TW202416627A - Power transfer system and methods - Google Patents
Power transfer system and methods Download PDFInfo
- Publication number
- TW202416627A TW202416627A TW112124178A TW112124178A TW202416627A TW 202416627 A TW202416627 A TW 202416627A TW 112124178 A TW112124178 A TW 112124178A TW 112124178 A TW112124178 A TW 112124178A TW 202416627 A TW202416627 A TW 202416627A
- Authority
- TW
- Taiwan
- Prior art keywords
- power
- frequency
- signal
- transmitter
- power signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 197
- 238000012546 transfer Methods 0.000 title abstract description 179
- 238000004891 communication Methods 0.000 claims abstract description 212
- 238000006243 chemical reaction Methods 0.000 claims abstract description 62
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims description 239
- 230000002902 bimodal effect Effects 0.000 abstract description 11
- 230000010355 oscillation Effects 0.000 description 137
- 125000006850 spacer group Chemical group 0.000 description 81
- 230000005291 magnetic effect Effects 0.000 description 59
- 238000007726 management method Methods 0.000 description 48
- 230000003750 conditioning effect Effects 0.000 description 46
- 230000008878 coupling Effects 0.000 description 46
- 238000010168 coupling process Methods 0.000 description 46
- 238000005859 coupling reaction Methods 0.000 description 46
- 230000005684 electric field Effects 0.000 description 38
- 230000001939 inductive effect Effects 0.000 description 36
- 230000008859 change Effects 0.000 description 35
- 230000006870 function Effects 0.000 description 33
- 230000002457 bidirectional effect Effects 0.000 description 31
- 238000005538 encapsulation Methods 0.000 description 25
- 239000000463 material Substances 0.000 description 24
- 238000005259 measurement Methods 0.000 description 23
- 229920000642 polymer Polymers 0.000 description 22
- 238000010586 diagram Methods 0.000 description 20
- 230000001965 increasing effect Effects 0.000 description 18
- 230000001681 protective effect Effects 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- -1 polyethylene terephthalate Polymers 0.000 description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 15
- 239000003570 air Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 229910052710 silicon Inorganic materials 0.000 description 15
- 239000010703 silicon Substances 0.000 description 15
- 230000009977 dual effect Effects 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- 230000006698 induction Effects 0.000 description 13
- 230000005855 radiation Effects 0.000 description 12
- 230000009471 action Effects 0.000 description 11
- 230000003321 amplification Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 238000003199 nucleic acid amplification method Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 230000001360 synchronised effect Effects 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- 230000001276 controlling effect Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000007480 spreading Effects 0.000 description 9
- 238000003892 spreading Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000002847 impedance measurement Methods 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000012080 ambient air Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 235000006549 Arenga pinnata Nutrition 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- 244000208235 Borassus flabellifer Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241001646071 Prioneris Species 0.000 description 2
- 229920009638 Tetrafluoroethylene-Hexafluoropropylene-Vinylidenefluoride Copolymer Polymers 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- YAAQEISEHDUIFO-UHFFFAOYSA-N C=CC#N.OC(=O)C=CC=CC1=CC=CC=C1 Chemical compound C=CC#N.OC(=O)C=CC=CC1=CC=CC=C1 YAAQEISEHDUIFO-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910003307 Ni-Cd Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229920002877 acrylic styrene acrylonitrile Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/20—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Photovoltaic Devices (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本發明是關於電力發射器、接收器以及電力傳送的系統及方法。The present invention relates to a power transmitter, a receiver, and a system and method for power transmission.
在感應式電力傳送(inductive power transfer, IPT)中,電力通常藉由磁場在線圈之間傳送。驅動交流電(AC)穿過發射器線圈以形成振盪磁場。該磁場穿過接收線圈,其中該磁場在該接收線圈中感應交流電。感應的交流電可以直接驅動負載,或經整流為直流電(DC),該直流電經施加以驅動負載。為了達成高效率,發射器線圈及接收器線圈必須非常靠近在一起。例如,通常情況下,發射器線圈與接收器線圈僅分隔開線圈直徑的一部分(例如,在幾公分內),且線圈的軸線緊密地對準。In inductive power transfer (IPT), power is transferred between coils, usually by means of a magnetic field. An alternating current (AC) is driven through a transmitter coil to create an oscillating magnetic field. The magnetic field passes through a receiving coil, where it induces the AC in the receiving coil. The induced AC can drive a load directly, or be rectified to direct current (DC), which is applied to drive a load. To achieve high efficiency, the transmitter and receiver coils must be very close together. For example, typically the transmitter and receiver coils are separated by only a portion of the coil diameter (e.g., within a few centimeters), and the axes of the coils are closely aligned.
在某些IPT系統中,採用共振感應式耦合。共振感應式耦合可以藉由使用共振電路來提高IPT的效率。共振感應式耦合可在比非共振感應式耦合更遠的距離達成更高效率。在共振感應式耦合中,藉由兩個共振電路之間的磁場傳送電力,一個共振電路在發射器中,而另一個共振電路在接收器中。兩個電路經調諧以在同一共振頻率下共振。In some IPT systems, resonant inductive coupling is used. Resonant inductive coupling can improve the efficiency of IPT by using a resonant circuit. Resonant inductive coupling can achieve higher efficiency at longer distances than non-resonant inductive coupling. In resonant inductive coupling, power is transferred by the magnetic field between two resonant circuits, one in the transmitter and the other in the receiver. The two circuits are tuned to resonate at the same resonant frequency.
在某些IPT系統中,磁場可在附近的金屬中產生渦電流。這能導致顯著溫度升高及火災危險。鐵磁體板可用於提供屏蔽且改良感應式耦合,但可增加此等系統的成本。In some IPT systems, magnetic fields can induce eddy currents in nearby metal. This can lead to significant temperature rise and fire hazard. Ferromagnetic plates can be used to provide shielding and improve inductive coupling, but can add cost to such systems.
電容式電力傳送(capacitive power transfer, CPT)利用電場在兩個電極(諸如金屬板)之間傳輸電力。通常,在CPT系統中使用四個金屬板來形成電容式耦合器。兩個金屬板用作電力發射器,而另兩個金屬板用作電力接收器,從而得到至少兩個耦合電容器以提供電力流迴路。發射器將交流電壓施加至發射板。振盪電場在接收器板上感應交流電位,此致使交流電在負載電路中流動。共振亦可與電容式耦合一起使用以擴展電力傳送範圍。Capacitive power transfer (CPT) uses electric fields to transfer power between two electrodes (such as metal plates). Typically, four metal plates are used in a CPT system to form a capacitive coupler. Two metal plates act as power transmitters, while the other two act as power receivers, resulting in at least two coupled capacitors to provide a power flow loop. The transmitter applies an AC voltage to the transmitter plates. The oscillating electric field induces an AC potential on the receiver plates, which causes AC current to flow in the load circuit. Resonance can also be used with capacitive coupling to extend the power transfer range.
在CPT系統中,可減少渦電流,且所使用的板是低成本的且降低系統成本。然而,關於諸多系統的問題是高電壓可強加在板上。此等高電壓可產生強電場,此導致對周圍區域的顯著場發射。In a CPT system, eddy currents can be reduced, and the panels used are low cost and reduce system cost. However, a problem with many systems is that high voltages can be imposed on the panels. These high voltages can generate strong electric fields, which result in significant field emissions to the surrounding area.
CPT及IPT系統中亦存在與電容式或感應式補償網路相關聯的問題。目前,CPT及IPT兩種系統需要接收器與發射器之間的間隔最小。此通常在初級側及次級側上需要補償網路中的大電容器及電感器。生產此等大元件是困難的,且其寄生電阻可顯著降低系統效率。另外,此等補償元件不直接參與電力傳送程序。There are also problems associated with capacitive or inductive compensation networks in CPT and IPT systems. Currently, both CPT and IPT systems require minimal spacing between the receiver and transmitter. This typically requires large capacitors and inductors in the compensation network on both the primary and secondary sides. It is difficult to produce these large components, and their parasitic resistance can significantly reduce system efficiency. Additionally, these compensation components are not directly involved in the power transfer process.
仍期望具有較少組件及/或成本降低的無線電力發射器及接收器。仍期望對補償網路之依賴減少的無線電力發射器及接收器。仍期望具有更高效率的無線電力發射器及接收器。仍期望針對其之間的對準及間隔具有更靈活要求的無線電力發射器。仍需要能夠在負載與電源之間(包含在DC源與AC電網之間)沿正向及反向傳送電力的電力傳輸系統。There is still a desire for wireless power transmitters and receivers with fewer components and/or reduced cost. There is still a desire for wireless power transmitters and receivers with reduced reliance on compensation networks. There is still a desire for wireless power transmitters and receivers with higher efficiency. There is still a desire for wireless power transmitters with more flexible requirements for alignment and spacing therebetween. There is still a need for power transmission systems capable of transmitting power in both forward and reverse directions between a load and a power source, including between a DC source and an AC grid.
關於消費型產品的電力傳送的領域變得愈來愈重要。在汽車領域中,電線束已成為運載工具之重要且昂貴的子系統。汽車線束的市場預期在本十年內超過770億美元。在關注內燃運載工具的汽油里程、此等運載工具的碳排放、以及電動運載工具航程的時代,此等線束的成本、重量及電力傳送效率已成為運載工具設計中的主要關注事項。鑒於材料及組件佔汽車製造成本之57%,可理解該等關注點。The area of power delivery for consumer products is becoming increasingly important. In the automotive space, electrical wiring harnesses have become a critical and expensive subsystem of the vehicle. The market for automotive wiring harnesses is expected to exceed $77 billion this decade. In an age of concerns about gas mileage for internal combustion vehicles, the carbon emissions of such vehicles, and the range of electric vehicles, the cost, weight, and power delivery efficiency of such wiring harnesses have become major concerns in vehicle design. These concerns are understandable given that materials and components account for 57% of the cost of manufacturing a vehicle.
雖然電池技術正穩步改良以提供更高能量密度的電池,但消費者對整合至運載工具中之愈來愈多的輔助用戶電子裝置及電驅動系統的需求亦同時增加。此對電池、運載工具的重量、成本、及電力傳送效率提出了愈來愈高的要求。在20世紀90年代,汽車行業提出更高電壓的電池系統,部分原因是希望減輕線束重量。While battery technology is steadily improving to provide cells with higher energy density, consumer demand for more and more auxiliary user electronics and electric drive systems integrated into vehicles is also increasing. This places increasing demands on battery and vehicle weight, cost, and power delivery efficiency. In the 1990s, the automotive industry proposed higher voltage battery systems, partly due to the desire to reduce wiring harness weight.
目前已做出諸多努力來減少線束中採用之昂貴銅的量,且正在朝著使用更便宜的鋁的方向發展。此趨勢亦因希望在典型汽車中節省約40磅的重量而得到推動。針對鋁的此趨勢具有其自身的問題,部分是因為鋁的電阻率是銅的1.58倍。鋁亦存在稱為潛變得現象,該現象導致連接鬆動。此外,鋁亦會氧化,因此針對連接必須採取預防措施。線束的某些態樣仍需要銅,且銅與鋁之間的任何連接將引入電流電位的問題。There have been many efforts to reduce the amount of expensive copper used in wiring harnesses, and there is a move toward using cheaper aluminum. This trend is also driven by the desire to save about 40 pounds of weight in a typical car. This trend towards aluminum has its own problems, in part because the electrical resistivity of aluminum is 1.58 times that of copper. Aluminum also has a phenomenon called creep, which causes connections to loosen. In addition, aluminum will oxidize, so precautions must be taken with connections. Some aspects of wiring harnesses still require copper, and any connection between copper and aluminum will introduce problems with current potential.
因此,明確需要用於運載工具線束的替代方法,該方法降低昂貴的銅含量,在電壓方面提供靈活性,避免以鋁為代表的問題,且降低重量。Therefore, there is a clear need for an alternative approach for vehicle wiring harnesses that reduces the expensive copper content, provides flexibility in voltage, avoids the problems represented by aluminum, and reduces weight.
同時,需要改良電力傳送技術的效率,以跟上電池技術的快速推進,而電池技術又受到電動運載工具領域之發展的刺激。At the same time, the efficiency of power delivery technology needs to improve to keep pace with rapid advances in battery technology, which in turn is stimulated by developments in the electric vehicle sector.
例如,此等要求不限於汽車領域,且亦適用太陽能電力傳送的領域,且在進行某些修改後亦適用於其他家用消費型設備,諸如電腦及電視顯示器。如今廣泛地使用最佳自具有變化電壓的電源提取電力的電力調節單元,但該等電力調節單元通常受有限程度的控制設施影響。這反過來阻止了電力傳送效率的最佳化。For example, these requirements are not limited to the automotive sector, but also apply to the sector of solar power transmission and, with certain modifications, also to other household consumer devices such as computers and television displays. Power conditioning units are widely used today which optimally extract power from a power source with a varying voltage, but these are usually subject to a limited degree of control facilities. This in turn prevents optimization of the power transmission efficiency.
相關技術的上述示例以及與其相關的限制旨在是說明性的而非排他性的。在閱讀本說明書且研究附圖之後,相關領域的其他限制將對所述技術領域中具有通常知識者變得顯而易見。The above examples of related art and the limitations associated therewith are intended to be illustrative rather than exclusive. After reading this specification and studying the accompanying drawings, other limitations of the related art will become apparent to those with ordinary knowledge in the art.
在第一態樣中,提出一種雙峰近場共振無線電力傳送系統,該雙峰近場共振無線電力傳送系統配置用於在共振功率信號振盪頻率下根據可調的傳送模式比同時進行電容式電力傳送及感應式電力傳送,該系統包括:一發射器子系統,包含一發射器天線子系統及一功率信號調諧器模組,該調諧器模組配置用於藉由調整由該調諧器模組向該發射器天線子系統提供的功率信號來調整該傳送模式比;以及一接收器子系統,包含一接收器天線子系統,該接收器天線子系統配置用於按該傳送模式比自該發射器天線子系統接收電力。In a first aspect, a dual-peak near-field resonant wireless power transfer system is provided, which is configured to simultaneously perform capacitive power transfer and inductive power transfer according to an adjustable transfer mode ratio at a resonant power signal oscillation frequency, and the system includes: a transmitter subsystem, including a transmitter antenna subsystem and a power signal tuner module, the tuner module is configured to adjust the transfer mode ratio by adjusting the power signal provided by the tuner module to the transmitter antenna subsystem; and a receiver subsystem, including a receiver antenna subsystem, the receiver antenna subsystem is configured to receive power from the transmitter antenna subsystem according to the transfer mode ratio.
該調諧器模組可以配置用於藉由調整提供至該發射器天線子系統之功率信號的電流與電壓之間的相位差來調整該功率信號。該發射器子系統可以進一步包括:一控制器;以及至少一個感測器,其中,該控制器配置用於自該至少一個感測器接收感測器資訊,並用於基於該感測器資訊向該調諧器模組自動地提供調諧指令;以及該調諧器模組配置以根據該調諧指令調整提供至該發射器天線子系統之功率信號的電流與電壓之間的該相位差。The tuner module may be configured to adjust the power signal by adjusting a phase difference between a current and a voltage of the power signal provided to the transmitter antenna subsystem. The transmitter subsystem may further include: a controller; and at least one sensor, wherein the controller is configured to receive sensor information from the at least one sensor and to automatically provide a tuning instruction to the tuner module based on the sensor information; and the tuner module is configured to adjust the phase difference between a current and a voltage of the power signal provided to the transmitter antenna subsystem according to the tuning instruction.
該至少一個感測器可以設置在該發射器子系統上。在其他實施例中,該至少一個感測器可以設置在該接收器子系統上,且該控制器可以配置用於無線地接收該感測器資訊。該至少一個感測器可以是以下各項中之一:一電力負載感測器、一發射電力感測器、一周圍物體偵測器、以及設置以監測該發射器天線與該接收器天線之間的距離的一距離偵測器。The at least one sensor may be disposed on the transmitter subsystem. In other embodiments, the at least one sensor may be disposed on the receiver subsystem, and the controller may be configured to wirelessly receive the sensor information. The at least one sensor may be one of: a power load sensor, a transmit power sensor, a surrounding object detector, and a distance detector configured to monitor the distance between the transmitter antenna and the receiver antenna.
該共振功率信號振盪頻率可以在一預定頻帶內自由變化。該預定頻帶可以是工業、科學及醫學(ISM)頻帶。該系統可以解諧至允許該共振功率信號振盪頻率在該預定頻帶的相反極限內變化的程度。The resonant power signal oscillation frequency can be freely varied within a predetermined frequency band. The predetermined frequency band can be an industrial, scientific and medical (ISM) band. The system can be detuned to the extent that the resonant power signal oscillation frequency is allowed to vary within opposite limits of the predetermined frequency band.
在又一態樣中,提供一種在共振功率信號振盪頻率下根據可調的傳送模式比雙峰地傳送電力的無線方法,該方法包括:提供一發射器子系統,該發射器子系統包含一功率信號調諧器模組及配置用於在該共振功率信號振盪頻率下共振的一發射器天線子系統;提供一接收器子系統,該接收器子系統包含配置用於在該共振功率信號振盪頻率下共振的一接收器天線子系統;在該功率信號振盪共振頻率下將功率信號自該調諧器模組提供至該發射器天線子系統;藉由調整自該調諧器模組至該發射器天線子系統的該功率信號來調整該傳送模式比;以及在接收器子系統中在該功率信號振盪共振頻率下經由該接收器天線子系統按該傳送模式比接收傳送的電力。調整該傳送模式比可以包括調整提供至該發射器天線子系統之該功率信號的電流與電壓之間的相位差。In another aspect, a wireless method for transmitting power bimodally according to an adjustable transmission mode ratio at a resonant power signal oscillation frequency is provided, the method comprising: providing a transmitter subsystem, the transmitter subsystem including a power signal tuner module and a transmitter antenna subsystem configured to resonate at the resonant power signal oscillation frequency; providing a receiver subsystem, the receiver subsystem including a power signal tuner module and a transmitter antenna subsystem configured to resonate at the resonant power signal oscillation frequency; A method for transmitting a power signal to a transmitter antenna subsystem comprising: providing a receiver antenna subsystem resonant at a power signal oscillation frequency; providing a power signal from the tuner module to the transmitter antenna subsystem at the power signal oscillation resonance frequency; adjusting the transmit mode ratio by adjusting the power signal from the tuner module to the transmitter antenna subsystem; and receiving the transmitted power at the power signal oscillation resonance frequency through the receiver antenna subsystem at the transmit mode ratio in the receiver subsystem. Adjusting the transmit mode ratio may include adjusting a phase difference between a current and a voltage of the power signal provided to the transmitter antenna subsystem.
提供一發射器子系統可以進一步包括:提供一控制器及至少一個感測器,並可以由該調諧器模組基於該控制器自至少一個感測器接收的感測器資訊經由該控制器的命令實現調整電流與電壓之間的該相位差。在該控制器接收到該感測器資訊時可以自動地向該調諧器模組發出該控制器的該命令;以及該調諧器模組可以自動地執行來自該控制器的該命令以改變該相位差。Providing a transmitter subsystem may further include: providing a controller and at least one sensor, and the phase difference between the current and the voltage may be adjusted by the tuner module based on sensor information received by the controller from the at least one sensor through a command of the controller. The controller may automatically send the command of the controller to the tuner module when receiving the sensor information; and the tuner module may automatically execute the command from the controller to change the phase difference.
該方法可以進一步包括:允許該共振功率信號振盪頻率在一預定頻帶內變化。該預定頻帶可以是工業、科學及醫學(ISM)頻帶。提供一發射器子系統可以包括提供解諧至允許該共振功率信號振盪頻率在該預定頻帶的相反極限內變化的程度的一發射器子系統。The method may further include: allowing the resonant power signal oscillation frequency to vary within a predetermined frequency band. The predetermined frequency band may be an industrial, scientific and medical (ISM) band. Providing a transmitter subsystem may include providing a transmitter subsystem that is detuned to a degree that allows the resonant power signal oscillation frequency to vary within opposite extremes of the predetermined frequency band.
在又一態樣中,提供一種雙峰近場共振無線電力傳送系統,該雙峰近場共振無線電力傳送系統配置用於在可變的共振功率信號振盪頻率下,根據電容式電力傳送及感應式電力傳送之可調的傳送模式比,同時進行電容式電力傳送及感應式電力傳送,該系統包括:一發射器子系統,包含一發射器天線子系統及一功率信號調諧器模組,其中,該功率信號調諧器模組藉由調整由該功率信號調諧器模組提供至該發射器天線子系統的功率信號來調整該傳送模式比;以及一接收器子系統,包含一接收器天線子系統,其按該傳送模式比自該發射器天線接收電力。In yet another aspect, a dual-peak near-field resonant wireless power transfer system is provided, the dual-peak near-field resonant wireless power transfer system being configured to simultaneously perform capacitive power transfer and inductive power transfer according to an adjustable transfer mode ratio of the capacitive power transfer and the inductive power transfer at a variable resonant power signal oscillation frequency, the system comprising: a transmitter subsystem including a transmitter antenna subsystem and a power signal tuner module, wherein the power signal tuner module adjusts the transfer mode ratio by adjusting a power signal provided by the power signal tuner module to the transmitter antenna subsystem; and a receiver subsystem including a receiver antenna subsystem that receives power from the transmitter antenna according to the transfer mode ratio.
該系統經由該發射器天線及該接收器天線子系統的接收器天線在該發射器天線子系統與該接收器天線子系統之間傳送資訊。該系統可以進一步包括一調變器,用於將資訊調變至資訊承載信號上並將該資訊承載信號提供至該發射器天線子系統。該系統可以將資訊調變至資訊承載信號上並將該資訊承載信號提供至該發射器天線子系統。該調變器可以佈置以根據該資訊將該資訊承載信號調變至該發射器天線子系統。該功率信號調諧器模組可以包括該調變器。The system transmits information between the transmitter antenna subsystem and the receiver antenna subsystem via the transmitter antenna and the receiver antenna of the receiver antenna subsystem. The system may further include a modulator for modulating information onto an information bearing signal and providing the information bearing signal to the transmitter antenna subsystem. The system may modulate information onto an information bearing signal and provide the information bearing signal to the transmitter antenna subsystem. The modulator may be arranged to modulate the information bearing signal to the transmitter antenna subsystem based on the information. The power signal tuner module may include the modulator.
該資訊承載信號可以具有不同於該可變的共振功率信號振盪頻率的頻率。該調變器可以藉由頻率調變、振幅調變及相位調變中之任一者來調變該資訊承載信號。可以調變該資訊承載信號,使得該可變的功率信號振盪頻率是該資訊承載信號的頻率的諧波。可以將該資訊承載信號調變至功率信號的諧波上。經調變且提供至該發射器天線子系統的信號可以是該功率信號。The information bearing signal may have a frequency different from the frequency at which the variable resonant power signal oscillates. The modulator may modulate the information bearing signal by any of frequency modulation, amplitude modulation, and phase modulation. The information bearing signal may be modulated so that the variable power signal oscillates at a frequency that is a harmonic of the frequency of the information bearing signal. The information bearing signal may be modulated onto a harmonic of the power signal. The signal modulated and provided to the transmitter antenna subsystem may be the power signal.
該調變器可以調變該接收器天線的反射特性並藉由根據該資訊調變該接收器天線的該反射特性來將該資訊自該接收器天線子系統傳送至該發射器天線子系統。該接收器天線之經調變的反射特性可以是該接收器天線的阻抗。The modulator may modulate a reflection characteristic of the receiver antenna and transmit the information from the receiver antenna subsystem to the transmitter antenna subsystem by modulating the reflection characteristic of the receiver antenna according to the information. The modulated reflection characteristic of the receiver antenna may be an impedance of the receiver antenna.
該系統可以藉由調變該接收器天線對來自該發射器子系統的信號的反射來將該資訊自該接收器子系統傳送至該發射器子系統。該接收器子系統可以調變該接收器天線的反射特性。該接收器子系統可以調變該接收器天線的阻抗。The system can transmit the information from the receiver subsystem to the transmitter subsystem by modulating the reflection of the signal from the transmitter subsystem by the receiver antenna. The receiver subsystem can modulate the reflection characteristics of the receiver antenna. The receiver subsystem can modulate the impedance of the receiver antenna.
一電力負載可以存在於該接收器子系統的輸出處;且該資訊可以包括該電力負載的存在、該電力負載的充電位準、電力傳送效率、該電力負載的充電速率、該電力負載的狀態、該電力負載上電壓的存在、該電力負載的電荷容量及給該電力負載充電的一剩餘時間中的一者或多者。A power load may be present at the output of the receiver subsystem; and the information may include one or more of the presence of the power load, the charge level of the power load, the power transfer efficiency, the charge rate of the power load, the status of the power load, the presence of voltage on the power load, the charge capacity of the power load, and a remaining time to charge the power load.
該系統可以經由該發射器天線在該發射器子系統與該接收器子系統之間傳送數位資訊。該系統可以經由該發射器天線在該發射器子系統與該接收器子系統之間傳送類比資訊。該接收器子系統可以配置以將電力發射至一後續的接收器子系統。該接收器可以進一步包括包含一移相器的一整流器。The system may transmit digital information between the transmitter subsystem and the receiver subsystem via the transmitter antenna. The system may transmit analog information between the transmitter subsystem and the receiver subsystem via the transmitter antenna. The receiver subsystem may be configured to transmit power to a subsequent receiver subsystem. The receiver may further include a rectifier including a phase shifter.
在又一態樣中,提供一種雙峰共振近場射頻電力傳送系統,包括複數個電力發射-接收模組,用於在功率信號頻率下經由功率信號根據可調的傳送模式比同時進行電容式電力傳送及感應式電力傳送,其中,該複數個電力發射-接收模組中的每一者與一發射器-接收器共振器進行有線通信,該發射器-接收器共振器設置以與該複數個電力發射-接收模組中的至少另一者交換電力。In yet another aspect, a dual-peak resonant near-field RF power transfer system is provided, comprising a plurality of power transmit-receive modules for simultaneously performing capacitive power transfer and inductive power transfer via a power signal at a power signal frequency according to an adjustable transfer mode ratio, wherein each of the plurality of power transmit-receive modules is in wired communication with a transmitter-receiver resonator configured to exchange power with at least another one of the plurality of power transmit-receive modules.
該複數個電力發射-接收模組中的第一電力發射-接收模組可以包括一功率信號調諧器模組,該功率信號調諧器模組藉由調整由該功率信號調諧器模組提供至與該複數個電力發射-接收模組中的該第一電力發射-接收模組進行有線通信的一發射器-接收器共振器的功率信號是可調的,用於改變該傳送模式比。該複數個電力發射-接收模組中的至少一者可以包括一調變器,佈置以將資訊調變至一射頻信號上,該射頻信號在與該複數個電力發射-接收模組中的至少一者進行有線通信的相關聯發射器-接收器共振器和與該複數個電力發射-接收模組中的任一其他者進行有線通信的發射器-接收器共振器之間交換。A first power transmit-receive module of the plurality of power transmit-receive modules may include a power signal tuner module that is adjustable by adjusting a power signal provided by the power signal tuner module to a transmitter-receiver resonator in wired communication with the first power transmit-receive module of the plurality of power transmit-receive modules for changing the transmit mode ratio. At least one of the plurality of power transmit-receive modules may include a modulator arranged to modulate information onto a radio frequency signal that is exchanged between an associated transmitter-receiver resonator in wired communication with the at least one of the plurality of power transmit-receive modules and a transmitter-receiver resonator in wired communication with any other of the plurality of power transmit-receive modules.
該調變器可以是振幅調變器、頻率調變器及相位調變器中的任一者。該資訊可以包括數位資訊及類比資訊中的一者或兩者。由該調變器調變的該射頻信號可以是功率信號。由該調變器調變的該射頻信號可以具有不同於功率信號頻率的頻率。由該調變器調變的該射頻信號可以具有是該功率信號頻率的諧波的頻率。該功率信號頻率可以是經調變之信號的頻率的諧波。The modulator may be any one of an amplitude modulator, a frequency modulator, and a phase modulator. The information may include one or both of digital information and analog information. The radio frequency signal modulated by the modulator may be a power signal. The radio frequency signal modulated by the modulator may have a frequency different from a power signal frequency. The radio frequency signal modulated by the modulator may have a frequency that is a harmonic of the power signal frequency. The power signal frequency may be a harmonic of the frequency of the modulated signal.
該調變器可以佈置以根據該資訊調變相關聯的導線連接的發射器-接收器共振器的反射特性,以將該資訊強加在由該導線連接的發射器-接收器共振器反射的信號上。該調變器可以佈置以根據該資訊調變提供至該相關聯的發射器-接收器共振器的信號。該複數個電力發射-接收模組中的該第一電力發射-接收模組的該功率信號調諧器模組可以包括該調變器。該等電力發射-接收模組中的每一者可以包括一補償網路,且該補償網路可以包括該調變器。該等電力發射-接收模組中的至少一者可以包括一射頻振盪器,其在該功率信號頻率下向該至少一個電力發射-接收模組提供信號,且該射頻振盪器可以包括該調變器。The modulator may be arranged to modulate a reflection characteristic of an associated wire-connected transmitter-receiver resonator according to the information to impose the information on a signal reflected by the wire-connected transmitter-receiver resonator. The modulator may be arranged to modulate a signal provided to the associated transmitter-receiver resonator according to the information. The power signal tuner module of the first power transmit-receive module of the plurality of power transmit-receive modules may include the modulator. Each of the power transmit-receive modules may include a compensation network, and the compensation network may include the modulator. At least one of the power transmit-receive modules may include a radio frequency oscillator that provides a signal to the at least one power transmit-receive module at the power signal frequency, and the radio frequency oscillator may include the modulator.
該複數個電力發射-接收模組中的每一者可在電力發射器模式與電力接收器模式之間重新組態。該等電力發射-接收模組中的每一者可以包括一差分自同步射頻功率放大器/整流器,其能夠在分別與該電力發射-接收模組的該電力發射器模式及該電力接收器模式對應的放大器狀況與整流器狀況之間重新組態。該差分自同步射頻功率放大器/整流器可以是差分切換模式自同步射頻功率放大器/整流器。該等電力發射-接收模組中的每一者可以包括一控制器,且該重新組態可以由該控制器控制。每一差分自同步射頻功率放大器/整流器可以包括一移相器,該移相器可由該控制器調整以用於在該放大器狀況與該整流器狀況之間重新組態該差分自同步射頻功率放大器/整流器。Each of the plurality of power transmit-receive modules may be reconfigurable between a power transmitter mode and a power receiver mode. Each of the power transmit-receive modules may include a differential self-synchronous RF power amplifier/rectifier capable of reconfiguring between amplifier states and rectifier states corresponding to the power transmitter mode and the power receiver mode of the power transmit-receive module, respectively. The differential self-synchronous RF power amplifier/rectifier may be a differential switching mode self-synchronous RF power amplifier/rectifier. Each of the power transmit-receive modules may include a controller, and the reconfiguration may be controlled by the controller. Each DSRFPA/rectifier may include a phase shifter adjustable by the controller for reconfiguring the DSRFPA/rectifier between the amplifier state and the rectifier state.
當電力負載存在於接收器模式中該複數個電力發射-接收模組中之一者的輸出處時,該資訊可以包括該電力負載的存在、該電力負載的充電位準、電力傳送效率、該電力負載的充電速率、該電力負載的狀態、該電力負載上電壓的存在、該電力負載的電荷容量及給該電力負載充電之剩餘時間中的一者或多者。When a power load is present at the output of one of the plurality of power transmit-receive modules in the receiver mode, the information may include one or more of the presence of the power load, the charge level of the power load, the power transfer efficiency, the charge rate of the power load, the status of the power load, the presence of voltage on the power load, the charge capacity of the power load, and the remaining time to charge the power load.
在又一態樣中,提供一種用於在一功率信號頻率下經由一功率信號傳送電力的近場射頻方法,該方法包括:提供包含複數個電力發射-接收模組的一雙峰共振近場射頻電力傳送系統,其中該複數個電力發射-接收模組中的每一者與一發射器-接收器共振器進行有線通信,該發射器-接收器共振器設置以與該複數個電力發射-接收模組中的至少另一者交換電力;以及根據可調的傳送模式比操作該電力傳送系統以用於同時進行電容式電力傳送及感應式電力傳送。In yet another aspect, a near-field radio frequency method for transferring power via a power signal at a power signal frequency is provided, the method comprising: providing a double-peak resonant near-field radio frequency power transfer system comprising a plurality of power transmit-receive modules, wherein each of the plurality of power transmit-receive modules is in wired communication with a transmitter-receiver resonator configured to exchange power with at least one other of the plurality of power transmit-receive modules; and operating the power transfer system according to an adjustable transfer mode ratio for simultaneous capacitive power transfer and inductive power transfer.
所提供之該複數個電力發射-接收模組中的第一電力發射-接收模組可以包括一功率信號調諧器模組;且操作該電力傳送系統可以包括藉由調整該功率信號調諧器模組來改變該傳送模式比。提供該電力傳送系統可以包括在該複數個電力發射-接收模組當之中提供與相關聯的發射器-接收器共振器進行有線通信且具有調變器的至少一個電力發射-接收模組,且操作該電力傳送系統可以包括在相關聯的發射器-接收器共振器和與該複數個電力發射-接收模組中的至少另一個進行有線通信的發射器-接收器共振器之間交換射頻信號;以及將資訊調變至該交換的射頻信號上。當電力負載存在於該複數個電力發射-接收模組中之一者的輸出處時,該資訊例如無限制地可以包括該電力負載的存在、該電力負載的充電位準、電力傳送效率、該電力負載的充電速率、該電力負載的狀態、該電力負載上電壓的存在、該電力負載的電荷容量及給該電力負載充電的剩餘時間中之一者或多者。A first power transmit-receive module of the plurality of power transmit-receive modules provided may include a power signal tuner module; and operating the power transmission system may include changing the transmission mode ratio by adjusting the power signal tuner module. Providing the power transmission system may include providing at least one power transmit-receive module in the plurality of power transmit-receive modules that is in wired communication with an associated transmitter-receiver resonator and has a modulator, and operating the power transmission system may include exchanging radio frequency signals between the associated transmitter-receiver resonator and a transmitter-receiver resonator in wired communication with at least another one of the plurality of power transmit-receive modules; and modulating information onto the exchanged radio frequency signals. When a power load is present at the output of one of the plurality of power transmit-receive modules, the information may include, for example, without limitation, one or more of the presence of the power load, the charge level of the power load, the power transfer efficiency, the charge rate of the power load, the status of the power load, the presence of voltage on the power load, the charge capacity of the power load, and the remaining time to charge the power load.
可以藉由振幅調變、頻率調變或相位調變將該資訊調變至該交換的射頻信號上。將該資訊調變至該交換的射頻信號上可以包括將數位資訊或類比資訊調變至該交換的射頻信號上。The information may be modulated onto the exchanged RF signal by amplitude modulation, frequency modulation, or phase modulation. Modulating the information onto the exchanged RF signal may include modulating digital information or analog information onto the exchanged RF signal.
將該資訊調變至該交換的射頻信號上可以包括將該資訊調變至該功率信號上。將該資訊調變至該交換的射頻信號上可以包括將該資訊調變至具有不同於該功率信號頻率的頻率的信號上。將該資訊調變至該交換的射頻信號上可以包括將該資訊調變至具有是該功率信號頻率的諧波的頻率的信號上。該將該資訊調變至該交換的射頻信號上可以包括將該資訊調變至具有該功率信號頻率作為諧波的信號上。Modulating the information onto the exchanged radio frequency signal may include modulating the information onto the power signal. Modulating the information onto the exchanged radio frequency signal may include modulating the information onto a signal having a frequency different from the power signal frequency. Modulating the information onto the exchanged radio frequency signal may include modulating the information onto a signal having a frequency that is a harmonic of the power signal frequency. Modulating the information onto the exchanged radio frequency signal may include modulating the information onto a signal having the power signal frequency as a harmonic.
將該資訊調變至該交換的射頻信號上可以包括根據該資訊調變該相關聯的導線連接的發射器-接收器共振器的反射特性以將該資訊強加在藉由該導線連接的發射器-接收器共振器反射的信號上。將該資訊調變至該交換的射頻信號上可以包括根據該資訊調變提供至該相關聯的發射器-接收器共振器的信號。Modulating the information onto the exchanged RF signal may include modulating a reflection characteristic of the associated wire-connected transmitter-receiver resonator according to the information to impose the information on a signal reflected by the wire-connected transmitter-receiver resonator. Modulating the information onto the exchanged RF signal may include modulating a signal provided to the associated transmitter-receiver resonator according to the information.
該方法可以包括操作該複數個電力發射-接收模組中的該第一電力發射-接收模組的該功率信號調諧器模組以將該資訊調變至該交換的射頻信號上。所提供之該等電力發射-接收模組中的每一者可以包括一補償網路,且該補償網路可以包括該調變器,允許操作該補償網路以將該資訊調變至該交換的射頻信號上。該等電力發射-接收模組中的至少一者可以包括一射頻振盪器,其在該功率信號頻率下向該至少一個電力發射-接收模組提供信號,且該射頻振盪器可以包括該調變器,允許在該振盪器中將資訊調變至該交換的射頻信號上。The method may include operating the power signal tuner module of the first power transmit-receive module of the plurality of power transmit-receive modules to modulate the information onto the exchanged radio frequency signal. Each of the provided power transmit-receive modules may include a compensation network, and the compensation network may include the modulator, allowing the compensation network to be operated to modulate the information onto the exchanged radio frequency signal. At least one of the power transmit-receive modules may include an radio frequency oscillator that provides a signal to the at least one power transmit-receive module at the power signal frequency, and the radio frequency oscillator may include the modulator, allowing the information to be modulated into the oscillator onto the exchanged radio frequency signal.
所提供之該複數個電力發射-接收模組中的每一者可在電力發射器模式與電力接收器模式之間重新組態;且該方法可以進一步包括在電力發射器模式與電力接收器模式之間重新組態該複數個電力發射-接收模組中的至少兩者以逆轉該至少兩個發射-接收模組之間的電力發射方向。所提供之該等電力發射-接收模組中的每一者可以包括一差分自同步射頻功率放大器/整流器,其能夠在分別與該電力發射-接收模組的該電力發射器模式及該電力接收器模式對應的放大器狀況與整流器狀況之間重新組態;以及該方法可以包括在該放大器狀況與該整流器狀況之間重新組態該至少兩個發射-接收模組的差分自同步射頻功率放大器/整流器。每一差分自同步射頻功率放大器/整流器可以包括一移相器,其是可調的,用於在該放大器狀況與該整流器狀況之間重新組態該差分自同步射頻功率放大器/整流器;且該方法可以包括調整該至少兩個發射-接收模組中的該等差分自同步射頻功率放大器/整流器中的每一者的移相器。Each of the plurality of power transmit-receive modules provided may be reconfigurable between a power transmitter mode and a power receiver mode; and the method may further include reconfiguring at least two of the plurality of power transmit-receive modules between the power transmitter mode and the power receiver mode to reverse the power transmission direction between the at least two transmit-receive modules. Each of the plurality of power transmit-receive modules provided may include a differential self-synchronous radio frequency power amplifier/rectifier capable of reconfiguring between amplifier states and rectifier states corresponding to the power transmitter mode and the power receiver mode of the power transmit-receive module, respectively; and the method may include reconfiguring the differential self-synchronous radio frequency power amplifier/rectifier of the at least two transmit-receive modules between the amplifier state and the rectifier state. Each differential self-synchronous RF power amplifier/rectifier may include a phase shifter that is adjustable for reconfiguring the differential self-synchronous RF power amplifier/rectifier between the amplifier state and the rectifier state; and the method may include adjusting the phase shifter of each of the differential self-synchronous RF power amplifier/rectifiers in the at least two transmit-receive modules.
在又一態樣中,提供一種近場共振無線電力傳送系統,包括:一發射子系統,包含複數個基本上相互解耦的發射器共振器、以及與每一發射器共振器進行功率信號通信之對應的發射器模組,每一發射器模組包括一發射控制器以及具有功率信號振盪頻率及功率信號相位的一功率信號源,每一功率信號源由對應的發射控制器控制;一個或多個接收器子系統,各自包括一對應的接收器共振器;一軟體查找表,其針對該等功率信號源具有離散允許的功率信號振盪頻率;以及軟體,該軟體當載入記憶體中且由該等發射器模組中之任一者的控制器執行時執行如下動作:量測對應之發射器共振器的輸入阻抗及對應的發射器共振器的測試信號電力汲取中的一者;以及基於對應的發射器共振器的該輸入阻抗及對應的發射器共振器的該測試信號電力汲取中的一者,自該查找表為對應的功率信號源選擇頻率。該軟體當被執行時可以執行如下動作:在調整來自對應的功率信號源的功率信號的相位的同時,量測由對應的發射器共振器傳送的電力位準。該等發射器共振器可以藉由接地屏蔽網基本上相互解耦。In another aspect, a near-field resonant wireless power transmission system is provided, comprising: a transmitting subsystem, including a plurality of transmitter resonators that are substantially decoupled from each other, and a corresponding transmitter module that communicates power signals with each transmitter resonator, each transmitter module including a transmitting controller and a power signal source having a power signal oscillation frequency and a power signal phase, each power signal source being controlled by a corresponding transmitting controller; one or more receiver subsystems, each including a corresponding receiver resonator; a software query A lookup table having discrete allowed power signal oscillation frequencies for the power signal sources; and software that, when loaded into memory and executed by a controller of any of the transmitter modules, performs the following actions: measuring one of an input impedance of a corresponding transmitter resonator and a test signal power draw of the corresponding transmitter resonator; and selecting a frequency for the corresponding power signal source from the lookup table based on one of the input impedance of the corresponding transmitter resonator and the test signal power draw of the corresponding transmitter resonator. The software, when executed, may perform the following actions: measuring a power level delivered by the corresponding transmitter resonator while adjusting a phase of a power signal from the corresponding power signal source. The transmitter resonators may be substantially decoupled from each other by a grounded shielding mesh.
在又一態樣中,提供一種用於在一可變共振功率信號振盪頻率下將電力自一多發射器子系統傳送至一單個共振接收器子系統的無線近場方法,該方法包括:提供包含複數個相互獨立之發射器共振器的該多發射器子系統,該等發射器共振器中的每一者由一對應的發射器模組驅動,對應的電連接發射器模組能夠獨立地設定為一預設頻帶中之複數個預設功率信號振盪頻率中的一者,其中,所有該等發射器共振器具有一公共發射表面;將一共振接收器子系統設置成接近該公共發射表面,該共振接收器子系統包含與該等發射器共振器中的兩者或兩者以上重疊的一單個接收器共振器;量測該等發射器共振器中之每一者的輸入阻抗及由該等發射器共振器中之每一者自一測試信號汲取的電力中的一者;基於對應之量測的共振器輸入阻抗及由對應的發射器共振器自測試信號汲取的電力中的一者,將前往該複數個相互獨立的發射器共振器中之每一者的功率信號設定為關斷狀態及活動狀態中的一者;基於該主動發射器共振器之該量測的輸入阻抗自該複數個預設電力振盪頻率之中為每一主動發射器共振器選擇一功率信號振盪頻率;以及將每一主動發射器共振器的該功率信號設定為對應的選定頻率。該方法可以進一步包括將施加至每一對應的發射器共振器的功率信號的相位調整為透過該發射器共振器的電力傳送基本上是最大的相位。In yet another aspect, a wireless near-field method for transferring power from a multiple transmitter subsystem to a single resonant receiver subsystem at a variable resonant power signal oscillation frequency is provided, the method comprising: providing the multiple transmitter subsystem comprising a plurality of mutually independent transmitter resonators, each of the transmitter resonators being driven by a corresponding transmitter module, the corresponding electrically connected transmitter module being independently settable to one of a plurality of preset power signal oscillation frequencies in a preset frequency band, wherein all of the transmitter resonators have a common emitting surface; arranging a resonant receiver subsystem proximate to the common emitting surface, the resonant receiver subsystem comprising a resonant power signal oscillation ... a single receiver resonator stacked above; measuring the input impedance of each of the transmitter resonators and one of the powers drawn by each of the transmitter resonators from a test signal; setting the power signal to each of the plurality of independent transmitter resonators to one of an off state and an active state based on the corresponding measured resonator input impedance and one of the powers drawn by the corresponding transmitter resonator from the test signal; selecting a power signal oscillation frequency for each active transmitter resonator from the plurality of preset power oscillation frequencies based on the measured input impedance of the active transmitter resonator; and setting the power signal of each active transmitter resonator to the corresponding selected frequency. The method may further include adjusting a phase of a power signal applied to each corresponding transmitter resonator to a phase at which power transfer through the transmitter resonator is substantially maximum.
在又一態樣中,提供一種用於在一可變共振功率信號振盪頻率下將電力自一多發射器子系統傳送至兩個或兩個以上接收器子系統的無線近場方法,該方法包括:提供包含複數個相互獨立之發射器共振器的該多發射器子系統,該等發射器共振器中的每一者由一對應的發射器模組驅動,對應的發射器模組能夠獨立地設定為一預設頻帶中之複數個預設功率信號振盪頻率中的一者,其中,所有該等發射器共振器具有一公共發射表面;將該兩個或兩個以上共振接收器子系統設置成接近該公共發射表面,每一共振接收器子系統包含與發射器共振器中之兩者或兩者以上重疊的一單一接收器共振器;量測該等發射器共振器中之每一者的輸入阻抗及由該等發射器共振器中之每一者自測試信號汲取的電力中的一者;基於該等對應之量測的共振器輸入阻抗及由該等對應的發射器共振器自測試信號汲取的電力中的一者,將前往該複數個相互獨立的發射器共振器中之每一者的功率信號設定為一關斷狀態及一活動狀態中的一者;基於該主動發射器共振器之該量測的輸入阻抗自該複數個預設電力振盪頻率中為每一主動發射器共振器選擇一功率信號振盪頻率;以及將每一主動發射器共振器的該功率信號設定為對應的選定頻率。該方法可以進一步包括將施加至每一對應發射器共振器之功率信號的相位調整為透過該發射器共振器的電力傳送基本上是最大的相位。In another aspect, a wireless near-field method for transmitting power from a multi-transmitter subsystem to two or more receiver subsystems at a variable resonant power signal oscillation frequency is provided, the method comprising: providing the multi-transmitter subsystem including a plurality of mutually independent transmitter resonators, each of the transmitter resonators being driven by a corresponding transmitter module, the corresponding transmitter module being independently settable to one of a plurality of preset power signal oscillation frequencies in a preset frequency band, wherein all of the transmitter resonators have a common emitting surface; arranging the two or more resonant receiver subsystems proximate to the common emitting surface, each resonant receiver subsystem including two or more of the transmitter resonators being coupled to the common emitting surface; a single receiver resonator stacked above; measuring the input impedance of each of the transmitter resonators and one of the powers drawn by each of the transmitter resonators from the test signal; setting the power signal to each of the plurality of independent transmitter resonators to one of an off state and an active state based on the corresponding measured resonator input impedance and one of the powers drawn by the corresponding transmitter resonators from the test signal; selecting a power signal oscillation frequency for each active transmitter resonator from the plurality of preset power oscillation frequencies based on the measured input impedance of the active transmitter resonator; and setting the power signal of each active transmitter resonator to the corresponding selected frequency. The method may further include adjusting a phase of a power signal applied to each corresponding transmitter resonator to a phase at which power transfer through the transmitter resonator is substantially maximum.
在又一態樣中,提供一種用於將電力自一光伏電池傳送至一電力負載的近場無線系統,該系統包括:一發射模組,其與該光伏電池進行有線電通信,該發射模組配置以將來自該光伏電池的該電力轉換成具有振盪頻率的振盪電力信號;一發射器共振器,其與該發射模組進行有線電通信並配置以在該振盪頻率下共振;一接收器共振器,配置以在該振盪頻率下共振並設置以經由電容式耦合及磁感應中的至少一者自該發射器共振器接收電力;以及一接收器模組,其與該接收器共振器進行有線電通信,該接收器模組配置以自該接收器共振器接收電力並經由有線電通信將該接收的電力以直流電形式提供給該電力負載。In another aspect, a near-field wireless system for transmitting power from a photovoltaic cell to a power load is provided, the system comprising: a transmitter module, which is in wired electrical communication with the photovoltaic cell, the transmitter module is configured to convert the power from the photovoltaic cell into an oscillating power signal having an oscillation frequency; a transmitter resonator, which is in wired electrical communication with the transmitter module and is configured to resonate at the oscillation frequency; a receiver resonator, which is configured to resonate at the oscillation frequency and is arranged to receive power from the transmitter resonator via at least one of capacitive coupling and magnetic induction; and a receiver module, which is in wired electrical communication with the receiver resonator, the receiver module is configured to receive power from the receiver resonator and provide the received power to the power load in the form of direct current via wired electrical communication.
該發射模組可以包括一功率放大器,其配置以在該振盪頻率下調變自該光伏電池接收的電力。該發射模組可以包括一振盪器,其配置以將該振盪頻率提供至該功率放大器。該發射模組可以包括一控制器及一個或多個感測器,該控制器配置以基於來自該一個或多個感測器中之至少一者的第一資訊使振盪頻率變化。該發射模組可以包括一傳輸調諧網路,其配置以在該控制器的控制下基於來自該一個或多個感測器中之至少一者的第二資訊至少改變由該發射模組提供至該發射器共振器的電力的相位。The transmitting module may include a power amplifier configured to modulate the power received from the photovoltaic cell at the oscillation frequency. The transmitting module may include an oscillator configured to provide the oscillation frequency to the power amplifier. The transmitting module may include a controller and one or more sensors, the controller configured to change the oscillation frequency based on first information from at least one of the one or more sensors. The transmitting module may include a transmission tuning network configured to at least change the phase of the power provided by the transmitting module to the transmitter resonator based on second information from at least one of the one or more sensors under the control of the controller.
該系統可以包括一電力調節單元,其電連接在該光伏電池與該發射模組之間,並配置以將來自該光伏電池的電力調適成與該發射模組兼容的格式。該發射模組可以包括小信號電子電路,且該電力調節單元可以進一步配置用於將電力提供至該小信號電子電路。該發射器共振器可以設置在與該電池的一主動太陽輻射接收表面相對的該光伏電池的一表面上。該發射器共振器具有一表面區域,該表面區域具有至少是該電池的該主動太陽輻射接收表面的延伸範圍的主要部分的延伸範圍。The system may include a power conditioning unit electrically connected between the photovoltaic cell and the transmitter module and configured to adapt power from the photovoltaic cell to a format compatible with the transmitter module. The transmitter module may include small signal electronic circuitry, and the power conditioning unit may be further configured to provide power to the small signal electronic circuitry. The emitter resonator may be disposed on a surface of the photovoltaic cell opposite an active solar radiation receiving surface of the cell. The emitter resonator has a surface area having an extension that is at least a major portion of the extension of the active solar radiation receiving surface of the cell.
該發射器共振器可以具有一平面區域,該平面區域小於該接收器共振器的平面區域。該接收器共振器可以設置且配置以在該共振頻率下經由電容式耦合及磁感應中的至少一者自其他發射器共振器接收電力。The transmitter resonator may have a planar area that is smaller than a planar area of the receiver resonator. The receiver resonator may be arranged and configured to receive power from the other transmitter resonator via at least one of capacitive coupling and magnetic induction at the resonant frequency.
在用於將電力自光伏電池陣列傳送至電力負載的近場無線系統的又一實施例中,該系統包括:第一複數個發射模組,每一發射模組與該陣列中之對應的光伏電池進行有線電通信,每一發射模組配置以將來自對應的光伏電池的該電力轉換成具有振盪頻率的振盪電力信號;第二複數個發射器共振器,每一發射器共振器與來自該第一複數個發射模組之對應的發射模組進行有線電通信,並配置以在該振盪頻率下共振;一單個接收器共振器,配置以在該振盪頻率下共振並設置以經由電容式耦合及磁感應中的至少一者自該複數個發射器共振器接收電力;以及一接收器模組,其與該接收器共振器進行有線電通信,該接收器模組配置以自該接收器共振器接收電力且經由有線電通信將該接收得電力以直流電形式提供給電力負載。In yet another embodiment of a near-field wireless system for transmitting power from a photovoltaic cell array to a power load, the system includes: a first plurality of transmitter modules, each transmitter module in wired electrical communication with a corresponding photovoltaic cell in the array, each transmitter module configured to convert the power from the corresponding photovoltaic cell into an oscillating power signal having an oscillating frequency; a second plurality of transmitter resonators, each transmitter resonator in wired electrical communication with a corresponding transmitter module from the first plurality of transmitter modules; The invention relates to a power supply module of the present invention, wherein the plurality of transmitter resonators are in wired electrical communication with each other and are configured to resonate at the oscillation frequency; a single receiver resonator configured to resonate at the oscillation frequency and arranged to receive power from the plurality of transmitter resonators via at least one of capacitive coupling and magnetic induction; and a receiver module, which is in wired electrical communication with the receiver resonator, the receiver module being configured to receive power from the receiver resonator and provide the received power to a power load in the form of direct current via the wired electrical communication.
來自該第一複數個發射模組中的每一發射模組可以包括一功率放大器,其配置以在該振盪頻率下調變自對應的光伏電池接收的電力。來自該第一複數個發射模組中的每一發射模組可以包括一振盪器,其配置以將該振盪頻率提供至對應的功率放大器。來自該第一複數個發射模組中的每一發射模組可以進一步包括一控制器及一個或多個感測器,該控制器配置以基於來自該一個或多個感測器中之至少一者的第一資訊來使振盪頻率變化。來自該第一複數個發射模組中的每一發射模組可以包括一傳輸調諧網路,其配置以在對應的控制器的控制下基於來自該一或多個感測器中之至少一者的第二資訊至少改變由該發射模組提供至對應的發射器共振器的電力的相位。Each transmitting module from the first plurality of transmitting modules may include a power amplifier configured to modulate power received from a corresponding photovoltaic cell at the oscillation frequency. Each transmitting module from the first plurality of transmitting modules may include an oscillator configured to provide the oscillation frequency to the corresponding power amplifier. Each transmitting module from the first plurality of transmitting modules may further include a controller and one or more sensors, the controller configured to vary the oscillation frequency based on first information from at least one of the one or more sensors. Each transmitting module from the first plurality of transmitting modules may include a transmission tuning network configured to at least change the phase of power provided by the transmitting module to the corresponding transmitter resonator based on second information from at least one of the one or more sensors under the control of the corresponding controller.
該系統可以包括第三複數個電力調節單元,來自該第三複數個電力調節單元之中的每一電力調節單元電連接在對應的光伏電池與對應的發射模組之間,並配置以將來自對應的光伏電池的電力調適成與對應的發射模組兼容的格式。來自該第一複數個發射模組之中的每一發射模組可以包括小信號電子電路,且對應的電力調節單元可以進一步配置用於將電力提供至該小信號電子電路。來自該第二複數個發射器共振器中的每一發射器共振器可以設置在與該電池的一主動太陽輻射接收表面相對之對應的光伏電池的一表面上。The system may include a third plurality of power conditioning units, each power conditioning unit from the third plurality of power conditioning units being electrically connected between a corresponding photovoltaic cell and a corresponding transmitter module and configured to adapt power from the corresponding photovoltaic cell to a format compatible with the corresponding transmitter module. Each transmitter module from the first plurality of transmitter modules may include a small signal electronic circuit, and the corresponding power conditioning unit may be further configured to provide power to the small signal electronic circuit. Each transmitter resonator from the second plurality of transmitter resonators may be disposed on a surface of the corresponding photovoltaic cell opposite an active solar radiation receiving surface of the cell.
