8.5.2. While moving further, now in the direction of the IAB topology 5003 controlled by the donor CU 503, the IAB node 570 may become in a position where the backload link 5060 with the IAB node 560 may have a better quality than the backload link 5050 with the IAB node 550. Therefore, the donor CU 502 may apply the inter-CU topology adaptation procedure described in TS 38.401 V17.2.0 section 8.17.3.1 or 8.17.3.2. After this continuous MT migration, IAB node 501 still belongs to IAB topology 5001, it has F1 connection with donor CU 501, but it is now RRC connected with donor CU 503, and thus donor CU 503 becomes a non-F1 terminal donor CU (or non-F1 donor CU or RRC donor CU). However, donor CU 501 must be informed of the new non-F1 donor CU 503 for IAB node 570 and new donor DU 507 to redirect the offloaded traffic (F1 traffic, control and user traffic) through donor DU 507 instead of donor DU 506. In all MT migration scenarios described above, UE 580 is still connected to donor CU 501 through the DU part or unit 572 of mobile IAB node 570. If the IAB node 570 has some child IAB nodes, these child IAB nodes still belong to the IAB topology 5001 and they are still fully controlled by the donor CU 501 (via F1 and RRC connections). At any migration state of the MT part 571 of the IAB node 570, therefore regardless of whether the MT part 571 of the IAB node 570 is migrated to the IAB topology 5002 or the IAB topology 5003, and therefore regardless of whether the IAB node 570 has a non-F1 terminal donor CU, and if so, regardless of whether it is a non-F1 terminal donor CU 502 or 503, the F1 donor CU 501 can decide to perform the migration of the DU part of the IAB node 570. The reason for performing a DU migration may be to reduce the processing load at the F1 donor CU 501, or because the IAB node 570 is geographically far from the F1 donor CU 501 and close to an area where there is no more Xn connectivity between the F1 donor CU 501 and a target donor CU. After deciding to perform a DU migration of the IAB node 570, the F1 donor CU 501 must also decide towards which donor CU (which is referred to as the target F1 donor CU) the DU migration will be performed. If there is a current non-F1 terminal donor CU then it may be a DU migration towards the current non-F1 terminal donor CU (i.e., the default choice) and in this case the non-F1 terminal donor CU becomes the target F1 donor CU or a DU migration towards another target F1 donor CU. For example, if the IAB node 570 is mobile and its trajectory is predictable (e.g., for a bus or train), the F1 donor CU 501 may know the appropriate target F1 donor CU through which the IAB node 570 will soon connect to the control cell of the network. For example, although the non-F1 end donor CU of the IAB node 570 is the donor CU 502, the F1 donor CU may decide that the DU migration of the IAB node 570 should be directed toward the donor CU 503 because the IAB node 570 can quickly cross and does not reside in the IAB topology 5002 controlled by the donor CU 502. To perform the DU migration not toward the donor CU 502, and instead toward the donor CU 503, the intermediate DU migration protocol messages to the IAB node 570 will be avoided. When performing the DU migration, the handover of the UE served by the IAB node 570 must also be performed. Therefore, in order not to perform DU migration towards donor CU 502, an intermediate handover of UEs served by IAB node 570 to donor CU 502 will also be avoided before a new DU migration and UE handover towards donor CU 503. The process of performing DU migration and UE handover towards a selected target F1 donor CU is described in more detail with reference to the subsequent figures. FIG6 illustrates an example of an IAB node architecture 600 that enables migration of DUs of an IAB node from a source IAB topology to a target IAB topology (DU migration). IAB node 601 (which may be a mobile IAB node such as IAB node 570) is composed of an IAB-MT part or unit IAB-MT 610 (such as MT part 571 of IAB node 570 of FIG. 5), a part or unit IAB-DU1 611, and a part or unit IAB-DU2 612. IAB-DU1 and IAB-DU2 are two logical DU entities that share the same hardware for BAP, RLC, and MAC layers. In one example, they share the same physical layer (i.e., the same hardware resources), while in another example they rely on different physical layers. At the DU migration of the IAB node 601, two logical DUs are active: one of the logical DUs terminates the F1 interface with the source F1 donor CU (e.g., donor CU 501 in FIG. 5 ), and the other logical DU terminates the F1 interface with the target F1 donor CU (e.g., donor CU 502 or 503 in FIG. 5 ). Otherwise (i.e., when DU migration is not performed), only one logical DU is sufficient for IAB operation. As an example and with reference to the IAB communication system of FIG. 5 , the F1-terminal donor CU of the IAB node 601 (i.e., IAB node 570) may be the donor CU 501 that thus operates as the source F1 donor CU. When the source F1 donor CU 501 determines that the IAB node 570 is moving toward/through the IAB topology 5002, the source F1 donor CU 501 may identify the IAB donor CU 502 as a suitable target F1 donor CU, the IAB topology 5002 including network nodes (e.g., IAB donor DUs 505, 506, IAB nodes 530, 540, 550) managed by the IAB donor CU 502, which network nodes serve the cells in the IAB topology 5002 to which the IAB node 570 is about to connect. Alternatively, for an IAB node that is connected to a parent IAB node or a parent IAB donor DU of an IAB topology 5001 managed by a donor CU 501 that is an F1 terminal donor CU and is fixed but is close to or adjacent to one or more IAB nodes in a neighboring IAB topology (such as the IAB topology 5002), the source F1 donor CU 501 may determine that the IAB node is a suitable target F1 donor CU when the source F1 donor CU 501 determines (e.g., based on signal measurements performed at the IAB node on radio signals received at the IAB node from all IAB nodes close to the IAB node, which may include the IAB nodes in the neighboring IAB topology 5002) that the IAB node is about to connect to an IAB node in the neighboring IAB topology 5002. 502 is a suitable target F1 donor CU. Before DU migration, for example, UE 602 (such as UE 580 in FIG. 5 ) is connected to source F1 donor CU 501 via logical DU IAB-DU1 611 and access link 621 in the cell served by logical DU IAB-DU1 611, and logical DU IAB-DU2 612 is disabled. At DU migration, logical DU IAB-DU2 612 is enabled and connected to target F1 donor CU 502, and UE 602 can also be connected to the target F1 donor CU 502 via logical DU IAB-DU2 612 and link 622 in the cell served by logical DU IAB-DU2 612. Activation of logical DU IAB-DU2 612 may be triggered by the source F1 donor CU and performed by the procedure described with reference to Figures 8a and 8b. Once handover from a cell controlled by logical DU IAB-DU1 611 to a UE 602 controlled by logical DU IAB-DU2 612 is completed, logical DU IAB-DU1 611 may be deactivated. Deactivation may be triggered by the procedure described with reference to Figure 8c by the source F1 donor CU 501 after detecting completion of handover for all UEs served by IAB-DU1 611. An example of a method according to one or more embodiments of the present invention will now be described, which enables DU migration of IAB nodes with or without (multiple) MT migration, and which includes notifying the IAB nodes about the identity of a target donor CU so that a UE served by the IAB node can be handed over to the target donor CU. Although the following method/apparatus will be described primarily with respect to mobile IAB nodes, it should be understood that the present invention is not intended to be limited to mobile IAB nodes. The method according to one or more embodiments of the present invention may be applied to fixed IAB nodes, for example, at the edge of an IAB topology and close to or adjacent to one or more IAB nodes in a neighboring IAB topology. FIG. 7 is a schematic simplified diagram 700 illustrating some exemplary message flows to perform DU migration of an IAB node with or without (multiple) MT migration according to one or more embodiments of the present invention, and includes notifying the IAB node about a target donor CU so that UEs served by the migrated IAB node can be handed over to the target donor CU. FIG. 7 shows a UE 708 such as UE 580, a source F1 donor CU 703 such as donor CU 501, a target F1 donor CU 707 such as donor CU 503, and a core network (5GC) 702 such as the core network 110 of FIG. 1. This Figure 7 also shows an IAB node 701, which may be a mobile IAB node such as the IAB node 570, consisting of an MT portion or unit IAB-MT 704, a DU portion or unit IAB-DU1 705 (e.g., a source or first logical DU entity), and a DU portion or unit IAB-DU2 706 (e.g., a target or second logical DU entity). Each of the first 705 and second 706 DU logical entities serves one or more cells. The cells of the IAB-DU1 705 are identified by different identifiers of the cells of the IAB-DU1 705 (e.g., a physical cell identifier (PCI), a new radio cell group identifier (NCGI)). IAB-DU1 705 and IAB-DU2 706 are two logical DU entities that share the same hardware for BAP, RLC and MAC layers. In one example, they share the same physical layer (i.e., the same hardware resources), while in another example they rely on different physical layers. If the IAB-MT 704 has not migrated, the non-F1 donor CU of the IAB node 701 can be the source F1 donor CU 703 itself. If the IAB-MT 704 has previously migrated towards the target F1 donor CU 707, the non-F1 donor CU of the IAB node 701 can be the target F1 donor CU 707, or if the IAB-MT 704 has previously migrated towards another donor CU, this other donor CU (not shown in the figure). At the start of the flow, the IAB node 701 belongs to the source IAB topology controlled by the source F1 donor CU 703. The UE 708 is served by the IAB node 701 through the cell of IAB-DU1 705 (e.g., the DU of the IAB node 701 has an active IAB-DU1 705, which has an F1 connection with the source F1 IAB donor CU 703), and the logical IAB-DU2 706 is inactive. User data in the downstream direction is provided to the source F1 donor CU 703 by the 5GC 702 through the bearer 710, then the data is transmitted to the logical DU IAB-DU1 705 of the IAB node 701 through the backhaul bearer 711, and finally transmitted to the UE 708 through the data radio bearer 712. Backhaul transport 711 may be established in the source IAB topology controlled by the source F1 donor CU 703 or in the IAB topology controlled by the non-F1 donor CU of the IAB node 701 (if the IAB-MT 704 was previously migrated towards this non-F1 donor CU). User data in the upstream direction (not shown in the figure) is transmitted via a similar transport in the reverse direction. If the IAB-MT 704 has previously migrated toward this non-F1 donor CU (not shown in FIG. 7 ) or if it has not yet migrated from its F1-terminal donor CU to its F1-terminal donor CU (e.g., source F1 donor CU 703), the IAB-MT 704 may send measurement reports (not shown in FIG. 7 ) to its non-F1-terminal donor CU as a result of the IAB-MT 704 regularly performing measurements on signals received from the serving cell and one or more target cells (e.g., signal synchronization blocks (SSBs) transmitted in the serving cell and in the target cells). The target cell may be a cell that is adjacent to the serving or source cell (i.e., the current serving cell). Once the IAB-MT 704 finds at least one RSB that meets predefined criteria (e.g., received power exceeding a predefined threshold), a measurement report may be generated and transmitted to provide radio link quality information for different cells adjacent to the IAB node 701. The identity of each cell is included in the measurement report to allow a non-F1 donor CU if the IAB-MT 704 has migrated or an F1 end donor CU 703 if the IAB-MT 704 has not migrated to identify the target donor CU associated with the cell. In practice, the identity of the donor CU may be derived from a physical cell identity (PCI) broadcast in each cell managed by the donor CU in a synchronization signal and/or from a new radio cell group identifier (NCGI) also broadcast in each cell managed by the donor CU in a system information block (SIB) message. The PCI and/or NCGI may be reported by the IAB node 701 in a measurement report. Based on the received measurement reports, the non-F1 donor CU (if the IAB-MT 704 has migrated) or the F1 end donor CU 703 (if the IAB-MT 704 has not migrated) may detect that the IAB node 701 is receiving the radio signal in the target cell of the target parent IAB node with better quality than the quality in the source serving cell. The non-F1 donor CU (if the IAB-MT 704 has migrated) or the F1 end donor CU 703 (if the IAB-MT 704 has not migrated) may decide to apply a procedure to perform IAB-MT 704 migration towards a target parent IAB node belonging to the same IAB topology (intra-CU topology adaptation) or another IAB topology (inter-CU topology adaptation). In either case, the source F1 donor CU 703 will be notified about this MT migration by the non-F1 donor CU (if the IAB-MT 704 has already migrated), or the source F1 donor CU 703 will be notified because it made the decision to perform MT migration directly from the measurement reports received by the IAB node 701 (if the IAB-MT 704 has not yet migrated), and this information can be used by the source F1 donor CU 703 to trigger DU migration of the IAB node 701. In another example, the non-F1 donor CU can forward (relay) the information in the measurement reports received from the IAB node 701 to the source F1 donor CU 703. Therefore, the source F1 donor CU 703 can make a decision to migrate the DU of the IAB node 701 based on these measurement reports forwarded by the non-F1 donor CU. Therefore, the source F1 donor CU 703 determines that the DU of the IAB node is to be migrated from the IAB topology of the source F1 donor CU 703 to another IAB topology of the target IAB donor CU. The determination may be based on determining that the migration of the MT of the IAB node toward the new parent IAB node has been completed. Another example of a triggering event for determining that the DU of the IAB node is to be migrated may include that the decision of DU migration may be based on the detection of MT migration from a first IAB topology toward a second IAB topology, and based on a known (predefined) trajectory of the IAB node, which indicates to the source F1 donor CU that the MT will migrate to a second IAB topology at a later time. Three IAB topologies. In this case, to avoid the signaling for DU migration/UE handover toward the second IAB topology, the DU is migrated directly toward the third IAB topology. Another example of a triggering event for determining that a DU of an IAB node is to be migrated may include detecting a processing load level higher than a predetermined threshold in the source F1 donor CU. DU migration is then triggered, and the selection of the target F1 donor CU is based on the processing load of other donor CUs connected to the source F1 donor CU. 703 determines or determines to perform DU migration of the IAB node 701 towards another IAB topology managed by another donor CU that becomes the target F1 donor CU 707, the first step 720 corresponds to sending a request to the IAB node 701 to establish a new F1 connection between the target F1 donor CU 707 and the mobile IAB node 701. This may require activating the second logical DU IAB-DU2 706 in the mobile IAB node 701 and therefore the first step 720 may include activating the second logical DU IAB-DU2 706 in the mobile IAB node 701. This operation is performed using, for example, the procedure described with reference to Figures 8a and 8b. Specifically, the message sent by the source F1 donor CU 703 to the IAB node 701 for activating the IAB-DU2 706 (e.g., 803 in FIG. 8 a) may include identification information for identifying the target donor CU (e.g., the TNL address (i.e., IP address) of the target F1 donor CU 707) so that a new F1 connection or F1 association (e.g., F1AP interface connection) may be set up with the target donor CU 707 (between the IAB-DU2 706 and the target donor CU 707). If the address of the target F1 donor CU is not included in the request for activation, then by default and in the case where the IAB-MT 704 has migrated to a non-F1 donor CU, the non-F1 donor CU is considered to be the target F1 donor CU. In this case, the IAB node 701 has been informed of the identity of the target donor CU (e.g., TNL address/IP address) when the IAB-MT 704 migrates to the non-F1 donor CU. In other words, the source F1 donor CU 703 may send identification information for identifying the target IAB donor CU unless the IAB-MT 704 has migrated to the non-F1 donor CU. Alternatively, the source F1 donor CU 703 may send identification information for identifying the non-F1 donor CU as the target IAB donor CU. After determining that the DU of the IAB node 701 is to be migrated and once the IAB-DU2 706 has been activated, the IAB-DU2 706 may send an F1 Setup Request message (e.g., 813 in FIG. 8 b ) to the target F1 donor CU 707 to request the establishment of an F1 connection between the IAB node 701 and the target F1 donor CU 707. This message may include identification information for identifying the source IAB donor CU, such as a TNL address (i.e., an IP address) or an identifier of the source F1 donor CU 703 of the IAB node 701 (i.e., the global NG-RAN node ID as specified in TS 38.423 V.17.2.0 section 9.2.2.3). If the IAB-MT 704 of the IAB node 701 has previously migrated towards this non-F1 donor CU (not shown in FIG. 7 ), this message may also include the TNL address (i.e., IP address) or the identifier of the non-F1 donor CU of the IAB node 701 (i.e., the global NG-RAN node ID as specified in TS 38.423 V17.2.0 section 9.2.2.3). The destination address of the F1 Setup Request message is the target F1 donor CU 707, and when this IP packet is received by the donor DU in the F1 path for the IAB node 701, it may be routed to the target F1 donor CU 707 in the wired backhaul (508 in FIG. 5 ). For example, in the instance where IAB node 701 is IAB node 570 of Figure 5 connected to IAB node 550 via backhaul link 5050 and where the MT of IAB node 570 (MT 571, which corresponds to IAB-MT 704 in Figure 7) has been migrated to non-F1 donor CU 502 and IAB donor CU 501 is one of the source F1 donor CUs, the F1 path between F1 donor CU 501 and IAB node 570 uses donor DU 506. In the case where the IAB donor CU 503 has been identified (by the F1 donor CU 501) as a target F1 donor CU (e.g., target F1 donor CU 707), an F1 setup request message for the target F1 donor CU (e.g., donor CU 503) is sent through the IAB nodes 550, 540 and then to the donor DU 506, from where it may be routed in the wired backhaul (508 of FIG. 5) to the target F1 donor CU 503. In the F1 setup response (e.g., 814 of FIG. 8b), the target F1 donor CU 707 (e.g., donor CU 503 in the example described above with reference to FIG. 5) may request the IAB-DU2 706 to enable new cell(s) with the associated identifiers (PCI, NCGI). Typically the DU activates/deactivates cells under the control of the donor CU controlling the DU. See, for example, TS 38.473 section 8.2.3.2. Following the procedure described with reference to FIG. 8b, and using, for example, the procedure described with reference to FIG. 9a, the target F1 donor CU 707 may inform the source F1 donor CU 705 about activating new cell(s) from IAB-DU2 706 of the IAB node 701. The next step 730 consists of handing over the cells of the first logical DU IAB-DU1 705 to the cell(s) of the second logical DU IAB-DU2 706 for the UE to be served by the IAB node 701 (e.g., UE 708 in FIG. 7). This procedure may be the standardized procedure described in TS 38.300 Section 9.2.3.2 (Handover) or the standardized procedure described in TS 38.300 Section 9.2.3.4 (Conditional Handover). In one example, to trigger a handover of UE 708, source F1 donor CU 703 sends a handover request message including necessary information related to UE 708 for handover to target F1 donor CU 707 (e.g., identification information of UE, UE content information (e.g., identification information of security content (e.g., security parameters (e.g., security keys, UE security capabilities), measurement configuration, radio configuration (e.g., UE radio capabilities), information about the carrier, etc.)). TS 38.423 Section 9.1.1.1 provides details about the content of a handover request message. After the target F1 donor CU 707 determines whether the donor CU can accept the handover of UE 708 in the acceptance control step, when the target F1 donor CU 707 When the request is accepted, the target F1 donor CU 707 sends a handover confirmation message to the source F1 donor CU 705, including configuration information of the UE 708 used for the handover. The configuration may include radio configuration information indicating the radio configuration of the second logical DU IAB-DU2 706 used by the UE 708 to connect to the IAB node 701 in the identified target cell of the second logical DU IAB-DU2 706 (for example, the radio configuration