TW202418774A - Wireless optical encryption communication method using vortex light scrambling to improve the transmission capacity, communication rate and data confidentiality of the optical communication system - Google Patents
Wireless optical encryption communication method using vortex light scrambling to improve the transmission capacity, communication rate and data confidentiality of the optical communication system Download PDFInfo
- Publication number
- TW202418774A TW202418774A TW111140076A TW111140076A TW202418774A TW 202418774 A TW202418774 A TW 202418774A TW 111140076 A TW111140076 A TW 111140076A TW 111140076 A TW111140076 A TW 111140076A TW 202418774 A TW202418774 A TW 202418774A
- Authority
- TW
- Taiwan
- Prior art keywords
- unit
- optical
- selection switch
- wavelength selection
- output
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 203
- 238000004891 communication Methods 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000005540 biological transmission Effects 0.000 title description 22
- 239000000969 carrier Substances 0.000 claims description 29
- 239000011159 matrix material Substances 0.000 claims description 25
- 238000012549 training Methods 0.000 claims description 22
- 230000000739 chaotic effect Effects 0.000 claims description 21
- 238000013144 data compression Methods 0.000 claims description 18
- 230000003252 repetitive effect Effects 0.000 claims description 10
- 238000011084 recovery Methods 0.000 claims description 9
- 239000004973 liquid crystal related substance Substances 0.000 claims description 5
- 238000010801 machine learning Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 8
- 238000005336 cracking Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Landscapes
- Optical Communication System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本發明是有關於一種無線光通訊方法,特別是指一種用於實現資料加解密之利用渦旋光擾序之無線光加密通訊方法。The present invention relates to a wireless optical communication method, and more particularly to a wireless optical encryption communication method using eddy optical perturbation for realizing data encryption and decryption.
無線光通訊系統主要由光源、調變器、光發射器、光接收器及附加電信發送和接收設備等組成,只要相互進行傳收對接即可進行通訊。無線光通訊除具有不佔據頻帶,通訊容量大,傳輸速率高等無線雷射通訊的優點外,還具有機動靈活、經濟、架設快捷、使用方便,不影響市政建設等特點。隨著大氣通訊技術的成熟,其應用也越來越廣泛。The wireless optical communication system is mainly composed of light source, modulator, optical transmitter, optical receiver and additional telecommunication transmission and reception equipment. As long as they are connected to each other, they can communicate. In addition to the advantages of wireless laser communication such as no bandwidth occupation, large communication capacity and high transmission rate, wireless optical communication also has the characteristics of flexibility, economy, quick installation, easy use and no impact on municipal construction. With the maturity of atmospheric communication technology, its application is becoming more and more extensive.
爲了提高光通訊系統的信息傳輸速率,除了可以採用幅度、相位和正交相移鍵控等傳統的調變解調方式之外,亦可透過增加編碼自由維度的多工技術進行傳輸,來提高光通訊系統的傳輸容量與通訊速率,又,為因應無線光通訊通道上傳輸壓縮域資訊進行安全加密的必要性需求,及克服傳統僅能在應用層執行部份加密(partial encryption)之缺失,實有必要提出一解決方案。In order to improve the information transmission rate of the optical communication system, in addition to adopting traditional modulation and demodulation methods such as amplitude, phase and orthogonal phase shift keying, it is also possible to increase the transmission capacity and communication rate of the optical communication system through multiplexing technology that increases the coding freedom dimension. In addition, in order to meet the necessity of secure encryption of compressed domain information transmitted on wireless optical communication channels and overcome the deficiency of traditional partial encryption that can only be performed at the application layer, it is necessary to propose a solution.
因此,本發明的目的,即在提供一種提高光通訊系統的傳輸容量、通訊速率及資料保密性的利用渦旋光擾序之無線光加密通訊方法。Therefore, the purpose of the present invention is to provide a wireless optical encryption communication method using eddy optical perturbation to improve the transmission capacity, communication rate and data confidentiality of the optical communication system.
