TW202418774A - Wireless optical encryption communication method using vortex light scrambling to improve the transmission capacity, communication rate and data confidentiality of the optical communication system - Google Patents

Wireless optical encryption communication method using vortex light scrambling to improve the transmission capacity, communication rate and data confidentiality of the optical communication system Download PDF

Info

Publication number
TW202418774A
TW202418774A TW111140076A TW111140076A TW202418774A TW 202418774 A TW202418774 A TW 202418774A TW 111140076 A TW111140076 A TW 111140076A TW 111140076 A TW111140076 A TW 111140076A TW 202418774 A TW202418774 A TW 202418774A
Authority
TW
Taiwan
Prior art keywords
unit
optical
selection switch
wavelength selection
output
Prior art date
Application number
TW111140076A
Other languages
Chinese (zh)
Other versions
TWI803440B (en
Inventor
張耀堂
葉良佑
張清亮
Original Assignee
高苑科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高苑科技大學 filed Critical 高苑科技大學
Priority to TW111140076A priority Critical patent/TWI803440B/en
Application granted granted Critical
Publication of TWI803440B publication Critical patent/TWI803440B/en
Publication of TW202418774A publication Critical patent/TW202418774A/en

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless optical encryption communication method using vortex light scrambling includes the following steps: generating N orbital angular momentum topological charge numbers corresponding to N Gaussian light source carrier waves; converting the N separated Gaussian light source carrier waves into vortex beams, each with N encoded orbital angular momentum to obtain N vortex optical signals; generating an encrypted pairing combination; when each input terminal receives a corresponding input vortex optical signal, outputting the corresponding input vortex optical signal to the output terminal corresponding to the input terminal according to the encrypted pairing combination; each modulator performing modulation according to the vortex optical signal output by the corresponding output terminal and one of the N bit data to generate and output an optical modulation signal; performing multiplexing processing on the N optical modulation signals to generate an optical multiplexing output signal.

Description

利用渦旋光擾序之無線光加密通訊方法Wireless optical encryption communication method using vortex optical perturbation

本發明是有關於一種無線光通訊方法,特別是指一種用於實現資料加解密之利用渦旋光擾序之無線光加密通訊方法。The present invention relates to a wireless optical communication method, and more particularly to a wireless optical encryption communication method using eddy optical perturbation for realizing data encryption and decryption.

無線光通訊系統主要由光源、調變器、光發射器、光接收器及附加電信發送和接收設備等組成,只要相互進行傳收對接即可進行通訊。無線光通訊除具有不佔據頻帶,通訊容量大,傳輸速率高等無線雷射通訊的優點外,還具有機動靈活、經濟、架設快捷、使用方便,不影響市政建設等特點。隨著大氣通訊技術的成熟,其應用也越來越廣泛。The wireless optical communication system is mainly composed of light source, modulator, optical transmitter, optical receiver and additional telecommunication transmission and reception equipment. As long as they are connected to each other, they can communicate. In addition to the advantages of wireless laser communication such as no bandwidth occupation, large communication capacity and high transmission rate, wireless optical communication also has the characteristics of flexibility, economy, quick installation, easy use and no impact on municipal construction. With the maturity of atmospheric communication technology, its application is becoming more and more extensive.

爲了提高光通訊系統的信息傳輸速率,除了可以採用幅度、相位和正交相移鍵控等傳統的調變解調方式之外,亦可透過增加編碼自由維度的多工技術進行傳輸,來提高光通訊系統的傳輸容量與通訊速率,又,為因應無線光通訊通道上傳輸壓縮域資訊進行安全加密的必要性需求,及克服傳統僅能在應用層執行部份加密(partial encryption)之缺失,實有必要提出一解決方案。In order to improve the information transmission rate of the optical communication system, in addition to adopting traditional modulation and demodulation methods such as amplitude, phase and orthogonal phase shift keying, it is also possible to increase the transmission capacity and communication rate of the optical communication system through multiplexing technology that increases the coding freedom dimension. In addition, in order to meet the necessity of secure encryption of compressed domain information transmitted on wireless optical communication channels and overcome the deficiency of traditional partial encryption that can only be performed at the application layer, it is necessary to propose a solution.

因此,本發明的目的,即在提供一種提高光通訊系統的傳輸容量、通訊速率及資料保密性的利用渦旋光擾序之無線光加密通訊方法。Therefore, the purpose of the present invention is to provide a wireless optical encryption communication method using eddy optical perturbation to improve the transmission capacity, communication rate and data confidentiality of the optical communication system.

於是,本發明利用渦旋光擾序之無線光加密通訊方法,藉由一發射端無線光通訊裝置來實施,該發射端無線光通訊裝置與一接收端無線光通訊裝置通訊連接,並包括一資料壓縮單元、一光源生成單元、一具有N個濾波器並連接該光源生成單元之光濾波單元、一連接該光濾波單元的渦旋光編碼單元、一連接該渦旋光編碼單元並具有N個輸入端及N個輸出端的發射端波長選擇開關單元、一連接該渦旋光編碼單元與該發射端波長選擇開關單元的發射端控制單元、一具有N個調變器並連接該資料壓縮單元與該發射端波長選擇開關單元之調變單元,以及一與該調變單元連接之光多工單元,其中,該資料壓縮單元可將N個來源資料進行壓縮編碼以對應產生N個位元資料,該光源生成單元可提供N個波長不等的高斯光源載波,該等N個濾波器可分離該等N個高斯光源載波以產生N個分離的高斯光源載波,該等N個調變器分別與該發射端波長選擇開關單元之該等N個輸出端連接,其中N≥3,該方法包含以下步驟:Therefore, the present invention utilizes a wireless optical encryption communication method using eddy-optical perturbation, which is implemented by a transmitting-end wireless optical communication device, which is communicatively connected to a receiving-end wireless optical communication device, and includes a data compression unit, a light source generation unit, an optical filter unit having N filters and connected to the light source generation unit, an eddy-optical encoding unit connected to the optical filter unit, a transmitting-end wavelength selection switch unit connected to the eddy-optical encoding unit and having N input terminals and N output terminals, a transmitting-end control unit connected to the eddy-optical encoding unit and the transmitting-end wavelength selection switch unit, and a transmitting-end control unit connected to the eddy-optical encoding unit and the transmitting-end wavelength selection switch unit. A data compression unit, a modulation unit having N modulators and connected to the data compression unit and the transmitting end wavelength selection switch unit, and an optical multiplexing unit connected to the modulation unit, wherein the data compression unit can compress and encode N source data to generate N bit data correspondingly, the light source generation unit can provide N Gaussian light source carriers with different wavelengths, the N filters can separate the N Gaussian light source carriers to generate N separated Gaussian light source carriers, the N modulators are respectively connected to the N output terminals of the transmitting end wavelength selection switch unit, wherein N≥3, the method comprises the following steps:

(A)該發射端控制單元產生對應該等N個高斯光源載波之N個編碼的軌道角動量拓樸荷數,並傳送至該渦旋光編碼單元及該接收端無線光通訊裝置;(A) The transmitting end control unit generates N coded orbital angular momentum topological loads corresponding to the N Gaussian light source carriers, and transmits them to the eddy-optic encoding unit and the receiving end wireless optical communication device;

(B)該渦旋光編碼單元根據該等N個編碼的軌道角動量拓樸荷數,將該等N個分離的高斯光源載波轉換為分別帶有N個編碼之軌道角動量的渦旋光束,以獲得N個渦旋光訊號;(B) the vortex optical coding unit converts the N separated Gaussian light source carriers into vortex optical beams respectively carrying N coded orbital angular momentums according to the N coded orbital angular momentum topological loads to obtain N vortex optical signals;

(C)該發射端控制單元根據一組控制參數利用一混沌隨機不重復生成排列演算法產生一加密配對組合,並將該組控制參數傳送至該接收端無線光通訊裝置且將該加密配對組合傳送至該發射端波長選擇開關單元,其中,該加密配對組合用以指示該發射端波長選擇開關單元之每一輸入端及其對應配合的輸出端;(C) the transmitting end control unit generates an encrypted pairing combination according to a set of control parameters using a chaotic random non-repetitive generation permutation algorithm, and transmits the set of control parameters to the receiving end wireless optical communication device and transmits the encrypted pairing combination to the transmitting end wavelength selection switch unit, wherein the encrypted pairing combination is used to indicate each input end of the transmitting end wavelength selection switch unit and its corresponding output end;

(D)對於該發射端波長選擇開關單元之每一輸入端,當該輸入端接收來自於該渦旋光編碼單元的該等N個渦旋光訊號中之一對應的輸入渦旋光訊號時,根據該加密配對組合,將對應的該輸入渦旋光訊號輸出至該輸入端所對應的該發射端波長選擇開關單元之輸出端;(D) for each input end of the transmitting end wavelength selection switch unit, when the input end receives an input vortex signal corresponding to one of the N vortex signals from the vortex encoding unit, outputting the corresponding input vortex signal to the output end of the transmitting end wavelength selection switch unit corresponding to the input end according to the encrypted pairing combination;

(E)對於每一調變器,該調變器根據所連接的該發射端波長選擇開關單元之輸出端輸出的渦旋光訊號及所連接之資料壓縮單元所產生的該等N個位元資料中之一對應的位元資料來進行調變,以產生並輸出一光調變訊號至該光多工單元;及(E) for each modulator, the modulator performs modulation according to the eddy light signal outputted from the output end of the connected transmitting end wavelength selection switch unit and the bit data corresponding to one of the N bit data generated by the connected data compression unit to generate and output an optical modulation signal to the optical multiplexing unit; and

(F)該光多工單元將該等N個光調變訊號進行多工處理以產生一光多工輸出訊號並輸出至該接收端無線光通訊裝置。(F) The optical multiplexing unit multiplexes the N optical modulation signals to generate an optical multiplexing output signal and outputs it to the receiving end wireless optical communication device.

本發明的另一目的,即在提供一種提高光通訊系統的傳輸容量、通訊速率及資料保密性的利用渦旋光擾序之無線光加密通訊方法。Another object of the present invention is to provide a wireless optical encryption communication method using eddy optical perturbation to improve the transmission capacity, communication rate and data confidentiality of the optical communication system.