may include frequency, radio bearer configuration, etc.). The handover confirmation may include an identifier of each of one or more new cells (for example, target cells) that have been enabled at the second logical DU IAB-DU2 706. Then, the source F1 donor CU 705 sends this configuration information to UE 708 via IAB node 701 in an RRC reconfiguration message, including the identifier of the target cell of IAB-DU2 706 to which UE 708 is connected. The RRC reconfiguration message (specified in TS 38.331) is embedded in the F1 message DLRRC messaging (specified in TS 38.473) sent to IAB-DU1 705 and relayed by IAB-DU1 705 to UE 708. Upon receiving this configuration information, UE 708 performs a random access procedure in the target cell of the indicated IAB-DU2 706 to obtain uplink resources, and then transmits an RRC reconfiguration complete message to the target F1 donor CU 707. The RRC reconfiguration complete message (specified in TS 38.331) is sent to IAB-DU2 706, and then the RRC reconfiguration completion message is embedded in an F1 message UL RRC message transmission (specified in TS 38.473) sent to the target F1 donor CU 707. The source F1 donor CU 705 can be notified of the completion of the handover of the UE 708 by a handover success message (specified in TS 38.423) received from the target F1 donor CU 707. The target F1 donor CU 707 can execute a path switching procedure toward the core network 702 to request the delivery of user data related to the UE 708. For example, the target F1 donor CU 707 can execute 3GPP TS 38.413 The target F1 donor CU 707 must then set up a return path to and from the migrated IAB node 701 either in its own topology if there is a return path to reach the IAB node 701 in the IAB topology controlled by the target F1 donor CU 707 (i.e., the target F1 donor CU 707 is a non-F1 terminal donor CU of the IAB node 701 because the IAB-MT 704 has been previously migrated to the target F1 donor CU 707), or in its own topology if there is no return path to reach the IAB node 701 in the IAB topology controlled by the target F1 donor CU 707 (i.e., the IAB-MT 704 and IAB-DU2 706 is connected to a different donor CU), then the IAB topology of the non-F1 donor CU (not shown in FIG. 7 ) of the IAB node 701 is used. In the latter case, the target F1 donor CU 707 can trigger the procedure described with reference to FIG. 9 b to request traffic migration to the non-F1 donor CU of the IAB node 701. As an example of the latter case with reference to FIG. 5 , the IAB node 701 is the IAB node 570 of FIG. 5 connected to the IAB node 550 via the backhaul link 5050, and wherein the MT of the IAB node 570 (MT 571, which corresponds to the IAB-MT 704 in FIG. 7 ) has been migrated to the non-F1 donor CU 502, and the IAB donor CU 501 is a F1 donor CU. When the DU of the IAB node 570 (corresponding to DU 572 of IAB-DU2 706 in Figure 7) has been migrated to the target donor CU 503 and therefore has an F1 connection to the F1 donor CU 503 but the MT 571 remains connected to the non-F1 donor CU 502 (its RRC connection) through its RRC connection, the return path to and from the IAB node 570 is set up in the IAB topology 5002 controlled by the IAB donor CU 502 by executing a traffic migration procedure (for example, as described with reference to Figure 9b) (i.e., the return path through the IAB donor DU 506, IAB nodes 540 and 550 to the IAB node 570). After the handover to the UE 708 and the path switching have been performed, the user data in the downstream direction is transmitted from the core network 702 to the target F1 donor CU 707 via bearer 740, then it is transmitted to the logical DU IAB-DU2 706 of the IAB node 701 via backhaul bearer 741, and finally transmitted to the UE 708 via data radio bearer 742. The backhaul bearer 741 may be established in an IAB topology controlled by the target F1 donor CU 707 or in an IAB topology controlled by a non-F1 donor CU of the IAB node 707 (e.g., depending on whether the IAB-MT 704 and IAB-DU2 706 of the IAB node 701 are connected to different donor CUs). User data in the upstream direction (not shown in the figure) is transmitted in the opposite direction by similar transport. Once the handover of all UEs served by the IAB-DU1 705 of the IAB node 701 is completed, the source F1 donor CU 703 can deactivate the logical DU IAB-DU1 705 of the mobile IAB node 701 through the procedure described with reference to Figure 8c. This is represented as a whole by the procedure 735 in Figure 7. At the same time, the source F1 donor CU 705 can release the traffic (user traffic, control traffic) related to the UE served by the IAB node 701 through IAB-DU1 705. If the traffic is offloaded in the IAB topology controlled by another donor CU, the source F1 donor CU 705 can apply the procedure described with reference to Figure 9b to request the release of the traffic to the other donor CU. This is represented as a whole by the procedure 735 in Figure 7. FIG8a is a schematic simplified diagram 800 of a flow chart showing an exemplary message flow of a procedure for performing activation of a logical DU according to an embodiment of the present invention. This figure shows: - a RAN node DU 801, which may be a DU of an IAB node such as the IAB-DU 572 of the IAB node 570 of FIG5 (and the IAB-DU1 705 of the IAB node 701 of FIG7), - a RAN node CU 802, which may be an IAB donor CU such as the IAB donor CU 501 of FIG5 (and the source F1 donor CU 703 of FIG7). The message configuration request 803 is sent by the RAN node CU 802 to the RAN node DU 801 to request the activation of new cell(s) controlled by the RAN node DU 801 or to request the activation of a logical DU or to request the deactivation of cell(s) in the RAN node DU 801. In the case of a logical DU activation, the message 803 may include the TNL address (i.e., IP address) of the RAN node CU (e.g., target F1 donor CU 707 of FIG. 7 ) that will be connected to the logical DU once activated. For example, a configuration request 803 may be sent by the source IAB donor CU to an IAB node (e.g., a first logical DU entity 705 having an F1 connection with the source IAB donor CU) to request the establishment of an F1 connection between the target IAB donor CU and the IAB node. The RAN node DU 801 may acknowledge the request with a message configuration response 804 sent to the RAN node CU 802. According to an example, the flow in FIG8a corresponds to the procedure gNB-CU CONFIGURATION UPDATE procedure described in TS 38.473 V17.0.0, section 8.2.5, and the message 803 corresponds to the message GNB-CU CONFIGURATION UPDATE described in TS 38.473 V17.2.0, section 9.2.1.10, and the message 804 corresponds to the message GNB-CU CONFIGURATION UPDATE CONFIRM described in TS 38.473 V17.2.0, section 9.2.1.11. The message GNB-CU CONFIGURATION UPDATE includes an information element (IE) CELL LIST TO BE ACTIVATED to indicate the new cell(s) to be activated at the RAN node DU 801. For example and with reference to Figure 7, the GNB-CU configuration update includes information for enabling (several) new cells indicated in the IE cell list to be enabled, which (such) new cells can be served by the first logical DU entity 705 at the IAB node 701. The cells to be enabled refer to the cells controlled by the RAN node DU 801 that receives the request. The associated PCI and NCGI values to be used by the RAN node DU 801 may also be provided. The message GNB-CU configuration update may also include an information element (IE) cell list to be disabled to indicate the (several) cells to be disabled. The cells to be disabled refer to the cells controlled by the RAN node DU 801 that receives the request. For example and with reference to FIG. 7 , the GNB-CU configuration update may include information for deactivating cells indicated in the IE list of cells to be deactivated, which are currently being served by the first logical DU entity 705 at the IAB node 701. According to an example, a new IE second DU enable may be added in the form of a Boolean (e.g., a one-bit IE) in the message 803 to request the activation of the second logical DU. One value of the one-bit IE (i.e., "0" or "1") means that no specific action associated with the second logical DU is requested and another value (i.e., "1" or "0") means requesting the activation of the second logical DU. This IE may be accomplished by a new IE for indicating that the F1 setup is for the purpose of DU migration towards the target RAN node CU (in other words, an IE for indicating that the request for establishing the F1 connection is for DU migration of the IAB node) and/or by a new IE indicating the number of cells to be enabled in the second logical DU. In the absence of such an IE indicating the number of cells, the number of cells to be enabled currently corresponds to the number of cells already enabled in the RAN node DU 801. Another IE may also provide a list of identifiers (e.g. PCI and/or NCGI) of cells that are controlled by the first logical DU 705 at the IAB node 701, for which a mapping with the identifiers of the cells to be activated is provided: for example, mapping may not be required for all active cells controlled by the first logical DU 705, and therefore only the identifiers of those cells that are mapped to the identifiers of the cells to be activated and controlled by the second logical DU 706 are included in the message 803. In addition, a new IE (e.g. Target TNL Address IE) may be added to identify the target RAN node CU by which the F1 connection should be set up. To complete the setup of the new logical DU at the IAB node, the procedure described with reference to Figure 8b may be used. FIG8b is a schematic simplified diagram 810 illustrating an exemplary message flow of a procedure for setting up a logical DU to establish an F1 connection with a target IAB donor CU according to an embodiment of the present invention. This diagram shows: - a RAN node DU 811, which may be a DU of an IAB node DU such as IAB DU 572 of IAB node 570 of FIG5 (and IAB-DU2 706 of IAB node 701 of FIG7), - a RAN node CU 812, which may be an IAB donor CU such as IAB donor CU 503 of FIG5 (and target F1 donor CU 707 of FIG7). A message setup request 813 is sent by the RAN node DU 811 to the RAN node CU 812 to request F1 setup for the logical DU. For example, a setup request 813 may be sent by the IAB node (e.g., by the second logical DU entity 706 that has been activated at the IAB node 701) to the target IAB donor CU 707 to request the establishment of an F1 connection between the target IAB donor CU and the IAB node (e.g., using the second logical DU entity 706 of the IAB node 701). As described with reference to FIG. 8a, the setup request message 813 may be sent after an activation request. This setup request message 813 may include an indication that the F1 setup is about DU migration of the RAN node embedded in the RAN node DU 811 (e.g., information for indicating that the request for establishing the F1 connection is about DU migration of the DU of the IAB node) and/or the number of cells to be enabled in conjunction with the activation of the logical DU. This setup request message 813 may optionally include the identifier of the (several) active cells controlled by the first logical DU 705 (e.g., PCI and/or NCGI) and/or the identifier of the (several) active cells controlled by the first logical DU 705 (e.g., PCI and/or NCGI), for which a mapping with the identifier of the (several) cells to be enabled is provided (as described above). This setup request message 813 may optionally include a request for a mapping between identifiers of (several) active cells controlled by the first logical DU (e.g., PCI and/or NCGI) and identifiers of (several) cells to be activated (e.g., at a second logical DU of the IAB node). This setup request message 813 may include the TNL address (i.e., IP address) or identifier (i.e., the global NG-RAN node ID as specified in TS 38.423 V17.2.0 section 9.2.2.3)) of the RAN node CU terminating the F1 connection of the RAN node DU 811 (e.g., the source IAB donor CU 703). This message may include the TNL address (i.e., IP address) or identifier (i.e., Global NG-RAN Node ID as specified in TS 38.423 V17.2.0 Section 9.2.2.3) of the RAN node CU that terminates the non-F1 (i.e., RRC) connection of the RAN node DU 811 in the event that the MT (e.g., mMT 571 of IAB node 570 or the corresponding IAB-MT of IAB node 701 of 704) has migrated to the RAN node CU (which is now a non-F1 donor CU). The RAN node CU 812 responds to the message SetupResponse 814 sent to the RAN node DU 811. It may include a list of cells activated with the logical DU, together with the associated PCI value and NGSI value to be used. It may also include a mapping between the identifiers (PCI and/or NCGI) of the cell(s) to be activated by the RAN node DU 811 and the identifiers of the active cell(s) controlled by the first logic DU 705. According to an example, the flow in FIG8b corresponds to the procedure F1 Setup described in TS 38.473 V17.2.0 section 8.2.3, and the message 813 corresponds to the message F1 Setup Request described in TS 38.473 V17.2.0 section 9.2.1.4, and the message 814 corresponds to the message F1 Setup Response described in TS 38.473 V17.2.0 section 9.2.1.5. The message F1 sets the response including an information element (IE) indicating a list of new cells to be activated. The cells to be activated are cells controlled by the RAN node DU 811 receiving the response. FIG8 c is a schematic simplified diagram 820 showing an example message flow of the procedure for removing a logic DU. This diagram shows: - a RAN node DU 821, which may be a DU of an IAB node DU such as the IAB-DU 572 of the IAB node 570 of FIG5 (and the IAB-DU1 705 of the IAB node 701 of FIG7 ), - a RAN node CU 822, which may be an IAB donor CU such as the IAB donor CU 501 of FIG5 (and the source F1 donor CU 703 of FIG7 ). The message Remove Request 823 is sent by the RAN node CU 822 to the RAN node DU 821 to request the removal of the logical DU (which is equivalent to deactivation). The RAN node DU 821 responds with the message Remove Response 814 sent to the RAN node CU 822. According to an example, the process in FIG. 8c corresponds to the procedure F1 removal described in TS 38.473 V17.2.0 section 8.2.8, and the message 823 corresponds to the message F1 Remove Request described in TS 38.473 V17.2.0 section 9.2.1.16, and the message 824 corresponds to the message F1 Remove Response described in TS 38.473 V17.2.0 section 9.2.1.7. FIG8d is a schematic simplified diagram 830 illustrating an example message flow of the process used by the logic DU to notify the IAB donor CU about a change of configuration according to an example. This diagram shows: - a RAN node DU 831, which may be a DU of an IAB node DU such as the IAB-DU 572 of the IAB node 570 of FIG5 (and the IAB-DU1 705 of the IAB node 701 of FIG7), - a RAN node CU 832, which may be an IAB donor CU such as the IAB donor CU 501 of FIG5 (and the source F1 donor CU 703 of FIG7). The message Configuration Update 833 is sent by the RAN node DU 831 to the RAN node CU 832 to indicate a configuration change of the RAN node (e.g., IAB node 570, 701) embedded in the RAN node DU 831. The configuration update message 833 may be sent by the RAN node DU 831 to indicate to the RAN node CU 832 that the F1 setup procedure is completed with the help of the target RAN node CU at the DU migration of the RAN node embedded in the RAN node DU 831, i.e., reporting a new F1 connection between the second logical DU activated in the RAN node embedded in the RAN node DU 831 (e.g., the IAB node 701) and the target F1 terminal donor CU (e.g., the target F1 terminal donor CU 707). This message 833 may include the identifier of the target RAN node CU (e.g., the target F1 donor CU 707). It may also include the identifier of the cell activated in the second logical DU of the RAN node embedded in the RAN node DU 831 (e.g., PCI and/or NCGI). Additionally or alternatively, the message 833 may include a mapping between identifiers of cells controlled by the RAN node DU 831 and identifiers of cells activated with this second logic DU. For example, referring to FIG. 7 , the message 833 is sent to the source IAB donor CU 703 by the first logic DU entity 705 activated at the IAB node 701 to indicate the completion of the F1 setup procedure toward the target IAB donor CU 707, and optionally together with identifiers of cells activated at the second logic DU 706 and optionally together with a mapping between identifiers of cells activated at the second logic DU 706 and identifiers of cells controlled by the first logic DU 705. This configuration update message 833 may include the TNL address (i.e., IP address) and/or identifier (i.e., the global NG-RAN node ID as specified in TS 38.423 V17.2.0, section 9.2.2.3) of the RAN node CU (e.g., the target F1 donor CU 707) terminating the new F1 connection of the RAN node embedded in the RAN node DU 831. The message 833 may indicate the success or failure of the F1 setup procedure. If the F1 setup procedure fails (e.g., the F1 connection cannot be established), the message 833 may also indicate the reason for the failure to establish the F1 connection. The RAN node CU 832 may respond or reply with a message Configuration Confirm 834 sent to the RAN node DU 831. According to an example, the flow in Figure 8d corresponds to the procedure gNB-DU Configuration Update described in TS 38.473 V17.2.0 chapter 8.2.4, which is modified to include the information elements described above. Message 833 corresponds to the message GNB-DU Configuration Update described in TS 38.473 V17.2.0 chapter 9.2.1.7, and message 834 corresponds to the message GNB-DU Configuration Update Confirm described in TS 38.473 V17.2.0 chapter 9.2.1.8. Message 833 can be sent after the F1 setup procedure, described with reference to Figure 8c and triggered by the RAN node CU 832 (using the procedure described with reference to Figure 8a) or by the RAN node embedded in the RAN node DU 831 with the selection of a target RAN node CU based on a pre-configured one. Pre-configuration may occur, for example, at the network integration of a RAN node embedded in RAN node DU 831. For example, the F1 setup procedure may be triggered by a RAN node CU 832 (e.g., source IAB donor CU 703/501) or by a RAN node (IAB node 701/570) embedded in RAN node DU 831 (e.g., IAB-DU1 572) determining that RAN node DU 831 is to be migrated to a target RAN node CU (e.g., target IAB donor CU 707/503). FIG. 9a is a schematic simplified diagram 900 illustrating an exemplary message flow of a procedure used by a RAN node CU for reporting activation of a cell to another RAN node CU according to an embodiment of the present invention. This figure shows two RAN nodes, RAN node CUa 901 and RAN node CUb 902, which may be two IAB donor CUs, such as two of the IAB donor CUs 501, 502 and 503 of Figure 5. With respect to the example shown in Figure 7, RAN node CUa 901 is the target F1 donor CU 707 and RAN node CUb 902 is the source F1 donor CU 703. The message Configuration Update 903 is sent by RAN node CUa 901 to RAN node CUb 902 to inform RAN node CUb 902 about activating new cell(s) in the logical DU of the RAN node DU such as IAB-DU2 706 of the IAB node 701. For example, the source F1 donor CU 703 receives a configuration update message 903 from the target F1 donor CU 707 and the configuration update message 903 includes identification information (e.g., PCI, NCIGI) identifying one or more new cells that have been enabled at the second logical DU entity (IAB-DU2 706) of the DU of the IAB node 701. In addition, the message 903 may include a mapping between the identifiers (PCI and/or NCGI) of the (several) cells enabled at the second logical DU (IAB-DU2 706) and the identifiers of the (several) active cells controlled by the first logical DU (IAB-DU1 705). The RAN node CUb 902 responds with a message Configuration Confirm 904 sent to the RAN node CUa 901. According to an example, Figure 9a corresponds to the procedure NG-RAN NODE CONFIGURATION UPDATE described in TS 38.423 V17.2.0 section 8.42, and message 903 corresponds to the message NG-RAN NODE CONFIGURATION UPDATE described in TS 38.423 V17.2.0 section 9.1.3.4, and message 904 corresponds to the message NG-RAN NODE CONFIGURATION UPDATE CONFIRM described in TS 38.423 V17.2.0 section 9.1.3.5. Figure 9b is a schematic simplified diagram 910 illustrating an exemplary message flow of a procedure used by a RAN node CU to coordinate with another RAN node CU to manage traffic migration (e.g., migration or release of F1 traffic, such as user/control traffic) according to an embodiment of the present invention. This figure shows two RAN nodes, RAN node CUa911 and RAN node CUb912, which may be two IAB donor CUs, such as two of the IAB donor CUs 501, 502 and 503 of Figure 5. A message transport migration request 913 is sent by RAN node CUa911 to RAN node CUb912 to request traffic migration or release in the IAB topology controlled by RAN node CUb912. For example, referring to FIG. 7 , in a situation where the MT 704 of the IAB node 701 has been migrated to a non-F1 donor CU (not shown in FIG. 7 ), the source F1 donor CU 703 may send a transport