於是,本發明利用渦旋光擾序之無線光加密通訊方法,藉由一發射端無線光通訊裝置來實施,該發射端無線光通訊裝置與一接收端無線光通訊裝置通訊連接,並包括一資料壓縮單元、一光源生成單元、一具有N個濾波器並連接該光源生成單元之光濾波單元、一連接該光濾波單元的渦旋光編碼單元、一連接該渦旋光編碼單元並具有N個輸入端及N個輸出端的發射端波長選擇開關單元、一連接該渦旋光編碼單元與該發射端波長選擇開關單元的發射端控制單元、一具有N個調變器並連接該資料壓縮單元與該發射端波長選擇開關單元之調變單元,以及一與該調變單元連接之光多工單元,其中,該資料壓縮單元可將N個來源資料進行壓縮編碼以對應產生N個位元資料,該光源生成單元可提供N個波長不等的高斯光源載波,該等N個濾波器可分離該等N個高斯光源載波以產生N個分離的高斯光源載波,該等N個調變器分別與該發射端波長選擇開關單元之該等N個輸出端連接,其中N≥3,該方法包含以下步驟:Therefore, the present invention utilizes a wireless optical encryption communication method using eddy-optical perturbation, which is implemented by a transmitting-end wireless optical communication device, which is communicatively connected to a receiving-end wireless optical communication device, and includes a data compression unit, a light source generation unit, an optical filter unit having N filters and connected to the light source generation unit, an eddy-optical encoding unit connected to the optical filter unit, a transmitting-end wavelength selection switch unit connected to the eddy-optical encoding unit and having N input terminals and N output terminals, a transmitting-end control unit connected to the eddy-optical encoding unit and the transmitting-end wavelength selection switch unit, and a transmitting-end control unit connected to the eddy-optical encoding unit and the transmitting-end wavelength selection switch unit. A data compression unit, a modulation unit having N modulators and connected to the data compression unit and the transmitting end wavelength selection switch unit, and an optical multiplexing unit connected to the modulation unit, wherein the data compression unit can compress and encode N source data to generate N bit data correspondingly, the light source generation unit can provide N Gaussian light source carriers with different wavelengths, the N filters can separate the N Gaussian light source carriers to generate N separated Gaussian light source carriers, the N modulators are respectively connected to the N output terminals of the transmitting end wavelength selection switch unit, wherein N≥3, the method comprises the following steps:
(A)該發射端控制單元產生對應該等N個高斯光源載波之N個編碼的軌道角動量拓樸荷數,並傳送至該渦旋光編碼單元及該接收端無線光通訊裝置;(A) The transmitting end control unit generates N coded orbital angular momentum topological loads corresponding to the N Gaussian light source carriers, and transmits them to the eddy-optic encoding unit and the receiving end wireless optical communication device;
(B)該渦旋光編碼單元根據該等N個編碼的軌道角動量拓樸荷數,將該等N個分離的高斯光源載波轉換為分別帶有N個編碼之軌道角動量的渦旋光束,以獲得N個渦旋光訊號;(B) the vortex optical coding unit converts the N separated Gaussian light source carriers into vortex optical beams respectively carrying N coded orbital angular momentums according to the N coded orbital angular momentum topological loads to obtain N vortex optical signals;
(C)該發射端控制單元根據一組控制參數利用一混沌隨機不重復生成排列演算法產生一加密配對組合,並將該組控制參數傳送至該接收端無線光通訊裝置且將該加密配對組合傳送至該發射端波長選擇開關單元,其中,該加密配對組合用以指示該發射端波長選擇開關單元之每一輸入端及其對應配合的輸出端;(C) the transmitting end control unit generates an encrypted pairing combination according to a set of control parameters using a chaotic random non-repetitive generation permutation algorithm, and transmits the set of control parameters to the receiving end wireless optical communication device and transmits the encrypted pairing combination to the transmitting end wavelength selection switch unit, wherein the encrypted pairing combination is used to indicate each input end of the transmitting end wavelength selection switch unit and its corresponding output end;
(D)對於該發射端波長選擇開關單元之每一輸入端,當該輸入端接收來自於該渦旋光編碼單元的該等N個渦旋光訊號中之一對應的輸入渦旋光訊號時,根據該加密配對組合,將對應的該輸入渦旋光訊號輸出至該輸入端所對應的該發射端波長選擇開關單元之輸出端;(D) for each input end of the transmitting end wavelength selection switch unit, when the input end receives an input vortex signal corresponding to one of the N vortex signals from the vortex encoding unit, outputting the corresponding input vortex signal to the output end of the transmitting end wavelength selection switch unit corresponding to the input end according to the encrypted pairing combination;
(E)對於每一調變器,該調變器根據所連接的該發射端波長選擇開關單元之輸出端輸出的渦旋光訊號及所連接之資料壓縮單元所產生的該等N個位元資料中之一對應的位元資料來進行調變,以產生並輸出一光調變訊號至該光多工單元;及(E) for each modulator, the modulator performs modulation according to the eddy light signal outputted from the output end of the connected transmitting end wavelength selection switch unit and the bit data corresponding to one of the N bit data generated by the connected data compression unit to generate and output an optical modulation signal to the optical multiplexing unit; and
(F)該光多工單元將該等N個光調變訊號進行多工處理以產生一光多工輸出訊號並輸出至該接收端無線光通訊裝置。(F) The optical multiplexing unit multiplexes the N optical modulation signals to generate an optical multiplexing output signal and outputs it to the receiving end wireless optical communication device.
本發明的另一目的,即在提供一種提高光通訊系統的傳輸容量、通訊速率及資料保密性的利用渦旋光擾序之無線光加密通訊方法。Another object of the present invention is to provide a wireless optical encryption communication method using eddy optical perturbation to improve the transmission capacity, communication rate and data confidentiality of the optical communication system.
