TW202417391A - Optical glass and optical element - Google Patents
Optical glass and optical element Download PDFInfo
- Publication number
- TW202417391A TW202417391A TW112129708A TW112129708A TW202417391A TW 202417391 A TW202417391 A TW 202417391A TW 112129708 A TW112129708 A TW 112129708A TW 112129708 A TW112129708 A TW 112129708A TW 202417391 A TW202417391 A TW 202417391A
- Authority
- TW
- Taiwan
- Prior art keywords
- less
- content
- glass
- mass
- optical
- Prior art date
Links
- 239000005304 optical glass Substances 0.000 title claims abstract description 75
- 230000003287 optical effect Effects 0.000 title claims description 38
- 239000011521 glass Substances 0.000 claims abstract description 170
- 239000000203 mixture Substances 0.000 claims abstract description 88
- 230000009477 glass transition Effects 0.000 claims abstract description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 24
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 14
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 10
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 10
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 10
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 10
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 10
- 150000001768 cations Chemical class 0.000 claims description 50
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 36
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 29
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 15
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims description 12
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 11
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten(VI) oxide Inorganic materials O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract description 9
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 abstract description 9
- 239000007791 liquid phase Substances 0.000 abstract description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 abstract description 3
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 abstract description 3
- 238000000465 moulding Methods 0.000 description 49
- 239000002994 raw material Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 23
- 150000001450 anions Chemical class 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 229910052799 carbon Inorganic materials 0.000 description 13
- 238000003825 pressing Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 239000006060 molten glass Substances 0.000 description 9
- 230000005484 gravity Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 238000004040 coloring Methods 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- 150000002910 rare earth metals Chemical class 0.000 description 6
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 150000004679 hydroxides Chemical class 0.000 description 5
- 150000002823 nitrates Chemical class 0.000 description 5
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- 229910003443 lutetium oxide Inorganic materials 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004445 quantitative analysis Methods 0.000 description 3
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 101000802640 Homo sapiens Lactosylceramide 4-alpha-galactosyltransferase Proteins 0.000 description 2
- 102100035838 Lactosylceramide 4-alpha-galactosyltransferase Human genes 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000012569 chemometric method Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Glass Compositions (AREA)
Abstract
Description
本發明是關於光學玻璃及光學元件。The present invention relates to optical glass and optical components.
近年來,作為光學元件用材料,提出了各種光學玻璃(例如參照專利文獻1)。 現有技術文獻 專利文獻 In recent years, various optical glasses have been proposed as materials for optical elements (see, for example, Patent Document 1). Prior Art Documents Patent Documents
專利文獻1:日本特開2008-201661號公報Patent document 1: Japanese Patent Application Publication No. 2008-201661
發明所要解決的問題Problem that the invention aims to solve
折射率和阿貝數滿足給定的關係式的光學玻璃作為光學元件用材料是有用的。例如,作為這樣的關係式的具體例,可舉出「式(2):νd>-88.355*nd+201」。Optical glass whose refractive index and Abbe number satisfy a given relationship is useful as a material for optical elements. For example, as a specific example of such a relationship, "Equation (2): νd>-88.355*nd+201" can be cited.
另外,作為對光學玻璃期望的性質之一,可舉出玻璃化轉變溫度Tg低。低Tg玻璃由於例如精密壓製適應性優異而較佳。In addition, one of the properties desired for optical glass is a low glass transition temperature Tg. Low Tg glass is preferred because, for example, it is well suited for precision pressing.
本發明的一個實施方式的目的在於提供折射率和阿貝數滿足上述式(2)、並且玻璃化轉變溫度低的光學玻璃。 解決問題的方法 An embodiment of the present invention aims to provide an optical glass having a refractive index and an Abbe number satisfying the above formula (2) and a low glass transition temperature. Solution to the problem
本發明的一個實施方式是關於一種光學玻璃,其中, 在質量%表示的玻璃組成中, Li 2O含量超過0質量%, B 2O 3含量為3.00質量%以上且30.00質量%以下, SiO 2含量超過0質量%且為8.00質量%以下, La 2O 3含量為15.00質量%以上且55.00質量%以下, ZnO含量為3.00質量%以上且30.00質量%以下, TiO 2含量為0.60質量%以下, Li 2O與ZnO的合計含量(Li 2O+ZnO)為10.20質量%以上, B 2O 3含量相對於Li 2O含量的質量比(B 2O 3/Li 2O)為5.00以上且21.00以下, SiO 2含量相對於Li 2O含量的質量比(SiO 2/Li 2O)為10.00以下, 所述光學玻璃的玻璃化轉變溫度Tg小於610℃, 液相溫度LT為1090℃以上, 折射率nd和玻璃化轉變溫度Tg滿足下述式(1),並且折射率nd和阿貝數νd滿足下述式(2), 式(1):Tg<2500*nd-4050 式(2):νd>-88.355*nd+201。 發明的效果 One embodiment of the present invention is an optical glass, wherein, in a glass composition expressed in mass%, a Li 2 O content exceeds 0 mass%, a B 2 O 3 content is 3.00 mass% or more and 30.00 mass% or less, a SiO 2 content exceeds 0 mass% and is 8.00 mass% or less, a La 2 O 3 content is 15.00 mass% or more and 55.00 mass% or less, a ZnO content is 3.00 mass% or more and 30.00 mass% or less, a TiO 2 content is 0.60 mass% or less, a total content of Li 2 O and ZnO (Li 2 O+ZnO) is 10.20 mass% or more, a mass ratio of the B 2 O 3 content to the Li 2 O content (B 2 O 3 /Li 2 O) is 5.00 or more and 21.00 or less, and a SiO 2 content relative to the Li 2 The mass ratio of O content (SiO 2 /Li 2 O) is 10.00 or less, the glass transition temperature Tg of the optical glass is less than 610°C, the liquidus temperature LT is 1090°C or more, the refractive index nd and the glass transition temperature Tg satisfy the following formula (1), and the refractive index nd and the Abbe number νd satisfy the following formula (2), Formula (1): Tg<2500*nd-4050 Formula (2): νd>-88.355*nd+201. Effects of the invention
根據本發明的一個實施方式,可以提供玻璃化轉變溫度低、並且具有作為光學元件用材料而言有用的光學常數的光學玻璃。另外,根據本發明的一個方式,可以提供由這樣的光學玻璃製成的光學元件。According to one embodiment of the present invention, an optical glass having a low glass transition temperature and optical constants useful as a material for an optical element can be provided. In addition, according to one embodiment of the present invention, an optical element made of such an optical glass can be provided.
[光學玻璃] 在本發明及本說明書中,光學玻璃的玻璃組成藉由質量%表示、陽離子%表示或莫耳%表示來記載。 [Optical glass] In the present invention and this specification, the glass composition of optical glass is described by mass %, cation % or molar % expression.
在質量%表示的玻璃組成及莫耳%表示的玻璃組成中,用氧化物基準的玻璃組成表示玻璃組成。這裡,「氧化物基準的玻璃組成」是指,按照玻璃原料在熔融時全部被分解而在玻璃中以氧化物的形式存在的物質進行換算而得到的玻璃組成。在質量%表示的玻璃組成中,用質量基準(質量%、質量比)表示玻璃組成。以下,關於質量%表示的玻璃組成,也將「質量%」簡單記載為「%」。在莫耳%表示的玻璃組成中,用莫耳基準(莫耳%、莫耳比)表示玻璃組成。以下,關於莫耳%表示的玻璃組成,也將「莫耳%」簡單記載為「%」。In the glass composition expressed in mass % and the glass composition expressed in mole %, the glass composition is expressed in terms of oxide-based glass composition. Here, "oxide-based glass composition" refers to a glass composition obtained by converting the substances that are completely decomposed when the glass raw materials are melted and exist in the glass in the form of oxides. In the glass composition expressed in mass %, the glass composition is expressed in terms of mass basis (mass %, mass ratio). Hereinafter, with respect to the glass composition expressed in mass %, "mass %" is also simply described as "%". In the glass composition expressed in mole %, the glass composition is expressed in terms of mole basis (mole %, mole ratio). Hereinafter, with respect to the glass composition expressed in mole %, "mole %" is also simply described as "%".
關於陽離子%表示的玻璃組成,用陽離子%表示陽離子成分的含量及合計含量。這裡,「陽離子%」是以「(所關注的陽離子的個數/玻璃成分的陽離子的總數)×100」而算出的值,表示的是所關注的陽離子量相對於陽離子成分的總量的莫耳百分率。以下,關於陽離子%表示的玻璃組成,也將「陽離子%」簡單記載為「%」。 陽離子比是陽離子成分彼此的含量的莫耳比,等於所關注的陽離子成分用陽離子%表示的含量之比。 關於陽離子成分,例如像Li +、Si 4+這樣表示,陽離子成分的價數(例如,Li +的價數為+1,Si 4+的價數為+4)是根據習慣確定的值,與用氧化物基準將Li、Si等表示為Li 2O、SiO 2等同樣。關於按照氧化物基準表示為A mO n(A表示陽離子,O表示氧,m及n為藉由化學計量方式確定的整數)的成分,將陽離子A表示為A s+。其中,s=2n/m。因此,例如在對玻璃組成進行分析、定量時,可以不分析至陽離子成分的價數。 Regarding glass compositions expressed in cation % , the content and total content of cation components are expressed in cation %. Here, "cation %" is a value calculated as "(number of cations of concern/total number of cations in glass components) × 100", which represents the molar percentage of the amount of cations of concern relative to the total amount of cation components. Hereinafter, regarding glass compositions expressed in cation % , "cation %" will also be simply expressed as "%". The cation ratio is the molar ratio of the contents of cation components to each other, and is equal to the ratio of the contents of the cation components of concern expressed in cation %. Regarding cationic components, for example, when expressing them as Li + and Si 4+ , the valence of the cationic components (for example, the valence of Li + is +1, and the valence of Si 4+ is +4) is a value determined by convention, which is the same as expressing Li, Si, etc. as Li 2 O, SiO 2 , etc. on an oxide basis. Regarding components expressed as Am On (A represents a cation, O represents oxygen, and m and n are integers determined by a stoichiometric method) on an oxide basis, the cation A is expressed as As+ . Here, s=2n/m. Therefore, when analyzing and quantifying glass compositions, for example, the valence of the cationic components does not need to be analyzed.
在本發明及本說明書中,構成成分的含量為0%、0.0%或0.00%、或者不含有或不導入,表示實質上不包含該構成成分,是指該構成成分的含量為雜質水準程度以下。雜質水準程度以下是指例如小於0.01%。「0%」例如可以是指「0.0%」或「0.00%」。In the present invention and this specification, the content of a constituent is 0%, 0.0% or 0.00%, or is not contained or not introduced, which means that the constituent is not substantially contained, and means that the content of the constituent is below the level of impurities. Below the level of impurities means, for example, less than 0.01%. "0%" can mean, for example, "0.0%" or "0.00%".
本發明及本說明書中的玻璃組成可以藉由例如ICP-AES(電感耦合電漿原子發射光譜,Inductively Coupled Plasma-Atomic Emission Spectrometry)等方法求出。例如,定量分析使用ICP-AES,對各元素分別進行。然後,將分析值換算成氧化物表示。基於ICP-AES的分析值有時會包含例如分析值的±5%左右的測定誤差。因此,對於由分析值換算得到的氧化物表示的值,有時也同樣地包含±5%左右的誤差。The glass composition in the present invention and the specification can be obtained by methods such as ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). For example, quantitative analysis is performed on each element separately using ICP-AES. Then, the analysis value is converted into an oxide expression. The analysis value based on ICP-AES sometimes includes a measurement error of, for example, about ±5% of the analysis value. Therefore, the value expressed in oxides converted from the analysis value sometimes also includes an error of about ±5%.
對於玻璃組成的定量分析的結果而言,可以將按照氧化物基準以質量%表示的組成藉由例如如下所述的方法換算成陽離子%表示的玻璃組成。 在玻璃中包含N種玻璃成分時,將第k個玻璃成分表示為A(k) mO n。其中,k為1以上且N以下的任意整數。 A(k)為陽離子,O為氧,m和n為可藉由化學計量方式確定的整數。例如,在按照氧化物基準而記作B 2O 3的情況下,為m=2、n=3,SiO 2的情況下,為m=1、n=2。 接下來,將A(k) mO n的含量設為X(k)[質量%]。這裡,將A(k)的原子量設為P(k)、將氧O的原子序數設為Q時,A(k) mO n的形式上的分子量R(k)為R(k)=P(k)×m+Q×n。 進一步,設為B=100/{Σ[m×X(k)/R(k)]}時,陽離子成分A(k) s+的含量(陽離子%)為[X(k)/R(k)]×m×B(陽離子%)。這裡,Σ表示k=1至N的m×X(k)/R(K)的總和。m根據k而變化。s為2n/m。 另外,對於分子量R(k),將小數點後第4位四捨五入,利用表示至小數點後第3位的值來計算即可。需要說明的是,關於幾種玻璃成分、添加劑,將以氧化物為基準的寫法中的分子量示於下述表1。 As for the results of quantitative analysis of glass composition, the composition expressed in mass % on an oxide basis can be converted into a glass composition expressed in cation % by, for example, the method described below. When the glass contains N glass components, the kth glass component is expressed as A(k) m O n . Here, k is an arbitrary integer greater than 1 and less than N. A(k) is a cation, O is oxygen, and m and n are integers that can be determined by a chemometric method. For example, in the case of B 2 O 3 expressed on an oxide basis, m=2 and n=3, and in the case of SiO 2 , m=1 and n=2. Next, the content of A(k) m O n is denoted as X(k) [mass %]. Here, when the atomic weight of A(k) is P(k) and the atomic number of oxygen O is Q, the formal molecular weight R(k) of A(k) m O n is R(k) = P(k) × m + Q × n. Furthermore, when B = 100/{Σ[m×X(k)/R(k)]}, the content (cation %) of the cationic component A(k) s+ is [X(k)/R(k)]×m×B(cation %). Here, Σ represents the sum of m×X(k)/R(K) for k=1 to N. m varies depending on k. s is 2n/m. In addition, for the molecular weight R(k), the fourth decimal place is rounded off and the value expressed to the third decimal place can be used for calculation. In addition, regarding several glass components and additives, molecular weights expressed on the basis of oxides are shown in the following Table 1.