migration request 913 to the non-F1 donor CU to request the release of traffic (e.g., F1 traffic) migrated to the topology of the non-F1 donor CU (i.e., when the F1 traffic is now to be routed from the target F1 donor CU 707 through the IAB topology managed by the non-F1 donor CU). Alternatively, in the case where the MT 704 of the IAB node 701 has been migrated to a non-F1 donor CU (not shown in FIG. 7 ), the target F1 donor CU 707 may send a transport migration request 913 to the non-F1 donor CU to request that traffic (e.g., F1 traffic) be migrated to the topology of the non-F1 donor CU (i.e., when the F1 traffic is now to be routed from the target F1 donor CU 707 through the IAB topology managed by the non-F1 donor CU). The RAN node CUb 912 responds with a message transport migration response 914 sent to the RAN node CUa 901 to accept or reject the request. Depending on the circumstances, FIG. 9 b may correspond to the IAB transport migration management procedure specified in TS 38.423 V17.2.0 section 8.5.2. Message 913 corresponds to the IAB Transport Migration Management Request message specified in TS 38.423 V17.2.0 Section 9.1.4.2, and message 914 corresponds to the IAB Transport Migration Management Response message specified in TS 38.423 V17.2.0 Section 9.1.4.3. Figure 9b may also correspond to the IAB Transport Migration Modification Procedure specified in TS 38.423 V17.2.0 Section 8.5.3. Message 913 corresponds to the IAB Transport Migration Modification Request message specified in TS 38.423 V17.2.0 Section 9.1.4.4, and message 914 corresponds to the IAB Transport Migration Modification Response message specified in TS 38.423 V17.2.0 Section 9.1.4.5. FIG. 10 a is a flow chart showing an exemplary method 1000 according to one or more embodiments of the present invention, which is performed at a source IAB donor CU for use in a migration procedure (or in a portion of a migration procedure) in which a distributed unit DU of an IAB node is migrated from one IAB topology managed by the source IAB donor CU to another IAB topology managed by a target IAB donor CU. The method 1000 is used to manage the migration of the DU of the IAB node toward the target IAB topology at a source F1-terminal donor CU of the IAB node. For example, with reference to the IAB communication system shown and described in reference FIG. 5 , the source IAB donor CU performing the method 1000 may be the IAB donor CU 501 (e.g., the F1-terminal donor CU of the IAB node 570 through which the IAB node 570 maintains an F1 connection). The IAB node may be a mobile IAB node 570 belonging to an IAB topology 5001 controlled by an IAB donor CU 501. The migration procedure may involve the migration of DUs 572 of the IAB node 570 from the IAB topology 5001 to the IAB topology 5003 managed by the IAB donor CU 503 (which is a target IAB donor CU). Referring to FIG. 7 , the IAB node may be an IAB node 701 and the migration procedure may involve the migration of DUs of the IAB node 701 from a source F1 donor CU 703 to a target F1 donor CU 707. The method 1000 shown and described in FIG. 10 a may be performed by software components and/or hardware components. The source IAB donor CU may be implemented in the communication device 400 as shown in and described with reference to FIG. 4 , wherein the method as shown in and described with reference to FIG. 10 a is executed by one or more processing units such as the central processing unit 411. At step 1001, a source F1 end donor CU (e.g., donor CU 501 of FIG. 5 (703 of FIG. 7)) determines that a DU of an IAB node (e.g., IAB node 570 of FIG. 5 (701 of FIG. 7)) is to be migrated from the source F1 donor CU 501, 703 to a target F1 donor CU, such as donor CU 503 of FIG. 5 (707 of FIG. 7). For example, the source F1 donor CU 503, 707 determines that a DU of an IAB node (e.g., IAB node 570) is to be migrated toward a target F1 donor CU, such as donor CU 503. For example, the source F1 donor CU 503, 707 determines that a DU of an IAB node (e.g., IAB node 570) is to be migrated toward a target F1 donor CU, such as donor CU 503. 501, 703 may determine that the DU of the IAB node 570, 701 is to be migrated in response to determining that the migration of the MT of the IAB node 570, 701 toward the new parent IAB node (which may be a new IAB node or a new IAB donor DU) has been completed. Examples of other triggers for determining that a DU is to be migrated are described above. Details of how the source F1 donor CU 501, 703 determines the target F1 donor CU 503, 707 are also described above. At step 1002, the source F1 terminal donor CU 501, 703 will be used to establish the target IAB donor CU 8a. The source F1 donor CU 501, 703 sends a request for a new F1 connection (i.e., a new F1 connection) between the source F1 end donor CU 501, 703 and the IAB node 570, 701 (i.e., a new F1 connection) (e.g., a new F1 associated with the target IAB donor CU) to the IAB node. For example, the source F1 end donor CU 501, 703 sends a request for a new F1 connection to the IAB node 570, 701 to be migrated. The request may be the configuration request 803 described with reference to FIG. 8a. The source F1 donor CU 501, 703 may send information indicating that the F1 connection is for the purpose of DU migration towards a target IAB donor CU (e.g., information indicating that the request for establishing the F1 connection is a DU migration of a DU of the IAB node) and/or information indicating the number of cells to be activated at a second logical DU entity of the DU of the IAB node to the IAB node. The source F1 donor CU 501, 703 may optionally send identifiers (e.g., PCI and/or NCGI) of the active cell(s) controlled by the first logical DU 705, for which a mapping with identifiers of the cells to be activated (e.g., at the second logical DU to be activated) is provided. Optionally, at step 1003, the source F1 terminal donor CU 501, 703 sends identification information for identifying the target IAB donor CU 503, 707 to the IAB node 570, 701. The identification information may be the TNL address (i.e., IP address) of the target IAB donor CU 503, 707. For example, the source F1 terminal donor CU 501, 703 sends the address of the target F1 donor CU for the new F1 connection to the IAB node to be migrated. In the case where the IAB-MT 704 has been migrated to a non-F1 donor CU (which may be referred to as an RRC donor CU), the source F1 terminal donor CU may be used to send the target F1 donor CU address to the IAB node to be migrated. The identification information sent by 501 and 703 may include the address of the non-F1 donor CU (although the IAB node 701 may already have this information) to identify the non-F1 donor CU as the target F1 donor CU. The source F1 terminal donor CU 703 may receive identification information (e.g., an identifier) from the target F1 donor CU 707 or from the IAB node 570, 701, the identification information identifying one or more new cells that have been enabled at the second logical DU entity of the DU of the IAB node, optionally together with mapping information indicating a mapping between the identification information (e.g., an identifier) of the one or more new or target cells enabled at the second logical DU and the identification information (e.g., an identifier) of the source cell or active cell controlled by the first logical DU. As described above, the DU of the IAB node has a first logical DU entity with an F1 connection to the source F1 terminal donor CU 703, and a second logical DU entity is enabled to perform DU migration (e.g., establish a new F1 connection between the target F1 donor CU 707 and the IAB node 701). For example, the identification information and the optional mapping information may be received in the configuration update message 903 described above. In one example, the source F1 terminal donor CU 703 may send a handover request to the target F1 donor CU 707, the handover request being used to request that one or more user equipments (UEs, such as UE 708) to be served by the IAB node 701 be handed over from the source F1 terminal donor CU 703 to the target F1 donor CU 707 and being used to identify one or more target cells (e.g., candidate target cells) for each UE. The selection of the target cell for the UE may be based on a measurement report provided by the UE (e.g., an indication of the signal strength detected by the UE for one or more cells) or based on a mapping between an identifier of the target cell enabled at the second logical DU and an identifier of the source cell(s) controlled by the first logical DU. For example, the source F1 terminal donor CU 703 may select one or more of the new cells that have been activated at the second logical DU entity 706 as one or more candidate target cells for each of one or more UEs served by the IAB node based on the mapping information received from the target F1 donor CU 707 or the IAB node 701. The use of mapping avoids waiting for measurement reports from the UE to trigger the handover procedure. In response to receiving a handover confirmation from the target F1 donor CU 707 indicating that the handover of one or more UEs has been accepted and identifying a target cell for each UE, the source F1 terminal donor CU 703 sends configuration information for configuring each of the one or more UEs for the respective target cells to the IAB node 701. The handover confirmation from the target F1 donor CU 707 may also include configuration information for configuring each of the one or more UEs for the respective target cells. The handover procedure 730 described above may be performed for these steps. After completing the handover of the one or more UEs 708 to the target F1 donor CU 707, the source F1 terminal donor CU 703 may send a request for deactivating the first logical DU entity (e.g., IAB-DU1 705) of the DU of the IAB node 701 to the IAB node 701. The request may be a deactivation request sent in a configuration request message 803 or a removal request sent in a message 823. After completing the handover of one or more UEs 708 to the target F1 donor CU 707, and when the mobile terminal MT (e.g., IAB-MT 704) of the IAB node 701 has been migrated to the non-F1 donor CU, the source F1 terminal donor CU 703 may send a traffic migration request (e.g., message 913) to the non-F1 donor CU for requesting the release of traffic associated with the IAB node that is routed via one or more paths in the IAB topology managed by the non-F1 donor CU. 10b is a flow chart showing an exemplary method 1010 for a migration procedure (or for a portion of a migration procedure) performed at an IAB node (e.g., a mobile IAB node or mIAB node) according to one or more embodiments of the present invention, in which a distributed unit DU of the IAB node is migrated from an IAB topology managed by a source IAB donor CU to another IAB topology managed by a target IAB donor CU. The method 1010 is used to manage DU migration towards a target F1 terminal donor CU at an IAB node. For example, referring to the IAB communication system shown and described with reference to FIG5 , the IAB node executing the method 1010 may be a mobile IAB node 570 belonging to an IAB topology 5001 controlled by an IAB donor CU 501 that is a source IAB donor CU (e.g., an F1 terminal donor CU of the mobile IAB node 570 through which the mobile IAB node 570 maintains an F1 connection). The migration procedure may involve the migration of the DU 572 of the IAB node 570 from the IAB topology 5001 to the IAB topology 5003 managed by the IAB donor CU 503 that is a target IAB donor CU. 7, the IAB node may be a mobile IAB node 701 and the migration procedure may involve the migration of the DU of the IAB node 701 from the source F1 donor CU 703 to the target F1 donor CU 707. The method 1010 shown and described in FIG10b may be performed by software components and/or hardware components. The IAB node may be implemented in the communication device 400 shown and described in FIG4, wherein the method shown and described in FIG10b is performed by one or more processing units such as the central processing unit 411. At step 1011, an IAB node (e.g., IAB node 570 of FIG. 5 (701 of FIG. 7) receives a request for a new F1 connection (e.g., an F1 connection between the IAB node 570, 701 and a target F1 donor CU (e.g., donor CU 503 of FIG. 5 (707 of FIG. 7)) from a source F1 terminal donor CU (e.g., donor CU 501 of FIG. 5 (703 of FIG. 7)). The request may be a configuration request 803 described with reference to FIG. 8a. In response to receiving the request for the new F1 connection, the IAB node 570, 701 then sends an F1 setup request requesting setup of the F1 connection to the target F1 donor CU. 503, 707 (step 1018). For example, the setup request may be the setup request 813 described above. The F1 setup request message sent by the IAB node may include identification information for identifying the source F1 terminal donor CU or identification information for identifying a non-F1 donor CU (which may be referred to as an RRC donor CU) when the mobile terminal MT of the IAB node has migrated to the non-F1 donor CU. The IAB node 570, 701 may identify or determine the identity of the target F1 donor CU 503, 707 in response to receiving the request for establishing an F1 connection (step 1017), and then send the F1 setup request to the identified target F1 donor CU. The IAB node 570, 701 may identify or determine the identity of the target F1 donor CU 503, 707 based on the target F1 donor CU. The target F1 donor CU may be identified by the identification information of the IAB-MT 704 (e.g., the address (e.g., TNL address/IP address) of the target F1 donor CU 503, 707 received from the source F1 donor CU 501, 703) (e.g., in a message with the configuration request 803 or sent separately), as shown in optional step 1012. In the case where the IAB-MT 704 has been migrated to a non-F1 donor CU, the identification information received at the IAB node may include the address of the non-F1 donor CU in this case, and the IAB node will identify the non-F1 donor CU as the target F1 donor CU. Alternatively, if the address of the target F1 donor CU is not received from the source F1 donor CU 501, 703, and the IAB-MT 704 is not received, the IAB-MT 704 may be received by the IAB node. 704 has been migrated to a non-F1 donor CU, then the IAB node 570, 701 identifies or determines the identity of the target donor CU 503, 707 by treating/identifying the non-F1 donor CU as a target F1 donor CU (e.g., after receiving a request to establish an F1 connection). For example, in this case, the IAB node 701 has been informed of the address of the target donor CU (e.g., TNL address/IP address) when the IAB-MT 704 was migrated to the non-F1 donor CU and can therefore identify the address of the non-F1 donor CU as the address of the target donor CU. Optionally, at step 1012, the IAB node 570, 701 receives a packet for identifying the target F1 donor CU from the source F1 terminal donor CU 501, 703. 503, 707. The identification information may include the address (e.g., TNL address/IP address) of the target F1 terminal donor CU for the new F1 connection. As another method (e.g., replacing steps 1011, 1012), which is not shown in the figure, the IAB node 570, 701 may also trigger itself to send a request for a new F1 connection and identify the target F1 donor CU based on pre-configuration. Therefore, the IAB node 570, 701 itself can determine that a new F1 connection is to be set up and can identify the IAB donor CU with which the connection is to be set up based on the pre-configuration information pre-configured at the IAB node and then can send an F1 setup request for requesting the setup of the F1 connection to the identified target IAB donor CU. As a first example, the triggering condition may be detection of the IAB node 570, 701 by a cell or cells of a neighboring IAB node via an identifier (NCGI) associated with a donor CU that is in a pre-configured list of target donor CUs. In other words, the IAB node 570, 701 may determine that a new F1 connection is to be set up (e.g., because a DU (e.g., 572) of the IAB node 570/701 is to be migrated) in response to or after detecting one or more cells of the neighboring IAB node 570, 701 and may identify the IAB donor CU with which the connection is to be set up based on the pre-configuration information, the one or more cells being associated with an IAB donor CU included in a list of candidate target IAB donor CUs pre-configured at the IAB node. As a second example, when the first F1 connection with an IAB donor CU identified by pre-configuration must be set up after establishing an RRC connection between the IAB-MT and the IAB donor CU (which depends on the physical location of the IAB node), the triggering condition is at the network integration of the IAB node. In other words, the IAB node 570, 701 may determine that a new F1 connection is to be set up at the network integration of the IAB node 570/701 (e.g., when the IAB node 570/701 is connected to the network) and the IAB node 570/701 identifies the IAB donor CU with which the F1 connection is to be set up based on the list of candidate IAB donor CUs pre-configured at the IAB node and the IAB node location. FIG. 10c shows exemplary steps performed at an IAB node (e.g., a mobile IAB node or mIAB node) to identify a target IAB donor CU according to one or more embodiments of the present invention. In one example, step 1017 of FIG. 10b may be performed by implementing steps 1013 to 1015 of FIG. 10c, which are collectively referred to as step 1016. In an alternative method where the IAB node 570, 701 itself can determine that a new F1 connection is to be set up (without receiving a request for a new F1 connection), steps 1013 to 1015 may be performed at the IAB node to identify the IAB donor CU with which the connection is to be set up based on pre-configuration information pre-configured at the IAB node. At step 1013, the IAB node 701 determines whether it has received identification information for identifying the target IAB donor CU of the F1 connection from the source IAB donor CU (or by pre-configuration) by checking whether the address of the target F1 terminal donor CU for the new F1 connection has been received. If so, at step 1015, the IAB node 701 identifies the target F1 terminal donor CU from the received identification information and the IAB node sends an F1 setup request to the identified target F1 terminal donor CU. If not, then at step 1014, the IAB node 701 identifies a non-F1 terminal donor CU (which may be referred to as an RRC donor CU) as the target F1 terminal donor CU from the received identification information and the IAB node sends an F1 setup request to its non-F1 terminal donor CU (e.g., donor CU 502). The request for a new F1 connection received at the IAB node 701 (e.g., in the configuration request 803) may include a request for one or more cells to be enabled for the second logical DU entity (e.g., IAB-DU2 706), and optionally include the identifiers (PCI and/or NCGI) of the active cell(s) controlled by the first logical DU and/or the identifiers of the active cells (e.g., PCI and/or NCGI) for which a mapping with the identifiers of the cells to be enabled is to be provided. As described above, the DU of the IAB node has a first logical DU entity having an F1 connection with the source F1 terminal donor CU 703, and a second logical DU entity is enabled to perform DU migration (e.g., establish a new F1 connection between the target F1 donor CU 707 and the IAB node 701). In one example, the IAB node 701 enables the second logical DU entity (e.g., IAB-DU2 706) in response to receiving a request to establish an F1 connection (e.g., in the configuration request 803). In both of these cases, the F1 setup request (e.g., message 813) is sent by the second logical DU entity. The F1 setup request message sent to the target F1 terminal donor CU 707 may include information indicating the number of cells to be activated with the activation of the second logical DU at the IAB node and/or information indicating that the request for establishing the F1 connection is for DU migration of the DU of the IAB node. Optionally, the F1 setup request message includes a request for a mapping between identifiers (e.g., PCI and/or NCGI) of the active cell(s) controlled by the first logical DU and identifiers of the cell(s) to be activated. In one example, after sending the F1 setup request, the IAB node 701 receives a response (e.g., setup response 814) from the target F1 end donor CU 707 including a request for one or more cells to be enabled for the second logical DU entity. The response may include identification information, such as an identifier of each of the cells to be enabled. The IAB node 701 may receive a request (e.g., a remove request 823 or a disable request in the configuration request 803) from the source F1 donor CU 703 to disable a first logical DU entity (e.g., IAB-DU1 705) of a DU of the IAB node 701 and in response to the request, the IAB node 701 disables the first logical DU entity (e.g., IAB-DU1 705). FIG. 10 d is a flow chart showing an exemplary method 1020 according to one or more embodiments of the present invention, which