於是,本發明利用渦旋光擾序之無線光加密通訊方法,藉由一接收端無線光通訊裝置來實施,該接收端無線光通訊裝置與一發射端無線光通訊裝置通訊連接,並包括一資料還原單元、一光解多工單元、一連接該光解多工單元的渦旋光解碼單元、一連接該渦旋光解碼單元並具有N個輸入端及N個輸出端的接收端波長選擇開關單元、一連接該渦旋光解碼單元與該接收端波長選擇開關單元的接收端控制單元,以及一具有N個解調變器並連接該資料還原單元與該接收端波長選擇開關單元之解調變單元,該等N個解調變器分別與該接收端波長選擇開關單元之該等N個輸出端連接,該方法包含以下步驟:Therefore, the present invention uses a wireless optical encryption communication method using eddy-optical perturbation, which is implemented by a receiving-end wireless optical communication device, which is communicatively connected to a transmitting-end wireless optical communication device and includes a data recovery unit, a photodemultiplexing unit, a eddy-optical decoding unit connected to the photodemultiplexing unit, and a eddy-optical decoding unit connected to the eddy-optical decoding unit and having N input ports and N output ports. A receiving end wavelength selection switch unit of the receiving end, a receiving end control unit connected to the eddy optical decoding unit and the receiving end wavelength selection switch unit, and a demodulation unit having N demodulators and connected to the data recovery unit and the receiving end wavelength selection switch unit, wherein the N demodulators are respectively connected to the N output terminals of the receiving end wavelength selection switch unit, and the method comprises the following steps:
(A)該光解多工單元將該光多工輸出訊號進行解多工處理,以產生該等N組光解多工訊號並輸入至該渦旋光解碼單元;(A) the photodemultiplexing unit demultiplexes the optical multiplexed output signal to generate the N sets of photodemultiplexing signals and input them into the eddy-optic decoding unit;
(B)該接收端控制單元根據該發射端控制單元所傳送的該等N個編碼的軌道角動量拓樸荷數,產生N個解碼的軌道角動量拓樸荷數,並傳送至該渦旋光解碼單元;(B) the receiving end control unit generates N decoded orbital angular momentum topological load numbers according to the N encoded orbital angular momentum topological load numbers transmitted by the transmitting end control unit, and transmits the decoded orbital angular momentum topological load numbers to the eddy optical decoding unit;
(C)該渦旋光解碼單元根據該等N個解碼的軌道角動量拓樸荷數,將該等N組光解多工訊號解碼為N個軌道角動量為零之高斯光訊號;(C) the vortex optical decoding unit decodes the N sets of photomultiplexing signals into N Gaussian light signals with zero orbital angular momentum according to the N decoded orbital angular momentum topological charges;
(D)該接收端控制單元根據該發射端控制單元所傳送的該組控制參數利用一混沌隨機不重復生成排列演算法產生一加密配對組合,並根據該加密配對組合產生一解密配對組合,且將該解密配對組合傳送至該接收端波長選擇開關單元,其中,該解密配對組合用以指示該接收端波長選擇開關單元之每一輸入端及其對應配合的輸出端;(D) the receiving end control unit generates an encryption pair combination using a chaotic random non-repetitive generation permutation algorithm according to the set of control parameters transmitted by the transmitting end control unit, generates a decryption pair combination according to the encryption pair combination, and transmits the decryption pair combination to the receiving end wavelength selection switch unit, wherein the decryption pair combination is used to indicate each input end of the receiving end wavelength selection switch unit and its corresponding output end;
(E)對於該接收端波長選擇開關單元之每一輸入端,該輸入端接收來自於該渦旋光解碼單元的該等N個高斯光訊號中之一對應的輸入高斯光訊號時,根據該解密配對組合,將對應的輸入高斯光訊號輸出至該輸入端所配合的該接收端波長選擇開關單元之輸出端;(E) for each input end of the receiving end wavelength selection switch unit, when the input end receives an input Gaussian light signal corresponding to one of the N Gaussian light signals from the vortex optical decoding unit, the corresponding input Gaussian light signal is output to the output end of the receiving end wavelength selection switch unit matched with the input end according to the decryption pairing combination;
(F) 對於每一解調變器,該解調變器根據所連接之該接收端波長選擇開關單元之輸出端輸出的高斯光訊號進行解調變,以產生一對應的資料位元資料;及(F) for each demodulator, the demodulator demodulates the Gaussian optical signal outputted from the output end of the connected receiving end wavelength selection switch unit to generate a corresponding data bit; and
(G) 該資料還原單元將每一資料位元資料進行還原,以產生N個來源資料。(G) The data restoration unit restores each data bit to generate N source data.
本發明的功效在於:藉由該渦旋光編碼單元將該等N個分離的高斯光源載波轉換為該等N個渦旋光訊號,以利用渦旋光束實現多工傳輸,進而提高光通訊的傳輸容量與通訊速率。此外,藉由根據該發射端控制單元所產生之加密配對組合,將對應的該輸入渦旋光訊號輸出至該輸入端所對應的該發射端波長選擇開關單元之輸出端,以攪亂變換渦旋光訊號的傳輸路徑,進而提高光通訊的傳輸安全。The utility of the present invention is that the N separated Gaussian light source carriers are converted into the N vortex light signals by the vortex light encoding unit, so as to realize multiplex transmission by using the vortex light beam, thereby improving the transmission capacity and communication rate of optical communication. In addition, according to the encryption pairing combination generated by the transmitting end control unit, the corresponding input vortex light signal is output to the output end of the transmitting end wavelength selection switch unit corresponding to the input end, so as to scramble the transmission path of the vortex light signal, thereby improving the transmission security of optical communication.
參閱圖1與圖2,本發明利用渦旋光擾序之無線光加密通訊方法的一實施例,藉由一無線光通訊系統來實施。該無線光通訊系統包含一發射端無線光通訊裝置1及一與該發射端無線光通訊裝置1通訊連接的接收端無線光通訊裝置2。Referring to Figures 1 and 2, an embodiment of the wireless optical encryption communication method using eddy optical perturbation of the present invention is implemented by a wireless optical communication system. The wireless optical communication system includes a transmitting end wireless