在本發明及本說明書中,折射率是指在氦的d射線(波長587.56nm)下的折射率nd。In the present invention and this specification, the refractive index refers to the refractive index nd under helium d-ray (wavelength 587.56 nm).
在本發明及本說明書中,阿貝數νd被用作表示與分散相關的性質的值,由以下的數學式表示。 νd=(nd-1)/(nF-nC) 上述式中,nF為在藍氫的F射線(波長486.13nm)下的折射率,nC為在紅氫的C射線(656.27nm)下的折射率。 In the present invention and this specification, the Abbe number νd is used as a value representing properties related to dispersion, and is represented by the following mathematical formula. νd = (nd-1)/(nF-nC) In the above formula, nF is the refractive index under blue hydrogen F rays (wavelength 486.13nm), and nC is the refractive index under red hydrogen C rays (656.27nm).
以下,對上述光學玻璃(有時簡稱為「玻璃」)更詳細地進行說明。Hereinafter, the above-mentioned optical glass (sometimes simply referred to as "glass") will be described in more detail.
<玻璃組成> (Li 2O、Li +) Li(在質量%表示或莫耳%表示的玻璃組成中為Li 2O,在陽離子%表示的玻璃組成中為Li +)是能夠抑制折射率的降低、並且降低玻璃化轉變溫度的成分,因此,必須在上述光學玻璃中含有。 <Glass Composition> (Li 2 O, Li + ) Li (Li 2 O in a glass composition expressed in mass % or mole % and Li + in a glass composition expressed in cation %) is a component capable of suppressing a decrease in the refractive index and lowering the glass transition temperature, and therefore must be contained in the above optical glass.
在質量%表示的玻璃組成中,Li 2O含量超過0%,較佳為0.20%以上,以0.30%以上、0.40%以上、0.45%以上、0.50%以上、0.55%以上、0.60%以上、0.62%以上、0.64%以上、0.66%以上、0.68%以上、0.70%以上、0.72%以上、0.74%以上、0.76%以上、0.77%以上、0.78%以上、0.79%以上、0.80%以上、0.81%以上、0.82%以上、0.83%以上的順序進一步較佳。 Li 2O含量的上限沒有特別限定,例如可以為1.80%以下,較佳為1.70%以下,以1.60%以下、1.55%以下、1.50%以下、1.48%以下、1.46%以下、1.44%以下、1.42%以下、1.40%以下、1.38%以下、1.36%以下、1.34%以下、1.32%以下、1.31%以下的順序進一步較佳。 In the glass composition expressed in mass %, the Li2O content exceeds 0%, preferably 0.20% or more, and is further preferably 0.30% or more, 0.40% or more, 0.45% or more, 0.50% or more, 0.55% or more, 0.60% or more, 0.62% or more, 0.64% or more, 0.66% or more, 0.68% or more, 0.70% or more, 0.72% or more, 0.74% or more, 0.76% or more, 0.77% or more, 0.78% or more, 0.79% or more, 0.80% or more, 0.81% or more, 0.82% or more, and 0.83% or more. The upper limit of the Li2O content is not particularly limited, and may be, for example, 1.80% or less, preferably 1.70% or less, and more preferably 1.60% or less, 1.55% or less, 1.50% or less, 1.48% or less, 1.46% or less, 1.44% or less, 1.42% or less, 1.40% or less, 1.38% or less, 1.36% or less, 1.34% or less, 1.32% or less, and 1.31% or less, in this order.
在陽離子%表示的玻璃組成中,Li +含量超過0%,較佳為0.50%以上,以1.00%以上、1.50%以上、2.00%以上、2.50%以上、3.00%以上、3.25%以上、3.50%以上、3.75%以上、4.00%以上、4.25%以上、4.50%以上、4.75%以上、5.00%以上的順序進一步較佳。 Li +含量的上限沒有特別限定,例如可以為12.00%以下,較佳為11.00%以下,以10.50%以下、10.00%以下、9.75%以下、9.50%以下、9.25%以下、9.00%以下、8.75%以下、8.50%以下、8.25%以下、8.00%以下的順序進一步較佳。 In the glass composition expressed as cation %, the Li + content exceeds 0%, preferably 0.50% or more, and is further preferably in the order of 1.00% or more, 1.50% or more, 2.00% or more, 2.50% or more, 3.00% or more, 3.25% or more, 3.50% or more, 3.75% or more, 4.00% or more, 4.25% or more, 4.50% or more, 4.75% or more, and 5.00% or more. The upper limit of the Li + content is not particularly limited, and can be, for example, 12.00% or less, preferably 11.00% or less, and preferably 10.50% or less, 10.00% or less, 9.75% or less, 9.50% or less, 9.25% or less, 9.00% or less, 8.75% or less, 8.50% or less, 8.25% or less, and 8.00% or less, in this order.
在莫耳%表示的玻璃組成中,Li 2O含量超過0%,較佳為0.50%以上,以1.00%以上、1.50%以上、2.00%以上、2.50%以上、3.00%以上、3.10%以上、3.30%以上、3.50%以上、3.70%以上、3.91%以上的順序進一步較佳。 Li 2O含量的上限沒有特別限定,例如可以為11.00%以下,較佳為10.00%以下,以9.50%以下、9.00%以下、8.50%以下、8.00%以下、7.50%以下、7.30%以下、7.10%以下、6.90%以下、6.70%以下、6.51%以下的順序進一步較佳。 In the glass composition expressed in mole %, the Li 2 O content exceeds 0%, preferably 0.50% or more, and more preferably in the order of 1.00% or more, 1.50% or more, 2.00% or more, 2.50% or more, 3.00% or more, 3.10% or more, 3.30% or more, 3.50% or more, 3.70% or more, and 3.91% or more. The upper limit of the Li 2 O content is not particularly limited, and for example, it may be 11.00% or less, preferably 10.00% or less, and more preferably in the order of 9.50% or less, 9.00% or less, 8.50% or less, 8.00% or less, 7.50% or less, 7.30% or less, 7.10% or less, 6.90% or less, 6.70% or less, and 6.51% or less.
(B 2O 3) B 2O 3是網絡形成成分,是有助於保持玻璃的熱穩定性及熔融性的成分。因此,在質量%表示的玻璃組成中,B 2O 3含量為3.00%以上,較佳為5.00%以上,以6.00%以上、7.00%以上、8.00%以上、8.50%以上、9.00%以上、9.50%以上、10.00%以上、10.50%以上、10.83%以上的順序進一步較佳。 B 2O 3也是大量含有時導致玻璃的低折射率化的成分。因此,在質量%表示的玻璃組成中,B 2O 3含量為30.00%以下,較佳為29.00%以下,以28.00%以下、27.00%以下、26.00%以下、25.00%以下、24.00%以下、23.00%以下、22.00%以下、21.00%以下、20.00%以下、19.00%以下、18.00%以下、17.00%以下、16.00%以下、15.50%以下、15.00%以下、14.50%以下、14.00%以下、13.78%以下的順序進一步較佳。 (B 2 O 3 ) B 2 O 3 is a network-forming component and a component that contributes to maintaining the thermal stability and melting property of glass. Therefore, in the glass composition expressed in mass%, the B 2 O 3 content is 3.00% or more, preferably 5.00% or more, and more preferably 6.00% or more, 7.00% or more, 8.00% or more, 8.50% or more, 9.00% or more, 9.50% or more, 10.00% or more, 10.50% or more, and 10.83% or more. B 2 O 3 is also a component that lowers the refractive index of glass when contained in a large amount. Therefore, in the glass composition expressed in mass %, the B2O3 content is 30.00% or less, preferably 29.00% or less, and further preferably 28.00% or less, 27.00% or less, 26.00% or less, 25.00% or less, 24.00% or less, 23.00% or less, 22.00% or less, 21.00% or less, 20.00% or less, 19.00% or less, 18.00% or less, 17.00% or less, 16.00% or less, 15.50% or less, 15.00% or less, 14.50% or less, 14.00% or less, and 13.78% or less, in this order.
(SiO 2) SiO 2也是網絡形成成分,是有助於保持玻璃的熱穩定性及熔融性的成分。從這一點考慮,在質量%表示的玻璃組成中,SiO 2含量超過0%,較佳為0.50%以上,以1.00%以上、1.50%以上、2.00%以上、2.25%以上、2.50%以上、2.75%以上、2.80%以上、2.85%以上、2.90%以上、2.95%以上、3.00%以上、3.02%以上、3.04%以上、3.06%以上的順序進一步較佳。 SiO 2也是大量含有時導致玻璃的低折射率化的成分。因此,在質量%表示的玻璃組成中,SiO 2含量為8.00%以下,較佳為7.50%以下,較佳為7.00%以下,以6.75%以下、6.50%以下、6.25%以下、6.00%以下、5.75%以下、5.60%以下的順序進一步較佳。 (SiO 2 ) SiO 2 is also a network-forming component and a component that helps maintain the thermal stability and solubility of glass. From this point of view, in the glass composition expressed in mass %, the SiO 2 content exceeds 0%, preferably 0.50% or more, and more preferably 1.00% or more, 1.50% or more, 2.00% or more, 2.25% or more, 2.50% or more, 2.75% or more, 2.80% or more, 2.85% or more, 2.90% or more, 2.95% or more, 3.00% or more, 3.02% or more, 3.04% or more, and 3.06% or more. SiO 2 is also a component that causes a low refractive index of glass when contained in a large amount. Therefore, in the glass composition expressed in mass %, the SiO2 content is 8.00% or less, preferably 7.50% or less, more preferably 7.00% or less, and further preferably 6.75% or less, 6.50% or less, 6.25% or less, 6.00% or less, 5.75% or less, and 5.60% or less, in this order.
(B 2O 3/Li 2O) 在質量%表示的玻璃組成中,B 2O 3含量相對於Li 2O含量的質量比(B 2O 3/Li 2O)為5.00以上,較佳為5.50以上,以6.00以上、6.20以上、6.40以上、6.60以上、6.80以上、7.00以上、7.20以上、7.40以上、7.60以上、7.80以上、8.00以上、8.25以上、8.36以上的順序進一步較佳。關於上限,為21.00以下,較佳為20.00以下,以19.50以下、19.00以下、18.50以下、18.00以下、17.75以下、17.50以下、17.25以下、17.00以下、16.75以下、16.54以下的順序進一步較佳。 關於質量比(B 2O 3/Li 2O),從降低玻璃化轉變溫度的觀點考慮,較佳為上述的上限,從抑制玻璃化轉變溫度的上升、保持熱穩定性的觀點考慮,較佳為上述的下限。 (B 2 O 3 /Li 2 O) In the glass composition expressed in mass %, the mass ratio of the B 2 O 3 content to the Li 2 O content (B 2 O 3 /Li 2 O) is 5.00 or more, preferably 5.50 or more, and more preferably 6.00 or more, 6.20 or more, 6.40 or more, 6.60 or more, 6.80 or more, 7.00 or more, 7.20 or more, 7.40 or more, 7.60 or more, 7.80 or more, 8.00 or more, 8.25 or more, and 8.36 or more, in this order. The upper limit is 21.00 or less, preferably 20.00 or less, and more preferably 19.50 or less, 19.00 or less, 18.50 or less, 18.00 or less, 17.75 or less, 17.50 or less, 17.25 or less, 17.00 or less, 16.75 or less, and 16.54 or less. The mass ratio (B 2 O 3 /Li 2 O) is preferably the upper limit mentioned above from the viewpoint of lowering the glass transition temperature, and is preferably the lower limit mentioned above from the viewpoint of suppressing the increase in the glass transition temperature and maintaining thermal stability.
在陽離子%表示的玻璃組成中,B 3+含量相對於Li +含量的陽離子比(B 3+/Li +)較佳為1.50以上,以2.00以上、2.25以上、2.50以上、2.75以上、3.00以上、3.25以上、3.50以上、3.58以上的順序進一步較佳。關於上限,較佳為9.50以下,以9.00以下、8.80以下、8.60以下、8.40以下、8.20以下、8.00以下、7.80以下、7.60以下、7.40以下、7.20以下、7.10以下的順序進一步較佳。 In the glass composition expressed as cation %, the cation ratio of the B 3+ content to the Li + content (B 3+ /Li + ) is preferably 1.50 or more, more preferably 2.00 or more, 2.25 or more, 2.50 or more, 2.75 or more, 3.00 or more, 3.25 or more, 3.50 or more, and 3.58 or more. The upper limit is preferably 9.50 or less, and more preferably 9.00 or less, 8.80 or less, 8.60 or less, 8.40 or less, 8.20 or less, 8.00 or less, 7.80 or less, 7.60 or less, 7.40 or less, 7.20 or less, and 7.10 or less.
