TW202418273A - Flash memory device and program method thereof - Google Patents

Flash memory device and program method thereof Download PDF

Info

Publication number
TW202418273A
TW202418273A TW111139285A TW111139285A TW202418273A TW 202418273 A TW202418273 A TW 202418273A TW 111139285 A TW111139285 A TW 111139285A TW 111139285 A TW111139285 A TW 111139285A TW 202418273 A TW202418273 A TW 202418273A
Authority
TW
Taiwan
Prior art keywords
leakage current
current
bit line
common bit
memory cells
Prior art date
Application number
TW111139285A
Other languages
Chinese (zh)
Other versions
TWI822395B (en
Inventor
何文喬
Original Assignee
華邦電子股份有限公司
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW111139285A priority Critical patent/TWI822395B/en
Priority claimed from TW111139285A external-priority patent/TWI822395B/en
Application granted granted Critical
Publication of TWI822395B publication Critical patent/TWI822395B/en
Publication of TW202418273A publication Critical patent/TW202418273A/en

Links

Images

Abstract

A flash memory device and a program method thereof are provided. The flash memory device includes a memory array, a first common bit line and a sense amplifier device. The memory array includes a first memory block having a plurality of first memory cells. In a leakage current detection operation, the sense amplifier device detects a leakage current generated by the first memory cells on the first common bit line to obtain leakage current simulation information. In a program operation, the sense amplifying device provides a reference current according to the leakage current simulation information, and compares a sense current, which is generated by a selected memory cell of the first memory cells on the first common bit line, with the reference current to perform a program verification.

Description

快閃記憶體裝置及其編程方法Flash memory device and programming method thereof

本發明是有關於一種記憶體的編程方法,且特別是有關於一種能夠針對漏電流進行補償的快閃記憶體裝置及其編程方法。The present invention relates to a memory programming method, and more particularly to a flash memory device capable of compensating for leakage current and a programming method thereof.

在針對快閃記憶體(flash memory)的編程操作中,為了確保臨限電壓(threshold voltage,Vt)已被編程到預定的目標電壓,編程驗證(Program-Verify,PV)是不可或缺的操作項目。在編程驗證中會對選中記憶胞施加讀取電壓,並且對所產生的胞電流進行偵測。胞電流必需被判定為足夠低才能通過驗證。In the programming operation of flash memory, in order to ensure that the threshold voltage (Vt) has been programmed to the predetermined target voltage, program verification (PV) is an indispensable operation item. In program verification, a read voltage is applied to the selected memory cell, and the cell current generated is detected. The cell current must be judged to be low enough to pass the verification.

除了選中記憶胞的胞電流之外,在共同位元線(global bit line)上還會有其他記憶胞所產生的漏電流。因此,實際上在編程驗證中與參考電流進行比較的是共同位元線上由胞電流以及漏電流相加而成的感測電流。當感測電流不夠低時就會對選中記憶胞所耦接的字元線再次施加編程脈衝以及進行編程驗證,並且重複操作直到感測電流被判定為足夠低為止。此外,對於反或型快閃記憶體(NOR flash memory)來說,由於劣化的關係漏電流還會隨著進行循環操作(即由編程操作及抹除操作構成的循環)的次數增加而逐漸增加,導致需要施加更多次的編程脈衝來將選中記憶胞的臨限電壓推動至更高,才能在編程驗證時使感測電流低於參考電流。同時,編程驗證的次數也會隨之增加。如此惡性循環之下,頁編程時間(page program time,tPP)就會隨著循環操作的次數增加而逐漸增加,導致快閃記憶體的效率下降,進而成為記憶體技術開發上的瓶頸。In addition to the cell current of the selected memory cell, there is also leakage current generated by other memory cells on the global bit line. Therefore, in programming verification, the reference current is actually compared with the sensed current formed by the sum of the cell current and the leakage current on the global bit line. When the sensed current is not low enough, the programming pulse will be applied again to the word line coupled to the selected memory cell and programming verification will be performed, and the operation will be repeated until the sensed current is judged to be low enough. In addition, for NOR flash memory, due to degradation, the leakage current will gradually increase with the number of cycles (i.e., cycles consisting of programming and erasing operations), resulting in the need to apply more programming pulses to push the critical voltage of the selected memory cell to a higher level so that the sense current can be lower than the reference current during programming verification. At the same time, the number of programming verifications will also increase. Under such a vicious cycle, the page program time (tPP) will gradually increase with the number of cycles, resulting in a decrease in the efficiency of the flash memory, which in turn becomes a bottleneck in the development of memory technology.

本發明提供一種快閃記憶體裝置及其編程方法,能夠盡量使頁編程時間在經過多次循環操作後仍維持不變。The present invention provides a flash memory device and a programming method thereof, which can keep the page programming time unchanged as much as possible after multiple cycle operations.

本發明的快閃記憶體裝置包括記憶體陣列、第一共同位元線以及感測放大裝置。記憶體陣列包括第一記憶體區塊。第一記憶體區塊包括多個第一記憶胞。第一共同位元線耦接第一記憶胞。感測放大裝置耦接第一共同位元線。在漏電流偵測操作中,感測放大裝置偵測第一記憶胞在第一共同位元線上產生的漏電流,以獲得漏電流模擬資訊。在編程操作中,感測放大裝置根據漏電流模擬資訊以提供參考電流,且對第一記憶胞中的選中記憶胞在第一共同位元線上產生的感測電流與參考電流進行比較,以進行編程驗證。The flash memory device of the present invention includes a memory array, a first common bit line, and a sense amplifier. The memory array includes a first memory block. The first memory block includes a plurality of first memory cells. The first common bit line is coupled to the first memory cells. The sense amplifier is coupled to the first common bit line. In a leakage current detection operation, the sense amplifier detects the leakage current generated by the first memory cell on the first common bit line to obtain leakage current analog information. In a programming operation, the sense amplifier provides a reference current based on the leakage current analog information, and compares the sense current generated by a selected memory cell among the first memory cells on the first common bit line with the reference current to perform programming verification.

本發明的快閃記憶體裝置的編程方法包括下列步驟:在漏電流偵測操作中,偵測第一記憶胞在第一共同位元線上產生的漏電流,以獲得漏電流模擬資訊;以及在編程操作中,根據漏電流模擬資訊以提供參考電流,且對第一記憶胞中的選中記憶胞在第一共同位元線上產生的感測電流與參考電流進行比較,以進行編程驗證。The programming method of the flash memory device of the present invention includes the following steps: in a leakage current detection operation, the leakage current generated by the first memory cell on the first common bit line is detected to obtain leakage current simulation information; and in a programming operation, a reference current is provided according to the leakage current simulation information, and the sensed current generated by the selected memory cell in the first memory cell on the first common bit line is compared with the reference current to perform programming verification.