該發射端無線光通訊裝置1包括一資料壓縮單元11、一光源生成單元12、一具有N個濾波器並連接該光源生成單元12之光濾波單元13、一連接該光濾波單元13的渦旋光編碼單元14、一連接該渦旋光編碼單元14並具有N個輸入端及N個輸出端的發射端波長選擇開關單元15、一連接該渦旋光編碼單元14與該發射端波長選擇開關單元15的發射端控制單元16、一具有N個調變器並連接該資料壓縮單元11與該發射端波長選擇開關單元15之調變單元17、一與該調變單元17連接之光多工單元18,以及一與該光多工單元18連接之無線光傳送單元19。其中,該資料壓縮單元11可將N個來源資料進行壓縮編碼以對應產生N個位元資料。該光源生成單元12可提供N個波長不等的高斯光源載波。該等N個濾波器可分離該等N個高斯光源載波以產生N個分離的高斯光源載波。該等N個調變器分別與該發射端波長選擇開關單元15之該等N個輸出端連接,其中N≥3。The transmitting end wireless
該接收端無線光通訊裝置2包括一資料還原單元21、一無線光接收單元22、一連接該無線光接收單元22的光解多工單元23、一連接該光解多工單元23的渦旋光解碼單元24、一連接該渦旋光解碼單元24並具有N個輸入端及N個輸出端的接收端波長選擇開關單元25、一連接該渦旋光解碼單元24與該接收端波長選擇開關單元25的接收端控制單元26,以及一具有N個解調變器並連接該資料還原單元21與該接收端波長選擇開關單元25之解調變單元27,該等N個解調變器分別與該接收端波長選擇開關單元25之該等N個輸出端連接。The receiving-end wireless
在本實施例中,該渦旋光編碼單元14及該渦旋光解碼單元24可為一可程式液晶空間光調變器,其可經由程式調控光波而呈現不等相位以實現攜帶各種不同軌道角動量的渦旋光束。又,該發射端波長選擇開關單元15及該接收端波長選擇開關單元25為可程式化之應用液晶空間光調變器的波長選擇開關,其可經由程式調控進出液晶空間光調變器中液晶分子的偏轉以變換渦旋光訊號的入射、反射角度而變換光空間傳輸路徑,藉此,變化該發射端波長選擇開關單元15之該等N個該等N個輸入端及該等N個輸出端之輸入輸出配合關係,以及該接收端波長選擇開關單元25之該等N個該等N個輸入端及該等N個輸出端之輸入輸出配合關係,由該發射端波長選擇開關單元15之該等N個輸入端及該等N個輸出端共可得到用以指示該等N個輸入端及該等N個輸出端之對射(bijective)關係的N!個配對組合,類似地,由該接收端波長選擇開關單元25之該等N個輸入端及該等N個輸出端也可得到用以指示該等N個輸入端及該等N個輸出端之對射(bijective)關係的N!個配對組合。此外,該資料壓縮單元11、該資料還原單元21、該發射端控制單元16及該接收端控制單元26可由嵌入式系統元件、數位電路等具備運算能力之電子元件來實現。In this embodiment, the vortex
值得特別說明的是,每一配對組合對應一個矩陣型樣,每一矩陣型樣為N×N且其每一行元素(matrix element)及每一列元素中只有一個元素為‘1’ 其餘元素為‘0’之矩陣,且每一矩陣中的N列對應該發射端波長選擇開關單元15之該等N個輸入端,每一矩陣中的N行對應該發射端波長選擇開關單元15之該等N個輸出端,該等N!配對組合為該矩陣型樣所有可能性之集合
,i,j=1,2,3…,N;假設以N=3,共3!個配對組合為例,該等所有可能性之集合之矩陣型樣分別為:
、
、
、
、
及
,共六種態樣,以配對組合為
之矩陣型樣為例,其中,該矩陣型樣裡面的矩陣元素TR
12=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第1個輸入端輸入,只會由其對應配合第2個輸出端輸出;TR
23=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第2個輸入端輸入,只會由其對應配合第3個輸出端輸出;TR
31=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第3個輸入端輸入,只會由其對應配合第1個輸出端輸出。
It is worth noting that each pairing combination corresponds to a matrix pattern, and each matrix pattern is an N×N matrix in which only one element in each row element (matrix element) and each column element is '1' and the rest are '0'. The N columns in each matrix correspond to the N input terminals of the transmitting end wavelength
該資料壓縮單元11接收來自外部所傳送N個來源資料User#1~User#N,並將該等N個來源資料User#1~User#N進行壓縮編碼以對應產生N個位元資料U 1~U N。 The data compression unit 11 receives N source data User#1-User#N transmitted from the outside, and compresses and encodes the N source data User#1-User#N to generate N bit data U 1 -U N accordingly.
該光源生成單元12產生N個波長不等的高斯光源載波λ
1~λ
N後,將其分別傳送至該光濾波單元13之該等N個濾波器;接著,該等N個濾波器根據所接收的該等N個高斯光源載波λ
1~λ
N來產生N個分離的高斯光源載波λ
1/λ
2…λ
N-1/λ
N;每一濾波器可由空間光調制器(spatial light modulator, SLM)或布拉格光纖光柵(fiber Bragg grating, FBG)等光學元件實現。
After the light
以下將藉由本發明利用渦旋光擾序之無線光加密通訊方法之實施例來說明該無線通訊系統中各元件之作動,該實施例包含一配對預測模型建立程序、一發送程序及一接收程序。The following will illustrate the operation of each component in the wireless communication system through an embodiment of the wireless optical encryption communication method using eddy optical perturbation of the present invention. The embodiment includes a matching prediction model establishment process, a sending process and a receiving process.
參閱圖1與圖3,該配對預測模型建立程序說明了該發射端控制單元16如何建立一配對預測模型,並包含下列步驟。1 and 3 , the pairing prediction model establishment procedure illustrates how the
在步驟31中,該發射端控制單元16根據一組控制參數利用一混沌隨機不重復生成排列演算法產生多組訓練配對組合,並根據該等訓練配對組合獲得多筆訓練資料,其中每筆訓練資料由該等訓練配對組合中之一作為所對應之訓練資料之標記的一標記配對組合及對應該標記配對組合之前Y組訓練配對組合所組成。其中,該組控制參數例如為初始值(Initial condition,X
0)與控制參數值(Control parameter,C),透過該混沌隨機不重復生成排列演算法,只要給定初始值X
0與控制參數值C,即可產生X
1、X
2、…、X
M(M>>N),接著,根據X
1~ X
N產生一組訓練配對組合,根據X
N+1~ X
2N產生下一組訓練配對組合,…,依此類推,即可獲得該等訓練配對組合。
In
在步驟32中,該發射端控制單元16根據該等訓練資料利用一機器學習演算法,獲得該配對預測模型,其中該配對預測模型用於根據前Y組配對採用組合預測一當前配對採用組合。值得一提的是,該等訓練資料被隨機抽樣分成訓練集(train set),測試集(test set)並經由訓練(train)、測試(test) 與驗證(validation)階段程序以獲得該配對預測模型。在本實施方式中,該機器學習演算法例如為一迴歸分析法,然不此為限。In
參閱圖1、圖2、圖4與圖5,該發送程序說明了該發射端無線光通訊裝置1如何將資料發送至該接收端無線光通訊裝置2,並包含下列步驟。1 , 2 , 4 and 5 , the sending process illustrates how the transmitting end wireless
在步驟311中,該光源生成單元12產生N個波長不等的高斯光源載波並輸出至該光濾波單元13。舉例來說,該光源生成單元12產生N=3個波長不等的高斯光源載波λ
1~λ
3。
In
在步驟312中,該光濾波單元13之N個濾波器分離該等N個高斯光源載波以產生N個分離的高斯光源載波,並輸出至該渦旋光編碼單元14。延續上述之例子,該光濾波單元13提供三個相應數量的濾波器分離該等三個高斯光源載波λ
1~λ
3以產生三個分離的高斯光源載波λ
1/λ
21/λ
3分列並行輸出至該渦旋光編碼單元14。
In
在步驟313中,該發射端控制單元16產生對應該等N個高斯光源載波之N個編碼的軌道角動量拓樸荷數,並傳送至該渦旋光編碼單元14及該接收端無線光通訊裝置2。舉例來說,該發射端控制單元16產生對應該等三個高斯光源載波λ1~λ3之三個編碼的軌道角動量拓樸荷數
l 1~
l 3。
In
在步驟314中,該渦旋光編碼單元14根據該等N個編碼的軌道角動量拓樸荷數,將該等N個分離的高斯光源載波轉換為分別帶有N個編碼之軌道角動量的渦旋光束,以獲得N個渦旋光訊號。延續上述之例子,該渦旋光編碼單元14根據該等三個編碼的軌道角動量拓樸荷數
l 1、
l 2、
l 3,將該等三個分離的高斯光源載波λ
1、λ
2、λ
3轉換為分別帶有三個編碼之軌道角動量的渦旋光訊號λ
1(
l 1)、λ
2(
l 2)、λ
3(
l 3) 。
In
在步驟315中,該發射端控制單元16根據步驟31的該組控制參數利用該混沌隨機不重復生成排列演算法產生一加密配對組合,並將該組控制參數傳送至該接收端無線光通訊裝置2且將該加密配對組合傳送至該發射端波長選擇開關單元15,其中,該加密配對組合用以指示該發射端波長選擇開關單元15之每一輸入端及其對應配合的輸出端。In step 315, the transmitting
值得一提的是,步驟315還包含以下子步驟(見圖6)。It is worth mentioning that step 315 also includes the following sub-steps (see FIG. 6 ).