is executed at a target IAB donor CU for use in a migration procedure (or for use in a portion of a migration procedure) in which a distributed unit DU of an IAB node is migrated from an IAB topology managed by a source IAB donor CU to another IAB topology managed by the target IAB donor CU. The method 1020 is used to manage the migration of DUs of an IAB node at a target F1 terminal donor CU toward a target IAB topology managed by the target F1 terminal donor CU. For example, with reference to the IAB communication system shown and described in reference FIG. 5 , the target IAB donor CU executing the method 1020 may be the IAB donor CU 503 controlling the IAB topology 5003. The IAB node may be a mobile IAB node 570 belonging to an IAB topology 5001 controlled by an IAB donor CU 501. The migration procedure may involve the migration of a DU 572 of the IAB node 570 from the IAB topology 5001 to the IAB topology 5003. Referring to FIG7 , the IAB node may be an IAB node 701 and the migration procedure may involve the migration of a DU of the IAB node 701 from a source F1 donor CU 703 to a target F1 donor CU 707. The method 1020 shown in FIG10 d and described with respect to FIG10 d may be performed by software components and/or hardware components. The target IAB donor CU may be implemented in the communication device 400 as shown in FIG. 4 and described with reference to FIG. 4 , wherein the method as shown in FIG. 10 and described with reference to FIG. 10 d is executed by one or more processing units such as the central processing unit 411. At step 1021, the target IAB donor CU (such as the IAB donor CU 503 of FIG. 5 (707 of FIG. 7 )) receives an F1 setup request for requesting to establish an F1 connection between the target IAB donor CU and the IAB node from an IAB node (such as the IAB node 570 of FIG. 5 (701 of FIG. 7 )). For example, the setup request may be the setup request 813 described above. The F1 setup request message sent by the IAB node may include identification information for identifying the source F1 terminal donor CU or identification information for identifying a non-F1 donor CU (which may be referred to as an RRC donor CU) when the mobile terminal MT of the IAB node has migrated to the non-F1 donor CU. The F1 setup request message may include information indicating the number of cells to be activated with the activation of the second logical DU at the IAB node and/or information indicating that the request for establishing the F1 connection is about DU migration of a DU of the IAB node. Optionally, the F1 Setup request message may include identifiers of active cells controlled by the first logical DU (e.g., PCI and/or NCGI) and/or identifiers of active cells having a mapping to be provided therefor with identifiers of cells to be enabled (e.g., PCI and/or NCGI). The F1 Setup request message may additionally or alternatively include a request for a mapping between identifiers of active cell(s) controlled by the first logical DU (e.g., PCI and/or NCGI) and identifier(s) of cell(s) to be enabled (e.g., at a second logical DU of the IAB node). At step 1022, the target IAB donor CU 503, 707, in response to receiving the F1 setup request, sends a response (e.g., setup response 814) to the IAB node 570, 701, the response including a request for one or more cells to be activated for a second logical DU entity of the IAB node 570, 701. As described above, the DU of the IAB node has a first logical DU entity having an F1 connection with the source F1 terminal donor CU 703, and the second logical DU entity is activated to perform the DU migration (e.g., to establish a new F1 connection between the target F1 donor CU 707 and the IAB node 701). The response may include identification information identifying one or more cells to be enabled (e.g., an identifier of each of the cells to be enabled). Optionally, the response may also include a mapping between identifiers of the (several) currently used cells controlled by the first logical DU (e.g., PCI and/or NCGI) and the identifiers of the (several) cells to be enabled. The target IAB donor CU 503, 707 or IAB node 570, 701 may send identification information identifying each of the one or more new cells that have been enabled at the second logical DU entity of the DU of the IAB node 570, 701 to the source IAB donor CU 501, 703. The target IAB donor CU 503, 707 or IAB node 570, 701 may also send mapping information to the source IAB donor CU 501, 703. In one example, the target F1 donor CU 707 may receive from the source F1 terminal donor CU 703 a request for one or more user equipments (UEs, such as UE 708) to be served by the IAB node 701 to be handed over from the source F1 terminal donor CU 703 to the target F1 donor CU 707, and for identifying one or more target cells (e.g., candidate target cells) for each UE. The selection of the target cell for the UE may be based on a measurement report provided by the UE (e.g., an indication of the signal strength detected by the UE for one or several cells), or based on a mapping between an identifier of a target cell activated at the second logical DU and an identifier of a source cell controlled by the first logical DU. For example, the source F1 terminal donor CU 703 may select one or more of the new cells that have been activated at the second logical DU entity 706 as one or more candidate target cells for each of one or more UEs served by the IAB node 701 based on mapping information received from the target F1 donor CU 707 or the IAB node 701. The use of mapping avoids waiting for measurement reports from the UE to trigger the handover procedure. When the target F1 donor CU 707 determines that the handover of one or more UEs is acceptable, the target F1 donor CU 707 sends a handover confirmation to the source F1 terminal donor CU 703 indicating that the handover of the one or more UEs has been accepted and identifying the target cell for each UE. The handover confirmation may also include configuration information for configuring each of the one or more UEs for the respective target cell. The handover procedure 730 described above may be performed for these steps. After completing the handover of one or more UEs 708 to the target F1 donor CU 707, and when the mobile terminal MT (e.g., IAB-MT 704) of the IAB node 701 has been migrated to the non-F1 donor CU, the target F1 donor CU 707 may send a traffic migration request (e.g., message 913) to the non-F1 donor CU for requesting traffic migration for traffic associated with the IAB node routed through one or more paths in the IAB topology managed by the non-F1 donor CU. Thus, by sending a request to the IAB node for establishing an F1 connection between the IAB node and the target IAB donor CU, the source F1 donor CU (e.g., source IAB donor CU) facilitates DU migration of the IAB node with or without MT migration. Furthermore, in response to receiving a request to establish an F1 connection, the IAB node may identify (e.g., via identification information sent by a source donor CU or by determining a non-F1 donor CU to be a target donor CU when no identification information is sent by the source donor CU) a target donor CU to enable handover of a UE served by the IAB node to the target donor CU. A determination that a DU of the IAB node is to be migrated may be triggered by an event. The event or events that trigger the determination that a DU of the IAB node is to be migrated may be left to the implementation scheme. For example, the decision to migrate a DU may be based on detection of an MT migration from a first IAB topology toward a second IAB topology, and based on a known (predefined) trajectory indicating to the source F1 donor CU that the MT will later migrate to an IAB node of a third IAB topology. In this case, to avoid the messaging for DU migration/UE handover towards the second IAB topology, the DU is migrated directly towards the third IAB topology. Another triggering event may be when the processing load level is detected to be higher than a predetermined threshold in the source F1 donor CU. DU migration is then triggered and the selection of the target F1 donor CU is based on the processing load of other donor CUs connected to the source F1 donor CU. In other words and as an overview, the triggering events and decision procedures for the F1 terminal donor CU to perform mobile IAB-DU (mIAB-DU) migration of the mobile IAB node can be left to the implementation scheme. Furthermore, for flexible IAB network management, it should be allowed to migrate the mIAB-DU towards a target F1 terminal donor CU (which may be referred to as an RRC terminal donor CU) that is different from a non-F1 terminal donor CU (which may be referred to as an RRC terminal donor CU) of a co-located mobile IAB-MT (mIAB-MT). Therefore, an IAB-DU of a mobile IAB node may migrate towards a target F1 terminal donor CU that is different from a non-F1 terminal donor CU of a co-located IAB-MT. Then, when the F1 donor CU serving the mIAB-DU decides whether to perform the mIAB-DU migration, it may request the mobile IAB node to activate a second logical DU to be served by the target F1 donor CU identified in the request. For example, an F1 donor CU may trigger a gNB-CU configuration update procedure to request the mobile IAB node to set up a new F1 connection with an identified target F1 donor CU. Next, an activated logical DU triggers the F1 setup procedure with the target F1 donor CU. If the request from the F1 donor CU does not identify the target F1 donor CU, the activated logical DU triggers the F1 setup procedure with the non-F1 terminal donor CU of the mobile IAB node. Therefore, when requested by its serving F1 donor CU to set up a new F1 connection, a mobile IAB node may execute the F1 setup procedure with the target F1 donor CU indicated in the request. In the absence of such an indication, the mobile IAB node executes the F1 setup procedure with the non-F1 terminal donor CU. To trigger a handover for the UE served by the mobile IAB node during the mIAB-DU migration, the target F1 donor CU may notify the source F1 donor CU about the activation of the new cell(s) in the second logical DU of the mobile IAB node. To this end, the target F1 donor CU may perform a configuration update procedure with the NG-RAN node of the source F1 donor CU. Once notified, the source F1 donor CU may send a handover command to the UE served by the migrating mobile IAB node. Therefore, the NG-RAN Node Configuration Update procedure may be used by a target F1 terminal donor CU of a mobile IAB node to inform a source F1 terminal donor CU about the ID of the cell served by a second logical DU of the mobile IAB node. With regard to the procedure for triggering, executing and reporting F1 setup at DU migration, it may be observed that, to trigger a DU migration of a mobile IAB node determined by a source F1 donor CU, the following information may be delivered to the mobile IAB node: - an indication requesting a DU migration (mandatory), meaning that the F1 setup procedure should be initiated with the target logical DU. - an identifier of the target F1 donor CU (optional). This information element is relevant when migrating a DU towards a target F1 donor CU of a non-F1 donor CU that is different from the serving co-located mobile IAB-MT. In the absence of this indication, the mobile IAB node shall perform the F1 setup procedure towards the non-F1 terminal donor CU. Given the lower number of bits used for this signaling, it may not be necessary to establish a new F1AP procedure. Furthermore, this is about F1 interface management and therefore the gNB-CU configuration update procedure seems applicable for this signaling. It is then proposed that the gNB-CU configuration update procedure can be used by a source CU to trigger the F1 setup procedure for the purpose of DU migration towards a target CU. In the F1 Setup Request message, the mobile IAB node shall pass the following information to the target F1 donor CU: - The F1 Setup Request is an indication of DU migration. Thanks to this information element, the target F1 donor CU understands the content and can handle the request correctly. - PCI of the active cells at the source logical DU. This information element helps the target F1 donor CU to select the appropriate PCI for the cells to be enabled at the target logical DU. Next, it is proposed that in the scope of DU migration of a mobile IAB node, the F1 setup request sent to the target F1 donor CU should include an explicit indication that the F1 setup is related to the DU migration of the mobile IAB node, and it should include a list of PCIs at the source logical DU of this mobile IAB node. To report the result of the F1 setup procedure for the purpose of DU migration of the mobile IAB node, the mobile IAB node may pass the following information to the source F1 donor CU: - an indication of the success or failure of the F1 setup and, in case of failure, the reason for the failure. - the ID of the cell activated at the target logical DU by the target F1 donor CU. - a mapping between the ID of the cell activated at the target logical DU and the ID of the cell currently in use at the source logical DU as an optional information element. Due to this mapping, it should be possible to limit the scope of measurements to be performed at the UE, which may even avoid measurement reports from the UE to initiate the handovers. Since the gNB-CU Configuration Update procedure seems suitable for triggering F1 Setup, the gNB-DU Configuration Update procedure also seems to be a good candidate for the existing F1AP procedure to report the results of F1 Setup. It is then proposed that the gNB-DU Configuration Update procedure can be used by a mobile IAB node to report the results of the F1 Setup procedure towards a target CU to the source CU of the DU migration, and it is proposed that the mapping between the cell IDs activated at the target logical DU and the active cell IDs at the source logical DU be included as one of the optional information elements in the reporting of the F1 Setup results. With regard to providing identification information to the F1 donor CU, it can be observed that, at this CU, when a DU of a mobile IAB node migrates towards a target F1 donor CU that is different from a non-F1 donor CU of the co-located mobile IAB-MT, the identifier of the non-F1 donor CU and the XnAP UE ID of the mobile IAB-MT should be provided to the target F1 donor CU. Due to these information elements, the target F1 donor CU will be able to perform transport migration management procedures towards the non-F1 donor CU. In addition, during network integration of the mIAB MT and the co-located mIAB-DU into different donor CUs, the UE XnAP ID of the mIAB-MT assigned by the CU of the MT and the gNB-ID of the CU of the MT should be known to the CU of the mIAB-DU. Considering the network integration scenario, there are two options: - Option 1: The mobile IAB node provides identification information based on information received from the non-F1 donor CU (i.e., the CU of the mIAB-MT), - Option 2: The non-F1 donor CU provides identification information once it knows the identifier of the F1 donor CU (i.e., the CU of the mIAB-DU) from the mobile IAB node. The disadvantage of Option 2 is that it requires the F1 donor CU to generate the UE XnAP ID for the mIAB-MT to provide it to the mobile IAB node which will pass it to the non-F1 donor CU together with the identifier of the F1 donor CU. This UE XnAP ID generated by the F1 donor CU will be used by the non-F1 donor CU in the XnAP message sent to the F1 donor CU using Option 2. Therefore, Option 1 appears to have less regulatory impact than Option 2. If Option 1 is adopted, and for consistency reasons, the mobile IAB node should also provide identification information associated with the non-F1 donor CU to the target F1 donor CU at DU migration. This can be done via the same F1AP signaling as for the network integration scenario. Going forward, the mobile IAB node should also provide identification information associated with the target non-F1 donor CU to its F1 donor CU at (continuous) MT migrations while still using the same F1AP signaling. To cover all scenarios considered above, the F1AP procedure gNB-DU configuration update is appropriate as it can be triggered at any time. Next, it is proposed that the gNB-DU configuration update procedure can be used by the mobile IAB node to notify the F1 donor CU about the identifier of the non-F1 donor CU and the XnAP UE ID of the mobile IAB-MT at this CU. This procedure can be applied during network integration, DU migration and MT migration of the mobile IAB node. It can be noted that the source donor CU of the mIAB-MT can send the information on the target donor CU of the mIAB-MT to the donor CU of the mIAB-DU after completing the IAB-MTHO. In fact, it is proposed to be compatible with this description because the source non-F1 donor CU (i.e., the source donor CU of the mIAB-MT) will pass the information to the F1 donor CU (i.e., the donor CU of the mIAB-DU), not directly, but through the mobile IAB node. In addition, it is proposed that the identifiers of the non-F1 donor CU and the XnAP UE ID of the mobile IAB-MT at this CU may be included in the F1 setup request sent to the target F1 donor CU at the DU migration. The absence of these information elements in the F1 setup request may indicate that the non-F1 donor CU is also the target F1 donor CU. Next, it is proposed that in the scope of DU migration of the mobile IAB node, the F1 setup request sent to the target F1 donor CU may also include the identifiers of the non-F1 donor CU and the XnAP UE ID of the mobile IAB-MT at this CU. Although the present invention has been described with reference to embodiments, it should be understood that the present invention is not limited to the disclosed embodiments. A person skilled in the art will appreciate that various changes and modifications may be made thereto without departing from the scope of the invention as defined by the appended claims. All features disclosed in this specification (including any appended claims, abstracts, and drawings) and/or all steps of any method or process disclosed may be combined in any combination, except combinations that would make at least some of these features and/or steps mutually exclusive. Each feature disclosed in this specification (including any appended claims, abstracts, and drawings) may be replaced by an alternative feature that provides the same, equivalent, or similar functionality, unless expressly stated to be prohibited. Therefore, unless expressly stated to be prohibited, each disclosed feature is merely an example of a general series of equivalent or similar features. In the scope of the patent application, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. The mere fact that different features are recorded in mutually different dependent clauses does not mean that the combination of these features cannot be used to advantage. In the above embodiments, the functions may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored or transmitted in a computer-readable medium as one or more instructions or program codes, and executed by a hardware-based processing unit. Computer-readable media may include computer-readable storage media, which corresponds to tangible media such as data storage media, or communication media including any media that facilitates the transfer of a computer program from one place to another (e.g., according to a communication protocol). In this manner, computer-readable media may generally correspond to (1) non-transitory tangible computer-readable storage media; or (2) communication media such as signals or carrier waves. Data storage media can be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, codes and/or data structures used to implement the techniques described in this disclosure. A computer program product may include a computer-readable medium. By way of example, and not limitation, such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage, or other magnetic storage devices, flash memory, or any other medium that can be used to store the desired program code in the form of instructions or data structures and can be accessed by a computer. In addition, any connection is appropriately defined as a computer-readable medium. For example, if instructions are transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology (such as infrared, radio, and microwave), then the coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology (such as infrared, radio, and microwave) is included in the definition of medium. However, it should be understood that computer-readable storage media and data storage media do not include connections, carrier waves, or other transient media, and instead refer to non-transient, tangible storage media. The disk or disc used in this article includes a mini disc (CD), a laser disc, an optical disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein a disk generally refers to a disk that reproduces data through magnetic principles, while a disc reproduces data through laser optics. Combinations of the above may also be included in the scope of computer-readable media.