基於上述,本發明的快閃記憶體裝置及其編程方法能夠在編程操作之前預先偵測記憶體區塊所產生的漏電流。並且,在編程操作中能夠根據漏電流的大小提供適當的參考電流來進行編程驗證。藉此,不會因漏電流的影響而需要在編程驗證時施加更多次的編程脈衝,不會對頁編程時間產生不良的影響,避免快閃記憶體的效率下降。Based on the above, the flash memory device and programming method of the present invention can detect the leakage current generated by the memory block before the programming operation. In addition, during the programming operation, it can provide an appropriate reference current according to the leakage current to perform programming verification. In this way, it is not necessary to apply more programming pulses during programming verification due to the influence of the leakage current, and it will not have a negative impact on the page programming time, thereby avoiding the reduction of the efficiency of the flash memory.

請參照圖1,圖1繪示本發明一實施例的快閃記憶體裝置的示意圖。快閃記憶體裝置100包括記憶體陣列110、感測放大裝置120以及第一共同位元線GBL1。記憶體陣列110包括第一記憶體區塊112。第一記憶體區塊112包括多個第一記憶胞MC1~MCn+i-1。第一記憶胞MC1~MCn+i-1分別耦接至字元線WL[0]~WL[n+i-1]。第一記憶胞MC1~MCn+i-1的源極端共同耦接至接地電壓GND。第一記憶體區塊112還可區分為多個分部11~1n,多個分部11~1n共用的第一共同位元線GBL1。Please refer to FIG. 1 , which shows a schematic diagram of a flash memory device according to an embodiment of the present invention. The flash memory device 100 includes a memory array 110, a sense amplifier device 120, and a first common bit line GBL1. The memory array 110 includes a first memory block 112. The first memory block 112 includes a plurality of first memory cells MC1 to MCn+i-1. The first memory cells MC1 to MCn+i-1 are respectively coupled to word lines WL[0] to WL[n+i-1]. The source terminals of the first memory cells MC1 to MCn+i-1 are commonly coupled to a ground voltage GND. The first memory block 112 can be further divided into a plurality of sub-divisions 11-1n, and the plurality of sub-divisions 11-1n share a first common bit line GBL1.

第一共同位元線GBL1耦接第一記憶胞MC1~MCn+i-1。感測放大裝置120耦接第一共同位元線GBL1。在漏電流偵測操作中,感測放大裝置120可偵測第一記憶胞MC1~MCn+i-1在第一共同位元線GBL1上產生的漏電流IL,以獲得漏電流模擬資訊。The first common bit line GBL1 is coupled to the first memory cells MC1-MCn+i-1. The sense amplifier 120 is coupled to the first common bit line GBL1. In the leakage current detection operation, the sense amplifier 120 can detect the leakage current IL generated by the first memory cells MC1-MCn+i-1 on the first common bit line GBL1 to obtain leakage current analog information.

具體來說,在漏電流偵測操作中,將與第一記憶胞MC1~MCn+i-1對應的所有字元線WL[0]~WL[n+i-1]均控制為禁能的狀態。如此一來,第一記憶體區塊112中的記憶胞皆為非存取的狀態,感測放大裝置120可接收第一共同位元線GBL1上所產生的漏電流IL。在此同時,感測放大裝置120可接收測試電流Itest,並根據設定比例來調整測試電流Itest以產生複製漏電流ILR。感測放大裝置120使複製漏電流ILR與第一共同位元線GBL1上的漏電流IL來進行比較來產生比較結果,並透過調整設定比例來找出最接近漏電流IL的複製漏電流ILR,藉以產生漏電流模擬資訊。Specifically, in the leakage current detection operation, all word lines WL[0]~WL[n+i-1] corresponding to the first memory cells MC1~MCn+i-1 are controlled to be disabled. In this way, the memory cells in the first memory block 112 are all in a non-access state, and the sense amplifier 120 can receive the leakage current IL generated on the first common bit line GBL1. At the same time, the sense amplifier 120 can receive the test current Itest and adjust the test current Itest according to the set ratio to generate the replica leakage current ILR. The sense amplifier 120 compares the replica leakage current ILR with the leakage current IL on the first common bit line GBL1 to generate a comparison result, and finds the replica leakage current ILR closest to the leakage current IL by adjusting the setting ratio to generate leakage current simulation information.

在漏電流偵測操作完成之後的編程操作中,感測放大裝置120可根據漏電流模擬資訊以提供參考電流Iref,且對第一記憶胞MC1~MCn+i-1中的選中記憶胞MCT在第一共同位元線GBL1上產生的感測電流Isen與參考電流Iref進行比較,以進行編程驗證。In the programming operation after the leakage current detection operation is completed, the sense amplifier 120 can provide a reference current Iref according to the leakage current simulation information, and compare the sense current Isen generated on the first common bit line GBL1 of the selected memory cell MCT among the first memory cells MC1~MCn+i-1 with the reference current Iref to perform programming verification.

具體來說,在編程操作中,將與選中記憶胞MCT對應的字元線WL[i-1]控制為致能的狀態,將與其餘的第一記憶胞(第一記憶胞MC1~MCn+i-1中除了選中記憶胞MCT以外的記憶胞)對應的字元線控制為禁能的狀態。如此一來,選中記憶胞MCT會在第一共同位元線GBL1上產生胞電流Icell,感測放大裝置120在第一共同位元線GBL1可接收由胞電流Icell以及漏電流IL相加而成感測電流Isen。在此同時,感測放大裝置120還會根據之前獲得的漏電流模擬資訊來調整測試電流Itest以產生參考電流Iref。感測放大裝置120使感測電流Isen與參考電流Iref進行比較,以進行編程驗證。Specifically, in the programming operation, the word line WL[i-1] corresponding to the selected memory cell MCT is controlled to be enabled, and the word lines corresponding to the remaining first memory cells (the memory cells other than the selected memory cell MCT in the first memory cells MC1~MCn+i-1) are controlled to be disabled. In this way, the selected memory cell MCT will generate a cell current Icell on the first common bit line GBL1, and the sense amplifier 120 can receive the sense current Isen formed by the addition of the cell current Icell and the leakage current IL on the first common bit line GBL1. At the same time, the sense amplifier 120 will also adjust the test current Itest according to the previously obtained leakage current simulation information to generate a reference current Iref. The sense amplifier 120 compares the sense current Isen with the reference current Iref for programming verification.