在用於將電力自光伏電池陣列傳送至電力負載的近場無線系統的又一實施例中,該系統包括:第一複數個發射模組,每一發射模組與該陣列中之對應的光伏電池進行有線電通信,每一發射模組配置以將來自對應的光伏電池的該電力轉換成具有振盪頻率的振盪電力信號;第二複數個發射器共振器,每一發射器共振器與來自該第一複數個發射模組之對應的發射模組進行有線電通信,並配置以在該振盪頻率下共振;第三複數個接收器共振器,配置以在該振盪頻率下共振,來自該第三複數個接收器共振器中的每一接收器共振器設置以經由電容式耦合及磁感應中的至少一者自來自該第二複數個發射器共振器中之對應的發射器共振器接收電力;以及第四複數個接收器模組,每一接收器模組與來自該第三複數個接收器共振器中之對應的接收器共振器進行有線電通信,該接收器模組配置以自對應的接收器共振器接收電力且經由有線電通信將該接收的電力以直流電形式提供給電力負載。In yet another embodiment of a near-field wireless system for transmitting power from an array of photovoltaic cells to a power load, the system includes: a first plurality of transmitter modules, each transmitter module in wired electrical communication with a corresponding photovoltaic cell in the array, each transmitter module configured to convert the power from the corresponding photovoltaic cell into an oscillating power signal having an oscillation frequency; a second plurality of transmitter resonators, each transmitter resonator in wired electrical communication with a corresponding transmitter module from the first plurality of transmitter modules and configured to resonate at the oscillation frequency; a third plurality of receiver resonators, The invention relates to a power supply module of the present invention, wherein the first plurality of receiver resonators is configured to resonate at the oscillation frequency, each receiver resonator from the third plurality of receiver resonators is configured to receive power from a corresponding transmitter resonator from the second plurality of transmitter resonators via at least one of capacitive coupling and magnetic induction; and a fourth plurality of receiver modules, each receiver module being in wired electrical communication with a corresponding receiver resonator from the third plurality of receiver resonators, the receiver module being configured to receive power from the corresponding receiver resonator and provide the received power to a power load in the form of direct current via wired electrical communication.
來自該第一複數個發射模組中的每一發射模組可以包括一功率放大器,該功率放大器配置以在該振盪頻率下調變自對應的光伏電池接收的電力。來自該第一複數個發射模組中的每一發射模組可以包括一振盪器,該振盪器配置以將該振盪頻率提供至對應的功率放大器。來自該第一複數個發射模組中的每一發射模組可以進一步包括一控制器及一個或多個感測器,該控制器配置以基於來自該一個或多個感測器中之至少一者的第一資訊來使振盪頻率變化。來自該第一複數個發射模組中的每一發射模組可以包括一傳輸調諧網路,其配置以在對應的控制器的控制下基於來自該一個或多個感測器中之至少一者的第二資訊至少改變由該發射模組提供至對應的發射器共振器的電力的相位。Each transmitting module from the first plurality of transmitting modules may include a power amplifier configured to modulate power received from a corresponding photovoltaic cell at the oscillation frequency. Each transmitting module from the first plurality of transmitting modules may include an oscillator configured to provide the oscillation frequency to the corresponding power amplifier. Each transmitting module from the first plurality of transmitting modules may further include a controller and one or more sensors, the controller configured to vary the oscillation frequency based on first information from at least one of the one or more sensors. Each transmitting module from the first plurality of transmitting modules may include a transmit tuning network configured to at least change the phase of power provided by the transmitting module to the corresponding transmitter resonator based on second information from at least one of the one or more sensors under the control of the corresponding controller.
該系統可以進一步包括第五複數個電力調節單元,來自該第五複數個電力調節單元中的每一電力調節單元電連接在來自該太陽能電池陣列中之對應的光伏電池與來自該第一複數個發射模組中之對應的發射模組之間,並配置以將來自對應的光伏電池的電力調適成與對應的發射模組兼容的格式。來自該第一複數個發射模組中的每一發射模組可以包括小信號電子電路,且來自該第五複數個電力調節單元中之對應的電力調節單元可以進一步配置用於將電力提供至該小信號電子電路。來自該第二複數個發射器共振器中的每一發射器共振器可以設置在與該電池的一主動太陽輻射接收表面相對之來自該光伏電池陣列中之對應的光伏電池的一表面上。The system may further include a fifth plurality of power conditioning units, each power conditioning unit from the fifth plurality of power conditioning units being electrically connected between a corresponding photovoltaic cell from the solar cell array and a corresponding transmitting module from the first plurality of transmitting modules, and configured to adapt power from the corresponding photovoltaic cell to a format compatible with the corresponding transmitting module. Each transmitting module from the first plurality of transmitting modules may include a small signal electronic circuit, and the corresponding power conditioning unit from the fifth plurality of power conditioning units may be further configured to provide power to the small signal electronic circuit. Each emitter resonator from the second plurality of emitter resonators may be disposed on a surface of a corresponding photovoltaic cell from the photovoltaic cell array opposite an active solar radiation receiving surface of the cell.
在又一實施例中,提出一種用於將電力自一光伏電池陣列傳送至一電力負載的近場無線系統,該系統包括:第一複數個發射模組,每一發射模組與該陣列中之對應的光伏電池進行有線電通信,每一發射模組配置以將來自對應的光伏電池的電力轉換成具有振盪頻率的振盪電力信號;第二複數個發射器共振器,每一發射器共振器與來自該第一複數個發射模組之對應的發射模組進行有線電通信,並配置以在該振盪頻率下共振;第三複數個接收器共振器,其數量少於該複數個發射器共振器且配置以在該振盪頻率下共振,來自該第三複數個接收器共振器中的每一接收器共振器設置以經由電容式耦合及磁感應中的至少一者自該複數個發射器共振器的一部分接收電力;以及第四複數個接收器模組,每一接收器模組與對應的接收器共振器進行有線電通信,該接收器模組配置以自對應的接收器共振器接收電力且經由有線電通信將該接收的電力以直流電形式提供給電力負載。In another embodiment, a near-field wireless system for transmitting power from a photovoltaic cell array to a power load is provided, the system comprising: a first plurality of transmitter modules, each transmitter module being in wired electrical communication with a corresponding photovoltaic cell in the array, each transmitter module being configured to convert power from the corresponding photovoltaic cell into an oscillating power signal having an oscillation frequency; a second plurality of transmitter resonators, each transmitter resonator being in wired electrical communication with a corresponding transmitter module from the first plurality of transmitter modules and being configured to resonate at the oscillation frequency; a third plurality of transmitter resonators being in wired electrical communication with a corresponding transmitter module from the first plurality of transmitter modules and being configured to resonate at the oscillation frequency; The invention further comprises a plurality of receiver resonators, each of which is configured to resonate at the oscillation frequency, each of which is configured to receive power from a portion of the plurality of transmitter resonators via at least one of capacitive coupling and magnetic induction; and a fourth plurality of receiver modules, each of which is in wired electrical communication with a corresponding receiver resonator, the receiver modules being configured to receive power from the corresponding receiver resonator and provide the received power to a power load in the form of direct current via the wired electrical communication.
來自該第一複數個發射模組中的每一發射模組可以包括一功率放大器,其配置以在該振盪頻率下調變自對應的光伏電池接收的電力。來自該第一複數個發射模組中的每一發射模組可以包括一振盪器,其配置以將該振盪頻率提供至對應的功率放大器。來自該第一複數個發射模組中的每一發射模組可以進一步包括一控制器及一個或多個感測器,該控制器配置以基於來自該一個或多個感測器中之至少一者的第一資訊來使振盪頻率變化。來自該第一複數個發射模組中的每一發射模組可以包括一傳輸調諧網路,其配置以在對應的控制器的控制下基於來自該一個或多個感測器中之至少一者的第二資訊至少改變由該發射模組提供至對應的發射器共振器的電力的相位。Each transmitting module from the first plurality of transmitting modules may include a power amplifier configured to modulate power received from a corresponding photovoltaic cell at the oscillation frequency. Each transmitting module from the first plurality of transmitting modules may include an oscillator configured to provide the oscillation frequency to the corresponding power amplifier. Each transmitting module from the first plurality of transmitting modules may further include a controller and one or more sensors, the controller configured to vary the oscillation frequency based on first information from at least one of the one or more sensors. Each transmitting module from the first plurality of transmitting modules may include a transmit tuning network configured to at least change the phase of power provided by the transmitting module to the corresponding transmitter resonator based on second information from at least one of the one or more sensors under the control of the corresponding controller.
該系統可以包括第五複數個電力調節單元,來自該第五複數個電力調節單元中的每一電力調節單元電連接在來自該光伏電池陣列中之對應的光伏電池與來自該第一複數個發射模組中之對應的發射模組之間,並配置以將來自對應的光伏電池的電力調適成與對應的發射模組兼容的格式。The system may include a fifth plurality of power conditioning units, each of the fifth plurality of power conditioning units being electrically connected between a corresponding photovoltaic cell from the photovoltaic cell array and a corresponding transmitting module from the first plurality of transmitting modules, and being configured to adapt power from the corresponding photovoltaic cell into a format compatible with the corresponding transmitting module.
來自該第一複數個發射模組中的每一發射模組可以包括小信號電子電路,且來自該第五複數個電力調節單元中之對應的電力調節單元可以進一步配置用於將電力提供至該小信號電子電路。來自該第二複數個發射器共振器中的每一發射器共振器可以設置在與該電池的一主動太陽輻射接收表面相對之來自該光伏電池陣列中之對應的光伏電池的一表面上。Each transmitter module from the first plurality of transmitter modules may include small signal electronic circuitry, and a corresponding power conditioning unit from the fifth plurality of power conditioning units may be further configured to provide power to the small signal electronic circuitry. Each transmitter resonator from the second plurality of transmitter resonators may be disposed on a surface of a corresponding photovoltaic cell from the photovoltaic cell array opposite an active solar radiation receiving surface of the cell.
在又一態樣中,提供一種用於將電力自一光伏電池傳送至一電力負載的方法,該方法包括:在一發射模組中將來自該光伏電池的電力轉換成具有振盪頻率的振盪電力信號;將電力傳送至與該發射模組進行有線電通信且配置以在該振盪頻率下共振的一發射器共振器;在一接收器共振器中接收電力,該接收器共振器配置以在該振盪頻率下共振並設置以經由電容式耦合及磁感應中的至少一者自該發射器共振器接收電力;在與該接收器共振器進行有線電通信的一接收器模組中接收電力;以及經由有線電通信將接收的電力以直流電形式提供給電力負載。In yet another aspect, a method for transmitting power from a photovoltaic cell to an electrical load is provided, the method comprising: converting power from the photovoltaic cell into an oscillating electrical signal having an oscillation frequency in a transmitter module; transmitting the power to a transmitter resonator that is in wired electrical communication with the transmitter module and configured to resonate at the oscillation frequency; receiving the power in a receiver resonator that is configured to resonate at the oscillation frequency and is configured to receive power from the transmitter resonator via at least one of capacitive coupling and magnetic induction; receiving the power in a receiver module that is in wired electrical communication with the receiver resonator; and providing the received power to the electrical load in the form of direct current via wired electrical communication.
在用於將電力自一光伏電池陣列傳送至一電力負載的方法的又一實施例中,該方法包括:在第一複數個對應發射模組的每一者中將來自該陣列中的光伏電池中的每一者的電力轉換成具有振盪頻率的振盪電力信號;在該等發射模組的每一者中將電力傳送至來自第二複數個發射器共振器中之對應的發射器共振器,該等發射器共振器各自配置以在該振盪頻率下共振;在一接收器共振器中接收電力,該接收器共振器配置以在該振盪頻率下共振並設置以經由電容式耦合及磁感應中的至少一者自該複數個發射器共振器接收電力;在與該接收器共振器進行有線電通信的一接收器模組中接收電力;以及經由有線電通信將接收的電力以直流電形式提供給電力負載。In yet another embodiment of a method for delivering power from a photovoltaic cell array to an electrical load, the method includes: converting power from each of the photovoltaic cells in the array into an oscillating power signal having an oscillating frequency in each of a first plurality of corresponding transmitter modules; delivering power from a corresponding transmitter resonator in each of the transmitter modules to a second plurality of transmitter resonators, the transmitter resonators The invention relates to a method for transmitting power to a power load in a power supply module of the present invention. The method comprises: receiving power in a receiver resonator, each of which is configured to resonate at the oscillation frequency; receiving power in a receiver resonator, the receiver resonator being configured to resonate at the oscillation frequency and being arranged to receive power from the plurality of transmitter resonators via at least one of capacitive coupling and magnetic induction; receiving power in a receiver module in wired electrical communication with the receiver resonator; and providing the received power in the form of direct current to a power load via wired electrical communication.
在用於將電力自一光伏電池陣列傳送至一電力負載的方法的又一實施例中,該方法包括:在第一複數個對應發射模組的每一者中將來自該陣列中的光伏電池中的每一者的電力轉換成具有振盪頻率的振盪電力信號;將來自該等傳輸模組中之每一者的電力傳送至來自第二複數個發射器共振器中之對應的發射器共振器,其中,每一發射器共振器配置以在該振盪頻率下共振;在配置以在該振盪頻率下共振之對應的接收器共振器中接收來自每一發射器共振器的電力,其中,每一接收器共振器進一步配置且設置以經由電容式耦合及磁感應中的至少一者自該發射器共振器接收電力;在與該接收器共振器進行有線電通信之對應的接收器模組中接收來自每一接收器共振器的電力;以及經由有線電通信將接收的電力以直流電形式提供給電力負載。In yet another embodiment of a method for transmitting power from a photovoltaic cell array to an electrical load, the method includes: converting power from each of the photovoltaic cells in the array into an oscillating power signal having an oscillation frequency in each of a first plurality of corresponding transmitter modules; transmitting power from each of the transmission modules to a corresponding transmitter resonator from a second plurality of transmitter resonators, wherein each transmitter resonator is configured to resonate at the oscillation frequency; ; receiving power from each transmitter resonator in a corresponding receiver resonator configured to resonate at the oscillation frequency, wherein each receiver resonator is further configured and arranged to receive power from the transmitter resonator via at least one of capacitive coupling and magnetic induction; receiving power from each receiver resonator in a corresponding receiver module in wired electrical communication with the receiver resonator; and providing the received power to a power load in the form of direct current via wired electrical communication.
在用於將電力自一光伏電池陣列傳送至一電力負載的方法的又一實施例中,該方法包括:在第一複數個對應發射模組的每一者中將來自該陣列的光伏電池中的每一者的電力轉換成具有振盪頻率的振盪電力信號;將來自傳輸模組中的每一者的電力傳送至來自第二複數個發射器共振器中的一發射器共振器,其中,每一發射器共振器配置以在振盪頻率下共振;在第三複數個接收器共振器中之任何接近接收器共振器中接收來自每一發射器共振器的電力,該等接收器共振器配置以在振盪頻率下共振,其中,每一接收器共振器進一步配置且設置以經由電容式耦合及磁感應中的至少一者自該發射器共振器接收電力;在該第三複數個接收器共振器之間共用接收的電力;以及經由有線電通信將接收的電力以直流電形式提供給電力負載,該接收的電力經由對應的一個或多個接收器模組來自該第三複數個接收器共振器中的一者或多者。該方法可以進一步包括在將電力轉換成振盪電力信號之前將來自每一光伏電池的電力的電壓及電流轉換成適應於對應的發射模組的電壓及電流。In yet another embodiment of a method for transmitting power from a photovoltaic cell array to an electrical load, the method includes: converting power from each of the photovoltaic cells in the array into an oscillating power signal having an oscillation frequency in each of a first plurality of corresponding transmitter modules; transmitting power from each of the transmission modules to a transmitter resonator from a second plurality of transmitter resonators, wherein each transmitter resonator is configured to resonate at the oscillation frequency; and transmitting power from each of the transmission modules to any adjacent receiver resonator in a third plurality of receiver resonators. Receiving power from each transmitter resonator, the receiver resonators configured to resonate at an oscillation frequency, wherein each receiver resonator is further configured and arranged to receive power from the transmitter resonator via at least one of capacitive coupling and magnetic induction; sharing the received power between the third plurality of receiver resonators; and providing the received power to a power load in direct current form via wired electrical communication, the received power coming from one or more of the third plurality of receiver resonators via corresponding one or more receiver modules. The method may further include converting the voltage and current of the power from each photovoltaic cell into a voltage and current suitable for the corresponding transmitter module before converting the power into the oscillating power signal.
提供一種用於將電力自一直流電電源供應至一電力負載的電力傳送系統,該系統包括:一射頻功率放大器,其與該電源進行有線電通信且配置以將來自該電源的直流電電壓轉換成具有振盪頻率的交流電壓信號;一可調的相位射頻整流器,其與該電力負載進行有線電接觸且與該功率放大器進行射頻通信,該整流器配置以接收自該放大器傳送的電力;以及一接收器控制器,其與該整流器進行通信,該接收器控制器配置用於藉由調整該整流器的電流-電壓相位特性來調整自該放大器至該整流器的電力傳送的效率。該整流器可以是一差分自同步射頻整流器。A power transmission system for supplying power from a DC power source to a power load is provided, the system comprising: a radio frequency power amplifier in wired electrical communication with the power source and configured to convert a DC voltage from the power source into an AC voltage signal having an oscillating frequency; an adjustable phase radio frequency rectifier in wired electrical contact with the power load and in radio frequency communication with the power amplifier, the rectifier configured to receive power transmitted from the amplifier; and a receiver controller in communication with the rectifier, the receiver controller configured to adjust the efficiency of power transmission from the amplifier to the rectifier by adjusting the current-voltage phase characteristic of the rectifier. The rectifier may be a differential self-synchronous radio frequency rectifier.
該接收器控制器可以配置用於自動地調整該整流器的電流-電壓相位特性。該電力傳送系統可以進一步包括一負載管理系統,其與該負載進行有線通信且按功率信號方式設置在該負載與該整流器之間,該負載管理系統配置用於藉由調整該整流器的輸入阻抗來增加電力傳送的效率。該負載管理系統可以配置用於自動地調整該整流器的電流-電壓相位特性。The receiver controller may be configured to automatically adjust the current-voltage phase characteristic of the rectifier. The power transmission system may further include a load management system in wired communication with the load and disposed between the load and the rectifier in a power signaling manner, the load management system being configured to increase the efficiency of power transmission by adjusting the input impedance of the rectifier. The load management system may be configured to automatically adjust the current-voltage phase characteristic of the rectifier.
該電力傳送系統可以進一步包括一發射器控制器,其與該放大器進行通信,該發射器控制器配置以藉由調整該放大器的電流-電壓相位特性來增加電力傳送的效率。該發射器控制器可以配置以自動地調整該放大器的電流-電壓相位特性,以增加電力傳送的效率。The power transmission system may further include a transmitter controller in communication with the amplifier, the transmitter controller configured to increase the efficiency of the power transmission by adjusting the current-voltage phase characteristic of the amplifier. The transmitter controller may be configured to automatically adjust the current-voltage phase characteristic of the amplifier to increase the efficiency of the power transmission.
該電力傳送系統可以進一步包括一振盪器,其與該放大器及該發射器控制器進行通信。該發射器控制器可以配置用於經由該振盪器調整振盪頻率。The power transmission system may further include an oscillator in communication with the amplifier and the transmitter controller. The transmitter controller may be configured to adjust an oscillation frequency via the oscillator.
該功率放大器可以與該可調的相位射頻整流器進行直接有線射頻通信。該功率放大器可以與該可調的相位射頻整流器進行無線近場射頻通信。該電力傳送系統可以包括:一發射器共振器,其與該功率放大器進行有線射頻通信;以及一接收器共振器,其與該整流器進行有線射頻通信。該發射器共振器與該接收器共振器可以彼此進行無線近場射頻通信。該功率放大器可以與該整流器進行電容式近場無線射頻通信及感應式近場無線射頻通信中的至少一者。該功率放大器可以與該整流器進行雙峰近場無線射頻通信。The power amplifier may be in direct wired radio frequency communication with the adjustable phase radio frequency rectifier. The power amplifier may be in wireless near-field radio frequency communication with the adjustable phase radio frequency rectifier. The power transmission system may include: a transmitter resonator in wired radio frequency communication with the power amplifier; and a receiver resonator in wired radio frequency communication with the rectifier. The transmitter resonator and the receiver resonator may be in wireless near-field radio frequency communication with each other. The power amplifier may be in at least one of capacitive near-field radio frequency communication and inductive near-field radio frequency communication with the rectifier. The power amplifier may be in dual-peak near-field radio frequency communication with the rectifier.
該直流電電源可以包括一可再充電的電池,且該負載可以包括一電動馬達。該負載可以包括一電腦監視器。該系統的共振結構可以包括承載該系統的結構組件的至少一個導電機械負載。The DC power source may include a rechargeable battery and the load may include an electric motor. The load may include a computer monitor. The resonant structure of the system may include at least one conductive mechanical load that carries the structural components of the system.
該系統可以進一步包括電設置在該電源與該電力傳送系統之間的一電力調節單元,該電力調節單元配置用於調整來自該電源的電流及電壓中的至少一者,以改良電力傳送的效率。The system may further include a power conditioning unit electrically disposed between the power source and the power transmission system, the power conditioning unit being configured to regulate at least one of the current and the voltage from the power source to improve the efficiency of the power transmission.
進一步提供一種用於將電力自一直流電電源傳送至一電力負載的方法,該方法包括:提供與該電源進行有線電通信的一電力傳送系統,該電力傳送系統包括與一可調的相位射頻整流器進行射頻通信的一射頻功率放大器,該可調的相位射頻整流器與該電力負載進行有線電接觸;在該放大器中將來自該直流電電源的電力轉換成射頻振盪功率信號;在該整流器中將該射頻振盪功率信號轉換成直流電功率信號;以及藉由調整該整流器的電流-電壓相位特性來調整電力傳送的效率。提供該可調的相位射頻整流器可以包括提供一差分自同步射頻整流器。Further provided is a method for transmitting power from a DC power source to an electrical load, the method comprising: providing a power transmission system in wired electrical communication with the power source, the power transmission system comprising an RF power amplifier in RF communication with an adjustable phase RF rectifier, the adjustable phase RF rectifier being in wired electrical contact with the electrical load; converting power from the DC power source into an RF oscillating power signal in the amplifier; converting the RF oscillating power signal into a DC power signal in the rectifier; and adjusting the efficiency of the power transmission by adjusting the current-voltage phase characteristic of the rectifier. Providing the adjustable phase RF rectifier may include providing a differential self-synchronous RF rectifier.
該方法可以進一步包括藉由調整該放大器的直流電等效輸入電阻來調整電力傳送的效率。提供該電力傳送系統可以包括提供在該整流器與該負載之間進行有線通信的一負載管理系統。該調整該放大器的直流電等效輸入電阻可以包括藉由調整該負載管理系統來調整該整流器的輸入阻抗。調整該負載管理系統可以包括自動地調整該負載管理系統。The method may further include adjusting the efficiency of the power transmission by adjusting the DC equivalent input resistance of the amplifier. Providing the power transmission system may include providing a load management system in wired communication between the rectifier and the load. The adjusting the DC equivalent input resistance of the amplifier may include adjusting the input impedance of the rectifier by adjusting the load management system. Adjusting the load management system may include automatically adjusting the load management system.
該方法可以進一步包括藉由調整功率放大器的電流-電壓相位特性來調整電力傳送的效率。提供該電力傳送系統可以包括提供與該功率放大器進行通信以控制該功率放大器的一發射器控制器。該調整該功率放大器的電流-電壓相位特性可以由該發射器控制器執行。調整該功率放大器的電流-電壓相位特性可以由該發射器控制器自動地執行。The method may further include adjusting the efficiency of the power transmission by adjusting the current-voltage phase characteristic of the power amplifier. Providing the power transmission system may include providing a transmitter controller in communication with the power amplifier to control the power amplifier. The adjusting the current-voltage phase characteristic of the power amplifier may be performed by the transmitter controller. The adjusting the current-voltage phase characteristic of the power amplifier may be performed automatically by the transmitter controller.
該方法可以進一步包括藉由改變該功率放大器的振盪頻率來調整電力傳送的效率。The method may further include adjusting the efficiency of power transfer by changing the oscillation frequency of the power amplifier.
提供一電力傳送系統可以包括提供與該整流器進行通信以控制該整流器的一接收器控制器。該調整該整流器的電流-電壓相位特性可以由該接收器控制器執行。該調整該整流器的電流-電壓相位特性可以由該接收器控制器自動地執行。Providing a power transmission system may include providing a receiver controller in communication with the rectifier to control the rectifier. The adjusting the current-voltage phase characteristic of the rectifier may be performed by the receiver controller. The adjusting the current-voltage phase characteristic of the rectifier may be performed automatically by the receiver controller.
提供該電力傳送系統可以包括提供與可調的相位射頻整流器進行直接有線射頻通信的該功率放大器。提供該電力傳送系統可以包括提供與該可調的相位射頻整流器進行無線近場射頻通信的該功率放大器。Providing the power delivery system may include providing the power amplifier in direct wired radio frequency communication with the adjustable phase radio frequency rectifier. Providing the power delivery system may include providing the power amplifier in wireless near field radio frequency communication with the adjustable phase radio frequency rectifier.
提供該電力傳送系統可以包括:一發射器共振器,其提供與該功率放大器進行有線射頻通信;以及一接收器共振器,其與該射頻整流器進行有線射頻通信。該方法可以進一步包括操作彼此進行無線近場射頻通信的發射器共振器及接收器共振器。提供該電力傳送系統可以包括提供與該整流器進行電容式近場無線射頻通信及感應式近場無線射頻通信中之至少一者的該功率放大器。提供該電力傳送系統可以包括提供與該整流器進行雙峰無線近場通信一接收器共振器該功率放大器。Providing the power transfer system may include: a transmitter resonator that provides wired radio frequency communication with the power amplifier; and a receiver resonator that provides wired radio frequency communication with the radio frequency rectifier. The method may further include operating the transmitter resonator and the receiver resonator in wireless near-field radio frequency communication with each other. Providing the power transfer system may include providing the power amplifier in at least one of capacitive near-field wireless radio frequency communication and inductive near-field wireless radio frequency communication with the rectifier. Providing the power transfer system may include providing a receiver resonator and the power amplifier in bimodal wireless near-field communication with the rectifier.
該方法可以進一步包括:提供電設置在電源與電力傳送系統之間的一電力調節單元;以及調整該電力調節單元以調整來自該電源的電流及電壓中的至少一者,以改良電力傳送的效率。The method may further include: providing a power conditioning unit electrically disposed between the power source and the power transmission system; and adjusting the power conditioning unit to adjust at least one of the current and voltage from the power source to improve the efficiency of the power transmission.
進一步提供一種用於將電力自一直流電電源傳送至一電力負載的方法,該方法包括:提供與該電源進行有線電通信的一電力傳送系統,該電力傳送系統包括:一振盪器,其能夠在振盪頻率下振盪;一功率放大器及一發射器調諧網路,該兩者皆在一發射器控制器的控制下;以及一接收器調諧網路及一負載管理系統,該兩者皆在一接收器控制器的控制下,該負載管理系統與該電力負載進行有線電通信;在該功率放大器中將來自該電源的電力轉換成具有振盪頻率的振盪電力信號;在該發射器控制器的控制下經由該發射器調諧網路及該接收器調網路將功率信號自該功率放大器傳送至該負載管理系統;調整該振盪頻率、該功率放大器的輸入DC等效電阻、該發射器調諧網路、該接收器調諧網路及該負載管理系統中的至少一者,以改變電力傳送的速率;以及經由有線電通信將由該負載管理系統接收的電力以直流電形式提供給該電力負載。Further provided is a method for transmitting power from a DC power source to a power load, the method comprising: providing a power transmission system in wired communication with the power source, the power transmission system comprising: an oscillator capable of oscillating at an oscillation frequency; a power amplifier and a transmitter tuning network, both of which are under the control of a transmitter controller; and a receiver tuning network and a load management system, both of which are under the control of a receiver controller, the load management system in wired communication with the power load; in the power amplifier The invention relates to a method for transmitting the power from the power source into an oscillating power signal having an oscillation frequency; transmitting the power signal from the power amplifier to the load management system via the transmitter tuning network and the receiver tuning network under the control of the transmitter controller; adjusting at least one of the oscillation frequency, the input DC equivalent resistance of the power amplifier, the transmitter tuning network, the receiver tuning network and the load management system to change the rate of power transmission; and providing the power received by the load management system to the power load in the form of direct current via wired communication.
經由該發射器調諧網路及該接收器調諧網路傳送該功率信號可以包括藉由有線通信傳送電力。經由該發射器調諧網路及該接收器調諧網路傳送該功率信號可以包括藉由無線通信傳送電力。藉由無線通信傳送電力可以包括藉由近場無線通信傳送電力。藉由近場無線通信傳送電力可以包括藉由電容式耦合及感應式耦合中的至少一者傳送電力。Transmitting the power signal via the transmitter tuning network and the receiver tuning network may include transmitting power by wired communication. Transmitting the power signal via the transmitter tuning network and the receiver tuning network may include transmitting power by wireless communication. Transmitting power by wireless communication may include transmitting power by near-field wireless communication. Transmitting power by near-field wireless communication may include transmitting power by at least one of capacitive coupling and inductive coupling.
自一直流電電源傳送電力可以包括自至少一個太陽能電池傳送電力。自一直流電電源傳送電力可以包括自至少一個太陽能電池傳送電力。自一直流電電源傳送電力可以包括自具有變化電壓的電源傳送電力。Delivering power from a DC power source may include delivering power from at least one solar cell. Delivering power from a DC power source may include delivering power from at least one solar cell. Delivering power from a DC power source may include delivering power from a power source having a varying voltage.
在另一實施例中,一種電動系統包括:一機械負載承載結構,具有導電的第一部分;一電力負載;以及一電力傳送系統,包含至少一個射頻共振器,該至少一個射頻共振器配置以用於近場無線電力傳送,其中,該共振器至少部分地包括該導電之第一部分。該電動系統可以進一步包括一可再充電電池,且該電力負載可以包括一電動馬達。該電動系統可以是一電動運載工具且該機械負載承載結構可以包括該運載工具的一底盤。該電動系統可以是一顯示監視器,且該機械負載承載結構可以是該監視器的框架及底座中的至少一者。In another embodiment, an electric system includes: a mechanical load carrying structure having a conductive first portion; a power load; and a power transfer system including at least one radio frequency resonator configured for near-field wireless power transfer, wherein the resonator at least partially includes the conductive first portion. The electric system may further include a rechargeable battery, and the power load may include an electric motor. The electric system may be an electric vehicle and the mechanical load carrying structure may include a chassis of the vehicle. The electric system may be a display monitor, and the mechanical load carrying structure may be at least one of a frame and a base of the monitor.
該電動系統可以進一步包括一電源。該電力傳送系統可以包括:一射頻功率放大器,其與該電源進行有線電通信並配置以將來自該電源之直流電電壓轉換成具有振盪頻率的交流電壓信號;一可調的相位射頻整流器,其與該電力負載進行有線電接觸且與該功率放大器進行射頻通信,該整流器配置以接收自該放大器傳送的電力;以及一接收器控制器,其與該整流器進行通信,該接收器控制器配置用於藉由調整該整流器的電流-電壓相位特性來調整自該放大器至該整流器之電力傳送的效率。The electric power system may further include a power source. The power transmission system may include: a radio frequency power amplifier in wired electrical communication with the power source and configured to convert a direct current voltage from the power source into an alternating current voltage signal having an oscillation frequency; an adjustable phase radio frequency rectifier in wired electrical contact with the power load and in radio frequency communication with the power amplifier, the rectifier configured to receive power transmitted from the amplifier; and a receiver controller in communication with the rectifier, the receiver controller configured to adjust the efficiency of power transmission from the amplifier to the rectifier by adjusting the current-voltage phase characteristic of the rectifier.
在另一實施例中,一種設備包括:一機械負載承載結構,具有導電的第一部分;一電源;一電力負載;以及一電力傳送系統,包含:一射頻功率放大器,其與該電源進行有線電通信並配置以將來自該電源的直流電電壓轉換成具有振盪頻率的交流電壓信號;一可調的相位射頻整流器,其與該電力負載進行有線電連接且與該功率放大器進行射頻通信,該整流器配置以接收自該放大器傳送的電力;以及一接收器控制器,其與該整流器進行通信,該接收器控制器配置用於藉由調整該整流器的電流-電壓相位特性來調整自該放大器至該整流器的電力傳送的效率;其中,該導電的第一部分設置以載運來自該放大器的射頻信號及前往該整流器的射頻信號中的至少一者。In another embodiment, an apparatus includes: a mechanical load bearing structure having a conductive first portion; a power source; an electrical load; and a power transmission system including: an RF power amplifier in wired electrical communication with the power source and configured to convert a DC voltage from the power source into an AC voltage signal having an oscillating frequency; an adjustable phase RF rectifier in wired electrical communication with the electrical load and in communication with the power amplifier; a rectifier configured to receive power transmitted from the amplifier; and a receiver controller communicating with the rectifier, the receiver controller configured to adjust the efficiency of power transmission from the amplifier to the rectifier by adjusting the current-voltage phase characteristic of the rectifier; wherein the conductive first portion is configured to carry at least one of the RF signal from the amplifier and the RF signal to the rectifier.
該設備可以進一步包括一負載管理系統,其與該負載進行有線通信且按功率信號方式設置在該負載與該整流器之間,該負載管理系統配置用於藉由調整該整流器的輸入阻抗來增加電力傳送的效率。該設備可以進一步包括與該放大器進行通信的一發射器控制器,該發射器控制器配置用於藉由調整該放大器的電流-電壓相位特性來增加電力傳送的效率。該設備可以進一步包括與該放大器及該發射器控制器進行通信的一振盪器,其中,該發射器控制器配置用於經由該振盪器調整振盪頻率。The device may further include a load management system in wired communication with the load and disposed between the load and the rectifier in a power signal manner, the load management system being configured to increase the efficiency of power transmission by adjusting the input impedance of the rectifier. The device may further include a transmitter controller in communication with the amplifier, the transmitter controller being configured to increase the efficiency of power transmission by adjusting the current-voltage phase characteristic of the amplifier. The device may further include an oscillator in communication with the amplifier and the transmitter controller, wherein the transmitter controller is configured to adjust the oscillation frequency via the oscillator.
該功率放大器可以經由該導電的第一部分與該整流器進行直接有線射頻通信。該功率放大器可以與該整流器進行無線近場射頻通信。該電力傳送系統可以包括:一發射器共振器,與該功率放大器進行有線射頻通信;以及一接收器共振器,與該整流器進行有線射頻通信,且該發射器共振器及該接收器共振器中的一者可以包括該導電的第一部分。該發射器共振器與該接收器共振器可以彼此進行無線近場射頻通信。該功率放大器可以與該整流器進行電容式近場無線射頻通信及感應式近場無線射頻通信中的至少一者。該功率放大器可以與該整流器進行雙峰近場無線射頻通信。該直流電源可以包括一可再充電的電池,且該負載可以包括一電動馬達。The power amplifier may be in direct wired RF communication with the rectifier via the conductive first portion. The power amplifier may be in wireless near-field RF communication with the rectifier. The power transmission system may include: a transmitter resonator in wired RF communication with the power amplifier; and a receiver resonator in wired RF communication with the rectifier, and one of the transmitter resonator and the receiver resonator may include the conductive first portion. The transmitter resonator and the receiver resonator may be in wireless near-field RF communication with each other. The power amplifier may be in at least one of capacitive near-field wireless RF communication and inductive near-field wireless RF communication with the rectifier. The power amplifier may be in bimodal near-field wireless RF communication with the rectifier. The DC power source may include a rechargeable battery, and the load may include an electric motor.
在某些實施例中,一密封的雙向電力傳送電路裝置包括複數個端子,該複數個端子設置用於與該密封的裝置外部的裝置進行電通信,該密封的裝置在密封的內部包括:一多端子電力切換裝置,其具有至少一個DC端子、至少一個AC端子及至少一個控制端子,該多端子電力切換裝置可在放大狀況與整流狀況之間調整,並佈置用於:經由至少一個DC端子雙向傳送DC電壓及DC電流;以及經由至少一個AC端子雙向傳送具有振幅、頻率及相位的射頻功率信號;在與一控制器進行有線資料通信中,一相位、頻率及工作週期調整電路經由該至少一個控制端子與該電力切換裝置進行有線電通信,並佈置用於:在該電力切換裝置的該至少一個控制端子處建立具有該射頻功率信號的頻率及相位的射頻振盪信號;以及藉由在該控制器的指令下調整該射頻振盪信號的相位來在放大狀況與整流狀況之間調整該電力切換裝置。在某些實施例中,該控制器可以設置在密封的雙向電力傳送電路裝置的密封內部。該密封的電力傳送電路裝置的該複數個端子可以包括用於該控制器與該密封內部外部的裝置之間的資料通信的端子。In some embodiments, a sealed bidirectional power transmission circuit device includes a plurality of terminals, the plurality of terminals are configured to communicate electrically with a device outside the sealed device, the sealed device includes within the sealed interior: a multi-terminal power switching device having at least one DC terminal, at least one AC terminal, and at least one control terminal, the multi-terminal power switching device being adjustable between an amplification state and a rectification state, and being arranged to: bidirectionally transmit a DC voltage and a DC current via at least one DC terminal; and bidirectionally transmit a DC voltage and a DC current via at least one AC terminal. The terminal bidirectionally transmits a radio frequency power signal having amplitude, frequency and phase; in wired data communication with a controller, a phase, frequency and duty cycle adjustment circuit performs wired electrical communication with the power switching device via the at least one control terminal and is arranged to: establish a radio frequency oscillation signal having the frequency and phase of the radio frequency power signal at the at least one control terminal of the power switching device; and adjust the power switching device between an amplification state and a rectification state by adjusting the phase of the radio frequency oscillation signal under the command of the controller. In some embodiments, the controller can be disposed in a sealed interior of the sealed bidirectional power transmission circuit device. The plurality of terminals of the sealed power transfer circuit device may include terminals for data communication between the controller and devices outside the sealed interior.
該射頻功率信號可以具有一工作週期,且該相位、頻率及工作週期調整電路可以進一步佈置用於藉由調整該射頻振盪信號的工作週期來調整該射頻功率信號的工作週期。該相位、頻率及工作週期調整電路可以包括用於在來自該控制器的指令下產生該射頻振盪信號的一射頻振盪器。The RF power signal may have a duty cycle, and the phase, frequency and duty cycle adjustment circuit may be further arranged to adjust the duty cycle of the RF power signal by adjusting the duty cycle of the RF oscillation signal. The phase, frequency and duty cycle adjustment circuit may include an RF oscillator for generating the RF oscillation signal under instructions from the controller.
該密封的電力傳送電路裝置可以進一步在該密封內部包括與該控制器進行有線資料通信的一調諧網路,該調諧網路經由該至少一個AC端子與該電力切換裝置進行有線電通信,該調諧網路佈置用於在來自該控制器的指令下將該射頻功率信號調整為調諧的射頻功率信號。該雙向電力傳送電路裝置可以包括一調變器,其配置用於將資訊調變至該射頻功率信號上。該調變器包括該調諧網路。該調變器可以配置用於利用由該控制器提供的資訊調變該射頻功率信號。該調諧網路可以包括一諧波終端網路電路,其佈置用於抑制該射頻功率信號中之該射頻振盪信號的諧波。該諧波終端網路可以包括一個或多個電感器及第一諧波終端、第二諧波終端及第三諧波終端中的一者或多者。該密封的電力傳送電路裝置可以進一步在該密封內部包括與該控制器進行有線資料通信的一振幅/頻率/相位偵測器,該振幅/頻率/相位偵測器設置以與該調諧網路進行有線電通信並佈置以判定在該調諧網路與該密封裝置外部的AC負載/源之間傳送之任何射頻功率信號的振幅、頻率及相位。該調諧網路可以進一步包括一補償網路、一匹配網路及一濾波器中的一者或多者。The sealed power transmission circuit device may further include a tuning network in wired data communication with the controller inside the seal, the tuning network is in wired electrical communication with the power switching device via the at least one AC terminal, and the tuning network is arranged to adjust the radio frequency power signal to a tuned radio frequency power signal under instructions from the controller. The bidirectional power transmission circuit device may include a modulator configured to modulate information onto the radio frequency power signal. The modulator includes the tuning network. The modulator may be configured to modulate the radio frequency power signal using information provided by the controller. The tuning network may include a harmonic termination network circuit, which is arranged to suppress the harmonics of the RF oscillation signal in the RF power signal. The harmonic termination network may include one or more inductors and one or more of a first harmonic terminal, a second harmonic terminal, and a third harmonic terminal. The sealed power transmission circuit device may further include an amplitude/frequency/phase detector in the sealed interior for wired data communication with the controller, the amplitude/frequency/phase detector being set to perform wired electrical communication with the tuning network and arranged to determine the amplitude, frequency and phase of any RF power signal transmitted between the tuning network and an AC load/source outside the sealed device. The tuning network may further include one or more of a compensation network, a matching network, and a filter.
該相位、頻率及工作週期調整電路可以佈置以基於由該振幅/頻率/相位偵測器傳送至該控制器的量測資料接收來自該控制器的指令。該相位、頻率及工作週期調整電路可以配置以基於直接自該振幅/頻率/相位偵測器接收的反饋信號調整該射頻振盪信號。該調諧網路可以包括一電壓-電流調諧器,該電壓-電流調諧器用於當該電力切換裝置處於該放大狀況時基於來自該振幅/頻率/相位偵測器的量測資料調整經調諧的射頻功率信號的電壓與電流之間的相位差。The phase, frequency and duty cycle adjustment circuit can be arranged to receive instructions from the controller based on the measurement data transmitted to the controller by the amplitude/frequency/phase detector. The phase, frequency and duty cycle adjustment circuit can be configured to adjust the RF oscillation signal based on the feedback signal received directly from the amplitude/frequency/phase detector. The tuning network can include a voltage-current tuner, which is used to adjust the phase difference between the voltage and current of the tuned RF power signal based on the measurement data from the amplitude/frequency/phase detector when the power switching device is in the amplification state.
該密封的電力傳送電路裝置可以進一步在該密封內部包括在該電力切換裝置與該密封裝置外部的DC電源/負載之間進行有線電通信的一功率管理電路,該功率管理電路佈置用於使該電力切換裝置與該外部DC電源/負載阻抗匹配,並基於直接自該振幅/頻率/相位偵測器接收的反饋信號調整在該電力切換裝置與該DC電源/負載之間傳送的DC電力。在其他實施例中,該密封的電力傳送電路裝置可以進一步在該密封內部包括與該控制器進行有線資料通信且在該電力切換裝置與該密封裝置外部的DC電源/負載之間進行有線電通信的一功率管理電路,該功率管理電路佈置用於使該電力切換裝置與該外部DC電源/負載阻抗匹配,並基於由該振幅/頻率/相位偵測器傳送至該控制器的量測資料調整在該電力切換裝置與該DC電源/負載之間傳送的DC電力。The sealed power transmission circuit device may further include a power management circuit within the seal for wired communication between the power switching device and a DC power source/load outside the sealed device, the power management circuit being configured to impedance match the power switching device with the external DC power source/load and to adjust the DC power transmitted between the power switching device and the DC power source/load based on a feedback signal received directly from the amplitude/frequency/phase detector. In other embodiments, the sealed power transmission circuit device may further include a power management circuit inside the seal that performs wired data communication with the controller and performs wired electrical communication between the power switching device and a DC power source/load outside the sealed device, the power management circuit being configured to impedance match the power switching device with the external DC power source/load and to adjust the DC power transmitted between the power switching device and the DC power source/load based on the measurement data transmitted to the controller by the amplitude/frequency/phase detector.
該密封的電力傳送電路裝置可以進一步在該密封內部包括與該控制器進行有線資料通信的一電壓/電流偵測器,該電壓/電流偵測器設置以判定在該電力切換裝置與該功率管理電路之間傳遞的DC電壓及DC電流。該相位、頻率及工作週期調整電路可以配置以基於由該電壓/電流偵測器傳送至該控制器的量測資料接收來自該控制器的指令。在其他實施例中,該相位、頻率及工作週期調整電路可以配置以基於直接自該電壓/電流偵測器接收的反饋信號調整該射頻振盪信號。The sealed power transmission circuit device may further include a voltage/current detector in wired data communication with the controller within the seal, the voltage/current detector being configured to determine the DC voltage and DC current transmitted between the power switching device and the power management circuit. The phase, frequency and duty cycle adjustment circuit may be configured to receive instructions from the controller based on measurement data transmitted to the controller by the voltage/current detector. In other embodiments, the phase, frequency and duty cycle adjustment circuit may be configured to adjust the RF oscillation signal based on feedback signals received directly from the voltage/current detector.
該密封的電力傳送電路裝置可以進一步在該密封內部包括與該控制器、該振幅/頻率/相位偵測器及該電壓/電流偵測器進行有線資料通信的一記憶體,其中,該記憶體配置以接收且儲存來自兩個偵測器的量測資料並將來自該兩個偵測器的信號資料提供至該控制器。The sealed power transmission circuit device may further include a memory inside the seal for wired data communication with the controller, the amplitude/frequency/phase detector and the voltage/current detector, wherein the memory is configured to receive and store measurement data from the two detectors and provide signal data from the two detectors to the controller.
該密封的電力傳送電路裝置可以進一步在該密封內部包括在該電力切換裝置與該密封裝置外部的該AC電源/負載之間進行有線電通信的一功率管理電路,該功率管理電路配置以使該電力切換裝置與該外部AC電源/負載的振幅、頻率及相位匹配,且基於直接自該振幅/頻率/相位偵測器接收的反饋信號調整在該電力切換裝置與該AC電源/負載之間傳送的AC電力。The sealed power transmission circuit device may further include a power management circuit within the seal for wired communication between the power switching device and the AC power source/load outside the sealed device, the power management circuit being configured to match the amplitude, frequency and phase of the power switching device with the external AC power source/load, and to adjust the AC power transmitted between the power switching device and the AC power source/load based on feedback signals received directly from the amplitude/frequency/phase detector.
該密封的電力傳送電路裝置可以進一步在該密封內部包括與該控制器進行有線資料通信且在該電力切換裝置與該密封裝置外部的該AC電源/負載之間進行有線電通信的一功率管理電路,該功率管理電路佈置用於使該傳送電力切換裝置與該外部AC電源/負載的振幅、頻率及相位匹配,並基於由該振幅/頻率/相位偵測器傳送至該控制器的量測資料調整在該電力切換裝置與該AC電源/負載之間傳送的DC電力。The sealed power transmission circuit device may further include a power management circuit inside the seal that performs wired data communication with the controller and performs wired electrical communication between the power switching device and the AC power source/load outside the sealed device, the power management circuit being configured to match the amplitude, frequency and phase of the transmission power switching device with the external AC power source/load, and adjusting the DC power transmitted between the power switching device and the AC power source/load based on the measurement data transmitted by the amplitude/frequency/phase detector to the controller.
該密封的電力傳送電路裝置可以進一步在該密封內部包括與該控制器進行有線資料通信的一電壓/電流偵測器,該電壓/電流偵測器設置以判定在該電力切換裝置與該電力量測電路之間傳遞的DC電壓及DC電流。The sealed power transmission circuit device may further include a voltage/current detector within the seal for wired data communication with the controller, the voltage/current detector being configured to determine the DC voltage and DC current transmitted between the power switching device and the power measurement circuit.
在某些實施例中,該相位、頻率及工作週期調整電路佈置以基於由該電壓/電流偵測器傳送至該控制器的量測資料接收來自該控制器的指令。在某些實施例中,該相位、頻率及工作週期調整電路佈置以基於直接自該電壓/電流偵測器接收的反饋信號調整該射頻振盪信號。In some embodiments, the phase, frequency and duty cycle adjustment circuit is arranged to receive instructions from the controller based on measurement data transmitted to the controller by the voltage/current detector. In some embodiments, the phase, frequency and duty cycle adjustment circuit is arranged to adjust the RF oscillation signal based on feedback signals received directly from the voltage/current detector.
該密封的電力傳送電路裝置可以進一步在該密封內部包括與該控制器、該振幅/頻率/相位偵測器及該電壓/電流偵測器進行有線資料通信的一記憶體,其中,該記憶體佈置以接收且儲存來自兩個偵測器的量測資料並將來自該兩個偵測器的信號資料提供至該控制器。The sealed power transmission circuit device may further include a memory inside the seal for wired data communication with the controller, the amplitude/frequency/phase detector and the voltage/current detector, wherein the memory is arranged to receive and store measurement data from the two detectors and provide signal data from the two detectors to the controller.
密封的電力傳送電路裝置可以進一步在該密封內部包括藍芽通信電路、WiFi通信電路、Zigbee通信電路及蜂巢通信技術電路中的至少一者,用於在該控制器與該密封的電力傳送電路裝置外部的裝置之間傳送資訊。該通信電路可以與至少一個通信天線進行雙向有線通信,該通信天線佈置以與該密封的電力傳送電路裝置外部的裝置進行通信。用於該通信電路的天線可以設置在該密封裝置的該密封內部內。The sealed power transmission circuit device may further include at least one of a Bluetooth communication circuit, a WiFi communication circuit, a Zigbee communication circuit, and a cellular communication technology circuit in the sealed interior for transmitting information between the controller and a device external to the sealed power transmission circuit device. The communication circuit may perform two-way wired communication with at least one communication antenna, and the communication antenna is arranged to communicate with a device external to the sealed power transmission circuit device. The antenna for the communication circuit may be disposed within the sealed interior of the sealed device.
該雙向電力傳送電路裝置可以包括一調變器,配置用於將資訊調變至該射頻功率信號及該DC電壓中的至少一者上。該調變器可以包括該電力切換裝置。該調變器可以配置用於利用由該控制器提供的資訊調變該射頻功率信號及該DC電壓中的至少一者。該調變器可以進一步包括該相位、頻率及工作週期調整電路。The bidirectional power transmission circuit device may include a modulator configured to modulate information onto at least one of the RF power signal and the DC voltage. The modulator may include the power switching device. The modulator may be configured to modulate at least one of the RF power signal and the DC voltage using information provided by the controller. The modulator may further include the phase, frequency and duty cycle adjustment circuit.
在某些實施例中,該雙向電力傳送電路裝置的所有電路元件可以單片地一體結合在矽單晶晶圓中。在某些實施例中,該裝置的電路元件的至少一部分可以藉由覆晶技術進行一體結合。In some embodiments, all circuit elements of the bidirectional power transmission circuit device can be monolithically integrated in a silicon single crystal wafer. In some embodiments, at least a portion of the circuit elements of the device can be integrated by flip chip technology.
在一個特定實施例中,該密封的雙向電力傳送電路裝置的電子電路可以在單個矽單晶晶圓內與用作DC源/負載的至少一個光伏電池聯合實施。在又一實施例中,該密封的雙向電力傳送電路裝置的電子電路可以在單個矽單晶晶圓內與用作DC源/負載700的至少一個光伏電池及用作矽單晶晶圓的一表面上的AC負載/源的共振器結構聯合實施。用於藍芽、WiFi、Zigbee及蜂巢技術的天線亦可以一體結合在同一單個矽單晶晶圓上。In one specific embodiment, the electronic circuitry of the sealed bidirectional power transmission circuit device can be implemented in conjunction with at least one photovoltaic cell used as a DC source/load in a single silicon single crystal wafer. In another embodiment, the electronic circuitry of the sealed bidirectional power transmission circuit device can be implemented in conjunction with at least one photovoltaic cell used as a DC source/load 700 and a resonator structure used as an AC load/source on a surface of the silicon single crystal wafer in a single silicon single crystal wafer. Antennas for Bluetooth, WiFi, Zigbee, and cellular technologies can also be integrated on the same single silicon single crystal wafer.
在另一態樣中,提供一種用於在一DC源與一可變負載之間傳送電力的電力傳送系統。第一自同步射頻整流器/放大器及第二自同步射頻整流器/放大器配置以分別在第一高頻頻率及第二高頻頻率下自該DC源提取第一高頻(高頻)功率信號及第二高頻(高頻)功率信號。一高頻功率鏈路系統配置以接收及混合該第一高頻功率信號及該第二高頻功率信號以產生傳送的功率信號。與該高頻功率鏈路系統及該可變負載進行通信的一功率信號轉換電路配置以自該傳送的功率信號產生輸出的功率信號且將該輸出的功率信號供應至該可變負載。In another aspect, a power transmission system for transmitting power between a DC source and a variable load is provided. A first self-synchronous radio frequency rectifier/amplifier and a second self-synchronous radio frequency rectifier/amplifier are configured to extract a first high frequency (HF) power signal and a second high frequency (HF) power signal from the DC source at a first high frequency frequency and a second high frequency frequency, respectively. A high frequency power link system is configured to receive and mix the first high frequency power signal and the second high frequency power signal to generate a transmitted power signal. A power signal conversion circuit in communication with the high frequency power link system and the variable load is configured to generate an output power signal from the transmitted power signal and supply the output power signal to the variable load.
該電力傳送系統進一步包括:一高頻切換信號產生器,配置以在各自的第一高頻頻率及第二高頻頻率下將第一切換信號及第二切換信號供應至第一整流器/放大器及第二整流器/放大器,並建立及控制該第一切換信號與該第二切換信號之間的相互相位關係。The power transmission system further includes: a high-frequency switching signal generator configured to supply a first switching signal and a second switching signal to the first rectifier/amplifier and the second rectifier/amplifier at respective first and second high-frequency frequencies, and to establish and control a mutual phase relationship between the first switching signal and the second switching signal.
該功率信號轉換電路包括:一切換模式整流器,配置以自該高頻功率鏈路系統接收該傳送的功率信號,且對該傳送的功率信號進行整流以產生整流的功率信號;以及一展開電路,配置以自該切換模式整流器接收該整流的功率信號且展開該整流的功率信號以產生該輸出的功率信號。The power signal conversion circuit includes: a switching mode rectifier, configured to receive the transmitted power signal from the high-frequency power link system and rectify the transmitted power signal to generate a rectified power signal; and an expansion circuit, configured to receive the rectified power signal from the switching mode rectifier and expand the rectified power signal to generate the output power signal.
該第一自同步射頻整流器/放大器及該第二自同步射頻整流器/放大器可以配置以在整流模式中操作,且該切換模式整流器可以配置以在常開模式中操作,藉以允許自該可變負載提取電力,且經由該功率信號轉換電路及該高頻功率鏈路系統將電力傳送至該DC源。The first self-synchronous RF rectifier/amplifier and the second self-synchronous RF rectifier/amplifier can be configured to operate in a rectification mode, and the switching mode rectifier can be configured to operate in a normally-on mode, thereby allowing power to be extracted from the variable load and transmitted to the DC source via the power signal conversion circuit and the high-frequency power link system.
該展開電路可以配置以自該可變負載接收一參考信號以展開與該可變負載中的信號同步的該整流的功率信號。功率信號轉換電路、高頻功率鏈路系統及複數對自同步射頻整流器/放大器可以配置以將控制資訊自該系統的其餘部分傳送至該高頻切換信號產生器。該系統可以進一步包括一個或多個控制器,該一個或多個控制器與該系統的複數個元件進行資料通信並配置以控制該複數個元件。該系統可以進一步包括:一可隔離負載資訊電路,配置以將關於該可變負載中的功率信號的DC位準、頻率及相位中之至少一者的資訊傳送至該高頻切換信號產生器。該負載資訊電路可以包括一鎖相迴路。該負載資訊電路可以進一步包括一隔離器系統,該隔離器系統可以包括一氣隙。該高頻功率鏈路系統可以包括一無線功率鏈路系統,該無線功率鏈路系統可以是一雙峰無線高頻功率鏈路系統。該高頻功率鏈路系統可以包括一有線功率鏈路系統。The expansion circuit can be configured to receive a reference signal from the variable load to expand the rectified power signal in synchronization with the signal in the variable load. The power signal conversion circuit, the high frequency power link system and the plurality of pairs of self-synchronous radio frequency rectifier/amplifiers can be configured to transmit control information from the rest of the system to the high frequency switching signal generator. The system can further include one or more controllers that communicate data with a plurality of components of the system and are configured to control the plurality of components. The system can further include: an isolable load information circuit configured to transmit information about at least one of the DC level, frequency and phase of the power signal in the variable load to the high frequency switching signal generator. The load information circuit may include a phase-locked loop. The load information circuit may further include an isolator system, which may include an air gap. The high frequency power link system may include a wireless power link system, which may be a dual peak wireless high frequency power link system. The high frequency power link system may include a wired power link system.