在子步驟315A中,該發射端控制單元16根據該組控制參數利用一混沌方程式產生一長度為N的隨機時間序列。其中,該組控制參數例如為初始值(Initial condition,X
0)與控制參數值(Control parameter,C),而該混沌方程式例如為X
n+1=C×X
n×(1-X
n),因此只要給定初始值X
0與控制參數值C,即可依據該混沌方程式產生X
1、X
2、…、X
N。藉此,以獲得長度為N的隨機時間序列,舉例來說,假設N=3且該隨機時間序列為:{0.5,0.2,0.1}。
In sub-step 315A, the transmitting
在子步驟315B中,該發射端控制單元16將該隨機時間序列中之每一數值映射為一對應之正整數序碼。其中,該發射端控制單元16藉由一預設映射函式將該隨機時間序列進行數值轉換,以將該隨機時間序列中的該等N個隨機實數依照其數值大小分別將其對應至數值為1至N的正整數序碼。延續上述之例子,該隨機時間序列{0.5,0.2,0.1}經由該預設映射函式進行不重複的數值轉換後對應至{3,2,1},其中,該隨機時間序列中最小值0.1所對應的正整數序碼為1,中間值0.2所對應的正整數序碼為2且,最大值0.5所對應的正整數序碼為3。In sub-step 315B, the transmitting
在子步驟315C中,該發射端控制單元16將該等N個正整數序碼轉換為一置換矩陣,以作為該加密配對組合,其中,該加密配對組合用以指示該發射端波長選擇開關單元15之每一輸入端及其對應配合的輸出端。延續上述之例子,該發射端控制單元16將{3,2,1}轉換為置換矩陣
,以作為該加密配對組合,該加密配對組合中的矩陣元素TR
13=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第1個輸入端輸入,只會由其對應配合第3個輸出端輸出;TR
22=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第2個輸入端輸入,只會由其對應配合第2個輸出端輸出;TR
31=1,可表示任何一筆訊號資料從該發射端波長選擇開關單元15之第3個輸入端輸入,只會由其對應配合第1個輸出端輸出。
In sub-step 315C, the
在子步驟315D中,該發射端控制單元16將該組控制參數傳送至該接收端無線光通訊裝置2且將該加密配對組合傳送至該發射端波長選擇開關單元15。In sub-step 315D, the transmitting
在步驟316中,該發射端控制單元16根據前1~Y次步驟315所產生之Y組加密配對組合,利用該配對預測模型預測該等前Y組加密配對組合所對應之一預測加密配對組合(亦即,根據前1~Y次步驟315所產生之Y組加密配對組合,預測此次步驟315可能產生的加密配對組合)。In
在步驟317中,該發射端控制單元16比對此次步驟315所產生之加密配對組合與該預測加密配對組合,並根據比對結果更新一預測正確率。當該預測正確率愈高,即表示該混沌隨機不重復生成排列演算法產生之加密配對組合的變化性具有太高顯著特徵樣式;換言之,非授權者運用各式機器學習預測模型對於加密配對組合的破密攻擊其威脅危機愈高。In step 317, the transmitting
在步驟318中,該發射端控制單元16根據該預測正確率判定根據步驟315所產生之加密配對組合是否存在破密風險。當該發射端控制單元16判定出存在破密風險時,流程進行步驟319;當該發射端控制單元16判定出不存在破密風險時,流程進行步驟320。其中,該發射端控制單元16係判定該預測正確率是否大於一門檻值以判定根據步驟315所產生之加密配對組合是否存在破密風險。當該發射端控制單元16判定該預測正確率大於該門檻值時,即判定根據步驟315所產生之加密配對組合存在破密風險;當該發射端控制單元16判定該預測正確率不大於該門檻值時,即判定根據步驟315所產生之加密配對組合不存在破密風險,則延續該組控制參數以維持原有既定渦旋光的擾序樣式。In
在步驟319中,該發射端控制單元16更換該組控制參數,並回到步驟315,以重新根據更換後之另一組控制參數產生新的加密配對組合來變換渦旋光的擾序樣式(scrambling pattern)。In
在步驟320中,對於該發射端波長選擇開關單元15之每一輸入端,當該輸入端接收來自於該渦旋光編碼單元14的該等N個渦旋光訊號中之一對應的輸入渦旋光訊號時,根據該加密配對組合,將對應的該輸入渦旋光訊號輸出至該輸入端所對應的該發射端波長選擇開關單元15之輸出端。接續上述之例子,以
之矩陣型樣作為該加密配對組合來將對應的該輸入渦旋光訊號λ
1(
l 1)/λ
2(
l 2)/λ
3(
l 3)輸出至該輸入端所對應的該發射端波長選擇開關單元15之輸出端後,λ
1(
l 1)、λ
2(
l 2)、λ
3(
l 3)的空間輸出順序將變為λ
3(
l 3)、λ
2(
l 2)、λ
1(
l 1)。藉此,使得進入調變單元17的渦旋光訊號空間傳輸路徑改變,以實現變換來源資料User#1~User#N的承載渦旋光。
In step 320, for each input terminal of the transmitting end wavelength
在步驟321中,該資料壓縮單元11將該等N個來源資料User#1~User#N進行壓縮編碼以對應產生該等N個位元資料U
1~U
N。以N=3為例,該等三個位元資料即為U
1~U
3。
In