需說明的是,基於與參考電流Iref是根據漏電流模擬資訊所產生的,因此,在感測放大裝置120針對感測電流Isen以及參考電流Iref進行比較時,感測電流Isen中的漏電流IL的部分可以被消除。如此一來,在進行編程驗證時,不需要因為漏電流的關係而施加更多次的編程脈衝即可通過驗證,不會對頁編程時間造成不良的影響,從而能夠盡量使頁編程時間在經過多次循環操作後仍維持不變。It should be noted that, since the reference current Iref is generated according to the leakage current simulation information, when the sensing amplifier 120 compares the sensing current Isen with the reference current Iref, the leakage current IL in the sensing current Isen can be eliminated. In this way, when performing programming verification, it is not necessary to apply more programming pulses due to the leakage current to pass the verification, and there will be no adverse effect on the page programming time, so that the page programming time can be kept unchanged as much as possible after multiple cycles.

圖2繪示本發明一實施例的感測放大裝置的示意圖。請參照圖2,感測放大裝置200包括第一感測放大器210以及比例控制器220。第一感測放大器210具有第一輸入端以耦接第一共同位元線GBL1。比例控制器220可以為具備運算能力的處理器。或者,比例控制器220可以是透過硬體描述語言(Hardware Description Language, HDL)或是其他任意本領域具通常知識者所熟知的數位電路的設計方式來進行設計,並透過現場可程式邏輯門陣列(Field Programmable Gate Array, FPGA)、複雜可程式邏輯裝置(Complex Programmable Logic Device, CPLD)或是特殊應用積體電路(Application-specific Integrated Circuit, ASIC)的方式來實現的硬體電路。比例控制器220耦接第一感測放大器210的第二輸入端。比例控制器接收測試電流Itest,且在漏電流偵測操作中,根據設定比例調整測試電流Itest以產生複製漏電流ILR。FIG2 is a schematic diagram of a sensing amplifier device according to an embodiment of the present invention. Referring to FIG2 , the sensing amplifier device 200 includes a first sensing amplifier 210 and a proportional controller 220. The first sensing amplifier 210 has a first input terminal coupled to a first common bit line GBL1. The proportional controller 220 may be a processor with computing capabilities. Alternatively, the proportional controller 220 may be a hardware circuit designed by a hardware description language (HDL) or any other digital circuit design method known to a person skilled in the art, and implemented by a field programmable gate array (FPGA), a complex programmable logic device (CPLD), or an application-specific integrated circuit (ASIC). The ratio controller 220 is coupled to the second input terminal of the first sense amplifier 210. The ratio controller receives the test current Itest, and in the leakage current detection operation, adjusts the test current Itest according to a set ratio to generate a replica leakage current ILR.

在漏電流偵測操作中,第一感測放大器210對第一共同位元線GBL1上的漏電流IL與複製漏電流ILR進行比較,以產生比較結果CR。比例控制器220接收比較結果CR,當比較結果CR維持為第一邏輯準位時比例控制器220調整設定比例。並且,第一感測放大器210及比例控制器220重複進行第一共同位元線GBL1上的漏電流IL與複製漏電流ILR的比較以及設定比例的調整,直到比較結果CR由第一邏輯準位轉態為第二邏輯準位為止。In the leakage current detection operation, the first sense amplifier 210 compares the leakage current IL on the first common bit line GBL1 with the replica leakage current ILR to generate a comparison result CR. The ratio controller 220 receives the comparison result CR and adjusts the setting ratio when the comparison result CR maintains the first logic level. Furthermore, the first sense amplifier 210 and the ratio controller 220 repeatedly compare the leakage current IL on the first common bit line GBL1 with the replica leakage current ILR and adjust the setting ratio until the comparison result CR changes from the first logic level to the second logic level.

當比較結果CR由第一邏輯準位轉態為第二邏輯準位時,表示此時的設定比例所產生的複製漏電流ILR最接近於漏電流IL,因此感測放大裝置200可儲存對應的設定比例來作為漏電流模擬資訊。When the comparison result CR changes from the first logic level to the second logic level, it means that the replica leakage current ILR generated by the setting ratio at this time is closest to the leakage current IL. Therefore, the sensing amplifier 200 can store the corresponding setting ratio as leakage current simulation information.

附帶一提的,在其他實施例中,感測放大裝置200也可直接儲存目前的複製漏電流ILR來作為漏電流模擬資訊。Incidentally, in other embodiments, the sensing amplifier 200 may also directly store the current replica leakage current ILR as the leakage current simulation information.

在本實施例中,測試電流Itest可以預設為一個具有相對高數值的信號,在此條件下,比例控制器220可逐步調低設定比例來進行複製漏電流ILR與漏電流IL的比較動作。在初始階段,複製漏電流ILR可大於漏電流IL,並使比較結果CR為第一邏輯準位。而隨著設定比例的調低,複製漏電流ILR可被調整為小於或等於漏電流IL,第一感測放大器210可產生為第二邏輯準位的比較結果CR。此時的複製漏電流ILR為最接近於漏電流IL的狀態。或者,測試電流Itest也可以預設為一個具有相對低數值的信號,在此條件下,比例控制器220可逐步調高設定比例來進行複製漏電流ILR與漏電流IL的比較動作。在初始階段,複製漏電流ILR可小於漏電流IL,並使比較結果CR為第一邏輯準位。而隨著設定比例的調高,複製漏電流ILR可被調整為大於或等於漏電流IL,第一感測放大器210可產生為第二邏輯準位的比較結果CR。此時的複製漏電流ILR同樣可以為最接近於漏電流IL的狀態。此外,上述的第一邏輯準位可以為邏輯1或邏輯0,上述的第二邏輯準位則可以為與第一邏輯準位互補的邏輯0或1。In this embodiment, the test current Itest can be preset as a signal with a relatively high value. Under this condition, the ratio controller 220 can gradually reduce the setting ratio to perform the comparison operation of the replica leakage current ILR and the leakage current IL. In the initial stage, the replica leakage current ILR can be greater than the leakage current IL, and the comparison result CR is the first logic level. As the setting ratio is reduced, the replica leakage current ILR can be adjusted to be less than or equal to the leakage current IL, and the first sensing amplifier 210 can generate a comparison result CR of the second logic level. At this time, the replica leakage current ILR is the state closest to the leakage current IL. Alternatively, the test current Itest can also be preset as a signal with a relatively low value. Under this condition, the ratio controller 220 can gradually increase the setting ratio to perform the comparison operation of the replica leakage current ILR and the leakage current IL. In the initial stage, the replica leakage current ILR can be less than the leakage current IL, and the comparison result CR is made to be the first logic level. As the setting ratio is increased, the replica leakage current ILR can be adjusted to be greater than or equal to the leakage current IL, and the first sensing amplifier 210 can generate a comparison result CR of the second logic level. At this time, the replica leakage current ILR can also be the state closest to the leakage current IL. In addition, the first logic level may be logic 1 or logic 0, and the second logic level may be logic 0 or 1 complementary to the first logic level.