在兩個基於相位差的實施方式中,該第一高頻頻率及該第二高頻頻率是相同頻率;且該第一切換信號及該第二切換信號可以具有可由該高頻切換信號產生器調整的相互相位差。在基於第一相位差的實施方式中,該高頻切換信號產生器配置以基於該可變負載中的該DC位準調整該第一切換信號與該第二切換信號之間的相互相位差,藉以自該高頻功率鏈路系統產生該傳送的功率信號作為在振幅方面相應地調整的DC信號。在基於第二相位差的實施方式中,該高頻切換信號產生器配置以在自該可變負載中的功率信號的頻率得出的相位調變頻率下調變該第一切換信號與該第二切換信號之間的相互相位差,藉以自該高頻功率鏈路系統產生該傳送的功率信號作為在該可變負載中之功率信號的頻率下調變的AC功率信號。In two phase difference based implementations, the first high frequency frequency and the second high frequency frequency are the same frequency; and the first switching signal and the second switching signal may have a mutual phase difference that can be adjusted by the high frequency switching signal generator. In the first phase difference based implementation, the high frequency switching signal generator is configured to adjust the mutual phase difference between the first switching signal and the second switching signal based on the DC level in the variable load, thereby generating the transmitted power signal from the high frequency power link system as a DC signal that is correspondingly adjusted in amplitude. In an implementation based on a second phase difference, the high-frequency switching signal generator is configured to modulate the mutual phase difference between the first switching signal and the second switching signal at a phase modulation frequency derived from the frequency of the power signal in the variable load, thereby generating the transmitted power signal from the high-frequency power link system as an AC power signal modulated at the frequency of the power signal in the variable load.
在基於頻差的實施方式中,該第一高頻頻率及該第二高頻頻率相差一差頻∆f。在此實施方式中,該高頻切換信號產生器配置以判定該第一高頻頻率及該第二高頻頻率,並將該差頻∆f設定為使該可變負載中之功率信號的頻率倍增。該高頻功率鏈路系統經配置以在該差頻∆f下產生該傳送的功率信號,且該功率信號轉換電路配置以在該可變負載中之功率信號的頻率下將該輸出的功率信號供應至該可變負載。In a frequency difference based implementation, the first high frequency frequency and the second high frequency frequency differ by a difference frequency ∆f. In this implementation, the high frequency switching signal generator is configured to determine the first high frequency frequency and the second high frequency frequency, and set the difference frequency ∆f to double the frequency of the power signal in the variable load. The high frequency power link system is configured to generate the transmitted power signal at the difference frequency ∆f, and the power signal conversion circuit is configured to supply the output power signal to the variable load at the frequency of the power signal in the variable load.
在又一態樣中,提供一種用於在一DC源與一可變負載之間傳送電力的方法,該方法包括:經由對應的第一自同步射頻整流器/放大器及第二自同步射頻整流器/放大器在第一高頻頻率及第二高頻頻率下自該DC源提取對應的第一高頻(高頻)功率信號及第二高頻(高頻)功率信號;在一高頻功率鏈路系統中接收及混合該第一高頻功率信號及該第二高頻功率信號以產生傳送的功率信號;在與該高頻功率鏈路系統及該可變負載進行通信的功率信號轉換電路中自該傳送的功率信號產生輸出的功率信號;以及將該輸出的功率信號供應至該可變負載。In another aspect, a method for transmitting power between a DC source and a variable load is provided, the method comprising: extracting a corresponding first high frequency (HF) power signal and a second high frequency (HF) power signal from the DC source at a first high frequency and a second high frequency via a corresponding first self-synchronous RF rectifier/amplifier and a second self-synchronous RF rectifier/amplifier; receiving and mixing the first high frequency power signal and the second high frequency power signal in a high frequency power link system to generate a transmitted power signal; generating an output power signal from the transmitted power signal in a power signal conversion circuit that communicates with the high frequency power link system and the variable load; and supplying the output power signal to the variable load.
該方法可以進一步包括:在一高頻切換信號產生器中產生第一切換信號及第二切換信號,且在各自的第一高頻頻率及第二高頻頻率下將該第一切換信號及該第二切換信號傳送至該第一整流器/放大器及該第二整流器/放大器;以及在該高頻切換信號產生器中建立及控制該第一切換信號與該第二切換信號之間的相互相位關係。該方法可以進一步包括:自該高頻功率鏈路系統接收該傳送的功率信號並在該功率信號轉換電路的切換模式整流器中對該傳送的功率信號進行整流;以及自切換模式整流器接收該整流的功率信號且在該功率信號轉換電路的展開電路中展開該整流的功率信號。該方法可以進一步包括:將該第一自同步射頻整流器/放大器及該第二自同步射頻整流器/放大器設定為整流模式;將該切換模式整流器設定為常開模式;自該可變負載提取電力;以及經由該功率信號轉換電路及該高頻功率鏈路系統將提取的電力傳送至該DC源。The method may further include: generating a first switching signal and a second switching signal in a high frequency switching signal generator, and transmitting the first switching signal and the second switching signal to the first rectifier/amplifier and the second rectifier/amplifier at respective first high frequency frequencies and second high frequency frequencies; and establishing and controlling a mutual phase relationship between the first switching signal and the second switching signal in the high frequency switching signal generator. The method may further include: receiving the transmitted power signal from the high frequency power link system and rectifying the transmitted power signal in a switching mode rectifier of the power signal conversion circuit; and receiving the rectified power signal from the switching mode rectifier and expanding the rectified power signal in an expansion circuit of the power signal conversion circuit. The method may further include: setting the first self-synchronous RF rectifier/amplifier and the second self-synchronous RF rectifier/amplifier to rectification mode; setting the switching mode rectifier to normally open mode; extracting power from the variable load; and transmitting the extracted power to the DC source via the power signal conversion circuit and the high-frequency power link system.
該方法可以進一步包括:基於來自該可變負載的參考信號展開與該可變負載中的信號同步之該整流的功率信號;經由該功率信號轉換電路、該高頻功率鏈路系統以及該第一自同步射頻整流器/放大器及該第二自同步射頻整流器/放大器將控制資訊自該系統的其餘部分傳送至該高頻切換信號產生器;藉助與複數個元件進行資料通信之一個或多個控制器來控制該系統的該複數個元件;以及使用包含鎖相迴路及可選隔離器系統的可隔離負載資訊電路將關於該可變負載中的功率信號的DC位準、頻率及相位中之至少一者的資訊傳送至該高頻切換信號產生器。在該高頻功率鏈路系統中傳送該功率信號可以包括無線地傳送、雙峰無線地傳送、有線地傳送功率信號。The method may further include: developing the rectified power signal synchronized with the signal in the variable load based on a reference signal from the variable load; transmitting control information from the rest of the system to the high frequency switching signal generator via the power signal conversion circuit, the high frequency power link system, and the first self-synchronous RF rectifier/amplifier and the second self-synchronous RF rectifier/amplifier; controlling the plurality of components of the system by means of one or more controllers in data communication with the plurality of components; and transmitting information about at least one of the DC level, frequency, and phase of the power signal in the variable load to the high frequency switching signal generator using an isolable load information circuit including a phase-locked loop and an optional isolator system. Transmitting the power signal in the high frequency power link system may include transmitting the power signal wirelessly, transmitting the power signal bimodally, or transmitting the power signal wiredly.
用於將電力自該DC源傳送至該可變負載的兩種方法採用切換信號之間的相位差。在此等實施方式中,該第一切換信號及該第二切換信號可以具有相同頻率以及可以由該高頻切換信號產生器調整的相互相位差。用於此等實施方式中的第一實施方式的方法包括:基於該可變負載中的DC位準調整該第一切換信號與該第二切換信號之間的相互相位差,以自該高頻功率鏈路系統產生該傳送的功率信號作為在振幅方面相應地調整的DC信號。用於此等實施方式中的第二實施方式的方法包括:在自該可變負載中的功率信號的頻率得出的相位調變頻率下調變該第一切換信號與該第二切換信號之間的相互相位差,以自該高頻功率鏈路系統產生該傳送的功率信號作為在該可變負載中之功率信號的頻率下調變的AC功率信號。Two methods for delivering power from the DC source to the variable load exploit a phase difference between switching signals. In such embodiments, the first switching signal and the second switching signal may have the same frequency and a mutual phase difference that may be adjusted by the high frequency switching signal generator. The method for a first of these embodiments includes adjusting the mutual phase difference between the first switching signal and the second switching signal based on a DC level in the variable load to generate the delivered power signal from the high frequency power link system as a DC signal that is correspondingly adjusted in amplitude. The method for a second of these embodiments includes modulating a mutual phase difference between the first switching signal and the second switching signal at a phase modulation frequency derived from the frequency of the power signal in the variable load to generate the transmitted power signal from the high frequency power link system as an AC power signal modulated at the frequency of the power signal in the variable load.
一種用於基於頻差的實施方式的方法包括:判定對應的第一切換信號及第二切換信號的第一高頻頻率及第二高頻頻率;以及將該頻差設定為等於可變負載中之功率信號的頻率的兩倍。該方法進一步包括:在該頻差下自高頻功率鏈路系統產生傳送的功率信號;以及在該可變負載中之功率信號的頻率下將輸出的功率信號供應至該可變負載。A method for a frequency difference based implementation includes: determining a first high frequency and a second high frequency of corresponding first switching signals and second switching signals; and setting the frequency difference equal to twice the frequency of a power signal in a variable load. The method further includes: generating a transmitted power signal from a high frequency power link system at the frequency difference; and supplying the output power signal to the variable load at the frequency of the power signal in the variable load.
本文闡述的電力傳送系統採用供應至一對自同步射頻整流器/放大器的切換信號之間的相位差或頻率差將AC或DC電力自DC源傳送至可變負載,該可變負載可以經擴展為經由多對整流器/放大器將電力自單一DC源傳送至單一可變負載,並使用多對整流器/放大器將電力自複數個DC源傳送至單一可變負載。闡述了用於實現此等目的的設備及方法。在某些實施方式中,此等設備及方法亦允許同時將DC電力及AC電力傳送至負載。Power delivery systems described herein utilize phase or frequency differences between switching signals supplied to a pair of self-synchronous radio frequency rectifier/amplifiers to deliver AC or DC power from a DC source to a variable load, which can be extended to deliver power from a single DC source to a single variable load via multiple pairs of rectifier/amplifiers, and to deliver power from multiple DC sources to a single variable load using multiple pairs of rectifier/amplifiers. Apparatus and methods for achieving these objectives are described. In certain embodiments, these apparatus and methods also allow for simultaneous delivery of DC power and AC power to a load.
在一個態樣中,提出一種用於產生電力且將該電力傳送至一AC負載的太陽能板系統,該系統包括:一平面透明太陽能蓋,具有平面的第一太陽能蓋表面及第二太陽能蓋表面;設置在該第一太陽能蓋表面上的至少一個光伏電池,該至少一個光伏電池具有面向該太陽能蓋的一平面光敏表面;設置在該第一太陽能蓋表面上且對應於每一光伏電池的一高頻電力模組,該高頻電力模組具有一印刷電路板,該印刷電路板在該印刷電路板之背離該太陽能蓋的一平面表面上承載與對應的至少一個光伏電池進行有線電通信的一高頻電力電路;一保形囊封層,結合至該太陽能蓋的一平面表面且覆蓋該至少一個光伏電池及對應的高頻電力模組;以及一框架,承載用於自該至少一個高頻電力電路接收電力且用於在AC負載線頻率下將該電力傳送至AC負載的單個聚合器。In one embodiment, a solar panel system for generating electricity and transmitting the electricity to an AC load is provided, the system comprising: a planar transparent solar cover having a planar first solar cover surface and a second solar cover surface; at least one photovoltaic cell disposed on the first solar cover surface, the at least one photovoltaic cell having a planar photosensitive surface facing the solar cover; a high-frequency power module disposed on the first solar cover surface and corresponding to each photovoltaic cell, the high-frequency power module A printed circuit board is provided, which carries a high-frequency power circuit for wired communication with at least one corresponding photovoltaic cell on a planar surface of the printed circuit board facing away from the solar cover; a conformal encapsulation layer is bonded to a planar surface of the solar cover and covers the at least one photovoltaic cell and the corresponding high-frequency power module; and a frame carries a single aggregator for receiving power from the at least one high-frequency power circuit and for transmitting the power to the AC load at the AC load line frequency.
該高頻電力電路可以設置在該印刷電路板之背離該太陽能蓋的一平面表面上。該至少一個平面的印刷電路板可以設置成接近對應的至少一個光伏電池。該至少一個光伏電池可以佈置成一陣列。所有高頻電力電路可以互相鎖相。所有高頻電力電路可以經由鎖相迴路互相鎖相至AC負載中的AC功率信號。The high frequency power circuit may be disposed on a planar surface of the printed circuit board facing away from the solar cell. The at least one planar printed circuit board may be disposed close to the corresponding at least one photovoltaic cell. The at least one photovoltaic cell may be arranged in an array. All high frequency power circuits may be phase locked to each other. All high frequency power circuits may be phase locked to each other via a phase locked loop to an AC power signal in an AC load.
在某些實施例中,該聚合器可以設置以藉由無線電力傳送自該至少一個高頻電力電路接收電力。該聚合器可以設置以藉由雙峰無線電力傳送自該至少一個高頻電力電路接收電力。該等高頻電力電路中的每一者可以包括設置以自對應至少一個光伏電池接收電力的一發射器共振器。該系統可以包括設置以自該發射器共振器接收電力的一接收器共振器。該聚合器可以包括:一低頻率展開電路;一切換模式整流器;以及一接收器模組,設置用於藉由有線通信自該接收器共振器接收電力。該接收器共振器可以安裝在該框架中。該聚合器可以安裝在該接收器共振器上。In certain embodiments, the aggregator may be configured to receive power from the at least one high frequency power circuit via wireless power transfer. The aggregator may be configured to receive power from the at least one high frequency power circuit via bimodal wireless power transfer. Each of the high frequency power circuits may include a transmitter resonator configured to receive power from the corresponding at least one photovoltaic cell. The system may include a receiver resonator configured to receive power from the transmitter resonator. The aggregator may include: a low frequency expansion circuit; a switching mode rectifier; and a receiver module configured to receive power from the receiver resonator via wired communication. The receiver resonator may be mounted in the frame. The aggregator may be mounted on the receiver resonator.
在某些實施例中,該聚合器可以設置以在低頻率下藉由有線電力傳送自該至少一個高頻電力電路接收電力。該等高頻電力電路中的每一者可以包括:一發射器模組,設置用於自對應至少一個光伏電池接收電力;一接收器模組,與該發射器模組進行有線通信以在高頻下自該發射器模組接收電力;以及一切換模式整流器,提供一低頻率功率信號。該聚合器可以包括一展開電路,該展開電路能夠在該低頻率下自該高頻電力電路接收電力,且在該AC負載線頻率下將該電力傳送至AC負載。In some embodiments, the aggregator may be configured to receive power from the at least one high-frequency power circuit via wired power transfer at a low frequency. Each of the high-frequency power circuits may include: a transmitter module configured to receive power from a corresponding at least one photovoltaic cell; a receiver module in wired communication with the transmitter module to receive power from the transmitter module at a high frequency; and a switching mode rectifier providing a low frequency power signal. The aggregator may include an expanded circuit capable of receiving power from the high-frequency power circuit at the low frequency and delivering the power to the AC load at the AC load line frequency.
該第一太陽能蓋表面可以包括一光學透明聚合層。該系統可以在該高頻電力電路上面包括一介電保護帽。該保護帽可以設置在該保形囊封層上方或下方。該保護帽的周邊可以設置在該保形囊封層下方且密封至該保形囊封層。The first solar cap surface may include an optically transparent polymer layer. The system may include a dielectric protective cap over the high frequency power circuit. The protective cap may be disposed above or below the conformal encapsulation layer. The periphery of the protective cap may be disposed below the conformal encapsulation layer and sealed to the conformal encapsulation layer.
提供一種用於製造一太陽能板的方法,該方法包括:在一透明太陽能蓋的一平面表面上設置至少一個光伏電池及一高頻電力模組,該至少一個光伏電池具有面向該透明太陽能蓋的一表面的一光敏表面,該高頻電力模組在一印刷電路板上包括與至少一個光伏電池進行有線通信以用於自該至少一個光伏電池收集電力的一高頻電力電路,其中,該高頻電力電路設置在該印刷電路板之背離該透明太陽能蓋的一平面表面上;在該至少一個光伏電池之與該透明太陽能蓋相對的一側上佈置一熱可變形聚合薄片,該熱可變形聚合薄片在該透明太陽能蓋的表面區域上延伸以在一平面中形成一層壓堆疊;將該層壓堆疊轉移至一真空烘箱;在該真空烘箱中建立真空以去除該層壓堆疊之各層之間的空氣;將該層壓堆疊加熱至該熱可變形聚合薄片的一變形溫度;垂直於該平面向該堆疊施加壓力;在該真空烘箱中恢復一環境空氣壓力以將該熱可變形聚合薄片接合至該透明太陽能蓋上且迫使該熱可變形聚合薄片保形地接合至該至少一個光伏電池及該高頻電力模組上以形成封裝的光伏模組陣列;以及將該封裝的光伏模組陣列安裝在一框架中。A method for manufacturing a solar panel is provided, the method comprising: arranging at least one photovoltaic cell and a high-frequency power module on a planar surface of a transparent solar cover, the at least one photovoltaic cell having a photosensitive surface facing a surface of the transparent solar cover, the high-frequency power module including a high-frequency power circuit on a printed circuit board that performs wired communication with the at least one photovoltaic cell for collecting power from the at least one photovoltaic cell, wherein the high-frequency power circuit is arranged on a planar surface of the printed circuit board that is away from the transparent solar cover; arranging a thermally deformable polymer sheet on a side of the at least one photovoltaic cell opposite to the transparent solar cover, the thermally deformable polymer sheet The polymer sheet extends over the surface area of the transparent solar cover to form a compressed stack in a plane; the compressed stack is transferred to a vacuum oven; a vacuum is established in the vacuum oven to remove air between the layers of the compressed stack; the compressed stack is heated to a deformation temperature of the heat-deformable polymer sheet; pressure is applied to the stack perpendicular to the plane; an ambient air pressure is restored in the vacuum oven to bond the heat-deformable polymer sheet to the transparent solar cover and force the heat-deformable polymer sheet to conformally bond to the at least one photovoltaic cell and the high-frequency power module to form a packaged photovoltaic module array; and the packaged photovoltaic module array is mounted in a frame.
該方法可以進一步包括在將該至少一個光伏電池及該高頻電力模組設置在該透明太陽能蓋上之前將透明熱可交聯聚合物薄片設置在該透明太陽能蓋上。佈置該熱可變形聚合薄片可以包括佈置一可熱變形可交聯聚合物薄片。佈置該可熱變形可交聯聚合物薄片可以包括佈置一薄片,該薄片包括以下材料中之一種或多種的一層或多層:聚對苯二甲酸乙二醇酯、雙軸取向聚對苯二甲酸乙二醇酯、乙烯醋酸乙烯酯、氟化聚酯、聚氟乙烯、聚偏二氟乙烯、聚乙烯醋酸乙烯酯、聚萘二甲酸乙二醇酯、乙烯-四氟乙烯、氟乙烯基醚、四氟乙烯-六氟丙烯-偏二氟乙烯共聚物、聚醯胺、聚丙烯、聚乙烯以及聚偏二氟乙烯短糖棕櫚纖維。The method may further include placing a transparent heat-crosslinkable polymer sheet on the transparent solar cover before placing the at least one photovoltaic cell and the high-frequency power module on the transparent solar cover. Disposing the heat-deformable polymer sheet may include disposing a heat-deformable crosslinkable polymer sheet. Arranging the heat-deformable cross-linkable polymer sheet may include arranging a sheet comprising one or more layers of one or more of the following materials: polyethylene terephthalate, biaxially oriented polyethylene terephthalate, ethylene vinyl acetate, fluorinated polyester, polyvinyl fluoride, polyvinylidene fluoride, polyethylene vinyl acetate, polyethylene naphthalate, ethylene-tetrafluoroethylene, fluorovinyl ether, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, polyamide, polypropylene, polyethylene and polyvinylidene fluoride short sugar palm fiber.
將該封裝的光伏模組陣列安裝在框架中可以包括將該封裝的光伏模組陣列安裝在承載一接收器共振器及一聚合器的框架中,該聚合器配置用於經由該接收器共振器自該高頻電力電路接收功率信號。將該封裝的光伏模組陣列安裝在框架中可以包括將該封裝的光伏模組陣列安裝在承載聚合器的框架中,該聚合器配置以用於藉由導線自該高頻電力電路接收功率信號。Mounting the packaged photovoltaic module array in a frame may include mounting the packaged photovoltaic module array in a frame carrying a receiver resonator and an aggregator, the aggregator configured to receive a power signal from the high frequency power circuit via the receiver resonator. Mounting the packaged photovoltaic module array in a frame may include mounting the packaged photovoltaic module array in a frame carrying an aggregator, the aggregator configured to receive a power signal from the high frequency power circuit via a wire.
若考慮太陽能板系統而不考慮光伏模組的封裝,則其可以闡述為用於產生電力且將該電力傳送至AC負載的一太陽能板系統,該系統包括:至少一個光伏電池,對應於每一光伏電池,一高頻電力模組與該對應的至少一個光伏電池進行有線電通信;以及一框架,其承載一單個聚合器,該聚合器佈置用於自該至少一個高頻電力模組接收電力並用於在一AC負載線頻率下將該電力傳送至該AC負載。所有該至少一個高頻電力模組能夠經由一鎖相迴路相互鎖相至該AC負載中的AC功率信號。該至少一個高頻電力模組中的每一者可以包括:一高頻切換信號產生器,其能夠相位鎖定至該AC負載中具有該AC負載線頻率的功率信號;第一高頻切換模式電力整流器/放大器及第二高頻切換模式電力整流器/放大器,用於自源自該對應的至少一個光伏電池的電力提供對應的第一高頻功率信號及第二高頻功率信號,該等對應的第一高頻功率信號及第二高頻功率信號的頻率相差等於AC負載線頻率的兩倍量。該太陽能板系統的該聚合器可以包括一展開電路,該展開電路佈置以在該AC負載線頻率的兩倍頻率下接收源自該至少一個光伏電池中之每一者所發射的電力。If the solar panel system is considered without considering the packaging of the photovoltaic module, it can be described as a solar panel system for generating electricity and transmitting the electricity to an AC load, the system comprising: at least one photovoltaic cell, corresponding to each photovoltaic cell, a high-frequency power module in wired electrical communication with the corresponding at least one photovoltaic cell; and a frame carrying a single aggregator, the aggregator is arranged to receive power from the at least one high-frequency power module and to transmit the power to the AC load at an AC load line frequency. All of the at least one high-frequency power modules can be mutually phase-locked to the AC power signal in the AC load via a phase-locked loop. Each of the at least one high-frequency power module may include: a high-frequency switching signal generator, which can be phase-locked to a power signal in the AC load having the line frequency of the AC load; a first high-frequency switching mode power rectifier/amplifier and a second high-frequency switching mode power rectifier/amplifier, for providing a corresponding first high-frequency power signal and a second high-frequency power signal from power derived from the corresponding at least one photovoltaic cell, and the frequency difference between the corresponding first high-frequency power signal and the second high-frequency power signal is equal to twice the line frequency of the AC load. The aggregator of the solar panel system may include an expanded circuit arranged to receive power emitted from each of the at least one photovoltaic cell at twice the frequency of the AC load line frequency.
在某些實施例中,該太陽能板系統的該聚合器設置以藉由無線電力傳送自該至少一個高頻電力模組接收電力。In certain embodiments, the aggregator of the solar panel system is configured to receive power from the at least one high frequency power module via wireless power transmission.
在某些實施例中,該太陽能板系統的該聚合器可以設置以藉由雙峰無線電力傳送自至少一個高頻電力模組接收電力。在這些實施例中,該等高頻電力模組中的每一者包括與一發射器模組進行有線通信的一發射器共振器,該發射器共振器設置以自對應的至少一個光伏電池接收電力。該太陽能電力系統亦包括一單個接收器共振器,其設置用於藉由雙峰電力傳送自對應於該至少一個光伏電池的發射器共振器接收電力。聚合器包括:一低頻率展開電路;一切換模式整流器;以及一接收器模組,其設置用於藉由有線通信自該接收器共振器接收電力。接收器共振器可以安裝在該框架中,且聚合器可以安裝在該接收器共振器上。In certain embodiments, the aggregator of the solar panel system may be configured to receive power from at least one high frequency power module via bi-peak wireless power transfer. In these embodiments, each of the high frequency power modules includes a transmitter resonator in wired communication with a transmitter module, the transmitter resonator configured to receive power from the corresponding at least one photovoltaic cell. The solar power system also includes a single receiver resonator configured to receive power from the transmitter resonator corresponding to the at least one photovoltaic cell via bi-peak power transfer. The aggregator includes: a low frequency unfolded circuit; a switching mode rectifier; and a receiver module configured to receive power from the receiver resonator via wired communication. The receiver resonator may be mounted in the frame, and the aggregator may be mounted on the receiver resonator.
在另一實施例中,該太陽能板系統的該聚合器可以設置以藉由低頻率有線電力傳送自該至少一個高頻電力模組接收電力。該等高頻電力模組中的每一者包括:一發射器模組,其設置用於自對應至少一個光伏電池接收電力;一接收器模組,其與該發射器模組進行有線通信以在高頻下自該發射器模組接收電力;以及一切換模式整流器,其提供一低頻率功率信號。聚合器包括一展開電路,其能夠在低頻率下自該高頻電力模組接收電力,且在該AC負載線頻率下將該電力傳送至該AC負載。In another embodiment, the aggregator of the solar panel system can be configured to receive power from the at least one high-frequency power module via low-frequency wired power transmission. Each of the high-frequency power modules includes: a transmitter module configured to receive power from a corresponding at least one photovoltaic cell; a receiver module that communicates wired with the transmitter module to receive power from the transmitter module at a high frequency; and a switching mode rectifier that provides a low-frequency power signal. The aggregator includes an expanded circuit that is capable of receiving power from the high-frequency power module at a low frequency and transmitting the power to the AC load at the AC load line frequency.
在另一實施例中,該等高頻電力模組中的每一者可以包括:一發射器模組,其設置用於自對應至少一個光伏電池接收電力;一接收器模組,其與該發射器模組進行有線通信以在高頻下自該發射器模組接收電力;一切換模式整流器,其提供一低頻率功率信號;以及一展開電路,其用於自該切換模式整流器展開低頻信號。在此實施例中,該聚合器可以是僅在AC負載線頻率下自與對應的光伏電池中的每一者相關聯之展開電路中的每一者收集所有展開信號的裝置。In another embodiment, each of the high frequency power modules may include: a transmitter module configured to receive power from the corresponding at least one photovoltaic cell; a receiver module in wired communication with the transmitter module to receive power from the transmitter module at a high frequency; a switching mode rectifier providing a low frequency power signal; and a spreading circuit for spreading the low frequency signal from the switching mode rectifier. In this embodiment, the aggregator may be a device that collects all spread signals from each of the spreading circuits associated with each of the corresponding photovoltaic cells only at the AC load line frequency.
在以下詳細說明中,闡明了具體細節以便向熟習此項技術者提供更透徹理解。然而,可能未示出或詳細地闡述眾所周知的元件以避免不必要地使本發明模糊。因此,應自說明性而非限制性意義上看待本說明書及圖式。In the following detailed description, specific details are set forth to provide a more thorough understanding to those skilled in the art. However, well-known elements may not be shown or described in detail to avoid unnecessarily obscuring the present invention. Therefore, the present specification and drawings should be viewed in an illustrative rather than a restrictive sense.
本發明的一個態樣提供包含發射器(亦稱為初級側)及接收器(亦稱為次級側)的無線電力傳送系統。另一態樣提供可用作其他無線電力傳送系統的一部分的無線電力發射器。另一態樣提供可用作其他無線電力傳送系統的一部分的無線電力接收器。根據某些實施例的發射器可以包括配置以藉由感應式電力傳送及/或藉由電容式電力傳送來發射電力的共振器。類似地,根據某些實施例的接收器可以包括配置以藉由感應式電力傳送及/或藉由電容式電力傳送來接收電力的共振器。One aspect of the invention provides a wireless power transmission system including a transmitter (also referred to as a primary side) and a receiver (also referred to as a secondary side). Another aspect provides a wireless power transmitter that can be used as part of other wireless power transmission systems. Another aspect provides a wireless power receiver that can be used as part of other wireless power transmission systems. A transmitter according to some embodiments may include a resonator configured to transmit power by inductive power transmission and/or by capacitive power transmission. Similarly, a receiver according to some embodiments may include a resonator configured to receive power by inductive power transmission and/or by capacitive power transmission.
圖1是包括初級側12及次級側14的無線電力傳送(WPT)系統10的簡化示意圖。初級側12亦可以稱為發射器,而次級側14亦可以稱為接收器。初級側12包括:發射器模組20;以及發射器共振器30,而次級側14包括:接收器模組40;以及接收器共振器50。1 is a simplified schematic diagram of a wireless power transmission (WPT) system 10 including a primary side 12 and a secondary side 14. The primary side 12 may also be referred to as a transmitter, and the secondary side 14 may also be referred to as a receiver. The primary side 12 includes: a transmitter module 20; and a transmitter resonator 30, and the secondary side 14 includes: a receiver module 40; and a receiver resonator 50.
發射器模組20接收包含例如直流電(DC)電力的電力作為輸入。雖然未繪出,但發射器模組20可以包括例如反向器、發射器補償網路及/或如本文進一步闡述的其他組件。發射器模組20將包含例如交流電(AC)電力的電力作為輸出遞送至發射器共振器30。The transmitter module 20 receives power including, for example, direct current (DC) power as input. Although not shown, the transmitter module 20 may include, for example, an inverter, a transmitter compensation network, and/or other components as further described herein. The transmitter module 20 delivers power including, for example, alternating current (AC) power as output to the transmitter resonator 30.
發射器共振器30自發射器模組20接收電力作為輸入並可以輸出磁場31A(例如,時變磁場)及/或電場31B(例如,時變電場)。在某些實施例中,發射器共振器30出於IPT的目的輸出磁場31A。在某些實施例中,發射器共振器30出於CPT的目的輸出電場31B。在某些實施例中,共振器30出於透過CPT及IPT同時傳送電力的目的同時輸出磁場31A及電場31B。在某些實施例中,共振器30可以在出於CPT的目的輸出電場31B、出於IPT的目的輸出磁場31A、以及出於透過CPT及IPT同時傳送電力的目的同時輸出磁場31A及電場31B之間切換。The transmitter resonator 30 receives power as input from the transmitter module 20 and can output a magnetic field 31A (e.g., a time-varying magnetic field) and/or an electric field 31B (e.g., a time-varying electric field). In some embodiments, the transmitter resonator 30 outputs the magnetic field 31A for the purpose of IPT. In some embodiments, the transmitter resonator 30 outputs the electric field 31B for the purpose of CPT. In some embodiments, the resonator 30 outputs both the magnetic field 31A and the electric field 31B for the purpose of transmitting power through both CPT and IPT. In some embodiments, the resonator 30 can switch between outputting the electric field 31B for the purpose of CPT, outputting the magnetic field 31A for the purpose of IPT, and outputting both the magnetic field 31A and the electric field 31B for the purpose of transmitting power through both CPT and IPT.
本文使用形容詞性術語「雙峰」以闡述配置用於同時進行電容式信號傳送及感應式信號傳送的系統。The adjective term "bimodal" is used herein to describe systems configured for both capacitive and inductive signaling.
在存在磁場31A的情況下,出於IPT的目的,可以在接收器共振器50中感應電流。在存在電場31B的情況下,可以在接收器共振器50 (或其一個或多個天線)上感應交流電位。In the presence of a magnetic field 31A, a current may be induced in the receiver resonator 50 for the purpose of IPT. In the presence of an electric field 31B, an AC potential may be induced on the receiver resonator 50 (or one or more of its antennas).
當藉由磁場31A在接收器共振器50中感應電流時,可以將此電流輸出至接收器模組40。類似地,當藉由電場31B在接收器共振器50上感應交流電位時,可以藉由接收器共振器50致使電流流入接收器模組40中。When a current is induced in the receiver resonator 50 by the magnetic field 31A, the current can be output to the receiver module 40. Similarly, when an AC potential is induced on the receiver resonator 50 by the electric field 31B, a current can be caused to flow into the receiver module 40 through the receiver resonator 50.
接收器模組40可以自接收器共振器50接收電力(例如,AC電力)作為輸入並可以將電力(例如,DC電力)輸出至負載。負載可以是用於電儲存裝置(諸如電池或超級電容器)的電荷。藉助非限制性示例,負載可以包括或是電動自行車(亦稱為電輔自行車或電輔腳踏車)(諸如是共用腳踏車車隊的一部分的電輔自行車)、汽車、船等的元件。雖然未圖示,但接收器模組40可以包括例如整流器、接收器補償網路及/或如本文進一步論述的其他組件。The receiver module 40 may receive power (e.g., AC power) as input from the receiver resonator 50 and may output power (e.g., DC power) to a load. The load may be a charge for an electrical storage device such as a battery or supercapacitor. By way of non-limiting example, the load may include or be a component of an electric bicycle (also known as an electric-assisted bicycle or electric-assisted bike) (such as an electric-assisted bike that is part of a shared bicycle fleet), a car, a boat, etc. Although not shown, the receiver module 40 may include, for example, a rectifier, a receiver compensation network, and/or other components as further discussed herein.
出於各種原因,WPT系統10可以配置以調整經由CPT自發射器模組20向接收器模組40傳送的電力與經由IPT由發射器模組20向接收器模組40傳送的電力的比例(「傳送模式比」)。例如,可以調整傳送模式比以:當發射器共振器30與接收器共振器50之間的距離增加時增加由CPT遞送的電力的比例;當生物(例如,人或動物)在WPT系統10附近時增加由IPT遞送的電力的比例;當物體(例如,金屬物體)在WPT系統10附近時增加由CPT遞送的電力的比例;當發射器共振器30與接收器共振器50之間的對準惡化時增加由CPT遞送的電力的比例;及/或進行前述各項的任何組合。For various reasons, the WPT system 10 may be configured to adjust the ratio of power delivered from the transmitter module 20 to the receiver module 40 via CPT to the power delivered from the transmitter module 20 to the receiver module 40 via IPT (the "transmission mode ratio"). For example, the transmission mode ratio may be adjusted to: increase the ratio of power delivered by CPT as the distance between the transmitter resonator 30 and the receiver resonator 50 increases; increase the ratio of power delivered by IPT when a living being (e.g., a person or an animal) is near the WPT system 10; increase the ratio of power delivered by CPT when an object (e.g., a metal object) is near the WPT system 10; increase the ratio of power delivered by CPT when the alignment between the transmitter resonator 30 and the receiver resonator 50 deteriorates; and/or any combination of the foregoing.
在某些實施例中,可以根據最大功率點追蹤技術調整傳送模式比,諸如但不限於如有時用於風力渦輪機和太陽能板的「觀察與擾動」(例如,參見S. Dehghani、S. Abbasian及T. Johnson的「Adjustable Load With Tracking Loop to Improve RF Rectifier Efficiency Under Variable RF Input Power Conditions (具有在可變RF輸入功率狀況下改良RF整流器效率之追蹤迴路的可調負載)」,IEEE微波理論與技術彙刊,第64卷,第2期,第343頁至第352頁,2016年2月)。在某些實施例中,可以根據機器學習演算法調整傳送模式比。例如,在某些實施例中,若WPT系統10判定WPT效率意料外的低,則WPT系統10可以增加由CPT (或IPT)遞送的電力的比例。若WPT效率因對CPT (或IPT)的信賴增加而受負面影響,則WPT系統10可以降低對CPT (或IPT) 的信賴。可迭代地重複此程序直到取得一期望/最大的WPT效率。In some embodiments, the transmit mode ratio may be adjusted based on maximum power point tracking techniques, such as, but not limited to, “observe and perturb” as sometimes used in wind turbines and solar panels (see, e.g., S. Dehghani, S. Abbasian, and T. Johnson, “Adjustable Load With Tracking Loop to Improve RF Rectifier Efficiency Under Variable RF Input Power Conditions,” IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 2, pp. 343-352, February 2016). In some embodiments, the transmit mode ratio may be adjusted based on a machine learning algorithm. For example, in some embodiments, if the WPT system 10 determines that the WPT efficiency is unexpectedly low, the WPT system 10 may increase the proportion of power delivered by the CPT (or IPT). If the WPT efficiency is negatively affected by the increased trust in the CPT (or IPT), the WPT system 10 may reduce the trust in the CPT (or IPT). This process may be iteratively repeated until a desired/maximum WPT efficiency is achieved.
發射器共振器30及接收器共振器50中的每一者可以包括以各種組態佈置的複數個天線80。Each of the transmitter resonator 30 and the receiver resonator 50 may include a plurality of antennas 80 arranged in various configurations.
天線80可以包括具有高自電感及高自電容的任何適合天線,該天線能夠出於CPT及IPT的目的形成磁場31A及電場31B兩者(分開地及/或同時地)。圖2A、圖2B及圖2C描繪天線80、180、280的非限制性示例。出於本文的目的,「高自電感」是足夠大以允許天線產生適合於IPT的目的之磁場的自電感。類似地,出於本文的目的,「高自電容」是足夠大以允許天線產生適合於CPT的目的之電場的自電容。Antenna 80 may include any suitable antenna having high self-inductance and high self-capacitance that is capable of creating both magnetic field 31A and electric field 31B (separately and/or simultaneously) for the purposes of CPT and IPT. FIGS. 2A, 2B, and 2C depict non-limiting examples of antennas 80, 180, 280. For purposes herein, "high self-inductance" is a self-inductance that is large enough to allow the antenna to create a magnetic field suitable for the purposes of IPT. Similarly, for purposes herein, "high self-capacitance" is a self-capacitance that is large enough to allow the antenna to create an electric field suitable for the purposes of CPT.
圖2A描繪根據某些實施例的天線80。天線80可以包括任何適合導電材料。例如,天線80可以包括銅、金、銀、鋁、其他適合材料或其組合。如自圖2A可以看出,天線80包括伸長元件80A,其具有已彎曲或形成為大致平面矩形(在XY平面中)線圈形狀的矩形(例如,正方形)截面,使得伸長元件80A的毗鄰包覆件藉由間隙80B間隔開。雖然間隙80B繪示為沿著伸長元件80的長度大致恆定,但此並非強制的。FIG. 2A depicts an antenna 80 according to certain embodiments. Antenna 80 may include any suitable conductive material. For example, antenna 80 may include copper, gold, silver, aluminum, other suitable materials, or combinations thereof. As can be seen from FIG. 2A , antenna 80 includes an elongated element 80A having a rectangular (e.g., square) cross-section that has been bent or formed into a generally planar rectangular (in the XY plane) coil shape such that adjacent wraps of elongated element 80A are separated by gaps 80B. Although gaps 80B are shown as being generally constant along the length of elongated element 80, this is not mandatory.
為了增加天線80的自電感,可以減小間隙80B的大小。為了增加天線80的自電容,可以增加伸長元件80A的彎曲部(例如,彎曲部82A)的數量,可以增加伸長元件80A的隅角及邊緣(例如,邊緣82B) 的數量,可以增加伸長元件80A的長度及/或可以增加伸長元件80A的厚度80C。To increase the self-inductance of antenna 80, the size of gap 80B may be reduced. To increase the self-capacitance of antenna 80, the number of bends (e.g., bends 82A) of elongated element 80A may be increased, the number of corners and edges (e.g., edge 82B) of elongated element 80A may be increased, the length of elongated element 80A may be increased, and/or the thickness 80C of elongated element 80A may be increased.
圖2B描繪根據某些實施例的天線180的另一非限制性示例。天線180基本上與第一天線80相似,除了伸長元件180A不是彎曲或成形為大致平面矩形線圈形狀,而是彎曲或形成為具有方形隅角的大致平面鋸齒形形狀,如圖2B中所示。與天線80一樣,伸長元件180A的毗鄰鋸齒藉由間隙180B間隔開。雖然間隙180B繪示為沿著伸長元件180的長度大致恆定,但此並非強制性的。FIG. 2B depicts another non-limiting example of an antenna 180 according to some embodiments. Antenna 180 is substantially similar to first antenna 80, except that elongated element 180A is not bent or formed into a generally planar rectangular coil shape, but is bent or formed into a generally planar sawtooth shape with square corners, as shown in FIG. 2B. As with antenna 80, adjacent sawtooths of elongated element 180A are separated by gaps 180B. Although gaps 180B are shown as being generally constant along the length of elongated element 180, this is not mandatory.
為了增加天線180的自電感,可以減小間隙180B的大小。為了增加天線180的自電容,可以增加伸長元件180A的彎曲部(例如,彎曲部182A) 的數量,可以增加伸長元件180A的隅角及邊緣(例如,邊緣182B)的數量及/或可以增加伸長元件180A的厚度180C。To increase the self-inductance of antenna 180, the size of gap 180B may be reduced. To increase the self-capacitance of antenna 180, the number of bends (e.g., bends 182A) of elongated element 180A may be increased, the number of corners and edges (e.g., edge 182B) of elongated element 180A may be increased, and/or the thickness 180C of elongated element 180A may be increased.
圖2C描繪根據某些實施例的天線280的另一非限制性示例。天線280基本上與第一天線80相似,除了伸長元件280A不是彎曲或成形為大致平面矩形線圈形狀,而是彎曲或形成為具有轂元件280A的大致平面圓形形狀(在XY平面中),其中,扇形元件280C自轂元件280A徑向向外延伸。毗鄰的扇形元件280C藉由間隙280B彼此間隔開。FIG. 2C depicts another non-limiting example of an antenna 280 according to some embodiments. Antenna 280 is substantially similar to first antenna 80, except that elongated element 280A is not bent or formed into a generally planar rectangular coil shape, but is bent or formed into a generally planar circular shape (in the XY plane) with hub element 280A, wherein fan-shaped elements 280C extend radially outward from hub element 280A. Adjacent fan-shaped elements 280C are separated from each other by gaps 280B.
為了增加天線280的自電感,可以減小間隙280B的大小。為了增加天線280的自電容,可以增加扇形元件280C的數量,可以增加轂元件280A及/或扇形元件280C的隅角及邊緣(例如,邊緣280a)的數量及/或可以增加伸長的轂元件280A及/或扇形元件280C的厚度282C。To increase the self-inductance of antenna 280, the size of gap 280B may be reduced. To increase the self-capacitance of antenna 280, the number of sector elements 280C may be increased, the number of corners and edges (e.g., edge 280a) of hub element 280A and/or sector elements 280C may be increased, and/or the thickness 282C of elongated hub element 280A and/or sector elements 280C may be increased.
雖然圖2A、圖2B及圖2C描繪天線80、180、280的例示性非限制性實施例,但應理解,在本文所闡述的共振器中可以採用適合諸多其他形狀及組態的天線80。可以對所示的天線做出改變的非限制性示例包括:將伸長元件80A、180A的截面形狀改變成非矩形(例如,三角形、圓形、六邊形等);將90º彎曲部82A、182A改變成非90º 或圓形;將第一發射器天線80的XY平面形狀改變成非矩形或圓形;使用彎曲部及隅角的非重複圖案等。Although FIGS. 2A , 2B, and 2C depict exemplary non-limiting embodiments of antennas 80, 180, 280, it should be understood that many other shapes and configurations of antennas 80 may be employed in the resonators described herein. Non-limiting examples of changes that may be made to the antennas shown include: changing the cross-sectional shape of the elongated element 80A, 180A to a non-rectangular shape (e.g., triangular, circular, hexagonal, etc.); changing the 90° bend 82A, 182A to a non-90° or circular shape; changing the XY plane shape of the first transmitter antenna 80 to a non-rectangular or circular shape; using a non-repeating pattern of bends and corners, etc.
雖然天線80、180、280在本文經闡述且示出為相對平坦或平面的(例如,在Z方向上的厚度方面基本上無變化),但此並非強制的。在某些實施例中,天線80、180、280可以具有如在圖3A及圖3B中所示的錐形凹面或錐形凸面形狀。例如,本文的天線可以具有錐形螺旋形狀(未圖示)。在某些實施例中,天線80可以具有矩形錐形螺旋形狀,使得天線80的內繞組與天線80的外繞組在Z方向上間隔開。此等錐形形狀可以允許共振器用於更寬範圍的共振頻率。在其他實施例中,第一發射器天線在Z方向上的厚度可以以其他方式變化。Although the antennas 80, 180, 280 are described and shown herein as being relatively flat or planar (e.g., having substantially no variation in thickness in the Z direction), this is not mandatory. In some embodiments, the antennas 80, 180, 280 may have a conical concave or conical convex shape as shown in FIGS. 3A and 3B. For example, the antennas herein may have a conical spiral shape (not shown). In some embodiments, the antenna 80 may have a rectangular conical spiral shape such that the inner windings of the antenna 80 are spaced apart from the outer windings of the antenna 80 in the Z direction. Such conical shapes may allow the resonator to be used for a wider range of resonant frequencies. In other embodiments, the thickness of the first transmitter antenna in the Z direction may vary in other ways.
例如,天線80、180、280可以佈置成與CPT WPT系統中的板的彼等組態類似的配置。例如,在根據某些實施例的兩天線WPT系統中,發射器共振器30可以包括與接收器共振器50的第一接收器天線52並聯配置的第一發射器天線32,如在圖4A中所示。出於CPT的目的,兩個天線32、52之間的互電容為電流提供向前流動至接收器側的路徑,且導電路徑(例如,土地)將允許電流流回至發射器側。出於IPT的目的,藉由驅動電流穿過第一發射器天線32,來產生可在第一接收器天線52中感應電流的磁場31A。出於CPT的目的,可以對第一發射器天線32施加電壓以在第一發射器天線32與第一接收器天線52之間形成電位差,藉此形成電場31B。For example, the antennas 80, 180, 280 may be arranged in a configuration similar to those of the panels in a CPT WPT system. For example, in a two-antenna WPT system according to certain embodiments, the transmitter resonator 30 may include a first transmitter antenna 32 configured in parallel with a first receiver antenna 52 of a receiver resonator 50, as shown in FIG. 4A. For the purpose of CPT, the mutual capacitance between the two antennas 32, 52 provides a path for current to flow forward to the receiver side, and the conductive path (e.g., land) will allow the current to flow back to the transmitter side. For the purpose of IPT, by driving current through the first transmitter antenna 32, a magnetic field 31A is generated that can induce current in the first receiver antenna 52. For the purpose of CPT, a voltage may be applied to the first transmitter antenna 32 to form a potential difference between the first transmitter antenna 32 and the first receiver antenna 52, thereby forming an electric field 31B.
第一發射器天線32可以包括具有高自電感及高自電容的任何適合的天線,該天線能夠形成磁場31A及電場31B兩者(分開地及/或同時地)。例如,第一發射器天線可以包括天線80、180、280或本文所闡述的任何其他天線中的一者。The first transmitter antenna 32 may include any suitable antenna having high self-inductance and high self-capacitance that is capable of forming both the magnetic field 31A and the electric field 31B (separately and/or simultaneously). For example, the first transmitter antenna may include one of antennas 80, 180, 280, or any other antenna described herein.
第一接收器天線52可以包括具有高自電感及高自電容的任何適合天線,該天線能夠藉由磁場31A在其中感應電流且由於電場31B而在其上具有電位差(分開地及/或同時地)。在某些實施例中,第一接收器天線52可以基本上類似於第一發射器天線32 (例如,第一接收器天線52可以具有本文或以其他方式闡述或繪示之任何天線的相同特性)。在某些實施例中,天線32、52可以彼此不同(例如,第一發射器天線32可以包括天線80,而第一接收器天線52可以包括天線180)。The first receiver antenna 52 may include any suitable antenna having high self-inductance and high self-capacitance that is capable of inducing a current therein by the magnetic field 31A and having a potential difference thereon due to the electric field 31B (separately and/or simultaneously). In some embodiments, the first receiver antenna 52 may be substantially similar to the first transmitter antenna 32 (e.g., the first receiver antenna 52 may have the same characteristics of any antenna described or illustrated herein or otherwise). In some embodiments, the antennas 32, 52 may be different from one another (e.g., the first transmitter antenna 32 may include antenna 80, while the first receiver antenna 52 may include antenna 180).
在某些實施例中,第一發射器天線32的XY平面區域小於第一接收器天線52的XY平面區域,以改良第一發射器天線32與第一接收器天線52之間的耦合。In some embodiments, the XY plane area of the first transmitter antenna 32 is smaller than the XY plane area of the first receiver antenna 52 to improve coupling between the first transmitter antenna 32 and the first receiver antenna 52.
圖4B示出天線80、180、280的組態的另一示例。在某些實施例中,圖4B示出四天線堆疊(或四天線垂直)的 WPT系統。發射器共振器130及接收器共振器150中的每一者包括兩個天線。發射器共振器30的一個天線與接收器共振器150的一個天線一起為電力提供前向路徑,而發射器共振器130的另一個天線與接收器共振器150的另一個天線一起為電力提供返回路徑。FIG. 4B shows another example of the configuration of antennas 80, 180, 280. In some embodiments, FIG. 4B shows a four-antenna stacked (or four-antenna vertical) WPT system. Each of the transmitter resonator 130 and the receiver resonator 150 includes two antennas. One antenna of the transmitter resonator 30 and one antenna of the receiver resonator 150 provide a forward path for power, while another antenna of the transmitter resonator 130 and another antenna of the receiver resonator 150 provide a return path for power.
出於IPT的目的,藉由驅動電流穿過發射器的天線132、134,來產生可在第一接收器天線152及第二接收器天線154中感應電流的磁場。出於CPT的目的,可以在第一天線132與第二天線134之間施加電位差以產生電場(在圖1中所示的31B),從而感應跨越第一接收器天線152及第二接收器天線154的電位。For the purpose of IPT, a current is driven through the transmitter antennas 132, 134 to generate a magnetic field that can induce a current in the first receiver antenna 152 and the second receiver antenna 154. For the purpose of CPT, a potential difference can be applied between the first antenna 132 and the second antenna 134 to generate an electric field (31B shown in FIG. 1), thereby inducing a potential across the first receiver antenna 152 and the second receiver antenna 154.
如在圖4B中所示,發射器共振器130包括藉由間隔件138在Z方向上分開的第一發射器天線132及第二發射器天線134。As shown in FIG. 4B , the transmitter resonator 130 includes a first transmitter antenna 132 and a second transmitter antenna 134 separated in the Z direction by a spacer 138 .
第一發射器天線132可以包括具有高自電感及高自電容的任何適合天線,該天線能夠形成磁場31A及電場31B兩者(分開地及/或同時地)。例如,第一發射器天線可以包括天線80、180、280或本文所闡述的任何其他天線中的一者。The first transmitter antenna 132 may include any suitable antenna having high self-inductance and high self-capacitance that is capable of forming both the magnetic field 31A and the electric field 31B (separately and/or simultaneously). For example, the first transmitter antenna may include one of antennas 80, 180, 280, or any other antenna described herein.
間隔件138可以包括任何適合材料。例如,間隔件138可以包括空氣、介電材料、鐵氧體或其某種組合。間隔件138可以具有經選擇以改變電場31B的介電常數及/或其可以具有經選擇以改變磁場31A的導磁常數。間隔件138可以包括增加發射器共振器130的電容的高介電常數材料。間隔件138的厚度及平面區域可以取決於第一發射器天線132及第二發射器天線134的厚度及/或平面區域。在某些實施例中,電絕緣可以是令人期望的,並可以針對間隔件138採用低介電常數材料(例如,用於屏蔽)。The spacer 138 may include any suitable material. For example, the spacer 138 may include air, a dielectric material, a ferrite, or some combination thereof. The spacer 138 may have a dielectric constant selected to change the electric field 31B and/or it may have a permeability selected to change the magnetic field 31A. The spacer 138 may include a high dielectric constant material that increases the capacitance of the transmitter resonator 130. The thickness and planar area of the spacer 138 may depend on the thickness and/or planar area of the first transmitter antenna 132 and the second transmitter antenna 134. In some embodiments, electrical isolation may be desirable and a low dielectric constant material may be used for the spacer 138 (e.g., for shielding).
第二發射器天線134可以包括具有高自電感及高自電容的任何適合天線,該天線能夠形成磁場31A及電場31B兩者(分開地及/或同時地)。在某些實施例中,第二發射器天線134可以基本上類似於第一發射器天線132(例如,第二發射器天線134可以具有本文或以其他方式闡述或示出的任何天線的相同特性)。在某些實施例中,第一發射器天線132及第二發射器天線134與第一接收器天線152及第二接收器天線154可以彼此不同(例如,第一發射器天線132及第二發射器天線134可以與天線80相似,而第一接收器天線152及第二接收器天線154可以與天線180相似)。The second transmitter antenna 134 may include any suitable antenna having high self-inductance and high self-capacitance that is capable of forming both the magnetic field 31A and the electric field 31B (separately and/or simultaneously). In some embodiments, the second transmitter antenna 134 may be substantially similar to the first transmitter antenna 132 (e.g., the second transmitter antenna 134 may have the same characteristics of any antenna described or illustrated herein or otherwise). In some embodiments, the first transmitter antenna 132 and the second transmitter antenna 134 and the first receiver antenna 152 and the second receiver antenna 154 may be different from each other (e.g., the first transmitter antenna 132 and the second transmitter antenna 134 may be similar to antenna 80, and the first receiver antenna 152 and the second receiver antenna 154 may be similar to antenna 180).
在某些實施例中,第二發射器天線134的XY平面區域的大小可以不同於第一發射器天線132的XY平面區域。在某些實施例中,第二發射器天線134的XY平面區域以可以小於第一發射器天線132的XY平面區域,以確保每對天線之間的耦合。在某些實施例中,第二發射器天線134的XY平面區域可以大於第一發射器天線132的XY平面區域。In some embodiments, the size of the XY plane area of the second transmitter antenna 134 may be different from the XY plane area of the first transmitter antenna 132. In some embodiments, the XY plane area of the second transmitter antenna 134 may be smaller than the XY plane area of the first transmitter antenna 132 to ensure coupling between each pair of antennas. In some embodiments, the XY plane area of the second transmitter antenna 134 may be larger than the XY plane area of the first transmitter antenna 132.
在某些實施例中,第二發射器天線134與第一天線132在大小及/或形狀方面基本上互補,使得第一發射器天線132與第二發射器天線134在Z方向上基本上不重疊。圖5描繪發射器共振器130的一部分的XZ平面截面的示意性代表,其中第一發射器天線132及第二發射器天線134各自基本上形狀類似於圖2B中的第一發射器天線180。如可以看出,第一發射器天線132的伸長元件132A的部分132A-1、132A-2、132A-3與第二發射器天線134的間隙134B-1、134B-2、134B-3在Z方向上重疊(例如,在Z方向上定向之穿過第一發射器天線132的伸長元件132A的部分132A-1的一條線穿過第二發射器天線134的間隙134B-1),且第二發射器天線134的伸長元件134A的部分134A-1、134A-2、134A-3與第一發射器天線132的間隙132B-1、132B-2、132B-3在Z方向上重疊(例如,在Z方向上定向之穿過第二發射器天線134的伸長元件134A的部分134A-1的一條線穿過第一發射器天線132的間隙132B-1)。第一發射器天線132與第二發射器天線134的互補形狀可以減小發射器共振器130所經歷的寄生能量損耗。在某些實施例中,第一發射器天線132及第二發射器天線134可能不完全互補,但可以具有一個或多個互補部分。In some embodiments, the second transmitter antenna 134 is substantially complementary to the first antenna 132 in size and/or shape, such that the first transmitter antenna 132 and the second transmitter antenna 134 do not substantially overlap in the Z direction. FIG5 depicts a schematic representation of an XZ plane cross-section of a portion of the transmitter resonator 130, wherein the first transmitter antenna 132 and the second transmitter antenna 134 are each substantially shaped similarly to the first transmitter antenna 180 of FIG2B. As can be seen, the portions 132A-1, 132A-2, 132A-3 of the elongated element 132A of the first transmitter antenna 132 overlap with the gaps 134B-1, 134B-2, 134B-3 of the second transmitter antenna 134 in the Z direction (e.g., a line oriented in the Z direction passing through the portion 132A-1 of the elongated element 132A of the first transmitter antenna 132 passes through the gaps 134B-1, 134B-2, 134B-3 of the second transmitter antenna 134). 1), and portions 134A-1, 134A-2, 134A-3 of the elongated element 134A of the second transmitter antenna 134 overlap with the gaps 132B-1, 132B-2, 132B-3 of the first transmitter antenna 132 in the Z direction (e.g., a line oriented in the Z direction passing through portion 134A-1 of the elongated element 134A of the second transmitter antenna 134 passes through the gap 132B-1 of the first transmitter antenna 132). The complementary shapes of the first transmitter antenna 132 and the second transmitter antenna 134 can reduce parasitic energy losses experienced by the transmitter resonator 130. In some embodiments, the first transmitter antenna 132 and the second transmitter antenna 134 may not be completely complementary, but may have one or more complementary portions.