在步驟322中,對於每一調變器,該調變器根據所連接的該發射端波長選擇開關單元15之輸出端輸出的渦旋光訊號及所連接之資料壓縮單元11所產生的該等N個位元資料中之一對應的位元資料來進行調變,以產生並輸出一光調變訊號至該光多工單元18。連接對應輸出的渦旋光訊號λ
3(
l 3)之輸出端的調變器調變該等N個位元資料中之一對應的位元資料U
1以產生光調變訊號U
1[λ
3(
l 3)],連接對應輸出的渦旋光訊號λ
2(
l 2)之輸出端的調變器調變該等N個位元資料中之一對應的位元資料U
2以產生光調變訊號U
2[λ
2(
l 2)] ,連接對應輸出的渦旋光訊號λ
1(
l 1)之輸出端的調變器調變該等N個位元資料中之一對應的位元資料U
3以產生光調變訊號U
3[λ
1(
l 1)]。藉由該渦旋光編碼單元14與該發射端波長選擇開關單元15使得λ
1(
l 1)、λ
2(
l 2)、λ
3(
l 3)的空間輸出順序變換為λ
3(
l 3)、λ
2(
l 2)、λ
1(
l 1),且每次該發射端控制單元16根據該組控制參數產生之該加密配對組合皆不相同,如此一來,本次的位元資料U
1~U
3與下次的位元資料U
1~U
3不皆搭配相同的載波組λ
1~λ
3,故形成渦旋光擾序變換機制。
In step 322, for each modulator, the modulator performs modulation according to the vortex optical signal output from the output end of the connected transmitting end wavelength
在步驟323中,該光多工單元18將該等N個光調變訊號進行多工處理以產生一光多工輸出訊號,並經由該無線光傳送單元19傳送至該接收端無線光通訊裝置2之無線光接收單元22。該光多工單元18係將該等N個光調變訊號U
1[λ
3(
l 3)]、U
2[λ
2(
l 2)]、U
3[λ
1(
l 1)]多工匯聚成光多工輸出訊號U
1[λ
3(
l 3)]~ U
3[λ
1(
l 1)]。在本實施例中,可採用陣列波導光纖光柵或布拉格光纖光柵等光學元件將該等N個光調變訊號進行光分波多工,但不在此限。
In step 323, the
參閱圖1、圖2與圖7,該接收程序說明了該接收端無線光通訊裝置2如何還原該發射端無線光通訊裝置1所發送之資料,並包含下列步驟。1, 2 and 7, the receiving process illustrates how the receiving end wireless
在步驟501中,在該接收端無線光通訊裝置2之無線光接收單元22接收到該光多工輸出訊號後,將該光多工輸出訊號輸出至該光解多工單元23。In
在步驟502中,該光解多工單元23依據該等N個波長不等的渦旋光訊號λ
1(
l 1)、λ
2(
l 2)、λ
3(
l 3)依序將該光多工輸出訊號進行解多工處理,以產生該等N組光解多工訊號並輸出至該渦旋光解碼單元24。該光解多工單元23係將該光多工輸出訊號U
1[λ
3(
l 3)]~ U
3[λ
1(
l 1)] 依據該等N個波長不等的渦旋光訊號λ
1(
l 1)、λ
2(
l 2)、λ
3(
l 3)依序分波為該等三組光解多工訊號U
3[λ
1(
l 1)]、U
2[λ
2(
l 2)]、 U
1[λ
3(
l 3)]。在本實施例中,該光解多工單元23係可藉由1×N集中式的陣列波導光纖光柵(AWG),或N個分列的布拉格光纖光柵(FBG)進行分波解多工處理,但不以此為限。
In
在步驟503中,該接收端控制單元26根據該發射端控制單元16所傳送的該等N個編碼的軌道角動量拓樸荷數,產生N個解碼的軌道角動量拓樸荷數,並傳送至該渦旋光解碼單元24。延續前述之例子,該接收端控制單元26根據該等三個編碼的軌道角動量拓樸荷數
l 1、
l 2、
l 3,對應產生三個解碼的軌道角動量拓樸荷數-
l 1、-
l 2、-
l 3。(亦即,還原對稱於該等三個編碼之軌道角動量拓樸荷數的該等三個解碼之軌道角動量拓樸荷數)
In
在步驟504中,該渦旋光解碼單元24根據該等N個解碼的軌道角動量拓樸荷數,將該等N組光解多工訊號解碼為N個軌道角動量為零之高斯光訊號,並輸出至該接收端波長選擇開關單元25。接續上述之例子,該渦旋光解碼單元24根據該等三個解碼的軌道角動量拓樸荷數-
l 1、-
l 2、-
l 3,將該等三組光解多工訊號U
3[λ
1(
l 1)]、U
2[λ
2(
l 2)]、U
1[λ
3(
l 3)]解碼為三個軌道角動量為零之高斯光訊號U
3[λ
1]、U
2[λ
2]、U
1[λ
3]。由於該等三個編碼的軌道角動量拓樸荷數
l 1、
l 2、
l 3係分別對應該等三個高斯光源載波λ
1、λ
2、λ
3,因而該接收端控制單元26所產生之該等三個解碼的軌道角動量拓樸荷數-
l 1、-
l 2、-
l 3亦須分別對應該等三個高斯光源載波λ
1、λ
2、λ
3。故該渦旋光解碼單元24會根據-
l 1解碼對應有λ
1的光解多工訊號U
3[λ
1(
l 1)],以解碼出高斯光訊號U
3[λ
1],並根據-
l 2解碼對應有λ
2的光解多工訊號U
2[λ
2(
l 2)],以解碼出高斯光訊號U
2[λ
2],且根據-
l 3解碼對應有λ
3的光解多工訊號U
1[λ
3(
l 3)],以解碼出高斯光訊號U
1[λ
3]。
In