(B 3+/Si 4+) 在陽離子%表示的玻璃組成中,B 3+含量相對於Si 4+含量的陽離子比(B 3+/Si 4+)較佳為1.25以上,以1.50以上、1.75以上、2.00以上、2.25以上、2.50以上、2.75以上、3.00以上、3.10以上、3.20以上、3.30以上、3.40以上、3.50以上的順序進一步較佳。 另外,陽離子比(B 3+/Si 4+)較佳為11.00以下,以10.50以下、10.00以下、9.75以下、9.50以下、9.25以下、9.00以下、8.75以下、8.50以下、8.25以下、8.00以下、7.75以下、7.60以下、7.50以下、7.40以下、7.30以下的順序進一步較佳。 從保持玻璃的熱穩定性的保持及高折射率特性的觀點考慮,陽離子比(B 3+/Si 4 +)較佳為上述範圍。 (B 3+ /Si 4+ ) In the glass composition expressed as cation %, the cation ratio of B 3+ content to Si 4+ content (B 3+ /Si 4+ ) is preferably above 1.25, and is further preferably above 1.50, above 1.75, above 2.00, above 2.25, above 2.50, above 2.75, above 3.00, above 3.10, above 3.20, above 3.30, above 3.40, and above 3.50, in the order of above. In addition, the cation ratio (B 3+ /Si 4+ ) is preferably 11.00 or less, and is more preferably in the order of 10.50 or less, 10.00 or less, 9.75 or less, 9.50 or less, 9.25 or less, 9.00 or less, 8.75 or less, 8.50 or less, 8.25 or less, 8.00 or less, 7.75 or less, 7.60 or less, 7.50 or less, 7.40 or less, and 7.30 or less. From the viewpoint of maintaining the thermal stability of the glass and the high refractive index characteristics, the cation ratio (B 3+ /Si 4 + ) is preferably within the above range.
在質量%表示的玻璃組成中,B 2O 3含量相對於SiO 2含量的質量比(B 2O 3/SiO 2)較佳為0.25%以上,以0.50以上、0.75以上、1.00以上、1.20以上、1.40以上、1.60以上、1.70以上、1.80以上、1.90以上、2.00以上、2.02以上的順序進一步較佳。關於上限,較佳為9.00以下,以8.50以下、8.00以下、7.50以下、7.00以下、6.50以下、6.00以下、5.75以下、5.50以下、5.25以下、5.00以下、4.75以下、4.50以下、4.23以下的順序進一步較佳。 In the glass composition expressed in mass %, the mass ratio of the B 2 O 3 content to the SiO 2 content (B 2 O 3 /SiO 2 ) is preferably 0.25% or more, more preferably 0.50 or more, 0.75 or more, 1.00 or more, 1.20 or more, 1.40 or more, 1.60 or more, 1.70 or more, 1.80 or more, 1.90 or more, 2.00 or more, and 2.02 or more. The upper limit is preferably 9.00 or less, and more preferably 8.50 or less, 8.00 or less, 7.50 or less, 7.00 or less, 6.50 or less, 6.00 or less, 5.75 or less, 5.50 or less, 5.25 or less, 5.00 or less, 4.75 or less, 4.50 or less, and 4.23 or less.
(SiO 2/Li 2O) 在質量%表示的玻璃組成中,SiO 2含量相對於Li 2O含量的質量比(SiO 2/Li 2O)為10.00以下,較佳為9.00以下,以8.50以下、8.00以下、7.50以下、7.00以下、6.75以下、6.50以下、6.25以下、6.00以下、5.75以下、5.50以下、5.25以下、5.18以下的順序進一步較佳。關於下限,可以超過0,較佳為0.40以上,以0.60以上、0.80以上、1.00以上、1.20以上、1.40以上、1.60以上、1.80以上、2.00以上、2.25以上、2.50以上、2.68以上的順序進一步較佳。 關於質量比(SiO 2/Li 2O),從降低玻璃化轉變溫度的觀點考慮,較佳為上述的上限,從抑制玻璃化轉變溫度的上升、保持熱穩定性的觀點考慮,較佳為上述的下限。 (SiO 2 /Li 2 O) In the glass composition expressed in mass %, the mass ratio of the SiO 2 content to the Li 2 O content (SiO 2 /Li 2 O) is 10.00 or less, preferably 9.00 or less, and more preferably 8.50 or less, 8.00 or less, 7.50 or less, 7.00 or less, 6.75 or less, 6.50 or less, 6.25 or less, 6.00 or less, 5.75 or less, 5.50 or less, 5.25 or less, and 5.18 or less, in this order. The lower limit may exceed 0, preferably 0.40 or more, and more preferably 0.60 or more, 0.80 or more, 1.00 or more, 1.20 or more, 1.40 or more, 1.60 or more, 1.80 or more, 2.00 or more, 2.25 or more, 2.50 or more, and 2.68 or more. The mass ratio (SiO 2 /Li 2 O) is preferably the upper limit mentioned above from the viewpoint of lowering the glass transition temperature, and is preferably the lower limit mentioned above from the viewpoint of suppressing the increase in the glass transition temperature and maintaining thermal stability.
在陽離子%表示的玻璃組成中,Si 4+含量相對於Li +含量的陽離子比(Si 4+/Li +)可以為2.40以下,以2.30以下、2.20以下、2.10以下、2.00以下、1.90以下、1.80以下、1.70以下、1.65以下、1.60以下、1.55以下、1.50以下、1.48以下、1.46以下、1.44以下、1.42以下、1.40以下、1.38以下、1.36以下、1.34以下、1.32以下、1.30以下、1.29以下的順序較佳。關於下限,可以超過0,以0.25以上、0.30以上、0.35以上、0.40以上、0.50以上、0.52以上、0.54以上、0.56以上、0.58以上、0.60以上、0.62以上、0.64以上、0.66以上的順序較佳。 In the glass composition expressed as cation %, the cation ratio of Si 4+ content to Li + content (Si 4+ /Li + ) can be below 2.40, and preferably below 2.30, below 2.20, below 2.10, below 2.00, below 1.90, below 1.80, below 1.70, below 1.65, below 1.60, below 1.55, below 1.50, below 1.48, below 1.46, below 1.44, below 1.42, below 1.40, below 1.38, below 1.36, below 1.34, below 1.32, below 1.30, and below 1.29. Regarding the lower limit, it may exceed 0, and is preferably in the order of 0.25 or more, 0.30 or more, 0.35 or more, 0.40 or more, 0.50 or more, 0.52 or more, 0.54 or more, 0.56 or more, 0.58 or more, 0.60 or more, 0.62 or more, 0.64 or more, and 0.66 or more.
(稀土類成分) La 2O 3在質量%表示的玻璃組成中,La 2O 3含量為15.00%以上,較佳為17.00%以上,以20.00%以上、21.00%以上、22.00%以上、23.00%以上、24.00%以上、25.00%以上、26.00%以上、26.50%以上、27.00%以上、27.50%以上、28.00%以上、28.35%以上的順序進一步較佳。 在質量%表示的玻璃組成中,La 2O 3含量為55.00%以下,較佳為50.00%以下,以47.00%以下、45.00%以下、44.00%以下、43.00%以下、42.00%以下、41.00%以下、40.00%以下、39.50%以下、39.00%以下、38.50%以下、38.00%以下、37.50%以下、37.22%以下的順序進一步較佳。 (Rare earth components) La 2 O 3: In the glass composition expressed in mass %, the La 2 O 3 content is 15.00% or more, preferably 17.00% or more, and more preferably 20.00% or more, 21.00% or more, 22.00% or more, 23.00% or more, 24.00% or more, 25.00% or more, 26.00% or more, 26.50% or more, 27.00% or more, 27.50% or more, 28.00% or more, and 28.35% or more. In the glass composition expressed in mass %, the La 2 O 3 content is 55.00% or less, preferably 50.00% or less, and more preferably 47.00% or less, 45.00% or less, 44.00% or less, 43.00% or less, 42.00% or less, 41.00% or less, 40.00% or less, 39.50% or less, 39.00% or less, 38.50% or less, 38.00% or less, 37.50% or less, and 37.22% or less, in this order.
Gd 2O 3在質量%表示的玻璃組成中,Gd 2O 3含量可以為0%、0%以上或超過0%,以0.00%以上、0.20%以上、0.40%以上、0.60%以上、0.80%以上的順序較佳。關於上限,較佳為15.00%以下,以14.75%以下、14.50%以下、14.25%以下、14.00%以下、13.85%以下、13.75%以下、13.50%以下、13.25%以下、13.00%以下、12.75%以下、12.55%以下、12.25%以下、12.03%以下的順序進一步較佳。 In the glass composition expressed in mass %, the Gd 2 O 3 content may be 0%, 0% or more, or more than 0%, preferably in the order of 0.00% or more, 0.20% or more, 0.40% or more, 0.60% or more, and 0.80% or more. The upper limit is preferably 15.00% or less, and more preferably in the order of 14.75% or less, 14.50% or less, 14.25% or less, 14.00% or less, 13.85% or less, 13.75% or less, 13.50% or less, 13.25% or less, 13.00% or less, 12.75% or less, 12.55% or less, 12.25% or less, and 12.03% or less.
Y 2O 3在質量%表示的玻璃組成中,Y 2O 3含量可以為0%、0%以上或超過0%。關於上限,較佳為11.00%以下,以10.50%以下、10.00%以下、9.50%以下、9.00%以下、8.50%以下、8.00%以下、7.50%以下、7.04%以下、6.50%以下、6.00%以下、5.84%以下的順序進一步較佳。 In the glass composition expressed in mass%, the Y2O3 content may be 0%, 0% or more, or more than 0%. The upper limit is preferably 11.00% or less, and more preferably in the order of 10.50% or less , 10.00% or less, 9.50% or less, 9.00% or less, 8.50% or less, 8.00% or less, 7.50% or less, 7.04% or less, 6.50% or less, 6.00% or less, and 5.84% or less.
關於稀土類成分,La、Gd及Y是能夠保持低分散性、並且提高折射率的成分,從保持或提高熱穩定性的觀點考慮,各稀土類氧化物的含量較佳為上述範圍。Y與同為稀土類成分的Gd相比,提高折射率的作用小。另外,稀土類成分的合計含量過量時,顯示出玻璃的熱穩定性降低的傾向。因此,從保持熱穩定性、並且保持高折射率特性的觀點考慮,作為稀土類成分,與Y相比更佳導入La和/或Gd。Regarding rare earth components, La, Gd and Y are components that can maintain low dispersibility and increase the refractive index. From the perspective of maintaining or improving thermal stability, the content of each rare earth oxide is preferably within the above range. Compared with Gd, which is also a rare earth component, Y has a smaller effect on increasing the refractive index. In addition, when the total content of rare earth components is excessive, the thermal stability of the glass tends to decrease. Therefore, from the perspective of maintaining thermal stability and maintaining high refractive index characteristics, La and/or Gd are preferably introduced as rare earth components rather than Y.
(Lu 2O 3/(La 2O 3+Gd 2O 3+Y 2O 3+Lu 2O 3)) 從保持熱穩定性的觀點考慮,在稀土類成分的總量中,Lu的比例越少越佳,更佳不含Lu。從這一點考慮,在質量%表示的玻璃組成中,Lu 2O 3含量相對於La 2O 3、Gd 2O 3、Y 2O 3及Lu 2O 3的合計含量的質量比(Lu 2O 3/(La 2O 3+Gd 2O 3+Y 2O 3+Lu 2O 3))較佳為0.50以下,以0.40以下、0.30以下、0.20以下、0.10以下的順序更佳,進一步較佳不包含Lu 3+(因此,上述質量比為零)。 (Lu 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +Lu 2 O 3 )) From the viewpoint of maintaining thermal stability, the smaller the proportion of Lu in the total amount of the rare earth components, the better, and more preferably no Lu is contained. From this point of view, in the glass composition expressed in mass %, the mass ratio of Lu 2 O 3 content to the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Lu 2 O 3 (Lu 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +Lu 2 O 3 )) is preferably less than 0.50, more preferably less than 0.40, less than 0.30, less than 0.20, and less than 0.10 in this order, and further preferably does not contain Lu 3+ (therefore, the above mass ratio is zero).
(ZnO) 在質量%表示的玻璃組成中,ZnO含量為3.00%以上,較佳為3.50%以上,以4.00%以上、4.50%以上、5.00%以上、5.25%以上、5.50%以上、5.75%以上、6.00%以上、6.25%以上、6.50%以上、6.75%以上、7.00%以上、7.25%以上、7.53%以上、7.75%以上、8.00%以上、8.25%以上、8.50%以上、8.75%以上、9.00%以上、9.10%以上、9.20%以上、9.30%以上的順序進一步較佳。關於上限,為30.00%以下,較佳為27.00%以下,以25.00%以下、23.00%以下、22.00%以下、21.00%以下20.00%以下、19.50%以下、19.00%以下、18.50%以下、17.00%以下、16.75%以下、16.50%以下、16.25%以下、16.00%以下、15.75%以下、15.65%以下的順序進一步較佳。 Zn是抑制折射率的降低、並且降低玻璃化轉變溫度、改善熔融性的成分。另一方面,過量含有時,液相溫度變高,玻璃的熱穩定性降低。從這些觀點考慮,ZnO含量較佳為上述範圍。 (ZnO) In the glass composition expressed in mass%, the ZnO content is 3.00% or more, preferably 3.50% or more, and preferably 4.00% or more, 4.50% or more, 5.00% or more, 5.25% or more, 5.50% or more, 5.75% or more, 6.00% or more, 6.25% or more, 6.50% or more, 6.75% or more, 7.00% or more, 7.25% or more, 7.53% or more, 7.75% or more, 8.00% or more, 8.25% or more, 8.50% or more, 8.75% or more, 9.00% or more, 9.10% or more, 9.20% or more, and 9.30% or more. The upper limit is 30.00% or less, preferably 27.00% or less, and preferably 25.00% or less, 23.00% or less, 22.00% or less, 21.00% or less, 20.00% or less, 19.50% or less, 19.00% or less, 18.50% or less, 17.00% or less, 16.75% or less, 16.50% or less, 16.25% or less, 16.00% or less, 15.75% or less, and 15.65% or less. Zn is a component that suppresses the decrease in refractive index, lowers the glass transition temperature, and improves solubility. On the other hand, when excessively contained, the liquidus temperature becomes higher and the thermal stability of the glass decreases. From these viewpoints, the ZnO content is preferably within the above range.