圖3繪示本發明一實施例的編程操作的參考電流與感測電流的示意圖。請參照圖3,在漏電流偵測操作完成之後的編程操作中所使用的參考電流Iref會由比較電流Icmp以及補償電流Icps相加而成,感測電流Isen則會由胞電流Icell以及漏電流IL相加而成。感測放大裝置200可根據之前獲得的漏電流模擬資訊以提供補償電流Icps,使補償電流Icps相當於與所儲存的設定比例對應的複製漏電流ILR。比較電流Icmp則例如是一般情況下進行編程驗證時用來驗證是否編程成功的電流。因此,在第一感測放大器210針對感測電流Isen以及參考電流Iref進行比較時,感測電流Isen中的漏電流IL的部分可以與參考電流Iref中的補償電流Icps的部分互相抵消。如此一來,在進行編程驗證時,不需要因為漏電流的關係而施加更多次的編程脈衝即可通過驗證,不會對頁編程時間造成不良的影響,從而能夠盡量使頁編程時間在經過多次循環操作後仍維持不變,避免快閃記憶體的效率下降。FIG3 is a schematic diagram of the reference current and the sense current of the programming operation of an embodiment of the present invention. Referring to FIG3 , the reference current Iref used in the programming operation after the leakage current detection operation is completed is formed by adding the comparison current Icmp and the compensation current Icps, and the sense current Isen is formed by adding the cell current Icell and the leakage current IL. The sensing amplifier 200 can provide the compensation current Icps according to the leakage current simulation information obtained previously, so that the compensation current Icps is equivalent to the replica leakage current ILR corresponding to the stored setting ratio. The comparison current Icmp is, for example, the current used to verify whether the programming is successful when performing programming verification under normal circumstances. Therefore, when the first sense amplifier 210 compares the sense current Isen and the reference current Iref, the leakage current IL in the sense current Isen can cancel out the compensation current Icps in the reference current Iref. In this way, when performing programming verification, it is not necessary to apply more programming pulses due to the leakage current to pass the verification, and the page programming time will not be adversely affected, so that the page programming time can be kept unchanged after multiple cycle operations as much as possible to avoid the efficiency of the flash memory from decreasing.

需說明的是,快閃記憶體的效率下降例如可以反應在編程失敗、記憶胞本質劣化以及不符合技術規格三個方面上。通常快閃記憶體裝置的內部會限制施加編程脈衝以及進行編程驗證的重複次數,避免頁編程時間的過久,因此當漏電流過高而持續無法通過編程驗證時就會導致編程失敗。漏電流會導致施加更多次的編程脈衝,以便將選中記憶胞編程到更高的臨限電壓的狀態以進行補償,然而這意味著會更多的電子注入氧化層區域,增加氧化層劣化的可能性,並導致有關記憶胞本質劣化的可靠性問題。並且,頁編程時間過長則會不符合技術規格所規定的時間長度。本發明的快閃記憶體裝置能夠盡量使頁編程時間在經過多次循環操作後仍維持不變,藉此避免上述問題的發生。It should be noted that the decline in the efficiency of flash memory can be reflected in three aspects, for example, programming failure, degradation of the memory cell nature, and non-compliance with technical specifications. Usually, the internal part of the flash memory device will limit the application of programming pulses and the number of repetitions of programming verification to avoid too long page programming time. Therefore, when the leakage current is too high and the programming verification fails continuously, it will lead to programming failure. The leakage current will cause more programming pulses to be applied in order to program the selected memory cell to a higher threshold voltage state for compensation. However, this means that more electrons will be injected into the oxide layer area, increasing the possibility of oxide layer degradation and causing reliability issues related to the degradation of the memory cell nature. In addition, if the page programming time is too long, it will not meet the time length specified by the technical specifications. The flash memory device of the present invention can keep the page programming time as constant as possible after multiple cycle operations, thereby avoiding the occurrence of the above problems.

以下請參照圖4,圖4繪示本發明一實施例的漏電流偵測操作的流程圖。在步驟S410中,測試電流Itest的數值可以在晶圓測試時,透過測試流程的調整(trim)機制來完成設定。測試電流Itest可以設定為具有一個相對大的數值的電流值。關於測試流程的調整(trim)機制,可以透過熔斷(或不熔斷)電子熔絲的方式,或者利用本領域具通常知識者熟知的測試流程的調整技術來進行,沒有特別的限制。Please refer to FIG. 4 below, which is a flow chart of the leakage current detection operation of an embodiment of the present invention. In step S410, the value of the test current Itest can be set by the trimming mechanism of the test process during the wafer test. The test current Itest can be set to a current value with a relatively large value. Regarding the trimming mechanism of the test process, it can be performed by blowing (or not blowing) an electronic fuse, or by using the trimming technology of the test process that is familiar to those skilled in the art, without any special restrictions.

在步驟S420中,則進行設定比例的調整動作。在本實施例中,初始的設定比例可以等於100%。透過測試電流Itest以及設定比例,本實施例的感測放大裝置可產生複製漏電流ILR並與共同位元線上的漏電流IR進行比較,並在步驟S430中產生比較結果CR。In step S420, the setting ratio is adjusted. In this embodiment, the initial setting ratio can be equal to 100%. Through the test current Itest and the setting ratio, the sensing amplifier of this embodiment can generate a replica leakage current ILR and compare it with the leakage current IR on the common bit line, and generate a comparison result CR in step S430.

在步驟S440中,判斷比較結果CR是否等於初始值(例如為邏輯0)?若判斷結果為是,則重新執行步驟S420以進一步調低設定比例。若判斷結果為否,則可儲存設定比例來作為漏電流模擬資訊(步驟S450)。In step S440, is it determined whether the comparison result CR is equal to the initial value (e.g., logical 0)? If the determination result is yes, then step S420 is re-executed to further reduce the setting ratio. If the determination result is no, then the setting ratio can be stored as leakage current simulation information (step S450).

附帶一提的,本實施例中的步驟S410也可透過測試流程的調整機制,來調整出一個相對小的測試電流Itest。在此情況下,步驟S420中初始的設定比例為一個小於100%的比值。並在步驟S440的判斷結果為是後,步驟S420可進一步調高設定比例。Incidentally, step S410 in this embodiment can also be adjusted to a relatively small test current Itest through the adjustment mechanism of the test process. In this case, the initial setting ratio in step S420 is a ratio less than 100%. And after the judgment result of step S440 is yes, step S420 can further increase the setting ratio.