在步驟505中,該接收端控制單元26根據該發射端控制單元16所傳送的該組控制參數利用該混沌隨機不重復生成排列演算法產生一加密配對組合,並根據該加密配對組合產生一解密配對組合,且將該解密配對組合傳送至該接收端波長選擇開關單元25,其中,該解密配對組合用以指示該接收端波長選擇開關單元25之每一輸入端及其對應配合的輸出端。In
值得一提的是,步驟505還包含以下子步驟(見圖8)。It is worth mentioning that
在子步驟505A中,該接收端控制單元26根據該組控制參數利用該混沌方程式產生一長度為N的隨機時間序列。由於該組控制參數即為該發射端控制單元16用於產生該隨機時間序列的該組控制參數,該發射端控制單元16所使用的混沌方程式與該接收端控制單元26所使用的混沌方程式亦為相同之方程式,因此該接收端控制單元26根據該組控制參數利用該混沌方程式所產生之隨機時間序列即會相同於該發射端控制單元16根據該組控制參數利用該混沌方程式所產生之隨機時間序列,延續前述之例子,該接收端控制單元26所產生之隨機時間序列即為{0.5,0.2,0.1}。In sub-step 505A, the receiving
在子步驟505B中,該接收端控制單元26將該隨機時間序列中之每一數值映射為一對應之正整數序碼。相似地,該隨機時間序列{0.5,0.2,0.1}經由該預設映射函式進行不重複的數值轉換後對應至{3,2,1}。In sub-step 505B, the receiving
在子步驟505C中,該接收端控制單元26將該等N個正整數序碼轉換為一置換矩陣,以生成相同於步驟315的該加密配對組合。相似地,該接收端控制單元26將{3,2,1}轉換為該置換矩陣
。
In sub-step 505C, the receiving
在子步驟505D中,該接收端控制單元26根據該加密配對組合產生一解密配對組合,且將該解密配對組合傳送至該接收端波長選擇開關單元25,其中,該解密配對組合用以指示該接收端波長選擇開關單元25之每一輸入端及其對應配合的輸出端。在本實施例中,該解密配對組合所對應的矩陣型樣與該加密配對組合所對應的矩陣型樣之互為轉置關係,因此該接收端控制單元26藉由將該置換矩陣進行轉置即可獲得該解密配對組合。接續上述之例子,將該置換矩陣進行
轉置即可獲得
(即,
之轉置矩陣),此兩個矩陣之乘積會構成一個單位矩陣。
In sub-step 505D, the receiving
在步驟506中,對於該接收端波長選擇開關單元25之每一輸入端,該輸入端接收來自於該渦旋光解碼單元24的該等N個高斯光訊號中之一對應的輸入高斯光訊號時,根據該解密配對組合,將對應的輸入高斯光訊號輸出至該輸入端所配合的該接收端波長選擇開關單元25之輸出端。接續上述之例子,以
之矩陣型樣作為該解密配對組合來將對應的該輸入高斯光訊號U
3[λ
1] /U
2[λ
2] / U
1[λ
3] 輸出至該輸入端所配合的該接收端波長選擇開關單元25之輸出端後,U
3[λ
1]、U
2[λ
2]、U
1[λ
3]的空間輸出順序將變為U
1[λ
3]、U
2[λ
2]、U
3[λ
1]。
In
在步驟507中,對於每一解調變器,該解調變器根據所連接之該接收端波長選擇開關單元25之輸出端輸出的高斯光訊號進行解調變,以產生一對應的位元資料,並輸出至該資料還原單元21。接續上述之例子,每一解調變器分別將U
1[λ
3] /U
2[λ
2] /U
3[λ
1] 進行解調變以將高斯光源載波卸載,進而產生一對應的位元資料U
1/U
2/U
3,在本實施例中,每一解調變器可藉由光檢測器(photodetector) 進行解調變,但不以此為限。
In
在步驟508中,該資料還原單元21將每一位元資料進行還原,以產生該等N個來源資料。接續上述之例子,該資料還原單元21將每一位元資料U
1/U
2/U
3進行還原,以產生該等三個來源資料User#1~User#3。藉此正確地還原解讀出該等來源影像資料User#1~User#3其原始格式的信號。
In
綜上所述,本發明藉由該發射端控制單元16產生該加密配對組合,針對在傳輸加密處理後該等位元資料U
1~U
N,形成渦旋光擾序的變換機制,以在後續解密時透過對應該加密配對組合之解密配對組合正確解讀出該等N個位元資料,進而還原該等來源資料User#1~User#N,藉此,運用實體層上多個渦旋光擾序變換機制生成加密效能,以解決在應用層上影像僅能進行部份加密而削減了無線光通訊於傳輸影像時之安全性的困境。此外,透過增加多模態軌道角動量的編碼並整合擾序變換渦旋光系統來實現多維度多工的加密傳輸,進而提高光通訊的傳輸容量與資訊傳輸安全。再者,建構混沌加密及透過機器學習迴歸分析獲得該預測加密配對組合以監控預測破密之威脅,以主動更換該組控制參數,來強化具隱私權的實體層傳輸安全,故確實能達成本發明的目的。
In summary, the present invention generates the encryption pair combination through the transmitting
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only an embodiment of the present invention and should not be used to limit the scope of implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the present patent.