於是,本發明利用渦旋光擾序之無線光加密通訊方法,藉由一接收端無線光通訊裝置來實施,該接收端無線光通訊裝置與一發射端無線光通訊裝置通訊連接,並包括一資料還原單元、一光解多工單元、一連接該光解多工單元的渦旋光解碼單元、一連接該渦旋光解碼單元並具有N個輸入端及N個輸出端的接收端波長選擇開關單元、一連接該渦旋光解碼單元與該接收端波長選擇開關單元的接收端控制單元,以及一具有N個解調變器並連接該資料還原單元與該接收端波長選擇開關單元之解調變單元,該等N個解調變器分別與該接收端波長選擇開關單元之該等N個輸出端連接,該方法包含以下步驟:Therefore, the present invention uses a wireless optical encryption communication method using eddy-optical perturbation, which is implemented by a receiving-end wireless optical communication device, which is communicatively connected to a transmitting-end wireless optical communication device and includes a data recovery unit, a photodemultiplexing unit, a eddy-optical decoding unit connected to the photodemultiplexing unit, and a eddy-optical decoding unit connected to the eddy-optical decoding unit and having N input ports and N output ports. A receiving end wavelength selection switch unit of the receiving end, a receiving end control unit connected to the eddy optical decoding unit and the receiving end wavelength selection switch unit, and a demodulation unit having N demodulators and connected to the data recovery unit and the receiving end wavelength selection switch unit, wherein the N demodulators are respectively connected to the N output terminals of the receiving end wavelength selection switch unit, and the method comprises the following steps:

(A)該光解多工單元將該光多工輸出訊號進行解多工處理,以產生該等N組光解多工訊號並輸入至該渦旋光解碼單元;(A) the photodemultiplexing unit demultiplexes the optical multiplexed output signal to generate the N sets of photodemultiplexing signals and input them into the eddy-optic decoding unit;

(B)該接收端控制單元根據該發射端控制單元所傳送的該等N個編碼的軌道角動量拓樸荷數,產生N個解碼的軌道角動量拓樸荷數,並傳送至該渦旋光解碼單元;(B) the receiving end control unit generates N decoded orbital angular momentum topological load numbers according to the N encoded orbital angular momentum topological load numbers transmitted by the transmitting end control unit, and transmits the decoded orbital angular momentum topological load numbers to the eddy optical decoding unit;

(C)該渦旋光解碼單元根據該等N個解碼的軌道角動量拓樸荷數,將該等N組光解多工訊號解碼為N個軌道角動量為零之高斯光訊號;(C) the vortex optical decoding unit decodes the N sets of photomultiplexing signals into N Gaussian light signals with zero orbital angular momentum according to the N decoded orbital angular momentum topological charges;

(D)該接收端控制單元根據該發射端控制單元所傳送的該組控制參數利用一混沌隨機不重復生成排列演算法產生一加密配對組合,並根據該加密配對組合產生一解密配對組合,且將該解密配對組合傳送至該接收端波長選擇開關單元,其中,該解密配對組合用以指示該接收端波長選擇開關單元之每一輸入端及其對應配合的輸出端;(D) the receiving end control unit generates an encryption pair combination using a chaotic random non-repetitive generation permutation algorithm according to the set of control parameters transmitted by the transmitting end control unit, generates a decryption pair combination according to the encryption pair combination, and transmits the decryption pair combination to the receiving end wavelength selection switch unit, wherein the decryption pair combination is used to indicate each input end of the receiving end wavelength selection switch unit and its corresponding output end;

(E)對於該接收端波長選擇開關單元之每一輸入端,該輸入端接收來自於該渦旋光解碼單元的該等N個高斯光訊號中之一對應的輸入高斯光訊號時,根據該解密配對組合,將對應的輸入高斯光訊號輸出至該輸入端所配合的該接收端波長選擇開關單元之輸出端;(E) for each input end of the receiving end wavelength selection switch unit, when the input end receives an input Gaussian light signal corresponding to one of the N Gaussian light signals from the vortex optical decoding unit, the corresponding input Gaussian light signal is output to the output end of the receiving end wavelength selection switch unit matched with the input end according to the decryption pairing combination;

(F) 對於每一解調變器,該解調變器根據所連接之該接收端波長選擇開關單元之輸出端輸出的高斯光訊號進行解調變,以產生一對應的資料位元資料;及(F) for each demodulator, the demodulator demodulates the Gaussian optical signal outputted from the output end of the connected receiving end wavelength selection switch unit to generate a corresponding data bit; and

(G) 該資料還原單元將每一資料位元資料進行還原,以產生N個來源資料。(G) The data restoration unit restores each data bit to generate N source data.

本發明的功效在於:藉由該渦旋光編碼單元將該等N個分離的高斯光源載波轉換為該等N個渦旋光訊號,以利用渦旋光束實現多工傳輸,進而提高光通訊的傳輸容量與通訊速率。此外,藉由根據該發射端控制單元所產生之加密配對組合,將對應的該輸入渦旋光訊號輸出至該輸入端所對應的該發射端波長選擇開關單元之輸出端,以攪亂變換渦旋光訊號的傳輸路徑,進而提高光通訊的傳輸安全。The utility of the present invention is that the N separated Gaussian light source carriers are converted into the N vortex light signals by the vortex light encoding unit, so as to realize multiplex transmission by using the vortex light beam, thereby improving the transmission capacity and communication rate of optical communication. In addition, according to the encryption pairing combination generated by the transmitting end control unit, the corresponding input vortex light signal is output to the output end of the transmitting end wavelength selection switch unit corresponding to the input end, so as to scramble the transmission path of the vortex light signal, thereby improving the transmission security of optical communication.

參閱圖1與圖2,本發明利用渦旋光擾序之無線光加密通訊方法的一實施例,藉由一無線光通訊系統來實施。該無線光通訊系統包含一發射端無線光通訊裝置1及一與該發射端無線光通訊裝置1通訊連接的接收端無線光通訊裝置2。Referring to Figures 1 and 2, an embodiment of the wireless optical encryption communication method using eddy optical perturbation of the present invention is implemented by a wireless optical communication system. The wireless optical communication system includes a transmitting end wireless optical communication device 1 and a receiving end wireless optical communication device 2 communicatively connected to the transmitting end wireless optical communication device 1.

該發射端無線光通訊裝置1包括一資料壓縮單元11、一光源生成單元12、一具有N個濾波器並連接該光源生成單元12之光濾波單元13、一連接該光濾波單元13的渦旋光編碼單元14、一連接該渦旋光編碼單元14並具有N個輸入端及N個輸出端的發射端波長選擇開關單元15、一連接該渦旋光編碼單元14與該發射端波長選擇開關單元15的發射端控制單元16、一具有N個調變器並連接該資料壓縮單元11與該發射端波長選擇開關單元15之調變單元17、一與該調變單元17連接之光多工單元18,以及一與該光多工單元18連接之無線光傳送單元19。其中,該資料壓縮單元11可將N個來源資料進行壓縮編碼以對應產生N個位元資料。該光源生成單元12可提供N個波長不等的高斯光源載波。該等N個濾波器可分離該等N個高斯光源載波以產生N個分離的高斯光源載波。該等N個調變器分別與該發射端波長選擇開關單元15之該等N個輸出端連接,其中N≥3。The transmitting end wireless optical communication device 1 includes a data compression unit 11, a light source generating unit 12, an optical filter unit 13 having N filters and connected to the light source generating unit 12, an eddy current encoding unit 14 connected to the optical filter unit 13, a transmitting end wavelength selection switch unit 15 connected to the eddy current encoding unit 14 and having N input terminals and N output terminals, A transmitter control unit 16 connected to the vortex optical coding unit 14 and the transmitter wavelength selection switch unit 15, a modulation unit 17 having N modulators and connected to the data compression unit 11 and the transmitter wavelength selection switch unit 15, an optical multiplexing unit 18 connected to the modulation unit 17, and a wireless optical transmission unit 19 connected to the optical multiplexing unit 18. The data compression unit 11 can compress and encode N source data to generate N bit data. The light source generation unit 12 can provide N Gaussian light source carriers with different wavelengths. The N filters can separate the N Gaussian light source carriers to generate N separated Gaussian light source carriers. The N modulators are respectively connected to the N output terminals of the transmitting end wavelength selection switch unit 15, where N≥3.

該接收端無線光通訊裝置2包括一資料還原單元21、一無線光接收單元22、一連接該無線光接收單元22的光解多工單元23、一連接該光解多工單元23的渦旋光解碼單元24、一連接該渦旋光解碼單元24並具有N個輸入端及N個輸出端的接收端波長選擇開關單元25、一連接該渦旋光解碼單元24與該接收端波長選擇開關單元25的接收端控制單元26,以及一具有N個解調變器並連接該資料還原單元21與該接收端波長選擇開關單元25之解調變單元27,該等N個解調變器分別與該接收端波長選擇開關單元25之該等N個輸出端連接。The receiving-end wireless optical communication device 2 includes a data recovery unit 21, a wireless optical receiving unit 22, a photodemultiplexing unit 23 connected to the wireless optical receiving unit 22, a vortex optical decoding unit 24 connected to the photodemultiplexing unit 23, a receiving-end wavelength selection switch unit 25 connected to the vortex optical decoding unit 24 and having N input terminals and N output terminals, a receiving-end control unit 26 connected to the vortex optical decoding unit 24 and the receiving-end wavelength selection switch unit 25, and a demodulation unit 27 having N demodulators and connecting the data recovery unit 21 and the receiving-end wavelength selection switch unit 25, wherein the N demodulators are respectively connected to the N output terminals of the receiving-end wavelength selection switch unit 25.

在本實施例中,該渦旋光編碼單元14及該渦旋光解碼單元24可為一可程式液晶空間光調變器,其可經由程式調控光波而呈現不等相位以實現攜帶各種不同軌道角動量的渦旋光束。又,該發射端波長選擇開關單元15及該接收端波長選擇開關單元25為可程式化之應用液晶空間光調變器的波長選擇開關,其可經由程式調控進出液晶空間光調變器中液晶分子的偏轉以變換渦旋光訊號的入射、反射角度而變換光空間傳輸路徑,藉此,變化該發射端波長選擇開關單元15之該等N個該等N個輸入端及該等N個輸出端之輸入輸出配合關係,以及該接收端波長選擇開關單元25之該等N個該等N個輸入端及該等N個輸出端之輸入輸出配合關係,由該發射端波長選擇開關單元15之該等N個輸入端及該等N個輸出端共可得到用以指示該等N個輸入端及該等N個輸出端之對射(bijective)關係的N!個配對組合,類似地,由該接收端波長選擇開關單元25之該等N個輸入端及該等N個輸出端也可得到用以指示該等N個輸入端及該等N個輸出端之對射(bijective)關係的N!個配對組合。此外,該資料壓縮單元11、該資料還原單元21、該發射端控制單元16及該接收端控制單元26可由嵌入式系統元件、數位電路等具備運算能力之電子元件來實現。In this embodiment, the vortex optical encoding unit 14 and the vortex optical decoding unit 24 may be a programmable liquid crystal spatial light modulator, which can program and control light waves to present unequal phases to achieve vortex light beams carrying various orbital angular momentums. Furthermore, the transmitting-end wavelength selection switch unit 15 and the receiving-end wavelength selection switch unit 25 are programmable wavelength selection switches for applying a liquid crystal spatial light modulator, which can change the incident and reflection angles of the vortex light signal and change the optical spatial transmission path by programmable regulation of the deflection of the liquid crystal molecules in and out of the liquid crystal spatial light modulator, thereby changing the input-output coordination relationship of the N input terminals and the N output terminals of the transmitting-end wavelength selection switch unit 15, and the N output terminals of the receiving-end wavelength selection switch unit 25. The input-output matching relationship of the input end and the N output ends can obtain N! pairing combinations for indicating the bijective relationship of the N input ends and the N output ends from the N input ends and the N output ends of the transmitting end wavelength selection switch unit 15. Similarly, the N input ends and the N output ends of the receiving end wavelength selection switch unit 25 can also obtain N! pairing combinations for indicating the bijective relationship of the N input ends and the N output ends. In addition, the data compression unit 11, the data recovery unit 21, the transmitting end control unit 16 and the receiving end control unit 26 can be implemented by electronic components with computing capabilities such as embedded system components and digital circuits.