接收器共振器150包括藉由間隔件158在Z方向上分開的第一接收器天線152及第二接收器天線154。第一接收器天線152可以基本上類似於天線80、180、280或本文所闡述的其他天線中的任一者。第二接收器天線154亦可以基本上類似於天線80、180、280或本文所闡述的其他天線中的任一者。與第一發射器天線132及第二發射器天線134一樣,第一接收器天線152與第二接收器天線154在大小及/或形狀方面可以互補(或部分互補)。The receiver resonator 150 includes a first receiver antenna 152 and a second receiver antenna 154 separated in the Z direction by a spacer 158. The first receiver antenna 152 can be substantially similar to the antennas 80, 180, 280, or any of the other antennas described herein. The second receiver antenna 154 can also be substantially similar to the antennas 80, 180, 280, or any of the other antennas described herein. Like the first transmitter antenna 132 and the second transmitter antenna 134, the first receiver antenna 152 and the second receiver antenna 154 can complement each other (or partially complement each other) in size and/or shape.
在某些實施例中,如在圖4B中所示,第一接收器天線152及第二接收器天線154的XY平面區域不同於第一發射器天線132及第二發射器天線134的XY平面區域,以便調整接收器共振器150的自電感或自電容。例如,在某些實施例中,第一接收器天線152及第二接收器天線154的XY平面區域大於第一發射器天線132及第二發射器天線134的XY平面區域,如在圖2A中所示。此XY平面區域差可以改良接收器共振器150捕獲更多磁場31A及/或電場31B的能力。In some embodiments, as shown in FIG4B , the XY plane area of the first receiver antenna 152 and the second receiver antenna 154 is different from the XY plane area of the first transmitter antenna 132 and the second transmitter antenna 134 in order to adjust the self-inductance or self-capacitance of the receiver resonator 150. For example, in some embodiments, the XY plane area of the first receiver antenna 152 and the second receiver antenna 154 is larger than the XY plane area of the first transmitter antenna 132 and the second transmitter antenna 134, as shown in FIG2A . This XY plane area difference can improve the ability of the receiver resonator 150 to capture more magnetic fields 31A and/or electric fields 31B.
間隔件158可以包括任何適合間隔件。間隔件158可以包括與間隔件138相同或類似的材料或與間隔件138不同的材料。與間隔件158相比,間隔件138可以具有更小的Z方向尺寸以達成期望的自電容及/或自電感。這可以有效地改變初級側12與次級側14之間鏈路的耦合係數及初級側12的阻抗。可以在初級側12及次級側14兩者中採用不同的補償網路以適應此等耦合係數及阻抗變化。Spacer 158 may include any suitable spacer. Spacer 158 may include the same or similar material as spacer 138 or a different material than spacer 138. Spacer 138 may have a smaller Z-direction dimension than spacer 158 to achieve a desired self-capacitance and/or self-inductance. This may effectively change the coupling coefficient of the link between primary side 12 and secondary side 14 and the impedance of primary side 12. Different compensation networks may be used in both primary side 12 and secondary side 14 to accommodate these coupling coefficient and impedance changes.
與在圖4C中所示的四天線並聯結構相比,圖4B的堆疊組態在XY平面中更加緊湊。此外,由於所有天線皆能中心對準,因此該組態對角度失準是穩健的。具體而言,當天線呈圓形形狀時,角度旋轉對耦合電容無影響。然而,與在圖4C中所示的四天線並聯結構相比,圖4B的堆疊組態的互導可以由於增加的交叉耦合電容來降低。Compared to the four-antenna parallel structure shown in FIG4C , the stacked configuration of FIG4B is more compact in the XY plane. In addition, since all antennas can be centrally aligned, the configuration is robust to angular misalignment. Specifically, when the antennas are circular in shape, angular rotation has no effect on the coupling capacitance. However, compared to the four-antenna parallel structure shown in FIG4C , the mutual conductance of the stacked configuration of FIG4B can be reduced due to the increased cross-coupling capacitance.
圖4C描繪天線80、180、280的組態的另一示例。在某些實施例中,圖4C示出四天線並聯(或四天線水平)WPT系統。發射器共振器230及接收器共振器250中的每一者包括兩個天線。發射器共振器230的一個天線與接收器共振器250的一個天線一起為電力提供一前向路徑,而發射器共振器230的另一個天線與接收器共振器250的另一個天線一起為電力提供返回路徑。FIG. 4C depicts another example of the configuration of antennas 80, 180, 280. In some embodiments, FIG. 4C shows a four-antenna parallel (or four-antenna horizontal) WPT system. Each of the transmitter resonator 230 and the receiver resonator 250 includes two antennas. One antenna of the transmitter resonator 230 and one antenna of the receiver resonator 250 together provide a forward path for power, and another antenna of the transmitter resonator 230 and another antenna of the receiver resonator 250 together provide a return path for power.
出於IPT的目的,藉由驅動電流穿過發射器的第一發射器天線232、第二發射器天線234,來產生可在第一接收器天線252及第二接收器天線254中感應電流的磁場。出於CPT的目的,可以在第一發射器天線232與第二發射器天線234之間形成電位差以產生電場31B,從而感應跨越第一接收器天線252及第二接收器天線254的電位。For the purpose of IPT, a current is driven through the first transmitter antenna 232 and the second transmitter antenna 234 of the transmitter to generate a magnetic field that can induce a current in the first receiver antenna 252 and the second receiver antenna 254. For the purpose of CPT, a potential difference can be formed between the first transmitter antenna 232 and the second transmitter antenna 234 to generate an electric field 31B, thereby inducing a potential across the first receiver antenna 252 and the second receiver antenna 254.
與在圖4B中所示的發射器共振器130及接收器共振器150相比,在存在對共振器的Z方向尺寸的限制的應用中可以期望具有水平天線佈置的發射器共振器230及接收器共振器250。Compared to the transmitter resonator 130 and the receiver resonator 150 shown in FIG. 4B , the transmitter resonator 230 and the receiver resonator 250 having a horizontal antenna arrangement may be desirable in applications where there are restrictions on the Z-direction size of the resonators.
發射器共振器230包括藉由間隔件238在X方向上分開的第一發射器天線232及第二發射器天線234。藉由在X方向上將第一發射器天線232與第二發射器天線234分開,可以減小寄生能量損耗。第一發射器天線232及第二發射器天線234可以基本上類似於第一發射器天線132及第二發射器天線134,且間隔件238可以基本上類似於間隔件138。與發射器共振器130一樣,第一發射器天線232可以具有比第二發射器天線234的XY平面區域更大的XY平面區域,以改良用於電力傳送的前向路徑。The transmitter resonator 230 includes a first transmitter antenna 232 and a second transmitter antenna 234 separated in the X direction by a spacer 238. By separating the first transmitter antenna 232 from the second transmitter antenna 234 in the X direction, parasitic energy losses can be reduced. The first transmitter antenna 232 and the second transmitter antenna 234 can be substantially similar to the first transmitter antenna 132 and the second transmitter antenna 134, and the spacer 238 can be substantially similar to the spacer 138. As with the transmitter resonator 130, the first transmitter antenna 232 can have a larger XY plane area than the XY plane area of the second transmitter antenna 234 to improve the forward path for power transfer.
間隔件238可以包括任何適合材料。例如,間隔件238可以包括空氣、介電材料、鐵氧體或其組合。間隔件238可以具有經選擇以改變電場31B的介電常數及/或其可以具有經選擇以改變磁場31A的導磁常數。間隔件238可以包括增加發射器共振器230的電容的高介電常數材料。間隔件238的厚度及平面區域可以取決於第一發射器天線232及第二發射器天線234的厚度及/或平面區域。在某些實施例中,電絕緣可以是令人期望的,並可以針對間隔件238採用的低介電常數材料(例如,用於屏蔽)。The spacer 238 may include any suitable material. For example, the spacer 238 may include air, a dielectric material, a ferrite, or a combination thereof. The spacer 238 may have a dielectric constant selected to change the electric field 31B and/or it may have a permeability selected to change the magnetic field 31A. The spacer 238 may include a high dielectric constant material that increases the capacitance of the transmitter resonator 230. The thickness and planar area of the spacer 238 may depend on the thickness and/or planar area of the first transmitter antenna 232 and the second transmitter antenna 234. In some embodiments, electrical insulation may be desirable and a low dielectric constant material may be used for the spacer 238 (e.g., for shielding).
接收器共振器250包括藉由間隔件258在X方向上分開的第一接收器天線252及第二接收器天線254。藉由在X方向上將第一接收器天線252與第二接收器天線254分開,可以減小寄生能量損耗。第一接收器天線252及第二接收器天線254可以基本上類似於第一接收器天線152及第二接收器天線154,且間隔件258可以基本上類似於間隔件138。與接收器共振器150一樣,第一接收器天線252可以具有比第二接收器天線254的XY平面區域更大的XY平面區域。The receiver resonator 250 includes a first receiver antenna 252 and a second receiver antenna 254 separated in the X direction by a spacer 258. By separating the first receiver antenna 252 from the second receiver antenna 254 in the X direction, parasitic energy losses can be reduced. The first receiver antenna 252 and the second receiver antenna 254 can be substantially similar to the first receiver antenna 152 and the second receiver antenna 154, and the spacer 258 can be substantially similar to the spacer 138. As with the receiver resonator 150, the first receiver antenna 252 can have a larger XY plane area than the XY plane area of the second receiver antenna 254.
間隔件258可以包括任何適合間隔件。間隔件258可以包括與間隔件238相同或類似的材料或與間隔件238不同的材料。與間隔件258相比,間隔件238可以具有更小的Z方向尺寸以達成期望的自電容及/或自電感。這可以有效地改變初級側12與次級側14之間鏈路的耦合係數及初級側12的阻抗。可以在初級側12及次級側14兩者中採用不同的補償網路以適應此等耦合係數及阻抗變化。Spacer 258 may include any suitable spacer. Spacer 258 may include the same or similar material as spacer 238 or a different material than spacer 238. Spacer 238 may have a smaller Z-direction dimension than spacer 258 to achieve a desired self-capacitance and/or self-inductance. This may effectively change the coupling coefficient of the link between primary side 12 and secondary side 14 and the impedance of primary side 12. Different compensation networks may be used in both primary side 12 and secondary side 14 to accommodate these coupling coefficient and impedance changes.
在某些實施例中,間隔件258的XY平面區域可以不同於間隔件238的XY平面區域,以便使發射器共振器230或接收器共振器250的自電感或自電容變化。例如,與間隔件258相比,間隔件238可以具有更小的XY平面區域,如圖所示。In some embodiments, the XY plane area of the spacer 258 can be different from the XY plane area of the spacer 238 to vary the self-inductance or self-capacitance of the transmitter resonator 230 or the receiver resonator 250. For example, the spacer 238 can have a smaller XY plane area than the spacer 258, as shown.
圖4D描繪天線80、180、280的組態的另一示例。在某些實施例中,圖4D描繪與圖4B的堆疊組態及圖4C的並聯組態組合的六天線WPT系統。發射器共振器130及接收器共振器150中的每一者包括三個天線。第一發射器天線332及第二發射器天線334中的一個天線與第一接收器天線352及第二接收器天線354中的一個天線一起為電力提供前向路徑,而第一發射器天線332及第二發射器天線334中的另一個天線與第一接收器天線352及第二接收器天線354中的另一個天線一起為電力提供返回路徑。第三發射器天線336及第三接收器天線356作為輔助天線運行以增加等效自電容且充當電場屏蔽。在某些實施例中,第三發射器天線336及第三接收器天線356是被動的(例如,在第三發射器天線336與第三接收器天線356之間不施加電位差及/或不驅動電流穿過第三發射器天線336及第三接收器天線356)。出於IPT的目的,藉由驅動電流穿過發射器的第一發射器天線332、第二發射器天線334、第三發射器天線336中的一者或多者,來產生可在第一接收器天線352、第二接收器天線354及第三接收器天線356中感應電流的磁場。出於CPT的目的,可以對第一發射器天線332、第二發射器天線334及/或第三發射器天線336施加電壓以在第一發射器天線332、第二發射器天線334及第三發射器天線336中的任一者之間形成電位差,藉以形成電場31B。FIG. 4D depicts another example of a configuration of antennas 80, 180, 280. In some embodiments, FIG. 4D depicts a six-antenna WPT system combined with the stacked configuration of FIG. 4B and the parallel configuration of FIG. 4C. Each of the transmitter resonator 130 and the receiver resonator 150 includes three antennas. One of the first transmitter antenna 332 and the second transmitter antenna 334 together with one of the first receiver antenna 352 and the second receiver antenna 354 provides a forward path for power, while the other of the first transmitter antenna 332 and the second transmitter antenna 334 together with the other of the first receiver antenna 352 and the second receiver antenna 354 provides a return path for power. The third transmitter antenna 336 and the third receiver antenna 356 operate as auxiliary antennas to increase the equivalent self-capacitance and act as an electric field shield. In some embodiments, the third transmitter antenna 336 and the third receiver antenna 356 are passive (e.g., no potential difference is applied between the third transmitter antenna 336 and the third receiver antenna 356 and/or no current is driven through the third transmitter antenna 336 and the third receiver antenna 356). For the purpose of IPT, a magnetic field is generated that can induce current in the first receiver antenna 352, the second receiver antenna 354, and the third receiver antenna 356 by driving current through one or more of the first transmitter antenna 332, the second transmitter antenna 334, and the third transmitter antenna 336 of the transmitter. For the purpose of CPT, a voltage may be applied to the first transmitter antenna 332, the second transmitter antenna 334 and/or the third transmitter antenna 336 to form a potential difference between any one of the first transmitter antenna 332, the second transmitter antenna 334 and the third transmitter antenna 336, thereby forming an electric field 31B.
發射器共振器330包括:藉由間隔件338在X方向上分開的第一發射器天線332及第二發射器天線334;以及藉由第二間隔件339與第一發射器天線及第二發射器天線及間隔件338分開的第三發射器天線336。第三發射器天線336可以提供電場屏蔽以減少電場自發射器共振器330的不期望逸出。第三發射器天線336可以含有鐵氧體薄片或表面以提供磁場屏蔽,以便減少磁場自發射器共振器330的不期望逸出。藉由改變間隔件339,電場或磁場的屏蔽或成形亦是可能的。The transmitter resonator 330 includes a first transmitter antenna 332 and a second transmitter antenna 334 separated in the X direction by a spacer 338; and a third transmitter antenna 336 separated from the first and second transmitter antennas and the spacer 338 by a second spacer 339. The third transmitter antenna 336 can provide electric field shielding to reduce undesired escape of electric fields from the transmitter resonator 330. The third transmitter antenna 336 can contain a ferrite sheet or surface to provide magnetic field shielding to reduce undesired escape of magnetic fields from the transmitter resonator 330. By varying the spacer 339, shielding or shaping of electric or magnetic fields is also possible.
第一發射器天線332、第二發射器天線334及第三發射器天線336可以基本上類似於第一發射器天線132及第二發射器天線134中的任一者。間隔件338、339可以基本上類似於間隔件138。與發射器共振器130一樣,第一發射器天線332可以具有比第二發射器天線334的XY平面區域更大的XY平面區域。第三發射器天線336可以具有比第一發射器天線332及第二發射器天線334中的任一者更大的XY平面區域。The first transmitter antenna 332, the second transmitter antenna 334, and the third transmitter antenna 336 may be substantially similar to either of the first transmitter antenna 132 and the second transmitter antenna 134. The spacers 338, 339 may be substantially similar to the spacer 138. As with the transmitter resonator 130, the first transmitter antenna 332 may have a larger XY plane area than the XY plane area of the second transmitter antenna 334. The third transmitter antenna 336 may have a larger XY plane area than either of the first transmitter antenna 332 and the second transmitter antenna 334.
間隔件338、339可以包括任何適合材料。例如,間隔件338、339可以包括空氣、介電材料、鐵氧體或其組合。間隔件338、339可以具有經選擇以改變電場31B的介電常數及/或其可以具有經選擇以改變磁場31A的導磁常數。間隔件338、339可以包括高介電常數材料以增加發射器共振器230的電容。間隔件338、339的厚度及平面區域可以取決於第一發射器天線332、第二發射器天線334及第三發射器天線336的厚度及/或平面區域。在某些實施例中,電絕緣可以是令人期望的,並可以針對間隔件338、339採用低介電常數材料(例如,用於屏蔽)。The spacers 338, 339 may include any suitable material. For example, the spacers 338, 339 may include air, a dielectric material, a ferrite, or a combination thereof. The spacers 338, 339 may have a dielectric constant selected to change the electric field 31B and/or they may have a permeability selected to change the magnetic field 31A. The spacers 338, 339 may include a high dielectric constant material to increase the capacitance of the transmitter resonator 230. The thickness and planar area of the spacers 338, 339 may depend on the thickness and/or planar area of the first transmitter antenna 332, the second transmitter antenna 334, and the third transmitter antenna 336. In some embodiments, electrical isolation may be desirable and a low dielectric constant material may be used for the spacers 338, 339 (e.g., for shielding).
接收器共振器350包括:藉由間隔件358在X方向上分開的第一接收器天線352及第二接收器天線354;以及藉由第二間隔件359與第一接收器天線、第二接收器天線及間隔件358分開的第三接收器天線356。第三接收器天線356可以提供電場屏蔽以減少電場自接收器共振器350的不期望逸出。第三接收器天線356可以含有鐵氧體薄片或表面以提供磁場屏蔽,以便減少磁場自發射器的不期望逸出。藉由改變間隔件359,電場或磁場的屏蔽或成形亦是可能的。第一接收器天線352、第二接收器天線354及第三接收器天線356可以基本上類似於第一接收器天線152及第二接收器天線154中的任一者。間隔件358、359可以基本上類似於間隔件158。與接收器共振器150一樣,第一接收器天線352可以具有比第二接收器天線354的XY平面區域更大的XY平面區域。第三接收器天線356可以具有比第一接收器天線352及第二接收器天線354中的任一者更大的XY平面區域。The receiver resonator 350 includes: a first receiver antenna 352 and a second receiver antenna 354 separated in the X direction by a spacer 358; and a third receiver antenna 356 separated from the first receiver antenna, the second receiver antenna, and the spacer 358 by a second spacer 359. The third receiver antenna 356 can provide electric field shielding to reduce the undesired escape of electric fields from the receiver resonator 350. The third receiver antenna 356 can contain a ferrite sheet or surface to provide magnetic field shielding to reduce the undesired escape of magnetic fields from the transmitter. By changing the spacer 359, shielding or shaping of electric or magnetic fields is also possible. The first receiver antenna 352, the second receiver antenna 354, and the third receiver antenna 356 can be substantially similar to any of the first receiver antenna 152 and the second receiver antenna 154. The spacers 358, 359 can be substantially similar to the spacer 158. As with the receiver resonator 150, the first receiver antenna 352 may have a larger XY plane area than the XY plane area of the second receiver antenna 354. The third receiver antenna 356 may have a larger XY plane area than either of the first receiver antenna 352 and the second receiver antenna 354.
間隔件358、359可以包括任何適合間隔件。間隔件358、359可以包括與間隔件338、339相同或類似的材料或與間隔件338、339不同的材料。與間隔件358、359相比,間隔件338、339可以具有更小的Z方向尺寸以達成期望的自電容及/或自電感。這可以有效地改變初級側12與次級側14之間鏈路的耦合係數及初級側12的阻抗。可以在初級側12及次級側14兩者中採用不同的補償網路以適應此等耦合係數及阻抗變化。Spacers 358, 359 may include any suitable spacers. Spacers 358, 359 may include the same or similar materials as spacers 338, 339 or different materials than spacers 338, 339. Spacers 338, 339 may have smaller Z-direction dimensions than spacers 358, 359 to achieve a desired self-capacitance and/or self-inductance. This may effectively change the coupling coefficient of the link between the primary side 12 and the secondary side 14 and the impedance of the primary side 12. Different compensation networks may be used in both the primary side 12 and the secondary side 14 to accommodate these coupling coefficient and impedance changes.
在某些實施例中,間隔件358的XY平面區域可以不同於間隔件338的XY平面區域,以便使發射器共振器330或接收器共振器350的自電感或自電容變化。例如,與間隔件358相比,間隔件338可以具有更小的X方向尺寸。在某些實施例中,間隔件359Z方向尺寸可以不同於間隔件339的Z方向尺寸,以便使發射器共振器330或接收器共振器350的自電感或自電容變化。例如,與間隔件359相比,間隔件339可以具有更小的Z方向尺寸。這可以有效地改變初級側12與次級側14之間的路的耦合係數及初級側12的阻抗。可以在初級側12及次級側14兩者中採用不同的補償網路以適應此等耦合係數及阻抗變化。In some embodiments, the XY plane area of spacer 358 can be different from the XY plane area of spacer 338 to vary the self-inductance or self-capacitance of transmitter resonator 330 or receiver resonator 350. For example, spacer 338 can have a smaller X-direction dimension than spacer 358. In some embodiments, the Z-direction dimension of spacer 359 can be different from the Z-direction dimension of spacer 339 to vary the self-inductance or self-capacitance of transmitter resonator 330 or receiver resonator 350. For example, spacer 339 can have a smaller Z-direction dimension than spacer 359. This can effectively change the coupling coefficient of the path between primary side 12 and secondary side 14 and the impedance of primary side 12. Different compensation networks may be used in both the primary side 12 and the secondary side 14 to accommodate these coupling coefficient and impedance variations.
在某些實施例中,可以圍繞發射器共振器30及接收器共振器50中的一者或多者來提供磁屏蔽。例如,鐵氧體可以用作磁屏蔽並用於減少附近金屬物體中的不期望渦電流。亦可以採用鐵氧體(或另一適合材料)以使發射器共振器30及/或接收器共振器50與周圍金屬物體隔離,並因此可以用於增加天線的自電感及/或共振器的互電感。In some embodiments, a magnetic shield may be provided around one or more of the transmitter resonator 30 and the receiver resonator 50. For example, ferrite may be used as a magnetic shield and to reduce unwanted eddy currents in nearby metal objects. Ferrite (or another suitable material) may also be used to isolate the transmitter resonator 30 and/or the receiver resonator 50 from surrounding metal objects and may therefore be used to increase the self-inductance of the antenna and/or the mutual inductance of the resonators.
圖6描繪根據某些實施例之包含發射器模組20及發射器共振器30的初級側12的示意圖。發射器共振器30可以包括發射器共振器30、130、230、330或本文所闡述的其他發射器共振器中的任一者。6 depicts a schematic diagram of the primary side 12 including the emitter module 20 and the emitter resonator 30 according to some embodiments. The emitter resonator 30 may include any of the emitter resonators 30, 130, 230, 330, or other emitter resonators described herein.
發射器模組20包括控制器22。控制器22配置以自感測器24(例如,負載偵測器24A、發射器電力感測器24B、周圍物體偵測器24C及/或距離偵測器24D)接收各種輸入並向各種組件26(例如,振盪器26A、功率放大器26B、濾波器網路26C、匹配網路26D、補償網路26E及V/I調諧器26F)輸出控制信號。The transmitter module 20 includes a controller 22. The controller 22 is configured to receive various inputs from sensors 24 (e.g., load detector 24A, transmitter power sensor 24B, surrounding object detector 24C and/or distance detector 24D) and output control signals to various components 26 (e.g., oscillator 26A, power amplifier 26B, filter network 26C, matching network 26D, compensation network 26E and V/I tuner 26F).
負載偵測器24A配置以偵測連接至次級側14的負載70 (示出於圖7中)的存在。例如,負載70可以是電動運載工具(諸如電輔自行車或電動汽車) 的電池、或需要電力輸入的任何其他適合物品。可以用實體感測器(例如無限制地,光學感測器、壓力感測器、紅外線感測器、或近接感測器)及適合的軟體或韌體實施負載偵測器24A。例如,在某些實施例中,量測在例如點24E處的電力(例如,電流及電壓)以判定由發射器共振器30汲取(例如,如由發射器電力感測器24B量測)的電力。若由發射器共振器30汲取的電力量增加至基線以上,則負載偵測器24A可以向控制器22發信號通知存在負載70。The load detector 24A is configured to detect the presence of a load 70 (shown in FIG. 7 ) connected to the secondary side 14. For example, the load 70 may be a battery for an electric vehicle (such as an electric bicycle or electric car), or any other suitable item requiring power input. The load detector 24A may be implemented with a physical sensor (such as, without limitation, an optical sensor, a pressure sensor, an infrared sensor, or a proximity sensor) and suitable software or firmware. For example, in some embodiments, power (e.g., current and voltage) at, for example, point 24E is measured to determine the power drawn by the transmitter resonator 30 (e.g., as measured by the transmitter power sensor 24B). If the amount of power drawn by the transmitter resonator 30 increases above the baseline, the load detector 24A may signal the controller 22 that a load 70 is present.
在其他實施例中,負載偵測器24A可以配置以量測發射器模組20在點24E處經歷的發射器共振器30的輸入阻抗。接近發射器共振器30之共振負載的存在(包括例如配置以驅動負載70的次級側14)將改變發射器共振器30的輸入阻抗。由負載偵測器24A向控制器22提供之阻抗的該改變可以由發射器控制器22使用以判定是否存在合作的接收器接近發射器共振器30。由不同接收器在發射器共振器30中感應的阻抗變化是不同且有特性的,使得控制器22可能不僅偵測接近發射器共振器30的接收器的存在或不存在,並識別接收器的種類,例如無限制地包括行動電話或數位平板電腦的不同型號。In other embodiments, the load detector 24A may be configured to measure the input impedance of the transmitter resonator 30 as experienced by the transmitter module 20 at point 24E. The presence of a resonant load in proximity to the transmitter resonator 30 (including, for example, the secondary side 14 configured to drive the load 70) will change the input impedance of the transmitter resonator 30. This change in impedance provided by the load detector 24A to the controller 22 may be used by the transmitter controller 22 to determine whether a cooperating receiver is in proximity to the transmitter resonator 30. The impedance changes induced in the transmitter resonator 30 by different receivers are different and characteristic, making it possible for the controller 22 to not only detect the presence or absence of a receiver in proximity to the transmitter resonator 30, but also to identify the type of receiver, such as, for example, different models of mobile phones or digital tablet computers, including without limitation.
發射器電力感測器24B可以量測點24E處的電力(例如,量測電流及電壓),以判定發射器共振器30正在汲取多少電力。例如,可以由負載偵測器24A使用此資訊以判定在發射器共振器30與接收器共振器50之間是否存在期望地高效的耦合。The transmitter power sensor 24B can measure the power at point 24E (e.g., measure current and voltage) to determine how much power is being drawn by the transmitter resonator 30. This information can be used by the load detector 24A to determine whether there is a desirably efficient coupling between the transmitter resonator 30 and the receiver resonator 50, for example.
周圍物體偵測器(SOD) 24C配置以判定物體(例如,諸如人或動物的生物,或諸如一塊金屬或其他的靜態物體)是否接近發射器共振器30。可以用實體感測器(例如無限制地,光學感測器、壓力感測器、紅外線感測器、近接感測器、雷達或光達)或藉助適合的軟體或韌體實施SOD 24C。例如,若由發射器共振器30汲取(如由發射器電力感測器24B量測)的電力在IPT期間下降,則SOD的軟體可以判定一塊金屬(或任何電導體)接近發射器共振器30或接收器共振器50,且SOD可以向控制器22提供指示此存在的信號。在某些實施例中,若偵測到接近發射器共振器30或接收器共振器50的金屬物體,則控制器22可以致使發射器模組20增加由CPT遞送的電力的比例。在當由SOD 24C偵測到不存在生物的情況下,控制器22可以配置以增加發射器共振器30的功率饋電(例如,高於在存在生物的情況下的調節位準),或在當由SOD 24C偵測到生物之接近的情況下,控制器22可以配置以將發射器共振器30的功率饋電降低至調節位準以下。The surrounding object detector (SOD) 24C is configured to determine whether an object (e.g., a living being such as a person or animal, or such as a piece of metal or other static object) is in proximity to the transmitter resonator 30. The SOD 24C may be implemented with a physical sensor (e.g., without limitation, an optical sensor, a pressure sensor, an infrared sensor, a proximity sensor, a radar, or a lidar) or with the aid of suitable software or firmware. For example, if the power drawn by the transmitter resonator 30 (as measured by the transmitter power sensor 24B) drops during the IPT period, the software of the SOD may determine that a piece of metal (or any electrical conductor) is in proximity to the transmitter resonator 30 or the receiver resonator 50, and the SOD may provide a signal to the controller 22 indicating such presence. In some embodiments, the controller 22 may cause the transmitter module 20 to increase the proportion of power delivered by the CPT if a metal object is detected in proximity to the transmitter resonator 30 or the receiver resonator 50. In the event that the absence of a living being is detected by the SOD 24C, the controller 22 may be configured to increase the power feed to the transmitter resonator 30 (e.g., above the regulated level in the presence of a living being), or in the event that the proximity of a living being is detected by the SOD 24C, the controller 22 may be configured to reduce the power feed to the transmitter resonator 30 below the regulated level.
距離偵測器24D配置以判定發射器共振器30與接收器共振器50之間的距離。可以用實體感測器(例如無限制地,光學感測器、超音波感測器、紅外線感測器、近接感測器、雷達或光達)或藉由適合的軟體或韌體實施距離偵測器24D。例如,距離偵測器24D可以配置以基於由發射器電力感測器24B量測的傳輸電力的改變來判定發射器共振器30與接收器共振器50之間的距離。The distance detector 24D is configured to determine the distance between the transmitter resonator 30 and the receiver resonator 50. The distance detector 24D may be implemented with a physical sensor (such as, without limitation, an optical sensor, an ultrasonic sensor, an infrared sensor, a proximity sensor, a radar, or a lidar) or by suitable software or firmware. For example, the distance detector 24D may be configured to determine the distance between the transmitter resonator 30 and the receiver resonator 50 based on changes in the transmission power measured by the transmitter power sensor 24B.
在一實施例中,一個或多個溫度感測器可以監測發射器共振器30或接收器共振器50處的溫度。若溫度超過一預定限制,則控制器22可以致使發射器模組20降低由IPT遞送的電力的比例、降低發射器共振器30的總功率饋電、或關閉發射器共振器30的電源以防止火災隱患或熱失控。In one embodiment, one or more temperature sensors may monitor the temperature at the transmitter resonator 30 or the receiver resonator 50. If the temperature exceeds a predetermined limit, the controller 22 may cause the transmitter module 20 to reduce the proportion of power delivered by the IPT, reduce the total power feed to the transmitter resonator 30, or shut down power to the transmitter resonator 30 to prevent a fire hazard or thermal runaway.
振盪器26A可以配置以控制遞送至發射器共振器30的電流的頻帶及/或帶寬及/或工作週期(相位)(例如5%至50%),以回應控制器22的信號。The oscillator 26A may be configured to control the frequency band and/or bandwidth and/or duty cycle (phase) (eg, 5% to 50%) of the current delivered to the transmitter resonator 30 in response to the signal from the controller 22 .
可以採用功率放大器26B以將DC電力轉換成AC電力。可以採用功率放大器26B來調整提供至發射器共振器30的電力,以回應控制器22的信號。在某些實施例中,控制器22可以向功率放大器26B發送調整功率放大器26B的反射係數的信號。在某些實施例中,當負載偵測器24A未偵測到負載時,控制器22可以向功率放大器26B發送關斷(或睡眠)的信號、或當負載偵測器24A偵測到負載時,控制器22可以向功率放大器26B發送接通的信號。The power amplifier 26B may be employed to convert the DC power to AC power. The power amplifier 26B may be employed to adjust the power provided to the transmitter resonator 30 in response to a signal from the controller 22. In some embodiments, the controller 22 may send a signal to the power amplifier 26B to adjust the reflection coefficient of the power amplifier 26B. In some embodiments, the controller 22 may send a signal to the power amplifier 26B to turn off (or sleep) when the load detector 24A does not detect a load, or send a signal to turn on when the load detector 24A detects a load.
功率放大器26B可以包括切換模式功率放大器(在單端模式或差分組態中),其可以配置以自振盪器26A接收方波(正弦波)並產生驅動發射器共振器30所期望的特定頻率的正弦波。圖8是能在發射器30中使用的例示性功率放大器26B的示意圖。功率放大器26B可以是差分切換模式放大器。功率放大器26B具有三個輸入,即:以設定在共振頻率處的頻率驅動主動裝置(電晶體) 127C、127D的兩個輸入信號以及用於控制該些主動裝置的輸出電力及操作區的DC電壓源127E。The power amplifier 26B may include a switching mode power amplifier (in a single-ended mode or differential configuration) that may be configured to receive a square wave (sine wave) from the self-oscillator 26A and generate a sine wave of a specific frequency desired to drive the transmitter resonator 30. FIG8 is a schematic diagram of an exemplary power amplifier 26B that can be used in the transmitter 30. The power amplifier 26B may be a differential switching mode amplifier. The power amplifier 26B has three inputs, namely: two input signals that drive the active devices (transistors) 127C, 127D at a frequency set at the resonant frequency and a DC voltage source 127E for controlling the output power and operating region of the active devices.
使用不同負載終端以改良效能(例如,輸出電力、電力轉換效率)並減少非必要諧波位準。在某些實施例中,第三諧波終端127F位於串聯分支中以使汲極節點127G處的電壓波形成形。第二諧波終端127H位於並聯分支中以使汲極節點127G處的電壓波形成形。第一諧波終端127I位於串聯分支中以使汲極節點127G處的電壓波形成形。可以在第二諧波終端127H及第一諧波終端127I中考量第三諧波終端之影響。可以在第一諧波終端127I中考量第二諧波終端127H的影響。對於功率放大器26B的差分組態, AC負載127J(其接收輸出電力)是串聯放置的。AC負載127J的充電速率可以是發射器共振器30、接收器共振器50及/或其等對準及位置的函數。功率放大器26B可以配置以產生用於發射器共振器30的足夠電力,使得可以由發射器共振器30產生且由接收器共振器50捕獲E場、或H場、或E場與H場的任何組合。Different load terminals are used to improve performance (e.g., output power, power conversion efficiency) and reduce unnecessary harmonic levels. In some embodiments, the third harmonic terminal 127F is located in the series branch to shape the voltage waveform at the drain node 127G. The second harmonic terminal 127H is located in the parallel branch to shape the voltage waveform at the drain node 127G. The first harmonic terminal 127I is located in the series branch to shape the voltage waveform at the drain node 127G. The impact of the third harmonic terminal can be considered in the second harmonic terminal 127H and the first harmonic terminal 127I. The impact of the second harmonic terminal 127H can be considered in the first harmonic terminal 127I. For the differential configuration of the power amplifier 26B, the AC load 127J (which receives the output power) is placed in series. The charging rate of the AC load 127J can be a function of the alignment and position of the transmitter resonator 30, the receiver resonator 50, and/or the like. The power amplifier 26B can be configured to generate sufficient power for the transmitter resonator 30 so that an E field, or an H field, or any combination of E and H fields can be generated by the transmitter resonator 30 and captured by the receiver resonator 50.
功率放大器26B可以包括差分組態中的兩個相移器127L (但在單端組態中僅一個移相器)。移相器127L調整AC信號過載127J與電晶體127C、127D的閘信號之間的適當相位差。閘信號與AC信號過載127J之間的相位差可以改變功率放大器的效能,例如,電晶體的電力轉換效率及操作區。其亦可以改變電晶體127C及127D的輸出阻抗及/或功率放大器26B的最佳AC負載127J。The power amplifier 26B may include two phase shifters 127L in a differential configuration (but only one phase shifter in a single-ended configuration). The phase shifter 127L adjusts the appropriate phase difference between the AC signal overload 127J and the gate signal of the transistors 127C, 127D. The phase difference between the gate signal and the AC signal overload 127J can change the performance of the power amplifier, for example, the power conversion efficiency and operating region of the transistor. It can also change the output impedance of the transistors 127C and 127D and/or the optimal AC load 127J of the power amplifier 26B.
功率放大器26B可以包括差分組態中的兩個位準移位器127K (但在單端組態中僅一個位準移位器)。位準移位器127K可以調整電晶體127C、127D的閘信號的適當振幅。閘信號處的振幅位準可以改變放大器的效能(例如,電晶體的電力轉換效率及操作區)。The power amplifier 26B may include two level shifters 127K in a differential configuration (but only one level shifter in a single-ended configuration). The level shifter 127K may adjust the appropriate amplitude of the gate signal of the transistors 127C, 127D. The amplitude level at the gate signal may change the performance of the amplifier (e.g., the power conversion efficiency and operating region of the transistor).
功率放大器26B可以是可重新組態的,以作為整流器發揮作用,在某些實施例中作為自同步整流器發揮作用。作為此重新組態的一部分,可以基於電晶體127C、127D的固有放大及切換功能調整積體化移相器127L及積體化位準移位器127K (參見圖8)以便允許功率放大器26B作用為整流器。功率放大器26B在操作為放大器與操作為整流器之間的該可重新組態性允許發射器模組20分別在發射器模式與接收器模式之間可控制地重新組態。可以在來自控制器22的指令下發生重新組態。當功率放大器26B自放大器重新組態成整流器時,AC負載127J改變成AC源127J。相應地,當功率放大器26B自放大器重新組態成整流器時,DC源127E重新組態成DC負載。在闡述了次級側14及其接收器模組(此兩者皆在圖7中更詳細地示出)之後,將在下文探討發射器模組20在其接收器模式中的應用。The power amplifier 26B may be reconfigurable to function as a rectifier, and in some embodiments as a self-synchronous rectifier. As part of this reconfiguration, the integrated phase shifter 127L and the integrated level shifter 127K (see FIG. 8 ) may be adjusted based on the inherent amplification and switching functions of the transistors 127C, 127D to allow the power amplifier 26B to function as a rectifier. This reconfigurability of the power amplifier 26B between operating as an amplifier and operating as a rectifier allows the transmitter module 20 to be controllably reconfigured between a transmitter mode and a receiver mode, respectively. The reconfiguration may occur under instructions from the controller 22. When the power amplifier 26B reconfigures from an amplifier to a rectifier, the AC load 127J changes to an AC source 127J. Accordingly, when the power amplifier 26B self-amplifier reconfigures as a rectifier, the DC source 127E reconfigures as a DC load. After explaining the secondary side 14 and its receiver module (both of which are shown in more detail in Figure 7), the application of the transmitter module 20 in its receiver mode will be discussed below.
濾波器網路26C可以調整頻率回應,諸如帶寬、截止頻率、3dB頻率、提供至發射器共振器30的增益,以回應控制器22的信號。濾波器網路26C可以配置以調整發射器模組20中功率的波形形狀,以增加發射器模組2的效率。The filter network 26C can adjust the frequency response, such as bandwidth, cutoff frequency, 3dB frequency, and gain provided to the transmitter resonator 30 in response to the signal from the controller 22. The filter network 26C can be configured to adjust the waveform shape of the power in the transmitter module 20 to increase the efficiency of the transmitter module 2.
匹配網路26D可以配置以調整阻抗以與功率放大器26B向發射器共振器30的輸出相匹配。Matching network 26D may be configured to adjust impedance to match the output of power amplifier 26B to transmitter resonator 30.
可以提供補償網路26E以在期望的共振頻率(例如,接收器共振器的共振頻率)下驅動發射器共振器30,藉以增加互通量、減少熱產生並改良電力傳送效率。補償網路26E可以包括用於增加電容的一個或多個電容器及用於增加電感的一個或多個電感器。補償網路26E可以配置以按照期望增加電容(及/或降低電感)及增加電感(及/或降低電容)。當傳送模式比為100% CPT時,補償網路26E可以以與任何已知的CPT補償網路類似的方式發揮作用(例如,補償網路26E可作用以增加電感)。類似地,當傳送模式比為100% IPT時,補償網路26E可以以與任何已知的IPT補償網路類似的方式發揮作用(例如,補償網路26E可作用以增加電容)。然而,當傳送模式是部分CPT及部分IPT時,可需要較少補償,此乃因發射器共振器30的電容將自然地為發射器共振器30的電感提供補償且發射器共振器30的電感將自然地為發射器共振器30的電容提供補償。例如,在大約50% IPT及50% CPT時(例如,傳送模式比等於1),可以根本不需要補償網路或可以基本上限制補償網路的用途,藉以增加WPT系統10的效率。A compensation network 26E may be provided to drive the transmitter resonator 30 at a desired resonant frequency (e.g., the resonant frequency of the receiver resonator) to increase mutual flux, reduce heat generation, and improve power transfer efficiency. The compensation network 26E may include one or more capacitors for increasing capacitance and one or more inductors for increasing inductance. The compensation network 26E may be configured to increase capacitance (and/or decrease inductance) and increase inductance (and/or decrease capacitance) as desired. When the transmit mode ratio is 100% CPT, the compensation network 26E may function in a manner similar to any known CPT compensation network (e.g., the compensation network 26E may function to increase inductance). Similarly, when the transmission mode ratio is 100% IPT, the compensation network 26E may function in a manner similar to any known IPT compensation network (e.g., the compensation network 26E may function to increase capacitance). However, when the transmission mode is partial CPT and partial IPT, less compensation may be required because the capacitance of the transmitter resonator 30 will naturally provide compensation for the inductance of the transmitter resonator 30 and the inductance of the transmitter resonator 30 will naturally provide compensation for the capacitance of the transmitter resonator 30. For example, at approximately 50% IPT and 50% CPT (e.g., the transmission mode ratio is equal to 1), the compensation network may not be required at all or its use may be substantially limited, thereby increasing the efficiency of the WPT system 10.
作為另一示例,在大約40%至60% IPT與40%至60% CPT之間,可以根本不需要補償網路或可以基本上限制補償網路的用途,藉此增加WPT系統10的效率。出於此原因,與需要顯著補償的CPT WPT系統及/或純IPT WPT系統相比,補償網路26E可以包括較少或小的電感器及/或電容器。在某些實施例中,若發射器共振器30的電容顯著地低,則可以藉助補償網路26E提供額外補償。類似地,若發射器共振器30的電感顯著地低,則可以藉助補償網路26E提供額外補償。例如,控制器22可基於傳送模式比、發射器共振器30與接收器共振器50之間的距離、由發射器共振器30汲取的電力量、電力發射效率等將需要多少及什麼類型的補償用信號發送給補償網路26E。As another example, between approximately 40% to 60% IPT and 40% to 60% CPT, a compensation network may not be needed at all or its use may be substantially limited, thereby increasing the efficiency of the WPT system 10. For this reason, the compensation network 26E may include fewer or smaller inductors and/or capacitors than a CPT WPT system and/or a pure IPT WPT system that requires significant compensation. In some embodiments, if the capacitance of the transmitter resonator 30 is significantly low, additional compensation may be provided by means of the compensation network 26E. Similarly, if the inductance of the transmitter resonator 30 is significantly low, additional compensation may be provided by means of the compensation network 26E. For example, the controller 22 may send a signal to the compensation network 26E regarding how much and what type of compensation is needed based on the transmit mode ratio, the distance between the transmitter resonator 30 and the receiver resonator 50, the amount of power drawn by the transmitter resonator 30, the power transmission efficiency, etc.
在某些實施例中,藉由補償網路26E進行的補償量值(例如,電容增加或電感增加)在傳送模式比與1之間的差的絕對值成比例。例如,若傳送模式比大於1,則補償網路26E可以作用以增加電感,且當傳送模式比增加至高於1時,電感的增加量可以增加。類似地,若傳送模式比小於1,則補償網路26E可以作用以增加電容,且當傳送模式比降低至低於1時,電容的增加可以增加。In certain embodiments, the amount of compensation (e.g., capacitance increase or inductance increase) performed by the compensation network 26E is proportional to the absolute value of the difference between the transfer mode ratio and 1. For example, if the transfer mode ratio is greater than 1, the compensation network 26E may act to increase the inductance, and the amount of increase in inductance may increase as the transfer mode ratio increases above 1. Similarly, if the transfer mode ratio is less than 1, the compensation network 26E may act to increase the capacitance, and the amount of increase in capacitance may increase as the transfer mode ratio decreases below 1.
在某些實施例中,補償網路26E可以配置以用資訊調變提供至發射器共振器30的信號並藉此可充當源傳輸調變器。調變提供至發射器共振器30信號所用的資訊可以由控制器22提供至補償網路26E。資訊可以包括經由接收器共振器50前往接收器模組40的控制器42的控制資料。下文參考圖7更詳細地闡述控制器42。在其他實施例中,功率放大器26B可充當源傳輸調變器。在又進一步實施例中,振盪器26A可充當源傳輸調變器。由所選擇的源傳輸調變器採用的調變可以是振幅調變、頻率調變及相位調變中的任一者。可以以數位形式或以類比形式將資訊調變至提供至發射器共振器30的信號上。可以藉由源傳輸調變器將資訊調變至提供至發射器共振器30的功率信號的共振頻率上。在其他實施例中,可以將資訊調變至與電力傳送的頻率不同的頻率上。在其他實施例中,可以將資訊調變至提供至發射器共振器30的功率信號的共振頻率的諧波上。在又進一步實施例中,提供至發射器共振器30的功率信號的共振頻率可以是資訊調變至其上之信號的頻率的諧波。下文更詳細闡述的V/I調諧器26F可以配置以向發射器共振器30傳輸資訊信號,且藉此對於正在傳輸的資訊是透明的。以此處闡述的方式傳輸的資訊可以無限制地包括模組20的操作模式、接收器模組40的數量及類型、周圍物體感測器資訊、以及包含例如電池充電狀態、負載電壓及負載電流的負載狀態監測資訊。In some embodiments, the compensation network 26E can be configured to modulate the signal provided to the transmitter resonator 30 with information and thereby can act as a source transfer modulator. The information used to modulate the signal provided to the transmitter resonator 30 can be provided to the compensation network 26E by the controller 22. The information can include control data that goes to the controller 42 of the receiver module 40 via the receiver resonator 50. The controller 42 is explained in more detail below with reference to Figure 7. In other embodiments, the power amplifier 26B can act as a source transfer modulator. In a further embodiment, the oscillator 26A can act as a source transfer modulator. The modulation employed by the selected source transfer modulator can be any of amplitude modulation, frequency modulation, and phase modulation. The information can be modulated onto the signal provided to the transmitter resonator 30 in digital form or in analog form. The information may be modulated by the source transfer modulator onto the resonant frequency of the power signal provided to the transmitter resonator 30. In other embodiments, the information may be modulated onto a frequency different from the frequency of the power transfer. In other embodiments, the information may be modulated onto a harmonic of the resonant frequency of the power signal provided to the transmitter resonator 30. In still further embodiments, the resonant frequency of the power signal provided to the transmitter resonator 30 may be a harmonic of the frequency of the signal onto which the information is modulated. The V/I tuner 26F, described in more detail below, may be configured to transmit an information signal to the transmitter resonator 30 and thereby be transparent to the information being transmitted. The information transmitted in the manner described herein may include, without limitation, the operating mode of module 20, the number and type of receiver modules 40, surrounding object sensor information, and load status monitoring information including, for example, battery charge status, load voltage, and load current.
在圖10中更詳細地示出V/I調諧器26F的實施例。自匹配網路26E (在圖6中)接收的V/I調諧器26F的輸入信號由分離器262分離以便對輸入信號具有兩個相互不對稱的路徑261A及261B。第一移相器264A及第二移相器264B形成發射器共振器30 (在圖6中)的輸入電壓與輸入電流之間的相位差。第一移相器264A由控制器22 (在圖6中)經由第一分相器控制線263A控制,而第二移相器264B由控制器22 (參見圖6)經由第二分相器控制線263B控制。第一主動開關266A及第二主動開關266B分別自第一移相器264A及第二移相器264B接收信號,且由控制器22分別經由第一主動開關控制線265A及第二主動開關控制線265B控制。第一主動開關266A及第二主動開關266B用於分別調整自第一移相器264A及第二移相器264B接收的信號的虛部。被動信號成形網路268A及268B分別自第一主動開關266A及第二主動開關266B接收調整的信號。被動信號成形網路268A及268B用於精細調諧分別自第一主動開關266A及第二主動開關266B接收的信號,且在某些實施例中,用於在將彼等信號傳遞至組合器269之前減少彼等信號中的任何諧波。沿著兩個相互不對稱路徑261A及261B提供的信號由組合器269進行組合且提供至發射器共振器30。在其他實施例中,第一移相器264A及第二移相器264B可組合為將輸入信號接收至V/I調諧器26F的一個移相器,且組合的移相器可具有服務主動開關266A及266B的兩個單獨輸出。An embodiment of the V/I tuner 26F is shown in more detail in FIG. 10. The input signal of the V/I tuner 26F received from the matching network 26E (in FIG. 6) is split by a splitter 262 so as to have two mutually asymmetric paths 261A and 261B for the input signal. A first phase shifter 264A and a second phase shifter 264B form a phase difference between the input voltage and the input current of the transmitter resonator 30 (in FIG. 6). The first phase shifter 264A is controlled by the controller 22 (in FIG. 6) via a first phase splitter control line 263A, and the second phase shifter 264B is controlled by the controller 22 (see FIG. 6) via a second phase splitter control line 263B. The first active switch 266A and the second active switch 266B receive signals from the first phase shifter 264A and the second phase shifter 264B, respectively, and are controlled by the controller 22 via the first active switch control line 265A and the second active switch control line 265B, respectively. The first active switch 266A and the second active switch 266B are used to adjust the virtual part of the signal received from the first phase shifter 264A and the second phase shifter 264B, respectively. The passive signal shaping networks 268A and 268B receive the adjusted signals from the first active switch 266A and the second active switch 266B, respectively. Passive signal shaping networks 268A and 268B are used to fine tune the signals received from the first active switch 266A and the second active switch 266B, respectively, and in certain embodiments, to reduce any harmonics in those signals before passing them to the combiner 269. The signals provided along the two mutually asymmetric paths 261A and 261B are combined by the combiner 269 and provided to the transmitter resonator 30. In other embodiments, the first phase shifter 264A and the second phase shifter 264B may be combined into one phase shifter that receives the input signal to the V/I tuner 26F, and the combined phase shifter may have two separate outputs that serve the active switches 266A and 266B.
V/I調諧器26F藉由調整發射器共振器30的輸入電流與輸入電壓之間的相位差來調整傳送模式比,以回應來自控制器22的信號。藉助移相器264A及264B調整發射器模組20所經歷的阻抗的實部,並可以由開關266A及266B調整其虛部。例如,在每10毫秒中之每3毫秒內的90度相移可以導致30%的磁力傳送及70%的電力傳送。The V/I tuner 26F adjusts the transmit mode ratio by adjusting the phase difference between the input current and the input voltage to the transmitter resonator 30 in response to a signal from the controller 22. The real part of the impedance seen by the transmitter module 20 is adjusted by means of phase shifters 264A and 264B, and the imaginary part can be adjusted by switches 266A and 266B. For example, a 90 degree phase shift every 3 milliseconds out of every 10 milliseconds can result in 30% magnetic transmission and 70% electric transmission.
V/I調諧器26F可以配置以調整穿過每一發射器天線(例如,第一發射器天線32、132、232、332及第二發射器天線134、234、334或第三發射器天線336)的電流及施加給每一發射器天線(例如,第一發射器天線32、132、232、332及第二發射器天線134、234、334或第三發射器天線336) 的電位。The V/I tuner 26F can be configured to adjust the current passing through each transmitter antenna (e.g., the first transmitter antenna 32, 132, 232, 332 and the second transmitter antenna 134, 234, 334 or the third transmitter antenna 336) and the potential applied to each transmitter antenna (e.g., the first transmitter antenna 32, 132, 232, 332 and the second transmitter antenna 134, 234, 334 or the third transmitter antenna 336).
若致使電流穿過第一發射器天線132及第二發射器天線134兩者,則該等發射器天線將出於IPT的目的各自產生磁場31A。若與遞送至第一發射器天線132的電流相比,減小了遞送至第二發射器天線134的電流,則出於CPT的目的,將在第一發射器天線132與第二發射器天線134之間產生電位差且產生電場31B。為了在CPT與IPT之間進行調變,可以調變遞送至第二天線134的電流(例如,當允許較少電流穿過第二天線134時,則將發生較少IPT,且當允許更多電流穿過第二天線時,將發生更多CPT)。例如,當期望經由IPT傳送電力時,I/V調諧器26F可以配置以用作將第一發射器天線與第二發射器天線連接一起的短路以藉此形成允許電流在其中流動的串聯LC共振器。相反地,當期望藉由CPT傳送電力時,I/V調諧器26F可以配置以用作轉儲電流的開路,藉此在第一發射器天線與第二發射器天線之間產生電位差。I/V調諧器26F藉此可以配置以控制第一發射器天線132及第二發射器天線134是否有效地串聯或並聯連接。If current is caused to pass through both the first transmitter antenna 132 and the second transmitter antenna 134, the transmitter antennas will each generate a magnetic field 31A for the purpose of IPT. If the current delivered to the second transmitter antenna 134 is reduced compared to the current delivered to the first transmitter antenna 132, a potential difference will be generated between the first transmitter antenna 132 and the second transmitter antenna 134 for the purpose of CPT and an electric field 31B will be generated. In order to modulate between CPT and IPT, the current delivered to the second antenna 134 can be modulated (e.g., when less current is allowed to pass through the second antenna 134, less IPT will occur, and when more current is allowed to pass through the second antenna, more CPT will occur). For example, when it is desired to transmit power via the IPT, the I/V tuner 26F can be configured to act as a short circuit connecting the first transmitter antenna and the second transmitter antenna together to thereby form a series LC resonator that allows current to flow therein. Conversely, when it is desired to transmit power via the CPT, the I/V tuner 26F can be configured to act as an open circuit that dumps current, thereby creating a potential difference between the first transmitter antenna and the second transmitter antenna. The I/V tuner 26F can thereby be configured to control whether the first transmitter antenna 132 and the second transmitter antenna 134 are effectively connected in series or in parallel.
可選地,當第一發射器天線132及第二發射器天線134並聯連接時,第一發射器天線132及第二發射器天線134可以是浮動的,以出於CPT的目的致使產生電場31B而基本上不產生磁場31A。為了改變傳送模式比(例如,為了在CPT與IPT之間進行調變),I/V調諧器26F可以配置(藉助I/V調諧器26F的多工器等)以在以下兩種情況之間交替:(1)使第一發射器天線132及第二發射器天線134浮動以引起CPT;以及(2)驅動電流穿過第一發射器天線132及第二發射器天線134以引起IPT。可以在毫秒內或在10 Hz與10 kHz之間的頻率下實施交替。隨著更多時間分配給使第一發射器天線132及第二發射器天線134浮動,傳送模式比將偏向於實現更多的CPT,且隨著更多時間分配給驅動電流穿過第一發射器天線132及第二發射器天線134,傳送模式將偏向於實現更多的IPT。Alternatively, when the first transmitter antenna 132 and the second transmitter antenna 134 are connected in parallel, the first transmitter antenna 132 and the second transmitter antenna 134 may be floating to cause the electric field 31B to be generated for the purpose of CPT without substantially generating the magnetic field 31A. To change the transmit mode ratio (e.g., to modulate between CPT and IPT), the I/V tuner 26F may be configured (via a multiplexer of the I/V tuner 26F, etc.) to alternate between: (1) floating the first transmitter antenna 132 and the second transmitter antenna 134 to cause CPT; and (2) driving current through the first transmitter antenna 132 and the second transmitter antenna 134 to cause IPT. The alternation may be performed in milliseconds or at a frequency between 10 Hz and 10 kHz. As more time is allocated to floating the first transmitter antenna 132 and the second transmitter antenna 134, the transmit mode ratio will be biased toward achieving more CPT, and as more time is allocated to driving current through the first transmitter antenna 132 and the second transmitter antenna 134, the transmit mode will be biased toward achieving more IPT.