(Li 2O+ZnO) 從實現低Tg的觀點考慮,在質量%表示的玻璃組成中,Li 2O與ZnO的合計含量(Li 2O+ZnO)為10.20%以上,較佳為10.22%以上、10.30%以上、10.40%以上,以10.60%以上、10.79%以上的順序進一步較佳。關於上限,從玻璃的熱穩定性的觀點考慮,較佳為21.00%以下,以20.00%以下、19.50%以下、19.00%以下、18.50%以下、18.00%以下、17.75%以下、17.50%以下、17.25%以下、17.00%以下、16.79%以下的順序進一步較佳。 (Li 2 O + ZnO) From the viewpoint of achieving a low Tg, in the glass composition expressed in mass %, the total content of Li 2 O and ZnO (Li 2 O + ZnO) is 10.20% or more, preferably 10.22% or more, 10.30% or more, 10.40% or more, and more preferably 10.60% or more, and 10.79% or more. Regarding the upper limit, from the viewpoint of thermal stability of the glass, it is preferably 21.00% or less, and more preferably 20.00% or less, 19.50% or less, 19.00% or less, 18.50% or less, 18.00% or less, 17.75% or less, 17.50% or less, 17.25% or less, 17.00% or less, and 16.79% or less.
(TiO 2) Ti是提高折射率、提高分散的成分。另外,如果過量導入Ti,則在壓製成型時,與成型模具的成型面發生反應,產生使玻璃的表面品質變差的傾向,而且玻璃的著色有時會變強。另外,從抑制後述的脫模膜的劣化的觀點考慮,較佳不含Ti、或者其含量很少。從這些觀點考慮,在質量%表示的玻璃組成中,TiO 2含量為0.60%以下,較佳為0.40%以下,更佳為0.30%以下、0.20%以下、0.10%以下,進一步較佳為0%(即不含有)。 (TiO 2 ) Ti is a component that increases the refractive index and improves dispersion. In addition, if excessive Ti is introduced, it reacts with the molding surface of the molding mold during press molding, tends to deteriorate the surface quality of the glass, and the coloring of the glass sometimes becomes stronger. In addition, from the viewpoint of suppressing the degradation of the release film described later, it is preferred that Ti is not contained or its content is very small. From these viewpoints, in the glass composition expressed in mass %, the TiO 2 content is 0.60% or less, preferably 0.40% or less, more preferably 0.30% or less, 0.20% or less, 0.10% or less, and even more preferably 0% (i.e., not contained).
(Ta 2O 5) Ta是具有保持高折射率低分散性和熱穩定性的作用的成分。因此,在質量%表示的玻璃組成中,Ta 2O 5含量較佳為7.00%以上,以7.50%以上、8.00%以上、8.50%以上、8.75%以上、9.00%以上、9.25%以上、9.50%以上、9.75%以上、10.00%以上、10.25%以上、10.43%以上的順序進一步較佳。關於上限,沒有特別限定,例如可以為19.00%以下,較佳為18.00%以下,以17.50%以下、17.00%以下、16.50%以下、16.00%以下、15.75%以下、15.50%以下、15.25%以下、15.00%以下、14.92%以下的順序進一步較佳。 (Ta 2 O 5 ) Ta is a component that has the function of maintaining high refractive index, low dispersion and thermal stability. Therefore, in the glass composition expressed in mass%, the Ta 2 O 5 content is preferably 7.00% or more, and more preferably in the order of 7.50% or more, 8.00% or more, 8.50% or more, 8.75% or more, 9.00% or more, 9.25% or more, 9.50% or more, 9.75% or more, 10.00% or more, 10.25% or more, and 10.43% or more. There is no particular limitation on the upper limit, and for example, it may be 19.00% or less, preferably 18.00% or less, and more preferably 17.50% or less, 17.00% or less, 16.50% or less, 16.00% or less, 15.75% or less, 15.50% or less, 15.25% or less, 15.00% or less, and 14.92% or less, in this order.
(Nb 2O 5) Nb是發揮提高玻璃的折射率的作用的成分,過量含有時,存在使玻璃的熱穩定性降低的傾向。在質量%表示的玻璃組成中,Nb 2O 5含量可以為0%、0%以上或超過0%,以0%以上、0.10%以上、0.20%以上、0.30%以上、0.40%以上、0.50%以上、0.60%以上的順序較佳。關於上限,較佳為9.00%以下,以8.00%以下、7.50%以下、7.00以%下、6.50%以下、6.00%以下、5.80%以下、5.60%以下、5.40%以下、5.24%以下的順序進一步較佳。 (Nb 2 O 5 ) Nb is a component that plays a role in increasing the refractive index of glass. When contained in excessive amount, there is a tendency to reduce the thermal stability of glass. In the glass composition expressed in mass %, the Nb 2 O 5 content may be 0%, 0% or more, or more than 0%, preferably in the order of 0% or more, 0.10% or more, 0.20% or more, 0.30% or more, 0.40% or more, 0.50% or more, and 0.60% or more. As for the upper limit, it is preferably 9.00% or less, and more preferably in the order of 8.00% or less, 7.50% or less, 7.00% or less, 6.50% or less, 6.00% or less, 5.80% or less, 5.60% or less, 5.40% or less, and 5.24% or less.
(ZrO 2) 在質量%表示的玻璃組成中,ZrO 2含量可以為0%、0%以上或超過0%,以0.00%以上、0.50%以上、1.00%以上、1.20%以上、1.40%以上、1.60%以上、1.80%以上、1.90%以上的順序較佳。關於上限,較佳為10.00%以下,以9.00%以下、8.50%以下、8.00%以下、7.50%以下、7.00%以下、6.80%以下、6.60%以下、6.40%以下、6.20%以下、6.00%以下、5.90%以下的順序進一步較佳。藉由在玻璃中導入Zr,不會使玻璃的折射率降低而可以獲得改善玻璃的熱穩定性的效果,因此較佳導入Zr。 (ZrO 2 ) In the glass composition expressed in mass %, the ZrO 2 content may be 0%, 0% or more, or more than 0%, preferably in the order of 0.00% or more, 0.50% or more, 1.00% or more, 1.20% or more, 1.40% or more, 1.60% or more, 1.80% or more, and 1.90% or more. The upper limit is preferably 10.00% or less, and more preferably in the order of 9.00% or less, 8.50% or less, 8.00% or less, 7.50% or less, 7.00% or less, 6.80% or less, 6.60% or less, 6.40% or less, 6.20% or less, 6.00% or less, and 5.90% or less. By introducing Zr into glass, the thermal stability of the glass can be improved without lowering the refractive index of the glass, so it is preferred to introduce Zr.
(WO 3) 在質量%表示的玻璃組成中,WO 3含量可以為0%、0%以上或超過0%,以0%以上、1.00%以上、2.00%以上、2.50%以上、3.00%以上、3.50%以上、4.00%以上、4.20%以上、4.40%以上、4.60%以上、4.80%以上、4.93%以上的順序較佳。關於上限,較佳為21.00%以下,以20.00%以下、19.00%以下、18.50%以下、18.00%以下、17.80%以下、17.60%以下、17.40%以下、17.20%以下、17.00%以下、16.80%以下、16.66%以下的順序較佳。W是改善玻璃的熱穩定性及熔融性、提高折射率的成分。另一方面,大量包含時,分散變高,而且精密壓製適應性降低,因此,較佳為更少的情況。 (WO 3 ) In the glass composition expressed in mass %, the WO 3 content may be 0%, 0% or more, or more than 0%, preferably in the order of 0% or more, 1.00% or more, 2.00% or more, 2.50% or more, 3.00% or more, 3.50% or more, 4.00% or more, 4.20% or more, 4.40% or more, 4.60% or more, 4.80% or more, and 4.93% or more. The upper limit is preferably 21.00% or less, preferably in the order of 20.00% or less, 19.00% or less, 18.50% or less, 18.00% or less, 17.80% or less, 17.60% or less, 17.40% or less, 17.20% or less, 17.00% or less, 16.80% or less, and 16.66% or less. W is a component that improves the thermal stability and melting property of glass and increases the refractive index. On the other hand, when contained in a large amount, the dispersion becomes high and the suitability for precision pressing decreases, so a smaller amount is preferred.
(Nb 2O 5+TiO 2+WO 3)/(SiO 2+B 2O 3) 在質量%表示的玻璃組成中,Nb 2O 5、TiO 2及WO 3的合計含量相對於SiO 2與B 2O 3的合計含量的質量比(Nb 2O 5+TiO 2+WO 3)/(SiO 2+B 2O 3)較佳為0.40以上,以0.45以上、0.50以上、0.56以上、0.57以上、0.58以上、0.59以上、0.60以上、0.61以上、0.62以上、0.63以上的順序進一步較佳。關於上限,較佳為1.60以下,以1.40以下、1.35以下、1.30以下、1.28以下、1.26以下、1.24以下、1.22以下、1.20以下、1.19以下、1.18以下、1.17以下、1.16以下、1.15以下、1.14以下的順序進一步較佳。 關於質量比(Nb 2O 5+TiO 2+WO 3)/(SiO 2+B 2O 3),從保持玻璃的高折射率特性的觀點考慮,較佳為上述的下限,從保持熱穩定性的觀點考慮,較佳為上述的上限。 (Nb 2 O 5 +TiO 2 +WO 3 )/(SiO 2 +B 2 O 3 ) In the glass composition expressed in mass %, the mass ratio of the total content of Nb 2 O 5 , TiO 2 and WO 3 to the total content of SiO 2 and B 2 O 3 (Nb 2 O 5 +TiO 2 +WO 3 )/(SiO 2 +B 2 O 3 ) is preferably 0.40 or more, and more preferably 0.45 or more, 0.50 or more, 0.56 or more, 0.57 or more, 0.58 or more, 0.59 or more, 0.60 or more, 0.61 or more, 0.62 or more, and 0.63 or more, in this order. The upper limit is preferably 1.60 or less, and is more preferably 1.40 or less, 1.35 or less, 1.30 or less, 1.28 or less, 1.26 or less, 1.24 or less, 1.22 or less, 1.20 or less, 1.19 or less, 1.18 or less, 1.17 or less, 1.16 or less, 1.15 or less, and 1.14 or less. The mass ratio (Nb 2 O 5 +TiO 2 +WO 3 )/(SiO 2 +B 2 O 3 ) is preferably the above lower limit from the viewpoint of maintaining the high refractive index characteristics of the glass, and is preferably the above upper limit from the viewpoint of maintaining thermal stability.
(ZnO/WO 3) 在質量%表示的玻璃組成中,ZnO含量相對於WO 3含量的質量比(ZnO/WO 3)較佳為0.10以上,以0.20以上、0.30以上、0.40以上、0.50以上、0.60以上、0.63以上、0.67以上、0.70以上、0.73以上、0.76以上的順序進一步較佳。關於上限,較佳為5.00以下,以4.80以下、4.60以下、4.40以下、4.20以下、4.00以下、3.80以下、3.60以下、3.40以下、3.20以下、3.00以下、2.80以下、2.60以下、2.46以下的順序進一步較佳。 關於質量比(ZnO/WO 3),從降低玻璃化轉變溫度的觀點及保持低分散性的觀點考慮,較佳為上述的下限,從保持玻璃的高折射率特性的觀點考慮,較佳為上述的上限。 (ZnO/WO 3 ) In the glass composition expressed in mass %, the mass ratio of the ZnO content to the WO 3 content (ZnO/WO 3 ) is preferably 0.10 or more, more preferably 0.20 or more, 0.30 or more, 0.40 or more, 0.50 or more, 0.60 or more, 0.63 or more, 0.67 or more, 0.70 or more, 0.73 or more, and 0.76 or more. The upper limit is preferably 5.00 or less, and more preferably 4.80 or less, 4.60 or less, 4.40 or less, 4.20 or less, 4.00 or less, 3.80 or less, 3.60 or less, 3.40 or less, 3.20 or less, 3.00 or less, 2.80 or less, 2.60 or less, and 2.46 or less. The mass ratio (ZnO/WO 3 ) is preferably within the above lower limit from the viewpoint of lowering the glass transition temperature and maintaining low dispersibility, and is preferably within the above upper limit from the viewpoint of maintaining the high refractive index characteristics of the glass.
(Sb 2O 3) Sb是作為澄清劑而發揮功能的成分。從抑制精密壓製成型時的壓製成型模具的成型面的損傷的觀點及抑制玻璃的著色的觀點考慮,其添加量越少越佳。對於Sb 2O 3含量而言,在質量%表示的玻璃組成中,以外加比例表示的Sb 2O 3含量(將除Sb 2O 3以外的玻璃成分的合計質量設為100質量%時的Sb 2O 3含量)計以0%以上、0.01%以上、0.02%以上的順序較佳,另外,以1.00%以下、0.90以下、0.80%以下、0.70%以下、0.60%以下、0.50%以下的順序較佳。 (Sb 2 O 3 ) Sb is a component that functions as a clarifier. From the viewpoint of suppressing damage to the molding surface of the press-molding mold during precision press molding and from the viewpoint of suppressing coloring of the glass, the smaller the amount of Sb 2 O 3 added, the better. Regarding the Sb 2 O 3 content, in the glass composition expressed in mass %, the Sb 2 O 3 content expressed as an added ratio (the Sb 2 O 3 content when the total mass of the glass components other than Sb 2 O 3 is 100 mass %) is preferably in the order of 0% or more, 0.01% or more, and 0.02% or more. In addition, it is preferably in the order of 1.00% or less, 0.90% or less, 0.80% or less, 0.70% or less, 0.60% or less, and 0.50% or less.