值得特別說明的是,每一配對組合對應一個矩陣型樣,每一矩陣型樣為N×N且其每一行元素(matrix element)及每一列元素中只有一個元素為‘1’ 其餘元素為‘0’之矩陣,且每一矩陣中的N列對應該發射端波長選擇開關單元15之該等N個輸入端,每一矩陣中的N行對應該發射端波長選擇開關單元15之該等N個輸出端,該等N!配對組合為該矩陣型樣所有可能性之集合 ,i,j=1,2,3…,N;假設以N=3,共3!個配對組合為例,該等所有可能性之集合之矩陣型樣分別為: ,共六種態樣,以配對組合為 之矩陣型樣為例,其中,該矩陣型樣裡面的矩陣元素TR 12=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第1個輸入端輸入,只會由其對應配合第2個輸出端輸出;TR 23=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第2個輸入端輸入,只會由其對應配合第3個輸出端輸出;TR 31=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第3個輸入端輸入,只會由其對應配合第1個輸出端輸出。 It is worth noting that each pairing combination corresponds to a matrix pattern, and each matrix pattern is an N×N matrix in which only one element in each row element (matrix element) and each column element is '1' and the rest are '0'. The N columns in each matrix correspond to the N input terminals of the transmitting end wavelength selection switch unit 15, and the N rows in each matrix correspond to the N output terminals of the transmitting end wavelength selection switch unit 15. The N! pairing combinations are the set of all possibilities of the matrix pattern. , i,j=1,2,3…,N; Assume N=3, a total of 3! pair combinations, the matrix patterns of all possible sets are: , , , , and There are six types of patterns, with matching combinations as As an example, the matrix pattern of the matrix element TR 12 = 1 in the matrix pattern can indicate that any signal data input from the first input terminal of the transmitting end wavelength selection switch unit 15 will only be output from its corresponding second output terminal; TR 23 = 1 can indicate that any signal data input from the second input terminal of the transmitting end wavelength selection switch unit 15 will only be output from its corresponding third output terminal; TR 31 = 1 can indicate that any signal data input from the third input terminal of the transmitting end wavelength selection switch unit 15 will only be output from its corresponding first output terminal.

該資料壓縮單元11接收來自外部所傳送N個來源資料User#1~User#N,並將該等N個來源資料User#1~User#N進行壓縮編碼以對應產生N個位元資料U 1~U NThe data compression unit 11 receives N source data User#1-User#N transmitted from the outside, and compresses and encodes the N source data User#1-User#N to generate N bit data U 1 -U N accordingly.

該光源生成單元12產生N個波長不等的高斯光源載波λ 1N後,將其分別傳送至該光濾波單元13之該等N個濾波器;接著,該等N個濾波器根據所接收的該等N個高斯光源載波λ 1N來產生N個分離的高斯光源載波λ 12…λ N-1N;每一濾波器可由空間光調制器(spatial light modulator, SLM)或布拉格光纖光柵(fiber Bragg grating, FBG)等光學元件實現。 After the light source generating unit 12 generates N Gaussian light source carriers λ 1N of different wavelengths, they are transmitted to the N filters of the optical filtering unit 13 respectively; then, the N filters generate N separated Gaussian light source carriers λ 12 …λ N-1N according to the received N Gaussian light source carriers λ 1N ; each filter can be realized by an optical element such as a spatial light modulator (SLM) or a fiber Bragg grating (FBG).

以下將藉由本發明利用渦旋光擾序之無線光加密通訊方法之實施例來說明該無線通訊系統中各元件之作動,該實施例包含一配對預測模型建立程序、一發送程序及一接收程序。The following will illustrate the operation of each component in the wireless communication system through an embodiment of the wireless optical encryption communication method using eddy optical perturbation of the present invention. The embodiment includes a matching prediction model establishment process, a sending process and a receiving process.

參閱圖1與圖3,該配對預測模型建立程序說明了該發射端控制單元16如何建立一配對預測模型,並包含下列步驟。1 and 3 , the pairing prediction model establishment procedure illustrates how the transmitter control unit 16 establishes a pairing prediction model, and includes the following steps.

在步驟31中,該發射端控制單元16根據一組控制參數利用一混沌隨機不重復生成排列演算法產生多組訓練配對組合,並根據該等訓練配對組合獲得多筆訓練資料,其中每筆訓練資料由該等訓練配對組合中之一作為所對應之訓練資料之標記的一標記配對組合及對應該標記配對組合之前Y組訓練配對組合所組成。其中,該組控制參數例如為初始值(Initial condition,X 0)與控制參數值(Control parameter,C),透過該混沌隨機不重復生成排列演算法,只要給定初始值X 0與控制參數值C,即可產生X 1、X 2、…、X M(M>>N),接著,根據X 1~ X N產生一組訓練配對組合,根據X N+1~ X 2N產生下一組訓練配對組合,…,依此類推,即可獲得該等訓練配對組合。 In step 31, the transmitting end control unit 16 generates multiple sets of training pair combinations using a chaotic random non-repetitive generation permutation algorithm according to a set of control parameters, and obtains multiple training data according to the training pair combinations, wherein each training data is composed of a label pair combination with one of the training pair combinations as the label of the corresponding training data and Y sets of training pair combinations corresponding to the label pair combination. The control parameter group is, for example, an initial condition (X 0 ) and a control parameter value (C). By using the chaotic random non-repetitive generation permutation algorithm, as long as the initial condition X 0 and the control parameter value C are given, X 1 , X 2 , ..., X M (M>>N) can be generated. Then, a training pair combination is generated according to X 1 ~ X N , and the next training pair combination is generated according to X N+1 ~ X 2N , ..., and so on, to obtain the training pair combinations.

在步驟32中,該發射端控制單元16根據該等訓練資料利用一機器學習演算法,獲得該配對預測模型,其中該配對預測模型用於根據前Y組配對採用組合預測一當前配對採用組合。值得一提的是,該等訓練資料被隨機抽樣分成訓練集(train set),測試集(test set)並經由訓練(train)、測試(test) 與驗證(validation)階段程序以獲得該配對預測模型。在本實施方式中,該機器學習演算法例如為一迴歸分析法,然不此為限。In step 32, the transmitting end control unit 16 uses a machine learning algorithm based on the training data to obtain the pairing prediction model, wherein the pairing prediction model is used to predict a current pairing adoption combination based on the previous Y sets of pairing adoption combinations. It is worth mentioning that the training data are randomly sampled and divided into a training set and a test set, and the pairing prediction model is obtained through a training, testing, and validation phase procedure. In this embodiment, the machine learning algorithm is, for example, a regression analysis method, but is not limited thereto.

參閱圖1、圖2、圖4與圖5,該發送程序說明了該發射端無線光通訊裝置1如何將資料發送至該接收端無線光通訊裝置2,並包含下列步驟。1 , 2 , 4 and 5 , the sending process illustrates how the transmitting end wireless optical communication device 1 sends data to the receiving end wireless optical communication device 2 , and includes the following steps.

在步驟311中,該光源生成單元12產生N個波長不等的高斯光源載波並輸出至該光濾波單元13。舉例來說,該光源生成單元12產生N=3個波長不等的高斯光源載波λ 13In step 311, the light source generation unit 12 generates N Gaussian light source carriers with different wavelengths and outputs them to the optical filtering unit 13. For example, the light source generation unit 12 generates N=3 Gaussian light source carriers with different wavelengths λ 13 .

在步驟312中,該光濾波單元13之N個濾波器分離該等N個高斯光源載波以產生N個分離的高斯光源載波,並輸出至該渦旋光編碼單元14。延續上述之例子,該光濾波單元13提供三個相應數量的濾波器分離該等三個高斯光源載波λ 13以產生三個分離的高斯光源載波λ 1213分列並行輸出至該渦旋光編碼單元14。 In step 312, the N filters of the optical filter unit 13 separate the N Gaussian light source carriers to generate N separated Gaussian light source carriers, and output them to the eddy current encoding unit 14. Continuing the above example, the optical filter unit 13 provides three corresponding numbers of filters to separate the three Gaussian light source carriers λ 13 to generate three separated Gaussian light source carriers λ 1213 which are output to the eddy current encoding unit 14 in parallel.

在步驟313中,該發射端控制單元16產生對應該等N個高斯光源載波之N個編碼的軌道角動量拓樸荷數,並傳送至該渦旋光編碼單元14及該接收端無線光通訊裝置2。舉例來說,該發射端控制單元16產生對應該等三個高斯光源載波λ1~λ3之三個編碼的軌道角動量拓樸荷數 l 1~ l 3In step 313, the transmitting end control unit 16 generates N coded orbital angular momentum topology load numbers corresponding to the N Gaussian light source carriers, and transmits them to the eddy optical coding unit 14 and the receiving end wireless optical communication device 2. For example, the transmitting end control unit 16 generates three coded orbital angular momentum topology load numbers l 1 ~ l 3 corresponding to the three Gaussian light source carriers λ1 ~ λ3.

在步驟314中,該渦旋光編碼單元14根據該等N個編碼的軌道角動量拓樸荷數,將該等N個分離的高斯光源載波轉換為分別帶有N個編碼之軌道角動量的渦旋光束,以獲得N個渦旋光訊號。延續上述之例子,該渦旋光編碼單元14根據該等三個編碼的軌道角動量拓樸荷數 l 1l 2l 3,將該等三個分離的高斯光源載波λ 1、λ 2、λ 3轉換為分別帶有三個編碼之軌道角動量的渦旋光訊號λ 1( l 1)、λ 2( l 2)、λ 3( l 3) 。 In step 314, the vortex encoding unit 14 converts the N separated Gaussian light source carriers into vortex beams with N coded orbital angular momenta according to the N coded orbital angular momentum topology numbers to obtain N vortex optical signals. Continuing the above example, the vortex optical encoding unit 14 converts the three separated Gaussian light source carriers λ 1 , λ 2 , λ 3 into vortex optical signals λ 1 ( l 1 ), λ 2 ( l 2 ), λ 3 ( l 3 ) with three coded orbital angular momenta according to the three coded orbital angular momentum topology numbers l 1 , l 2 , l 3 .

在步驟315中,該發射端控制單元16根據步驟31的該組控制參數利用該混沌隨機不重復生成排列演算法產生一加密配對組合,並將該組控制參數傳送至該接收端無線光通訊裝置2且將該加密配對組合傳送至該發射端波長選擇開關單元15,其中,該加密配對組合用以指示該發射端波長選擇開關單元15之每一輸入端及其對應配合的輸出端。In step 315, the transmitting end control unit 16 generates an encrypted pairing combination using the chaotic random non-repetitive permutation algorithm according to the set of control parameters in step 31, and transmits the set of control parameters to the receiving end wireless optical communication device 2 and transmits the encrypted pairing combination to the transmitting end wavelength selection switch unit 15, wherein the encrypted pairing combination is used to indicate each input end of the transmitting end wavelength selection switch unit 15 and its corresponding output end.