圖5A及圖5B繪示本發明一實施例的快閃記憶體裝置的示意圖。在圖5A及圖5B中,快閃記憶體裝置500包括記憶體陣列510、感測放大裝置520、第一共同位元線GBL1以及第二共同位元線GBL21~GBL2m。記憶體陣列510包括第一記憶體區塊5140以及第二記憶體區塊5141~514m。第一記憶體區塊5140耦接第一共同位元線GBL1。第二記憶體區塊5141~514m分別耦接第二共同位元線GBL21~GBL2m。在第一記憶體區塊5140以及第二記憶體區塊5141~514m內分別包括多個記憶胞。第一記憶體區塊5140以及第二記憶體區塊5141~514m所包括的多個記憶胞分別耦接對應的共同位元線。5A and 5B are schematic diagrams of a flash memory device according to an embodiment of the present invention. In FIG5A and 5B, the flash memory device 500 includes a memory array 510, a sense amplifier 520, a first common bit line GBL1, and second common bit lines GBL21-GBL2m. The memory array 510 includes a first memory block 5140 and second memory blocks 5141-514m. The first memory block 5140 is coupled to the first common bit line GBL1. The second memory blocks 5141-514m are respectively coupled to the second common bit lines GBL21-GBL2m. The first memory block 5140 and the second memory blocks 5141-514m include a plurality of memory cells respectively. The plurality of memory cells included in the first memory block 5140 and the second memory blocks 5141-514m are respectively coupled to corresponding common bit lines.

感測放大裝置520包括第一感測放大器5240、第二感測放大器5241~524m、比例控制器526以及電流鏡5280~528m。第一感測放大器5240的第一輸入端耦接第一共同位元線GBL1。每個第二感測放大器5241~524m的第一輸入端耦接第二共同位元線GBL21~GBL2m中對應的第二共同位元線。電流鏡5280~528m分別耦接第一感測放大器5240的第二輸入端以及第二感測放大器5241~524m的第二輸入端。The sensing amplifier device 520 includes a first sensing amplifier 5240, second sensing amplifiers 5241-524m, a proportional controller 526, and current mirrors 5280-528m. The first input terminal of the first sensing amplifier 5240 is coupled to the first common bit line GBL1. The first input terminal of each second sensing amplifier 5241-524m is coupled to the corresponding second common bit line among the second common bit lines GBL21-GBL2m. The current mirrors 5280-528m are respectively coupled to the second input terminal of the first sensing amplifier 5240 and the second input terminal of the second sensing amplifiers 5241-524m.

如圖5A所示,在漏電流偵測操作中,透過比例控制器526以使設定比例與設定信號Itest相乘所產生的複製漏電流ILR。複製漏電流ILR可透過電流鏡5280~528m的鏡射動作來分別產生鏡射複製漏電流ILR0~ILRm以傳送至第一感測放大器5240以及第二感測放大器5241~524m。如此一來,透過第一感測放大器5240以及第二感測放大器5241~524m的比較結果,以及配合比例控制器526逐步的調整設定比例,可以逐一的計算出第一共同位元線GBL1及第二共同位元線GBL21~GBL2m對應的多個記憶胞區塊的電流模擬資訊,以快速地的完成漏電流偵測操作。此時,電流鏡5280~528m可具有相同的鏡射比,僅透過調整設定比例來獲得每個記憶胞區塊所對應的電流模擬資訊。As shown in FIG5A, in the leakage current detection operation, the ratio controller 526 is used to multiply the setting ratio with the setting signal Itest to generate the replica leakage current ILR. The replica leakage current ILR can generate the mirrored replica leakage currents ILR0~ILRm through the mirroring action of the current mirrors 5280~528m to transmit to the first sense amplifier 5240 and the second sense amplifier 5241~524m. In this way, through the comparison results of the first sense amplifier 5240 and the second sense amplifier 5241~524m, and the ratio controller 526 gradually adjusts the setting ratio, the current simulation information of the multiple memory cell blocks corresponding to the first common bit line GBL1 and the second common bit line GBL21~GBL2m can be calculated one by one to quickly complete the leakage current detection operation. At this time, the current mirrors 5280-528m may have the same mirroring ratio, and the current simulation information corresponding to each memory cell block can be obtained only by adjusting the setting ratio.

如圖5B所示,在漏電流偵測操作完成之後的編程操作中,電流鏡5280~528m可分別具有不同的鏡射比,多個鏡射比分別等同多個權重值,並分別對應第一記憶體區塊5140及第二記憶體區塊5141~514m的電流模擬資訊。此時,比例控制器526可以將設定比例固定於100%,並且將相等於測試電流Itest的電流傳送至每個電流鏡5280~528m。如此一來,每個電流鏡5280~528m可根據對應的漏電流模擬資訊鏡射測試電流Itest以分別產生補償電流Icps0~Icpsm。感測電流Isen0~Isem中的漏電流的部分可以分別與參考電流Iref0~Irefm中的補償電流Icps0~Icpsm的部分互相抵消。As shown in FIG. 5B , in the programming operation after the leakage current detection operation is completed, the current mirrors 5280 to 528m may have different mirroring ratios, and the multiple mirroring ratios are respectively equivalent to multiple weight values, and respectively correspond to the current simulation information of the first memory block 5140 and the second memory block 5141 to 514m. At this time, the ratio controller 526 may fix the setting ratio at 100%, and transmit a current equal to the test current Itest to each current mirror 5280 to 528m. In this way, each current mirror 5280 to 528m may mirror the test current Itest according to the corresponding leakage current simulation information to generate compensation currents Icps0 to Icpsm respectively. The leakage current portion of the sensing current Isen0~Isem can be offset by the compensation current portion Icps0~Icpsm of the reference current Iref0~Irefm.