(陰離子成分) 上述光學玻璃可以是氧化物玻璃,可含有O 2-作為陰離子成分。在本發明及本說明書中,陰離子%表示的玻璃組成中的陰離子成分的含量用陰離子%表示。這裡,「陰離子%」是指,根據「(所關注的陰離子的個數/玻璃成分的陰離子的總數)×100」計算出的值,是所關注的陰離子量相對於陰離子成分的總量的莫耳百分率。在陰離子%表示的玻璃組成中,O 2-含量較佳為95.0陰離子%以上,以97.0陰離子%以上、98.0陰離子%以上、99.0陰離子%以上、99.5陰離子%以上、100陰離子%的順序進一步較佳。從玻璃熔融時容易揮發的等觀點考慮,F -含量較佳為0.1陰離子%以下,更佳為0陰離子%(即不包含F)。對於玻璃組成的定量分析的結果,按照氧化物基準以質量%表示的組成例如可以藉由上面關於換算成陽離子%表示的玻璃組成所記載的方法而換算成陰離子%表示的玻璃組成。 (Anion component) The above optical glass may be an oxide glass, and may contain O2- as an anion component. In the present invention and this specification, the content of anion components in a glass composition expressed by anion % is expressed by anion %. Here, "anion %" refers to a value calculated according to "(the number of anions of concern/the total number of anions in the glass component) × 100", which is the molar percentage of the amount of anions of concern relative to the total amount of anion components. In the glass composition expressed in anion %, the O 2- content is preferably 95.0 anion % or more, and is more preferably 97.0 anion % or more, 98.0 anion % or more, 99.0 anion % or more, 99.5 anion % or more, and 100 anion % or more. From the viewpoint of easy volatility when the glass is melted, the F- content is preferably 0.1 anion % or less, and more preferably 0 anion % (i.e., F is not included). The results of quantitative analysis of the glass composition, the composition expressed in mass % according to the oxide basis, can be converted into the glass composition expressed in anion % by, for example, the method described above for converting to the glass composition expressed in cation %.
<玻璃物性> (玻璃化轉變溫度Tg) 上述光學玻璃藉由具有上述玻璃組成從而能夠具有低的玻璃化轉變溫度Tg。例如,從在精密壓製成型中抑制脫模膜的劣化的觀點、抑制壓製成型模具的消耗的觀點等考慮,低Tg玻璃是較佳的。上述光學玻璃的Tg低於610℃,以608℃以下、606℃以下、604℃以下、602℃以下、600℃以下、598℃以下、596℃以下、594℃以下、592℃以下、590℃以下的順序較佳。Tg的下限沒有特別限定,例如可以為530℃以上,以540℃以上、550℃以上、555℃以上、560℃以上、565℃以上、570℃以上的順序較佳。玻璃化轉變溫度Tg可藉由後述的方法求出。 <Glass properties> (Glass transition temperature Tg) The optical glass can have a low glass transition temperature Tg by having the glass composition. For example, from the perspective of suppressing the degradation of the mold release film in precision press molding, suppressing the consumption of the press molding mold, etc., low Tg glass is preferred. The Tg of the optical glass is lower than 610°C, preferably in the order of 608°C or lower, 606°C or lower, 604°C or lower, 602°C or lower, 600°C or lower, 598°C or lower, 596°C or lower, 594°C or lower, 592°C or lower, and 590°C or lower. The lower limit of Tg is not particularly limited, for example, it can be 530°C or higher, preferably in the order of 540°C or higher, 550°C or higher, 555°C or higher, 560°C or higher, 565°C or higher, and 570°C or higher. The glass transition temperature Tg can be obtained by the method described below.
(式(1)) 在上述光學玻璃中,折射率nd和玻璃化轉變溫度Tg滿足下述式(1)。 式(1):Tg<2500*nd-4050 藉由滿足式(1),上述光學玻璃能夠兼顧高折射率特性和壓製成型性。一般而言,存在折射率越高、Tg越高的傾向。與此相對,式(1)表示雖然折射率高,但是Tg低。 上述光學玻璃較佳滿足下述式(1-1),更佳滿足下述式(1-2),進一步較佳滿足下述式(1-3),更進一步較佳滿足下述式(1-4),再進一步較佳滿足下述式(1-5)。 式(1-1):Tg<2500*nd-4060 式(1-2):Tg<2500*nd-4070 式(1-3):Tg<2500*nd-4080 式(1-4):Tg<2500*nd-4090 式(1-5):Tg<2500*nd-4100 (Formula (1)) In the above optical glass, the refractive index nd and the glass transition temperature Tg satisfy the following formula (1). Formula (1): Tg<2500*nd-4050 By satisfying formula (1), the above optical glass can take into account both high refractive index characteristics and press moldability. Generally speaking, there is a tendency that the higher the refractive index, the higher the Tg. In contrast, formula (1) indicates that although the refractive index is high, the Tg is low. The above optical glass preferably satisfies the following formula (1-1), more preferably satisfies the following formula (1-2), further preferably satisfies the following formula (1-3), further preferably satisfies the following formula (1-4), and further preferably satisfies the following formula (1-5). Formula (1-1): Tg<2500*nd-4060 Formula (1-2): Tg<2500*nd-4070 Formula (1-3): Tg<2500*nd-4080 Formula (1-4): Tg<2500*nd-4090 Formula (1-5): Tg<2500*nd-4100
(式(2)) 在上述光學玻璃中,折射率nd和阿貝數νd滿足下述式(2)。 式(2):νd>-88.355*nd+201 滿足上述式(2)的光學玻璃在給定的折射率下顯示出低分散性,作為光學元件用材料是有用的。 (Formula (2)) In the above optical glass, the refractive index nd and the Abbe number νd satisfy the following formula (2). Formula (2): νd>-88.355*nd+201 The optical glass satisfying the above formula (2) shows low dispersion at a given refractive index and is useful as a material for optical elements.
(折射率nd) 只要滿足上述式(1)及上述式(2),則上述光學玻璃的折射率nd就沒有特別限定。高折射率玻璃作為光學元件用材料是有用的,因此,上述光學玻璃的折射率nd較佳為1.8600以上,以1.8620以上、1.8640以上、1.8660以上、1.8680以上、1.8700以上、1.8720以上、1.8740以上、1.8760以上的順序進一步較佳。關於上限,較佳為1.9000以下,以1.8980以下、1.8960以下、1.8940以下、1.8920以下、1.8900以下、1.8880以下、1.8860以下的順序進一步較佳。 (Refractive index nd) As long as the above formula (1) and the above formula (2) are satisfied, the refractive index nd of the above optical glass is not particularly limited. High refractive index glass is useful as a material for optical elements, and therefore, the refractive index nd of the above optical glass is preferably 1.8600 or more, and more preferably in the order of 1.8620 or more, 1.8640 or more, 1.8660 or more, 1.8680 or more, 1.8700 or more, 1.8720 or more, 1.8740 or more, and 1.8760 or more. As for the upper limit, it is preferably 1.9000 or less, and more preferably in the order of 1.8980 or less, 1.8960 or less, 1.8940 or less, 1.8920 or less, 1.8900 or less, 1.8880 or less, and 1.8860 or less.
(阿貝數νd) 只要滿足上述式(2),則上述光學玻璃的阿貝數νd就沒有特別限定。顯示出低分散性的玻璃作為光學元件用材料是有用的,因此,上述光學玻璃的阿貝數νd較佳為34.0以上,以34.20以上、34.40以上、34.60以上、34.80以上、35.00以上、35.10以上、35.20以上、35.30以上、35.40以上、35.50以上、35.60以上、35.70以上、35.80以上、35.90以上、36.00以上、36.10以上、36.20以上的順序進一步較佳。關於上限,較佳為40.0以下,以39.50以下、39.00以下、38.80以下、38.60以下、38.40以下、38.20以下、38.00以下、37.90以下、37.80以下、37.76以下的順序進一步較佳。 在考慮將玻璃作為光學元件用材料的情況下,提高玻璃的折射率相當於擴大玻璃所具有的自由度。從擴大上述自由度的觀點考慮,提高折射率是較佳的。另一方面,如果保持分散並提高折射率,則會產生玻璃穩定性降低的傾向。從這些觀點考慮,阿貝數νd較佳為上述的範圍。 (Abbe number νd) As long as the above formula (2) is satisfied, the Abbe number νd of the above optical glass is not particularly limited. Glass showing low dispersion is useful as a material for optical elements, and therefore, the Abbe number νd of the above optical glass is preferably 34.0 or more, and is further preferably in the order of 34.20 or more, 34.40 or more, 34.60 or more, 34.80 or more, 35.00 or more, 35.10 or more, 35.20 or more, 35.30 or more, 35.40 or more, 35.50 or more, 35.60 or more, 35.70 or more, 35.80 or more, 35.90 or more, 36.00 or more, 36.10 or more, and 36.20 or more. The upper limit is preferably 40.0 or less, and preferably 39.50 or less, 39.00 or less, 38.80 or less, 38.60 or less, 38.40 or less, 38.20 or less, 38.00 or less, 37.90 or less, 37.80 or less, and 37.76 or less. Considering that glass is used as a material for optical elements, increasing the refractive index of glass is equivalent to expanding the degree of freedom possessed by glass. From the perspective of expanding the above degree of freedom, it is better to increase the refractive index. On the other hand, if the dispersion is maintained and the refractive index is increased, the stability of the glass tends to decrease. From these perspectives, the Abbe number νd is preferably within the above range.
(液相溫度LT) 如上面所記載,上述光學玻璃不包含Ti,或者包含少量的Ti。不包含Ti、或者包含少量的Ti、並且具有實現上面記載的期望的Tg及光學常數的玻璃組成的上述光學玻璃具有1090℃以上的液相溫度LT。液相溫度LT也可以為1100℃以上、1110℃以上或1120℃以上。關於上限,從保持成型時的黏性的觀點考慮,較佳為1230℃以下,以1220℃以下、1210℃以下、1200℃以下、1190℃以下、1180℃以下的順序進一步較佳。 (Liquid phase temperature LT) As described above, the optical glass does not contain Ti or contains a small amount of Ti. The optical glass that does not contain Ti or contains a small amount of Ti and has a glass composition that realizes the desired Tg and optical constants described above has a liquid phase temperature LT of 1090°C or above. The liquid phase temperature LT may also be above 1100°C, above 1110°C, or above 1120°C. Regarding the upper limit, from the perspective of maintaining the viscosity during molding, it is preferably below 1230°C, and is further preferably below 1220°C, below 1210°C, below 1200°C, below 1190°C, and below 1180°C in this order.
在本發明及本說明書中,液相溫度LT藉由以下的方法求出。 將玻璃5~8cc放入鉑製坩堝中,在爐內氣氛溫度T的爐內加熱2小時,處於熔融狀態後,取出至爐外,在室溫下放置,冷卻至室溫。將室溫設為20℃~30℃範圍的溫度。藉由光學顯微鏡觀察(倍率100倍)判斷有無冷卻的玻璃內的結晶析出。 對於不同的T(10℃間隔),分別藉由上述方法判定有無結晶析出。將未觀察到結晶析出的T的最低溫度作為液相溫度。 In the present invention and this specification, the liquidus temperature LT is obtained by the following method. 5~8cc of glass is placed in a platinum crucible, heated in a furnace with an atmosphere temperature T for 2 hours, and after being in a molten state, taken out of the furnace, placed at room temperature, and cooled to room temperature. The room temperature is set to a temperature in the range of 20℃~30℃. The presence or absence of crystal precipitation in the cooled glass is determined by observation under an optical microscope (magnification 100 times). For different T (10℃ intervals), the presence or absence of crystal precipitation is determined by the above method. The lowest temperature T at which no crystal precipitation is observed is taken as the liquidus temperature.
(比重) 從光學元件的輕質化的觀點考慮,光學玻璃的比重低是較佳的。上述光學玻璃的比重例如較佳為5.75g/cc以下,以5.70g/cc以下、5.65g/cc以下、5.58g/cc以下的順序進一步較佳。另外,上述光學玻璃的比重例如可以為5.10g/cc以上,比重越低越佳,因此,下限沒有特別限定。在本發明及本說明書中,將比重設為藉由阿基米德法測得的值。 (Specific gravity) From the perspective of reducing the weight of optical elements, it is better for optical glass to have a low specific gravity. The specific gravity of the optical glass is preferably 5.75 g/cc or less, and is more preferably 5.70 g/cc or less, 5.65 g/cc or less, and 5.58 g/cc or less in this order. In addition, the specific gravity of the optical glass can be 5.10 g/cc or more, and the lower the specific gravity, the better, so the lower limit is not particularly limited. In the present invention and this specification, the specific gravity is set to the value measured by the Archimedean method.