值得一提的是,步驟315還包含以下子步驟(見圖6)。It is worth mentioning that step 315 also includes the following sub-steps (see FIG. 6 ).

在子步驟315A中,該發射端控制單元16根據該組控制參數利用一混沌方程式產生一長度為N的隨機時間序列。其中,該組控制參數例如為初始值(Initial condition,X 0)與控制參數值(Control parameter,C),而該混沌方程式例如為X n+1=C×X n×(1-X n),因此只要給定初始值X 0與控制參數值C,即可依據該混沌方程式產生X 1、X 2、…、X N。藉此,以獲得長度為N的隨機時間序列,舉例來說,假設N=3且該隨機時間序列為:{0.5,0.2,0.1}。 In sub-step 315A, the transmitting end control unit 16 generates a random time sequence of length N using a chaotic equation according to the set of control parameters. The set of control parameters is, for example, an initial condition (X 0 ) and a control parameter value (C), and the chaotic equation is, for example, X n+1 =C×X n ×(1-X n ). Therefore, as long as the initial condition X 0 and the control parameter value C are given, X 1 , X 2 , ..., X N can be generated according to the chaotic equation. In this way, a random time sequence of length N is obtained. For example, assuming that N=3 and the random time sequence is: {0.5, 0.2, 0.1}.

在子步驟315B中,該發射端控制單元16將該隨機時間序列中之每一數值映射為一對應之正整數序碼。其中,該發射端控制單元16藉由一預設映射函式將該隨機時間序列進行數值轉換,以將該隨機時間序列中的該等N個隨機實數依照其數值大小分別將其對應至數值為1至N的正整數序碼。延續上述之例子,該隨機時間序列{0.5,0.2,0.1}經由該預設映射函式進行不重複的數值轉換後對應至{3,2,1},其中,該隨機時間序列中最小值0.1所對應的正整數序碼為1,中間值0.2所對應的正整數序碼為2且,最大值0.5所對應的正整數序碼為3。In sub-step 315B, the transmitting end control unit 16 maps each value in the random time sequence to a corresponding positive integer sequence. The transmitting end control unit 16 converts the random time sequence by a preset mapping function to respectively map the N random real numbers in the random time sequence to positive integer sequences with values ranging from 1 to N according to their values. Continuing with the above example, the random time series {0.5, 0.2, 0.1} is converted to {3, 2, 1} after non-repeating numerical values are converted by the default mapping function, wherein the positive integer sequence corresponding to the minimum value 0.1 in the random time series is 1, the positive integer sequence corresponding to the middle value 0.2 is 2, and the positive integer sequence corresponding to the maximum value 0.5 is 3.

在子步驟315C中,該發射端控制單元16將該等N個正整數序碼轉換為一置換矩陣,以作為該加密配對組合,其中,該加密配對組合用以指示該發射端波長選擇開關單元15之每一輸入端及其對應配合的輸出端。延續上述之例子,該發射端控制單元16將{3,2,1}轉換為置換矩陣 ,以作為該加密配對組合,該加密配對組合中的矩陣元素TR 13=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第1個輸入端輸入,只會由其對應配合第3個輸出端輸出;TR 22=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第2個輸入端輸入,只會由其對應配合第2個輸出端輸出;TR 31=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第3個輸入端輸入,只會由其對應配合第1個輸出端輸出。 In sub-step 315C, the transmitter control unit 16 converts the N positive integer sequences into a permutation matrix as the encryption pair combination, wherein the encryption pair combination is used to indicate each input terminal of the transmitter wavelength selection switch unit 15 and its corresponding output terminal. Continuing the above example, the transmitter control unit 16 converts {3,2,1} into a permutation matrix , as the encryption pairing combination, the matrix element TR 13 =1 in the encryption pairing combination can indicate that any signal data input from the first input terminal of the transmitting end wavelength selection switch unit 15 will only be output from its corresponding third output terminal; TR 22 =1, can indicate that any signal data input from the second input terminal of the transmitting end wavelength selection switch unit 15 will only be output from its corresponding second output terminal; TR 31 =1, can indicate that any signal data input from the third input terminal of the transmitting end wavelength selection switch unit 15 will only be output from its corresponding first output terminal.

在子步驟315D中,該發射端控制單元16將該組控制參數傳送至該接收端無線光通訊裝置2且將該加密配對組合傳送至該發射端波長選擇開關單元15。In sub-step 315D, the transmitting end control unit 16 transmits the set of control parameters to the receiving end wireless optical communication device 2 and transmits the encrypted pairing combination to the transmitting end wavelength selection switch unit 15.

在步驟316中,該發射端控制單元16根據前1~Y次步驟315所產生之Y組加密配對組合,利用該配對預測模型預測該等前Y組加密配對組合所對應之一預測加密配對組合(亦即,根據前1~Y次步驟315所產生之Y組加密配對組合,預測此次步驟315可能產生的加密配對組合)。In step 316, the transmitting end control unit 16 uses the pairing prediction model to predict a predicted encryption pairing combination corresponding to the Y groups of encryption pairing combinations generated in the previous 1 to Y steps 315 (that is, based on the Y groups of encryption pairing combinations generated in the previous 1 to Y steps 315, predict the encryption pairing combination that may be generated in this step 315).

在步驟317中,該發射端控制單元16比對此次步驟315所產生之加密配對組合與該預測加密配對組合,並根據比對結果更新一預測正確率。當該預測正確率愈高,即表示該混沌隨機不重復生成排列演算法產生之加密配對組合的變化性具有太高顯著特徵樣式;換言之,非授權者運用各式機器學習預測模型對於加密配對組合的破密攻擊其威脅危機愈高。In step 317, the transmitting end control unit 16 compares the encryption pairing combination generated in step 315 with the predicted encryption pairing combination, and updates a prediction accuracy rate according to the comparison result. The higher the prediction accuracy rate, the higher the variability of the encryption pairing combination generated by the chaotic random non-repetitive permutation algorithm has a high significant characteristic pattern; in other words, the threat of unauthorized persons using various machine learning prediction models to crack the encryption pairing combination is higher.

在步驟318中,該發射端控制單元16根據該預測正確率判定根據步驟315所產生之加密配對組合是否存在破密風險。當該發射端控制單元16判定出存在破密風險時,流程進行步驟319;當該發射端控制單元16判定出不存在破密風險時,流程進行步驟320。其中,該發射端控制單元16係判定該預測正確率是否大於一門檻值以判定根據步驟315所產生之加密配對組合是否存在破密風險。當該發射端控制單元16判定該預測正確率大於該門檻值時,即判定根據步驟315所產生之加密配對組合存在破密風險;當該發射端控制單元16判定該預測正確率不大於該門檻值時,即判定根據步驟315所產生之加密配對組合不存在破密風險,則延續該組控制參數以維持原有既定渦旋光的擾序樣式。In step 318, the transmitting end control unit 16 determines whether the encryption pairing combination generated according to step 315 has a risk of cracking according to the prediction accuracy. When the transmitting end control unit 16 determines that there is a risk of cracking, the process proceeds to step 319; when the transmitting end control unit 16 determines that there is no risk of cracking, the process proceeds to step 320. The transmitting end control unit 16 determines whether the prediction accuracy is greater than a threshold value to determine whether the encryption pairing combination generated according to step 315 has a risk of cracking. When the transmitting end control unit 16 determines that the prediction accuracy is greater than the threshold value, it is determined that the encryption pairing combination generated according to step 315 has a risk of being cracked; when the transmitting end control unit 16 determines that the prediction accuracy is not greater than the threshold value, it is determined that the encryption pairing combination generated according to step 315 does not have a risk of being cracked, and the set of control parameters is continued to maintain the original predetermined eddy light disturbance pattern.

在步驟319中,該發射端控制單元16更換該組控制參數,並回到步驟315,以重新根據更換後之另一組控制參數產生新的加密配對組合來變換渦旋光的擾序樣式(scrambling pattern)。In step 319, the transmitter control unit 16 changes the set of control parameters and returns to step 315 to generate a new encryption pairing combination according to another set of control parameters after the change to change the scrambling pattern of the eddy light.

在步驟320中,對於該發射端波長選擇開關單元15之每一輸入端,當該輸入端接收來自於該渦旋光編碼單元14的該等N個渦旋光訊號中之一對應的輸入渦旋光訊號時,根據該加密配對組合,將對應的該輸入渦旋光訊號輸出至該輸入端所對應的該發射端波長選擇開關單元15之輸出端。接續上述之例子,以 之矩陣型樣作為該加密配對組合來將對應的該輸入渦旋光訊號λ 1( l 1)/λ 2( l 2)/λ 3( l 3)輸出至該輸入端所對應的該發射端波長選擇開關單元15之輸出端後,λ 1( l 1)、λ 2( l 2)、λ 3( l 3)的空間輸出順序將變為λ 3( l 3)、λ 2( l 2)、λ 1( l 1)。藉此,使得進入調變單元17的渦旋光訊號空間傳輸路徑改變,以實現變換來源資料User#1~User#N的承載渦旋光。 In step 320, for each input terminal of the transmitting end wavelength selection switch unit 15, when the input terminal receives an input vortex signal corresponding to one of the N vortex signals from the vortex encoding unit 14, the corresponding input vortex signal is output to the output terminal of the transmitting end wavelength selection switch unit 15 corresponding to the input terminal according to the encryption pairing combination. After the matrix pattern of is used as the encryption pairing combination to output the corresponding input vortex signal λ 1 ( l 1 )/λ 2 ( l 2 )/λ 3 ( l 3 ) to the output end of the transmitting end wavelength selection switch unit 15 corresponding to the input end, the spatial output sequence of λ 1 ( l 1 ), λ 2 ( l 2 ), λ 3 ( l 3 ) will become λ 3 ( l 3 ), λ 2 ( l 2 ), λ 1 ( l 1 ). In this way, the spatial transmission path of the vortex signal entering the modulation unit 17 is changed to achieve the transformation of the carrier vortex of the source data User#1~User#N.

在步驟321中,該資料壓縮單元11將該等N個來源資料User#1~User#N進行壓縮編碼以對應產生該等N個位元資料U 1~U N。以N=3為例,該等三個位元資料即為U 1~U 3In step 321, the data compression unit 11 compresses and encodes the N source data User#1 to User#N to generate the N bit data U 1 to U N . For example, when N=3, the three bit data are U 1 to U 3 .