30:標頭 100:通訊系統 101:有線鏈路 105:車輛 108:建築物 110:遠端核心網路 120:主基地台/IAB施體 121:IAB節點 122:IAB節點 123:行動IAB站/行動IAB節點 131:使用者設備 132:使用者設備 133:使用者設備 134:使用者設備 135:使用者設備 136:使用者設備 210:方框 211:方框 212:功能介面 220:子層 301:欄位 302:欄位 304:欄位 305:欄位 306:欄位 307:酬載部分 400:通訊裝置 402:通訊介面 403:無線電通訊網路 404:資料儲存構件/硬碟 405:磁碟機 406:磁碟 407:唯讀記憶體 409:螢幕 410:鍵盤 411:中央處理單元 412:隨機存取記憶體 413:通訊匯流排 500:IAB通訊系統 501:IAB-施體CU/F1施體CU 502:IAB-施體CU/施體CU 503:IAB-施體CU/施體CU 504:IAB施體DU 505:IAB施體DU 506:IAB施體DU 507:IAB施體DU 508:有線回載 510:IAB節點 511:MT部分或單元 512:DU部分 520:IAB節點 530:IAB-節點 540:IAB節點 550:IAB節點 560:IAB節點 570:IAB節點 571:MT部分 572:DU部分或單元 580:使用者設備 590:箭頭 600:IAB節點架構 601:IAB節點 602:使用者設備 611:邏輯DUIAB-DU1 612:邏輯DUIAB-DU2 621:存取鏈路 622:鏈路 700:示意簡化圖 701:IAB節點 702:核心網路 703:源F1施體CU/F1終端施體CU 704:IAB-MT 705:IAB-DU1 706:IAB-DU2 707:目標F1施體CU 708:使用者設備 710:載送 711:回載載送 712:資料無線電載送 720:第一步驟 730:交遞程序 735:程序 740:載送 741:回載載送 742:資料無線電載送 800:示意簡化圖 801:RAN節點DU 802:RAN節點CU 803:訊息 804:訊息 810:示意簡化圖 811:RAN節點DU 812:RAN節點CU 813:訊息 814:訊息 820:示意簡化圖 821:RAN節點DU 822:RAN節點CU 823:訊息 824:訊息 830:示意簡化圖 831:RAN節點DU 832:RAN節點CU 833:訊息 834:訊息 870:行動IAB節點 900:示意簡化圖 901:RAN節點CUa 902:RAN節點CUb 903:訊息 904:訊息 910:示意簡化圖 911:RAN節點CUa 912:RAN節點CUb 913:訊息 914:訊息 1000:方法 1001:步驟 1002:步驟 1003:步驟 1010:方法 1011:步驟 1012:步驟 1013:步驟 1014:步驟 1015:步驟 1016:步驟 1017:步驟 1018:步驟 1020:方法 1021:步驟 1022:步驟 1106:磁碟 5001:IAB拓撲 5002:IAB拓撲 5003:IAB拓撲 5050:回載鏈路 30: Header 100: Communication system 101: Wired link 105: Vehicle 108: Building 110: Remote core network 120: Master base station/IAB donor 121: IAB node 122: IAB node 123: Mobile IAB station/Mobile IAB node 131: User equipment 132: User equipment 133: User equipment 134: User equipment 135: User equipment 136: User equipment 210: Box 211: Box 212: Functional interface 220: Sublayer 301: Field 302: Field 304: Field 305: Field 306: Field 307: Payload part 400: Communication device 402: Communication interface 403: Radio communication network 404: Data storage component/hard disk 405: Disk drive 406: Disk 407: Read-only memory 409: Screen 410: Keyboard 411: Central processing unit 412: Random access memory 413: Communication bus 500: IAB communication system 501: IAB-donor CU/F1 donor CU 502: IAB-donor CU/donor CU 503: IAB-donor CU/donor CU 504: IAB donor DU 505: IAB donor DU 506: IAB donor DU 507: IAB donor DU 508: Wired backload 510: IAB node 511: MT part or unit 512: DU part 520: IAB node 530: IAB-node 540: IAB node 550: IAB node 560: IAB node 570: IAB node 571: MT part 572: DU part or unit 580: User equipment 590: Arrow 600: IAB node architecture 601: IAB node 602: User equipment 611: Logical DUIAB-DU1 612: Logical DUIAB-DU2 621: Access link 622: Link 700: Simplified schematic diagram 701: IAB node 702: Core network 703: Source F1 donor CU/F1 terminal donor CU 704: IAB-MT 705: IAB-DU1 706: IAB-DU2 707: Target F1 donor CU 708: User equipment 710: Carrying 711: Backhauling 712: Data radio carrying 720: First step 730: Handover procedure 735: Procedure 740: Carrying 741: Backhauling 742: Data radio carrying 800: Simplified schematic diagram 801: RAN node DU 802: RAN node CU 803: Message 804: Message 810: Simplified schematic diagram 811: RAN node DU 812: RAN node CU 813: message 814: message 820: schematic simplified diagram 821: RAN node DU 822: RAN node CU 823: message 824: message 830: schematic simplified diagram 831: RAN node DU 832: RAN node CU 833: message 834: message 870: mobile IAB node 900: schematic simplified diagram 901: RAN node CUa 902: RAN node CUb 903: message 904: message 910: schematic simplified diagram 911: RAN node CUa 912: RAN node CUb 913: message 914: message 1000: method 1001: step 1002: step 1003: step 1010: method 1011: step 1012: step 1013: step 1014: step 1015: step 1016: step 1017: step 1018: step 1020: method 1021: step 1022: step 1106: disk 5001: IAB topology 5002: IAB topology 5003: IAB topology 5050: backlink