(著色度λ 5、λ 70、λ 80) 對於玻璃的透光性、詳細而言是短波長側的光吸收端的長波長化得到抑制的情況,可以根據著色度λ 5、λ 70及λ 80中的一者以上來進行評價。著色度λ 5是指,從紫外區至可見區、厚度10mm的玻璃的分光透射率(包括表面反射損失)達到5%的波長。λ 70表示藉由針對λ 5記載的方法測得的分光透射率達到70%的波長。λ 80表示藉由針對λ 5記載的方法測得的分光透射率達到80%的波長。後述的表中所示的λ 5、λ 70及λ 80是在250~700nm的波長範圍測得的值。本發明及本說明書中的玻璃的分光透射率T(%)可以如下地表示:對於具有經光學拋光後的兩個相互平行的平面的玻璃試樣,將垂直入射至這樣的平面中的一面的光的強度設為I in、並且將在玻璃試樣中透過後從另一面射出的光的強度設為I out時,以T(%)=I out/I in×100表示。 根據著色度λ 5、λ 70及λ 80,可以定量地評價分光透射率的短波長側的吸收端。在為了製作接合透鏡而藉由紫外線固化型黏接劑將透鏡彼此接合時等,可進行下述操作:透過光學元件對黏接劑照射紫外線,使黏接劑固化。從高效地進行紫外線固化型黏接劑的固化的觀點考慮,較佳分光透射率的短波長側的吸收端在短的波長範圍。作為定量地評價該短波長側的吸收端的指標,可以使用著色度λ 5、λ 70及λ 80中的一者以上。 上述光學玻璃較佳可以顯示出380nm以下的λ 5。λ 5以370nm以下、360nm以下、350nm以下的順序進一步較佳。λ 5越為短波長越佳,下限沒有特別限定。 上述光學玻璃較佳可以顯示出430nm以下的λ 70。λ 70以420nm以下、410nm以下、400nm以下、395nm以下的順序進一步較佳。λ 70越為短波長越佳,下限沒有特別限定。 上述光學玻璃較佳可以顯示出510nm以下的λ 80。λ 80以500nm以下、490nm以下、480nm以下、470nm以下的順序進一步較佳。λ 80越為短波長越佳,下限沒有特別限定。 (Coloring λ 5 , λ 70 , λ 80 ) The light transmittance of the glass, specifically, whether the light absorption end on the short wavelength side is suppressed from being longer wavelength, can be evaluated based on one or more of the coloring λ 5 , λ 70 and λ 80. Coloring λ 5 refers to the wavelength at which the spectral transmittance (including surface reflection loss) of a glass with a thickness of 10 mm from the ultraviolet region to the visible region reaches 5%. λ 70 indicates the wavelength at which the spectral transmittance measured by the method described for λ 5 reaches 70%. λ 80 indicates the wavelength at which the spectral transmittance measured by the method described for λ 5 reaches 80%. λ 5 , λ 70 and λ 80 shown in the table below are values measured in the wavelength range of 250~700nm. The spectral transmittance T(%) of the glass in the present invention and the specification can be expressed as follows: for a glass sample having two parallel planes after optical polishing, the intensity of light perpendicularly incident on one of the planes is set as I in and the intensity of light emitted from the other plane after passing through the glass sample is set as I out , and it is expressed as T(%) = I out / I in × 100. The absorption edge on the short wavelength side of the spectral transmittance can be quantitatively evaluated based on the chromaticity λ 5 , λ 70 and λ 80. When lenses are bonded to each other by a UV curing adhesive in order to produce a bonded lens, the following operation can be performed: UV rays are irradiated to the adhesive through an optical element to cure the adhesive. From the perspective of efficiently curing the UV-curing adhesive, the absorption end on the short-wavelength side of the spectral transmittance is preferably in a short wavelength range. As an indicator for quantitatively evaluating the absorption end on the short-wavelength side, one or more of the coloring indexes λ 5 , λ 70 , and λ 80 can be used. The above optical glass can preferably show a λ 5 below 380nm. λ 5 is further preferably in the order of below 370nm, below 360nm, and below 350nm. The shorter the wavelength of λ 5 , the better, and the lower limit is not particularly limited. The above optical glass can preferably show a λ 70 below 430nm. λ 70 is further preferably in the order of below 420nm, below 410nm, below 400nm, and below 395nm. The shorter the wavelength of λ 70 , the better. The lower limit is not particularly limited. The optical glass can preferably show a λ 80 of 510nm or less. λ 80 is further preferably below 500nm, below 490nm, below 480nm, and below 470nm in the order of 500nm or less, 490nm or less, 480nm or less, and 470nm or less. The shorter the wavelength of λ 80 , the better. The lower limit is not particularly limited.
<玻璃的製造方法> 上述光學玻璃可以如下所述地得到:以得到目標的玻璃組成的方式稱量、調配作為原料的氧化物、碳酸鹽、硫酸鹽、硝酸鹽、氫氧化物等,將它們充分混合而製成混合批料,在熔融容器內進行加熱、熔融,並進行脫泡及攪拌,製作均質且不含泡的熔融玻璃,將其成型而得到光學玻璃。具體而言,可利用已知的熔融法來製作。 <Glass manufacturing method> The optical glass can be obtained as follows: oxides, carbonates, sulfates, nitrates, hydroxides, etc. as raw materials are weighed and blended in a manner to obtain the target glass composition, and they are fully mixed to prepare a mixed batch, which is heated and melted in a melting container, and defoamed and stirred to prepare a homogeneous and bubble-free molten glass, which is molded to obtain an optical glass. Specifically, it can be produced using a known melting method.
[壓製成型用玻璃原材料及其製造方法、及玻璃成型體的製造方法] 根據本發明的實施方式,可以提供由上述光學玻璃製成的壓製成型用玻璃原材料、由上述光學玻璃製成的玻璃成型體、及它們的製造方法。 壓製成型用玻璃原材料是指要進行加熱而供於壓製成型的玻璃塊。 作為壓製成型用玻璃原材料的例子,可舉出用於進行精密壓製成型用預製件、光學元件坯料的壓製成型的玻璃原材料(壓製成型用玻璃滴料)等具有與壓製成型品的質量相當的質量的玻璃塊。 壓製成型用玻璃原材料可以經過對玻璃成型體進行加工的步驟來製作。玻璃成型體可以如上所述地對玻璃原料進行加熱、熔融、並對所得到的熔融玻璃進行成型而製作。作為玻璃成型體的加工法,可示例出切斷、磨削、拋光等。 [Glass raw material for press molding, its manufacturing method, and manufacturing method of glass molded body] According to the implementation mode of the present invention, a glass raw material for press molding made of the above optical glass, a glass molded body made of the above optical glass, and their manufacturing methods can be provided. The glass raw material for press molding refers to a glass block to be heated and provided for press molding. As an example of the glass raw material for press molding, there can be cited a glass block having a mass equivalent to that of a press-molded product, such as a glass raw material (glass gob for press molding) used for press molding of a precision press molding preform or an optical element blank. The glass raw material for press molding can be manufactured by a step of processing a glass molded body. The glass molded body can be manufactured by heating and melting the glass raw material as described above, and molding the obtained molten glass. Examples of processing methods for glass molded bodies include cutting, grinding, polishing, etc.
[光學元件坯料及其製造方法] 根據本發明的一個方式,可以提供由上述光學玻璃製成的光學元件坯料。光學元件坯料是具有與所欲製造的光學元件的形狀近似的形狀的玻璃成型體。光學元件坯料可以藉由將玻璃成型為在所欲製造的光學元件的形狀上加上會藉由加工除去的加工餘量後的形狀的方法等來製作。例如,可以藉由對壓製成型用玻璃原材料進行加熱、軟化而進行壓製成型的方法(再熱壓製法);藉由已知的方法將熔融玻璃塊供給至壓製成型模具而進行壓製成型的方法(直壓法)等來製作光學元件坯料。 [Optical element blank and its manufacturing method] According to one embodiment of the present invention, an optical element blank made of the above optical glass can be provided. The optical element blank is a glass molded body having a shape similar to the shape of the optical element to be manufactured. The optical element blank can be manufactured by a method of molding glass into a shape after adding a processing surplus that will be removed by processing to the shape of the optical element to be manufactured. For example, the optical element blank can be manufactured by a method of heating and softening the glass raw material for press molding to perform press molding (reheat pressing method); a method of supplying a molten glass block to a press molding mold by a known method to perform press molding (direct pressing method), etc.
[光學元件及其製造方法] 根據本發明的一個方式,可以提供由上述光學玻璃製成的光學元件。作為光學元件的種類,可示例出球面透鏡、非球面透鏡等透鏡、棱鏡、繞射光柵等。作為透鏡的形狀,可示例出雙凸透鏡、平凸透鏡、雙凹透鏡、平凹透鏡、凸彎月透鏡、凹彎月透鏡等各種形狀。 [Optical element and its manufacturing method] According to one embodiment of the present invention, an optical element made of the above optical glass can be provided. As the type of optical element, lenses such as spherical lenses and aspherical lenses, prisms, diffraction gratings, etc. can be exemplified. As the shape of the lens, various shapes such as biconvex lenses, plano-convex lenses, biconcave lenses, plano-concave lenses, convex meniscus lenses, and concave meniscus lenses can be exemplified.
作為光學元件的製造方法的一個方式,可舉出將精密壓製成型用預製件加熱、精密壓製成型的光學元件的製造方法。精密壓製成型可使用已知的壓製成型模具,應用已知的成型方法。藉由精密壓製成型的光學元件的製造方法適合於非球面透鏡、微透鏡、繞射光栅等的製造。As one method of manufacturing an optical element, there is a method of manufacturing an optical element by heating a preform for precision press molding and then performing precision press molding. Precision press molding can use a known press molding mold and apply a known molding method. The method of manufacturing an optical element by precision press molding is suitable for manufacturing aspherical lenses, micro lenses, diffraction gratings, etc.
在精密壓製成型用預製件的表面,為了防止在精密壓製成型時玻璃與壓製成型模具成型面的熔黏,並且使沿著成型面的玻璃延展變得良好,較佳包覆脫模膜。這樣的脫模膜是已知的。上述光學玻璃是具有以上記載的範圍的玻璃化轉變溫度的低Tg玻璃,並且其不含Ti、或者少量包含Ti。由這樣的玻璃製成的精密壓製成型用預製件從抑制脫模膜的劣化的觀點考慮是較佳的。作為脫模膜的一例,可舉出含碳膜。含碳膜例如可以是以碳作為主成分的膜(用原子%表示膜中的元素含量時,碳的含量多於其它元素的含量)。作為含碳膜的成膜法,可以利用使用了碳原料的真空蒸鍍法、濺射法、離子鍍法等已知的方法、使用了烴等材料氣體的熱分解等已知的方法。In order to prevent the glass from fusing with the molding surface of the press-molding mold during precision press-molding and to improve the glass extension along the molding surface, it is preferred to coat the surface of the precision press-molding preform with a release film. Such a release film is known. The above-mentioned optical glass is a low-Tg glass having a glass transition temperature in the range described above, and it does not contain Ti or contains a small amount of Ti. The precision press-molding preform made of such glass is preferred from the viewpoint of suppressing the degradation of the release film. As an example of a release film, a carbon-containing film can be cited. The carbon-containing film can be, for example, a film having carbon as the main component (when the element content in the film is expressed in atomic %, the carbon content is greater than the content of other elements). As a method for forming the carbon-containing film, known methods such as vacuum evaporation, sputtering, and ion plating using a carbon raw material, and known methods such as thermal decomposition using a material gas such as hydrocarbon can be used.
第1圖示出精密壓製成型裝置的剖面示意圖。精密壓製成型例如可以如下所述地進行。 將精密壓製成型用預製件(以下,簡單記載為「預製件」)4設置於構成壓製成型模具的下模2及上模1之間,然後,使石英管11內成為氮氣氛圍,對加熱器(未圖示)通電而將石英管11內進行加熱。將壓製成型模具內部的溫度設定為使待成型的玻璃顯示出例如10 6~10 10dPa·s的黏度的溫度,在保持該溫度的同時,使推桿13下降而推壓上模1,對設置於成型模具內的預製件進行加壓。加壓後,將加壓的壓力解除,將壓製成型後的玻璃成型品在保持與下模2及上模1接觸的狀態下緩慢冷卻至上述玻璃的黏度例如達到10 12dPa·s以上的溫度,接著,快速冷卻至室溫,將玻璃成型品從成型模具中取出。由此,可以得到光學元件。需要說明的是,在第1圖中,保持構件10保持下模2和殼模3,支撐棒9支撐上模1、下模2、殼模3、保持構件10,並且受到基於推桿13的加壓的壓力。在下模2的內部插入熱電偶14而對壓製成型模具內部的溫度進行了監控。 FIG1 is a schematic cross-sectional view of a precision press molding apparatus. Precision press molding can be performed, for example, as described below. A preform for precision press molding (hereinafter, simply referred to as "preform") 4 is placed between a lower mold 2 and an upper mold 1 constituting a press molding mold, and then a nitrogen atmosphere is formed in the quartz tube 11, and a heater (not shown) is powered to heat the inside of the quartz tube 11. The temperature inside the press molding mold is set to a temperature at which the glass to be molded exhibits a viscosity of, for example, 10 6 to 10 10 dPa·s, and while maintaining this temperature, the push rod 13 is lowered to push the upper mold 1, thereby pressurizing the preform placed in the molding mold. After the pressurization, the pressurization pressure is released, and the glass molded product after the press molding is slowly cooled while maintaining contact with the lower mold 2 and the upper mold 1 to a temperature at which the viscosity of the glass reaches, for example, 10 12 dPa·s or more, and then quickly cooled to room temperature, and the glass molded product is taken out of the molding mold. In this way, an optical element can be obtained. It should be noted that in Figure 1, the holding member 10 holds the lower mold 2 and the shell mold 3, and the support rod 9 supports the upper mold 1, the lower mold 2, the shell mold 3, and the holding member 10, and is subjected to the pressure of the pressurization based on the push rod 13. A thermocouple 14 is inserted into the interior of the lower mold 2 to monitor the temperature inside the press molding mold.