圖6繪示繪示本發明一實施例的快閃記憶體裝置的編程方法的流程圖。請同時參照圖1及圖6,本實施例的方法可適用於圖1的快閃記憶體裝置100。在步驟S610中,在漏電流偵測操作中,偵測第一記憶胞MC1~MCn+i-1在第一共同位元線GBL1上產生的漏電流IL,以獲得漏電流模擬資訊。在步驟S620中,感測放大裝置120根據漏電流模擬資訊以提供參考電流Iref,且對第一記憶胞MC1~MCn+i-1中的選中記憶胞MCT在第一共同位元線GBL1上產生的感測電流Isen與參考電流Iref進行比較,以進行編程驗證。關於上述步驟的實施細節,在前述的多個實施例中已有詳盡的說明,在此恕不多贅述。FIG6 is a flow chart showing a programming method of a flash memory device according to an embodiment of the present invention. Please refer to FIG1 and FIG6 simultaneously. The method of the present embodiment can be applied to the flash memory device 100 of FIG1. In step S610, in the leakage current detection operation, the leakage current IL generated by the first memory cells MC1~MCn+i-1 on the first common bit line GBL1 is detected to obtain leakage current simulation information. In step S620, the sensing amplifier device 120 provides a reference current Iref according to the leakage current simulation information, and compares the sensing current Isen generated by the selected memory cell MCT among the first memory cells MC1~MCn+i-1 on the first common bit line GBL1 with the reference current Iref to perform programming verification. The implementation details of the above steps have been fully described in the aforementioned embodiments and will not be elaborated here.

綜上所述,本發明的快閃記憶體裝置及其編程方法能夠在編程操作之前預先偵測記憶體區塊所產生的漏電流以作為漏電流模擬資訊。並且,在編程操作中能夠漏電流模擬資訊提供適當的參考電流來與感測電流進行比較,以抵消感測電流中的漏電流的部分。藉此,不會因漏電流的影響而需要在編程驗證時施加更多次的編程脈衝,不會對頁編程時間產生不良的影響,避免快閃記憶體的效率下降。In summary, the flash memory device and programming method of the present invention can detect the leakage current generated by the memory block in advance before the programming operation to serve as leakage current simulation information. Moreover, during the programming operation, the leakage current simulation information can provide an appropriate reference current to compare with the sensed current to offset the leakage current portion of the sensed current. In this way, it is not necessary to apply more programming pulses during programming verification due to the influence of the leakage current, and it will not have a negative impact on the page programming time, thereby avoiding a decrease in the efficiency of the flash memory.

100、500:快閃記憶體裝置 110、510:記憶體陣列 112、5140:第一記憶體區塊 120、200、520:感測放大裝置 210、5240:第一感測放大器 220、526:比例控制器 11~1n:分部 5141~514m:第二記憶體區塊 5241~524m:第二感測放大器 5280~528m:電流鏡 CR:比較結果 GBL1:第一共同位元線 GBL21~GBL2m:第二共同位元線 GND:接地電壓 IL:漏電流 ILR:複製漏電流 ILR0~ILRm:鏡射複製漏電流 Icell:胞電流 Icmp:比較電流 Icps、Icps0~Icpsm:補償電流 Iref、Iref0~Irefm:參考電流 Isen、Isen0~Isem:感測電流 Itest:測試電流 MC1~MCn+i-1:第一記憶胞 MCT:選中記憶胞 WL[0]~WL[n+i-1]:字元線 S410~S450、S610~S620:步驟 100, 500: flash memory device 110, 510: memory array 112, 5140: first memory block 120, 200, 520: sensing amplifier device 210, 5240: first sensing amplifier 220, 526: proportional controller 11~1n: division 5141~514m: second memory block 5241~524m: second sensing amplifier 5280~528m: current mirror CR: comparison result GBL1: first common bit line GBL21~GBL2m: second common bit line GND: ground voltage IL: leakage current ILR: replica leakage current ILR0~ILRm: mirrored replica leakage current Icell: cell current Icmp: comparison current Icps, Icps0~Icpsm: compensation current Iref, Iref0~Irefm: reference current Isen, Isen0~Isem: sense current Itest: test current MC1~MCn+i-1: first memory cell MCT: selected memory cell WL[0]~WL[n+i-1]: word line S410~S450, S610~S620: steps

圖1繪示本發明一實施例的快閃記憶體裝置的示意圖。 圖2繪示本發明一實施例的感測放大裝置的示意圖。 圖3繪示本發明一實施例的編程操作的參考電流與感測電流的示意圖。 圖4繪示本發明一實施例的漏電流偵測操作的流程圖。 圖5A及圖5B繪示本發明一實施例的快閃記憶體裝置的示意圖。 圖6繪示繪示本發明一實施例的快閃記憶體裝置的編程方法的流程圖。 FIG. 1 is a schematic diagram of a flash memory device according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a sensing amplifier according to an embodiment of the present invention. FIG. 3 is a schematic diagram of a reference current and a sensing current of a programming operation according to an embodiment of the present invention. FIG. 4 is a flow chart of a leakage current detection operation according to an embodiment of the present invention. FIG. 5A and FIG. 5B are schematic diagrams of a flash memory device according to an embodiment of the present invention. FIG. 6 is a flow chart of a programming method of a flash memory device according to an embodiment of the present invention.

100:快閃記憶體裝置 100: Flash memory device

110:記憶體陣列 110:Memory array

112:第一記憶體區塊 112: First memory block

120:感測放大裝置 120: Sensing amplifier

11~1n:分部 11~1n: Division

GBL1:第一共同位元線 GBL1: First common bit line

GND:接地電壓 GND: Ground voltage

IL:漏電流 IL: Leakage current

Isen:感測電流 Isen: Sense current

Itest:測試電流 Itest: test current

MC1~MCn+i-1:第一記憶胞 MC1~MCn+i-1: first memory cell

MCT:選中記憶胞 MCT: Select memory cells

WL[0]~WL[n+i-1]:字元線 WL[0]~WL[n+i-1]: character line

Claims (15)