在步驟322中,對於每一調變器,該調變器根據所連接的該發射端波長選擇開關單元15之輸出端輸出的渦旋光訊號及所連接之資料壓縮單元11所產生的該等N個位元資料中之一對應的位元資料來進行調變,以產生並輸出一光調變訊號至該光多工單元18。連接對應輸出的渦旋光訊號λ 3( l 3)之輸出端的調變器調變該等N個位元資料中之一對應的位元資料U 1以產生光調變訊號U 13( l 3)],連接對應輸出的渦旋光訊號λ 2( l 2)之輸出端的調變器調變該等N個位元資料中之一對應的位元資料U 2以產生光調變訊號U 22( l 2)] ,連接對應輸出的渦旋光訊號λ 1( l 1)之輸出端的調變器調變該等N個位元資料中之一對應的位元資料U 3以產生光調變訊號U 31( l 1)]。藉由該渦旋光編碼單元14與該發射端波長選擇開關單元15使得λ 1( l 1)、λ 2( l 2)、λ 3( l 3)的空間輸出順序變換為λ 3( l 3)、λ 2( l 2)、λ 1( l 1),且每次該發射端控制單元16根據該組控制參數產生之該加密配對組合皆不相同,如此一來,本次的位元資料U 1~U 3與下次的位元資料U 1~U 3不皆搭配相同的載波組λ 13,故形成渦旋光擾序變換機制。 In step 322, for each modulator, the modulator performs modulation according to the vortex optical signal output from the output end of the connected transmitting end wavelength selection switch unit 15 and the bit data corresponding to one of the N bit data generated by the connected data compression unit 11 to generate and output an optical modulation signal to the optical multiplexing unit 18. The modulator connected to the output end corresponding to the output vortex light signal λ 3 ( l 3 ) modulates the bit data U 1 corresponding to one of the N bit data to generate the optical modulation signal U 13 ( l 3 )], the modulator connected to the output end corresponding to the output vortex light signal λ 2 ( l 2 ) modulates the bit data U 2 corresponding to one of the N bit data to generate the optical modulation signal U 22 ( l 2 )], and the modulator connected to the output end corresponding to the output vortex light signal λ 1 ( l 1 ) modulates the bit data U 3 corresponding to one of the N bit data to generate the optical modulation signal U 31 ( l 1 )]. The spatial output sequence of λ 1 ( l 1 ), λ 2 ( l 2 ), λ 3 ( l 3 ) is transformed into λ 3 ( l 3 ), λ 2 ( l 2 ), λ 1 ( l 1 ) by the eddy-optic encoding unit 14 and the transmitting-end wavelength selection switch unit 15, and the encryption pairing combination generated by the transmitting-end control unit 16 according to the set of control parameters is different each time. In this way, the bit data U 1 ~U 3 of this time and the bit data U 1 ~U 3 of the next time are not all matched with the same carrier set λ 13 , thus forming an eddy-optic perturbation conversion mechanism.

在步驟323中,該光多工單元18將該等N個光調變訊號進行多工處理以產生一光多工輸出訊號,並經由該無線光傳送單元19傳送至該接收端無線光通訊裝置2之無線光接收單元22。該光多工單元18係將該等N個光調變訊號U 13( l 3)]、U 22( l 2)]、U 31( l 1)]多工匯聚成光多工輸出訊號U 13( l 3)]~ U 31( l 1)]。在本實施例中,可採用陣列波導光纖光柵或布拉格光纖光柵等光學元件將該等N個光調變訊號進行光分波多工,但不在此限。 In step 323, the optical multiplexing unit 18 multiplexes the N optical modulated signals to generate an optical multiplexed output signal, and transmits the signal to the wireless optical receiving unit 22 of the receiving end wireless optical communication device 2 via the wireless optical transmission unit 19. The optical multiplexing unit 18 multiplexes the N optical modulated signals U1 [ λ3 ( l3 ) ], U2 [ λ2 ( l2 ) ], and U3 [ λ1 ( l1 )] into an optical multiplexed output signal U1 [ λ3 ( l3 )]~ U3 [ λ1 ( l1 )]. In this embodiment, optical elements such as array waveguide fiber gratings or Bragg fiber gratings may be used to perform optical wavelength division multiplexing on the N optical modulated signals, but the present invention is not limited thereto.

參閱圖1、圖2與圖7,該接收程序說明了該接收端無線光通訊裝置2如何還原該發射端無線光通訊裝置1所發送之資料,並包含下列步驟。1, 2 and 7, the receiving process illustrates how the receiving end wireless optical communication device 2 restores the data sent by the transmitting end wireless optical communication device 1, and includes the following steps.

在步驟501中,在該接收端無線光通訊裝置2之無線光接收單元22接收到該光多工輸出訊號後,將該光多工輸出訊號輸出至該光解多工單元23。In step 501 , after the wireless optical receiving unit 22 of the receiving-end wireless optical communication device 2 receives the optical multiplexed output signal, the optical multiplexed output signal is output to the optical demultiplexing unit 23 .

在步驟502中,該光解多工單元23依據該等N個波長不等的渦旋光訊號λ 1( l 1)、λ 2( l 2)、λ 3( l 3)依序將該光多工輸出訊號進行解多工處理,以產生該等N組光解多工訊號並輸出至該渦旋光解碼單元24。該光解多工單元23係將該光多工輸出訊號U 13( l 3)]~ U 31( l 1)] 依據該等N個波長不等的渦旋光訊號λ 1( l 1)、λ 2( l 2)、λ 3( l 3)依序分波為該等三組光解多工訊號U 31( l 1)]、U 22( l 2)]、 U 13( l 3)]。在本實施例中,該光解多工單元23係可藉由1×N集中式的陣列波導光纖光柵(AWG),或N個分列的布拉格光纖光柵(FBG)進行分波解多工處理,但不以此為限。 In step 502, the photodemultiplexing unit 23 sequentially demultiplexes the optical multiplexing output signal according to the N vortex optical signals λ 1 ( l 1 ), λ 2 ( l 2 ), λ 3 ( l 3 ) of different wavelengths to generate the N groups of photodemultiplexing signals and output them to the vortex optical decoding unit 24. The photodemultiplexing unit 23 demultiplexes the optical multiplexed output signal U1 [ λ3 ( l3 ) ]~ U3 [ λ1 ( l1 )] into the three groups of photodemultiplexing signals U3[ λ1 ( l1 ) ], U2[ λ2 ( l2 ) ], U1 [λ3 ( l3 )] according to the N vortex optical signals with different wavelengths λ1 ( l1 ) , λ2 ( l2 ) , λ3 ( l3 ). In the present embodiment, the photodemultiplexing unit 23 can perform wavelength division and demultiplexing processing by a 1 ×N centralized array waveguide fiber grating (AWG) or N distributed Bragg fiber gratings ( FBG ), but is not limited thereto.

在步驟503中,該接收端控制單元26根據該發射端控制單元16所傳送的該等N個編碼的軌道角動量拓樸荷數,產生N個解碼的軌道角動量拓樸荷數,並傳送至該渦旋光解碼單元24。延續前述之例子,該接收端控制單元26根據該等三個編碼的軌道角動量拓樸荷數 l 1l 2l 3,對應產生三個解碼的軌道角動量拓樸荷數- l 1、- l 2、- l 3。(亦即,還原對稱於該等三個編碼之軌道角動量拓樸荷數的該等三個解碼之軌道角動量拓樸荷數) In step 503, the receiving end control unit 26 generates N decoded orbital angular momentum topology load numbers according to the N encoded orbital angular momentum topology load numbers transmitted by the transmitting end control unit 16, and transmits them to the eddy light decoding unit 24. Continuing the above example, the receiving end control unit 26 generates three decoded orbital angular momentum topology load numbers -11 , -12 , -13 according to the three encoded orbital angular momentum topology load numbers l1 , l2 , l3 . (That is, the three decoded orbital angular momentum topology load numbers are restored to be symmetrical to the three encoded orbital angular momentum topology load numbers)

在步驟504中,該渦旋光解碼單元24根據該等N個解碼的軌道角動量拓樸荷數,將該等N組光解多工訊號解碼為N個軌道角動量為零之高斯光訊號,並輸出至該接收端波長選擇開關單元25。接續上述之例子,該渦旋光解碼單元24根據該等三個解碼的軌道角動量拓樸荷數- l 1、- l 2、- l 3,將該等三組光解多工訊號U 31( l 1)]、U 22( l 2)]、U 13( l 3)]解碼為三個軌道角動量為零之高斯光訊號U 31]、U 22]、U 13]。由於該等三個編碼的軌道角動量拓樸荷數 l 1l 2l 3係分別對應該等三個高斯光源載波λ 1、λ 2、λ 3,因而該接收端控制單元26所產生之該等三個解碼的軌道角動量拓樸荷數- l 1、- l 2、- l 3亦須分別對應該等三個高斯光源載波λ 1、λ 2、λ 3。故該渦旋光解碼單元24會根據- l 1解碼對應有λ 1的光解多工訊號U 31( l 1)],以解碼出高斯光訊號U 31],並根據- l 2解碼對應有λ 2的光解多工訊號U 22( l 2)],以解碼出高斯光訊號U 22],且根據- l 3解碼對應有λ 3的光解多工訊號U 13( l 3)],以解碼出高斯光訊號U 13]。 In step 504, the vortex optical decoding unit 24 decodes the N sets of photodemultiplexing signals into N Gaussian light signals with zero orbital angular momentum according to the N decoded orbital angular momentum topological loads, and outputs them to the receiving end wavelength selection switch unit 25. Continuing with the above example, the vortex optical decoding unit 24 decodes the three sets of photomultiplexed signals U 3 [λ 1 ( l 1 )], U 2 [ λ 2 ( l 2 )], U 1 [λ 3 ( l 3 )] into three Gaussian light signals U 31 ], U 2 [ λ 2 ], U 1 [ λ 3 ] with zero orbital angular momentum according to the three decoded orbital angular momentum topological load numbers - l 1 , - l 2 , - l 3 . Since the three encoded orbital angular momentum topology load numbers l 1 , l 2 , l 3 correspond to the three Gaussian light source carriers λ 1 , λ 2 , λ 3 , respectively, the three decoded orbital angular momentum topology load numbers - l 1 , - l 2 , - l 3 generated by the receiving end control unit 26 must also correspond to the three Gaussian light source carriers λ 1 , λ 2 , λ 3 , respectively. Therefore, the vortex optical decoding unit 24 will decode the photodemultiplexing signal U 31 ( l 1 )] corresponding to λ 1 according to - l 1 to decode the Gaussian light signal U 31 ], and will decode the photodemultiplexing signal U 22 ( l 2 )] corresponding to λ 2 according to - l 2 to decode the Gaussian light signal U 22 ], and will decode the photodemultiplexing signal U 13 ( l 3 )] corresponding to λ 3 according to - l 3 to decode the Gaussian light signal U 13 ].

在步驟505中,該接收端控制單元26根據該發射端控制單元16所傳送的該組控制參數利用該混沌隨機不重復生成排列演算法產生一加密配對組合,並根據該加密配對組合產生一解密配對組合,且將該解密配對組合傳送至該接收端波長選擇開關單元25,其中,該解密配對組合用以指示該接收端波長選擇開關單元25之每一輸入端及其對應配合的輸出端。In step 505, the receiving end control unit 26 generates an encryption pairing combination using the chaotic random non-repetitive permutation algorithm according to the set of control parameters transmitted by the transmitting end control unit 16, generates a decryption pairing combination according to the encryption pairing combination, and transmits the decryption pairing combination to the receiving end wavelength selection switch unit 25, wherein the decryption pairing combination is used to indicate each input terminal of the receiving end wavelength selection switch unit 25 and its corresponding output terminal.

值得一提的是,步驟505還包含以下子步驟(見圖8)。It is worth mentioning that step 505 also includes the following sub-steps (see FIG. 8 ).