僅透過例示性方式,現在將描述本發明之不同態樣,並且參考以下附圖,其中: [圖1]係可根據一或多項實施例實施本發明之一通訊系統之一示意圖; [圖2a及圖2b]示意性地圖解說明涉及於IAB操作中之一些協定層之堆疊; [圖3]係圖解說明BAP協定資料單元(PDU)或封包之格式之示意圖; [圖4]係根據本發明之實施例之例式性無線通訊裝置之方塊示意圖; [圖5]係其中可實施本發明之實施例及實施例之實例之例式性IAB通訊系統(或IAB網路系統)之示意圖; [圖6]係圖解說明致能其之DU從源IAB拓撲至目標IAB拓撲遷移之IAB節點架構實例之示意簡化圖; [圖7]係圖解說明根據本發明之一或多個實施例之例示性訊息流程以執行包含由遷移IAB節點服務之UE之交遞之IAB節點之DU遷移之簡化圖; [圖8a]係繪示根據本發明之一或多項實施例之執行邏輯DU之啟用之程序之例示性訊息流之簡化圖; [圖8b]係圖解說明用以設定邏輯DU之程序之例示性訊息流之簡化圖; [圖8c]係圖解說明移除邏輯DU之程序之實例訊息流之簡化圖; [圖8d]係繪示由邏輯DU使用以通知RAN節點CU關於組態之變化之程序之例示性訊息流之簡化圖; [圖9a]係圖解說明由RAN節點CU使用以用於向另一RAN節點CU報告胞元之啟用之程序之例示性訊息流程之簡化圖; [圖9b]係圖解說明由RAN節點CU使用以與另一RAN節點CU協調管理運輸遷移之程序之例示性訊息流程之簡化圖; [圖10a]係根據本發明之實施例之例示性方法之流程圖,其用於在IAB節點之源F1終端施體CU處管理該IAB節點之DU遷移朝向目標IAB拓撲; [圖10b]係根據本發明之實施例之一例式性方法之一流程圖,其用於在一IAB節點處管理朝向一目標IAB拓撲之DU遷移; [圖10c]係展示根據本發明之一或多項實施例之在IAB節點處執行以識別目標IAB施體CU之例示性步驟之流程圖; [圖10d]係根據本發明之實施例之例示性方法之流程圖,其用於在目標IAB施體CU處管理IAB節點之DU遷移朝向由該目標IAB施體CU管理之目標IAB拓撲。 By way of example only, different aspects of the present invention will now be described with reference to the following accompanying drawings, in which: [FIG. 1] is a schematic diagram of a communication system in which the present invention may be implemented according to one or more embodiments; [FIG. 2a and FIG. 2b] schematically illustrate the stacking of some protocol layers involved in IAB operation; [FIG. 3] is a schematic diagram illustrating the format of a BAP protocol data unit (PDU) or packet; [FIG. 4] is a block diagram of an exemplary wireless communication device according to an embodiment of the present invention; [FIG. 5] is a schematic diagram of an exemplary IAB communication system (or IAB network system) in which embodiments and examples of embodiments of the present invention may be implemented; [FIG. 6] is a schematic simplified diagram illustrating an example of an IAB node architecture enabling its DU to migrate from a source IAB topology to a target IAB topology; [FIG. 7] is a simplified diagram illustrating an exemplary message flow according to one or more embodiments of the present invention to perform DU migration of an IAB node including handover of a UE served by a migrating IAB node; [FIG. 8a] is a simplified diagram illustrating an exemplary message flow of a procedure for performing activation of a logical DU according to one or more embodiments of the present invention; [FIG. 8b] is a simplified diagram illustrating an exemplary message flow of a procedure for setting a logical DU; [FIG. 8c] is a simplified diagram illustrating an example message flow of a procedure for removing a logical DU; [Figure 8d] is a simplified diagram showing an exemplary message flow of a procedure used by a logic DU to notify a RAN node CU of a change in configuration; [Figure 9a] is a simplified diagram illustrating an exemplary message flow of a procedure used by a RAN node CU to report activation of a cell to another RAN node CU; [Figure 9b] is a simplified diagram illustrating an exemplary message flow of a procedure used by a RAN node CU to coordinate management of transport migration with another RAN node CU; [Figure 10a] is a flow chart of an exemplary method according to an embodiment of the present invention for managing DU migration of an IAB node at a source F1 terminal donor CU of the IAB node toward a target IAB topology; [FIG. 10b] is a flowchart of an exemplary method according to an embodiment of the present invention, which is used to manage DU migration towards a target IAB topology at an IAB node; [FIG. 10c] is a flowchart showing exemplary steps performed at an IAB node to identify a target IAB donor CU according to one or more embodiments of the present invention; [FIG. 10d] is a flowchart of an exemplary method according to an embodiment of the present invention, which is used to manage DU migration of an IAB node at a target IAB donor CU towards a target IAB topology managed by the target IAB donor CU.