一種快閃記憶體裝置,包括: 一記憶體陣列,包括一第一記憶體區塊,該第一記憶體區塊包括多個第一記憶胞; 一第一共同位元線,耦接該些第一記憶胞;以及 一感測放大裝置,耦接該第一共同位元線,在一漏電流偵測操作中,該感測放大裝置偵測該些第一記憶胞在該第一共同位元線上產生的漏電流,以獲得一漏電流模擬資訊, 在一編程操作中,該感測放大裝置根據該漏電流模擬資訊以提供一參考電流,且對該些第一記憶胞中的一選中記憶胞在該第一共同位元線上產生的一感測電流與該參考電流進行比較,以進行一編程驗證。 A flash memory device comprises: a memory array comprising a first memory block, the first memory block comprising a plurality of first memory cells; a first common bit line coupled to the first memory cells; and a sensing amplifier coupled to the first common bit line, wherein in a leakage current detection operation, the sensing amplifier detects leakage currents generated by the first memory cells on the first common bit line to obtain leakage current analog information, In a programming operation, the sense amplifier device provides a reference current according to the leakage current simulation information, and compares a sense current generated by a selected memory cell among the first memory cells on the first common bit line with the reference current to perform a programming verification. 如請求項1所述的快閃記憶體裝置,其中該感測放大裝置包括: 一第一感測放大器,具有一第一輸入端以耦接該第一共同位元線;以及 一比例控制器,耦接該第一感測放大器的一第二輸入端,該比例控制器接收一測試電流,且在該漏電流偵測操作中,根據一設定比例調整該測試電流以產生一複製漏電流。 A flash memory device as described in claim 1, wherein the sense amplifier device comprises: a first sense amplifier having a first input terminal coupled to the first common bit line; and a proportional controller coupled to a second input terminal of the first sense amplifier, the proportional controller receiving a test current and, in the leakage current detection operation, adjusting the test current according to a set ratio to generate a replica leakage current. 如請求項2所述的快閃記憶體裝置,其中在該漏電流偵測操作中,該第一感測放大器對該第一共同位元線上的漏電流與該複製漏電流進行比較,以產生一比較結果,當該比較結果維持為一第一邏輯準位時該比例控制器調整該設定比例,並且該第一感測放大器及該比例控制器重複進行該第一共同位元線上的漏電流與該複製漏電流的比較以及該設定比例的調整,直到該比較結果由該第一邏輯準位轉態為一第二邏輯準位為止。A flash memory device as described in claim 2, wherein in the leakage current detection operation, the first sense amplifier compares the leakage current on the first common bit line with the replica leakage current to generate a comparison result, and when the comparison result remains at a first logic level, the proportional controller adjusts the set ratio, and the first sense amplifier and the proportional controller repeatedly compare the leakage current on the first common bit line with the replica leakage current and adjust the set ratio until the comparison result transitions from the first logic level to a second logic level. 如請求項3所述的快閃記憶體裝置,其中當該比較結果由該第一邏輯準位轉態為該第二邏輯準位時,該感測放大裝置儲存對應的該設定比例來作為該漏電流模擬資訊。The flash memory device as described in claim 3, wherein when the comparison result changes from the first logic level to the second logic level, the sensing amplifier stores the corresponding setting ratio as the leakage current simulation information. 如請求項2所述的快閃記憶體裝置,其中該參考電流由一比較電流以及一補償電流相加而成,在該編程操作中,該感測放大裝置根據該漏電流模擬資訊以提供該補償電流,該補償電流相當於與所儲存的該設定比例對應的該複製漏電流。A flash memory device as described in claim 2, wherein the reference current is formed by adding a comparison current and a compensation current, and in the programming operation, the sensing amplifier device provides the compensation current according to the leakage current simulation information, and the compensation current is equivalent to the replica leakage current corresponding to the stored setting ratio. 如請求項1所述的快閃記憶體裝置,其中在該漏電流偵測操作中,與該些第一記憶胞對應的所有字元線均為禁能的狀態。The flash memory device as described in claim 1, wherein in the leakage current detection operation, all word lines corresponding to the first memory cells are in a disabled state. 如請求項1所述的快閃記憶體裝置,其中在該編程操作中,與該選中記憶胞對應的字元線為致能的狀態,與其餘的該些第一記憶胞對應的字元線為禁能的狀態。The flash memory device as described in claim 1, wherein in the programming operation, the word line corresponding to the selected memory cell is in an enabled state, and the word lines corresponding to the remaining first memory cells are in a disabled state. 如請求項1所述的快閃記憶體裝置,更包括多個第二共同位元線, 該記憶體陣列更包括多個第二記憶體區塊,各該些第二記憶體區塊包括多個第二記憶胞,各該些第二記憶胞耦接對應的該第二共同位元線, 該感測放大裝置更包括多個第二感測放大器以及多個電流鏡,各該些第二感測放大器的第一輸入端耦接對應的該第二共同位元線, 該些電流鏡分別耦接該第一感測放大器的第二輸入端以及該些第二感測放大器的第二輸入端,在該編程操作中,各該些電流鏡根據對應的該漏電流模擬資訊鏡射一測試電流以產生個別的一補償電流。 The flash memory device as described in claim 1 further includes a plurality of second common bit lines, the memory array further includes a plurality of second memory blocks, each of the second memory blocks includes a plurality of second memory cells, each of the second memory cells is coupled to the corresponding second common bit line, the sensing amplifier device further includes a plurality of second sensing amplifiers and a plurality of current mirrors, the first input end of each of the second sensing amplifiers is coupled to the corresponding second common bit line, the current mirrors are respectively coupled to the second input end of the first sensing amplifier and the second input end of the second sensing amplifiers, and in the programming operation, each of the current mirrors mirrors a test current according to the corresponding leakage current simulation information to generate a respective compensation current. 一種快閃記憶體裝置的編程方法,該快閃記憶體裝置包括一記憶體陣列,該記憶體陣列包括具有多個第一記憶胞的一第一記憶體區塊,各該些第一記憶胞耦接一第一共同位元線, 其中該編程方法包括下列步驟: 在一漏電流偵測操作中,偵測該些第一記憶胞在該第一共同位元線上產生的漏電流,以獲得一漏電流模擬資訊;以及 在一編程操作中,根據該漏電流模擬資訊以提供一參考電流,且對該些第一記憶胞中的一選中記憶胞在該第一共同位元線上產生的一感測電流與該參考電流進行比較,以進行一編程驗證。 A programming method for a flash memory device, the flash memory device includes a memory array, the memory array includes a first memory block having a plurality of first memory cells, each of the first memory cells is coupled to a first common bit line, wherein the programming method includes the following steps: In a leakage current detection operation, the leakage current generated by the first memory cells on the first common bit line is detected to obtain a leakage current simulation information; and In a programming operation, a reference current is provided according to the leakage current simulation information, and a sensed current generated by a selected memory cell among the first memory cells on the first common bit line is compared with the reference current to perform a programming verification. 如請求項9所述的快閃記憶體裝置的編程方法,其中在該漏電流偵測操作中,偵測該些第一記憶胞在該第一共同位元線上產生的漏電流,以獲得該漏電流模擬資訊的步驟包括: 接收一測試電流,且在該漏電流偵測操作中,根據一設定比例調整該測試電流以產生一複製漏電流。 A programming method for a flash memory device as described in claim 9, wherein in the leakage current detection operation, the step of detecting the leakage current generated by the first memory cells on the first common bit line to obtain the leakage current simulation information includes: Receiving a test current, and in the leakage current detection operation, adjusting the test current according to a set ratio to generate a replica leakage current. 如請求項10所述的快閃記憶體裝置的編程方法,其中在該漏電流偵測操作中,偵測該些第一記憶胞在該第一共同位元線上產生的漏電流,以獲得該漏電流模擬資訊的步驟更包括: 在該漏電流偵測操作中,對該第一共同位元線上的漏電流與該複製漏電流進行比較,以產生一比較結果; 當該比較結果維持為一第一邏輯準位時調整該設定比例;以及 重複進行該比較的步驟以及該調整該設定比例的步驟,直到該比較結果由該第一邏輯準位轉態為一第二邏輯準位為止。 The programming method of the flash memory device as described in claim 10, wherein in the leakage current detection operation, the step of detecting the leakage current generated by the first memory cells on the first common bit line to obtain the leakage current simulation information further includes: In the leakage current detection operation, the leakage current on the first common bit line is compared with the replica leakage current to generate a comparison result; When the comparison result maintains a first logic level, the setting ratio is adjusted; and Repeating the comparison step and the step of adjusting the setting ratio until the comparison result is converted from the first logic level to a second logic level. 如請求項11所述的快閃記憶體裝置的編程方法,其中在該漏電流偵測操作中,偵測該些第一記憶胞在該第一共同位元線上產生的漏電流,以獲得該漏電流模擬資訊的步驟更包括: 當該比較結果由該第一邏輯準位轉態為該第二邏輯準位時,儲存對應的該設定比例來作為該漏電流模擬資訊。 The programming method of the flash memory device as described in claim 11, wherein in the leakage current detection operation, the step of detecting the leakage current generated by the first memory cells on the first common bit line to obtain the leakage current simulation information further includes: When the comparison result is converted from the first logic level to the second logic level, the corresponding setting ratio is stored as the leakage current simulation information. 如請求項10所述的快閃記憶體裝置的編程方法,其中該參考電流由一比較電流以及一補償電流相加而成,在該編程操作中,根據該漏電流模擬資訊以提供該參考電流的步驟包括: 根據該漏電流模擬資訊以提供該補償電流,該補償電流相當於與所儲存的該設定比例對應的該複製漏電流。 A programming method for a flash memory device as described in claim 10, wherein the reference current is formed by adding a comparison current and a compensation current, and in the programming operation, the step of providing the reference current according to the leakage current simulation information includes: Providing the compensation current according to the leakage current simulation information, the compensation current being equal to the replica leakage current corresponding to the stored setting ratio. 如請求項9所述的快閃記憶體裝置的編程方法,其中在該漏電流偵測操作中,與該些第一記憶胞對應的所有字元線均為禁能的狀態, 其中在該編程操作中,與該選中記憶胞對應的字元線為致能的狀態,與其餘的該些第一記憶胞對應的字元線為禁能的狀態。 A programming method for a flash memory device as described in claim 9, wherein in the leakage current detection operation, all word lines corresponding to the first memory cells are in a disabled state, wherein in the programming operation, the word line corresponding to the selected memory cell is in an enabled state, and the word lines corresponding to the remaining first memory cells are in a disabled state. 如請求項9所述的快閃記憶體裝置的編程方法,其中該記憶體陣列更包括多個第二記憶體區塊,各該些第二記憶體區塊包括多個第二記憶胞,各該些第二記憶胞耦接對應的該第二共同位元線, 該編程方法更包括: 在該編程操作中,透過多個電流鏡來分別根據對應的該漏電流模擬資訊鏡射一測試電流以產生個別的一補償電流。 A programming method for a flash memory device as described in claim 9, wherein the memory array further includes a plurality of second memory blocks, each of the second memory blocks includes a plurality of second memory cells, each of the second memory cells is coupled to the corresponding second common bit line, and the programming method further includes: In the programming operation, a test current is mirrored by a plurality of current mirrors according to the corresponding leakage current simulation information to generate a respective compensation current.
TW111139285A 2022-10-17 2022-10-17 Flash memory device and program method thereof TWI822395B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111139285A TWI822395B (en) 2022-10-17 2022-10-17 Flash memory device and program method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111139285A TWI822395B (en) 2022-10-17 2022-10-17 Flash memory device and program method thereof