在子步驟505A中,該接收端控制單元26根據該組控制參數利用該混沌方程式產生一長度為N的隨機時間序列。由於該組控制參數即為該發射端控制單元16用於產生該隨機時間序列的該組控制參數,該發射端控制單元16所使用的混沌方程式與該接收端控制單元26所使用的混沌方程式亦為相同之方程式,因此該接收端控制單元26根據該組控制參數利用該混沌方程式所產生之隨機時間序列即會相同於該發射端控制單元16根據該組控制參數利用該混沌方程式所產生之隨機時間序列,延續前述之例子,該接收端控制單元26所產生之隨機時間序列即為{0.5,0.2,0.1}。In sub-step 505A, the receiving end control unit 26 generates a random time sequence of length N using the chaotic equation according to the set of control parameters. Since the set of control parameters is the set of control parameters used by the transmitting end control unit 16 to generate the random time sequence, the chaotic equation used by the transmitting end control unit 16 and the chaotic equation used by the receiving end control unit 26 are also the same equation, so the random time sequence generated by the receiving end control unit 26 using the chaotic equation according to the set of control parameters is the same as the random time sequence generated by the transmitting end control unit 16 using the chaotic equation according to the set of control parameters. Continuing the above example, the random time sequence generated by the receiving end control unit 26 is {0.5, 0.2, 0.1}.

在子步驟505B中,該接收端控制單元26將該隨機時間序列中之每一數值映射為一對應之正整數序碼。相似地,該隨機時間序列{0.5,0.2,0.1}經由該預設映射函式進行不重複的數值轉換後對應至{3,2,1}。In sub-step 505B, the receiving end control unit 26 maps each value in the random time sequence to a corresponding positive integer sequence. Similarly, the random time sequence {0.5, 0.2, 0.1} is converted to {3, 2, 1} after non-repeating numerical conversion by the default mapping function.

在子步驟505C中,該接收端控制單元26將該等N個正整數序碼轉換為一置換矩陣,以生成相同於步驟315的該加密配對組合。相似地,該接收端控制單元26將{3,2,1}轉換為該置換矩陣 In sub-step 505C, the receiving end control unit 26 converts the N positive integer sequences into a permutation matrix to generate the same encryption pair combination as step 315. Similarly, the receiving end control unit 26 converts {3,2,1} into the permutation matrix .

在子步驟505D中,該接收端控制單元26根據該加密配對組合產生一解密配對組合,且將該解密配對組合傳送至該接收端波長選擇開關單元25,其中,該解密配對組合用以指示該接收端波長選擇開關單元25之每一輸入端及其對應配合的輸出端。在本實施例中,該解密配對組合所對應的矩陣型樣與該加密配對組合所對應的矩陣型樣之互為轉置關係,因此該接收端控制單元26藉由將該置換矩陣進行轉置即可獲得該解密配對組合。接續上述之例子,將該置換矩陣進行 轉置即可獲得 (即, 之轉置矩陣),此兩個矩陣之乘積會構成一個單位矩陣。 In sub-step 505D, the receiving end control unit 26 generates a decryption pairing combination according to the encryption pairing combination, and transmits the decryption pairing combination to the receiving end wavelength selection switch unit 25, wherein the decryption pairing combination is used to indicate each input terminal of the receiving end wavelength selection switch unit 25 and its corresponding output terminal. In this embodiment, the matrix pattern corresponding to the decryption pairing combination and the matrix pattern corresponding to the encryption pairing combination are mutually transposed, so the receiving end control unit 26 can obtain the decryption pairing combination by transposing the permutation matrix. Continuing with the above example, the permutation matrix is transposed. Transpose to get (Right now, The product of these two matrices will form a unit matrix.

在步驟506中,對於該接收端波長選擇開關單元25之每一輸入端,該輸入端接收來自於該渦旋光解碼單元24的該等N個高斯光訊號中之一對應的輸入高斯光訊號時,根據該解密配對組合,將對應的輸入高斯光訊號輸出至該輸入端所配合的該接收端波長選擇開關單元25之輸出端。接續上述之例子,以 之矩陣型樣作為該解密配對組合來將對應的該輸入高斯光訊號U 31] /U 22] / U 13] 輸出至該輸入端所配合的該接收端波長選擇開關單元25之輸出端後,U 31]、U 22]、U 13]的空間輸出順序將變為U 13]、U 22]、U 31]。 In step 506, for each input end of the receiving end wavelength selection switch unit 25, when the input end receives an input Gaussian light signal corresponding to one of the N Gaussian light signals from the vortex optical decoding unit 24, the corresponding input Gaussian light signal is output to the output end of the receiving end wavelength selection switch unit 25 that matches the input end according to the decryption pair combination. After using the matrix pattern as the decryption pairing combination to output the corresponding input Gaussian light signal U 31 ] /U 22 ] /U 13 ] to the output end of the receiving end wavelength selection switch unit 25 corresponding to the input end, the spatial output order of U 31 ], U 22 ], U 13 ] will become U 13 ], U 22 ], U 31 ].

在步驟507中,對於每一解調變器,該解調變器根據所連接之該接收端波長選擇開關單元25之輸出端輸出的高斯光訊號進行解調變,以產生一對應的位元資料,並輸出至該資料還原單元21。接續上述之例子,每一解調變器分別將U 13] /U 22] /U 31] 進行解調變以將高斯光源載波卸載,進而產生一對應的位元資料U 1/U 2/U 3,在本實施例中,每一解調變器可藉由光檢測器(photodetector) 進行解調變,但不以此為限。 In step 507, for each demodulator, the demodulator demodulates the Gaussian light signal outputted from the output end of the connected receiving end wavelength selection switch unit 25 to generate a corresponding bit data, and outputs it to the data recovery unit 21. Continuing with the above example, each demodulator demodulates U 13 ] /U 22 ] /U 31 ] to unload the Gaussian light source carrier, thereby generating a corresponding bit data U 1 /U 2 /U 3 . In this embodiment, each demodulator can perform demodulation by a photodetector, but is not limited thereto.

在步驟508中,該資料還原單元21將每一位元資料進行還原,以產生該等N個來源資料。接續上述之例子,該資料還原單元21將每一位元資料U 1/U 2/U 3進行還原,以產生該等三個來源資料User#1~User#3。藉此正確地還原解讀出該等來源影像資料User#1~User#3其原始格式的信號。 In step 508, the data restoration unit 21 restores each bit of the data to generate the N source data. Continuing with the above example, the data restoration unit 21 restores each bit of the data U 1 /U 2 /U 3 to generate the three source data User#1~User#3. In this way, the original format of the source image data User#1~User#3 is correctly restored and interpreted.

綜上所述,本發明藉由該發射端控制單元16產生該加密配對組合,針對在傳輸加密處理後該等位元資料U 1~U N,形成渦旋光擾序的變換機制,以在後續解密時透過對應該加密配對組合之解密配對組合正確解讀出該等N個位元資料,進而還原該等來源資料User#1~User#N,藉此,運用實體層上多個渦旋光擾序變換機制生成加密效能,以解決在應用層上影像僅能進行部份加密而削減了無線光通訊於傳輸影像時之安全性的困境。此外,透過增加多模態軌道角動量的編碼並整合擾序變換渦旋光系統來實現多維度多工的加密傳輸,進而提高光通訊的傳輸容量與資訊傳輸安全。再者,建構混沌加密及透過機器學習迴歸分析獲得該預測加密配對組合以監控預測破密之威脅,以主動更換該組控制參數,來強化具隱私權的實體層傳輸安全,故確實能達成本發明的目的。 In summary, the present invention generates the encryption pair combination through the transmitting end control unit 16, and forms a vortex optical perturbation sequence transformation mechanism for the bit data U 1 ~U N after the transmission encryption process, so that the N bit data can be correctly interpreted through the decryption pair combination corresponding to the encryption pair combination during the subsequent decryption, and then the source data User#1~User#N can be restored. In this way, multiple vortex optical perturbation sequence transformation mechanisms on the physical layer are used to generate encryption performance to solve the dilemma that the image can only be partially encrypted on the application layer, thereby reducing the security of wireless optical communication when transmitting images. In addition, by adding the coding of multi-modal orbital angular momentum and integrating the perturbation transformation vortex optical system to realize multi-dimensional multiplexed encrypted transmission, the transmission capacity of optical communication and the security of information transmission are improved. Furthermore, by constructing chaotic encryption and obtaining the predicted encryption pairing combination through machine learning regression analysis to monitor the threat of predictive cracking, the control parameters are actively changed to strengthen the physical layer transmission security with privacy, so the purpose of this invention can be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only an embodiment of the present invention and should not be used to limit the scope of implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the present patent.

User#1~User#N 來源資料 λ 13··· 高斯光源載波 λ 1( l 1)~λ 3( l 3) 渦旋光訊號 U 1~U 3·· 位元資料 U 13( l 3)]、U 22( l 2)]、U 31( l 1)]光調變訊號 U 13( l 3)]~ U 31( l 1)]光多工輸出訊號 U 31( l 1)]、U 22( l 2)]、 U 13( l 3)]光解多工訊號 U 31]、U 22]、U 13] 高斯光訊號 1········ 發射端無線光通訊裝置 11······ 資料壓縮單元 12······ 光源生成單元 13······ 光濾波單元 14······ 渦旋光編碼單元 15······ 發射端波長選擇開關單元 16······ 發射端控制單元 17······ 調變單元 18 ······ 光多工單元 19 ······ 無線光傳送單元 2········ 接收端無線光通訊裝置 21······ 資料還原單元 22······ 無線光接收單元 23······· 光解多工單元 24······ 渦旋光解碼單元 25······ 接收端波長選擇開關單元 26······· 接收端控制單元 27······ 解調變單元 31~32步驟 311~323步驟 315A~315D子步驟 501~508步驟 505A~505D子步驟 User#1~User#N Source dataλ 13 ··· Gaussian light source carrierλ 1 ( l 1 )~λ 3 ( l 3 ) Vortex light signalU 1 ~U 3 ·· Bit dataU 13 ( l 3 )]、U 22 ( l 2 )]、U 31 ( l 1 )]Optical modulation signalU 13 ( l 3 )]~U 31 ( l 1 )]Optical multiplexed output signalU 31 ( l 1 )]、U 22 ( l 2 )]、U 13 ( l 3 )]Photodemultiplexed signalU 31 ]、U 22 ]、U 13 ] Gaussian light signal1········ Transmitter-side wireless optical communication device 11······ Data compression unit 12······ Light source generation unit 13······ Optical filtering unit 14······ Eddy optical encoding unit 15······ Transmitter-side wavelength selection switch unit 16······ Transmitter-side control unit 17······ Modulation unit 18······ Optical multiplexing unit 19······ Wireless optical transmission unit 2········ Receiving-side wireless optical communication device 21······ Data recovery unit 22······ Wireless optical receiving unit 23······· Optical demultiplexing unit 24······ Eddy optical decoding unit 25······ Receiver wavelength selection switch unit 26 Receiver control unit 27 Demodulation unit 31~32 Steps 311~323 Steps 315A~315D Sub-steps 501~508 Steps 505A~505D Sub-steps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1與圖2皆為一方塊圖,配合說明用於實施本發明利用渦旋光擾序之無線光加密通訊方法之實施例的一無線光通訊系統; 圖3為一流程圖,說明本發明利用渦旋光擾序之無線光加密通訊方法之實施例的一配對預測模型建立程序; 圖4與圖5皆為一流程圖,配合說明本發明利用渦旋光擾序之無線光加密通訊方法之實施例的一發送程序; 圖6為一流程圖,說明如何產生一加密配對組合; 圖7為一流程圖,說明本發明利用渦旋光擾序之無線光加密通訊方法之實施例的一接收程序;及 圖8為一流程圖,說明如何產生一解密配對組合。 Other features and effects of the present invention will be clearly presented in the implementation method of the reference figures, in which: Figures 1 and 2 are both block diagrams, which are used to illustrate a wireless optical communication system for implementing an embodiment of the wireless optical encryption communication method using vortex optical perturbation of the present invention; Figure 3 is a flow chart, which illustrates a pairing prediction model establishment procedure of an embodiment of the wireless optical encryption communication method using vortex optical perturbation of the present invention; Figures 4 and 5 are both flow charts, which are used to illustrate a sending procedure of an embodiment of the wireless optical encryption communication method using vortex optical perturbation of the present invention; Figure 6 is a flow chart, which illustrates how to generate an encrypted pairing combination; Figure 7 is a flow chart, which illustrates a receiving procedure of an embodiment of the wireless optical encryption communication method using vortex optical perturbation of the present invention; and Figure 8 is a flow chart illustrating how to generate a decryption pair combination.