在某些實施例中,元件26可以是發射器模組20中的離散元件,而在其他實施例中,元件26中的一者或多者可以是積體電路設計的一部分。In some embodiments, components 26 may be discrete components in transmitter module 20, while in other embodiments, one or more of components 26 may be part of an integrated circuit design.
圖7是根據某些實施例的負載70以及包含接收器共振器50及接收器模組40的次級側14 (如在圖1中所示)的示意性繪圖。FIG. 7 is a schematic depiction of a load 70 and the secondary side 14 (as shown in FIG. 1 ) including the receiver resonator 50 and the receiver module 40 according to certain embodiments.
接收器共振器50可以包括接收器共振器50、150、250、350或本文所闡述的其他接收器共振器中的任一者。接收器共振器50可以配置以用由發射器模組20中的振盪信號設定的頻率(例如無限制地,諸如介於1 MHz與1 GHz之間)來捕獲電力。在某些實施例中,由發射器模組20中的振盪信號設定的頻率是約1 MHz至約100 MHz、約1 MHz至約200 MHz、約1 MHz至約300 MHz、約1 MHz至約400 MHz、約1 MHz至約500 MHz、約1 MHz至約600 MHz、約1 MHz至約700 MHz、約1 MHz至約800 MHz、約1 MHz至約900 MHz、約1 MHz至約1 GHz、約100 MHz至約200 MHz、約100 MHz至約300 MHz、約100 MHz至約400 MHz、約100 MHz至約500 MHz、約100 MHz至約600 MHz、約100 MHz至約700 MHz、約100 MHz至約800 MHz、約100 MHz至約900 MHz、約100 MHz至約1 GHz、約200 MHz至約300 MHz、約200 MHz至約400 MHz、約200 MHz至約500 MHz、約200 MHz至約600 MHz、約200 MHz至約700 MHz、約200 MHz至約800 MHz、約200 MHz至約900 MHz、約200 MHz至約1 GHz、約300 MHz至約400 MHz、約300 MHz至約500 MHz、約300 MHz至約600 MHz、約300 MHz至約700 MHz、約300 MHz至約800 MHz、約300 MHz至約900 MHz、約300 MHz至約1 GHz、約400 MHz至約500 MHz、約400 MHz至約600 MHz、約400 MHz至約700 MHz、約400 MHz至約800 MHz、約400 MHz至約900 MHz、約400 MHz至約1 GHz、約500 MHz至約600 MHz、約500 MHz至約700 MHz、約500 MHz至約800 MHz、約500 MHz至約900 MHz、約500 MHz至約1 GHz、約600 MHz至約700 MHz、約600 MHz至約800 MHz、約600 MHz至約900 MHz、約600 MHz至約1 GHz、約700 MHz至約800 MHz、約700 MHz至約900 MHz、約700 MHz至約1 GHz、約800 MHz至約900 MHz、約800 MHz至約1 GHz、或約900 MHz至約1 GHz。在某些實施例中,由發射器模組20中之振盪信號設定的頻率是約1 MHz、約100 MHz、約200 MHz、約300 MHz、約400 MHz、約500 MHz、約600 MHz、約700 MHz、約800 MHz、約900 MHz、或約1 GHz。在某些實施例中,由發射器模組20中之振盪信號設定的頻率是至少約1 MHz、約100 MHz、約200 MHz、約300 MHz、約400 MHz、約500 MHz、約600 MHz、約700 MHz、約800 MHz、或約900 MHz。在某些實施例中,在某些實施例中,由發射器模組20中之振盪信號設定的頻率是至多約100 MHz、約200 MHz、約300 MHz、約400 MHz、約500 MHz、約600 MHz、約700 MHz、約800 MHz、約900 MHz、或約1 GHz。The receiver resonator 50 may include any of the receiver resonators 50, 150, 250, 350, or other receiver resonators described herein. The receiver resonator 50 may be configured to capture power at a frequency set by an oscillating signal in the transmitter module 20 (e.g., without limitation, such as between 1 MHz and 1 GHz). In some embodiments, the frequency set by the oscillation signal in the transmitter module 20 is about 1 MHz to about 100 MHz, about 1 MHz to about 200 MHz, about 1 MHz to about 300 MHz, about 1 MHz to about 400 MHz, about 1 MHz to about 500 MHz, about 1 MHz to about 600 MHz, about 1 MHz to about 700 MHz, about 1 MHz to about 800 MHz, about 1 MHz to about 900 MHz, about 1 MHz to about 1 GHz, about 100 MHz to about 200 MHz, about 100 MHz to about 300 MHz, about 100 MHz to about 400 MHz, about 100 MHz to about 500 MHz, about 100 MHz to about 600 MHz, about 100 MHz to about 700 MHz, about 100 MHz to about 800 MHz, about 1 MHz to about 900 MHz, about 1 MHz to about 1 GHz, about 100 MHz to about 200 MHz, about 100 MHz to about 300 MHz, about 100 MHz to about 400 MHz, about 100 MHz to about 500 MHz, about 100 MHz to about 600 MHz, about 100 MHz to about 700 MHz, about 100 MHz to about 800 MHz, about 100 MHz to about 900 MHz, about 100 MHz to about 1 GHz, about 200 MHz to about 300 MHz, about 200 MHz to about 400 MHz, about 200 MHz to about 500 MHz, about 200 MHz to about 600 MHz, about 200 MHz to about 700 MHz, about 200 MHz to about 800 MHz, about 200 MHz to about 900 MHz, about 200 MHz to about 1 GHz, about 300 MHz to about 400 MHz, about 300 MHz to about 500 MHz, about 300 MHz to about 600 MHz, about 300 MHz to about 700 MHz, about 300 MHz to about 800 MHz, about 300 MHz to about 900 MHz, about 300 MHz to about 1 GHz, about 400 MHz to about 500 MHz, about 400 MHz to about MHz to about 600 MHz, about 400 MHz to about 700 MHz, about 400 MHz to about 800 MHz, about 400 MHz to about 900 MHz, about 400 MHz to about 1 GHz, about 500 MHz to about 600 MHz, about 500 MHz to about 700 MHz, about 500 MHz to about 800 MHz, about 500 MHz to about 900 MHz, about 500 MHz to about 1 GHz, about 600 MHz to about 700 MHz, about 600 MHz to about 800 MHz, about 600 MHz to about 900 MHz, about 600 MHz to about 1 GHz, about 700 MHz to about 800 MHz, about 700 MHz to about 900 MHz, about 700 MHz to about 1 GHz, about 800 MHz to about 900 MHz, about 800 MHz to about 1 GHz, or about 900 MHz to about 1 GHz. In some embodiments, the frequency set by the oscillation signal in the transmitter module 20 is about 1 MHz, about 100 MHz, about 200 MHz, about 300 MHz, about 400 MHz, about 500 MHz, about 600 MHz, about 700 MHz, about 800 MHz, about 900 MHz, or about 1 GHz. In some embodiments, the frequency set by the oscillation signal in the transmitter module 20 is at least about 1 MHz, about 100 MHz, about 200 MHz, about 300 MHz, about 400 MHz, about 500 MHz, about 600 MHz, about 700 MHz, about 800 MHz, or about 900 MHz. In some embodiments, in some embodiments, the frequency set by the oscillation signal in the transmitter module 20 is at most about 100 MHz, about 200 MHz, about 300 MHz, about 400 MHz, about 500 MHz, about 600 MHz, about 700 MHz, about 800 MHz, about 900 MHz, or about 1 GHz.
對於某些應用,在工業、科學及醫療(ISM)頻帶中的頻率可以是較佳的。出於本發明的目的,ISM頻帶應理解為是6.765 MHz至6.795 MHz;13.553 MHz至13.567 MHz;26.957 MHz至27.283 MHz;40.66 MHz至40.70 MHz;83.996 MHz至84.004 MHz;167.992 MHz至168.008 MHz;433.05 MHz至434.79 MHz;以及886 MHz至906 MHz。對於其他應用,官方保留之應用頻帶中的頻率可以是較佳的,例如無限制地,警用通信或軍用頻帶。接收器共振器50可以配置以在彼頻率下自磁場31A或電場31B或此該兩個場的任何組合捕獲電力。For some applications, frequencies in the Industrial, Scientific, and Medical (ISM) band may be preferred. For the purposes of this invention, the ISM band is understood to be 6.765 MHz to 6.795 MHz; 13.553 MHz to 13.567 MHz; 26.957 MHz to 27.283 MHz; 40.66 MHz to 40.70 MHz; 83.996 MHz to 84.004 MHz; 167.992 MHz to 168.008 MHz; 433.05 MHz to 434.79 MHz; and 886 MHz to 906 MHz. For other applications, frequencies in officially reserved application bands may be preferred, such as, without limitation, police communications or military bands. The receiver resonator 50 may be configured to capture electricity at that frequency from either the magnetic field 31A or the electric field 31B or any combination of the two fields.
接收器模組40包括控制器42。控制器42配置以自感測器44 (例如,接收器電力感測器44A及負載偵測器44B)接收各種輸入且向各種元件46 (例如,補償網路46A、匹配網路46B、整流器46D、濾波器46C、以及負載管理器46E)輸出控制信號。The receiver module 40 includes a controller 42. The controller 42 is configured to receive various inputs from sensors 44 (e.g., receiver power sensor 44A and load detector 44B) and output control signals to various components 46 (e.g., compensation network 46A, matching network 46B, rectifier 46D, filter 46C, and load manager 46E).
接收器電力感測器44A可以量測點44C處的電力(例如,量測電流及電壓),以判定接收器共振器50正在接收多少電力。The receiver power sensor 44A may measure the power at point 44C (eg, measure current and voltage) to determine how much power the receiver resonator 50 is receiving.
負載偵測器44B配置以偵測負載70的存在。可以用實體感測器(例如無限制地,光學感測器、壓力感測器、紅外線感測器、或近接感測器)或藉助適合的軟體或韌體實施負載偵測器44B。例如,在某些實施例中,由負載偵測器44B量測例如點44D處的電流及電壓,以判定由負載70接收的電力。若在點44D處量測的電力量增加至基線以上,則負載偵測器44B向控制器42發信號通知存在負載70。The load detector 44B is configured to detect the presence of the load 70. The load detector 44B may be implemented with a physical sensor (e.g., without limitation, an optical sensor, a pressure sensor, an infrared sensor, or a proximity sensor) or with the aid of suitable software or firmware. For example, in some embodiments, the current and voltage at, for example, point 44D are measured by the load detector 44B to determine the power received by the load 70. If the amount of power measured at point 44D increases above a baseline, the load detector 44B signals the controller 42 that the load 70 is present.
補償網路46A可以配置維持接收器共振器50之期望的共振頻率,以回應來自控制器42的信號,藉以改良自發射器共振器30至接收器共振器50的電力傳送的效率。補償網路46A可以類似於發射器模組20的補償網路26E,並可以基本上與發射器模組20的補償網路26E一樣地發揮作用。The compensation network 46A may be configured to maintain a desired resonant frequency of the receiver resonator 50 in response to signals from the controller 42 to improve the efficiency of power transfer from the transmitter resonator 30 to the receiver resonator 50. The compensation network 46A may be similar to the compensation network 26E of the transmitter module 20 and may function substantially the same as the compensation network 26E of the transmitter module 20.
匹配網路26D可以配置以調整整流器46D的輸入阻抗以與發射器共振器30之期望的阻抗相匹配,以達成最大電力傳送。The matching network 26D may be configured to adjust the input impedance of the rectifier 46D to match the desired impedance of the transmitter resonator 30 to achieve maximum power transfer.
整流器46D可以配置以將由接收器天線50接收的AC電力轉換成要提供至負載70的DC電力。The rectifier 46D may be configured to convert AC power received by the receiver antenna 50 into DC power to be provided to the load 70.
濾波器46C可以配置以根據來自控制器42的信號使自整流器46D輸出的電力的波形成形,以便改良接收器模組40的總電力效率。Filter 46C can be configured to shape the waveform of the power output from rectifier 46D based on a signal from controller 42 so as to improve the overall power efficiency of receiver module 40.
負載管理器46E可以配置以為負載70提供適合的電壓及電流及/或藉由調整其輸入阻抗(例如,整流器46D的輸出阻抗)自整流器46D提取最大電力。Load manager 46E may be configured to provide appropriate voltage and current to load 70 and/or extract maximum power from rectifier 46D by adjusting its input impedance (eg, output impedance of rectifier 46D).
在某些實施例中,負載管理器46E或另一組件可以配置以與外部裝置(例如,負載70)通信(無線地或有線),以提供適當資訊用於資料分析。例如無限制地,此資訊可以包括:負載70的存在、負載70的充電位準、負載70的充電速率、負載70的狀態、當前電壓、容量、及/或充電負載70的剩餘時間。負載管理器46E可以採用該資訊(或將該資訊中繼至控制器42或控制器22)來調整例如傳送模式比,以在初級側12與次級側14之間達成最佳能量傳送。負載管理器46E亦可以經由顯示器向使用者提供該資訊。該顯示器可以內置於初級側12及次級側14中的一者或多者中或是可以經由移動裝置上的軟體(諸如,例如與負載管理器46E或控制器22或控制器42進行無線(或有線)通信的行動電話或平板電腦上的應用程序)存取的。In some embodiments, the load manager 46E or another component may be configured to communicate (wirelessly or wired) with an external device (e.g., the load 70) to provide appropriate information for data analysis. For example, without limitation, this information may include: the presence of the load 70, the charge level of the load 70, the charge rate of the load 70, the state of the load 70, the current voltage, capacity, and/or the remaining time to charge the load 70. The load manager 46E may use this information (or relay this information to the controller 42 or controller 22) to adjust, for example, the transfer mode ratio to achieve optimal energy transfer between the primary side 12 and the secondary side 14. The load manager 46E may also provide this information to the user via a display. The display may be built into one or more of the primary side 12 and the secondary side 14 or may be accessed via software on a mobile device (e.g., an application on a mobile phone or tablet computer that communicates wirelessly (or wiredly) with the load manager 46E or the controller 22 or the controller 42).
在某些實施例中,組件46是接收器模組40中的離散元件,而在其他實施例中,組件46中的一者或多者是一積體電路設計充電一部分。In some embodiments, components 46 are discrete components in receiver module 40, while in other embodiments, one or more of components 46 are part of an integrated circuit design.
在某些實施例中,初級側12可以包括複數個發射器共振器30,及/或次級側14可以包括複數個接收器共振器50。在此等實施例中,可以以類似方式控制發射器共振器30及/或接收器共振器50中的每一者。在其他實施例中,可以個別地控制發射器共振器30及/或接收器共振器50中的每一者。例如,在某些實施例中,初級側12可以更大程度地依賴於經歷較少干擾(例如,由於附近金屬物體)、不在生物附近、或更高效地及/或類似地傳送電力的發射器共振器30,次級側14可以更大程度地依賴於經歷較少干擾(例如,由於附近金屬物體)、不在生物附近、或更高效地接收電力的接收器共振器50。例如,可以由發射器模組20及接收器模組40及/或其之間的通信提供或促進此控制。In some embodiments, the primary side 12 may include a plurality of transmitter resonators 30, and/or the secondary side 14 may include a plurality of receiver resonators 50. In such embodiments, each of the transmitter resonators 30 and/or the receiver resonators 50 may be controlled in a similar manner. In other embodiments, each of the transmitter resonators 30 and/or the receiver resonators 50 may be controlled individually. For example, in some embodiments, the primary side 12 may rely more heavily on transmitter resonators 30 that experience less interference (e.g., due to nearby metal objects), are not near a living being, or transmit power more efficiently and/or similarly, and the secondary side 14 may rely more heavily on receiver resonators 50 that experience less interference (e.g., due to nearby metal objects), are not near a living being, or receive power more efficiently. For example, such control may be provided or facilitated by the transmitter module 20 and the receiver module 40 and/or communications therebetween.
圖9是具有積體化移相器的整流器46D的示意性繪圖。在某些實施例中,整流器46D包括離散移相器。9 is a schematic depiction of a rectifier 46D having an integrated phase shifter. In some embodiments, the rectifier 46D includes a discrete phase shifter.
整流器46D可以是切換模式自同步整流器(在單端模式或差分組態中),其可以配置以在特定共振頻率下自接收器共振器50接收正弦波(例如,AC電力)。整流器46D可以是差分切換模式自同步整流器。整流器46D可以自接收器共振器50捕獲足夠電力,使得可以由接收器共振器50捕獲E場、或H場、或E場與H場的任何組合。The rectifier 46D can be a switching mode self-synchronous rectifier (in single-ended mode or differential configuration) that can be configured to receive a sine wave (e.g., AC power) from the receiver resonator 50 at a specific resonant frequency. The rectifier 46D can be a differential switching mode self-synchronous rectifier. The rectifier 46D can capture enough power from the receiver resonator 50 so that the E field, or the H field, or any combination of the E field and the H field can be captured by the receiver resonator 50.
整流器46D具有用設定在共振頻率處的頻率驅動主動裝置147B (例如,電晶體 )的輸入147A (例如,AC電力)且具有跨越DC負載的輸出147D(例如,DC電壓) (用於控制主動裝置的輸出電力、輸入阻抗及操作區)。在此設計中,使用不同負載終端以改良效能(例如,輸出電力及電力轉換效率)。第三諧波終端147D位於串聯分支中以使汲極節點147E處的電壓波形成形。第二諧波終端147F位於並聯分支中以使汲極節點147E處的電壓波形成形。第一諧波終端147G位於串聯分支中以使汲極節點147E處的電壓波形成形。可以在第二諧波終端147F及第一諧波終端147G中考量第三諧波終端147D的影響。可以在第一諧波終端147G中考量第二諧波終端147F的影響。Rectifier 46D has an input 147A (e.g., AC power) that drives an active device 147B (e.g., a transistor) with a frequency set at the resonant frequency and has an output 147D (e.g., DC voltage) across a DC load (used to control the output power, input impedance, and operating region of the active device). In this design, different load terminals are used to improve performance (e.g., output power and power conversion efficiency). A third harmonic terminal 147D is located in the series branch to shape the voltage waveform at the drain node 147E. A second harmonic terminal 147F is located in the parallel branch to shape the voltage waveform at the drain node 147E. The first harmonic terminal 147G is located in the series branch to shape the voltage waveform at the drain node 147E. The influence of the third harmonic terminal 147D can be considered in the second harmonic terminal 147F and the first harmonic terminal 147G. The influence of the second harmonic terminal 147F can be considered in the first harmonic terminal 147G.
對於差分組態,AC源147A是串聯放置的。AC源147A可以是由接收器共振器50接收的電力以及接收器共振器50相對於發射器共振器30的對準及位置的函數。DC負載147C可以是單端負載。For a differential configuration, the AC source 147A is placed in series. The AC source 147A may be a function of the power received by the receiver resonator 50 and the alignment and position of the receiver resonator 50 relative to the transmitter resonator 30. The DC load 147C may be a single-ended load.
整流器46D可以包括在差分組態中的兩個移相器147H (但在單端組態中僅一個移相器)。移相器147H調整AC源與電晶體147B的閘信號之間的適當相位差。閘信號與AC源147A之間的相位差可以改變自同步整流器的效能(例如,電晶體的電力轉換效率及操作區)。其亦可以改變自同步整流器46D的輸入阻抗及/或整流器46D的最佳DC負載147C。The rectifier 46D may include two phase shifters 147H in a differential configuration (but only one phase shifter in a single-ended configuration). The phase shifter 147H adjusts the appropriate phase difference between the AC source and the gate signal of the transistor 147B. The phase difference between the gate signal and the AC source 147A may change the performance of the self-synchronous rectifier (e.g., the power conversion efficiency and operating region of the transistor). It may also change the input impedance of the self-synchronous rectifier 46D and/or the optimal DC load 147C of the rectifier 46D.
整流器46D可以包括在差分組態中的兩個位準移位器147I(但在單端組態中僅一個位準移位器)。位準移位器147I可以調整電晶體147B的閘信號的適當振幅。閘信號處的振幅位準可以改變自同步整流器的效能(例如,電晶體的電力轉換效率及操作區)。Rectifier 46D may include two level shifters 147I in a differential configuration (but only one level shifter in a single-ended configuration). Level shifter 147I may adjust the appropriate amplitude of the gate signal of transistor 147B. The amplitude level at the gate signal may change the performance of the self-synchronous rectifier (e.g., the power conversion efficiency and operating region of the transistor).
整流器46D可以是可重新組態的,以作為放大器發揮作用。作為此重新組態的一部分,可以調整積體化移相器147H及積體化位準移位器147I (參見圖9),以便允許整流器46D基於電晶體147B的固有放大及切換功能作用為放大器。整流器46D在操作為整流器與操作為放大器之間的該可重新組態性允許接收器模組40分別在接收器模式與發射器模式之間可控制地重新組態。可以在來自控制器42的指令下發生重新組態。當整流器46D自整流器重新組態成放大器時,AC源147A改變成AC負載147A。相應地,當整流器46D自整流器重新組態成的放大器時,DC負載147C重新組態成DC源。The rectifier 46D can be reconfigurable to function as an amplifier. As part of this reconfiguration, the integrated phase shifter 147H and the integrated level shifter 147I (see FIG. 9 ) can be adjusted to allow the rectifier 46D to function as an amplifier based on the inherent amplification and switching functions of the transistor 147B. This reconfigurability of the rectifier 46D between operating as a rectifier and operating as an amplifier allows the receiver module 40 to be controllably reconfigured between a receiver mode and a transmitter mode, respectively. The reconfiguration can occur under instructions from the controller 42. When the rectifier 46D is reconfigured from the rectifier to an amplifier, the AC source 147A changes to the AC load 147A. Correspondingly, when the rectifier 46D is reconfigured from the rectifier to an amplifier, the DC load 147C is reconfigured to a DC source.
在某些實施例中,當接收器模組40處於發射器模式中時,補償網路46A可以配置以用資訊調變提供至共振器50的信號並藉此充當源傳輸調變器。調變提供至共振器50的信號所用的資訊可以由控制器42提供至補償網路46A。資訊可以包括經由發射器共振器30前往發射器模組20的控制器22的控制資料。在某些實施例中,當接收器模組40處於發射器模式中且整流器46D配置為放大器時,放大器46D可以充當用於接收器模組40的調變器。所採用的調變可以是振幅調變、頻率調變、相位調變及其組合中的任一者。可以以數位形式或以類比形式將資訊調變至提供至發射器共振器50的信號上。可以藉由源傳輸調變器將資訊調變至提供給發射器共振器50的功率信號的共振頻率上。在其他實施例中,可以將資訊調變至與電力傳送之頻率不同的頻率上。在其他實施例中,可以將資訊調變至提供至發射器共振器50的功率信號的共振頻率的諧波上。在又進一步實施例中,提供至發射器共振器50的功率信號的共振頻率可以是資訊調變至其上的信號的頻率的諧波。例如無限制地,以此處所述的方式發射的資訊可以包括:負載70的存在、負載70的充電位準、電力傳送效率、負載70的充電速率、負載70的狀態、當前電壓、電荷容量、充電負載70的剩餘時間。In some embodiments, when the receiver module 40 is in the transmitter mode, the compensation network 46A can be configured to modulate the signal provided to the resonator 50 with information and thereby act as a source transmission modulator. The information used to modulate the signal provided to the resonator 50 can be provided to the compensation network 46A by the controller 42. The information can include control data that is sent to the controller 22 of the transmitter module 20 via the transmitter resonator 30. In some embodiments, when the receiver module 40 is in the transmitter mode and the rectifier 46D is configured as an amplifier, the amplifier 46D can act as a modulator for the receiver module 40. The modulation used can be any of amplitude modulation, frequency modulation, phase modulation, and combinations thereof. The information can be modulated onto the signal provided to the transmitter resonator 50 in digital form or in analog form. The information may be modulated by the source transfer modulator onto the resonant frequency of the power signal provided to the transmitter resonator 50. In other embodiments, the information may be modulated onto a frequency different from the frequency of the power transfer. In other embodiments, the information may be modulated onto a harmonic of the resonant frequency of the power signal provided to the transmitter resonator 50. In yet further embodiments, the resonant frequency of the power signal provided to the transmitter resonator 50 may be a harmonic of the frequency of the signal onto which the information is modulated. For example and without limitation, the information transmitted in the manner described herein may include: the presence of the load 70, the charge level of the load 70, the power transfer efficiency, the charge rate of the load 70, the state of the load 70, the current voltage, the charge capacity, and the remaining time to charge the load 70.
在上文已闡述發射器模組20及接收器模組40兩者可如何在以發射器模式操作與以接收器模式操作之間重新組態之後,且在已闡述可如何調變來自發射器模組20及接收器模組40兩者的信號之後,很顯然的是圖1的系統10可以作用為全雙工發射接收系統,以用於經由共振器30及50在兩個方向上傳輸資訊。圖1的系統10可以包括與圖1及圖7的次級側14類似的其他次級側。當存在額外次級側時,上文所闡述的配置允許在各個次級側之間傳送資訊。Having explained above how both the transmitter module 20 and the receiver module 40 can be reconfigured between operating in a transmitter mode and operating in a receiver mode, and having explained how the signals from both the transmitter module 20 and the receiver module 40 can be modulated, it is apparent that the system 10 of FIG. 1 can function as a full duplex transmit-receive system for transmitting information in both directions via the resonators 30 and 50. The system 10 of FIG. 1 can include additional secondary sides similar to the secondary side 14 of FIG. 1 and FIG. 7. When additional secondary sides are present, the configurations explained above allow information to be transmitted between the various secondary sides.
在某些實施例中,初級側12及次級側14可以經由藍芽(例如,2.4 GHz)或與GPS的信號頻率類似的信號頻率(例如,10 GHz)進行通信。在某些實施例中,可以存在可分開地收集資料且在初級側12及/或次級側14之間來回傳送資料的額外單元。在某些實施例中,可以採用WiFi以將資料自初級側12及/或次級側14上傳至在線上入口(例如,與初級側12及/或次級側14相關聯的網站或行動應用程序)。In some embodiments, the primary side 12 and the secondary side 14 may communicate via Bluetooth (e.g., 2.4 GHz) or a signal frequency similar to that of GPS (e.g., 10 GHz). In some embodiments, there may be an additional unit that detachably collects data and transmits data back and forth between the primary side 12 and/or the secondary side 14. In some embodiments, WiFi may be employed to upload data from the primary side 12 and/or the secondary side 14 to an online portal (e.g., a website or mobile application associated with the primary side 12 and/or the secondary side 14).
在某些實施例中,在兩個接收器模組40之間傳送電力(例如,同級間電力傳送)可以是令人期望的。例如,若具有第一接收器的第一電動自行車沒電或電量低且具有第二接收器及至少部分充電的電池的第二電動自行車在附近,則可以期望將電力自第二電動自行車傳送至第一電動自行車。此一情況可以涉及當例如附近無發射器時。重新組態成發射器模組所涉及的兩個接收器模組40中之至少一者的設施使此同級間電力傳送成為可能。一般而言,此使得在複數個次級側14之間轉發電力成為可能。In some embodiments, it may be desirable to transfer power between two receiver modules 40 (e.g., peer-to-peer power transfer). For example, if a first electric bicycle having a first receiver is dead or low on power and a second electric bicycle having a second receiver and an at least partially charged battery is nearby, it may be desirable to transfer power from the second electric bicycle to the first electric bicycle. Such a situation may involve when, for example, there is no transmitter nearby. The facility of reconfiguring at least one of the two receiver modules 40 involved as a transmitter module enables this peer-to-peer power transfer. In general, this enables the forwarding of power between a plurality of secondary sides 14.
在其他實施例中,可能需要在特定時間在反方向上(即,自圖1、圖6及圖7的負載側至源側)傳輸電力。發射器模組20及接收器模組40兩者在以發射器模式操作與以接收器模式操作之間重新組態的能力允許在「反」方向上自接收器模組40至發射器模組20的此種電力傳送。該系統因此允許雙向電力傳送。鑒於圖8的裝置26B及圖9的裝置46D可以分別重新組態以作用為放大器或整流器的事實,可以將此等裝置統稱為「差分自同步射頻功率放大器/整流器」。鑒於電力傳輸的雙向性,發射器共振器30及接收器共振器50兩者可以闡述為「發射器-接收器共振器」且發射器模組20及接收器模組40兩者可以稱為「電力發射-接收模組」。此等配置在電動運載工具中是有用的,在電動運載工具中,動能在制動期間被轉換且需要傳送至電池。例如無限制地,此種電力傳送之經改變的方向適用於其中的其他系統、狀況及佈置包括可具有不同位準的剩餘電池電荷的若干個行動電話,並可以使用此種佈置來至少部分地給另一個行動電話再充電。更一般情況下,當發射系統及接收系統兩者皆不具有永久能量源(例如輸電網)時,然後可以採用雙向功能在任一方向上傳送能量。In other embodiments, it may be desirable to transfer power in the reverse direction (i.e., from the load side to the source side of FIGS. 1 , 6 , and 7 ) at certain times. The ability of both transmitter module 20 and receiver module 40 to reconfigure between operating in transmitter mode and in receiver mode allows such power transfer from receiver module 40 to transmitter module 20 in the “reverse” direction. The system thus allows bidirectional power transfer. In view of the fact that device 26B of FIG. 8 and device 46D of FIG. 9 can be reconfigured to function as an amplifier or a rectifier, respectively, these devices may be collectively referred to as “differential self-synchronous RF power amplifier/rectifiers.” In view of the bidirectional nature of the power transfer, both the transmitter resonator 30 and the receiver resonator 50 may be described as "transmitter-receiver resonators" and both the transmitter module 20 and the receiver module 40 may be referred to as "power transmit-receive modules." Such configurations are useful in electric vehicles where kinetic energy is converted during braking and needs to be transferred to a battery. For example, without limitation, other systems, conditions, and arrangements in which such altered direction of power transfer is applicable include a number of mobile phones that may have different levels of remaining battery charge, and such an arrangement may be used to at least partially recharge another mobile phone. More generally, when neither the transmitting system nor the receiving system has a permanent energy source (such as a power grid), then the bidirectional functionality may be employed to transfer energy in either direction.
在關於圖31所闡述的又一態樣中,提供一種用於在功率信號頻率下經由功率信號傳送電力的近場射頻方法[2200],該方法包括:提供[2210]包含複數個電力發射-接收模組的雙峰共振近場射頻電力傳送系統,其中,該複數個電力發射-接收模組中的每一者與設置以與該複數個電力發射-接收模組中之至少另一個發射-接收模組交換電力的發射器-接收器共振器進行有線通信;以及根據可調的傳送模式比操作[2220]該電力傳送系統用於同時進行電容式電力傳送及感應式電力傳送。In another embodiment described with respect to FIG. 31 , a near-field RF method [2200] for transmitting power via a power signal at a power signal frequency is provided, the method comprising: providing [2210] a dual-peak resonant near-field RF power transfer system comprising a plurality of power transmit-receive modules, wherein each of the plurality of power transmit-receive modules is in wired communication with a transmitter-receiver resonator configured to exchange power with at least another transmit-receive module of the plurality of power transmit-receive modules; and operating the power transfer system according to an adjustable transfer mode ratio [2220] for simultaneous capacitive power transfer and inductive power transfer.
提供[2210]電力傳送系統可以包括提供複數個電力發射-接收模組中具有功率信號調諧器模組的第一電力發射-接收模組,且操作[2220]電力傳送系統可以包括藉由調整功率信號調諧器模組來改變傳送模式比。Providing [2210] a power transmission system may include providing a first power transmission-receiving module among a plurality of power transmission-receiving modules having a power signal tuner module, and operating [2220] the power transmission system may include changing a transmission mode ratio by adjusting the power signal tuner module.
提供[2210]電力傳送系統可以包括在複數個電力發射-接收模組當中提供與相關聯的發射器-接收器共振器進行有線通信且具有調變器的至少一個電力發射-接收模組,且操作[2220]電力傳送系統可以包括:在相關聯的發射器-接收器共振器和與複數個電力發射-接收模組中的至少另一個電力發射-接收模組進行有線通信的發射器-接收器共振器之間交換射頻信號;以及將資訊調變至交換的射頻信號上。當電力負載存在於複數個電力發射-接收模組中之一者的輸出端時,例如無限制地,在交換的信號上經調變的資訊可以包括:電力負載的存在、電力負載的充電位準、電力傳送效率、電力負載的充電速率、電力負載的狀態、電力負載上的電壓的存在、電力負載的電荷容量及充電電力負載的剩餘時間中的一者或多者。Providing [2210] a power transmission system may include providing at least one power transmit-receive module among a plurality of power transmit-receive modules that is in wired communication with an associated transmitter-receiver resonator and has a modulator, and operating [2220] the power transmission system may include: exchanging radio frequency signals between the associated transmitter-receiver resonator and a transmitter-receiver resonator in wired communication with at least another power transmit-receive module among the plurality of power transmit-receive modules; and modulating information onto the exchanged radio frequency signals. When a power load is present at the output of one of a plurality of power transmit-receive modules, for example, without limitation, the information modulated on the exchanged signals may include: one or more of: the presence of the power load, the charge level of the power load, the power transfer efficiency, the charge rate of the power load, the state of the power load, the presence of a voltage on the power load, the charge capacity of the power load, and the remaining time to charge the power load.
可以藉由振幅調變、頻率調變或相位調變將資訊調變至交換的射頻信號上。將資訊調變至交換的射頻信號上可以包括將數位資訊或類比資訊調變至交換的射頻信號上。The information may be modulated onto the exchanged RF signal by amplitude modulation, frequency modulation, or phase modulation. The information may be modulated onto the exchanged RF signal by modulating digital information or analog information onto the exchanged RF signal.
將資訊調變至交換的射頻信號上可以包括將資訊調變至功率信號上。將資訊調變至交換的射頻信號上可以包括將資訊調變至具有不同於功率信號頻率的頻率的信號上。將資訊調變至交換的射頻信號上可以包括將資訊調變至具有是功率信號頻率的諧波的頻率的信號上。將資訊調變至交換的射頻信號上可以包括將資訊調變至具有功率信號頻率作為諧波的信號上。Modulating the information onto the exchanged radio frequency signal may include modulating the information onto the power signal. Modulating the information onto the exchanged radio frequency signal may include modulating the information onto a signal having a frequency different from the power signal frequency. Modulating the information onto the exchanged radio frequency signal may include modulating the information onto a signal having a frequency that is a harmonic of the power signal frequency. Modulating the information onto the exchanged radio frequency signal may include modulating the information onto a signal having the power signal frequency as a harmonic.
將資訊調變至交換的射頻信號上可以包括根據資訊調變相關聯之導線連接的發射器-接收器共振器的反射特性,以將資訊強加在由導線連接的發射器-接收器共振器反射的信號上。將資訊調變至交換的射頻信號上可以包括根據資訊調變提供至相關聯之發射器-接收器共振器的信號。Modulating the information onto the exchanged RF signal may include modulating a reflective property of an associated wire-connected transmitter-receiver resonator according to the information to impose the information on a signal reflected by the wire-connected transmitter-receiver resonator. Modulating the information onto the exchanged RF signal may include modulating a signal provided to the associated transmitter-receiver resonator according to the information.
該方法[2200]可以包括操作複數個電力發射-接收模組中的第一電力發射-接收模組的功率信號調諧器模組,以將資訊調變至交換的射頻信號上。所提供之電力發射-接收模組中的每一者可以包括補償網路,且該補償網路可以包括調變器,從而允許操作補償網路以將資訊調變至交換的射頻信號上。電力發射-接收模組中的至少一者可以包括在功率信號頻率下向該至少一個電力發射-接收模組提供信號的射頻振盪器,且該射頻振盪器可以包括調變器,從而允許在振盪器中將資訊調變至交換的射頻信號上。The method [2200] may include operating a power signal tuner module of a first power transmit-receive module of a plurality of power transmit-receive modules to modulate information onto an exchanged radio frequency signal. Each of the provided power transmit-receive modules may include a compensation network, and the compensation network may include a modulator, thereby allowing the compensation network to be operated to modulate information onto the exchanged radio frequency signal. At least one of the power transmit-receive modules may include an radio frequency oscillator that provides a signal to the at least one power transmit-receive module at a power signal frequency, and the radio frequency oscillator may include a modulator, thereby allowing information to be modulated into the oscillator onto the exchanged radio frequency signal.
所提供之複數個電力發射-接收模組中的每一者可以是可在電力發射器模式與電力接收器模式之間重新組態的;且該方法可以進一步包括在電力發射器模式與電力接收器模式之間重新組態複數個電力發射-接收模組中的至少兩者,以逆轉該至少兩個發射-接收模組之間的電力發射方向。所提供之電力發射-接收模組中的每一者可以包括差分自同步射頻功率放大器/整流器,其能夠在分別與電力發射-接收模組的電力發射器模式及電力接收器模式對應的放大器狀況與整流器狀況之間重新組態;並且該方法可以包括在放大器狀況與整流器狀況之間重新組態該至少兩個發射-接收模組的差分自同步射頻功率放大器/整流器。每一差分自同步射頻功率放大器/整流器可以包括移相器,其是可調的,用於在放大器狀況與整流器狀況之間重新組態差分自同步射頻功率放大器/整流器;而且該方法可以包括調整該至少兩個發射-接收模組中該等差分自同步射頻功率放大器/整流器中之每一者的移相器。Each of the plurality of power transmit-receive modules provided may be reconfigurable between a power transmitter mode and a power receiver mode; and the method may further include reconfiguring at least two of the plurality of power transmit-receive modules between the power transmitter mode and the power receiver mode to reverse the power transmission direction between the at least two transmit-receive modules. Each of the power transmit-receive modules provided may include a differential self-synchronous radio frequency power amplifier/rectifier capable of reconfiguring between amplifier states and rectifier states corresponding to the power transmitter mode and the power receiver mode of the power transmit-receive module, respectively; and the method may include reconfiguring the differential self-synchronous radio frequency power amplifier/rectifier of the at least two transmit-receive modules between the amplifier state and the rectifier state. Each differential self-synchronous RF power amplifier/rectifier may include a phase shifter that is adjustable for reconfiguring the differential self-synchronous RF power amplifier/rectifier between an amplifier state and a rectifier state; and the method may include adjusting the phase shifter of each of the differential self-synchronous RF power amplifier/rectifiers in the at least two transmit-receive modules.
本文闡述之包含發射器及/或接收器的WPT系統10可以一體結合至各種應用中,諸如但不限於電動運載工具、電動船、電動飛機、電動卡車、電動自行車、電動機車、電動滑板等。一個例示性非限制性應用是共用腳踏車車隊,其中,提供一體結合一個或多個發射器(例如,初級側12)的各種攜行電腦塢,且包含接收器(例如,次級側14)及電池(作為負載70)的電動自行車可以在攜行電腦塢處充電。The WPT system 10 including the transmitter and/or the receiver described herein can be integrated into various applications, such as but not limited to electric vehicles, electric boats, electric planes, electric trucks, electric bicycles, electric motorcycles, electric skateboards, etc. An exemplary non-limiting application is a shared bicycle fleet, in which various portable computers are provided that integrate one or more transmitters (e.g., primary side 12), and electric bicycles including receivers (e.g., secondary side 14) and batteries (as loads 70) can be charged at the portable computer.
在某些應用中,初級側12或次級側14可以配置以用本文未闡述的其他系統傳送電力,並可以將傳送模式比自CPT調整至IPT以提供與其他CPT系統及/或IPT系統的相容性,即使其他系統未經特意設計以與本文所闡述的電力傳送系統一起工作。In some applications, the primary side 12 or the secondary side 14 can be configured to transmit power using other systems not described herein, and the transmission mode can be adjusted from CPT to IPT to provide compatibility with other CPT systems and/or IPT systems, even if the other systems are not specifically designed to work with the power transmission system described herein.
雖然上文已論述若干個例示性態樣及實施例,但熟習此項技術者將認識到某些修改、排列、添加及其子組合。因此,旨在將以下隨附申請專利範圍及此後經引入的申請專利範圍解釋為包含與作為整體之本說明書的最廣泛解釋一致的所有此等修改、排列、添加及子組合。Although several exemplary aspects and embodiments have been discussed above, those skilled in the art will recognize certain modifications, permutations, additions, and sub-combinations thereof. It is therefore intended that the following appended claims and hereafter incorporated claims be interpreted as including all such modifications, permutations, additions, and sub-combinations consistent with the broadest interpretation of this specification as a whole.
在第一態樣中,在上文所闡述且在圖1至圖10中描繪之該等系統中的每一者形成雙峰近場共振無線電力傳送系統10,該系統配置用於在可變共振功率信號振盪頻率下根據可調的傳送模式比同時進行電容式電力傳送及感應式電力傳送,系統10包括:發射器子系統12,其包含發射器天線子系統32、132、232、332、134、234、334、336及功率信號調諧器模組26F,調諧器模組26F配置用於藉由調整由調諧器模組26F向發射器天線子系統32、132、232、332、134、234、334、336提供的功率信號來調整傳送模式比;以及接收器子系統14,其包含配置用於按傳送模式比自發射器天線子系統32、132、232、332、134、234、334、336接收電力的接收器天線子系統52、152、252、352、154、254、354、356。In a first aspect, each of the systems described above and depicted in FIGS. 1 to 10 forms a dual-peak near-field resonant wireless power transfer system 10 configured for simultaneous capacitive power transfer and inductive power transfer at a variable resonant power signal oscillation frequency according to an adjustable transfer mode ratio, the system 10 comprising: a transmitter subsystem 12 including a transmitter antenna subsystem 32, 132, 232, 332, 134, 234, 334, 336 and a power signal tuner module 26F, a tuner module 26F 6F is configured to adjust the transmit mode ratio by adjusting the power signal provided by the tuner module 26F to the transmitter antenna subsystem 32, 132, 232, 332, 134, 234, 334, 336; and the receiver subsystem 14 includes a receiver antenna subsystem 52, 152, 252, 352, 154, 254, 354, 356 configured to receive power from the transmitter antenna subsystem 32, 132, 232, 332, 134, 234, 334, 336 according to the transmit mode ratio.
調諧器模組26F可以配置用於藉由調整提供至發射器天線子系統32、132、232、332、134、234、334、336之功率信號的電流與電壓之間的相位差來調整功率信號。發射器子系統12可以進一步包括:控制器22;以及至少一個感測器24,其中,控制器22配置用於自至少一個感測器24接收感測器資訊且基於感測器資訊向調諧器模組26F自動地提供調諧指令,且調諧器模組26F配置以根據調諧指令調整提供至發射器天線子系統32、132、232、332、134、234、334、336之功率信號的電流與電壓之間的相位差。The tuner module 26F may be configured to adjust the power signal by adjusting the phase difference between the current and the voltage of the power signal provided to the transmitter antenna subsystem 32, 132, 232, 332, 134, 234, 334, 336. The transmitter subsystem 12 may further include: a controller 22; and at least one sensor 24, wherein the controller 22 is configured to receive sensor information from the at least one sensor 24 and automatically provide a tuning instruction to the tuner module 26F based on the sensor information, and the tuner module 26F is configured to adjust the phase difference between the current and the voltage of the power signal provided to the transmitter antenna subsystem 32, 132, 232, 332, 134, 234, 334, 336 according to the tuning instruction.
系統10基於發射器子系統12與接收器子系統14之間的耦合程度在一預定頻帶內自由變化的共振頻率下共振。例如無限制地,該預定頻帶可以是官方設計且保留的工業、科學及醫療(ISM)頻帶或使用者專用的頻帶。系統10的品質因數(Q)可以降低至允許功率信號振盪頻率在預定頻帶之相反極限內變化的程度。降低的Q值允許系統10在電力傳送程序期間在預定頻帶內採用若干個不同共振頻率中的任一者。發射器子系統12與接收器子系統14之間的耦合及共振接收器子系統14的相關聯電力吸收確保當系統10處於操作中時將較少電磁輻射發射至遠場域中。參考圖1至圖10如本文所述的佈置連同緊接前述的頻率態樣使系統10成為雙峰近場共振無線電力傳送系統。應注意的是在無線電力傳送系統10中,經由電容式耦合或感應式耦合或兩者將電力自主子系統傳送至次級子系統,而非在任何實質程度上經由電磁輻射傳送。The system 10 resonates at a resonant frequency that is freely variable within a predetermined frequency band based on the degree of coupling between the transmitter subsystem 12 and the receiver subsystem 14. For example, without limitation, the predetermined frequency band may be an officially designed and reserved Industrial, Scientific and Medical (ISM) band or a user-specific frequency band. The quality factor (Q) of the system 10 may be reduced to a degree that allows the power signal oscillation frequency to vary within the opposite extremes of the predetermined frequency band. The reduced Q value allows the system 10 to adopt any of a number of different resonant frequencies within the predetermined frequency band during the power transfer process. The coupling between the transmitter subsystem 12 and the receiver subsystem 14 and the associated power absorption of the resonant receiver subsystem 14 ensure that less electromagnetic radiation is emitted into the far field when the system 10 is in operation. The arrangement as described herein with reference to Figures 1-10, together with the frequency profiles immediately above, makes the system 10 a dual peak near field resonant wireless power transfer system. It should be noted that in the wireless power transfer system 10, power is transferred from the primary subsystem to the secondary subsystem via capacitive coupling or inductive coupling, or both, and not to any substantial extent via electromagnetic radiation.
在參考前述圖式及圖11中的流程圖所述的又一態樣中,提供一種用於在可變共振功率信號振盪頻率下根據可調的傳送模式比雙峰地傳送電力的近場無線方法[1000],該方法包括:提供[1010]包含功率信號調諧器模組26F及配置用於在共振功率信號振盪頻率下共振的發射器天線子系統32、132、232、332、134、234、334、336的發射器子系統12;提供[1020]包含配置用於在共振功率信號振盪頻率下共振的接收器天線子系統52、152、252、352、154、254、354、356的接收器子系統14;在功率信號振盪共振頻率下將功率信號自調諧器模組26F提供[1030]至發射器天線子系統32、132、232、332、134、234、334、336;藉由調整自調諧器模組26F至發射器天線子系統32、132、232、332、134、234、334、336的功率信號來調整[1040]傳送模式比;以及在接收器子系統14中於功率信號振盪共振頻率下經由接收器天線子系統52、152、252、352、154、254、354、356按傳送模式比接收[1050]傳送的電力。調整[1040]傳送模式比可以包括調整提供至發射器天線子系統32、132、232、332、134、234、334、336的功率信號的電流與電壓之間的相位差。In another embodiment described with reference to the aforementioned figures and the flowchart in FIG. 11 , a near-field wireless method [1000] for transmitting power bimodally at a variable resonant power signal oscillation frequency according to an adjustable transmission mode ratio is provided, the method comprising: providing [1010] a transmitter subsystem 12 including a power signal tuner module 26F and a transmitter antenna subsystem 32, 132, 232, 332, 134, 234, 334, 336 configured to resonate at the resonant power signal oscillation frequency; providing [1020] a receiver antenna subsystem 52, 152, 252, 352, 154, 254, 354, 356 configured to resonate at the resonant power signal oscillation frequency. a receiver subsystem 14; providing [1030] a power signal self-tuner module 26F to the transmitter antenna subsystems 32, 132, 232, 332, 134, 234, 334, 336 at a power signal oscillation resonance frequency; adjusting [1040] the transmit mode ratio by adjusting the power signal from the self-tuner module 26F to the transmitter antenna subsystems 32, 132, 232, 332, 134, 234, 334, 336; and receiving [1050] the transmitted power according to the transmit mode ratio at the power signal oscillation resonance frequency in the receiver subsystem 14 via the receiver antenna subsystems 52, 152, 252, 352, 154, 254, 354, 356. Adjusting [1040] the transmit mode ratio may include adjusting the phase difference between the current and voltage of the power signal provided to the transmitter antenna subsystem 32, 132, 232, 332, 134, 234, 334, 336.
提供[1010]發射器子系統12可以進一步包括提供控制器22及至少一個感測器24,並可以由調諧器模組26F基於控制器22自至少一個感測器24接收的感測器資訊經由控制器22的命令實現調整電流與電壓之間的相位差。在控制器22接收到感測器資訊時可以自動地向調諧器模組26F發出控制器22的命令;以及調諧器模組26F可以自動地執行來自控制器22的命令以改變相位差。Providing [1010] the transmitter subsystem 12 may further include providing a controller 22 and at least one sensor 24, and the phase difference between the current and the voltage may be adjusted by a tuner module 26F based on sensor information received by the controller 22 from the at least one sensor 24 via a command of the controller 22. The controller 22 may automatically issue a command of the controller 22 to the tuner module 26F when the controller 22 receives the sensor information; and the tuner module 26F may automatically execute the command from the controller 22 to change the phase difference.
該方法[1000]可以進一步包括允許[1060]共振功率信號振盪頻率在一預定頻帶內變化。該預定頻帶可以是工業、科學及醫療(ISM)頻帶。提供[1010]發射器子系統可以包括提供解調至允許共振功率信號振盪頻率於預定頻帶的相反極限內變化的程度的發射器子系統。The method [1000] may further include allowing [1060] the resonant power signal oscillation frequency to vary within a predetermined frequency band. The predetermined frequency band may be an industrial, scientific and medical (ISM) band. Providing [1010] the transmitter subsystem may include providing a transmitter subsystem that demodulates to an extent that allows the resonant power signal oscillation frequency to vary within opposite limits of the predetermined frequency band.
在參考圖12、圖13A及圖13B且參考圖1至圖10所述的又一實施例中,多發射器雙峰近場共振無線電力傳送系統10′配置用於在可變共振功率信號振盪頻率下根據可調的傳送模式比同時進行電容式電力傳送及感應式電力傳送。系統10′包括多發射器子系統12′,其包含各自由對應的專用發射器模組20A′至20I′驅動的複數個發射器共振器30A′至30I′,其中,每一發射器共振器及對應的發射模組(例如,分別30E′及20E′)可以與上文參考圖1至圖10所提出的闡述一致。圖12是系統10′的實施例的示意性代表,其中,發射器共振器30A′至30I′呈現為在一行中的九個共振器但未描繪在其形式化空間位置中。多發射器子系統12′的空間佈局的實施例示出在圖13A及圖13B中並在下文描述。在系統10′中,共振接收器子系統14可以與上文所述且由圖1至圖10引用的共振接收器系統相同或是基本上類似的。在圖12中所示的實施例中,例如無限制地,共振接收器子系統14可以實施於行動電話或數位「平板電腦」中。為了清晰起見,在圖13A中用斷續輪廓線繪示共振接收器子系統14。在實施例中,每一工作發射器共振器30A′至30I′及每一對應的發射器模組20A′至20I′可以與上文所述且在圖1至圖10中所示的發射器共振器30及發射器模組20相同或基本上以類似的方式發揮作用。多發射器子系統12′的空間佈局的實施例繪示在圖13A及圖13B中。圖13B是多發射器子系統12′相對於其在圖13A中之定向處於相反定向的視圖。In yet another embodiment described with reference to FIGS. 12, 13A, and 13B and with reference to FIGS. 1 to 10, a multi-transmitter dual-peak near-field resonant wireless power transfer system 10' is configured for simultaneous capacitive power transfer and inductive power transfer at a variable resonant power signal oscillation frequency according to an adjustable transfer mode ratio. The system 10' includes a multi-transmitter subsystem 12', which includes a plurality of transmitter resonators 30A' to 30I' each driven by a corresponding dedicated transmitter module 20A' to 20I', wherein each transmitter resonator and corresponding transmitter module (e.g., 30E' and 20E', respectively) may be consistent with the description set forth above with reference to FIGS. 1 to 10. FIG. 12 is a schematic representation of an embodiment of the system 10′ in which the transmitter resonators 30A′ to 30I′ are presented as nine resonators in a row but are not depicted in their formalized spatial positions. An embodiment of a spatial layout of the multiple transmitter subsystem 12′ is shown in FIGS. 13A and 13B and described below. In the system 10′, the resonant receiver subsystem 14 can be the same as or substantially similar to the resonant receiver system described above and referenced by FIGS. 1 to 10. In the embodiment shown in FIG. 12, the resonant receiver subsystem 14 can be implemented in a mobile phone or a digital “tablet”, for example, without limitation. For clarity, the resonant receiver subsystem 14 is depicted in FIG. 13A with a broken outline. In an embodiment, each operating emitter resonator 30A'-30I' and each corresponding emitter module 20A'-20I' can function the same as or in a substantially similar manner to the emitter resonator 30 and emitter module 20 described above and shown in Figures 1-10. An embodiment of a spatial layout of a multi-emitter subsystem 12' is illustrated in Figures 13A and 13B. Figure 13B is a view of the multi-emitter subsystem 12' in an opposite orientation relative to its orientation in Figure 13A.
在圖12、圖13A及圖13B中所示之系統10′的示例性實施例中,多發射器子系統12′包括在正方形陣列中佈置之九對發射器共振器30A′至30I′及對應的發射器模組20A′至20I′。發射器模組20A′至20I′在圖13A中由接地基板35′遮擋但可以在圖13B中看到。在更一般實施例中,可以採用其他數量對共振器及發射器模組,且共振器陣列不必須為正方形或矩形。藉助示例而無限制地,共振器陣列可以具有六邊形佈置。在某些實施例中,較佳將該等陣列緊密包裝在具有分開且界定發射器共振器30A′至30I′的接地屏蔽網的約束內。接地屏蔽網33′橫向地拘限發射器共振器30A′至30I′的陣列。接地屏蔽網33′設置在距發射器共振器30A′至30I′中的每一者的周邊的一致距離37′處,以確保發射器共振器30A′至30I′與接地屏蔽網33′之間的一致電場行為及相關聯電容。本文使用術語「屏蔽距離」闡述發射器共振器30A′至30I′與接地屏蔽網33′之間的此距離。In the exemplary embodiment of the system 10' shown in Figures 12, 13A and 13B, the multi-emitter subsystem 12' includes nine pairs of emitter resonators 30A' to 30I' and corresponding emitter modules 20A' to 20I' arranged in a square array. The emitter modules 20A' to 20I' are obscured by the grounded substrate 35' in Figure 13A but can be seen in Figure 13B. In more general embodiments, other numbers of pairs of resonators and emitter modules may be employed, and the resonator arrays need not be square or rectangular. By way of example and not limitation, the resonator arrays may have a hexagonal arrangement. In certain embodiments, it is preferred that the arrays be tightly packed within the confines of a grounded shielding mesh that separates and defines the emitter resonators 30A' to 30I'. The ground shield mesh 33' laterally confines the array of transmitter resonators 30A' to 30I'. The ground shield mesh 33' is disposed at a consistent distance 37' from the periphery of each of the transmitter resonators 30A' to 30I' to ensure consistent electric field behavior and associated capacitance between the transmitter resonators 30A' to 30I' and the ground shield mesh 33'. The term "shielding distance" is used herein to describe this distance between the transmitter resonators 30A' to 30I' and the ground shield mesh 33'.
在一實施例中,接地屏蔽網33′確保發射器共振器30A′至30I′的電場將在空間上完全解耦且藉此在空間上獨立。發射器共振器30A′至30I′可以具有經選擇以憑藉空間定位相互解耦的磁場。在其他實施例中,接地屏蔽網33′可以由高導電性鐵氧體材料形成或塗佈有高導電性鐵氧體材料,以便使由發射器共振器30A′至30I′產生的磁場解耦。In one embodiment, the ground shield mesh 33' ensures that the electric fields of the emitter resonators 30A' to 30I' will be completely spatially decoupled and thereby spatially independent. The emitter resonators 30A' to 30I' may have magnetic fields selected to be decoupled from each other by virtue of spatial positioning. In other embodiments, the ground shield mesh 33' may be formed of or coated with a highly conductive ferrite material in order to decouple the magnetic fields generated by the emitter resonators 30A' to 30I'.