Publications (2)

Publication Number Publication Date
TWI822395B TWI822395B (en) 2023-11-11
TW202418273A true TW202418273A (en) 2024-05-01

Family

ID=89722562

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111139285A TWI822395B (en) 2022-10-17 2022-10-17 Flash memory device and program method thereof

Country Status (1)

Country Link
TW (1) TWI822395B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10475510B2 (en) * 2017-12-21 2019-11-12 Macronix International Co., Ltd. Leakage compensation read method for memory device
US10566072B2 (en) * 2018-03-06 2020-02-18 Winbond Electronics Corp. Detection methods for NOR flash memory

Similar Documents

Publication Publication Date Title
US10163526B2 (en) Circuit and method for detecting time dependent dielectric breakdown (TDDB) shorts and signal-margin testing
US6411549B1 (en) Reference cell for high speed sensing in non-volatile memories
JPH09128983A (en) Method for setting of threshold voltage of reference memory cell for memory device
US7260004B2 (en) Method and apparatus for increasing yield in a memory circuit
US5699295A (en) Current detection circuit for reading a memory in integrated circuit form
US9105357B2 (en) Semiconductor memory device and defective judging method thereof
US20060274594A1 (en) Implementation of a fusing scheme to allow internal voltage trimming
US20090296465A1 (en) Nonvolatile memory device and method of operating the same
JP2023523493A (en) SENSE AMPLIFIER, MEMORY AND CONTROL METHOD
EP0992998B1 (en) Nonvolatile memory device and inspection method thereof
JP3522617B2 (en) Circuit and method for detecting mirror signal in optical disk device
CN114694726A (en) Circuit and method for on-chip leakage detection and memory compensation
JP4510073B2 (en) Storage device and reference cell adjustment method for the storage device
US7394698B1 (en) Method and apparatus for adjusting a read reference level under dynamic power conditions
TW202418273A (en) Flash memory device and program method thereof
TWI822395B (en) Flash memory device and program method thereof
US11538549B2 (en) Test circuit and semiconductor memory system including the test circuit
US20240153569A1 (en) Flash memory device and program method thereof
CN117976019A (en) Flash memory device and programming method thereof
US20080062767A1 (en) Method of fixing a read evaluation time or the difference between a read charge voltage and a read discriminating voltage in a non-volatile nand type memory device
JP7146114B2 (en) Memory system that can reduce read time
US20230290416A1 (en) Memory and reading method thereof
TWI783869B (en) Memory and reading method thereof
US20150055423A1 (en) Semiconductor memory apparatus
CN110047523B (en) Quasi-constant voltage drop self-stop write-in method of resistive memory unit and its circuit