1:發射端無線光通訊裝置 1: Transmitter wireless optical communication device

11:資料壓縮單元 11: Data compression unit

12:光源生成單元 12: Light source generation unit

13:光濾波單元 13: Optical filter unit

14:渦旋光編碼單元 14: Eddy current encoding unit

15:發射端波長選擇開關單元 15: Transmitter wavelength selection switch unit

16:發射端控制單元 16: Transmitter control unit

17:調變單元 17: Modulation unit

18:光多工單元 18: Optical multiplexing unit

19:無線光傳送單元 19: Wireless optical transmission unit

Claims (8)

一種利用渦旋光擾序之無線光加密通訊方法,藉由一發射端無線光通訊裝置來實施,該發射端無線光通訊裝置與一接收端無線光通訊裝置通訊連接,並包括一資料壓縮單元、一光源生成單元、一具有N個濾波器並連接該光源生成單元之光濾波單元、一連接該光濾波單元的渦旋光編碼單元、一連接該渦旋光編碼單元並具有N個輸入端及N個輸出端的發射端波長選擇開關單元、一連接該渦旋光編碼單元與該發射端波長選擇開關單元的發射端控制單元、一具有N個調變器並連接該資料壓縮單元與該發射端波長選擇開關單元之調變單元,以及一與該調變單元連接之光多工單元,其中,該資料壓縮單元可將N個來源資料進行壓縮編碼以對應產生N個位元資料,該光源生成單元可提供N個波長不等的高斯光源載波,該等N個濾波器可分離該等N個高斯光源載波以產生N個分離的高斯光源載波,該等N個調變器分別與該發射端波長選擇開關單元之該等N個輸出端連接,其中N≥3,該方法包含以下步驟: (A)該發射端控制單元產生對應該等N個高斯光源載波之N個編碼的軌道角動量拓樸荷數,並傳送至該渦旋光編碼單元及該接收端無線光通訊裝置; (B)該渦旋光編碼單元根據該等N個編碼的軌道角動量拓樸荷數,將該等N個分離的高斯光源載波轉換為分別帶有N個編碼之軌道角動量的渦旋光束,以獲得N個渦旋光訊號; (C)該發射端控制單元根據一組控制參數利用一混沌隨機不重復生成排列演算法產生一加密配對組合,並將該組控制參數傳送至該接收端無線光通訊裝置且將該加密配對組合傳送至該發射端波長選擇開關單元,其中,該加密配對組合用以指示該發射端波長選擇開關單元之每一輸入端及其對應配合的輸出端; (D)對於該發射端波長選擇開關單元之每一輸入端,當該輸入端接收來自於該渦旋光編碼單元的該等N個渦旋光訊號中之一對應的輸入渦旋光訊號時,根據該加密配對組合,將對應的該輸入渦旋光訊號輸出至該輸入端所對應的該發射端波長選擇開關單元之輸出端; (E)對於每一調變器,該調變器根據所連接的該發射端波長選擇開關單元之輸出端輸出的渦旋光訊號及所連接之資料壓縮單元所產生的該等N個位元資料中之一對應的位元資料來進行調變,以產生並輸出一光調變訊號至該光多工單元;及 (F)該光多工單元將該等N個光調變訊號進行多工處理以產生一光多工輸出訊號並輸出至該接收端無線光通訊裝置。 A wireless optical encryption communication method using eddy optical perturbation is implemented by a transmitting end wireless optical communication device, the transmitting end wireless optical communication device is communicatively connected to a receiving end wireless optical communication device, and includes a data compression unit, a light source generation unit, an optical filter unit having N filters and connected to the light source generation unit, an eddy optical encoding unit connected to the optical filter unit, a transmitting end wavelength selection switch unit connected to the eddy optical encoding unit and having N input ends and N output ends, a transmitting end control unit connected to the eddy optical encoding unit and the transmitting end wavelength selection switch unit, and a A modulation unit having N modulators connected to the data compression unit and the transmitting end wavelength selection switch unit, and an optical multiplexing unit connected to the modulation unit, wherein the data compression unit can compress and encode N source data to generate N bit data correspondingly, the light source generation unit can provide N Gaussian light source carriers with different wavelengths, the N filters can separate the N Gaussian light source carriers to generate N separated Gaussian light source carriers, the N modulators are respectively connected to the N output ends of the transmitting end wavelength selection switch unit, wherein N≥3, the method comprises the following steps: (A) The transmitting end control unit generates N coded orbital angular momentum topological load numbers corresponding to the N Gaussian light source carriers, and transmits them to the eddy light encoding unit and the receiving end wireless optical communication device; (B) The eddy light encoding unit converts the N separated Gaussian light source carriers into eddy light beams with N coded orbital angular momentums according to the N coded orbital angular momentum topological load numbers, so as to obtain N eddy light signals; (C) The transmitting end control unit generates an encrypted pairing combination according to a set of control parameters using a chaotic random non-repetitive generation permutation algorithm, and transmits the set of control parameters to the receiving end wireless optical communication device and transmits the encrypted pairing combination to the transmitting end wavelength selection switch unit, wherein the encrypted pairing combination is used to indicate each input end of the transmitting end wavelength selection switch unit and its corresponding output end; (D) For each input end of the transmitting end wavelength selection switch unit, when the input end receives an input vortex signal corresponding to one of the N vortex signals from the vortex encoding unit, the corresponding input vortex signal is output to the output end of the transmitting end wavelength selection switch unit corresponding to the input end according to the encrypted pairing combination; (E) For each modulator, the modulator modulates the vortex optical signal output from the output end of the connected transmitting end wavelength selection switch unit and the bit data corresponding to one of the N bit data generated by the connected data compression unit to generate and output an optical modulated signal to the optical multiplexing unit; and (F) The optical multiplexing unit multiplexes the N optical modulated signals to generate an optical multiplexed output signal and outputs it to the receiving end wireless optical communication device. 如請求項1所述的利用渦旋光擾序之無線光加密通訊方法,其中,步驟(C)包含以下子步驟: (C-1)該發射端控制單元根據該組控制參數利用一混沌方程式產生一長度為N的隨機時間序列; (C-2)該發射端控制單元將該隨機時間序列中之每一數值映射為一對應之正整數序碼; (C-3)該發射端控制單元將該等N個正整數序碼轉換為一置換矩陣,以作為該加密配對組合,其中,該加密配對組合用以指示該發射端波長選擇開關單元之每一輸入端及其對應配合的輸出端;及 (C-4)該發射端控制單元將該組控制參數傳送至該接收端無線光通訊裝置且將該加密配對組合傳送至該發射端波長選擇開關單元。 The wireless optical encryption communication method using vortex optical perturbation as described in claim 1, wherein step (C) includes the following sub-steps: (C-1) the transmitter control unit generates a random time sequence of length N using a chaotic equation according to the set of control parameters; (C-2) the transmitter control unit maps each value in the random time sequence to a corresponding positive integer sequence; (C-3) the transmitter control unit converts the N positive integer sequences into a permutation matrix as the encryption pairing combination, wherein the encryption pairing combination is used to indicate each input terminal of the transmitter wavelength selection switch unit and its corresponding output terminal; and (C-4) The transmitting end control unit transmits the set of control parameters to the receiving end wireless optical communication device and transmits the encrypted pairing combination to the transmitting end wavelength selection switch unit. 如請求項1所述的利用渦旋光擾序之無線光加密通訊方法,在步驟(A)之前,還包含以下步驟: (G)該發射端控制單元根據步驟(C)之該組控制參數利用該混沌隨機不重復生成排列演算法產生多組訓練配對組合,並根據該等訓練配對組合獲得多筆訓練資料,其中每筆訓練資料由該等訓練配對組合中之一作為所對應之訓練資料之標記的一標記配對組合及對應該標記配對組合之前Y組訓練配對組合所組成;及 (H)該發射端控制單元根據該等訓練資料利用一機器學習演算法,獲得一配對預測模型,其中該配對預測模型用於根據前Y組配對採用組合預測一當前配對採用組合。 The wireless optical encryption communication method using vortex optical perturbation as described in claim 1 further comprises the following steps before step (A): (G) The transmitting end control unit generates multiple sets of training pair combinations using the chaotic random non-repetitive generation permutation algorithm according to the set of control parameters in step (C), and obtains multiple training data according to the training pair combinations, wherein each training data is composed of a label pair combination with one of the training pair combinations as the label of the corresponding training data and Y sets of training pair combinations corresponding to the label pair combination; and (H) The transmitting end control unit uses a machine learning algorithm based on the training data to obtain a pairing prediction model, wherein the pairing prediction model is used to predict a current pairing combination based on the previous Y pairs of pairing combinations. 如請求項3所述的利用渦旋光擾序之無線光加密通訊方法,在步驟(C)之後,還包含以一步驟(I),該發射端控制單元根據前1~Y次步驟(C)所產生之Y組加密配對組合,利用該配對預測模型預測該等前Y組加密配對組合所對應之一預測加密配對組合。The wireless optical encryption communication method using vortex optical perturbation as described in claim 3 further includes, after step (C), a step (I), wherein the transmitting end control unit predicts a predicted encryption pairing combination corresponding to the first Y groups of encryption pairing combinations based on the Y groups of encryption pairing combinations generated by the first 1 to Y steps (C) using the pairing prediction model. 如請求項4所述的利用渦旋光擾序之無線光加密通訊方法,在步驟(I)之後,還包含以下步驟: (J)該發射端控制單元比對此次步驟(C)所產生之加密配對組合與該預測加密配對組合,並根據比對結果更新一預測正確率; (K)該發射端控制單元根據該預測正確率判定根據步驟(C)所產生之加密配對組合是否存在破密風險;及 (L)當該發射端控制單元判定出存在破密風險時,該發射端控制單元更換該組控制參數,並回到步驟(C)。 The wireless optical encryption communication method using vortex optical perturbation as described in claim 4 further comprises the following steps after step (I): (J) the transmitting end control unit compares the encryption pairing combination generated by step (C) with the predicted encryption pairing combination, and updates a predicted accuracy rate according to the comparison result; (K) the transmitting end control unit determines whether the encryption pairing combination generated by step (C) has a risk of decryption according to the predicted accuracy rate; and (L) when the transmitting end control unit determines that there is a risk of decryption, the transmitting end control unit changes the set of control parameters and returns to step (C). 如請求項1所述的利用渦旋光擾序之無線光加密通訊方法,其中,在步驟(B)中,該渦旋光編碼單元可為一液晶空間光調變器。In the wireless optical encryption communication method using vortex optical perturbation as described in claim 1, in step (B), the vortex optical encoding unit can be a liquid crystal spatial light modulator. 一種利用渦旋光擾序之無線光加密通訊方法,藉由一接收端無線光通訊裝置來實施,該接收端無線光通訊裝置與一發射端無線光通訊裝置通訊連接,並包括一資料還原單元、一光解多工單元、一連接該光解多工單元的渦旋光解碼單元、一連接該渦旋光解碼單元並具有N個輸入端及N個輸出端的接收端波長選擇開關單元、一連接該渦旋光解碼單元與該接收端波長選擇開關單元的接收端控制單元,以及一具有N個解調變器並連接該資料還原單元與該接收端波長選擇開關單元之解調變單元,該等N個解調變器分別與該接收端波長選擇開關單元之該等N個輸出端連接,該方法包含以下步驟: (A)該光解多工單元將該光多工輸出訊號進行解多工處理,以產生該等N組光解多工訊號並輸出至該渦旋光解碼單元; (B)該接收端控制單元根據該發射端控制單元所傳送的該等N個編碼的軌道角動量拓樸荷數,產生N個解碼的軌道角動量拓樸荷數,並傳送至該渦旋光解碼單元; (C)該渦旋光解碼單元根據該等N個解碼的軌道角動量拓樸荷數,將該等N組光解多工訊號解碼為N個軌道角動量為零之高斯光訊號,並輸出至該接收端波長選擇開關單元; (D)該接收端控制單元根據該發射端控制單元所傳送的該組控制參數利用一混沌隨機不重復生成排列演算法產生一加密配對組合,並根據該加密配對組合產生一解密配對組合,且將該解密配對組合傳送至該接收端波長選擇開關單元,其中,該解密配對組合用以指示該接收端波長選擇開關單元之每一輸入端及其對應配合的輸出端; (E)對於該接收端波長選擇開關單元之每一輸入端,該輸入端接收來自於該渦旋光解碼單元的該等N個高斯光訊號中之一對應的輸入高斯光訊號時,根據該解密配對組合,將對應的輸入高斯光訊號輸出至該輸入端所配合的該接收端波長選擇開關單元之輸出端; (F) 對於每一解調變器,該解調變器根據所連接之該接收端波長選擇開關單元之輸出端輸出的高斯光訊號進行解調變,以產生一對應的資料位元資料,並輸出至該資料還原單元;及 (G) 該資料還原單元將每一資料位元資料進行還原,以產生N個來源資料。 A wireless optical encryption communication method using eddy-optic perturbation is implemented by a receiving-end wireless optical communication device, the receiving-end wireless optical communication device is communicatively connected to a transmitting-end wireless optical communication device, and includes a data recovery unit, an optical demultiplexing unit, an eddy-optic decoding unit connected to the optical demultiplexing unit, and an interface connected to the eddy-optic decoding unit and having N input ports and N output ports. A receiving end wavelength selection switch unit, a receiving end control unit connected to the vortex optical decoding unit and the receiving end wavelength selection switch unit, and a demodulation unit having N demodulators and connected to the data recovery unit and the receiving end wavelength selection switch unit, the N demodulators are respectively connected to the N output terminals of the receiving end wavelength selection switch unit, the method comprises the following steps: (A) The optical demultiplexing unit demultiplexes the optical multiplexed output signal to generate the N sets of optical demultiplexing signals and output them to the eddy-optic decoding unit; (B) The receiving end control unit generates N decoded orbital angular momentum topology load numbers according to the N encoded orbital angular momentum topology load numbers transmitted by the transmitting end control unit, and transmits them to the eddy-optic decoding unit; (C) The eddy-optic decoding unit decodes the N sets of optical demultiplexing signals into N Gaussian light signals with zero orbital angular momentum according to the N decoded orbital angular momentum topology load numbers, and outputs them to the receiving end wavelength selection switch unit; (D) The receiving end control unit generates an encryption pairing combination using a chaotic random non-repetitive permutation algorithm according to the set of control parameters transmitted by the transmitting end control unit, and generates a decryption pairing combination according to the encryption pairing combination, and transmits the decryption pairing combination to the receiving end wavelength selection switch unit, wherein the decryption pairing combination is used to indicate each input end of the receiving end wavelength selection switch unit and its corresponding output end; (E) For each input end of the receiving end wavelength selection switch unit, when the input end receives an input Gaussian light signal corresponding to one of the N Gaussian light signals from the vortex optical decoding unit, the corresponding input Gaussian light signal is output to the output end of the receiving end wavelength selection switch unit corresponding to the input end according to the decryption pairing combination; (F) For each demodulator, the demodulator demodulates the Gaussian light signal output from the output end of the connected receiving end wavelength selection switch unit to generate a corresponding data bit data, and outputs it to the data restoration unit; and (G) the data restoration unit restores each data bit data to generate N source data. 如請求項7所述的利用渦旋光擾序之無線光加密通訊方法,其中,步驟(D)包含以下子步驟: (D-1)該接收端控制單元根據該組控制參數利用一混沌方程式產生一長度為N的隨機時間序列; (D-2)該接收端控制單元將該隨機時間序列中之每一數值映射為一對應之正整數序碼; (D-3)該接收端控制單元將該等N個正整數序碼轉換為一置換矩陣,以生成相同於該發射端無線光通訊裝置所產生的該加密配對組合;及 (D-4)該接收端控制單元根據該加密配對組合產生一解密配對組合,且將該解密配對組合傳送至該接收端波長選擇開關單元,其中,該解密配對組合用以指示該接收端波長選擇開關單元之每一輸入端及其對應配合的輸出端。 The wireless optical encryption communication method using vortex optical perturbation as described in claim 7, wherein step (D) includes the following sub-steps: (D-1) the receiving end control unit generates a random time sequence of length N using a chaotic equation according to the set of control parameters; (D-2) the receiving end control unit maps each value in the random time sequence to a corresponding positive integer sequence; (D-3) the receiving end control unit converts the N positive integer sequences into a permutation matrix to generate the same encryption pairing combination as that generated by the transmitting end wireless optical communication device; and (D-4) The receiving end control unit generates a decryption pairing combination according to the encryption pairing combination, and transmits the decryption pairing combination to the receiving end wavelength selection switch unit, wherein the decryption pairing combination is used to indicate each input end of the receiving end wavelength selection switch unit and its corresponding output end.
TW111140076A 2022-10-21 2022-10-21 Wireless optical encryption communication method using vortex optical scrambling TWI803440B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111140076A TWI803440B (en) 2022-10-21 2022-10-21 Wireless optical encryption communication method using vortex optical scrambling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111140076A TWI803440B (en) 2022-10-21 2022-10-21 Wireless optical encryption communication method using vortex optical scrambling