500:IAB通訊系統 500:IAB communication system

501:施體1CU 501: Donor 1CU

502:施體2CU 502: Donor 2CU

503:施體3CU 503: Donor 3CU

504:施體1DU1 504: Donor 1DU1

505:施體2DU1 505: Donor 2DU1

506:施體2DU2 506: Donor 2DU2

507:施體3DU1 507: Donor 3DU1

508:有線回載 508: Wired backload

510:IAB節點 510:IAB node

511:MT部分或單元 511:MT part or unit

512:DU部分 512:DU part

520:IAB節點 520:IAB node

530:IAB-節點 530:IAB-Node

540:IAB節點 540:IAB node

550:IAB節點 550:IAB node

560:IAB節點 560:IAB node

570:IAB節點 570:IAB node

571:MT部分 571:MT part

572:DU部分或單元 572:DU part or unit

580:使用者設備 580: User equipment

590:箭頭 590:arrow

5001:IAB拓撲 5001:IAB Topology

5002:IAB拓撲 5002:IAB Topology

5003:IAB拓撲 5003:IAB Topology

5050:回載鏈路 5050:Return link

5060:回載鏈路 5060:Return link

Claims (55)

一種使用於遷移程序之方法,在該遷移程序中,整合的存取回載(IAB)節點之分散式單元(DU)從由源IAB施體中央單元(CU)管理之一IAB拓撲遷移至由目標IAB施體CU管理之另一IAB拓撲,該方法在該源IAB施體CU處包括: 判定該IAB節點之該DU要從該源IAB施體CU之該一IAB拓撲遷移至該目標IAB施體CU之該另一IAB拓撲; 將用於在該IAB節點與該目標IAB施體CU之間建立F1連接之請求發送至該IAB節點。 A method for use in a migration procedure, in which a distributed unit (DU) of an integrated access backhaul (IAB) node is migrated from one IAB topology managed by a source IAB donor central unit (CU) to another IAB topology managed by a target IAB donor CU, the method comprising at the source IAB donor CU: Determining that the DU of the IAB node is to be migrated from the one IAB topology of the source IAB donor CU to the other IAB topology of the target IAB donor CU; Sending a request for establishing an F1 connection between the IAB node and the target IAB donor CU to the IAB node. 如請求項1之方法,其進一步包括將用於識別該目標IAB施體CU之識別資訊發送至該IAB節點。The method of claim 1, further comprising sending identification information for identifying the target IAB donor CU to the IAB node. 如請求項2之方法,其中,用於識別用於該F1連接之該目標IAB施體CU之該識別資訊包含與該目標IAB施體CU相關聯之位址。The method of claim 2, wherein the identification information used to identify the target IAB donor CU for the F1 connection includes an address associated with the target IAB donor CU. 如請求項1至3中任一項之方法,其進一步包括將指示在該IAB節點之該DU之第二邏輯DU實體處要被啟用之胞元之數目的資訊發送至該IAB節點。The method of any one of claims 1 to 3, further comprising sending information to the IAB node indicating the number of cells to be enabled at the second logical DU entity of the DU of the IAB node. 如前述請求項中任一項之方法,其進一步包括將識別由該IAB節點之該DU之第一邏輯DU實體控制之一或多個現用胞元的識別資訊發送至該IAB節點。The method of any of the preceding claims, further comprising sending identification information identifying one or more active cells controlled by a first logical DU entity of the DU of the IAB node to the IAB node. 如前述請求項中任一項之方法,其進一步包括將指示用於建立F1連接之該請求係與該IAB節點之該DU之遷移相關之資訊發送至該IAB節點。The method of any of the preceding claims, further comprising sending information to the IAB node indicating that the request for establishing the F1 connection is related to the migration of the DU of the IAB node. 如前述請求項中任一項之方法,其進一步包括從該目標IAB施體CU或從該IAB節點接收識別在該IAB節點之該DU之第二邏輯DU實體處已被啟用之一或多個新胞元之各者的識別資訊。The method of any of the preceding claims, further comprising receiving, from the target IAB donor CU or from the IAB node, identification information identifying each of one or more new cells that have been enabled at a second logical DU entity of the DU of the IAB node. 如前述請求項中任一項之方法,其進一步包括從該目標IAB施體CU或從該IAB節點接收指示在該IAB節點之該DU之第二邏輯DU實體處已被啟用之一或多個新胞元之識別資訊與由該IAB節點之該DU之第一邏輯DU實體控制之一或多個現用胞元之識別資訊之間之映射的映射資訊。A method as in any of the aforementioned request items, further comprising receiving mapping information indicating a mapping between identification information of one or more new cells that have been activated at a second logical DU entity of the DU of the IAB node and identification information of one or more current cells controlled by a first logical DU entity of the DU of the IAB node. 如前述請求項中任一項之方法,其進一步包括: 將交遞請求發送至該目標IAB施體CU,該交遞請求用於請求將由該IAB節點服務之一或多個使用者設備(UE)從該源IAB施體CU交遞至該目標IAB施體CU且用於識別用於各UE之一或多個候選目標胞元。 A method as in any of the aforementioned request items, further comprising: Sending a handover request to the target IAB donor CU, the handover request being used to request that one or more user equipments (UEs) to be served by the IAB node be handed over from the source IAB donor CU to the target IAB donor CU and being used to identify one or more candidate target cells for each UE. 如請求項8及請求項9之方法,其進一步包括: 基於該映射資訊選擇該新胞元中之一或多者作為由該IAB節點服務之一或多個UE之各UE之一或多個候選目標胞元, 其中,該交遞請求包含用於識別該選擇的一或多個候選目標胞元之資訊。 The method of claim 8 and claim 9 further comprises: selecting one or more of the new cells as one or more candidate target cells for each of one or more UEs served by the IAB node based on the mapping information, wherein the handover request includes information for identifying the selected one or more candidate target cells. 如請求項9或請求項10之方法,其進一步包括: 回應於從該目標IAB施體CU接收到指示該一或多個UE之交遞已被接受且識別用於各UE之目標胞元之交遞確認,將用於針對該各自目標胞元組態該一或多個UE之各者的組態資訊發送至該IAB節點。 The method of claim 9 or claim 10, further comprising: In response to receiving a handover confirmation from the target IAB donor CU indicating that the handover of the one or more UEs has been accepted and identifying the target cell for each UE, sending configuration information for configuring each of the one or more UEs for the respective target cell to the IAB node. 如請求項9至11中任一項之方法,其進一步包括: 在完成將該一或多個UE交遞至該目標IAB施體CU之後,將用於停用具有與該源IAB施體CU之F1連接之該IAB節點之該DU之第一邏輯DU實體的請求發送至該IAB節點。 The method of any one of claims 9 to 11 further comprises: After completing the handover of the one or more UEs to the target IAB donor CU, sending a request for deactivating the first logical DU entity of the DU of the IAB node having an F1 connection with the source IAB donor CU to the IAB node. 如請求項9至12中任一項之方法,其進一步包括: 在完成將該一或多個UE交遞至該目標IAB施體CU後且當該IAB節點之行動終端(MT)已被遷移至非F1施體CU時,將用於請求針對在由該非F1施體CU管理之IAB拓撲中經由一或多個路徑路由之與該IAB節點相關聯之流量之流量釋放的流量遷移請求發送至該非F1施體CU。 The method of any one of claim items 9 to 12 further comprises: After completing the handover of the one or more UEs to the target IAB donor CU and when the mobile terminal (MT) of the IAB node has been migrated to the non-F1 donor CU, a traffic migration request for requesting traffic release for traffic associated with the IAB node routed via one or more paths in the IAB topology managed by the non-F1 donor CU is sent to the non-F1 donor CU. 如前述請求項中任一項之方法,其中判定該IAB節點之該DU要被遷移包括回應於判定該IAB節點之MT朝向新父IAB節點之遷移已完成來判定該IAB節點之該DU要被遷移。The method of any of the preceding claims, wherein determining that the DU of the IAB node is to be migrated comprises determining that the DU of the IAB node is to be migrated in response to determining that migration of the MT of the IAB node toward a new parent IAB node is complete. 一種使用於遷移程序之方法,在該遷移程序中,整合的存取回載(IAB)節點之分散式單元(DU)從由源IAB施體中央單元(CU)管理之一IAB拓撲遷移至由目標IAB施體CU管理之另一IAB拓撲,該方法在該IAB節點處包括: 從該源IAB施體CU接收用於在目標IAB施體CU與該IAB節點之間建立F1連接之請求; 將用於請求該F1連接之設置之F1設置請求發送至該目標IAB施體CU。 A method for use in a migration procedure in which a distributed unit (DU) of an integrated access backhaul (IAB) node migrates from one IAB topology managed by a source IAB donor central unit (CU) to another IAB topology managed by a target IAB donor CU, the method comprising at the IAB node: receiving a request from the source IAB donor CU to establish an F1 connection between the target IAB donor CU and the IAB node; sending an F1 setup request for requesting setup of the F1 connection to the target IAB donor CU. 如請求項15之方法,其進一步包括: 回應於接收用於建立F1連接之該請求而識別該目標IAB施體CU, 其中,發送包括將該F1設置請求發送至該識別之目標IAB施體CU。 The method of claim 15, further comprising: Identifying the target IAB donor CU in response to receiving the request for establishing an F1 connection, wherein sending comprises sending the F1 setup request to the identified target IAB donor CU. 如請求項15或請求項16之方法,其進一步包括: 從該源IAB施體CU接收用於識別針對該F1連接之該目標IAB施體CU的識別資訊。 The method of claim 15 or claim 16 further comprises: Receiving identification information from the source IAB donor CU for identifying the target IAB donor CU for the F1 connection. 如請求項16或請求項17之方法,其中識別該目標IAB施體CU包括從該所接收的識別資訊識別該目標IAB施體CU。The method of claim 16 or claim 17, wherein identifying the target IAB donor CU comprises identifying the target IAB donor CU from the received identification information. 如請求項16之方法,其中,識別包括: 判定是否已從該源IAB施體CU接收到用於識別針對該F1連接之該目標IAB施體CU之識別資訊; 回應於判定已從該源IAB施體CU接收到用於識別針對該F1連接之該目標IAB施體CU的識別資訊,從該所接收之識別資訊識別該目標IAB施體CU。 The method of claim 16, wherein identifying comprises: Determining whether identification information for identifying the target IAB donor CU for the F1 connection has been received from the source IAB donor CU; In response to determining that identification information for identifying the target IAB donor CU for the F1 connection has been received from the source IAB donor CU, identifying the target IAB donor CU from the received identification information. 如請求項16之方法,其中,識別包括: 判定是否已從該源IAB施體CU接收到用於識別針對該F1連接之該目標IAB施體CU之識別資訊; 回應於判定尚未從該源IAB施體CU接收到用於識別針對該F1連接之該目標IAB施體CU的識別資訊且該IAB節點之行動終端(MT)已遷移至非F1施體CU,識別包括將該非F1施體CU識別為該目標IAB施體CU, 其中,發送包括將該F1設置請求發送至被識別為該目標IAB施體CU之該非F1施體CU。 The method of claim 16, wherein identifying comprises: determining whether identification information for identifying the target IAB donor CU for the F1 connection has been received from the source IAB donor CU; in response to determining that identification information for identifying the target IAB donor CU for the F1 connection has not been received from the source IAB donor CU and the mobile terminal (MT) of the IAB node has migrated to a non-F1 donor CU, identifying comprises identifying the non-F1 donor CU as the target IAB donor CU, wherein sending comprises sending the F1 setup request to the non-F1 donor CU identified as the target IAB donor CU. 如請求項17之方法,其進一步包括: 在接收到用於建立F1連接之該請求之後,判定是否已從該源IAB施體CU接收到用於識別針對該F1連接之該目標IAB施體CU之識別資訊; 其中,回應於判定已接收到用於識別針對該F1連接之該目標IAB施體CU的識別資訊,發送包括將該F1設置請求發送至由該所接收之識別資訊識別的該目標IAB施體CU。 The method of claim 17, further comprising: After receiving the request for establishing an F1 connection, determining whether identification information for identifying the target IAB donor CU for the F1 connection has been received from the source IAB donor CU; Wherein, in response to determining that the identification information for identifying the target IAB donor CU for the F1 connection has been received, sending includes sending the F1 setup request to the target IAB donor CU identified by the received identification information. 如請求項15或請求項16之方法,其進一步包括: 在接收到用於建立F1連接之該請求之後,判定是否已從該源IAB施體CU接收到用於識別針對該F1連接之該目標IAB施體CU之識別資訊; 其中,回應於判定尚未從該源IAB施體CU接收到用於識別針對該F1連接之該目標IAB施體CU的識別資訊且該IAB節點之行動終端(MT)已遷移至非F1施體CU,將該非F1施體CU識別為該目標IAB施體CU, 其中,發送包括將該F1設置請求發送至被識別為該目標IAB施體CU之該非F1施體CU。 The method of claim 15 or claim 16 further comprises: After receiving the request for establishing an F1 connection, determining whether identification information for identifying the target IAB donor CU for the F1 connection has been received from the source IAB donor CU; wherein, in response to determining that identification information for identifying the target IAB donor CU for the F1 connection has not been received from the source IAB donor CU and the mobile terminal (MT) of the IAB node has migrated to a non-F1 donor CU, identifying the non-F1 donor CU as the target IAB donor CU, wherein sending comprises sending the F1 setup request to the non-F1 donor CU identified as the target IAB donor CU. 如請求項17至19或請求項21中任一項之方法,其中,用於識別針對該F1連接之該目標IAB施體CU之該識別資訊包含與該目標IAB施體CU相關聯之位址。A method as in any one of claims 17 to 19 or claim 21, wherein the identification information used to identify the target IAB donor CU for the F1 connection includes an address associated with the target IAB donor CU. 如請求項15至23中任一項之方法,其中,該IAB節點之該DU包括具有與該源IAB施體CU之F1連接的第一邏輯DU實體,該方法進一步包括從源IAB施體CU接收指示在該IAB節點之該DU之第二邏輯DU實體處要被啟用之胞元的數目之資訊。A method as in any one of claims 15 to 23, wherein the DU of the IAB node includes a first logical DU entity having an F1 connection to the source IAB donor CU, the method further comprising receiving information from the source IAB donor CU indicating the number of cells to be activated at a second logical DU entity of the DU of the IAB node. 如請求項15至24中任一項之方法,其進一步包括從該源IAB施體CU接收用於識別由該IAB節點之該DU之第一邏輯DU實體控制之一或多個現用胞元的識別資訊。The method of any one of claims 15 to 24, further comprising receiving, from the source IAB donor CU, identification information for identifying one or more active cells controlled by a first logical DU entity of the DU of the IAB node. 如請求項15至25中任一項之方法,其進一步包括從該源IAB施體CU接收指示用於建立F1連接之該請求係與該IAB節點之該DU之遷移相關的資訊。The method of any one of claims 15 to 25, further comprising receiving information from the source IAB donor CU indicating that the request for establishing an F1 connection is related to a migration of the DU of the IAB node. 如請求項15至26中任一項之方法,其中,該IAB節點之該DU包括具有與該源IAB施體CU的F1連接之第一邏輯DU實體, 其中,用於建立F1連接之該請求包含針對用於第二邏輯DU實體之要被啟用之一或多個胞元的請求, 其中,發送包括藉由該第二邏輯DU實體將該F1設置請求發送至該目標IAB施體CU。 A method as in any one of claims 15 to 26, wherein the DU of the IAB node includes a first logical DU entity having an F1 connection with the source IAB donor CU, wherein the request for establishing the F1 connection includes a request for one or more cells to be enabled for a second logical DU entity, wherein sending includes sending the F1 setup request to the target IAB donor CU by the second logical DU entity. 如請求項15至26中任一項之方法,其中,該IAB節點之該DU包括具有與該源IAB施體CU的F1連接之第一邏輯DU實體,該方法進一步包括: 回應於接收到用於建立F1連接之該請求,啟用第二邏輯DU實體用於建立與該目標IAB施體CU之該F1連接, 其中,發送包括藉由該第二邏輯DU實體將該F1設置請求發送至該目標IAB施體CU。 A method as in any one of claims 15 to 26, wherein the DU of the IAB node includes a first logical DU entity having an F1 connection with the source IAB donor CU, the method further comprising: In response to receiving the request for establishing the F1 connection, enabling a second logical DU entity for establishing the F1 connection with the target IAB donor CU, wherein sending includes sending the F1 setup request to the target IAB donor CU via the second logical DU entity. 如請求項15至26或請求項28中任一項之方法,其進一步包括: 在發送該F1設置請求之後,從該目標IAB施體CU接收回應,該回應包含針對用於該第二邏輯DU實體之要被啟用之一或多個胞元的請求; 基於該所接收之回應而啟用該一或多個胞元。 The method of any one of claim 15 to claim 26 or claim 28, further comprising: After sending the F1 setup request, receiving a response from the target IAB donor CU, the response comprising a request for one or more cells to be enabled for the second logical DU entity; Enabling the one or more cells based on the received response. 如請求項29之方法,其中,該回應包含用於識別要被啟用之該一或多個胞元之各者的識別資訊。The method of claim 29, wherein the response includes identification information for identifying each of the one or more cells to be enabled. 如請求項29或請求項30之方法,其進一步包括將用於識別在該第二邏輯DU實體處已被啟用之一或多個新胞元之各者之識別資訊發送至該源IAB施體CU。The method of claim 29 or claim 30, further comprising sending identification information for identifying each of the one or more new cells that have been enabled at the second logical DU entity to the source IAB donor CU. 如請求項29至31中任一項之方法,其進一步包括將指示在該第二邏輯DU實體處已被啟用之一或多個新胞元之識別資訊與由該IAB節點之該DU之第一邏輯DU實體控制之一或多個現用胞元之識別資訊之間之映射的映射資訊發送至該源IAB施體CU。A method as in any one of claims 29 to 31, further comprising sending mapping information indicating a mapping between identification information of one or more new cells that have been enabled at the second logical DU entity and identification information of one or more active cells controlled by the first logical DU entity of the DU of the IAB node to the source IAB donor CU. 如請求項24至32中任一項之方法,其進一步包括: 從該源IAB施體CU接收用於停用具有與該源IAB施體CU之F1連接之該IAB節點之該DU之該第一邏輯DU實體的請求。 The method of any one of claim 24 to claim 32, further comprising: Receiving a request from the source IAB donor CU to deactivate the first logical DU entity of the DU of the IAB node having an F1 connection to the source IAB donor CU. 如請求項33之方法,其進一步包括: 回應於接收到用於停用該第一邏輯DU實體之該請求,停用該第一邏輯DU實體。 The method of claim 33 further comprises: In response to receiving the request to deactivate the first logical DU entity, deactivate the first logical DU entity. 如請求項15至34中任一項之方法,其中,發送該F1設置請求包括發送用於請求該F1連接之設置的F1設置請求訊息,其中,該F1設置請求訊息包含當該IAB節點之行動終端(MT)已遷移至非F1施體CU時用於識別該源IAB施體CU之識別資訊或用於識別非F1施體CU之識別資訊。A method as in any one of claim 15 to claim 34, wherein sending the F1 setup request includes sending an F1 setup request message for requesting setup of the F1 connection, wherein the F1 setup request message includes identification information for identifying the source IAB donor CU or identification information for identifying the non-F1 donor CU when the mobile terminal (MT) of the IAB node has migrated to a non-F1 donor CU. 如請求項15至35中任一項之方法,其中,發送該F1設置請求包括發送用於請求該F1連接之設置之F1設置請求訊息,其中,該F1設置請求訊息包含指示隨著在該IAB節點處第二邏輯DU之啟用而要被啟用之胞元之數目的資訊。The method of any one of claims 15 to 35, wherein sending the F1 setup request comprises sending an F1 setup request message for requesting setup of the F1 connection, wherein the F1 setup request message includes information indicating a number of cells to be enabled with activation of a second logical DU at the IAB node. 如請求項15至36中任一項之方法,其中發送該F1設置請求包括發送用於請求該F1連接之設置之F1設置請求訊息,其中,該F1設置請求訊息包括用於識別由該IAB節點之該DU之第一邏輯DU實體控制之一或多個現用胞元的識別資訊。A method as in any one of claim 15 to claim 36, wherein sending the F1 setup request comprises sending an F1 setup request message for requesting setup of the F1 connection, wherein the F1 setup request message comprises identification information for identifying one or more active cells controlled by a first logical DU entity of the DU of the IAB node. 如請求項15至37中任一項之方法,其中,發送該F1設置請求包括發送用於請求該F1連接之設置之F1設置請求訊息,其中,該F1設置請求訊息包含指示用於建立F1連接之該請求係與該IAB節點之該DU之遷移相關之資訊。A method as in any one of claim 15 to claim 37, wherein sending the F1 setup request comprises sending an F1 setup request message for requesting setup of the F1 connection, wherein the F1 setup request message includes information indicating that the request for establishing the F1 connection is related to migration of the DU of the IAB node. 如請求項15至38中任一項之方法,其中,發送該F1設置請求包括發送用於請求該F1連接之設置之F1設置請求訊息,其中,該F1設置請求訊息包含針對在該IAB節點之該DU之第二邏輯DU實體處要被啟用之一或多個新胞元之識別資訊與由該IAB節點之該DU之第一邏輯DU實體控制之一或多個現用胞元之識別資訊之間的映射之請求。A method as in any one of claim 15 to 38, wherein sending the F1 setup request includes sending an F1 setup request message for requesting setup of the F1 connection, wherein the F1 setup request message includes a request for a mapping between identification information of one or more new cells to be activated at a second logical DU entity of the DU of the IAB node and identification information of one or more existing cells controlled by a first logical DU entity of the DU of the IAB node. 一種使用於遷移程序之方法,在該遷移程序中,整合的存取回載(IAB)節點之分散式單元(DU)從由源IAB施體中央單元(CU)管理之一IAB拓撲遷移至由目標IAB施體CU管理之另一IAB拓撲,該方法在該目標IAB施體CU處包括: 從該IAB節點接收用於請求在該目標IAB施體CU與該IAB節點之間設置F1連接之F1設置請求; 將一回應發送至該IAB節點,該回應包含針對用於該IAB節點之第二邏輯DU實體之要被啟用之一或多個胞元的請求。 A method for use in a migration procedure in which a distributed unit (DU) of an integrated access backhaul (IAB) node migrates from one IAB topology managed by a source IAB donor central unit (CU) to another IAB topology managed by a target IAB donor CU, the method comprising at the target IAB donor CU: Receiving an F1 setup request from the IAB node for requesting to set up an F1 connection between the target IAB donor CU and the IAB node; Sending a response to the IAB node, the response including a request for one or more cells to be activated for a second logical DU entity for the IAB node. 如請求項40之方法,其中,接收該F1設置請求包括接收用於請求該F1連接之設置的F1設置請求訊息,其中,該F1設置請求訊息包含當該IAB節點之行動終端(MT)已遷移至非F1施體CU時用於識別該源IAB施體CU之識別資訊或用於識別非F1施體CU之識別資訊。A method as in claim 40, wherein receiving the F1 setup request includes receiving an F1 setup request message for requesting setup of the F1 connection, wherein the F1 setup request message includes identification information for identifying the source IAB donor CU or identification information for identifying the non-F1 donor CU when the mobile terminal (MT) of the IAB node has migrated to a non-F1 donor CU. 如請求項40或請求項41之方法,其中,接收該F1設置請求包括接收用於請求該F1連接之設置之F1設置請求訊息,其中,該F1設置請求訊息包含指示隨著在該IAB節點處第二邏輯DU之啟用而要被啟用之胞元之數目的資訊。The method of claim 40 or claim 41, wherein receiving the F1 setup request comprises receiving an F1 setup request message for requesting setup of the F1 connection, wherein the F1 setup request message includes information indicating a number of cells to be enabled with activation of a second logical DU at the IAB node. 如請求項40至42中任一項之方法,其中接收該F1設置請求包括接收用於請求該F1連接之設置之F1設置請求訊息,其中,該F1設置請求訊息包括用於識別由該IAB節點之該DU之第一邏輯DU實體控制之一或多個現用胞元的識別資訊。A method as in any of claim 40 to 42, wherein receiving the F1 setup request comprises receiving an F1 setup request message for requesting setup of the F1 connection, wherein the F1 setup request message comprises identification information for identifying one or more active cells controlled by a first logical DU entity of the DU of the IAB node. 如請求項40至43中任一項之方法,其中,接收該F1設置請求包括接收用於請求該F1連接之設置之F1設置請求訊息,其中,該F1設置請求訊息包含指示用於建立F1連接之該請求係與該IAB節點之該DU之遷移相關之資訊。A method as in any one of claim 40 to 43, wherein receiving the F1 setup request comprises receiving an F1 setup request message for requesting setup of the F1 connection, wherein the F1 setup request message includes information indicating that the request for establishing the F1 connection is related to migration of the DU of the IAB node. 如請求項40至44中任一項之方法,其中,接收該F1設置請求包括接收用於請求該F1連接之設置之F1設置請求訊息,其中,該F1設置請求訊息包含針對在該IAB節點之該DU之第二邏輯DU實體處要被啟用之一或多個新胞元之識別資訊與由該IAB節點之該DU之第一邏輯DU實體控制之一或多個現用胞元之識別資訊之間的映射之請求。A method as in any of claim items 40 to 44, wherein receiving the F1 setup request includes receiving an F1 setup request message for requesting setup of the F1 connection, wherein the F1 setup request message includes a request for a mapping between identification information of one or more new cells to be activated at a second logical DU entity of the DU of the IAB node and identification information of one or more existing cells controlled by a first logical DU entity of the DU of the IAB node. 如請求項40至45中任一項之方法,其進一步包括將用於識別在該IAB節點之該DU之第二邏輯DU實體處已被啟用之一或多個新胞元之各者的識別資訊發送至該源IAB施體CU。The method of any one of claims 40 to 45, further comprising sending identification information for identifying each of the one or more new cells that have been enabled at the second logical DU entity of the DU of the IAB node to the source IAB donor CU. 如請求項40至46中任一項之方法,其中,該回應包含用於識別要被啟用之該一或多個胞元之各者的識別資訊。A method as in any of claims 40 to 46, wherein the response includes identification information for identifying each of the one or more cells to be enabled. 如請求項40至47中任一項之方法,其進一步包括將指示用於該第二邏輯DU實體之要被啟用之一或多個新胞元之識別資訊與由該IAB節點之該DU之第一邏輯DU實體控制之一或多個現用胞元之識別資訊之間之映射的映射資訊發送至該源IAB施體CU。A method as in any one of claims 40 to 47, further comprising sending mapping information indicating a mapping between identification information of one or more new cells to be activated for the second logical DU entity and identification information of one or more existing cells controlled by the first logical DU entity of the DU of the IAB node to the source IAB donor CU. 如請求項40至48中任一項之方法,其進一步包括: 從該源IAB施體CU接收交遞請求,該交遞請求用於請求將由該IAB節點服務之一或多個使用者設備(UE)從該源IAB施體CU交遞至該目標IAB施體CU且用於識別用於各UE之一或多個候選目標胞元; 將指示該一或多個UE之交遞已由該目標IAB施體CU接受且識別用於各UE之目標胞元之交遞確認發送至該源IAB施體CU。 The method of any one of claim 40 to claim 48, further comprising: receiving a handover request from the source IAB donor CU, the handover request being used to request that one or more user equipment (UE) served by the IAB node be handed over from the source IAB donor CU to the target IAB donor CU and being used to identify one or more candidate target cells for each UE; sending a handover confirmation to the source IAB donor CU indicating that the handover of the one or more UEs has been accepted by the target IAB donor CU and identifying the target cell for each UE. 如請求項49之方法,其進一步包括: 在完成將該一或多個UE交遞至該目標IAB施體CU後且當該IAB節點之行動終端(MT)已被遷移至非F1施體CU時,將用於請求針對在由該非F1施體CU管理之IAB拓撲中經由一或多個路徑路由之與該IAB節點相關聯之流量之流量釋放的流量遷移請求發送至該非F1施體CU。 The method of claim 49 further comprises: After completing the handover of the one or more UEs to the target IAB donor CU and when the mobile terminal (MT) of the IAB node has been migrated to the non-F1 donor CU, a traffic migration request for requesting traffic release for traffic associated with the IAB node routed via one or more paths in the IAB topology managed by the non-F1 donor CU is sent to the non-F1 donor CU. 如前述請求項中任一項之方法,其中,該IAB節點係行動IAB節點。The method of any of the preceding claims, wherein the IAB node is a mobile IAB node. 一種用於整合的存取與回載(IAB)通訊系統之IAB節點的設備,該設備包括: 一或多個處理單元,其被組構成用以執行如請求項15至39或請求項51中任一項之方法。 A device for an integrated access and backhaul (IAB) node of an IAB communication system, the device comprising: One or more processing units configured to perform the method of any one of claims 15 to 39 or claim 51. 一種用於整合的存取與回載(IAB)通訊系統之IAB施體中央單元(CU)的設備,該設備包括: 一或多個處理單元,其被組構成用以執行如請求項1至14、請求項40至51中任一項之方法。 A device for an integrated access and backhaul (IAB) communication system of an IAB donor central unit (CU), the device comprising: One or more processing units configured to perform a method as in any one of claims 1 to 14 and claims 40 to 51. 一種包括指令之電腦程式,當該程式由電腦執行時,該指令引起該電腦實施如請求項1至51中任一項之方法。A computer program comprising instructions which, when executed by a computer, cause the computer to implement a method as claimed in any one of claims 1 to 51. 一種電腦可讀媒體,其載有如請求項54之電腦程式。A computer-readable medium carrying a computer program as claimed in claim 54.
TW112141542A 2022-11-03 2023-10-30 Migration of nodes in an iab communication system TW202420852A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB2216391.9A GB2624000A (en) 2022-11-03 2022-11-03 Migration of nodes in an IAB communication system
GB2216391.9 2022-11-03
GB2311148.7 2023-07-20
GB2311148.7A GB2624064A (en) 2022-11-03 2023-07-20 Migration of nodes in an IAB communication system