作為光學元件的製造方法的另一個方式,可舉出對光學元件坯料進行機械加工而製作光學元件的光學元件的製造方法。作為機械加工,可示例出切斷、切削、粗磨削、精磨削、拋光等。這樣的製造方法適於球面透鏡、棱鏡等的製造。 實施例 As another method of manufacturing an optical element, a method of manufacturing an optical element by machining an optical element blank can be cited. Examples of machining include cutting, cutting, rough grinding, fine grinding, polishing, etc. Such a manufacturing method is suitable for manufacturing spherical lenses, prisms, etc. Implementation Example
以下,結合實施例更詳細地說明本發明。但本發明並不限定於實施例所示的方式。The present invention is described in more detail below with reference to the embodiments. However, the present invention is not limited to the embodiments.
[實施例No.1~No.197] 以達到下表所示的玻璃組成的方式,分別使用相應的磷酸鹽、氟化物、硝酸鹽、硫酸鹽、碳酸鹽、氫氧化物、氧化物、硼酸等作為用於導入各成分的原料,稱量原料,並充分混合,製成了調配原料。以下的表中,「cat%」表示「陽離子%」,「wt%」表示「質量%」,「mol%」表示「莫耳%」,Sb 2O 3含量用外加比例表示。另外,例如「B 3+/Si 4+(cat%)」表示陽離子%表示的玻璃組成中B 3+含量相對於Si 4+含量的陽離子比,「B 2O 3/SiO 2(wt%)」表示質量%表示的玻璃組成中B 2O 3含量相對於SiO 2含量的質量比。以上的方面在以下的表中的各種陽離子比的記載及各種質量比的記載中也同樣。 將該調配原料放入鉑製坩堝,在設定為1250~1350℃的爐內進行加熱,熔融120分鐘。對熔融玻璃進行攪拌,均質化後,將熔融玻璃注入經預熱的鑄模,自然冷卻至玻璃化轉變溫度附近後立即放入退火爐,在玻璃化轉變溫度左右的溫度下保持約30分鐘後,以緩慢冷卻速度-30℃/小時緩慢冷卻4小時,然後在爐內自然冷卻至室溫,由此得到了以下的表所示的實施例No.1~No.197的各光學玻璃。關於以下的表中所示的各光學玻璃的陰離子成分,O 2-含量為100陰離子%。 [Example No. 1 to No. 197] In order to achieve the glass composition shown in the table below, corresponding phosphates, fluorides, nitrates, sulfates, carbonates, hydroxides, oxides, boric acid, etc. are used as raw materials for introducing each component, and the raw materials are weighed and fully mixed to prepare the blended raw materials. In the following table, "cat%" means "cation %", "wt%" means "mass %", "mol%" means "molar %", and the Sb 2 O 3 content is expressed as an added ratio. In addition, for example, "B 3+ /Si 4+ (cat%)" means the cation ratio of the B 3+ content to the Si 4+ content in the glass composition expressed in cation % and "B 2 O 3 /SiO 2 (wt%)" means the mass ratio of the B 2 O 3 content to the SiO 2 content in the glass composition expressed in mass %. The above aspects are also the same in the description of various cation ratios and various mass ratios in the following table. The prepared raw materials are placed in a platinum crucible, heated in a furnace set at 1250~1350℃, and melted for 120 minutes. The molten glass is stirred and homogenized, and then poured into a preheated mold, naturally cooled to near the glass transition temperature, and immediately placed in an annealing furnace. After being kept at a temperature around the glass transition temperature for about 30 minutes, it is slowly cooled at a slow cooling rate of -30℃/hour for 4 hours, and then naturally cooled in the furnace to room temperature, thereby obtaining the optical glasses of Examples No. 1 to No. 197 shown in the following table. Regarding the anion composition of each optical glass shown in the following table, the O 2- content is 100 anion %.
<物性評價> 藉由下述方法測定了以下的表中所示的各光學玻璃的各種物性。 <Physical property evaluation> The various physical properties of each optical glass shown in the following table were measured by the following method.
(1) 折射率nd阿貝數νd 藉由日本光學玻璃工業會標準的折射率測定法對各光學玻璃測定了折射率nd及阿貝數νd。 對於各光學玻璃,在以下的表中示出式(1)的右邊的計算值及式(2)的右邊的計算值,在滿足各式的情況下,在「判定」一欄中表示為「○」。 (1) Refractive index nd and Abbe number νd The refractive index nd and Abbe number νd of each optical glass were measured by the refractive index measurement method of the Japan Optical Glass Industry Association standard. For each optical glass, the calculated value on the right side of formula (1) and the calculated value on the right side of formula (2) are shown in the following table. If each formula is satisfied, it is indicated as "○" in the "Judgment" column.
(2) 玻璃化轉變溫度Tg 將玻璃在研缽等中充分粉碎後的材料作為試樣,使用鉑製的池(cell)作為試樣容器,藉由NETZSCH JAPAN公司製造的差示掃描量熱分析裝置(DSC3300SA),將升溫速度設為10℃/分,測定了玻璃化轉變溫度Tg。 (2) Glass transition temperature Tg Glass was fully ground in a mortar or the like as a sample, and a platinum cell was used as a sample container. The glass transition temperature Tg was measured by a differential scanning calorimeter (DSC3300SA) manufactured by NETZSCH JAPAN Co., Ltd. at a heating rate of 10°C/min.
(3) 比重 藉由阿基米德法測定了比重。 (3) Specific gravity The specific gravity was measured by the Archimedean method.
(4) 液相溫度LT 藉由以上記載的方法測定了液相溫度LT。 (4) Liquidus temperature LT The liquidus temperature LT was measured by the method described above.
(5) 著色度λ 5、λ 70、λ 80使用具有相互對置的兩個經過了光學拋光的平面的厚度10±0.1mm的玻璃試樣,利用分光光度計測定了分光透射率T(%)。將T達到5%的波長(nm)設為λ 5,將T達到70%的波長(nm)設為λ 70,將T達到80%的波長(nm)設為λ 80。 (5) Coloring λ 5 , λ 70 , λ 80 Using a glass sample with a thickness of 10±0.1 mm and two optically polished surfaces facing each other, the spectral transmittance T (%) was measured using a spectrophotometer. The wavelength (nm) at which T reached 5% was set as λ 5 , the wavelength (nm) at which T reached 70% was set as λ 70 , and the wavelength (nm) at which T reached 80% was set as λ 80 .
將以上的結果示於以下的表中。The above results are shown in the following table.
[精密壓製成型用預製件的製作] 對於上述實施例中的各個實施例,以達到上述表中所示的玻璃組成的方式分別使用相應的硝酸鹽、硫酸鹽、碳酸鹽、氫氧化物、氧化物、硼酸等作為用於導入各成分的原料,稱量原料,並充分混合,製成了調配原料。 作為比較例1,以成為專利文獻1(日本特開2008-201661號公報)的表1中示出的實施例10的玻璃組成的方式,分別使用相應的硝酸鹽、硫酸鹽、碳酸鹽、氫氧化物、氧化物、硼酸等作為用於導入各成分的原料,稱量原料,並充分混合,製成了調配原料。 作為比較例2,以成為專利文獻1(日本特開2008-201661號公報)的表1中示出的實施例34的玻璃組成的方式,分別使用相應的硝酸鹽、硫酸鹽、碳酸鹽、氫氧化物、氧化物、硼酸等作為用於導入各成分的原料,稱量原料,並充分混合,製成了調配原料。 對預製件的一個製作例(製作例1)進行說明。將調配原料放入鉑製坩堝,進行了加熱、熔融。使經過了澄清、均質化後的熔融玻璃在不發生玻璃失透的情況下從溫度調整為能夠穩定流出的溫度範圍的鉑合金製的管道以一定流量流出,藉由滴加或下降切斷法分離成作為目標的預製件的質量的熔融玻璃塊。利用在底部具有氣體噴出口的模具接收分離後的熔融玻璃塊,邊從氣體噴出口噴出氣體而使玻璃塊漂浮邊成型了精密壓製成型用預製件。藉由調整、設定熔融玻璃塊的分離間隔,得到了扁平球狀預製件。 作為預製件的另一個製作例(製作例2),有如下方法:將對調配原料進行熔融而得到的均質的熔融玻璃鑄入鑄模並成型後,藉由退火將所得到的成型體的應變去除,將其切斷或割斷,分割成給定的尺寸、形狀,製作多個玻璃片,對玻璃片進行拋光,使表面變得光滑,並且製作由給定質量的玻璃製成的預製件。 對於上述實施例及上述比較例,藉由製作例2製作了精密壓製成型用預製件。 [Preparation of a preform for precision pressing] For each of the above-mentioned embodiments, corresponding nitrates, sulfates, carbonates, hydroxides, oxides, boric acid, etc. are used as raw materials for introducing each component in order to achieve the glass composition shown in the above table, and the raw materials are weighed and fully mixed to prepare the blended raw materials. As Comparative Example 1, in order to achieve the glass composition of Example 10 shown in Table 1 of Patent Document 1 (Japanese Patent Publication No. 2008-201661), corresponding nitrates, sulfates, carbonates, hydroxides, oxides, boric acid, etc. are used as raw materials for introducing each component, and the raw materials are weighed and fully mixed to prepare the blended raw materials. As Comparative Example 2, in the manner of the glass composition of Example 34 shown in Table 1 of Patent Document 1 (Japanese Patent Publication No. 2008-201661), corresponding nitrates, sulfates, carbonates, hydroxides, oxides, boric acid, etc. are used as raw materials for introducing each component, the raw materials are weighed, and fully mixed to prepare the blended raw materials. A preparation example (Preparation Example 1) of a preform is described. The blended raw materials are placed in a platinum crucible, heated, and melted. The clarified and homogenized molten glass is made to flow out at a certain flow rate from a platinum alloy pipe whose temperature is adjusted to a temperature range that allows stable flow without glass devitrification, and is separated into molten glass blocks of the mass of the target preform by dripping or descending cutting. The separated molten glass block is received by a mold having a gas ejection port at the bottom, and a preform for precision pressing is formed while gas is ejected from the gas ejection port to float the glass block. By adjusting and setting the separation interval of the molten glass block, a flat spherical preform is obtained. As another example of making a preform (Preparation Example 2), there is a method as follows: after a homogeneous molten glass obtained by melting the prepared raw materials is cast into a casting mold and formed, the strain of the obtained molded body is removed by annealing, and it is cut or cut into a given size and shape to produce a plurality of glass sheets, the glass sheets are polished to make the surface smooth, and a preform made of glass of a given mass is produced. For the above-mentioned embodiment and the above-mentioned comparative example, a preform for precision press molding was produced by Production Example 2.
[脫模膜的劣化評價實驗] 對於上述實施例及上述比較例中的各個例子,在製作的預製件表面塗佈含碳膜,在氮氣氛圍中進行了加熱。具體而言,將爐內抽真空後,以達到約0.2MPa的方式進行氮氣導入,在使玻璃達到2.5 10poise左右的黏度的溫度下進行了360sec的加熱。升溫從室溫起以25℃/min進行,降溫以20℃/min進行。 上述加熱後,藉由SEM-EDX(Scanning Electron Microscope-Energy Dispersive X-ray Spectrometry)對預製件表面在加速電壓3~25kV下進行測定,確認碳的有無,從而對在各預製件的表面是否殘留有含碳膜進行了評價。 上述實驗的結果是,在上述實施例中均確認到了在預製件表面殘留有含碳膜。與此相對,在比較例1及比較例2中,沒有確認到在預製件表面殘留有含碳膜。構成比較例1的預製件的玻璃是質量%表示的玻璃組成中的TiO 2含量為0.83質量%的玻璃(參照專利文獻1(日本特開2008-201661號公報)的表1)。構成比較例2的預製件的玻璃的玻璃化轉變溫度為610℃(參照專利文獻1(日本特開2008-201661號公報)的表1)。 根據以上的結果可以確認,根據如上述實施例那樣TiO 2含量為0.6質量%以下、且玻璃化轉變溫度低於610℃的玻璃,能夠防止脫模膜的劣化。 [Experiment to evaluate the degradation of release film] For each of the above-mentioned embodiments and the above-mentioned comparative examples, a carbon-containing film was coated on the surface of the manufactured preform, and the preform was heated in a nitrogen atmosphere. Specifically, after the furnace was evacuated, nitrogen was introduced in a manner to reach about 0.2 MPa, and the glass was heated for 360 seconds at a temperature at which the viscosity reached about 2.5 10 poise. The temperature was increased from room temperature at 25°C/min, and the temperature was decreased at 20°C/min. After the above-mentioned heating, the surface of the preform was measured by SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Spectrometry) at an accelerating voltage of 3~25kV to confirm the presence of carbon, thereby evaluating whether there was any residual carbon-containing film on the surface of each preform. As a result of the above experiment, in the above embodiments, it was confirmed that a carbon-containing film remained on the surface of the preform. In contrast, in Comparative Examples 1 and 2, no carbon-containing film was confirmed to remain on the surface of the preform. The glass constituting the preform of Comparative Example 1 is a glass having a TiO2 content of 0.83% by mass in the glass composition expressed in mass% (see Table 1 of Patent Document 1 (Japanese Patent Publication No. 2008-201661)). The glass transition temperature of the glass constituting the preform of Comparative Example 2 is 610°C (see Table 1 of Patent Document 1 (Japanese Patent Publication No. 2008-201661)). From the above results, it can be confirmed that, according to the glass having a TiO2 content of 0.6 mass% or less and a glass transition temperature of less than 610°C as in the above-mentioned embodiment, it is possible to prevent the degradation of the release film.