如圖13A及圖13B中所示,發射器共振器30A′至30I′及其對應的發射器模組20A′至20I′可以基本上彼此成排地安裝在接地基板35′的相反面上,其中,每一發射器共振器(例如,30E′)接近其對應的發射器模組(20E′)。在其他實施例中,在發射器共振器與其對應的發射器模組之間可以不存在固定空間關係。發射器共振器30A′至30I′的陣列共用由圖13A中之發射器共振器30A′至30I′的集體上表面限定的公共發射表面。出於美觀及保護的原因,發射器共振器30A′至30I′的陣列可以覆蓋有介電板,在圖13A中未示出。介電板將接收器子系統14與發射器共振器30A′至30I′分開。As shown in FIGS. 13A and 13B , the emitter resonators 30A′ to 30I′ and their corresponding emitter modules 20A′ to 20I′ may be mounted substantially in a row with one another on opposite sides of a ground substrate 35′, wherein each emitter resonator (e.g., 30E′) is proximate to its corresponding emitter module (20E′). In other embodiments, there may be no fixed spatial relationship between the emitter resonators and their corresponding emitter modules. The array of emitter resonators 30A′ to 30I′ shares a common emitting surface defined by the collective upper surface of the emitter resonators 30A′ to 30I′ in FIG. 13A . For aesthetic and protective reasons, the array of emitter resonators 30A′ to 30I′ may be covered with a dielectric plate, not shown in FIG. 13A . A dielectric plate separates the receiver subsystem 14 from the transmitter resonators 30A' through 30I'.
在圖12及圖13A中,共振接收器子系統14的實施例示意性地示出為與複數個發射器共振器30A′至30I′的子集重疊。根據圖12及圖13A,將重疊的發射器共振器示出為30D′、30E′、30G′及30H′。在圖13A中,共振接收器子系統14示出為在相互鄰接之發射器共振器30D′、30E′、30G′及30H′上的點線矩形。發射器模組20A′至20I′中的任一者的控制器可以判定接近其對應的發射器共振器30A′至30I′或與其對應的發射器共振器30A′至30I′重疊的共振接收器子系統14的存在或不存在,且基於此等偵測,控制器可以接通或關斷至其對應的發射器共振器30A′至30I′的功率信號。In Figures 12 and 13A, an embodiment of a resonant receiver subsystem 14 is schematically shown as being overlaid with a subset of the plurality of transmitter resonators 30A' to 30I'. The overlaid transmitter resonators are shown as 30D', 30E', 30G', and 30H' according to Figures 12 and 13A. In Figure 13A, the resonant receiver subsystem 14 is shown as a dotted rectangle on the mutually adjacent transmitter resonators 30D', 30E', 30G', and 30H'. The controller of any of the transmitter modules 20A′ to 20I′ can determine the presence or absence of a resonant receiver subsystem 14 that is proximate to or overlaps with its corresponding transmitter resonator 30A′ to 30I′, and based on such detection, the controller can turn on or off the power signal to its corresponding transmitter resonator 30A′ to 30I′.
若發射器模組20A′至20I′的功率放大器向發射器共振器30A′至30I′供應功率信號,使得發射器共振器30A′至30I′發射電力,且發射器模組20A′、20B′、20C′、20F′及20I′的控制器判定在其頻率範圍內不存在接近發射器共振器30A′、30B′、30C′、30F′及30I′的共振接收器,則彼等控制器可以關斷至發射器共振器30A′、30B′、30C′、30F′及30I′的功率信號。If the power amplifiers of transmitter modules 20A′ to 20I′ supply power signals to transmitter resonators 30A′ to 30I′ so that transmitter resonators 30A′ to 30I′ transmit power, and the controllers of transmitter modules 20A′, 20B′, 20C′, 20F′ and 20I′ determine that there are no resonant receivers close to transmitter resonators 30A′, 30B′, 30C′, 30F′ and 30I′ within their frequency ranges, then their controllers may shut off the power signals to transmitter resonators 30A′, 30B′, 30C′, 30F′ and 30I′.
若發射器模組20A′至20I′的功率放大器不向發射器共振器30A′至30I′供應功率信號,則用於發射器共振器30D′、30E′、30G′及30H′的控制器可以判定與共振器30D′、30E′、30G′及30H′重疊且接近共振器30D′、30E′、30G′及30H′的共振接收器子系統14的存在,且接通由發射器模組20D′、20E′、20G′及20H′提供至發射器共振器30D′、30E′、30G′及30H′的可傳輸電力。此配置確保僅接近共振接收器子系統14的發射器共振器正在汲取電力且向共振接收器子系統14發射電力。If the power amplifiers of the transmitter modules 20A' to 20I' do not supply power signals to the transmitter resonators 30A' to 30I', the controllers for the transmitter resonators 30D', 30E', 30G', and 30H' can determine the presence of the resonant receiver subsystem 14 overlapping with and close to the resonators 30D', 30E', 30G', and 30H', and turn on the transmittable power provided by the transmitter modules 20D', 20E', 20G', and 20H' to the transmitter resonators 30D', 30E', 30G', and 30H'. This configuration ensures that only the transmitter resonators close to the resonant receiver subsystem 14 are drawing power and transmitting power to the resonant receiver subsystem 14.
可以採用發射器共振器30A′至30I′的輸入阻抗來偵測接近發射器共振器的共振接收器子系統14存在或不存在。發射器共振器輸入阻抗隨著接近發射器共振器的共振接收器子系統14的存在或不存在而變化。如上文所述,參考圖6,特定共振接收器子系統14的影響是不同的,以便不僅允許偵測接收器的存在及不存在,而且偵測特性,使得可以藉由其對發射器共振器輸入阻抗的影響來識別接收器的類型。在某些實施例中,接收器共振器的大小對發射器共振器30A′至30I′的輸入阻抗具有極大影響。The input impedance of the transmitter resonator 30A′ to 30I′ can be used to detect the presence or absence of a resonant receiver subsystem 14 in proximity to the transmitter resonator. The transmitter resonator input impedance varies with the presence or absence of a resonant receiver subsystem 14 in proximity to the transmitter resonator. As described above, with reference to FIG. 6 , the effect of a particular resonant receiver subsystem 14 is different so as to allow not only the presence and absence of a receiver to be detected, but also to detect characteristics such that the type of receiver can be identified by its effect on the transmitter resonator input impedance. In certain embodiments, the size of the receiver resonator has a significant effect on the input impedance of the transmitter resonator 30A′ to 30I′.
在系統10′的實施例中,如在圖12及圖13B中所示的發射器模組20E′是與由共振接收器子系統14重疊的四個發射器共振器30D′、30E′、30G′及30H′中之一者相關聯的發射器模組。在圖6及圖8中提供發射器模組20A′至20I′中之每一者的詳細結構。在發射器模組20A′至20I′的功率放大器26B不向對應的發射器共振器30A′至30I′提供功率信號的情況下啟動流程。In an embodiment of the system 10′, the transmitter module 20E′ as shown in FIG. 12 and FIG. 13B is a transmitter module associated with one of the four transmitter resonators 30D′, 30E′, 30G′, and 30H′ overlapped by the resonant receiver subsystem 14. The detailed structure of each of the transmitter modules 20A′ to 20I′ is provided in FIG. 6 and FIG. 8. The process is started when the power amplifier 26B of the transmitter module 20A′ to 20I′ does not provide a power signal to the corresponding transmitter resonator 30A′ to 30I′.
現在聚焦於發射器模組20E′,在此實施例中,其負載偵測器24A配置以量測發射器共振器30E′的輸入阻抗。負載偵測器24A向控制器22提供輸入阻抗量測結果。一預設輸入阻抗量測值儲存在控制器22中的暫存器中,該預設輸入阻抗量測值表示在不存在接近發射器共振器30E′之任何共振接收器子系統的情況下發射器共振器30E′的輸入阻抗。如在圖12中所示,將共振接收器子系統14設置為接近發射器共振器30E′導致由負載偵測器24A進行新不同的輸入阻抗量測,該量測的結果由負載偵測器24A向控制器22供應。控制器22將新輸入阻抗量測(本文稱為「第一輸入發射器共振器阻抗變化」或「主發射器共振器輸入阻抗變化」)與儲存在暫存器中的預設阻抗量測值相比。基於此第一輸入阻抗變化,控制器22關於接近發射器共振器30E′是否存在接收器共振器(例如,共振接收器子系統14的共振器)進行判定。為了對接近發射器共振器30E′的接收器共振器的存在或不存在進行判定,可以用在控制器22認為存在接收器共振器之前必須超過的最小輸入阻抗變化對控制器22進行預程式化。Focusing now on the transmitter module 20E′, in this embodiment, its load detector 24A is configured to measure the input impedance of the transmitter resonator 30E′. The load detector 24A provides the input impedance measurement result to the controller 22. A default input impedance measurement value is stored in a register in the controller 22, which default input impedance measurement value represents the input impedance of the transmitter resonator 30E′ in the absence of any resonant receiver subsystem in proximity to the transmitter resonator 30E′. As shown in Figure 12, placing the resonant receiver subsystem 14 in proximity to the transmitter resonator 30E′ results in a new and different input impedance measurement being made by the load detector 24A, the results of which are provided to the controller 22 by the load detector 24A. The controller 22 compares the new input impedance measurement (referred to herein as the "first input transmitter resonator impedance change" or "primary transmitter resonator input impedance change") to a preset impedance measurement value stored in a register. Based on this first input impedance change, the controller 22 makes a determination as to whether a receiver resonator (e.g., a resonator of the resonant receiver subsystem 14) is present proximate to the transmitter resonator 30E'. To make the determination as to the presence or absence of a receiver resonator proximate to the transmitter resonator 30E', the controller 22 may be pre-programmed with a minimum input impedance change that must be exceeded before the controller 22 deems a receiver resonator present.
若控制器22判定接近發射器共振器30E′存在接收器共振器(例如,共振接收器子系統14的共振器),則控制器22指示功率放大器採取「接通」狀態。藉此向發射器共振器30E′提供電力且進而向共振接收器子系統14傳送電力。若控制器22判定接近發射器共振器30E′不存在接收器共振器(例如,共振接收器子系統14的共振器),則控制器22指示功率放大器採取「關斷」狀態。藉此不向發射器共振器30E′提供電力且進而不向共振接收器子系統14傳送電力。由每一發射器模組20A′至20I′相對於其對應發的射器共振器30A′至30I′獨立進行相同程序。因此,接通由共振接收器子系統14重疊的發射器共振器30D′、30E′、30G′及30H′的功率放大器且關斷不由共振接收器子系統14重疊的發射器共振器30A′、30B′、30C′、30F′及30I′的功率放大器。If the controller 22 determines that there is a receiver resonator (e.g., a resonator of the resonant receiver subsystem 14) proximate to the transmitter resonator 30E′, the controller 22 instructs the power amplifier to assume an “on” state. Power is thereby provided to the transmitter resonator 30E′ and, in turn, transfers power to the resonant receiver subsystem 14. If the controller 22 determines that there is no receiver resonator (e.g., a resonator of the resonant receiver subsystem 14) proximate to the transmitter resonator 30E′, the controller 22 instructs the power amplifier to assume an “off” state. Power is thereby not provided to the transmitter resonator 30E′ and, in turn, not transfers power to the resonant receiver subsystem 14. The same procedure is performed independently by each transmitter module 20A′ to 20I′ with respect to its corresponding transmitter resonator 30A′ to 30I′. Therefore, the power amplifiers of the transmitter resonators 30D′, 30E′, 30G′ and 30H′ overlapped by the resonant receiver subsystem 14 are turned on and the power amplifiers of the transmitter resonators 30A′, 30B′, 30C′, 30F′ and 30I′ not overlapped by the resonant receiver subsystem 14 are turned off.
應注意的是,不同大小的接收器共振器在點24A處對發射器模組20的負載偵測器24A呈現顯著不同的阻抗。當給定的接收器共振器與發射器共振器部分地重疊時與當其與該發射器共振器完全重疊時相比,所量測的阻抗差不像阻抗隨著接收器共振器大小不同而顯著不同。此允許任何發射器模組20A′至20I′的控制器22區分接近對應發射器共振器30A′至30I′的小接收器共振器與大接收器共振器。It should be noted that receiver resonators of different sizes present significantly different impedances at point 24A to the load detector 24A of the transmitter module 20. The impedance difference measured when a given receiver resonator partially overlaps a transmitter resonator compared to when it completely overlaps the transmitter resonator is not as significantly different as the impedance with different receiver resonator sizes. This allows the controller 22 of any transmitter module 20A′ to 20I′ to distinguish between a small receiver resonator and a large receiver resonator that is close to the corresponding transmitter resonator 30A′ to 30I′.
根據一實施例,在本文闡述在由共振接收器子系統(例如共振接收器子系統14)重疊之彼等發射器共振器(例如30D′、30E′、30G′及30H′)之間設定功率信號頻率及相位。為了最大限度地高效傳送來自正在接收電力之發射器共振器30D′、30E′、30G′及30H′的組合的電力,發射器共振器30D′、30E′、30G′及30H′中的功率信號需要具有相同頻率且此外相互同相。給定的發射器共振器30D′、30E′、30G′及30H′中的功率信號的頻率可以在允許的頻帶內不同,如上文先前且參考圖1至圖10所述,圖12、圖13A及圖13B之此當前實施例中的要求是針對將發射器共振器30D′、30E′、30G′及30H′中的功率信號的頻率調整為相同且然後針對其相位鎖定在一起,使得來自發射器共振器30D′、30E′、30G′及30H′的功率信號將完全同步且同相。According to one embodiment, it is described herein that power signal frequency and phase are set between those transmitter resonators (e.g., 30D′, 30E′, 30G′, and 30H′) that are overlapped by a resonant receiver subsystem (e.g., resonant receiver subsystem 14). In order to maximize the efficiency of transferring power from the combination of transmitter resonators 30D′, 30E′, 30G′, and 30H′ that are receiving power, the power signals in the transmitter resonators 30D′, 30E′, 30G′, and 30H′ need to have the same frequency and also be in phase with each other. The frequencies of the power signals in a given transmitter resonator 30D′, 30E′, 30G′ and 30H′ may be different within an allowed frequency band, as previously described above and with reference to FIGS. 1 to 10 , the requirement in this current embodiment of FIGS. 12 , 13A and 13B is for the frequencies of the power signals in the transmitter resonators 30D′, 30E′, 30G′ and 30H′ to be the same and then for their phases to be locked together so that the power signals from the transmitter resonators 30D′, 30E′, 30G′ and 30H′ will be completely synchronized and in phase.
在一實施例中,為了確保重疊的發射器共振器30D′、30E′、30G′及30H′的控制器22全部將其對應的振盪器26A設定為相同頻率,發射器模組20A′至20I′的控制器22全部具備有在任何給定之經允許的頻帶(例如ISM頻帶)內所選擇之相同的頻率表。在該ISM頻帶內,選擇若干個離散頻率以包含在頻率表中。因此,該ISM頻帶內列表的頻率數量是有限的且限制的,且列表的頻率間隔開足夠寬使得發射器模組20D′、20E′、20G′及20H′的各種控制器22可以根據上文所述的第一阻抗差來判定功率信號頻率。儘管那些阻抗的變化小,但發射器模組20D′、20E′、20G′及20H′之所有控制器22自頻帶中所允許的頻率當中為其相應的振盪器26A及功率放大器26B的功率信號選擇相同的離散頻率。In one embodiment, to ensure that the controllers 22 of the overlapping transmitter resonators 30D', 30E', 30G' and 30H' all set their corresponding oscillators 26A to the same frequency, the controllers 22 of the transmitter modules 20A' to 20I' all have the same frequency table selected within any given allowed frequency band, such as an ISM band. Within the ISM band, a number of discrete frequencies are selected for inclusion in the frequency table. Thus, the number of frequencies listed within the ISM band is finite and limited, and the frequencies of the list are spaced sufficiently wide that the various controllers 22 of the transmitter modules 20D', 20E', 20G' and 20H' can determine the power signal frequency based on the first impedance difference described above. Despite the small changes in those impedances, all controllers 22 of transmitter modules 20D', 20E', 20G' and 20H' select the same discrete frequency for the power signals of their corresponding oscillators 26A and power amplifiers 26B from among the frequencies allowed in the frequency band.
在一實施例中,為了確保發射器共振器30D′、30E′、30G′及30H′不僅全部具有相同功率信號頻率,而且具有相同相位,採用以下程序步驟且將該等程序步驟程式化至發射器模組20A′至20I′的每一控制器22的軟體中。統計學上而言,發射器模組20D′、20E′、20G′及20H′之獨立控制器22中的第一獨立控制器將首先接通其對應的振盪器26A及功率放大器26B以經由其發射器共振器向共振接收器子系統14供應電力。發射器模組20D′、20E′、20G′及20H′之獨立控制器22中的其他獨立控制器22的第二獨立控制器將量測其對應的發射器共振器的輸入阻抗且藉助其對應的負載偵測器24A偵測由於第一發射器共振器發揮作用而引起的阻抗的小次級變化。實際上,第二控制器22經由第一發射器共振器與共振接收器子系統14的相互作用歷經第一發射器共振器之阻抗的反射。第二控制器22經程式化以得出如下結論:基於次級阻抗變化,另一控制器已首先接通其振盪器26A及功率放大器26B。在做出此推論之後,第二控制器22然後接通其振盪器26A及功率放大器26B並使其功率信號的相位變化,同時使用其發射器電力感測器24B量測由其對應的發射器共振器發射的功率。第二控制器22然後使其振盪器的相位變化且搜尋發生最大電力傳送的相位並將振盪器的相位設定為該值。以此方式判定的振盪器相位將確保由第二發射器共振器傳送的功率信號的相位等於由第一發射器共振器向共振接收器子系統14傳送的功率信號的相位。在一實施例中,振盪器相位的設定是基於基本上最大化電力傳送,而非使功率信號相位絕對地均衡。In one embodiment, to ensure that the transmitter resonators 30D′, 30E′, 30G′, and 30H′ all have not only the same power signal frequency, but also the same phase, the following process steps are employed and programmed into the software of each controller 22 of the transmitter modules 20A′ to 20I′. Statistically, the first independent controller among the independent controllers 22 of the transmitter modules 20D′, 20E′, 20G′, and 20H′ will first turn on its corresponding oscillator 26A and power amplifier 26B to supply power to the resonant receiver subsystem 14 via its transmitter resonator. The second independent controller of the other independent controllers 22 of the transmitter modules 20D', 20E', 20G' and 20H' will measure the input impedance of its corresponding transmitter resonator and detect the small secondary change in impedance due to the first transmitter resonator functioning by means of its corresponding load detector 24A. In effect, the second controller 22 experiences a reflection of the impedance of the first transmitter resonator through the interaction of the first transmitter resonator with the resonant receiver subsystem 14. The second controller 22 is programmed to conclude that the other controller has turned on its oscillator 26A and power amplifier 26B first based on the secondary impedance change. After making this inference, the second controller 22 then turns on its oscillator 26A and power amplifier 26B and varies the phase of its power signal while measuring the power emitted by its corresponding transmitter resonator using its transmitter power sensor 24B. The second controller 22 then varies the phase of its oscillator and searches for the phase where maximum power transfer occurs and sets the phase of the oscillator to that value. The oscillator phase determined in this manner will ensure that the phase of the power signal transmitted by the second transmitter resonator is equal to the phase of the power signal transmitted by the first transmitter resonator to the resonant receiver subsystem 14. In one embodiment, the setting of the oscillator phase is based on substantially maximizing power transfer rather than making the power signal phase absolutely equal.
在另一實施例中,再次基於由共振接收器子系統14重疊的發射器共振器30D′、30E′、30G′及30H′,共振接收器子系統14的接近性的偵測係基於透過發射器共振器30D′、30E′、30G′及30H′汲取的測試信號功率。在此實施例中,最初由與所有發射器共振器30A′至30I′對應的振盪器及功率放大器維持低振幅功率信號。所有發射器模組20A′至20I′的控制器22然後使用其對應的發射器電力感測器24B感測由其對應的發射器共振器30汲取的電力。使用其對應的發射器電力感測器24B,發射器模組20D′、20E′、20G′及20H′的控制器22感測到正在由其對應的發射器共振器30D′、30E′、30G′及30H′汲取電力。基於對所汲取之測試信號功率的偵測,發射器模組20D′、20E′、20G′及20H′的控制器22接通其對應的功率放大器26B的全功率。本文使用術語「第一測試信號功率汲取」以闡述經由發射器共振器30D′、30E′、30G′及30H′自測試信號汲取的電力。在適合的測試週期之後,可以關斷不被共振接收器子系統14重疊的發射器共振器30A′、30B′、30C′、30F′及30I′的功率放大器26B的測試功率信號。In another embodiment, again based on the transmitter resonators 30D', 30E', 30G' and 30H' overlapped by the resonant receiver subsystem 14, the detection of the proximity of the resonant receiver subsystem 14 is based on the test signal power drawn through the transmitter resonators 30D', 30E', 30G' and 30H'. In this embodiment, a low amplitude power signal is initially maintained by the oscillators and power amplifiers corresponding to all transmitter resonators 30A' to 30I'. The controllers 22 of all transmitter modules 20A' to 20I' then sense the power drawn by their corresponding transmitter resonators 30 using their corresponding transmitter power sensors 24B. Using their corresponding transmitter power sensors 24B, the controllers 22 of the transmitter modules 20D', 20E', 20G' and 20H' sense that power is being drawn by their corresponding transmitter resonators 30D', 30E', 30G' and 30H'. Based on the detection of the drawn test signal power, the controllers 22 of the transmitter modules 20D', 20E', 20G' and 20H' turn on the full power of their corresponding power amplifiers 26B. The term "first test signal power draw" is used herein to describe the power drawn from the test signal via the transmitter resonators 30D', 30E', 30G' and 30H'. After a suitable test period, the test power signals to the power amplifiers 26B of the transmitter resonators 30A′, 30B′, 30C′, 30F′ and 30I′ that are not overlapped by the resonant receiver subsystem 14 may be turned off.
等效於上文所述之基於阻抗的實施例,發射器模組20D′、20E′、20G′及20H′的控制器22可以需要一閾值功率汲取以便認為接近其對應的發射器共振器30D′、30E′、30G′及30H′存在共振接收器子系統14。Equivalent to the impedance-based embodiment described above, the controller 22 of the transmitter modules 20D′, 20E′, 20G′ and 20H′ may require a threshold power draw in order to consider a resonant receiver subsystem 14 to be present proximate to its corresponding transmitter resonator 30D′, 30E′, 30G′ and 30H′.
在一實施例中,為了確保重疊的發射器共振器30D′、30E′、30G′及30H′的控制器22全部將其對應的振盪器26A設定為相同頻率,發射器模組20A′至20I′的控制器22全部具備有在任何給定之經允許的頻帶(例如ISM頻帶)內所選擇之相同的頻率表。在該ISM頻帶內,選擇若干個離散頻率以包含在頻率表中。因此,該ISM頻帶內列表的頻率數量是有限的且限制的,且列表的頻率間隔開足夠寬使得發射器模組20D′、20E′、20G′及20H′的各種控制器22可以根據上文所述的第一測試信號功率汲取來判定功率信號頻率。儘管那些功率汲取值的變化小,但發射器模組20D′、20E′、20G′及20H′之所有控制器22自頻帶中允許的頻率當中為其相應的振盪器26A及功率放大器26B的功率信號選擇相同離散頻率。In one embodiment, to ensure that the controllers 22 of overlapping transmitter resonators 30D', 30E', 30G' and 30H' all set their corresponding oscillators 26A to the same frequency, the controllers 22 of transmitter modules 20A' to 20I' all have the same frequency table selected within any given allowed frequency band, such as an ISM band. Within the ISM band, a number of discrete frequencies are selected for inclusion in the frequency table. Thus, the number of frequencies listed within the ISM band is finite and limited, and the frequencies of the list are spaced sufficiently wide that the various controllers 22 of transmitter modules 20D', 20E', 20G' and 20H' can determine the power signal frequency based on the first test signal power draw described above. Despite the small variations in those power draw values, all controllers 22 of transmitter modules 20D', 20E', 20G' and 20H' select the same discrete frequency for the power signals of their corresponding oscillators 26A and power amplifiers 26B from among the frequencies allowed in the frequency band.
在一實施例中,為了確保發射器共振器30D′、30E′、30G′及30H′不僅全部具有相同功率信號頻率,而且具有相同相位,採用以下程序步驟且將該等程序步驟程式化至發射器模組20A′至20I′之每一控制器22的軟體中。統計學上而言,發射器模組20D′、20E′、20G′及20H′之獨立控制器22中的第一獨立控制器將首先接通其對應的振盪器26A及功率放大器26B以經由其發射器共振器向共振接收器子系統14供應電力。發射器模組20D′、20E′、20G′及20H′之獨立控制器22中的其他獨立控制器22的第二獨立控制器將量測其對應的發射器共振器之功率汲取且藉助其對應發射器電力感測器24B偵測由於第一發射器共振器發揮作用而引起的功率汲取的小次級變化。實際上,第二控制器22經由第一發射器共振器與共振接收器子系統14的相互作用歷經第一發射器共振器的阻抗的反射。第二控制器22經程式化以得出如下結論:基於次級功率汲取變化,另一控制器已首先接通其振盪器26A及功率放大器26B。在做出此推論之後,第二控制器22然後接通其振盪器26A及功率放大器26B且使其功率信號的相位變化,同時使用其發射器電力感測器24B量測由其對應的發射器共振器發射的功率。第二控制器22然後搜尋發生最大電力傳送的相位並將振盪器設定為該相位。以此方式設定的振盪器相位確保由第二發射器共振器向共振接收器子系統14傳送的功率信號的相位等於由第一發射器共振器向共振接收器子系統14發射的功率信號的相位。在實施例中,振盪器相位的設定是基於基本上最大化電力傳送,而非使功率信號相位絕對地均衡。In one embodiment, to ensure that the transmitter resonators 30D′, 30E′, 30G′, and 30H′ all have not only the same power signal frequency, but also the same phase, the following program steps are employed and programmed into the software of each controller 22 of the transmitter modules 20A′ to 20I′. Statistically, the first independent controller among the independent controllers 22 of the transmitter modules 20D′, 20E′, 20G′, and 20H′ will first turn on its corresponding oscillator 26A and power amplifier 26B to supply power to the resonant receiver subsystem 14 via its transmitter resonator. The second independent controller of the other independent controllers 22 of the transmitter modules 20D', 20E', 20G' and 20H' will measure the power draw of its corresponding transmitter resonator and detect, by means of its corresponding transmitter power sensor 24B, the small secondary variation in power draw due to the first transmitter resonator functioning. In effect, the second controller 22 experiences a reflection of the impedance of the first transmitter resonator through its interaction with the resonant receiver subsystem 14. The second controller 22 is programmed to conclude that, based on the secondary power draw variation, the other controller has turned on its oscillator 26A and power amplifier 26B first. After making this inference, the second controller 22 then turns on its oscillator 26A and power amplifier 26B and varies the phase of its power signal while measuring the power emitted by its corresponding transmitter resonator using its transmitter power sensor 24B. The second controller 22 then searches for the phase at which maximum power transfer occurs and sets the oscillator to that phase. The oscillator phase set in this manner ensures that the phase of the power signal transmitted by the second transmitter resonator to the resonant receiver subsystem 14 is equal to the phase of the power signal emitted by the first transmitter resonator to the resonant receiver subsystem 14. In an embodiment, the setting of the oscillator phase is based on substantially maximizing power transfer rather than making the power signal phase absolutely equal.
在一實施例中,當兩個不同共振接收器子系統接近多發射器子系統12′並與發射器共振器30A′至30I′中不同發射器共振器或其組合重疊時,則不存在為何由兩個共振接收器系統重疊之兩個不同發射器共振器或兩組不同發射器共振器應以相同頻率或相位操作的先驗原因,亦不存在對其如此操作的要求。接地屏蔽網33′藉由使所有個別發射器共振器30A′至30I′彼此解耦來確保此多路獨立性。然而,被一個特定共振接收器子系統重疊的發射器共振器需要藉由其控制器使其對應的功率信號放大器主動地同步,如上文所述。此可以導致兩個不同發射器共振器或兩組不同共振器在一頻帶中的兩個特定不同鎖定頻率下操作,其中特定組中的所有信號相互同相。In one embodiment, when two different resonant receiver subsystems are proximate to the multi-transmitter subsystem 12' and overlap with different ones of the transmitter resonators 30A' to 30I' or combinations thereof, there is no a priori reason why the two different transmitter resonators or two different groups of transmitter resonators overlapped by the two resonant receiver systems should operate at the same frequency or phase, nor is there a requirement for them to do so. The grounded shielding mesh 33' ensures this multi-path independence by decoupling all of the individual transmitter resonators 30A' to 30I' from one another. However, the transmitter resonators overlapped by a particular resonant receiver subsystem need to have their corresponding power signal amplifiers actively synchronized by their controllers, as described above. This can result in two different transmitter resonators or two different groups of resonators operating at two specific different locking frequencies in a frequency band, with all signals in a particular group being in phase with each other.
在前述內容中,已闡述向同一接收器共振器傳送電力的兩個發射器共振器可如何程式化為運行以便確保兩個發射器共振器承載同相的功率信號,藉以確保最大電力傳送。當兩個鄰近發射器共振器(例如圖14中的30A′及30B′)正在向兩個基本上類似之對應的接收器子系統14A及14B進行發射時,發生不同的情況。發射器共振器30A′及30B′兩者具有邊緣場,該等邊緣場的場線自例如發射器共振器30A′延伸至接收器子系統14B′且自發射器共振器30B′延伸至接收器子系統14A。一般而言,在系統10′中不存在特定實體結構以避免例如發射器共振器30A′的場與接收器子系統14B的接收器共振器相互作用。In the foregoing, it has been explained how two transmitter resonators transmitting power to the same receiver resonator can be programmed to operate so as to ensure that the two transmitter resonators carry power signals that are in phase, thereby ensuring maximum power transfer. A different situation occurs when two adjacent transmitter resonators, such as 30A′ and 30B′ in FIG. 14 , are transmitting to two substantially similar corresponding receiver subsystems 14A and 14B. Both transmitter resonators 30A′ and 30B′ have fringing fields with field lines extending from, for example, transmitter resonator 30A′ to receiver subsystem 14B′ and from transmitter resonator 30B′ to receiver subsystem 14A. In general, there are no specific physical structures in system 10′ to prevent fields such as transmitter resonator 30A′ from interacting with receiver resonators of receiver subsystem 14B.
在一實施例中,當發射器共振器30A′及30B′兩者皆服務與兩個發射器共振器30A′及30B′重疊的同一大接收器共振器時(如圖13A中),邊緣場在本質上並非問題,因為兩個發射器共振器30A′及30B′將以相同相位運行相同頻率功率信號。在圖14中所示的情況下,該要求是確保與接收器子系統(例如旨在自相鄰發射器共振器30B′接受電力的14B)相互作用之給定的發射器共振器(例如30A′)的任何邊緣場不允許電力自發射器共振器30A′寄生。達成此目標的一個方法是將兩個相鄰發射器共振器30A′及30B′驅動成彼此180⁰異相,使得來自發射器共振器30A′及30B′的重疊邊緣場將在很大程度上相互抵消。In one embodiment, when both transmitter resonators 30A′ and 30B′ serve the same large receiver resonator that overlaps the two transmitter resonators 30A′ and 30B′ (as in FIG. 13A ), fringing fields are not inherently a problem because the two transmitter resonators 30A′ and 30B′ will be running the same frequency power signal with the same phase. In the case shown in FIG. 14 , the requirement is to ensure that any fringing fields of a given transmitter resonator (e.g., 30A′) that interact with a receiver subsystem (e.g., 14B that is intended to receive power from a neighboring transmitter resonator 30B′) do not allow power to be parasitic from the transmitter resonator 30A′. One way to achieve this is to drive the two adjacent emitter resonators 30A′ and 30B′ 180° out of phase with each other so that the overlapping fringing fields from the emitter resonators 30A′ and 30B′ will largely cancel each other.
由於當發射器共振器的功率信號非180⁰異相時發射器共振器30A′及30B′中的任一者將發射器共振器30A′及30B′中的另一者視為寄生,因此發射器共振器30A′及30B′中之每一者的控制器22可以使來自每一對應的振盪器的信號的相位遞增,同時使用對應的發射器電力感測器24B量測由對應的發射器共振器30A′、30B′發射的電力。控制器22然後可以搜尋經由對應的發射器共振器30A′、30B′提供最大所發射電力之調整的振盪器相位,然後將振盪器的相位設定為對應的相位。Since either of the transmitter resonators 30A′ and 30B′ treats the other of the transmitter resonators 30A′ and 30B′ as a parasitic when the power signals of the transmitter resonators are not 180⁰ out of phase, the controller 22 of each of the transmitter resonators 30A′ and 30B′ can increment the phase of the signal from each corresponding oscillator while measuring the power transmitted by the corresponding transmitter resonator 30A′, 30B′ using the corresponding transmitter power sensor 24B. The controller 22 can then search for the adjusted oscillator phase that provides the maximum transmitted power through the corresponding transmitter resonator 30A′, 30B′, and then set the phase of the oscillator to the corresponding phase.
每個共振接收器系統的頻率及相位佈置,無論大小類似還是大小不同,如上文所闡述,確保了兩個共振接收器系統接收最大傳送電力。在一般實施例中,可以存在大數量的發射器共振器且數個不同的共振接收器子系統可正在接收電力,每一共振接收器子系統在由群組中對應於發射器共振器的控制器選擇的頻率及相位下,自其自身對應的個別發射器共振器群組接收電力。作為最大化相鄰發射器共振器中的每一者的電力傳送的結果,向不同接收器子系統傳送電力的相鄰發射器共振器可以180⁰異相地操作。最大化電力傳送的過程調整了振盪器相位。由於各種發射器模組的阻抗複雜且電阻、電感及電容具有微小變化,因此當發射器共振器中的功率信號在實際上相等(或正好相差180⁰)時,不同振盪器在最大電力傳送點處的相位角可能不完全相等(或正好相差180⁰)。The frequency and phase arrangement of each resonant receiver system, whether similar or different in size, as explained above, ensures that both resonant receiver systems receive maximum transferred power. In a general embodiment, there may be a large number of transmitter resonators and several different resonant receiver subsystems may be receiving power, each resonant receiver subsystem receiving power from its own corresponding individual group of transmitter resonators at a frequency and phase selected by the controller corresponding to the transmitter resonator in the group. As a result of maximizing power transfer to each of the adjacent transmitter resonators, adjacent transmitter resonators transferring power to different receiver subsystems may operate 180⁰ out of phase. The process of maximizing power transfer adjusts the oscillator phase. Due to the complex impedance of the various transmitter modules and the small variations in resistance, inductance, and capacitance, the phase angles of different oscillators at the point of maximum power transfer may not be exactly equal (or exactly 180⁰ different) while the power signals in the transmitter resonators are actually equal (or exactly 180⁰ different).
就系統10′包括在初級側與次級側之間具有空氣間隙的一個電路而言,在發射器共振器中(例如在圖6中的點24E處),基於由發射器電力感測器24B的量測結果而量測或最大化的任何電力傳送亦剛好可以在次級電路中(例如在圖7中的點44C處),基於由接收器電力感測器44A的量測結果進行量測或最大化。該量測結果可以由發射器電力感測器24B提供至接收器模組40的控制器42,該控制器進而可以將該量測結果藉由已在前述內容中闡述的手段中的一者將量測結果傳送給發射器模組20的控制器22。To the extent that system 10' includes a circuit having an air gap between the primary and secondary sides, any power transfer measured or maximized in the transmitter resonator (e.g., at point 24E in FIG. 6) based on the measurement by transmitter power sensor 24B may also be measured or maximized in the secondary circuit (e.g., at point 44C in FIG. 7) based on the measurement by receiver power sensor 44A. The measurement may be provided by transmitter power sensor 24B to controller 42 of receiver module 40, which in turn may communicate the measurement to controller 22 of transmitter module 20 by one of the means already described above.
上文已參考系統10′闡釋多發射器近場共振無線電力傳送系統的概念,該系統配置用於在可變共振功率信號振盪頻率下根據可調的傳送模式比同時進行電容式電力傳送及感應式電力傳送。在更一般實施例中,多發射器近場共振無線電力傳送系統不需要具體地是雙峰系統並可以是純電容式或純感應式電力傳送系統。The concept of a multi-transmitter near-field resonant wireless power transfer system has been explained above with reference to system 10′, which is configured for simultaneous capacitive power transfer and inductive power transfer according to an adjustable transfer mode ratio at a variable resonant power signal oscillation frequency. In a more general embodiment, the multi-transmitter near-field resonant wireless power transfer system need not specifically be a bimodal system and can be a pure capacitive or pure inductive power transfer system.
在又一態樣中,在圖15的流程圖中所示,用於在可變共振功率信號振盪頻率下將電力自多發射器子系統12′傳送至單個共振接收器子系統14的無線近場方法[1100]包括:提供[1110]包含複數個相互獨立之發射器共振器30A′至30I′的多發射器子系統12′,該等發射器共振器中的每一者由對應的發射器模組20A′至20I′驅動,每一發射器模組20A′至20I′能夠獨立地設定為一預設頻帶中之複數個預設功率信號振盪頻率中的一者,且所有發射器共振器30A′至30I′具有公共發射表面;將共振接收器子系統14設置[1120]成接近公共發射表面,該共振接收器子系統包括與發射器共振器(圖13A中的30D′、30E′、30G′及30H)中之兩者或兩者以上重疊的單個接收器共振器50;量測[1130]發射器共振器30A′至30I′中之每一者的輸入阻抗;以及基於對應之量測的共振器輸入阻抗將前往該複數個相互獨立的發射器共振器30A′至30I′中之每一者的功率信號設定[1140]為關斷狀態及活動狀態中的一者。In yet another aspect, as shown in the flow chart of FIG. 15 , a wireless near-field method [1100] for transmitting power from a multiple transmitter subsystem 12′ to a single resonant receiver subsystem 14 at a variable resonant power signal oscillation frequency includes: providing [1110] a multiple transmitter subsystem 12′ including a plurality of mutually independent transmitter resonators 30A′ to 30I′, each of the transmitter resonators being driven by a corresponding transmitter module 20A′ to 20I′, each transmitter module 20A′ to 20I′ being independently settable to one of a plurality of preset power signal oscillation frequencies in a preset frequency band, and all transmitter resonators 30A′ being independently settable to one of a plurality of preset power signal oscillation frequencies in a preset frequency band. to 30I′ having a common emitting surface; setting [1120] a resonant receiver subsystem 14 close to the common emitting surface, the resonant receiver subsystem including a single receiver resonator 50 overlapping with two or more of the emitter resonators (30D′, 30E′, 30G′ and 30H in FIG. 13A); measuring [1130] the input impedance of each of the emitter resonators 30A′ to 30I′; and setting [1140] a power signal to each of the plurality of independent emitter resonators 30A′ to 30I′ to one of an off state and an active state based on the corresponding measured resonator input impedance.
方法[1100]可以進一步包括基於主動發射器共振器(圖13A中的發射器共振器30D′、30E′、30G′及30H)中之每一者量測的輸入阻抗自該複數個預設功率信號振盪頻率當中為對應的發射器共振器(圖13A中的30D′、30E′、30G′及30H’)選擇功率信號振盪頻率[1150]。The method [1100] may further include selecting a power signal oscillation frequency for the corresponding transmitter resonator (30D', 30E', 30G' and 30H' in Figure 13A) from among the plurality of preset power signal oscillation frequencies based on the input impedance measured for each of the active transmitter resonators (transmitter resonators 30D', 30E', 30G' and 30H in Figure 13A) [1150].
方法[1100]可以進一步包括將每一主動發射器共振器(圖13A中的30D′、30E′、30G′及30H’) 的功率信號設定[1160]為對應的選定頻率。The method [1100] may further include setting [1160] the power signal of each active transmitter resonator (30D', 30E', 30G' and 30H' in Figure 13A) to a corresponding selected frequency.
方法[1100]可以進一步包括將施加至每一對應的發射器共振器(圖13A中的發射器共振器30D′、30E′、30G′及30H)的功率信號的相位調整[1170]為透過發射器共振器(圖13A中的30D′、30E′、30G′及30H’) 的電力傳送基本上是最大的相位。The method [1100] may further include adjusting [1170] the phase of the power signal applied to each corresponding transmitter resonator (transmitter resonators 30D', 30E', 30G' and 30H in Figure 13A) to a phase at which power transfer through the transmitter resonator (30D', 30E', 30G' and 30H' in Figure 13A) is substantially maximum.
在又一態樣中,在圖16的流程圖中所示,用於在可變共振功率信號振盪頻率下將電力自多發射器子系統12′傳送至單個共振接收器子系統14的無線近場方法[1200]包括:提供[1210]包含複數個相互獨立之發射器共振器30A′至30I′的多發射器子系統12′,該等發射器共振器中的每一者由對應的發射器模組20A′至20I′驅動,每一發射器模組20A′至20I′能夠獨立地設定為一預設頻帶中之複數個預設功率信號振盪頻率中的一者,且所有發射器共振器30A′至30I′具有公共發射表面;將共振接收器子系統14設置[1220]成接近公共發射表面,該共振接收器子系統包括與發射器共振器(圖13A中的30D′、30E′、30G′及30H’)中的兩者或兩者以上重疊的單個接收器共振器50;量測[1230]由發射器共振器30A′至30I′中的每一者自測試信號汲取的電力;以及基於對應之量測的共振器測試功率汲取將前往該複數個相互獨立之發射器共振器30A′至30I′中的每一者的功率信號設定[1140]為關斷狀態及活動狀態中的一者。In yet another aspect, as shown in the flow chart of FIG. 16 , a wireless near-field method [1200] for transmitting power from a multiple transmitter subsystem 12′ to a single resonant receiver subsystem 14 at a variable resonant power signal oscillation frequency includes: providing [1210] a multiple transmitter subsystem 12′ including a plurality of mutually independent transmitter resonators 30A′ to 30I′, each of the transmitter resonators being driven by a corresponding transmitter module 20A′ to 20I′, each transmitter module 20A′ to 20I′ being independently settable to one of a plurality of preset power signal oscillation frequencies in a preset frequency band, and all transmitter resonators 30A′ to 30I′ being independently settable to one of a plurality of preset power signal oscillation frequencies in a preset frequency band. ' having a common emitting surface; positioning [1220] a resonant receiver subsystem 14 proximate the common emitting surface, the resonant receiver subsystem comprising a single receiver resonator 50 overlapping with two or more of the emitter resonators (30D', 30E', 30G' and 30H' in FIG. 13A); measuring [1230] power drawn by each of the emitter resonators 30A' to 30I' from a test signal; and setting [1140] a power signal to each of the plurality of mutually independent emitter resonators 30A' to 30I' to one of an off state and an active state based on the corresponding measured resonator test power draw.
該方法[1200]可以進一步包括基於由主動發射器共振器(圖13A中的發射器共振器30D′、30E′、30G′及30H)中的每一者汲取之量測的測試功率自該複數個預設功率信號振盪頻率當中為對應的發射器共振器(圖13A中的30D′、30E′、30G′及30H)選擇[1250]功率信號振盪頻率。The method [1200] may further include selecting [1250] a power signal oscillation frequency for the corresponding transmitter resonator (30D′, 30E′, 30G′ and 30H in FIG. 13A) from the plurality of preset power signal oscillation frequencies based on a measured test power drawn by each of the active transmitter resonators (transmitter resonators 30D′, 30E′, 30G′ and 30H in FIG. 13A).
該方法[1200]可以進一步包括將每一主動發射器共振器(圖13A中的30D′、30E′、30G′及30H)的功率信號設定[1260]為對應的選定頻率。The method [1200] may further include setting [1260] the power signal of each active transmitter resonator (30D', 30E', 30G' and 30H in Figure 13A) to a corresponding selected frequency.
該方法[1200]可以進一步包括將施加至每一對應的發射器共振器(圖13A中的發射器共振器30D′、30E′、30G′及30H) 的功率信號的相位調整[1270]為透過發射器共振器(圖13A中的30D′、30E′、30G′及30H)的電力傳送基本上是最大的相位。The method [1200] may further include adjusting [1270] the phase of the power signal applied to each corresponding transmitter resonator (transmitter resonators 30D′, 30E′, 30G′ and 30H in FIG. 13A) to a phase at which power transfer through the transmitter resonator (30D′, 30E′, 30G′ and 30H in FIG. 13A) is substantially maximum.
在又一態樣中,在圖17的流程圖中所示,用於在可變共振功率信號振盪頻率下將電力自多發射器子系統12′傳送至兩個或兩個以上接收器子系統14A、14B(在圖14中) 的無線近場方法[1300]包括:提供[1310]包括複數個相互獨立的發射器共振器30A′至30I′(在圖14中)的多發射器子系統12′,該等發射器共振器中的每一者由對應的發射器模組20A′至20I′(參見圖13B)驅動,每一發射器模組20A′至20I′能夠獨立地設定為一預設頻帶中之複數個預設功率信號振盪頻率中的一者,且所有發射器共振器30A′至30I′具有公共發射表面;將兩個或兩個以上共振接收器子系統14A、14B設置[1320]成接近公共發射表面,每一共振接收器子系統包括與發射器共振器(圖14中的發射器共振器30A′、30B′)中的一者或多者重疊的單個接收器共振器;量測[1330]發射器共振器30A′、30B′中的每一者的輸入阻抗;以及基於對應之量測的共振器輸入阻抗將前往該複數個相互獨立之發射器共振器30A′至30I′中的每一者的功率信號設定[1340]為關斷狀態及活動狀態中的一者。In yet another aspect, as shown in the flow chart of FIG. 17 , a method for transmitting power from a multi-transmitter subsystem 12′ to two or more receiver subsystems 14A, 14B (in FIG. 14 ) at a variable resonant power signal oscillation frequency is described below. The wireless near-field method [1300] comprises: providing [1310] a multi-transmitter subsystem 12' comprising a plurality of mutually independent transmitter resonators 30A' to 30I' (in FIG. 14), each of the transmitter resonators being driven by a corresponding transmitter module 20A' to 20I' (see FIG. 13B), each transmitter module 20A' to 20I' being independently settable to one of a plurality of preset power signal oscillation frequencies in a preset frequency band, and all transmitter resonators 30A' to 30I' having a common emitting surface; placing two or more resonant receivers Subsystems 14A, 14B are arranged [1320] close to a common transmitting surface, each resonant receiver subsystem includes a single receiver resonator overlapping one or more of the transmitter resonators (transmitter resonators 30A′, 30B′ in Figure 14); measuring [1330] the input impedance of each of the transmitter resonators 30A′, 30B′; and setting [1340] the power signal to each of the plurality of independent transmitter resonators 30A′ to 30I′ to one of an off state and an active state based on the corresponding measured resonator input impedance.
該方法[1300]可以進一步包括基於主動發射器共振器(圖14中的發射器共振器30A′、30B′)中之每一者量測的輸入阻抗自該複數個預設功率信號振盪頻率當中為對應的發射器共振器30A′、30B′[1350]選擇功率信號振盪頻率。The method [1300] may further include selecting a power signal oscillation frequency for the corresponding transmitter resonator 30A′, 30B′ [1350] from among the plurality of preset power signal oscillation frequencies based on the input impedance measured for each of the active transmitter resonators (transmitter resonators 30A′, 30B′ in FIG. 14 ).
該方法[1300]可以進一步包括將每一主動發射器共振器30A′、30B′的功率信號設定[1360]為對應選定頻率。The method [1300] may further include setting [1360] the power signal of each active transmitter resonator 30A′, 30B′ to correspond to the selected frequency.
方法[1300]可以進一步包括將施加至每一對應發射器共振器30A′、30B′的功率信號的相位調整[1370]為透過發射器共振器30A′、30B′(在圖14中)的電力傳送基本上是最大的相位。The method [1300] may further include adjusting [1370] the phase of the power signal applied to each corresponding transmitter resonator 30A', 30B' to a phase at which power transfer through the transmitter resonator 30A', 30B' (in FIG. 14) is substantially maximum.
在又一態樣中,在圖18的流程圖中所示,用於在可變共振功率信號振盪頻率下將電力自多發射器子系統12′傳送至兩個或兩個以上接收器子系統14A、14B(在圖14中)的無線近場方法[1400]包括:提供[1410]包括複數個相互獨立的發射器共振器30A′至30I′(在圖14中) 的多發射器子系統12′,該等發射器共振器中的每一者由對應的發射器模組20A′至20I′(參見圖13B)驅動,每一發射器模組20A′至20I′能夠獨立地設定為一預設頻帶中的複數個預設功率信號振盪頻率中的一者,且所有發射器共振器30A′至30I′具有公共發射表面;將兩個或兩個以上共振接收器子系統14A、14B設置[1420]成接近公共發射表面,每一共振接收器子系統包括與發射器共振器(圖13中的發射器共振器30A′、30B′)中的一者或多者重疊的單個接收器共振器;量測[1430]由發射器共振器30A′至30I′中的每一者自測試信號汲取的電力;以及基於對應之量測的共振器測試功率汲取將前往該複數個相互獨立之發射器共振器30A′至30I′中的每一者的功率信號設定[1440]為關斷狀態及活動狀態中的一者。In yet another aspect, as shown in the flow chart of FIG. 18 , a wireless near-field method [1400] for transmitting power from a multiple transmitter subsystem 12′ to two or more receiver subsystems 14A, 14B (in FIG. 14 ) at a variable resonant power signal oscillation frequency includes: providing [1410] a plurality of mutually independent transmitter resonators 30A′ to 30I′ (in FIG. 14 ) A multi-transmitter subsystem 12′, each of the transmitter resonators is driven by a corresponding transmitter module 20A′ to 20I′ (see FIG. 13B ), each transmitter module 20A′ to 20I′ can be independently set to one of a plurality of preset power signal oscillation frequencies in a preset frequency band, and all transmitter resonators 30A′ to 30I′ have a common emitting surface; two or more resonant receiver subsystems 14A, 14B are arranged [1420] close to the common emitting surface, each resonant The receiver subsystem includes a single receiver resonator overlapped with one or more of the transmitter resonators (transmitter resonators 30A′, 30B′ in FIG. 13); measuring [1430] power drawn by each of the transmitter resonators 30A′ to 30I′ from a test signal; and setting [1440] a power signal to each of the plurality of mutually independent transmitter resonators 30A′ to 30I′ to one of an off state and an active state based on the corresponding measured resonator test power draw.
該方法[1400]可以進一步包括基於主動發射器共振器(圖14中的發射器共振器30A′、30B′)中之每一者量測的輸入阻抗自該複數個預設功率信號振盪頻率當中為對應的發射器共振器30A′、30B′[1450]選擇功率信號振盪頻率。The method [1400] may further include selecting a power signal oscillation frequency for the corresponding transmitter resonator 30A′, 30B′ [1450] from among the plurality of preset power signal oscillation frequencies based on the input impedance measured for each of the active transmitter resonators (transmitter resonators 30A′, 30B′ in FIG. 14 ).
該方法[1400]可以進一步包括將每一主動發射器共振器30A′、30B′的功率信號設定[1460]為對應的選定頻率。The method [1400] may further include setting [1460] the power signal of each active transmitter resonator 30A′, 30B′ to a corresponding selected frequency.
該方法[1400]可以進一步包括將施加至每一對應的發射器共振器30A′、30B′的功率信號的相位調整[1470]為透過發射器共振器30A′、30B′(在圖14中) 的電力傳送基本上是最大的相位。The method [1400] may further include adjusting [1470] the phase of the power signal applied to each corresponding transmitter resonator 30A', 30B' to a phase at which power transfer through the transmitter resonator 30A', 30B' (in FIG. 14) is substantially maximum.
在參考圖20A及圖20B、圖21A及圖21B、以及圖22A及圖22B且基於圖1至圖10及圖12至圖14的系統所述的又一態樣中,根據圖19A的示意圖提出用於將電力自光伏太陽能電池420無線地傳送至電力負載70′′的近場共振無線電功率傳送系統10′′。圖19A上的標記使用重音編號系統,以便與圖13A及圖13B的平行關係一目了然,且藉此與圖6及圖7的平行關係亦一目了然。藉由此編號方案,經由電力調節單元(PCU) 430將DC電力自太陽能電池420供應至發射器模組20′′。除將DC電壓及DC電流轉換成可以進一步由功率放大器26B′′發射的位準之外,PCU 430亦提供適合地調節的電壓及電流位準以驅動發射器模組20′′中的系統組件中的其餘者,包括小信號電子組件。PCU 430表示太陽能電池420之自適應變化的負載以便適應於由太陽能電池420提供的變化功率及由太陽能電池420向PCU 430呈現的變化輸出阻抗。此允許PCU 430在所有時間及溫度下以最大可能速率吸收來自太陽能電池420的電力,而不管來自太陽能電池420的功率的變化。In yet another aspect described with reference to FIGS. 20A and 20B , FIGS. 21A and 21B , and FIGS. 22A and 22B and based on the systems of FIGS. 1 to 10 and 12 to 14 , a near-field resonant wireless power transfer system 10 ″ for wirelessly transferring power from a photovoltaic solar cell 420 to a power load 70 ″ is presented according to the schematic diagram of FIG. 19A . The markings on FIG. 19A use an accent numbering system so that the parallel relationship with FIGS. 13A and 13B is clear at a glance, and thereby the parallel relationship with FIGS. 6 and 7 is also clear at a glance. With this numbering scheme, DC power is supplied from the solar cell 420 to the transmitter module 20 ″ via the power conditioning unit (PCU) 430. In addition to converting DC voltage and DC current to levels that can be further transmitted by power amplifier 26B″, PCU 430 also provides appropriately regulated voltage and current levels to drive the rest of the system components in transmitter module 20″, including small signal electronic components. PCU 430 represents an adaptive load to solar cells 420 in order to adapt to the varying power provided by solar cells 420 and the varying output impedance presented by solar cells 420 to PCU 430. This allows PCU 430 to absorb power from solar cells 420 at the maximum possible rate at all times and temperatures, regardless of variations in power from solar cells 420.
振盪器26A′′可以用於在適合於如上文已闡述之無線電力傳送的頻率下調變功率放大器26B′′。功率放大器26B′′可以是與在圖8中所示之放大器26B相同的設計,其中DC電力是自PCU 430供應的而非作為DC電壓源127E。在替代實施例中,功率放大器26B′′可適合地具備用於本身維持振盪的電路,如無線電系統領域中眾所周知的,藉此排除振盪器26A′′。Oscillator 26A" may be used to modulate power amplifier 26B" at a frequency suitable for wireless power transmission as described above. Power amplifier 26B" may be of the same design as amplifier 26B shown in FIG8, where DC power is supplied from PCU 430 rather than as DC voltage source 127E. In an alternative embodiment, power amplifier 26B" may be suitably provided with circuitry for maintaining oscillation itself, as is well known in the art of radio systems, thereby eliminating oscillator 26A".
可以經由傳輸調諧網路28′′向發射共振器30′′傳送電力,在圖19A中,該傳輸調諧網路是圖6的信號調節與調諧組件26C、26D、26E及26F的合併。發射器共振器30′′可以具有表面區域,該表面區域具有可以是太陽能電池420之主動太陽能輻射接收表面的延伸範圍的至少一主要部分的延伸範圍。發射器模組20′′的所有此等組件是在控制器22′′的控制下,正如圖6中之發射器模組20的對應組件是在控制器22的控制下一樣。為清晰起見,並未在圖19A中示出發射器模組20′′的所有組件。圖6的感測器及偵測器24A、24B、24C及24D亦可以以等效形式存在於發射器模組20′′中且連接至控制器22′′,並可實現與已參考圖6闡述之作用相同的作用。Power may be delivered to the transmitter resonator 30" via a transmit tuning network 28", which in FIG19A is a merger of the signal conditioning and tuning components 26C, 26D, 26E and 26F of FIG6. The transmitter resonator 30" may have a surface area having an extension that may be at least a major portion of the extension of the active solar radiation receiving surface of the solar cell 420. All such components of the transmitter module 20" are under the control of the controller 22", just as the corresponding components of the transmitter module 20 in FIG6 are under the control of the controller 22. For clarity, not all components of the transmitter module 20" are shown in FIG19A. The sensors and detectors 24A, 24B, 24C and 24D of FIG. 6 may also be present in the transmitter module 20 ″ in an equivalent form and connected to the controller 22 ″, and may achieve the same effects as those described with reference to FIG. 6 .