Publications (1)

Publication Number Publication Date
TW202420852A true TW202420852A (en) 2024-05-16

Family

ID=88689772

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112141542A TW202420852A (en) 2022-11-03 2023-10-30 Migration of nodes in an iab communication system

Country Status (2)

Country Link
TW (1) TW202420852A (en)
WO (1) WO2024094547A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4280666A1 (en) * 2021-01-14 2023-11-22 Fujitsu Limited Group migration method, apparatus and system
WO2022151400A1 (en) * 2021-01-15 2022-07-21 华为技术有限公司 Communication method and communication apparatus for integrated access and backhaul (iab) system

Also Published As

Publication number Publication date
WO2024094547A1 (en) 2024-05-10

Similar Documents

Publication Publication Date Title
CN110351030A (en) Message transmitting method, device and system
KR20200106938A (en) Node and communication method
JP2024054313A (en) Communication control method and relay device
CN118402276A (en) Method for use in migrating resources between integrated access and backhaul topologies
TW202420852A (en) Migration of nodes in an iab communication system
GB2605960A (en) Routing data in an integrated access and backhaul network
TW202420788A (en) Migration of nodes in an iab communication system
GB2624064A (en) Migration of nodes in an IAB communication system
WO2024208856A2 (en) Migration management in an iab communication system
GB2628873A (en) Migration management in an IAB communication system
TW202435635A (en) Migration of nodes in an iab communication system
GB2627311A (en) Migration of nodes in an IAB communication system
WO2024170232A1 (en) Migration of nodes in an iab communication system
GB2624001A (en) Migration of nodes in an IAB communication system
WO2024017909A1 (en) Managing migration involving a mobile integrated access and backhaul node
GB2627318A (en) PCI collision detection in 5G mobile IAB
GB2620777A (en) PCI collision avoidance in 5G mobile IAB
WO2024170503A2 (en) Pci collision detection in 5g mobile iab
GB2628842A (en) Managing or facilitating network connectivity in a wireless communication system
WO2024017590A1 (en) Pci collision avoidance in 5g mobile iab
US20240048486A1 (en) Routing data in an integrated access and backhaul network
TW202423155A (en) Managing network connectivity in a wireless communication system
WO2024013071A1 (en) Managing network connectivity in a wireless communication system
GB2620605A (en) Managing network connectivity in a wireless communication system
GB2611068A (en) Routing data in an integrated access and backhaul network