User#1~User#N 來源資料
λ
1~λ
3··· 高斯光源載波
λ
1(
l 1)~λ
3(
l 3) 渦旋光訊號
U
1~U
3·· 位元資料
U
1[λ
3(
l 3)]、U
2[λ
2(
l 2)]、U
3[λ
1(
l 1)]光調變訊號
U
1[λ
3(
l 3)]~ U
3[λ
1(
l 1)]光多工輸出訊號
U
3[λ
1(
l 1)]、U
2[λ
2(
l 2)]、 U
1[λ
3(
l 3)]光解多工訊號
U
3[λ
1]、U
2[λ
2]、U
1[λ
3] 高斯光訊號
1········ 發射端無線光通訊裝置
11······ 資料壓縮單元
12······ 光源生成單元
13······ 光濾波單元
14······ 渦旋光編碼單元
15······ 發射端波長選擇開關單元
16······ 發射端控制單元
17······ 調變單元
18 ······ 光多工單元
19 ······ 無線光傳送單元
2········ 接收端無線光通訊裝置
21······ 資料還原單元
22······ 無線光接收單元
23······· 光解多工單元
24······ 渦旋光解碼單元
25······ 接收端波長選擇開關單元
26······· 接收端控制單元
27······ 解調變單元
31~32步驟
311~323步驟
315A~315D子步驟
501~508步驟
505A~505D子步驟
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1與圖2皆為一方塊圖,配合說明用於實施本發明利用渦旋光擾序之無線光加密通訊方法之實施例的一無線光通訊系統; 圖3為一流程圖,說明本發明利用渦旋光擾序之無線光加密通訊方法之實施例的一配對預測模型建立程序; 圖4與圖5皆為一流程圖,配合說明本發明利用渦旋光擾序之無線光加密通訊方法之實施例的一發送程序; 圖6為一流程圖,說明如何產生一加密配對組合; 圖7為一流程圖,說明本發明利用渦旋光擾序之無線光加密通訊方法之實施例的一接收程序;及 圖8為一流程圖,說明如何產生一解密配對組合。 Other features and effects of the present invention will be clearly presented in the implementation method of the reference figures, in which: Figures 1 and 2 are both block diagrams, which are used to illustrate a wireless optical communication system for implementing an embodiment of the wireless optical encryption communication method using vortex optical perturbation of the present invention; Figure 3 is a flow chart, which illustrates a pairing prediction model establishment procedure of an embodiment of the wireless optical encryption communication method using vortex optical perturbation of the present invention; Figures 4 and 5 are both flow charts, which are used to illustrate a sending procedure of an embodiment of the wireless optical encryption communication method using vortex optical perturbation of the present invention; Figure 6 is a flow chart, which illustrates how to generate an encrypted pairing combination; Figure 7 is a flow chart, which illustrates a receiving procedure of an embodiment of the wireless optical encryption communication method using vortex optical perturbation of the present invention; and Figure 8 is a flow chart illustrating how to generate a decryption pair combination.
1:發射端無線光通訊裝置 1: Transmitter wireless optical communication device
11:資料壓縮單元 11: Data compression unit
12:光源生成單元 12: Light source generation unit
13:光濾波單元 13: Optical filter unit
14:渦旋光編碼單元 14: Eddy current encoding unit
15:發射端波長選擇開關單元 15: Transmitter wavelength selection switch unit
16:發射端控制單元 16: Transmitter control unit
17:調變單元 17: Modulation unit
18:光多工單元 18: Optical multiplexing unit
19:無線光傳送單元 19: Wireless optical transmission unit
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111140076A TWI803440B (en) | 2022-10-21 | 2022-10-21 | Wireless optical encryption communication method using vortex optical scrambling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111140076A TWI803440B (en) | 2022-10-21 | 2022-10-21 | Wireless optical encryption communication method using vortex optical scrambling |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI803440B TWI803440B (en) | 2023-05-21 |
TW202418774A true TW202418774A (en) | 2024-05-01 |
Family
ID=87424676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111140076A TWI803440B (en) | 2022-10-21 | 2022-10-21 | Wireless optical encryption communication method using vortex optical scrambling |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI803440B (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9379926B2 (en) * | 2012-07-24 | 2016-06-28 | Eutelsat S A | Modulation technique for transmitting and receiving radio vortices |
US9474143B2 (en) * | 2014-08-19 | 2016-10-18 | University Of Dayton | Systems and methods for generating complex vectorial optical fields |
US10581522B1 (en) * | 2018-12-06 | 2020-03-03 | At&T Intellectual Property I, L.P. | Free-space, twisted light optical communication system |
CN111856766B (en) * | 2020-07-31 | 2021-06-08 | 西安电子科技大学 | Self-focusing vortex light beam generation method for inhibiting turbulence effect |
US11990943B2 (en) * | 2021-01-04 | 2024-05-21 | At&T Intellectual Property I, L.P. | System and method for quantum-enabled cyber security in a wireless mobile network |
CN115102626B (en) * | 2022-07-15 | 2024-01-16 | 长沙军民先进技术研究有限公司 | Device and method for realizing space multi-polarization coding |
-
2022
- 2022-10-21 TW TW111140076A patent/TWI803440B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI803440B (en) | 2023-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Venu et al. | An efficient low complexity compression based optimal homomorphic encryption for secure fiber optic communication | |
US8078059B2 (en) | Multimode optical transmission device | |
US20050074037A1 (en) | Optical sub-carrier multiplexed transmission | |
EP2533459A1 (en) | Optical transmission device and receiving device for yuen encryption, optical transmission method and receiving method for yuen encryption, and encrypted communication system | |
EP1487148A1 (en) | Data processing apparatus and method thereof | |
KR20070055574A (en) | Data communication apparatus | |
CN110247705B (en) | Multi-core fiber-based optical quantum fusion network implementation method and system | |
CN108494544A (en) | A kind of encryption in physical layer high speed optical communication system of high efficient and reliable | |
CN114979407A (en) | Multi-image encryption and decryption method based on code division multiple access and deep learning ghost imaging | |
US20060039455A1 (en) | Composite waveform for transmitting an increased amount of data over an analog medium, and devices and methods for producing, encoding, transmitting and decoding same | |
US7437082B1 (en) | Private optical communications systems, devices, and methods | |
CN117544295A (en) | Quantum key distribution method, device and system | |
CN108494491A (en) | A kind of electric light encoding and decoding R-T unit and decoding method | |
Chen et al. | Joint compressed sensing and JPEG coding based secure compression scheme in OFDM-PON | |
TW202418774A (en) | Wireless optical encryption communication method using vortex light scrambling to improve the transmission capacity, communication rate and data confidentiality of the optical communication system | |
CN111416701B (en) | High-safety orthogonal mode division multiplexing access method and system based on vector disturbance | |
JP5583222B2 (en) | Modulator with polarization marking | |
CN101867434B (en) | Method for enhancing confidentiality of optical code-division multiple access network information transmission | |
Bhanja et al. | Novel encryption technique for security enhancement in optical code division multiple access | |
TWI686061B (en) | Wireless optical communication method for realizing image encryption and decryption | |
Sandhu et al. | Review of image encryption and compression techniques | |
Kodama et al. | High-security 2.5 Gbps, polarization multiplexed 256-ary OCDM using a single multi-port encoder/decoder | |
WO2015000115A1 (en) | Signal modulation and demodulation methods, modulation and demodulation apparatuses, and signal transmission system | |
JP2021166364A (en) | Signal processing device | |
WO2005046114A2 (en) | Coherent-states based quantum data-encryption through optically-amplified wdm communication networks |