可以經由發射器共振器30′′及接收器共振器50′′將電力自發射器模組20′′無線地傳送至接收器模組40′′。然後可以將電力自接收器模組40′′傳送至DC負載70′′。可以藉助近場無線傳送在發射器共振器30′′與接收器共振器50′′之間傳輸電力,如上文參考圖6至圖10所述。根據圖19A的近場無線電力傳送不限於雙峰且可以是純電容式或純感應式。Power may be wirelessly transferred from the transmitter module 20" to the receiver module 40" via the transmitter resonator 30" and the receiver resonator 50". The power may then be transferred from the receiver module 40" to the DC load 70". Power may be transferred between the transmitter resonator 30" and the receiver resonator 50" by means of near-field wireless transfer, as described above with reference to Figures 6-10. The near-field wireless power transfer according to Figure 19A is not limited to bimodal and may be purely capacitive or purely inductive.
接收器模組40′′可以具有與圖7的接收器模組40相同的組件。為了清晰起見,在圖19A中示出該等組件的減小集。圖7的感測器44A及偵測器44B未以等效形式示出於圖19A中但可存在。圖19A中的接收器調諧網路48′′可以是補償網路46A、匹配網路46B、整流器46D及濾波器46C的合併。可以將電力自接收器調諧網路48′′傳送至負載管理器46E′′,該接收器調諧網路及該負載管理器兩者可以在接收器控制器42′′的控制下。The receiver module 40″ may have the same components as the receiver module 40 of FIG. 7 . For clarity, a reduced set of these components is shown in FIG. 19A . The sensor 44A and detector 44B of FIG. 7 are not shown in FIG. 19A in an equivalent form but may be present. The receiver tuning network 48″ in FIG. 19A may be a combination of the compensation network 46A, the matching network 46B, the rectifier 46D, and the filter 46C. Power may be transmitted from the receiver tuning network 48″ to a load manager 46E″, both of which may be under the control of the receiver controller 42″.
就在圖7中更詳細地示出的整流器46D而言,此裝置的輸入阻抗直接取決於裝置之輸出所經歷的負載。With respect to rectifier 46D, shown in more detail in FIG. 7 , the input impedance of the device is directly dependent on the load seen by the output of the device.
在操作中,近場共振無線電力傳送系統10′′可以以與圖1及圖6至圖10的近場共振無線電力傳送系統10相同的方式發揮作用,其中不同之處在於每一功率放大器26B′′上之施加的電壓VDD替換為來自電力調節單元(PCU) 430的功率信號,該電力調節單元進而自相關電源(在實施例中是太陽能電池420)接收其電力。In operation, the near field resonant wireless power transfer system 10″ may function in the same manner as the near field resonant wireless power transfer system 10 of FIGS. 1 and 6 to 10 , with the difference being that the applied voltage VDD across each power amplifier 26B″ is replaced with a power signal from a power conditioning unit (PCU) 430, which in turn receives its power from an associated power source, in this embodiment a solar cell 420.
在另一實施例中,可以自圖19A中所示的系統省略電力調節單元430,且替代地電力傳送系統10′′配置或操作為亦充當電力調節系統。此可以藉由例如無限制地在軟體中配置控制器22′′來達成以基於由圖6之發射器電力感測器24B量測的電力位準調整功率放大器26B′′的輸入DC等效電阻。此處使用術語「輸入DC等效電阻」闡述功率放大器26B之DC端子處的DC電壓與DC電流之比。雖然控制器22′′將基於電力量測結果進行調整,但預計當功率放大器26B′′的輸入阻抗與太陽能電池420的輸出阻抗相匹配時將獲得傳送的電力的最大功率點。在此實施例中,系統10′′用作在行業中稱為「最大功率點追蹤器」的系統且確保一直以比在未調節電力供應之情況下獲得的速率更適合耗電負載的速率傳送電力。在另一實施例中,控制器22′′可以配置以量測在此實施例中是太陽能電池420之電源的輸出阻抗,然後基於太陽能電池420量測的輸出阻抗來調整功率放大器26B′′的輸入阻抗。In another embodiment, the power conditioning unit 430 may be omitted from the system shown in FIG. 19A and instead the power transmission system 10″ is configured or operated to also function as a power conditioning system. This may be achieved by configuring the controller 22″ in software, for example, without limitation, to adjust the input DC equivalent resistance of the power amplifier 26B″ based on the power level measured by the transmitter power sensor 24B of FIG. 6 . The term “input DC equivalent resistance” is used herein to describe the ratio of the DC voltage to the DC current at the DC terminals of the power amplifier 26B. Although the controller 22″ will make adjustments based on the power measurements, it is expected that the maximum power point of the transmitted power will be achieved when the input impedance of the power amplifier 26B″ matches the output impedance of the solar cell 420. In this embodiment, the system 10″ acts as what is known in the industry as a “maximum power point tracker” and ensures that power is always delivered at a rate more appropriate to the power consuming load than would be obtained with an unregulated power supply. In another embodiment, the controller 22″ can be configured to measure the output impedance of the power source, which in this embodiment is the solar cell 420, and then adjust the input impedance of the power amplifier 26B″ based on the measured output impedance of the solar cell 420.
除了調整功率放大器26B′′的輸入阻抗以外,控制器22′′亦可以調整傳輸調諧網路28′′的設定及振盪器26A′′的頻率中的一者或多者。此外,發射器控制器22′′可以基於圖6中所示之負載偵測器24A的量測結果進行上文已闡述的調整,圖6給出關於發射器模組20及20′′的電路的更多細節。負載偵測器24A在圖6的點24E處感測負載70′′的影響。In addition to adjusting the input impedance of power amplifier 26B'', controller 22'' may also adjust one or more of the settings of transmit tuning network 28'' and the frequency of oscillator 26A''. In addition, transmitter controller 22'' may make the adjustments described above based on the measurements of load detector 24A shown in FIG6 , which provides more details about the circuitry of transmitter modules 20 and 20''. Load detector 24A senses the effect of load 70'' at point 24E of FIG6 .
接收器控制器42′′亦可以基於接收器電力感測器44A及負載偵測器44B(兩者皆示出在圖7中)的量測結果來調整接收器調諧網路48′′及負載管理系統46E′′的設定中的一者或多者,以便改良電力傳送的效率。The receiver controller 42″ may also adjust one or more of the settings of the receiver tuning network 48″ and the load management system 46E″ based on measurements from the receiver power sensor 44A and the load detector 44B (both shown in FIG. 7 ) to improve the efficiency of power transfer.
在考量系統10′′的電力調節功能時,可瞭解的是,不存在為何系統的電力傳送功能應拘限於跨越空氣間隙之近場無線傳輸的先驗原因,如在圖19A中。因此,在另一實施例中,基於圖19A的系統10′′的元件在圖19B中示出電力調節單元410。傳輸調諧網路28′′經由適合非空氣間隙連接60′′與接收器調諧網路48′′直接進行電通信。此通信是經由射頻功率信號且構成在系統中且由系統傳送的電力。可以在眾所周知組態中採用適合電抗的電子組件,以使發射器模組20′′中之任何DC電壓及電流位準與接收器模組40′′中之此等位準解耦。發射器共振器30′′及接收器共振器50′′不存在於此實施例中,且藉由傳輸調諧網路28′′與接收器調諧網路48′′之間的直接通信連接來排除。When considering the power conditioning functionality of the system 10″, it will be appreciated that there is no a priori reason why the power transfer functionality of the system should be limited to near-field wireless transmission across an air gap, as in FIG. 19A . Therefore, in another embodiment, a power conditioning unit 410 is shown in FIG. 19B based on the elements of the system 10″ of FIG. 19A . The transmit tuning network 28″ is in direct electrical communication with the receiver tuning network 48″ via a suitable non-air gap connection 60″. This communication is via an RF power signal and constitutes the power transferred in and by the system. Suitable reactive electronic components may be employed in a well-known configuration to decouple any DC voltage and current levels in the transmitter module 20″ from such levels in the receiver module 40″. The transmitter resonator 30" and the receiver resonator 50" are not present in this embodiment and are eliminated by the direct communication connection between the transmit tuning network 28" and the receiver tuning network 48".
可以藉由考量圖19B更好地理解圖19A及圖19B之電力傳送系統作為電力調節系統的功能,其中,發射器共振器30′′及接收器共振器50′′不存在簡化電力調節概念,儘管此等概念同樣適用於存在的此等共振器(如在圖19A中)。圖19A及圖19B的系統具有可在操作期間經調整以調節傳送至接收器模組40′′且藉以傳送至負載70′′的電力的四個獨立控制參數。典型商業電力調節單元憑藉將其輸出電壓升高至源電壓的輸出電壓以上而通常稱為「升壓轉換器」。此等裝置僅具有兩個控制參數。The function of the power transfer system of FIGS. 19A and 19B as a power conditioning system may be better understood by considering FIG. 19B , wherein the simplified power conditioning concepts are absent from the transmitter resonator 30″ and the receiver resonator 50″, although such concepts apply equally to such resonators being present (as in FIG. 19A ). The system of FIGS. 19A and 19B has four independent control parameters that may be adjusted during operation to regulate the power delivered to the receiver module 40″ and thereby to the load 70″. Typical commercial power conditioning units are often referred to as “boost converters” by virtue of boosting their output voltage above that of the source voltage. Such devices have only two control parameters.
可在操作期間經調整以調節傳送至接收器模組40′′且藉以傳送至負載70′′的電力的第一獨立控制參數是可由振盪器26A′′中的控制器22′′調整的功率放大器26B′′的振盪頻率。A first independent control parameter that may be adjusted during operation to regulate the power delivered to the receiver module 40″ and thereby to the load 70″ is the oscillation frequency of the power amplifier 26B″ which may be adjusted by the controller 22″ in the oscillator 26A″.
可在操作期間經調整以調節傳送至接收器模組40′′且藉以傳送至負載70′′的電力的第二獨立控制參數是接收器模組40′′之整流器46D上的輸出負載。該輸出負載進而直接判定整流器46D的輸入阻抗且藉此判定接收器模組40′′的輸入阻抗。此進而是發射器模組20′′所經歷的負載且直接判定功率放大器26B′′的輸入DC等效電阻。對整流器46D上之輸出負載的操縱是在接收器控制器42′′的控制下經由接收器模組40′的負載管理系統46E′′(參見圖19A)完成。此第二獨立控制參數是接收器模組的性質,但其與生俱來地控制電源所經歷的負載。用於操縱此參數的控制點是接收器模組40′′的負載管理系統46E′′。A second independent control parameter that may be adjusted during operation to regulate the power delivered to the receiver module 40' and thereby delivered to the load 70' is the output load on the rectifier 46D of the receiver module 40'. This output load in turn directly determines the input impedance of the rectifier 46D and thereby the input impedance of the receiver module 40'. This in turn is the load experienced by the transmitter module 20' and directly determines the input DC equivalent resistance of the power amplifier 26B'. Manipulation of the output load on the rectifier 46D is accomplished via the load management system 46E' of the receiver module 40' (see Figure 19A) under the control of the receiver controller 42'. This second independent control parameter is a property of the receiver module, but inherently controls the load experienced by the power supply. The control point for manipulating this parameter is the load management system 46E″ of the receiver module 40″.
可在操作期間經調整以調節傳送至接收器模組40′′且藉以傳送至負載70′′的電力的第三獨立控制參數及第四獨立控制參數是接收器模組40′′的整流器46D的性質(參見圖7)及功率放大器26B′′的性質(圖19A)且在本質上類似但相互完全獨立。整流器46D及功率放大器26B′′兩者皆包括多端子放大裝置,此依賴於藉由施加至每一裝置的第三端子的電壓信號對穿過多端子裝置的兩個端子之間的電流的通過進行調變。可在整流器46D及功率放大器26B′′中的每一者中使用的最簡單多端子放大裝置是一電晶體。此允許在由該裝置產生或在該裝置中產生的電壓信號與電流信號之間存在相位差。彼電壓-電流相位差是可經由所施加電壓調整的。整流器46D可以是可調的相位射頻整流器,該可調的相位射頻整流器的電壓-電流相位差可經由接收器控制器42′′進行調整。在功率放大器26B′′的情況下,該電壓-電流相位差可以經由發射器控制器22′′進行調整。整流器46D可以有效地包括差分自同步射頻整流器。整流器46D可以包括差分切換模式自同步射頻整流器。The third and fourth independent control parameters that may be adjusted during operation to regulate the power delivered to the receiver module 40' and thereby delivered to the load 70' are properties of the rectifier 46D (see FIG. 7) and the power amplifier 26B' (FIG. 19A) of the receiver module 40' and are similar in nature but completely independent of each other. Both the rectifier 46D and the power amplifier 26B' comprise multi-terminal amplifying devices that rely on modulating the passage of current between two terminals of the multi-terminal device by a voltage signal applied to a third terminal of each device. The simplest multi-terminal amplifying device that may be used in each of the rectifier 46D and the power amplifier 26B' is a transistor. This allows a phase difference to exist between the voltage signal and the current signal generated by or in the device. The voltage-current phase difference is adjustable via the applied voltage. The rectifier 46D can be an adjustable phase RF rectifier, the voltage-current phase difference of which can be adjusted via the receiver controller 42''. In the case of the power amplifier 26B'', the voltage-current phase difference can be adjusted via the transmitter controller 22''. The rectifier 46D can effectively include a differential self-synchronous RF rectifier. The rectifier 46D can include a differential switching mode self-synchronous RF rectifier.
圖19A及圖19B的示例是基於自太陽能電池或進一步地自太陽能電池陣列傳送電力,其中,由太陽能電池420遞送的電力可取決於日光而顯著變化降至零。在電力方面及在所產生的電壓方面,存在遭受可變輸出之諸多其他電源。此等電源包括發電渦輪機、風力渦輪機以及各種電池及蓄電池。風力渦輪機可以在其發電方面顯著變化且各種電池可以具有一寬範圍的耗電曲線。鑒於系統的電力傳送效率,系統10′′及410中的任一者可以配置以例如無限制地自具有慢開路電壓衰減曲線的商業電池接收電力。負載管理系統46E′′可以配置以改變如上文已述之功率放大器26B′′的輸入DC等效電阻,且控制器22′′及42′′可以配置以向負載70′′提供所需電壓位準直到此電壓可不再由傳輸的電力及系統10′′及410的參數的可調性維持。The examples of FIGS. 19A and 19B are based on delivering power from a solar cell or further from an array of solar cells, wherein the power delivered by the solar cell 420 may vary significantly down to zero depending on the sunlight. There are many other power sources that suffer from variable output in terms of power and in terms of the voltage produced. Such power sources include power turbines, wind turbines, and various batteries and storage batteries. Wind turbines can vary significantly in their power generation and various batteries can have a wide range of power consumption curves. In view of the power delivery efficiency of the system, either of the systems 10 ″ and 410 can be configured to receive power, for example, without restriction, from commercial batteries with a slow open circuit voltage decay curve. The load management system 46E′ can be configured to change the input DC equivalent resistance of the power amplifier 26B′ as described above, and the controllers 22′ and 42′ can be configured to provide the required voltage level to the load 70′ until this voltage can no longer be maintained by the transmitted power and the adjustability of the parameters of the systems 10′ and 410.
圖19A及其相關聯的闡述內容說明了自單個太陽能電池420至單個負載70′′(通常為電池)的近場無線電力傳送。在更大太陽能電池電力系統的實際實施方案中,通常採用電池陣列,使得可以採用與參考圖12、圖13A及圖13B所述電力傳送方案類似的電力傳送方案,存在複數個發射器子系統且通常存在單個接收器子系統。在分別是太陽能板400的分解前視圖及分解後視圖的圖20A及圖20B中示出此情況,該太陽能板具有透明太陽能蓋440且每一太陽能電池420具有一個近場無線發射子系統,且藉此藉助示例包括六十個近場無線電力發射子系統16,每一發射子系統16包括發射器共振器30′′、發射器模組20′′及電力調節單元430,如參考圖19A所述。為了避免混亂,發射子系統16未在圖19A中標示,但在圖20B、圖21B及圖22B中指出且標示,如下文進一步所述。FIG. 19A and its associated description illustrate near-field wireless power transfer from a single solar cell 420 to a single load 70″ (typically a battery). In actual implementations of larger solar battery power systems, battery arrays are typically employed, allowing for a power transfer scheme similar to that described with reference to FIG. 12 , FIG. 13A , and FIG. 13B , with multiple transmitter subsystems and typically a single receiver subsystem. This is shown in FIGS. 20A and 20B , which are exploded front and rear views, respectively, of a solar panel 400 having a transparent solar cover 440 and one near-field wireless transmission subsystem per solar cell 420, and thereby by way of example including sixty near-field wireless power transmission subsystems 16, each transmission subsystem 16 including a transmitter resonator 30″, a transmitter module 20″, and a power conditioning unit 430, as described with reference to FIG. 19A . To avoid confusion, the transmission subsystems 16 are not labeled in FIG. 19A , but are pointed out and labeled in FIGS. 20B , 21B, and 22B , as further described below.
在一實施例中,將由複數個太陽能電池組成的太陽能板的每一個別太陽能電池耦合至電力傳送及管理系統允許電池級功率管理。藉由在每一個別電池處提供電力管理,可以針對每一電池最佳化電力收集,從而引起整個太陽能板系統的改良效率。在此實施例中,將減輕由於個別電池的故障或電池之間的不良連接所造成的影響。即使在不太理想的狀況下,諸如降雨、陰影或當碎片覆蓋太陽能板的一部分時,個別電池級的電力收集亦允許實現最大電力收穫。In one embodiment, coupling each individual solar cell of a solar panel composed of a plurality of solar cells to a power delivery and management system allows for cell-level power management. By providing power management at each individual cell, power collection can be optimized for each cell, resulting in improved efficiency of the entire solar panel system. In this embodiment, the effects caused by failure of an individual cell or poor connections between cells will be mitigated. Power collection at the individual cell level allows for maximum power harvest even in less than ideal conditions, such as rainfall, shadows, or when debris covers a portion of the solar panel.
為了避免混亂起見,僅在圖20B中標示一個近場無線電力發射子系統16。在圖20A及圖20B中,每一發射子系統16的發射器共振器30′′可以位於其對應的太陽能電池420的背面上。如自圖20A中之板正面所看見,太陽能電池的平坦區域表示主動太陽能輻射接收及能量轉換半導體裝置本身,且對應地標示為420,同時如自圖20B中之背面所看見,該裝置的平坦區域表示發射器共振器且對應地標示為30′′。發射器共振器30′′可以具有表面區域,該表面區域具有可以是太陽能電池420之主動太陽能輻射接收表面的延伸範圍的至少一主要部分的延伸範圍。每一近場無線電力發射子系統16的發射器模組20′′及電力調節單元430在圖20B中合併在一起且標示為450。為了避免混亂,合併組件450未在圖19A中標示,但指出為單元且在圖20B、圖21B及圖22B中標示,如下文進一步所闡述。可以將單個接收器共振器50′′裝配在太陽能板400的框架460中。可以將單個接收器模組40′′直接安裝在接收器共振器50′′的背面上。To avoid confusion, only one near-field wireless power transmission subsystem 16 is labeled in FIG. 20B . In FIG. 20A and FIG. 20B , the transmitter resonator 30″ of each transmission subsystem 16 can be located on the back side of its corresponding solar cell 420. As seen from the front side of the board in FIG. 20A , the flat area of the solar cell represents the active solar radiation receiving and energy conversion semiconductor device itself and is correspondingly labeled as 420, while as seen from the back side in FIG. 20B , the flat area of the device represents the transmitter resonator and is correspondingly labeled as 30″. The transmitter resonator 30″ can have a surface area having an extension that can be at least a major part of the extension of the active solar radiation receiving surface of the solar cell 420. The transmitter module 20" and power conditioning unit 430 of each near-field wireless power transmission subsystem 16 are combined together in FIG. 20B and labeled 450. To avoid confusion, the combined assembly 450 is not labeled in FIG. 19A, but is indicated as a unit and labeled in FIG. 20B, FIG. 21B, and FIG. 22B, as further explained below. A single receiver resonator 50" may be assembled in a frame 460 of a solar panel 400. A single receiver module 40" may be mounted directly on the back of the receiver resonator 50".
在操作中,近場共振無線電力傳送系統10′′可以以與圖12、圖13A及圖13B的近場共振無線電力傳送系統10相同的方式發揮作用,其中不同之處在於功率放大器26B′′中的每一個上施加的電壓VDD替換為來自電力調節單元(PCU) 430的功率信號,該電力調節單元進而自相關太陽能電池420接收其電力。In operation, the near field resonant wireless power transfer system 10″ may function in the same manner as the near field resonant wireless power transfer system 10 of FIGS. 12 , 13A, and 13B , with the difference being that the voltage VDD applied to each of the power amplifiers 26B″ is replaced with a power signal from a power conditioning unit (PCU) 430, which in turn receives its power from an associated solar cell 420.
在圖20A及圖20B的系統的另一實施例中,框架460可以配置成適合於自所有發射器共振器30′′接收電力的接收器共振器,且接收器模組40′′可以位於框架460上。在此實施例中,框架460內的板並非共振器而可以是簡單平坦非導電材料薄片。20A and 20B, the frame 460 may be configured as a receiver resonator adapted to receive power from all transmitter resonators 30″, and the receiver module 40″ may be located on the frame 460. In this embodiment, the plate within the frame 460 is not a resonator but may be a simple flat sheet of non-conductive material.
在另一實施方案中,分別在圖21A及圖21B的前視圖及後視圖中示出的太陽能板400′使每一近場無線電力發射子系統將電力傳送至一個近場無線電力接收器子系統。雖然框架460示出為由不透明板470填充,但該板470可並非近場電路或磁路的一部分。為了清晰起見,在發射側上採用與圖20A及圖20B中相同的組件編號。在接收側上,採用圖19A的編號。再次為了避免混亂,僅標示一個接收側裝置。In another embodiment, the solar panel 400' shown in the front view and rear view of Figures 21A and 21B, respectively, enables each near-field wireless power transmitting subsystem to transmit power to a near-field wireless power receiver subsystem. Although the frame 460 is shown as being filled by an opaque plate 470, the plate 470 may not be part of the near-field circuit or magnetic circuit. For clarity, the same component numbers as in Figures 20A and 20B are used on the transmitting side. On the receiving side, the numbering of Figure 19A is used. Again, to avoid confusion, only one receiving side device is labeled.
在操作中,圖21A及圖21B的太陽能板佈置400′可以具有由硬線(未圖示)鏈接的個別發射器模組20′′,使得該等發射器模組可以同相,藉以使傳輸中的功率損耗最小。在其他實施例中,發射器模組20′′可以是獨立的,並如在圖14、圖17及圖18中所闡釋而發揮作用。In operation, the solar panel arrangement 400' of Figures 21A and 21B can have individual transmitter modules 20" linked by hard wires (not shown) so that the transmitter modules can be in phase to minimize power loss in transmission. In other embodiments, the transmitter modules 20" can be independent and function as explained in Figures 14, 17 and 18.
在分別於圖22A的前視圖及圖22B的後視圖中示出為太陽能板佈置400′′的又進一步實施方案中,示出了例如佈置成五行之二十五個太陽能電池的陣列,每一行有五個電池420。每一太陽能電池420在其後部具有包含其對應的發射器模組20′′的發射器共振器30′以及包含電力調節單元430的單元450′。在該陣列的底部及頂部且在每兩行太陽能電池之間是接收器共振器50′′,該接收器共振器50′′佈置在與太陽能電池420的平面基本上垂直的平面中,每一接收器共振器50′′與其對應的接收器模組40′′進行有線電通信。與先前太陽能板實施例一樣,標示每一組件的一個示例。與在圖20A及圖20B以及圖21A及圖21B中所示出的實施方案一樣,在某些實施例中,太陽能板佈置400′′亦可以具有框架460。為了清晰起見,未在圖22A及圖22B中示出框架460。In yet a further embodiment, shown as a solar panel arrangement 400" in the front view of FIG. 22A and the rear view of FIG. 22B, respectively, an array of twenty-five solar cells arranged, for example, in five rows, each row having five cells 420 is shown. Each solar cell 420 has at its rear a transmitter resonator 30' including its corresponding transmitter module 20" and a unit 450' including a power conditioning unit 430. At the bottom and top of the array and between every two rows of solar cells are receiver resonators 50" arranged in a plane substantially perpendicular to the plane of the solar cells 420, each receiver resonator 50" being in wired electrical communication with its corresponding receiver module 40". As with the previous solar panel embodiments, one example of each component is labeled. As with the embodiments shown in FIGS. 20A and 20B and 21A and 21B, in some embodiments, the solar panel arrangement 400" may also have a frame 460. For clarity, the frame 460 is not shown in FIGS. 22A and 22B.
在操作中,在系統400′′一行中的太陽能電池420的發射器共振器30′′將電力發射至在該等發射器共振器上方及下方兩者的接收器共振器50′′。然而在此實施例中,存在各種最近鄰接收器共振器50′′共振地耦合且在該等接收器共振器之間共用所收集電力的額外機制。由該陣列的所有接收器共振器50′′聚集之所收集電力因此可以經由各種接收器模組40′′中的任何一或多者分接。在某些實施例中,由所有接收器模組40′′收集的電力可以藉助示例僅經由最底部接收器模組40′′分接。任何接收器共振器50′′上的接收器模組40′′中的任一者可以用作接收器模組,以收集一行太陽能電池420的電力,同時亦作為發射器模組發揮作用,以經由其相關聯的接收器共振器50′′將所收集電力發射至接近其的另一接收器共振器50′′。可以沿著該陣列向下重複此動作以將電力傳送至最底部接收器模組40′′。In operation, the transmitter resonators 30″ of the solar cells 420 in a row of the system 400″ transmit power to the receiver resonators 50″ both above and below the transmitter resonators. In this embodiment, however, there is an additional mechanism for the various nearest neighbor receiver resonators 50″ to resonantly couple and share the collected power between the receiver resonators. The collected power gathered by all the receiver resonators 50″ of the array can thus be tapped via any one or more of the various receiver modules 40″. In some embodiments, the power collected by all the receiver modules 40″ can be tapped by way of example only via the bottom-most receiver module 40″. Any of the receiver modules 40″ on any receiver resonator 50″ can function as a receiver module to collect power from a row of solar cells 420 while also functioning as a transmitter module to transmit the collected power to another receiver resonator 50″ in close proximity to it via its associated receiver resonator 50″. This action can be repeated down the array to deliver power to the bottom-most receiver module 40″.
在圖22A及圖22B的系統的另一實施例中,圍繞圖22A及圖22B的太陽能電池陣列的平面周邊的框架(類似於圖20A及圖20B的框架460)可以是承載接收器模組40′的接收器共振器,並可以自各種接收器共振器50′′接收電力。以此方式,由該陣列中的所有太陽能電池420產生的總電力可以由共振器框架460接收,且經由接收器模組40′′分接以用於進一步電發射。In another embodiment of the system of FIGS. 22A and 22B , a frame (similar to the frame 460 of FIGS. 20A and 20B ) surrounding the planar perimeter of the solar cell array of FIGS. 22A and 22B can be a receiver resonator that carries the receiver modules 40′ and can receive power from the various receiver resonators 50″. In this way, the total power generated by all solar cells 420 in the array can be received by the resonator frame 460 and tapped via the receiver modules 40″ for further electrical emission.
可以用一有線連接完成個別太陽能電池級的電力收集。然而,在太陽能板中使用無線傳輸系統允許佈線的減少,且因此允許製造成本的減少。Power collection at the level of individual solar cells can be accomplished with a wired connection. However, the use of wireless transmission systems in solar panels allows a reduction in wiring and, therefore, a reduction in manufacturing costs.
在參考圖23中的流程圖闡述的又一態樣中,提供一種用於將電力自光伏電池420傳送至電力負載70′′的方法[1500],該方法包括:在發射模組20′′中將來自光伏電池420的電力轉換[1510]成具有振盪頻率的振盪電力信號;將電力傳送[1520]至與發射模組20′′進行有線電通信且配置以在振盪頻率下共振的發射器共振器30′′;在接收器共振器50′′中接收[1530]電力,該接收器共振器配置以在振盪頻率下共振且設置以經由電容式耦合及磁感應中的至少一者自發射器共振器30′′接收電力;在與接收器共振器50′′進行有線電通信的接收器模組40′′中接收[1540]電力;以及經由有線電通信將所接收的電力以直流電形式提供[1550]給電力負載70′′。該方法可以進一步包括在將電力轉換成振盪電力信號之前將來自光伏電池420的電力的電壓及電流轉換成適應於發射模組20′′的電壓及電流。In yet another embodiment described with reference to the flowchart in FIG. 23 , a method [1500] for transmitting power from a photovoltaic cell 420 to a power load 70″ is provided, the method comprising: converting [1510] power from the photovoltaic cell 420 into an oscillating power signal having an oscillating frequency in a transmitter module 20″; transmitting [1520] the power to a transmitter resonator 30′ that is in wired electrical communication with the transmitter module 20′ and is configured to resonate at the oscillating frequency; '; receiving [1530] power in a receiver resonator 50'' configured to resonate at the oscillation frequency and arranged to receive power from a transmitter resonator 30'' via at least one of capacitive coupling and magnetic induction; receiving [1540] power in a receiver module 40'' in wired electrical communication with the receiver resonator 50''; and providing [1550] the received power in the form of direct current to a power load 70'' via wired electrical communication. The method may further include converting a voltage and a current of power from the photovoltaic cell 420 into a voltage and a current suitable for the transmitter module 20'' before converting the power into the oscillating power signal.
在參考圖19A及圖24中之流程圖所述的方法的又一實施例中,提供用於將電力自光伏電池420的陣列400傳送至的電力負載70′′的方法[1600],該方法包括:在第一複數個對應發射模組20′′中的每一者中將來自陣列400中之光伏電池420中的每一者的電力轉換[1610]成具有振盪頻率的振盪電力信號;在發射模組20′′的每一者中將電力傳送[1620]至第二複數個發射器共振器30′′中之對應的發射器共振器30′′,該等發射器共振器各自配置以在振盪頻率下共振;在接收器共振器50′′中接收[1630]電力,該接收器共振器配置以在振盪頻率下共振且設置以經由電容式耦合及磁感應中的至少一者自該複數個發射器共振器30′′接收電力;在與接收器共振器50′′進行有線電通信的接收器模組40′′中接收[1640]電力;以及經由有線電通信將所接收的電力以直流電形式提供[1650]給電力負載70′′。該方法可以進一步包括在將電力轉換成振盪電力信號之前將來自每一光伏電池420電力的電壓及電流轉換成適應於對應的發射流模組20′′的電壓及電流。在接收器共振器50′′中接收[1630]電力可以包括在圍繞光伏電池的陣列400的平面周邊設置的接收器共振器中接收電力。In yet another embodiment of the method described with reference to the flowchart in FIG. 19A and FIG. 24 , a method [1600] for transmitting power from an array 400 of photovoltaic cells 420 to an electrical load 70′′ is provided, the method comprising: in each of a first plurality of corresponding transmitter modules 20′′, converting [1610] power from each of the photovoltaic cells 420 in the array 400 into an oscillating power signal having an oscillation frequency; transmitting [1620] power in each of the transmitter modules 20′′ to a corresponding transmitter resonator 30′ in a second plurality of transmitter resonators; and [1630] power in a receiver resonator 50'', the receiver resonator being configured to resonate at the oscillation frequency and being arranged to receive power from the plurality of transmitter resonators 30'' via at least one of capacitive coupling and magnetic induction; receiving [1640] power in a receiver module 40'' in wired electrical communication with the receiver resonator 50''; and providing [1650] the received power in the form of direct current to a power load 70'' via wired electrical communication. The method may further include converting a voltage and a current of power from each photovoltaic cell 420 into a voltage and a current suitable for a corresponding transmitter module 20'' before converting the power into the oscillating power signal. Receiving [1630] power in a receiver resonator 50'' may include receiving power in a receiver resonator disposed around a planar perimeter of the array 400 of photovoltaic cells.
在參考圖19A及圖25中之流程圖所述的方法的又一實施例中,提供用於將電力自光伏電池420的陣列400′傳送至的電力負載70′′的方法[1700],該方法包括:在第一複數個對應發射模組20′′中的每一者中將來自陣列400′中的光伏電池420中之每一者的電力轉換[1710]成具有振盪頻率的振盪電力信號;將來自發射模組20′′中之每一者的電力傳送[1720]至第二複數個發射器共振器30′′中對應的發射器共振器30′′,其中,每一發射器共振器30′′配置以在振盪頻率下共振;在配置以在振盪頻率下共振之對應的接收器共振器50′′中接收[1730]來自每一發射器共振器30′′的電力,其中,每一接收器共振器50′′進一步配置且設置以經由電容式耦合及磁感應中的至少一者自發射器共振器30′′接收電力;自與接收器共振器50′′進行有線電通信之對應的接收器模組40′′中的每一接收器共振器50′′接收[1740]電力;以及經由有線電通信將所接收的電力以直流電形式提供[1750]給電力負載70′′。該方法可以進一步包括在將電力轉換成振盪電力信號之前將來自每一光伏電池420的電力的電壓及電流轉換成適應於對應的發射模組20′′的電壓及電流。In yet another embodiment of the method described with reference to the flowchart in FIG. 19A and FIG. 25 , a method [1700] for transmitting power from an array 400′ of photovoltaic cells 420 to an electrical load 70″ is provided, the method comprising: converting [1710] power from each of the photovoltaic cells 420 in the array 400′ into an oscillating power signal having an oscillating frequency in each of a first plurality of corresponding transmitter modules 20″; transmitting [1720] power from each of the transmitter modules 20″ to a corresponding transmitter resonator 30″ in a second plurality of transmitter resonators 30″, wherein each transmitter resonator 30″ is a first plurality of corresponding transmitter modules 20″, wherein each transmitter resonator 30″ is a second ... '' is configured to resonate at an oscillation frequency; receiving [1730] power from each transmitter resonator 30'' in a corresponding receiver resonator 50'' configured to resonate at the oscillation frequency, wherein each receiver resonator 50'' is further configured and arranged to receive power from the transmitter resonator 30'' via at least one of capacitive coupling and magnetic induction; receiving [1740] power from each receiver resonator 50'' in a corresponding receiver module 40'' that is in wired electrical communication with the receiver resonator 50''; and providing [1750] the received power in the form of direct current to a power load 70'' via wired electrical communication. The method may further include converting the voltage and current of the power from each photovoltaic cell 420 into a voltage and current suitable for the corresponding transmitting module 20 ″ before converting the power into the oscillating power signal.
在參考圖19A及圖26中之流程圖所述的又一實施例中,提供用於將電力自光伏電池420的陣列400′′傳送至電力負載70′′(在圖19A中)的方法[1800],該方法包括:在第一複數個對應發射模組20′′中的每一者中將來自陣列400′′中的光伏電池420中的每一者的電力轉換[1810]成具有振盪頻率的振盪電力信號;將來自發射模組20′′中的每一者的電力傳送[1820]至第二複數個發射器共振器30′′中的發射器共振器30′′,其中,每一發射器共振器30′′配置以在振盪頻率下共振;在第三複數個接收器共振器50′′中的任何接近接收器共振器50′′中接收[1830]來自每一發射器共振器30′′的電力,該等接收器共振器配置以在振盪頻率下共振,其中,每一接收器共振器50′′進一步配置且設置以經由電容式耦合及磁感應中的至少一者自發射器共振器30′′接收電力;在第三複數個接收器共振器50′′之間共用[1840]所接收電力;以及經由有線電通信將所接收的電力以直流電形式提供[1850]給電力負載70′′,該所接收的電力經由對應之一個或多個接收器模組40′′來自第三複數個接收器共振器50′′中的一者或多者。該方法可以進一步包括在將電力轉換成振盪電力信號之前將來自每一光伏電池420的電力的電壓及電流轉換成適應於對應的發射模組20′′的電壓及電流。In yet another embodiment described with reference to the flowchart in FIG. 19A and FIG. 26 , a method [1800] for transmitting power from an array 400″ of photovoltaic cells 420 to an electrical load 70″ (in FIG. 19A ) is provided, the method comprising: in each of a first plurality of corresponding transmitter modules 20″, converting [1810] power from each of the photovoltaic cells 420 in the array 400″ into an oscillating power signal having an oscillation frequency; transmitting [1820] power from each of the transmitter modules 20″ to a transmitter resonator 30″ in a second plurality of transmitter resonators 30″, wherein each transmitter resonator 30″ is configured to resonate at the oscillation frequency; and transmitting [1821] power from each of the transmitter modules 20″ to a transmitter resonator 30″ in a third plurality of receiver resonators 30″. receiving [1830] power from each transmitter resonator 30'' in any proximal receiver resonator 50'' of the resonator 50'', the receiver resonators being configured to resonate at the oscillation frequency, wherein each receiver resonator 50'' is further configured and arranged to receive power from the transmitter resonator 30'' via at least one of capacitive coupling and magnetic induction; sharing [1840] the received power among a third plurality of receiver resonators 50''; and providing [1850] the received power in the form of direct current to a power load 70'' via wired electrical communication, the received power coming from one or more of the third plurality of receiver resonators 50'' via corresponding one or more receiver modules 40''. The method may further include converting the voltage and current of the power from each photovoltaic cell 420 into a voltage and current suitable for the corresponding transmitting module 20 ″ before converting the power into the oscillating power signal.
圖27A示出在具有導電的底盤510的電動運載工具中經擴展的近場無線電力分佈系統的代表部分500。在圖19A之通用的系統10′′的該實施例中,電源是可再充電的電池520而非太陽能電池420,且負載70′′是電動馬達530而非如圖19A中的電池。在圖14A中所示的系統可視情況包括如圖19A中的電力調節單元430。在其他實施例中,發射器模組可以聯合地作用以提供如上文參考圖19B所述的電力調節。FIG. 27A shows a representative portion 500 of an expanded near-field wireless power distribution system in an electric vehicle having a conductive chassis 510. In this embodiment of the general system 10″ of FIG. 19A, the power source is a rechargeable battery 520 rather than a solar cell 420, and the load 70″ is an electric motor 530 rather than a battery as in FIG. 19A. The system shown in FIG. 14A may include a power conditioning unit 430 as in FIG. 19A. In other embodiments, the transmitter modules may act in conjunction to provide power conditioning as described above with reference to FIG. 19B.
在圖27A中所示且下文更詳細所述的系統可以藉由電容式電力傳送、感應式電力傳送或藉由雙峰電力傳送進行操作。參考圖4B及圖19A,發射器共振器30′′包括夾持在導電的天線132與134之間的介電元件138。參考圖4B及圖19A,接收器共振器50′′包括夾持在導電的天線152與154之間的介電元件158。發射器模組20′′示出直接安裝至天線132,該天線亦充當電池520的框架或支架。發射器模組20′′可以電連接在電池520與發射器共振器30′′之間。接收器模組40′′示出直接安裝至電動馬達530。接收器模組40′′可以電連接在接收器共振器50′′與電動馬達530之間。The system shown in FIG. 27A and described in more detail below can operate by capacitive power transfer, inductive power transfer, or by bimodal power transfer. Referring to FIGS. 4B and 19A , the transmitter resonator 30 ″ includes a dielectric element 138 clamped between conductive antennas 132 and 134. Referring to FIGS. 4B and 19A , the receiver resonator 50 ″ includes a dielectric element 158 clamped between conductive antennas 152 and 154. The transmitter module 20 ″ is shown mounted directly to the antenna 132, which also serves as a frame or support for the battery 520. The transmitter module 20 ″ can be electrically connected between the battery 520 and the transmitter resonator 30 ″. The receiver module 40 ″ is shown mounted directly to the electric motor 530. The receiver module 40 ″ may be electrically connected between the receiver resonator 50 ″ and the electric motor 530 .
圖27B示出在具有導電的底盤510的電動運載工具中經擴展的近場無線電力分佈系統的代表部分500。在圖19A之通用的系統10′′的實施例中,再次如圖27A中,電源是可再充電的電池520而不是太陽能電池420,且負載70′′是電動馬達530而不是如圖19A中的電池。在圖27B中所示出的系統可視情況包括如圖19A中的電力調節單元430。在其他實施例中,發射器模組20′′及接收器模組40′′可以聯合地作用以提供如上文參考圖19B所述的電力調節。FIG27B shows a representative portion 500 of an expanded near-field wireless power distribution system in an electric vehicle having a conductive chassis 510. In an embodiment of the general system 10″ of FIG19A, again as in FIG27A, the power source is a rechargeable battery 520 instead of a solar cell 420, and the load 70″ is an electric motor 530 instead of a battery as in FIG19A. The system shown in FIG27B may include a power conditioning unit 430 as in FIG19A. In other embodiments, the transmitter module 20″ and the receiver module 40″ may act in conjunction to provide power conditioning as described above with reference to FIG19B.
在圖27B中所示且下文更詳細所述的系統可以藉由電容式電力傳送、感應式電力傳送或藉由雙峰電力傳送進行操作。參考圖4B及圖19A,發射器共振器30′′包括夾持在導電的天線132與134之間的介電元件138。參考圖4B及圖19A,接收器共振器50′′′包括圖27A的介電元件158及導電的天線152、天線154,在此實施例中不存在接收器共振器50′′′。發射器模組20′′示出直接安裝至天線132,該天線亦充當電池520的框架或支架。發射器模組20′′可以電連接在電池520與發射器共振器30′′之間。接收器模組40′′示出直接安裝至電動馬達530。在此實施例中,接收器模組40′′可以電連接在電動馬達530與底盤510之間。在此佈置中,在底盤510與天線152之間存在足夠的耦合用於適合地高效率進行電力傳送。該系統的導電機械組件(即,在系統中具有例如負載承載結構功能的組件)可以特此形成電力傳送系統的共振結構的一部分。The system shown in FIG. 27B and described in more detail below may operate by capacitive power transfer, inductive power transfer, or by bimodal power transfer. Referring to FIGS. 4B and 19A , the transmitter resonator 30 ″ includes a dielectric element 138 sandwiched between conductive antennas 132 and 134. Referring to FIGS. 4B and 19A , the receiver resonator 50 ′′′ includes the dielectric element 158 of FIG. 27A and conductive antennas 152 and 154, with the receiver resonator 50 ′′′ not being present in this embodiment. The transmitter module 20 ′′ is shown mounted directly to the antenna 132, which also serves as a frame or support for the battery 520. The transmitter module 20 ′′ may be electrically connected between the battery 520 and the transmitter resonator 30 ′′. The receiver module 40" is shown mounted directly to the electric motor 530. In this embodiment, the receiver module 40" may be electrically connected between the electric motor 530 and the chassis 510. In this arrangement, there is sufficient coupling between the chassis 510 and the antenna 152 for power transfer to proceed with suitable efficiency. The conductive mechanical components of the system (i.e., components having, for example, a load bearing structure function in the system) may hereby form part of the resonant structure of the power transfer system.
在圖27A及圖27B中所示的實施例中,具體而言,聚焦於供應至電馬達530從而驅動運載工具的輪中的一者的電力,但可以使用複數個適合地調適的接收器模組40′′針對運載工具上的任何電氣子系統實施等效佈置,發射器模組20′′向所有接收器模組提供電力。In the embodiment shown in Figures 27A and 27B, specifically, the focus is on power supplied to the electric motor 530 to drive one of the wheels of the vehicle, but an equivalent arrangement can be implemented for any electrical subsystem on the vehicle using a plurality of suitably adapted receiver modules 40'', with the transmitter module 20'' providing power to all receiver modules.
用於將電力自電池傳送至運載工具的電氣子系統的圖27A及圖27B的佈置於很大程度上避免在運載工具製造期間產生難度且是相當大製造成本的來源之極其複雜的汽車線束。在圖27A及圖27B中的實施例連同其對運載工具的其他電氣子系統的擴展可以描述為「經擴展的近場無線電力分佈系統」。The arrangement of FIG. 27A and FIG. 27B for delivering power from a battery to the electrical subsystem of a vehicle largely avoids the extremely complex automotive wiring harness that is difficult and a source of considerable manufacturing cost during vehicle manufacture. The embodiment in FIG. 27A and FIG. 27B , together with its extension to other electrical subsystems of a vehicle, may be described as an "extended near-field wireless power distribution system."
除了電動運載工具的其他輪子以外,該佈置可以擴展至前燈及其他運載工具附件,無限制地包括內部燈、儀錶板顯示器、測量儀器、數位電子設備、導航系統、警告系統等。該應用不限於電動運載工具。其可以應用於混合動力或內燃運載工具以根據需要且在需要的情況下分佈電力。其可以類似地應用於採用需要電力之任何電氣系統的其他運載工具。示例無限制地包括機動或非機動自行車、飛行器、船及採用車載電源的其他運載工具。電池或電源不必限制於在運載工具上。關於圖1至圖11、圖19A和圖19B及圖27A和圖27B所述的原理亦適用於需要自地球靜止源(例如無限制地用於向移動運載工具供應電力的固定軌道)供應電力的固定及車載系統。In addition to the other wheels of the electric vehicle, the arrangement can be extended to headlights and other vehicle accessories, including without limitation interior lights, dashboard displays, measuring instruments, digital electronics, navigation systems, warning systems, etc. The application is not limited to electric vehicles. It can be applied to hybrid or internal combustion vehicles to distribute power as needed and when needed. It can be similarly applied to other vehicles that employ any electrical system that requires power. Examples include without limitation motorized or non-motorized bicycles, aircraft, boats, and other vehicles that employ on-board power. The battery or power source need not be limited to the vehicle. The principles described with respect to FIGS. 1-11 , 19A and 19B, and 27A and 27B also apply to fixed and vehicle-mounted systems that require power from an earth-stationary source (e.g., fixed orbits that are not limited to supplying power to mobile vehicles).
圖28A示出圖19A之通用的系統10′′在電力供應系統600中的另一實施例,該電力供應系統用於用經由根據圖1且更詳細地根據圖6的初級側12來自適合源的電力向位於桌子的桌面620上的電腦監視器610供應電力。在該系統600中,將圖19A的發射器模組20′′及發射器共振器30′′兩者皆併入初級側12中。在該系統600的佈置中,根據圖19A的接收器共振器50′′形成監視器610的底座。圖19A的接收器模組40′′可以併入監視器610的底座中。另一選擇是,圖19A的接收器模組40′′可以併入監視器610自身內部。參考圖4B,天線152形成監視器610底座的底部且藉由介電元件158與天線154分開。FIG. 28A shows another embodiment of the general system 10″ of FIG. 19A in a power supply system 600 for supplying power to a computer monitor 610 located on a tabletop 620 with power from a suitable source via the primary side 12 according to FIG. 1 and more specifically according to FIG. 6 . In the system 600, both the transmitter module 20″ and the transmitter resonator 30″ of FIG. 19A are incorporated into the primary side 12. In the arrangement of the system 600, the receiver resonator 50″ according to FIG. 19A forms the base of the monitor 610. The receiver module 40″ of FIG. 19A can be incorporated into the base of the monitor 610. Alternatively, the receiver module 40" of Figure 19A may be incorporated into the monitor 610 itself. Referring to Figure 4B, the antenna 152 forms the bottom of the base of the monitor 610 and is separated from the antenna 154 by a dielectric element 158.
監視器610的殼體及結構式框架630可以至少部分地導電且充當一個連續導體以經由接收器模組40′′(參見圖19A)將來自天線154的功率信號電供應給表示圖19A之負載共振器70′′的監視器610的電路。自天線152至監視器610之電路的其他電連接器自天線152沿著監視器610的基座向上伸展。在其他實施例中,監視器610的殼體及結構式框架630可以是非導電聚合物且單獨導體自天線154伸展至表示圖19A之負載共振器70′′的監視器610的電路。The housing and structural frame 630 of the monitor 610 may be at least partially conductive and serve as one continuous conductor to electrically supply the power signal from the antenna 154 via the receiver module 40″ (see FIG. 19A ) to the circuitry of the monitor 610 representing the load resonator 70″ of FIG. 19A . Other electrical connectors from the antenna 152 to the circuitry of the monitor 610 extend upward from the antenna 152 along the base of the monitor 610. In other embodiments, the housing and structural frame 630 of the monitor 610 may be a non-conductive polymer and a separate conductor extends from the antenna 154 to the circuitry of the monitor 610 representing the load resonator 70″ of FIG. 19A .
如在用於向圖28B中之電腦監視器610供應電力的電力供應系統600′的另一實施例中所示,監視器610的底座可以僅包括天線152及介電元件158。在此實施例中,監視器殼體或框架630的金屬導電部分充當天線而非天線154,且殼體或框架630與介電元件158底下的天線152具有足夠耦合以提供充分高效的電力傳送。圖19A的接收器模組40′′可以併入監視器610的底座中。另一選擇是,圖19A的接收器模組40′′可以併入監視器610自身內部。監視器610的殼體及結構式框架630可以充當一個連續電導體以經由接收器模組40′′將功率信號供應給表示圖19A之負載共振器70′′的監視器610的電路。As shown in another embodiment of a power supply system 600' for supplying power to a computer monitor 610 in FIG. 28B, the base of the monitor 610 may include only the antenna 152 and the dielectric element 158. In this embodiment, the metal conductive portion of the monitor housing or frame 630 acts as the antenna instead of the antenna 154, and the housing or frame 630 has sufficient coupling with the antenna 152 under the dielectric element 158 to provide sufficiently efficient power transfer. The receiver module 40'' of FIG. 19A can be incorporated into the base of the monitor 610. Alternatively, the receiver module 40'' of FIG. 19A can be incorporated into the monitor 610 itself. The housing and structural frame 630 of the monitor 610 can act as a continuous electrical conductor to supply a power signal via the receiver module 40″ to the circuit of the monitor 610 representing the load resonator 70″ of Figure 19A.
該系統600可視情況包括如圖19A中的電力調節單元430。在某些實施例中,發射器模組20′′及接收器模組40′′可以聯合地作用以透過使用近場無線電力傳送提供如參考圖19A所述的電力調節。圖28A的近場無線電力傳送系統移除向監視器610供應電力之繁瑣電纜的需要且採用系統的機械結構元件作為電力傳送佈置中的整體電組件/電子組件。The system 600 may include a power conditioning unit 430 as shown in FIG19A. In some embodiments, the transmitter module 20" and the receiver module 40" may work in conjunction to provide power conditioning as described with reference to FIG19A using near-field wireless power transfer. The near-field wireless power transfer system of FIG28A removes the need for cumbersome cables to supply power to the monitor 610 and employs the mechanical structural elements of the system as integral electrical/electronic components in the power transfer arrangement.
如參考圖29中的流程圖以及圖19A及圖19B的系統所述,提供用於將電力自直流電電源420傳送至電力負載70′′的方法[2000],該方法包括:提供[2010]與該電源420進行有線電通信的電力傳送系統10′′、410,電力傳送系統10′′、410包括:能夠在振盪頻率下振盪的振盪器26A′′、皆在發射器控制器22′′的控制下的功率放大器26B′′及發射器調諧網路28′′兩者、以及皆在接收器控制器42′′的控制下的接收器調諧網路48′′及負載管理系統46E′′兩者,其中,負載管理系統46E′′與電力負載70′′進行有線電通信;在功率放大器26B′′中將來自該電源420的電力轉換[2020]成具有振盪頻率的振盪電力信號;在發射器控制器22′′的控制下經由發射器調諧網路28′′及接收器調諧網路48′′將功率信號自功率放大器26B′′傳送[2030]至負載管理系統46E′′;調整[2040]振盪頻率、功率放大器26B′′的輸入DC等效電阻、發射器調諧網路28′′、接收器調諧網路48′′及負載管理系統46E′′中的至少一者以改變電力傳送的速率;以及經由有線電通信將由負載管理系統46E′′接收的電力以直流電形式提供[2050]給電力負載70′′。As described with reference to the flowchart in FIG. 29 and the systems of FIGS. 19A and 19B, a method [2000] for transmitting power from a DC power source 420 to a power load 70'' is provided, the method comprising: providing [2010] a power transmission system 10'', 410 in wired communication with the power source 420, the power transmission system 10'', 410 comprising: an oscillator 26A'' capable of oscillating at an oscillation frequency, a power amplifier 26B'' and a transmitter tuning network 28'' both under the control of a transmitter controller 22'', and a receiver tuning network 48'' and a load management system 46E'' both under the control of a receiver controller 42'', wherein the load management system 46E'' is in wired communication with the power load 70'' signal; in the power amplifier 26B'', the power from the power source 420 is converted [2020] into an oscillating power signal having an oscillation frequency; under the control of the transmitter controller 22'', the power signal is transmitted [2030] from the power amplifier 26B'' to the load management system 46E'' via the transmitter tuning network 28'' and the receiver tuning network 48''; the [20 40] oscillation frequency, the input DC equivalent resistance of the power amplifier 26B'', the transmitter tuning network 28'', the receiver tuning network 48'' and at least one of the load management system 46E'' to change the rate at which power is transmitted; and the power received by the load management system 46E'' is provided [2050] to the power load 70'' in the form of direct current via wired electrical communication.
經由發射器調諧網路28′′及接收器調諧網路48′′傳送[2030]功率信號可以包括藉由有線通信或藉由無線通信傳送電力。藉由無線通信傳送電力可以包括藉由近場無線通信傳送電力。藉由近場無線通信傳送電力可以包括藉由電容式耦合及感應式耦合中的至少一者傳送電力。自直流電電源420傳送電力可以包括自至少一個太陽能電池420傳送電力。自直流電電源傳送電力可以包括自至少一個電池傳送電力。自直流電電源傳送電力可以包括自具有變化電壓的電源傳送電力。Transmitting [2030] the power signal via the transmitter tuning network 28'' and the receiver tuning network 48'' may include transmitting power by wired communication or by wireless communication. Transmitting power by wireless communication may include transmitting power by near field wireless communication. Transmitting power by near field wireless communication may include transmitting power by at least one of capacitive coupling and inductive coupling. Transmitting power from a DC power source 420 may include transmitting power from at least one solar cell 420. Transmitting power from a DC power source may include transmitting power from at least one battery. Transmitting power from a DC power source may include transmitting power from a power source having a varying voltage.
在參考圖30中的流程圖且更深入地考量圖19A及圖19B的系統所述的另一實施例中,提供用於將電力自直流電電源420傳送至電力負載70′′的方法[2100],該方法包括:提供[2110]與該電源420進行有線電通信的電力傳送系統10′′、410,電力傳送系統10′′、410包括與可調的相位射頻整流器46D(參見圖7)進行射頻通信的射頻功率放大器26B′′,該可調的相位射頻整流器與電力負載70′′進行有線電接觸;在功率放大器26B′′中將來自直流電電源420的電力轉換[2120]成的射頻振盪功率信號;在整流器46D中將射頻振盪功率信號轉換[2130]成直流功率信號;以及藉由調整整流器46D的電流-電壓相位特性來調整[2140]電力傳送的效率。提供可調的相位射頻整流器可以包括提供差分自同步射頻整流器46D。In another embodiment described with reference to the flow chart in FIG. 30 and with further consideration of the system of FIGS. 19A and 19B , a method [2100] for transmitting power from a DC power source 420 to an electrical load 70″ is provided, the method comprising: providing [2110] a power transmission system 10″, 410 in wired electrical communication with the power source 420, the power transmission system 10″, 410 comprising an RF rectifier 46D (see FIG. 7 ) in radio frequency communication with an adjustable phase RF rectifier 46D. The invention relates to a radio frequency power amplifier 26B'' for communication, wherein the adjustable phase radio frequency rectifier is in wired electrical contact with the power load 70''; converting [2120] power from a DC power source 420 into a radio frequency oscillating power signal in the power amplifier 26B''; converting [2130] the radio frequency oscillating power signal into a DC power signal in the rectifier 46D; and adjusting [2140] the efficiency of power transmission by adjusting the current-voltage phase characteristic of the rectifier 46D. Providing an adjustable phase radio frequency rectifier can include providing a differential self-synchronous radio frequency rectifier 46D.