Publications (2)

Publication Number Publication Date
TWI803440B TWI803440B (en) 2023-05-21
TW202418774A true TW202418774A (en) 2024-05-01

Family

ID=87424676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111140076A TWI803440B (en) 2022-10-21 2022-10-21 Wireless optical encryption communication method using vortex optical scrambling

Country Status (1)

Country Link
TW (1) TWI803440B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379926B2 (en) * 2012-07-24 2016-06-28 Eutelsat S A Modulation technique for transmitting and receiving radio vortices
US9474143B2 (en) * 2014-08-19 2016-10-18 University Of Dayton Systems and methods for generating complex vectorial optical fields
US10581522B1 (en) * 2018-12-06 2020-03-03 At&T Intellectual Property I, L.P. Free-space, twisted light optical communication system
CN111856766B (en) * 2020-07-31 2021-06-08 西安电子科技大学 Self-focusing vortex light beam generation method for inhibiting turbulence effect
US11990943B2 (en) * 2021-01-04 2024-05-21 At&T Intellectual Property I, L.P. System and method for quantum-enabled cyber security in a wireless mobile network
CN115102626B (en) * 2022-07-15 2024-01-16 长沙军民先进技术研究有限公司 Device and method for realizing space multi-polarization coding

Also Published As

Publication number Publication date
TWI803440B (en) 2023-05-21

Similar Documents

Publication Publication Date Title
Venu et al. An efficient low complexity compression based optimal homomorphic encryption for secure fiber optic communication
US8078059B2 (en) Multimode optical transmission device
US20050074037A1 (en) Optical sub-carrier multiplexed transmission
EP2533459A1 (en) Optical transmission device and receiving device for yuen encryption, optical transmission method and receiving method for yuen encryption, and encrypted communication system
EP1487148A1 (en) Data processing apparatus and method thereof
KR20070055574A (en) Data communication apparatus
CN110247705B (en) Multi-core fiber-based optical quantum fusion network implementation method and system
CN108494544A (en) A kind of encryption in physical layer high speed optical communication system of high efficient and reliable
CN114979407A (en) Multi-image encryption and decryption method based on code division multiple access and deep learning ghost imaging
US20060039455A1 (en) Composite waveform for transmitting an increased amount of data over an analog medium, and devices and methods for producing, encoding, transmitting and decoding same
US7437082B1 (en) Private optical communications systems, devices, and methods
CN117544295A (en) Quantum key distribution method, device and system
CN108494491A (en) A kind of electric light encoding and decoding R-T unit and decoding method
Chen et al. Joint compressed sensing and JPEG coding based secure compression scheme in OFDM-PON
TW202418774A (en) Wireless optical encryption communication method using vortex light scrambling to improve the transmission capacity, communication rate and data confidentiality of the optical communication system
CN111416701B (en) High-safety orthogonal mode division multiplexing access method and system based on vector disturbance
JP5583222B2 (en) Modulator with polarization marking
CN101867434B (en) Method for enhancing confidentiality of optical code-division multiple access network information transmission
Bhanja et al. Novel encryption technique for security enhancement in optical code division multiple access
TWI686061B (en) Wireless optical communication method for realizing image encryption and decryption
Sandhu et al. Review of image encryption and compression techniques
Kodama et al. High-security 2.5 Gbps, polarization multiplexed 256-ary OCDM using a single multi-port encoder/decoder
WO2015000115A1 (en) Signal modulation and demodulation methods, modulation and demodulation apparatuses, and signal transmission system
JP2021166364A (en) Signal processing device
WO2005046114A2 (en) Coherent-states based quantum data-encryption through optically-amplified wdm communication networks