為了確認上述實驗與精密壓製適應性的相關性,在上述實施例及上述比較例中製作的預製件的表面塗佈含碳膜,導入至在成型面設置有含碳脫模膜的SiC製的包含上下模及殼模的壓製成型模具內,在氮氣氛圍中將成型模具和預製件一起進行加熱,使預製件軟化,進行精密壓製成型,製作了φ30mm、光軸方向的厚度4mm的非球面雙凸透鏡。 在上述實施例中進行精密壓製時,即使超過150次成型(shot),也沒有確認到脫模膜的劣化,量產性良好。相比之下,在上述比較例中進行100次成型(shot)的精密壓製時,脫模膜的劣化顯著,其結果是,引起成型模具的破損、透鏡形狀/外觀的不良等,成為量產性差的結果。 根據以上的結果確認了,藉由上述實施例的玻璃,能夠在精密壓製中獲得優異的量產性。此外,根據上述實施例的玻璃,超過φ30mm的大口徑透鏡、光軸方向的壁厚超過4mm的透鏡(更佳為最大壁厚超過5mm的透鏡)、具有複雜形狀的透鏡等也可以以高的量產性製作。 In order to confirm the correlation between the above experiment and the suitability for precision pressing, the surface of the preform produced in the above embodiment and the above comparative example was coated with a carbon-containing film, introduced into a SiC press mold including upper and lower molds and a shell mold with a carbon-containing mold release film on the molding surface, and the molding mold and the preform were heated together in a nitrogen atmosphere to soften the preform, and precision pressing was performed to produce an aspherical biconvex lens with a diameter of 30 mm and a thickness of 4 mm in the optical axis direction. When precision pressing was performed in the above embodiment, no degradation of the mold release film was confirmed even after more than 150 shots, and mass production was good. In contrast, when the precision pressing of 100 shots was performed in the above comparative example, the release film deteriorated significantly, resulting in damage to the molding die, poor lens shape/appearance, etc., resulting in poor mass production. Based on the above results, it was confirmed that excellent mass production can be achieved in precision pressing by the glass of the above embodiment. In addition, according to the glass of the above embodiment, large-diameter lenses exceeding φ30mm, lenses with a wall thickness exceeding 4mm in the optical axis direction (preferably a lens with a maximum wall thickness exceeding 5mm), lenses with complex shapes, etc. can also be produced with high mass production.
最後,總結上述的各實施方式。Finally, the above implementations are summarized.
[1] 一種光學玻璃,其中, 在質量%表示的玻璃組成中, Li 2O含量超過0質量%, B 2O 3含量為3.00質量%以上且30.00質量%以下, SiO 2含量超過0質量%且為8.00質量%以下, La 2O 3含量為15.00質量%以上且55.00質量%以下, ZnO含量為3.00質量%以上且30.00質量%以下, TiO 2含量為0.60質量%以下, Li 2O與ZnO的合計含量(Li 2O+ZnO)為10.20質量%以上, B 2O 3含量相對於Li 2O含量的質量比(B 2O 3/Li 2O)為5.00以上且21.00以下, SiO 2含量相對於Li 2O含量的質量比(SiO 2/Li 2O)為10.00以下, 所述光學玻璃的玻璃化轉變溫度Tg低於610℃, 液相溫度LT為1090℃以上, 折射率nd和玻璃化轉變溫度Tg滿足下述式(1),並且折射率nd和阿貝數νd滿足下述式(2), 式(1):Tg<2500*nd-4050 式(2):νd>-88.355*nd+201。 [2] 如[1]所述的光學玻璃,其中, 在陽離子%表示的玻璃組成中,B 3+含量相對於Si 4+含量的陽離子比(B 3+/Si 4+)為1.25以上且11.00以下。 [3] 如[1]或[2]所述的光學玻璃,其中, 在質量%表示的玻璃組成中,Nb 2O 5、TiO 2及WO 3的合計含量相對於SiO 2與B 2O 3的合計含量的質量比(Nb 2O 5+TiO 2+WO 3)/(SiO 2+B 2O 3)為0.40以上且1.60以下。 [4] 如[1]~[3]中任一項所述的光學玻璃,其中, 在質量%表示的玻璃組成中,ZnO含量相對於WO 3含量的質量比(ZnO/WO 3)為0.10以上且5.00以下。 [5] 如[1]~[4]中任一項所述的光學玻璃,其中, 在質量%表示的玻璃組成中,Lu 2O 3含量相對於La 2O 3、Gd 2O 3、Y 2O 3及Lu 2O 3的合計含量的質量比(Lu 2O 3/(La 2O 3+Gd 2O 3+Y 2O 3+Lu 2O 3))為0.50以下。 [6] 如[1]~[5]中任一項所述的光學玻璃,其中, 在陽離子%表示的玻璃組成中,Li +含量為0.50陽離子%以上。 [7] 如[1]~[6]中任一項所述的光學玻璃,其折射率nd為1.8600以上。 [8] 如[1]~[7]中任一項所述的光學玻璃,其阿貝數νd為34.0以上且40.0以下。 [9] [1]~[8]中任一項所述的光學玻璃,其中, 在質量%表示的玻璃組成中, Nb 2O 5、TiO 2及WO 3的合計含量相對於SiO 2與B 2O 3的合計含量的質量比(Nb 2O 5+TiO 2+WO 3)/(SiO 2+B 2O 3)為0.40以上且1.60以下, ZnO含量相對於WO 3含量的質量比(ZnO/WO 3)為0.10以上且5.00以下, Lu 2O 3含量相對於La 2O 3、Gd 2O 3、Y 2O 3及Lu 2O 3的合計含量的質量比(Lu 2O 3/(La 2O 3+Gd 2O 3+Y 2O 3+Lu 2O 3))為0.50以下, 在陽離子%表示的玻璃組成中, B 3+含量相對於Si 4+含量的陽離子比(B 3+/Si 4+)為1.25以上且11.00以下, Li +含量為0.50陽離子%以上, 所述光學玻璃的折射率nd為1.8600以上,並且 阿貝數νd為34.0以上且40.0以下。 [10] 一種光學元件,其由[1]~[9]中任一項所述的光學玻璃製成。 [1] An optical glass, wherein, in a glass composition expressed in mass %, a Li 2 O content exceeds 0 mass %, a B 2 O 3 content is 3.00 mass % or more and 30.00 mass % or less, a SiO 2 content exceeds 0 mass % and is 8.00 mass % or less, a La 2 O 3 content is 15.00 mass % or more and 55.00 mass % or less, a ZnO content is 3.00 mass % or more and 30.00 mass % or less, a TiO 2 content is 0.60 mass % or less, a total content of Li 2 O and ZnO (Li 2 O+ZnO) is 10.20 mass % or more, a mass ratio of the B 2 O 3 content to the Li 2 O content (B 2 O 3 /Li 2 O) is 5.00 or more and 21.00 or less, a mass ratio of the SiO 2 content to the Li 2 O content (SiO 2 /Li 2 O) is less than 10.00, the glass transition temperature Tg of the optical glass is lower than 610°C, the liquidus temperature LT is greater than 1090°C, the refractive index nd and the glass transition temperature Tg satisfy the following formula (1), and the refractive index nd and the Abbe number νd satisfy the following formula (2), Formula (1): Tg<2500*nd-4050 Formula (2): νd>-88.355*nd+201. [2] The optical glass as described in [1], wherein, in the glass composition expressed as cation %, the cation ratio of the B 3+ content to the Si 4+ content (B 3+ /Si 4+ ) is greater than 1.25 and less than 11.00. [3] The optical glass as described in [1] or [2], wherein, in the glass composition expressed in mass % , the mass ratio of the total content of Nb2O5 , TiO2 and WO3 to the total content of SiO2 and B2O3 ( Nb2O5 + TiO2 + WO3 )/( SiO2 + B2O3 ) is 0.40 or more and 1.60 or less. [4] The optical glass as described in any one of [1] to [3], wherein, in the glass composition expressed in mass %, the mass ratio of the content of ZnO to the content of WO3 (ZnO/ WO3 ) is 0.10 or more and 5.00 or less. [5] The optical glass as described in any one of [1] to [4], wherein, in the glass composition expressed in mass %, the mass ratio of Lu 2 O 3 content to the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Lu 2 O 3 (Lu 2 O 3 /(La 2 O 3 +Gd 2 O 3 +Y 2 O 3 +Lu 2 O 3 )) is 0.50 or less. [6] The optical glass as described in any one of [1] to [5], wherein, in the glass composition expressed in cation %, the Li + content is 0.50 cation % or more. [7] The optical glass as described in any one of [1] to [6], wherein the refractive index nd is 1.8600 or more. [8] The optical glass as described in any one of [1] to [7], wherein the Abbe number νd is greater than or equal to 34.0 and less than or equal to 40.0. [9] The optical glass described in any one of [ 1 ] to [8], wherein, in the glass composition expressed in mass %, the mass ratio of the total content of Nb2O5 , TiO2 and WO3 to the total content of SiO2 and B2O3 ( Nb2O5 + TiO2 + WO3 )/( SiO2 + B2O3 ) is 0.40 or more and 1.60 or less , the mass ratio of the ZnO content to the WO3 content ( ZnO / WO3 ) is 0.10 or more and 5.00 or less, and the mass ratio of the Lu2O3 content to the total content of La2O3 , Gd2O3 , Y2O3 and Lu2O3 ( Lu2O3 / (La2O3+Gd2O3+ Y2O3 + Lu2O3 ) is 0.10 or more and 5.00 or less . )) is less than 0.50, in the glass composition expressed in cation %, the cation ratio of B 3+ content to Si 4+ content (B 3+ /Si 4+ ) is greater than 1.25 and less than 11.00, the Li + content is greater than 0.50 cation %, the refractive index nd of the optical glass is greater than 1.8600, and the Abbe number νd is greater than 34.0 and less than 40.0. [10] An optical element, which is made of the optical glass described in any one of [1] to [9].
應該理解的是,本次揭露的實施方式全部是示例性的,並不構成限制。本發明的範圍由申請專利範圍、而不是上述的說明界定,旨在包括與請求項等同的含義及範圍內的全部變形。 例如,對於上述例示的玻璃組成,藉由進行說明書中記載的組成調整,可得到本發明的一個方式的光學玻璃。 另外,當然可以將說明書中例示出的或作為較佳的範圍記載的事項中的2個以上任意組合。 It should be understood that the embodiments disclosed herein are all exemplary and do not constitute limitations. The scope of the present invention is defined by the scope of the patent application, not the above description, and is intended to include all variations within the meaning and scope equivalent to the claim. For example, for the glass composition exemplified above, by adjusting the composition described in the specification, an optical glass of one embodiment of the present invention can be obtained. In addition, of course, any combination of two or more of the items exemplified in the specification or described as a preferred scope can be used.
1:上模 2:下模 3:殼模 4:預製件 9:支撐棒 10:保持構件 11:石英管 13:推桿 14:熱電偶 1: Upper mold 2: Lower mold 3: Shell mold 4: Preform 9: Support rod 10: Retaining member 11: Quartz tube 13: Push rod 14: Thermocouple
第1圖示出了精密壓製成型裝置的剖面示意圖。FIG. 1 is a schematic cross-sectional view of a precision die-casting device.
1:上模 1: Upper mold
2:下模 2: Lower mold
3:殼模 3: Shell mold
4:預製件 4: Prefabricated parts
9:支撐棒 9: Support rod
10:保持構件 10: Retaining components
11:石英管 11: Quartz tube
13:推桿 13: Putting
14:熱電偶 14: Thermocouple
Claims (10)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022128293 | 2022-08-10 | ||
JP2022-128293 | 2022-08-10 | ||
JP2023-092926 | 2023-06-06 | ||
JP2023092926A JP2024025657A (en) | 2022-08-10 | 2023-06-06 | Optical glass, and optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202417391A true TW202417391A (en) | 2024-05-01 |
Family
ID=92074233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112129708A TW202417391A (en) | 2022-08-10 | 2023-08-08 | Optical glass and optical element |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW202417391A (en) |
-
2023
- 2023-08-08 TW TW112129708A patent/TW202417391A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5174368B2 (en) | Optical glass | |
JP5004202B2 (en) | Optical glass, precision press-molding preform and optical element | |
JP5695336B2 (en) | Optical glass, precision press-molding preform, optical element and manufacturing method thereof | |
EP2105418A1 (en) | Fluorophosphate glass, glass material for press molding, optical element blank, optical element and methods of manufacuring the same | |
JP5570054B2 (en) | Optical glass | |
US8852745B2 (en) | Optical glass, press-molding glass material, optical element and method of manufacturing the same, and bonded optical element | |
JP5209897B2 (en) | Optical glass | |
JP5174373B2 (en) | Optical glass | |
JP2017081762A (en) | Optical glass, preform for precision press molding and optical element | |
JP7194551B2 (en) | Optical glass, glass materials for press molding, optical element blanks and optical elements | |
CN113666634B (en) | Optical glass and optical element | |
TW202417391A (en) | Optical glass and optical element | |
TWI838410B (en) | Optical glass, glass raw materials for press molding, optical element blanks, and optical elements | |
JP7234454B2 (en) | Optical glass, glass materials for press molding, optical element blanks and optical elements | |
JP7194861B2 (en) | Optical glass, glass materials for press molding, optical element blanks and optical elements | |
JP2024025657A (en) | Optical glass, and optical element | |
JP7132589B2 (en) | Optical glass, preforms for precision press molding, and optical elements | |
JP7170488B2 (en) | Optical glass, glass materials for press molding, optical element blanks and optical elements | |
CN117585898A (en) | Optical glass and optical element | |
JP6709708B2 (en) | Optical glass, precision press molding preforms, and optical elements | |
JP2023181083A (en) | Optical glass and optical element | |
TW202404918A (en) | Optical glass and optical component having a low glass transition temperature and excellent thermal stability | |
TW202404916A (en) | Optical glass and optical component which has a low glass transition temperature, low dispersion, and excellent thermal stability | |
TW202419417A (en) | Optical glass and optical element | |
TW202342387A (en) | Optical glass and optical element wherein the optical glass includes B2O3, SiO2, Nb2O5, La2O3, ZnO, Li2O and TiO2 |