該方法[2100]可以進一步包括藉由調整功率放大器26B′′的直流等效輸入電阻來調整電力傳送的效率。提供[2110]電力傳送系統10′′、410可以包括提供在整流器46D與負載70′′之間進行有線通信的負載管理系統46E′′。調整功率放大器26B′′的直流等效輸入電阻可以包括藉由調整負載管理系統46E′′來調整整流器46D的輸入阻抗。調整負載管理系統46E′′可以包括自動地調整負載管理系統46E′′。The method [2100] may further include adjusting the efficiency of the power transmission by adjusting the DC equivalent input resistance of the power amplifier 26B''. Providing [2110] the power transmission system 10'', 410 may include providing a load management system 46E'' for wired communication between the rectifier 46D and the load 70''. Adjusting the DC equivalent input resistance of the power amplifier 26B'' may include adjusting the input impedance of the rectifier 46D by adjusting the load management system 46E''. Adjusting the load management system 46E'' may include automatically adjusting the load management system 46E''.
該方法[2100]可以進一步包括藉由調整功率放大器26B′′的電流-電壓相位特性來調整電力傳送的效率。提供[2110]電力傳送系統10′′、410可以包括提供與功率放大器26B′′進行通信以控制功率放大器26B′′的發射器控制器22′′。調整功率放大器26B′′的電流-電壓相位特性可以由發射器控制器22′′執行。調整功率放大器26B′′的電流-電壓相位特性可以由發射器控制器22′′自動地執行。The method [2100] may further include adjusting the efficiency of the power transmission by adjusting the current-voltage phase characteristic of the power amplifier 26B''. Providing [2110] the power transmission system 10'', 410 may include providing a transmitter controller 22'' that communicates with the power amplifier 26B'' to control the power amplifier 26B''. Adjusting the current-voltage phase characteristic of the power amplifier 26B'' may be performed by the transmitter controller 22''. Adjusting the current-voltage phase characteristic of the power amplifier 26B'' may be performed automatically by the transmitter controller 22''.
該方法[2100]可以進一步包括藉由改變功率放大器26B′′的振盪頻率來調整電力傳送的效率。The method [2100] may further include adjusting the efficiency of power transfer by changing the oscillation frequency of the power amplifier 26B″.
提供[2110]電力傳送系統10′′、410可以包括提供與整流器46D進行通信以控制整流器46D的接收器控制器42′′。調整整流器46D的電流-電壓相位特性可以由接收器控制器42′′執行。調整整流器46D的電流-電壓相位特性可以由接收器控制器42′′自動地執行。Providing [2110] the power transmission system 10'', 410 may include providing a receiver controller 42'' in communication with the rectifier 46D to control the rectifier 46D. Adjusting the current-voltage phase characteristic of the rectifier 46D may be performed by the receiver controller 42''. Adjusting the current-voltage phase characteristic of the rectifier 46D may be performed automatically by the receiver controller 42''.
提供[2110]電力傳送系統10′′、410可以包括提供與可調的相位射頻整流器46D進行直接有線射頻通信(經由圖19B的連接60′′)的功率放大器26B′′。提供[2110]電力傳送系統10′′、410可以包括提供與可調的相位射頻整流器46D進行無線近場射頻通信的功率放大器26B′′。Providing [2110] the power delivery system 10'', 410 may include providing a power amplifier 26B'' for direct wired RF communication with the adjustable phase RF rectifier 46D (via connection 60'' of Figure 19B). Providing [2110] the power delivery system 10'', 410 may include providing a power amplifier 26B'' for wireless near-field RF communication with the adjustable phase RF rectifier 46D.
提供[2110]電力傳送系統10′′、410可以包括提供與功率放大器26B′進行有線射頻通信的發射器共振器30′′及與射頻整流器46D進行有線射頻通信的接收器共振器50′′。該方法[2100]可以進一步包括操作彼此進行無線近場射頻通信的發射器共振器30′′及接收器共振器50′′。提供[2110]電力傳送系統10′′、410可以包括提供與整流器46D進行電容式近場無線射頻通信及感應式近場無線射頻通信中的至少一者的功率放大器26B′′。提供[2110]電力傳送系統10′′、410可以包括提供與整流器46D進行雙峰無線近場通信的功率放大器26B′′。Providing [2110] a power transmission system 10'', 410 may include providing a transmitter resonator 30'' in wired radio frequency communication with a power amplifier 26B' and a receiver resonator 50'' in wired radio frequency communication with an radio frequency rectifier 46D. The method [2100] may further include operating the transmitter resonator 30'' and the receiver resonator 50'' in wireless near-field radio frequency communication with each other. Providing [2110] a power transmission system 10'', 410 may include providing a power amplifier 26B'' in at least one of capacitive near-field wireless radio frequency communication and inductive near-field wireless radio frequency communication with the rectifier 46D. Providing [2110] a power transmission system 10'', 410 may include providing a power amplifier 26B'' in bi-peak wireless near-field communication with the rectifier 46D.
該方法[2100]可以進一步包括:提供電設置在該電源420與電力傳送系統10′′之間的電力調節單元430;以及調整電力調節單元430以調整來自電源420的電流及電壓中的至少一者,以改良電力傳送的效率。The method [2100] may further include: providing a power regulating unit 430 electrically disposed between the power source 420 and the power transmission system 10''; and adjusting the power regulating unit 430 to adjust at least one of the current and voltage from the power source 420 to improve the efficiency of power transmission.
基於對圖19A及圖19B的系統的更深入考量且參考圖7,用於將電力自直流電電源420供應至電力負載70′′之通用的電力傳送系統10′′、410包括:射頻功率放大器26B′′,其與電源420進行有線電通信且配置以將來自該電源420的直流電壓轉換成具有振盪頻率的交流電壓信號;可調的相位射頻整流器,其與電力負載70′′進行有線電接觸並與功率放大器進行射頻通信,該整流器配置以接收自功率放大器26B′′傳送的電力;以及接收器控制器42′′,其與整流器46D進行通信,該接收器控制器配置用於藉由調整整流器46D的電流-電壓相位特性來調整自功率放大器26B′′至整流器46D之電力傳送的效率。接收器控制器42′′可以配置用於自動地調整整流器46D的電流-電壓相位特性。整流器可以是差分自同步射頻整流器。Based on a more in-depth consideration of the systems of FIG. 19A and FIG. 19B and referring to FIG. 7 , a universal power transmission system 10″, 410 for supplying power from a DC power source 420 to a power load 70″ includes: a radio frequency power amplifier 26B″, which is in wired electrical communication with the power source 420 and is configured to convert the DC voltage from the power source 420 into an AC voltage signal having an oscillating frequency; an adjustable phase radio frequency rectifier , which is in wired electrical contact with the power load 70'' and in radio frequency communication with the power amplifier, the rectifier is configured to receive power transmitted from the power amplifier 26B''; and a receiver controller 42'', which is in communication with the rectifier 46D, the receiver controller is configured to adjust the efficiency of the power transmission from the power amplifier 26B'' to the rectifier 46D by adjusting the current-voltage phase characteristic of the rectifier 46D. The receiver controller 42'' can be configured to automatically adjust the current-voltage phase characteristic of the rectifier 46D. The rectifier can be a differential self-synchronous radio frequency rectifier.
電力傳送系統10′′、410可以進一步包括負載管理系統46E′′,該負載管理系統與負載70′′進行有線通信並按功率信號方式設置在負載70′′與整流器46D之間,負載管理系統46E′′配置用於藉由調整整流器46D的輸入阻抗來增加電力傳送的效率。負載管理系統46E′′可以配置用於自動地調整整流器46D的輸入阻抗。The power transmission system 10″, 410 may further include a load management system 46E″ in wired communication with the load 70″ and disposed between the load 70″ and the rectifier 46D in a power signal manner, the load management system 46E″ configured to increase the efficiency of the power transmission by adjusting the input impedance of the rectifier 46D. The load management system 46E″ may be configured to automatically adjust the input impedance of the rectifier 46D.
電力傳送系統10′′、410可以進一步包括與功率放大器26B′′進行通信的發射器控制器22′′,發射器控制器22′′配置用於藉由調整功率放大器26B′′的電流-電壓相位特性來增加電力傳送的效率。發射器控制器22′′可以配置以自動地調整功率放大器26B′′的電流-電壓相位特性以增加電力傳送的效率。The power transmission system 10″, 410 may further include a transmitter controller 22″ in communication with the power amplifier 26B″, the transmitter controller 22″ configured to increase the efficiency of the power transmission by adjusting the current-voltage phase characteristic of the power amplifier 26B″. The transmitter controller 22″ may be configured to automatically adjust the current-voltage phase characteristic of the power amplifier 26B″ to increase the efficiency of the power transmission.
電力傳送系統10′′、410可以進一步包括與功率放大器26B′′及發射器控制器22′′進行通信的振盪器26A′′。發射器控制器22′′可以配置用於經由振盪器26A′′調整振盪頻率。The power transmission system 10", 410 may further include an oscillator 26A" in communication with the power amplifier 26B" and the transmitter controller 22". The transmitter controller 22" may be configured to adjust the oscillation frequency via the oscillator 26A".
功率放大器26B′′可以與可調的相位射頻整流器46D進行直接有線射頻通信(經由圖19B的連接60′′)。功率放大器26B′′可以與可調的相位射頻整流器46D進行無線近場射頻通信。電力傳送系統10′′、410可以包括與功率放大器26B′′進行有線射頻通信的發射器共振器30′′及與整流器46D進行有線射頻通信的接收器共振器50′′。發射器共振器30′′與接收器共振器50′′可以彼此進行無線近場射頻通信。功率放大器26B′′可以與整流器46D進行電容式近場無線射頻通信及感應式近場無線射頻通信中的至少一者。功率放大器26B′′可以與整流器46D進行雙峰近場無線射頻通信。The power amplifier 26B″ may be in direct wired RF communication with the adjustable phase RF rectifier 46D (via connection 60″ of FIG. 19B ). The power amplifier 26B″ may be in wireless near-field RF communication with the adjustable phase RF rectifier 46D. The power transmission system 10″, 410 may include a transmitter resonator 30″ in wired RF communication with the power amplifier 26B″ and a receiver resonator 50″ in wired RF communication with the rectifier 46D. The transmitter resonator 30″ and the receiver resonator 50″ may be in wireless near-field RF communication with each other. The power amplifier 26B″ may be in at least one of capacitive near-field wireless RF communication and inductive near-field wireless RF communication with the rectifier 46D. The power amplifier 26B'' can communicate with the rectifier 46D in a dual peak near field wireless RF manner.
電力傳送系統可以進一步包括電力調節單元430,其電設置在電源420與功率放大器26B′′之間,電力調節單元430配置用於調整來自電源420的電流及電壓中的至少一者,以改良電力傳送的效率。The power transmission system may further include a power conditioning unit 430 electrically disposed between the power source 420 and the power amplifier 26B″, the power conditioning unit 430 being configured to regulate at least one of the current and the voltage from the power source 420 to improve the efficiency of the power transmission.
在參考圖19A、圖19B、圖27A及圖27B、以及圖28A及圖28B所述的另一實施例中,一種電動系統包括:機械負載承載結構510、630,具有導電的第一部分;電力負載;以及電力傳送系統10′′、410,包含配置用於進行近場無線電力傳送的至少一個射頻共振器30′′、50′′,其中,該共振器至少部分地包括導電的第一部分。該電動系統可以進一步包括可再充電的電池520,且電力負載可以包括電動馬達530。電動系統可以是電動運載工具500、500′,且機械負載承載結構可以包括運載工具的底盤510。電動系統可以是顯示監視器610且機械負載承載結構可以是該監視器的框架630及底座中的至少一者。In another embodiment described with reference to Figures 19A, 19B, 27A and 27B, and 28A and 28B, an electric system includes: a mechanical load carrying structure 510, 630 having a conductive first portion; a power load; and a power transfer system 10'', 410, including at least one radio frequency resonator 30'', 50'' configured for near-field wireless power transfer, wherein the resonator at least partially includes the conductive first portion. The electric system may further include a rechargeable battery 520, and the power load may include an electric motor 530. The electric system may be an electric vehicle 500, 500', and the mechanical load carrying structure may include a chassis 510 of the vehicle. The electric system may be a display monitor 610 and the mechanical load bearing structure may be at least one of a frame 630 and a base of the monitor.
該電動系統可以進一步包括電源。該電力傳送系統可以包括:射頻功率放大器26B′′,其與電源進行有線電通信且配置以將來自該電源的直流電電壓轉換成具有振盪頻率的交流電壓信號;可調的相位射頻整流器46D,其與電力負載70′′進行有線電接觸且與功率放大器26B′′進行射頻通信;整流器46D,配置以接收自功率放大器26B′′傳送的電力;以及接收器控制器42′′,其與整流器46D進行通信,接收器控制器42′′配置用於藉由調整整流器46D的電流-電壓相位特性來調整自功率放大器26B′′至整流器46D的電力傳送的效率。The electric power system may further include a power source. The power transmission system may include: a radio frequency power amplifier 26B'', which is in wired electrical communication with the power source and is configured to convert a DC voltage from the power source into an AC voltage signal having an oscillating frequency; an adjustable phase radio frequency rectifier 46D, which is in wired electrical contact with the power load 70'' and in radio frequency communication with the power amplifier 26B''; a rectifier 46D, configured to receive power transmitted from the power amplifier 26B''; and a receiver controller 42'', which is in communication with the rectifier 46D, the receiver controller 42'' being configured to adjust the efficiency of power transmission from the power amplifier 26B'' to the rectifier 46D by adjusting the current-voltage phase characteristic of the rectifier 46D.
在另一實施例中,如在圖19A及圖19B、圖27A及圖27B、以及圖28A及圖28B中所述,一種設備包括:機械負載承載結構510、630,具有導電的第一部分;電源;電力負載70′′、530、610;以及電力傳送系統10′′、410,包含:射頻功率放大器26B′′,其與電源進行有線電通信並配置以將來自該電源的直流電電壓轉換成具有振盪頻率的交流電壓信號;可調的相位射頻整流器46D,其與電力負載70′′進行有線電接觸且與功率放大器26B′′進行射頻通信;整流器46D,配置以接收自功率放大器26B′′傳送的電力;以及接收器控制器42′′,其與整流器46D進行通信,接收器控制器42′′配置用於藉由調整整流器46D的電流-電壓相位特性來調整自功率放大器26B′′至整流器46D的電力傳送的效率;其中,導電的第一部分設置以載運來自功率放大器26B′′的射頻信號及前往整流器46D的射頻信號中的至少一者。In another embodiment, as described in FIGS. 19A and 19B, 27A and 27B, and 28A and 28B, an apparatus includes: a mechanical load bearing structure 510, 630 having a conductive first portion; a power source; an electrical load 70'', 530, 610; and an electrical power transmission system 10'', 410, including: an RF power amplifier 26B'' in wired electrical communication with the power source and configured to convert a DC voltage from the power source into an AC voltage signal having an oscillating frequency; an adjustable phase RF rectifier 46D, which is coupled to the electrical load 70' ' is in wired electrical contact and in radio frequency communication with the power amplifier 26B''; a rectifier 46D, configured to receive power transmitted from the power amplifier 26B''; and a receiver controller 42'', which communicates with the rectifier 46D, and the receiver controller 42'' is configured to adjust the efficiency of power transmission from the power amplifier 26B'' to the rectifier 46D by adjusting the current-voltage phase characteristic of the rectifier 46D; wherein the conductive first portion is configured to carry at least one of the radio frequency signal from the power amplifier 26B'' and the radio frequency signal to the rectifier 46D.
該設備可以進一步包括負載管理系統46E′′,該負載管理系統與負載70′′進行有線通信且按功率信號方式設置在負載70′′與整流器46D之間,負載管理系統46E′′配置用於藉由調整整流器46D的輸入阻抗來增加電力傳送的效率。該設備可以進一步包括與功率放大器26B′′進行通信的發射器控制器22′′,發射器控制器22′′配置用於藉由調整功率放大器26B′′的電流-電壓相位特性來增加電力傳送的效率。該設備可以進一步包括與功率放大器26B′′進行通信的振盪器26A′′以及發射器控制器22′′,其中,發射器控制器22′′配置用於經由振盪器26A′′調整振盪頻率。The device may further include a load management system 46E″ in wired communication with the load 70″ and disposed between the load 70″ and the rectifier 46D in a power signal manner, the load management system 46E″ configured to increase the efficiency of power transmission by adjusting the input impedance of the rectifier 46D. The device may further include a transmitter controller 22″ in communication with the power amplifier 26B″, the transmitter controller 22″ configured to increase the efficiency of power transmission by adjusting the current-voltage phase characteristic of the power amplifier 26B″. The apparatus may further include an oscillator 26A" in communication with the power amplifier 26B" and a transmitter controller 22", wherein the transmitter controller 22" is configured to adjust the oscillation frequency via the oscillator 26A".
功率放大器26B′′可以經由導電的第一部分與整流器46D進行直接有線射頻通信。功率放大器26B′′可以與整流器46D進行無線近場射頻通信。電力傳送系統10′′、410可以包括與功率放大器26B′′進行有線射頻通信的發射器共振器30′′及與整流器46D進行有線射頻通信的接收器共振器50′′,且發射器共振器30′′及接收器共振器50′′中的一者可以包括導電的第一部分。發射器共振器30′′與接收器共振器50′′可以彼此進行無線近場射頻通信。功率放大器26B′′可以與整流器46D進行電容式近場無線射頻通信及感應式近場無線射頻通信中的至少一者。功率放大器26B′′可以與整流器46D進行雙峰近場無線射頻通信。該直流電電源可以包括可再充電的電池520,且負載可以包括電動馬達530。The power amplifier 26B″ may be in direct wired RF communication with the rectifier 46D via the conductive first portion. The power amplifier 26B″ may be in wireless near-field RF communication with the rectifier 46D. The power transmission system 10″, 410 may include a transmitter resonator 30″ in wired RF communication with the power amplifier 26B″ and a receiver resonator 50″ in wired RF communication with the rectifier 46D, and one of the transmitter resonator 30″ and the receiver resonator 50″ may include the conductive first portion. The transmitter resonator 30″ and the receiver resonator 50″ may be in wireless near-field RF communication with each other. The power amplifier 26B″ may be in at least one of capacitive near-field wireless RF communication and inductive near-field wireless RF communication with the rectifier 46D. The power amplifier 26B″ can communicate with the rectifier 46D in a dual peak near field wireless radio frequency. The DC power source can include a rechargeable battery 520, and the load can include an electric motor 530.
在圖32中示意性地示出且基於圖6、圖7、圖8及圖9的又一實施例中,提供密封的雙向電力傳送電路裝置800,該裝置具有設置以與該密封的裝置800外部的裝置進行電通信的複數個端子,該密封的裝置800在其密封內部包括:多端子電力切換(MPS)裝置810,具有至少一個DC端子、至少一個AC端子及至少一個控制端子,MPS裝置810可在放大狀況與整流狀況之間調整,且配置以經由至少一個DC端子雙向地傳送DC電壓及DC電流,並經由至少一個AC端子雙向地傳送具有振幅、頻率及相位的射頻功率信號;相位、頻率及工作週期調整(PFDCA)電路820,其與控制器880進行有線資料通信,該PFDCA電路經由至少一個控制端子與MPS裝置810進行有線電通信,該PFDCA電路820配置以在MPS裝置810的至少一個控制端子處建立具有射頻功率信號的頻率及相位的射頻振盪信號,並藉由在控制器880的指令下調整射頻振盪信號的相位,而在放大狀況與整流狀況之間調整MPS裝置810。PFDCA電路820可以進一步配置成建立射頻振盪信號的工作週期。PDFCA電路820可以包括用於在來自控制器880的指令下產生射頻振盪信號的射頻振盪器。此處使用術語「多端子電力切換裝置」來闡述一裝置,該裝置具有至少三個端子且能夠基於施加至該裝置的至少一第三端子的信號來切換或調變在該裝置的至少兩個端子之間流動的電流。適合的MPS裝置810包括但不限於機械繼電器開關、固態開關、電光開關(亦稱為光開關)、閘流體、波導開關、電晶體(包括例如MOSFET、MESFET、III-V組半導體電晶體裝置及BJT裝置)及功率管裝置(包括例如三極管及五極管)。In yet another embodiment schematically shown in FIG. 32 and based on FIG. 6 , FIG. 7 , FIG. 8 and FIG. 9 , a sealed bidirectional power transmission circuit device 800 is provided, the device having a plurality of terminals configured to communicate electrically with a device outside the sealed device 800, the sealed device 800 including within its sealed interior: a multi-terminal power switching (MPS) device 810 having at least one DC terminal, at least one AC terminal and at least one control terminal, the MPS device 810 being adjustable between an amplifying state and a rectifying state, and being configured to bidirectionally transmit a DC voltage and a DC current via at least one DC terminal, and to communicate via at least one AC terminal. The controller 880 is provided with a phase, frequency and duty cycle adjustment (PFDCA) circuit 820, which is in wired data communication with the controller 880, and the PFDCA circuit is in wired electrical communication with the MPS device 810 via at least one control terminal, and the PFDCA circuit 820 is configured to establish an RF oscillation signal having the frequency and phase of the RF power signal at at least one control terminal of the MPS device 810, and adjust the MPS device 810 between an amplification state and a rectification state by adjusting the phase of the RF oscillation signal under the command of the controller 880. The PFDCA circuit 820 can be further configured to establish a duty cycle of the RF oscillation signal. The PDFCA circuit 820 may include an RF oscillator for generating an RF oscillation signal under instructions from the controller 880. The term "multi-terminal power switching device" is used herein to describe a device having at least three terminals and capable of switching or modulating a current flowing between at least two terminals of the device based on a signal applied to at least a third terminal of the device. Suitable MPS devices 810 include, but are not limited to, mechanical relay switches, solid-state switches, electro-optical switches (also known as optical switches), gate currents, waveguide switches, transistors (including, for example, MOSFETs, MESFETs, III-V group semiconductor transistor devices, and BJT devices), and power tube devices (including, for example, triodes and pentodes).
在某些實施例中,用聚合塗層或模具密封電路以形成密封或密封的裝置。在某些實施例中,密封的裝置保護設置在裝置內部上的組件。在某些實施例中,裝置的密封提供電絕緣以防止靜電放電、短路或可損壞裝置之組件的其他有害放電。在某些實施例中,密封的裝置保護內部組件以免氧化。在某些實施例中,密封可以形成防水屏障或水蒸氣屏障。在某些實施例中,該密封藉由提供對密封的裝置外部上的一個或多個端子的接入,來提供促進與裝置的電連接。In some embodiments, a circuit is sealed with a polymeric coating or mold to form a seal or sealed device. In some embodiments, the sealed device protects components disposed on the interior of the device. In some embodiments, the seal of the device provides electrical insulation to prevent electrostatic discharge, short circuits, or other harmful discharges that can damage components of the device. In some embodiments, the sealed device protects internal components from oxidation. In some embodiments, the seal can form a waterproof barrier or a water vapor barrier. In some embodiments, the seal provides for facilitating electrical connection to the device by providing access to one or more terminals on the exterior of the sealed device.
密封的電力傳送電路裝置800可以進一步在密封內部包括與控制器880進行有線資料通信的調諧網路830,該調諧網路經由至少一個AC端子與MPS裝置810進行有線電通信,調諧網路830配置以當MPS裝置810處於放大狀況時在來自控制器880的指令下將射頻功率信號調整為來自調諧網路830之調諧的射頻功率信號。調諧網路830可以包括在圖8及圖9中所示之類型的諧波終端網路電路,該諧波終端網路電路配置以抑制射頻功率信號中之射頻振盪信號的諧波。如在圖8及圖9中所示,諧波終端網路可以包括一個或多個電感器以及第一諧波終端127I、147G、第二諧波終端127H、147F、以及第三諧波終端127F、147D中的一者或多者。The sealed power transmission circuit device 800 may further include a tuning network 830 in wired data communication with the controller 880 within the seal, the tuning network being in wired electrical communication with the MPS device 810 via at least one AC terminal, the tuning network 830 being configured to adjust the RF power signal to a tuned RF power signal from the tuning network 830 under instructions from the controller 880 when the MPS device 810 is in the amplification state. The tuning network 830 may include a harmonic termination network circuit of the type shown in FIGS. 8 and 9, the harmonic termination network circuit being configured to suppress harmonics of the RF oscillation signal in the RF power signal. As shown in FIGS. 8 and 9 , the harmonic terminal network may include one or more inductors and one or more of the first harmonic terminal 127I, 147G, the second harmonic terminal 127H, 147F, and the third harmonic terminal 127F, 147D.
密封的電力傳送電路裝置800可以在密封內部包括與控制器880進行有線資料通信的振幅/頻率/相位偵測器(AFPD) 840,該振幅/頻率/相位偵測器設置以與調諧網路進行有線電通信並配置以判定在調諧網路與密封的裝置外部的AC負載/源之間傳送的任何射頻功率信號的振幅、頻率及相位。為此,根據圖32,AFPD 840量測自裝置800引出之調諧網路830的輸出處的信號振幅、頻率及相位。PFDCA電路820配置以基於由AFPD 840傳送到控制器880的量測資料接收來自控制器880的指令。在未於圖32中示出的其他實施例中,PFDCA電路820配置以基於直接自AFPD 840接收的反饋信號調整射頻振盪信號及/或DC電流及DC電壓中的至少一者。The sealed power transmission circuit device 800 may include an amplitude/frequency/phase detector (AFPD) 840 in wired data communication with a controller 880 within the seal, the amplitude/frequency/phase detector being arranged to communicate with the tuning network by wire and configured to determine the amplitude, frequency and phase of any RF power signal transmitted between the tuning network and an AC load/source external to the sealed device. To this end, according to FIG. 32 , the AFPD 840 measures the amplitude, frequency and phase of the signal at the output of the tuning network 830 derived from the device 800. The PFDCA circuit 820 is configured to receive instructions from the controller 880 based on the measurement data transmitted to the controller 880 by the AFPD 840. In other embodiments not shown in FIG. 32 , the PFDCA circuit 820 is configured to adjust the RF oscillation signal and/or at least one of the DC current and DC voltage based on a feedback signal received directly from the AFPD 840.
調諧網路830可以包括電壓-電流調諧器,該電壓-電流調諧器用於當電力切換裝置處於放大狀況時基於來自AFPD 840的量測資料調整調諧之射頻信號的電壓與電流之間的相位差。參考圖6更詳細地闡述適合的電壓-電流調諧器。根據圖32,將調諧網路830的電壓-電流調諧器應用於自裝置800引出之信號連接的信號。當在圖32中向下發射電力時,電壓-電流調諧器藉此作用為調諧器。電壓-電流調諧器對穿過圖32中的裝置800在相反向上方向上發射的電力可以是透明的,電力傳送電路裝置800是雙向的。在某些實施方案中,調諧網路830可以向可以是發射器共振器30及30''的AC負載/源900傳送經調諧的射頻功率信號,如參考圖6以及圖19A、圖27A和圖27B所述。當AC負載/源900是此雙峰發射器共振器時,電壓-電流調諧器可以用於調整電場與磁場的比例,如參考圖6所述。The tuning network 830 may include a voltage-current tuner for adjusting the phase difference between the voltage and current of the tuned RF signal based on the measurement data from the AFPD 840 when the power switching device is in the amplification state. A suitable voltage-current tuner is explained in more detail with reference to FIG6. According to FIG32, the voltage-current tuner of the tuning network 830 is applied to the signal connected to the signal derived from the device 800. When the power is emitted downward in FIG32, the voltage-current tuner thereby acts as a tuner. The voltage-current tuner can be transparent to power transmitted in the opposite upward direction through the device 800 in FIG. 32, and the power transmission circuit device 800 is bidirectional. In some embodiments, the tuning network 830 can transmit a tuned RF power signal to the AC load/source 900, which can be the transmitter resonator 30 and 30", as described with reference to FIG. 6 and FIGS. 19A, 27A, and 27B. When the AC load/source 900 is this double-peak transmitter resonator, the voltage-current tuner can be used to adjust the ratio of the electric field to the magnetic field, as described with reference to FIG. 6.
密封的電力傳送電路裝置800可以進一步在密封內部包括與控制器880進行有線資料通信且在MPS 810與密封的裝置800外部的DC源/負載700之間進行有線電通信的功率管理(PM)電路860,該功率管理(PM)電路經配置以使MPS 810與外部DC源/負載700阻抗匹配且用於基於由AFPD 840傳送至控制器的量測資料調整在MPS 810與DC源/負載700之間傳送的DC電力。在未於圖32中示出的其他實施例中,PM電路860可以配置以基於直接自AFPD 840及/或VID 850接收的反饋信號調整在MPS 810與DC源/負載700之間傳送的DC電力。The sealed power transmission circuit device 800 may further include a power management (PM) circuit 860 in wired data communication with the controller 880 inside the seal and in wired electrical communication between the MPS 810 and a DC source/load 700 outside the sealed device 800, the power management (PM) circuit being configured to impedance match the MPS 810 with the external DC source/load 700 and to adjust the DC power transmitted between the MPS 810 and the DC source/load 700 based on the measurement data transmitted to the controller by the AFPD 840. In other embodiments not shown in FIG. 32, the PM circuit 860 may be configured to adjust the DC power transmitted between the MPS 810 and the DC source/load 700 based on feedback signals received directly from the AFPD 840 and/or the VID 850.
再次應注意的是,可以透過MPS 810與DC源/負載700之間的PM電路860在兩個方向上傳送DC電力。亦應注意的是,在此維持一慣例,根據該慣例,DC源/負載700闡述為「源/負載」,而向調諧網路傳送AC電力的外部AC負載/源900闡述為「負載/源」,藉此強調以下要點:當DC源/負載700作為DC電源發揮作用時,AC負載/源900作為用於轉換成AC電力之該電力的負載發揮作用,且反之亦然。當MPS 810處於其放大狀況及整流狀況中的任一狀況時,在圖32中繪示為接近連接器且與連接器平行的箭頭指示電力傳送電路裝置800的路徑及方向。當MPS 810處於放大狀況時,電力流穿過圖32向下;當MPS 810處於整流狀況時,電力流穿過圖32向上。It should be noted again that DC power can be transferred in both directions via the PM circuit 860 between the MPS 810 and the DC source/load 700. It should also be noted that a convention is maintained herein whereby the DC source/load 700 is described as a "source/load" and the external AC load/source 900 that delivers AC power to the tuning network is described as a "load/source," thereby emphasizing the point that when the DC source/load 700 functions as a DC power source, the AC load/source 900 functions as a load of that power for conversion to AC power, and vice versa. When the MPS 810 is in either of its amplifying state and rectifying state, the arrows depicted in FIG32 as being proximate to and parallel to the connector indicate the path and direction of the power transfer circuit device 800. When the MPS 810 is in the amplifying state, the power flow is downward through FIG32; when the MPS 810 is in the rectifying state, the power flow is upward through FIG32.
密封的電力傳送電路裝置800可以進一步在密封內部包括與控制器880進行有線資料通信的電壓/電流偵測器(VID) 850,該電壓/電流偵測器設置以判定在MPS 810與PM電路860之間傳遞的DC電壓及DC電流。當MPS 810處於放大狀況時,可以基於VID 850的量測結果調整電力傳送電路裝置800,使得裝置800向DC源/負載700呈現等效DC負載從而允許自DC源/負載700提取最大電力。藉以調整MPS裝置810之至少一個DC端子處的DC電壓。當MPS 810處於整流狀況時,可以基於VID 850的量測結果調整電力傳送電路裝置800,使得裝置800向DC源/負載700呈現等效DC源阻抗從而允許自裝置800至DC源/負載700的最大電力傳送。藉以調整裝置800與DC源/負載700之間的有線連接處的DC電壓。The sealed power delivery circuit device 800 may further include a voltage/current detector (VID) 850 in wired data communication with the controller 880 within the seal, the voltage/current detector being configured to determine the DC voltage and DC current transmitted between the MPS 810 and the PM circuit 860. When the MPS 810 is in the amplification state, the power delivery circuit device 800 may be adjusted based on the measurement result of the VID 850 so that the device 800 presents an equivalent DC load to the DC source/load 700, thereby allowing maximum power to be extracted from the DC source/load 700. The DC voltage at at least one DC terminal of the MPS device 810 is thereby adjusted. When the MPS 810 is in a rectifying state, the power transmission circuit device 800 can be adjusted based on the measurement result of the VID 850 so that the device 800 presents an equivalent DC source impedance to the DC source/load 700, thereby allowing maximum power transmission from the device 800 to the DC source/load 700. The DC voltage at the wired connection between the device 800 and the DC source/load 700 is thereby adjusted.
密封的電力傳送電路裝置800可以進一步在密封內部包括與控制器880、AFPD 840及VID 850進行有線資料通信的記憶體870,其中,記憶體870配置以接收且儲存來自兩個偵測器840及850的信號資料且將來自兩個偵測器840及850的信號資料提供至控制器880。記憶體870能夠儲存裝置800針對一系列連續瞬時時間的完整狀態。The sealed power transmission circuit device 800 may further include a memory 870 in wired data communication with the controller 880, AFPD 840 and VID 850 inside the seal, wherein the memory 870 is configured to receive and store signal data from the two detectors 840 and 850 and provide signal data from the two detectors 840 and 850 to the controller 880. The memory 870 is capable of storing the complete state of the device 800 for a series of continuous instantaneous times.
調諧網路可以進一步包括補償網路、匹配網路及濾波器中的一者或多者。圖6的補償網路26E、匹配網路26D及濾波器26C適合於此目的,選擇不限於圖6的裝置。The tuning network may further include one or more of a compensation network, a matching network, and a filter. The compensation network 26E, the matching network 26D, and the filter 26C of FIG6 are suitable for this purpose, and the selection is not limited to the device of FIG6.
密封的電力傳送電路裝置800可以在密封內部包括控制器880。在其他實施例中,密封的電力傳送電路裝置800可以採用具有適合輸入/輸出設施的外部控制器以與併入裝置800密封內部中的各種電路進行資料通信,且適合的軟體或韌體可以程式化至控制器中以執行上文所述的所有控制程序步驟。The sealed power transmission circuit device 800 may include a controller 880 within the sealed interior. In other embodiments, the sealed power transmission circuit device 800 may employ an external controller having suitable input/output facilities to communicate data with the various circuits incorporated within the sealed interior of the device 800, and suitable software or firmware may be programmed into the controller to perform all of the control program steps described above.
密封的電力傳送電路裝置800可以進一步包括在藍芽、WiFi、Zigbee及蜂巢技術中的一者或多者上發揮作用以在控制器880與密封的電力傳送電路裝置800外部的裝置之間雙向地傳送資訊的至少一個通信電路890。至少一個通信電路890可以與一個或多個適合的天線894進行雙向有線通信。雖然一個或多個天線894可以設置在裝置800的密封內部,但該等天線通常更有效地設置在裝置800外側。外部裝置中的一者或多者可以是其他電力傳送電路裝置,包括例如其他裝置800,且一個或多個其他裝置可以形成如上文在其他實施例(例如圖1)中所述的集體電力傳送系統的一部分。The sealed power delivery circuit device 800 may further include at least one communication circuit 890 that operates on one or more of Bluetooth, WiFi, Zigbee, and cellular technologies to bidirectionally transmit information between the controller 880 and devices external to the sealed power delivery circuit device 800. The at least one communication circuit 890 may be in bidirectional wired communication with one or more suitable antennas 894. Although the one or more antennas 894 may be disposed within the sealed interior of the device 800, it is typically more efficient for such antennas to be disposed outside the device 800. One or more of the external devices may be other power delivery circuit devices, including, for example, other devices 800, and one or more of the other devices may form part of a collective power delivery system as described above in other embodiments (e.g., FIG. 1 ).
PFDCA電路可以佈置以基於由AFPD 840及VID 850的量測結果調整射頻振盪信號的工作週期。在某些實施例中,可以將關於量測結果的資訊傳送至控制器880且自控制器傳送至PFDCA電路820,該電路然後基於所接收的資訊調整射頻振盪信號的工作週期。在未於圖32中示出的其他實施例中,可以自AFPD 840及VID 850將反饋信號直接傳遞至PFDCA電路820,該電路然後基於所接收的反饋信號調整射頻振盪信號的工作週期。藉由改變射頻振盪信號的工作週期,PFDCA電路820可以調整穿過裝置800的電力流的方向。當電力自DC源/負載700流動穿過裝置800到達AC負載/源900時,PFDCA電路820可以藉由此手段調整由源/負載700遞送至裝置800的DC電力及自裝置800遞送至AC負載/源900的AC電力。當電力自AC負載/源900流動穿過裝置800到達DC源/負載700時,PFDCA電路820可以藉由此手段調整由C負載/源900遞送至裝置800的AC電力及由裝置800遞送至DC源/負載700的電力。The PFDCA circuit can be arranged to adjust the duty cycle of the RF oscillation signal based on the measurements made by the AFPD 840 and the VID 850. In some embodiments, information about the measurements can be transmitted to the controller 880 and from the controller to the PFDCA circuit 820, which then adjusts the duty cycle of the RF oscillation signal based on the information received. In other embodiments not shown in FIG. 32, feedback signals can be directly transmitted from the AFPD 840 and the VID 850 to the PFDCA circuit 820, which then adjusts the duty cycle of the RF oscillation signal based on the received feedback signals. By changing the duty cycle of the RF oscillation signal, the PFDCA circuit 820 can adjust the direction of power flow through the device 800. As power flows from the DC source/load 700 through the device 800 to the AC load/source 900, the PFDCA circuit 820 can thereby regulate the DC power delivered by the source/load 700 to the device 800 and the AC power delivered from the device 800 to the AC load/source 900. As power flows from the AC load/source 900 through the device 800 to the DC source/load 700, the PFDCA circuit 820 can thereby regulate the AC power delivered by the C load/source 900 to the device 800 and the power delivered by the device 800 to the DC source/load 700.
控制器880可以與設置在裝置800之密封內部的外部的外部裝置及電路898(在圖32中標示為Ext.)進行雙向有線通信。例如無限制地,可以採用此有線通信以針對其中可併入裝置800的系統交換資料或向控制器880供應系統時脈同步信號。The controller 880 can perform two-way wired communication with external devices and circuits 898 (labeled as Ext. in FIG. 32 ) disposed outside the sealed interior of the device 800. For example, without limitation, such wired communication can be used to exchange data with a system in which the device 800 can be incorporated or to supply a system clock synchronization signal to the controller 880.
參考圖6及圖7,感測器及偵測器24A、24B、24C及24D可以有效地設置在裝置800密封內部的外側。6 and 7, sensors and detectors 24A, 24B, 24C and 24D may be effectively disposed outside of the sealed interior of device 800.
雙向電力傳送電路裝置800亦可有效地用於藉由上文中已經參考圖6及圖7解釋之機制經由穿過裝置800的電力通道發射及/或接收資訊。電力通道自DC源/負載700與PM電路860之間的有線連接實體地延伸穿過PM電路860、VID 850、MPS裝置810及調諧網路830到達AC負載/源900。沿著實體電力通道,PM電路860、MPS裝置810及調諧網路830全部在控制器880的控制下,控制器880經由PFDCA電路820控制MPS裝置810。控制器可以在調諧網路830中及/或在MPS裝置810自身中調變射頻功率信號。控制器亦可以配置以感應PM電路860與DC源/負載700之間的DC電壓的調變。此允許資訊調變至射頻功率信號、經調諧的射頻功率信號及/或前述DC電壓上,且藉此傳送至在裝置800外部的其他裝置。此等其他裝置可以包括其他雙向電力傳送電路裝置800。資訊可以以數位形式或以類比形式調變至射頻功率信號、經調諧的射頻功率信號及/或前述DC電壓上。在其他實施例中,資訊可以調變至與電力傳送之頻率不同的頻率上。在其他實施例中,資訊可以調變至功率信號之頻率的諧波上。在又進一步實施例中,射頻功率信號的頻率可以是資訊調變至其上之信號的頻率的諧波。在上文所述中,已經解釋調諧網路830子系統可如何用作適合的調變器。The bidirectional power transmission circuit device 800 can also be effectively used to transmit and/or receive information via a power channel passing through the device 800 by the mechanism already explained above with reference to FIGS. 6 and 7. The power channel physically extends from the wired connection between the DC source/load 700 and the PM circuit 860 through the PM circuit 860, the VID 850, the MPS device 810 and the tuning network 830 to the AC load/source 900. Along the physical power channel, the PM circuit 860, the MPS device 810 and the tuning network 830 are all under the control of the controller 880, which controls the MPS device 810 via the PFDCA circuit 820. The controller can modulate the RF power signal in the tuning network 830 and/or in the MPS device 810 itself. The controller can also be configured to sense modulation of the DC voltage between the PM circuit 860 and the DC source/load 700. This allows information to be modulated onto the RF power signal, the tuned RF power signal, and/or the aforementioned DC voltage, and thereby transmitted to other devices external to the device 800. Such other devices may include other bidirectional power transmission circuit devices 800. Information can be modulated onto the RF power signal, the tuned RF power signal, and/or the aforementioned DC voltage in digital form or in analog form. In other embodiments, the information can be modulated onto a frequency different from the frequency of the power transmission. In other embodiments, the information can be modulated onto a harmonic of the frequency of the power signal. In yet a further embodiment, the frequency of the RF power signal may be a harmonic of the frequency of the signal onto which the information is modulated. In the foregoing, it has been explained how the tuning network 830 subsystem may be used as a suitable modulator.
上文已闡述裝置800可如何在以發射器模式操作與以整流模式操作之間重新組態,且已闡述可如何調變電力通道,很顯然的是,裝置800可以用作在兩個方向上傳輸資訊的全雙工發射-接收系統。當在圖1的發射器模組20及接收器模組40中採用兩個裝置800時,圖1的系統10可以包括與圖1的次級側14類似的其他次級側。當存在額外的次級側14時,上文闡述的佈置允許在各個次級側14之間傳送資訊,且藉此向初級側12傳送資訊。藉由使用圖32的裝置800,在圖19A及圖19B的系統中採用的發射器模組20′′與接收器模組40′′之間可以具有相同的全雙工發射-接收配置。圖20A至圖22B及圖27A至圖28B中所示的系統亦如此。Having explained above how the device 800 can be reconfigured between operating in a transmitter mode and operating in a rectifier mode, and having explained how the power channel can be modulated, it is apparent that the device 800 can be used as a full duplex transmit-receive system that transmits information in both directions. When two devices 800 are employed in the transmitter module 20 and the receiver module 40 of FIG. 1 , the system 10 of FIG. 1 can include additional secondary sides similar to the secondary side 14 of FIG. 1 . When additional secondary sides 14 are present, the arrangement explained above allows information to be transmitted between the various secondary sides 14 and thereby to the primary side 12. By using the device 800 of Fig. 32, the transmitter module 20" and the receiver module 40" used in the system of Figs. 19A and 19B can have the same full-duplex transmit-receive configuration. The same is true for the systems shown in Figs. 20A to 22B and Figs. 27A to 28B.
以此處闡述之方式發射的資訊可以無限制地包括MPS裝置810的操作模式、其他裝置810的數量及類型、周圍物體感測器資訊及負載狀態監測資訊,該負載狀態監測資訊包括例如電池充電狀態、負載電壓及負載電流。The information transmitted in the manner described herein may include, without limitation, the operating mode of the MPS device 810, the number and type of other devices 810, surrounding object sensor information, and load status monitoring information including, for example, battery charge status, load voltage, and load current.
密封的雙向電力傳送電路裝置800的電子電路可以在各種裝置製造技術中實施,無限制地包括實施為適合電路板上的多個離散裝置、實施為混合電路(其中在半導體材料之不同個別節段中製造的裝置可以接合或安裝至適合的基板材料上)、實施為主動面向下接合至矽基電路上的一個或多個個別裝置的覆晶配置、或實施為單個單片積體電路裝置。圖33示出覆晶佈置,其中圖32的雙向電力傳送電路裝置800包括多端子電力切換(MPS)裝置810,該多端子電力切換(MPS)裝置在單獨半導體晶體中實施且然後經由襯墊808上的銲錫凸塊覆晶安裝。例如無限制地,可以將MPS裝置810製作為寬帶隙半導體晶體中的離散更高功率裝置。襯墊808在矽晶圓801上成型,該矽晶圓亦含有圖32之裝置800的子系統的平衡,所有子系統單片地一體結合在矽晶圓801中。兩個襯墊806用於與圖32中示出的DC源/負載700及AC負載/源900的連接。襯墊802用於將控制器880及通信電路890連接至裝置800外部的裝置及天線。The electronic circuitry of the sealed bidirectional power delivery circuit device 800 can be implemented in a variety of device fabrication technologies, including without limitation as multiple discrete devices suitable for a circuit board, as a hybrid circuit in which devices fabricated in different individual sections of semiconductor material can be bonded or mounted to a suitable substrate material, as a flip chip configuration with an active face down bonded to one or more individual devices on a silicon-based circuit, or as a single monolithic integrated circuit device. FIG33 illustrates a flip chip arrangement in which the bidirectional power delivery circuit device 800 of FIG32 includes a multi-terminal power switch (MPS) device 810 implemented in a separate semiconductor die and then flip chip mounted via solder bumps on pads 808. For example, without limitation, the MPS device 810 may be fabricated as a discrete higher power device in a wide bandgap semiconductor crystal. Pads 808 are formed on silicon wafer 801, which also contains the balance of the subsystems of the device 800 of FIG. 32, all monolithically integrated into silicon wafer 801. Two pads 806 are used for connection to the DC source/load 700 and AC load/source 900 shown in FIG. 32. Pads 802 are used to connect the controller 880 and communications circuitry 890 to devices and antennas external to the device 800.
在如圖34A中所示的一個特定實施例中,密封的雙向電力傳送電路裝置800的電子電路可以在單個矽單晶晶圓812內與用作圖32的DC源/負載700的至少一個光伏電池814聯合實施。In one particular embodiment as shown in FIG. 34A , the electronic circuitry of a sealed bidirectional power transfer circuit device 800 may be implemented within a single silicon single crystal wafer 812 in conjunction with at least one photovoltaic cell 814 used as the DC source/load 700 of FIG. 32 .
在參考圖34B進一步解釋的又一實施例中,如上所述,密封的雙向電力傳送電路裝置800的電子電路可以在單個矽單晶晶圓812內與用作圖32之DC源/負載700的至少一個光伏電池814、以及參考圖2B闡述且參考圖2A至圖5更詳細闡述之類型的共振器結構180′(用作矽單晶晶圓812一表面上的AC負載/源900)聯合實施。用於藍芽、WiFi、Zigbee及蜂巢技術的天線894亦可以一體結合在同單個矽單晶晶圓上。天線894未於圖34B中示出。在圖34A及圖34B中,連接818連接共振器180′及裝置800的調諧網路830。共振器180′可以用作用於裝置800中產生或由光伏電池814吸收之熱量的散熱片或散熱器。為此,共振器180′可以採用空氣作為介電質且同時作為冷卻劑流體。In yet another embodiment further explained with reference to FIG. 34B , as described above, the electronic circuitry of the sealed bidirectional power transmission circuit device 800 can be implemented in conjunction with at least one photovoltaic cell 814 used as the DC source/load 700 of FIG. 32 , and a resonator structure 180′ of the type described with reference to FIG. 2B and described in more detail with reference to FIGS. 2A to 5 (used as an AC load/source 900 on one surface of the silicon single crystal wafer 812). An antenna 894 for Bluetooth, WiFi, Zigbee, and cellular technologies can also be integrated on the same single silicon single crystal wafer. The antenna 894 is not shown in FIG. 34B . In Figures 34A and 34B, connection 818 connects resonator 180' and tuning network 830 of device 800. Resonator 180' can be used as a heat sink or heat dissipator for heat generated in device 800 or absorbed by photovoltaic cell 814. To this end, resonator 180' can use air as a dielectric and as a coolant fluid at the same time.
在其他實施例中,圖19A及圖19B的DC負載70′′在兩種情形下可以替換為AC負載70′′′,如分別在圖35A及圖35B中所示。圖35A及圖35B的系統10′′及410的其餘部分可以與圖19A及圖19B的系統10′′及410相同。可以將圖19A及圖19B的振盪器26A′′設定為圖19A及圖19B的AC負載70′′′所需的頻率及相位。在其他實施例中,發射器控制器22′′可以程式化以將振盪器26A′′設定為AC負載70′′′所需的頻率及相位。In other embodiments, the DC load 70" of FIGS. 19A and 19B may be replaced with an AC load 70"" in both cases, as shown in FIGS. 35A and 35B, respectively. The remainder of the systems 10" and 410 of FIGS. 35A and 35B may be the same as the systems 10" and 410 of FIGS. 19A and 19B. The oscillator 26A" of FIGS. 19A and 19B may be set to the desired frequency and phase of the AC load 70"" of FIGS. 19A and 19B. In other embodiments, the transmitter controller 22" may be programmed to set the oscillator 26A" to the desired frequency and phase of the AC load 70""
在圖35A及圖35B的系統的又其他實施例中,AC負載70′′′可以是電網,圖35A及圖35B的系統配置以將電力遞送至該電網。在此電網供應組態中,控制由圖35A及圖35B的系統饋送至所涉及之電網70′′′的信號的頻率、相位及電壓位準是重要的。為此,可以採用上文已闡述的資訊反饋機制將關於電網所需的頻率、相位及電壓位準的資訊發射回至發射器控制器22′′。此資訊可呈數位形式或呈類比形式。在圖35B的有線系統的某些實施例中,一額外信號線(未示出以避免混亂)可以自AC電網70′′′接至發射器控制器22′′或直接接至振盪器26A′′,以允許發射器模組20′′直接追蹤AC負載70′′′的頻率及相位,並藉此將電網70′′′所需的約束強加在圖35B之系統的輸出信號上。此等約束可以包括調變負載管理系統46E′′的輸出信號,以滿足電網70′′′的要求。該調變可以在與電網之頻率相等的頻率下且在將電力傳送至電網70′′′的相位及電壓位準下進行。In yet other embodiments of the system of FIGS. 35A and 35B , the AC load 70 ′″ may be a power grid to which the system of FIGS. 35A and 35B is configured to deliver power. In this power grid supply configuration, it is important to control the frequency, phase, and voltage level of the signal fed back from the system of FIGS. 35A and 35B to the power grid 70 ′″ in question. To this end, the information feedback mechanism described above may be used to transmit information about the frequency, phase, and voltage level required by the power grid back to the transmitter controller 22 ′′. This information may be in digital form or in analog form. In certain embodiments of the wired system of FIG. 35B , an additional signal line (not shown to avoid confusion) may be connected from the AC grid 70′″ to the transmitter controller 22″ or directly to the oscillator 26A″ to allow the transmitter module 20″ to directly track the frequency and phase of the AC load 70′″ and thereby impose the constraints required by the grid 70′″ on the output signal of the system of FIG. 35B . Such constraints may include modulating the output signal of the load management system 46E″ to meet the requirements of the grid 70′″. The modulation may be performed at a frequency equal to that of the grid and at a phase and voltage level at which power is delivered to the grid 70′″.
圖36示出圖32的系統的實施例,其中,圖32的AC負載/源900是AC電網900′。在此實施例中,正如圖35A及圖35B的系統一樣,可以將關於電網所需的頻率、相位及電壓位準的資訊發射回至控制器880。此允許控制器880經由相位、頻率及工作週期調整(PFDCA)電路820來調整MPS裝置810的控制端子處的信號,以滿足由電網900′強加的電力傳送要求。此等要求可以包括調變調諧網路830的輸出信號,以滿足電網70′′′的要求。該調變可以在與電網的頻率相等的頻率下且在將電力傳送至電網70′′′的相位及電壓位準下進行。儘管固有地是雙向的,但圖3的系統可以藉由此佈置用作將電力傳送至AC電網的手段。FIG36 shows an embodiment of the system of FIG32 in which the AC load/source 900 of FIG32 is an AC grid 900′. In this embodiment, as with the systems of FIG35A and FIG35B, information regarding the frequency, phase, and voltage level required by the grid may be transmitted back to the controller 880. This allows the controller 880 to adjust the signal at the control terminals of the MPS device 810 via the phase, frequency, and duty cycle adjustment (PFDCA) circuit 820 to meet the power delivery requirements imposed by the grid 900′. Such requirements may include modulating the output signal of the tuning network 830 to meet the requirements of the grid 70′″. The modulation may be performed at a frequency equal to that of the grid and at a phase and voltage level that delivers power to the grid 70′″. Although inherently bidirectional, the system of Figure 3 can be used in this arrangement as a means of delivering power to the AC grid.
現在返回至圖20A及圖20B、圖21A及圖21B以及圖22A及圖22B,每一太陽能電池420可以設置有感測器,以判定太陽能電池420的操作狀態。操作狀態可以無限制地包括電力位準、電壓位準、電流位準、溫度及其他效能參數。可以經由與太陽能電池420相關聯之發射器模組20′′將關於操作狀態的此資訊發射至接收器模組40′′。發射器模組20′′的操作狀態可以類似地經感測且經由發射器模組20′′發射至接收器模組40′′。參考圖33以及圖34A及圖34B,適合的感測器亦可以感測密封的雙向電力傳送電路裝置800及多端子電力切換(MPS)裝置810的效能參數。已經闡述經由MPS裝置810發射負載資訊。關於裝置800及810的效能參數的資訊可以類似地透過系統來發射。Returning now to FIGS. 20A and 20B, 21A and 21B, and 22A and 22B, each solar cell 420 may be provided with a sensor to determine the operating state of the solar cell 420. The operating state may include, without limitation, power levels, voltage levels, current levels, temperature, and other performance parameters. This information about the operating state may be transmitted to the receiver module 40" via the transmitter module 20" associated with the solar cell 420. The operating state of the transmitter module 20" may similarly be sensed and transmitted to the receiver module 40" via the transmitter module 20". 33 and 34A and 34B, suitable sensors may also sense performance parameters of the sealed bidirectional power transfer circuit device 800 and the multi-terminal power switching (MPS) device 810. It has been described that load information is transmitted via the MPS device 810. Information regarding performance parameters of the devices 800 and 810 may similarly be transmitted through the system.
圖37A及圖37B示出根據某些實施例之用於自DC源傳送電力的兩個可組態的雙向電力傳送系統。圖37C及圖37D示出用於在DC源與可變負載之間傳送電力之可組態的電力傳送系統的多個不同實施例。可變負載可以是AC負載(在圖37A及圖37B兩者的情形下)、DC負載(圖37B)或承載AC電力及DC電力的混合的負載(圖37B)。37A and 37B illustrate two configurable bidirectional power transfer systems for transferring power from a DC source according to certain embodiments. FIG. 37C and FIG. 37D illustrate multiple different embodiments of configurable power transfer systems for transferring power between a DC source and a variable load. The variable load may be an AC load (in the case of both FIG. 37A and FIG. 37B ), a DC load ( FIG. 37B ), or a load carrying a mixture of AC and DC power ( FIG. 37B ).
圖37A示出用於在DC源1028與AC負載/源1070之間傳送電力的系統950,該系統用於將電力自DC源傳送至在大約50 Hz或大約60 Hz之典型線頻率下操作的AC電網。系統950亦可以配置用於在相反方向上傳送電力。與圖19A、圖19B、圖35A及圖35B一樣,圖37A的系統950是基於自同步射頻整流器/放大器1025A及1025B的受控制功能,裝置1025A及1025B可以在放大器模式與整流器模式之間重新組態。該些裝置1025A及1025B可以與圖6及圖8的自同步射頻整流器/放大器26B以及圖7及圖9的整流器46D相同或類似。裝置1025A及1025B可以包括切換模式自同步射頻整流器/放大器。FIG. 37A shows a system 950 for transmitting power between a DC source 1028 and an AC load/source 1070, the system being used to transmit power from the DC source to an AC grid operating at a typical line frequency of about 50 Hz or about 60 Hz. The system 950 can also be configured to transmit power in the opposite direction. As with FIGS. 19A , 19B , 35A , and 35B , the system 950 of FIG. 37A is based on the controlled functionality of self-synchronous RF rectifiers/amplifiers 1025A and 1025B, which can be reconfigured between amplifier mode and rectifier mode. These devices 1025A and 1025B can be the same or similar to the self-synchronous RF rectifier/amplifier 26B of FIGS. 6 and 8 and the rectifier 46D of FIGS. 7 and 9 . Devices 1025A and 1025B may include switched-mode self-synchronous RF rectifier/amplifiers.
在第一實施例中,採用中央式控制器1080。控制器1080可以包括用於系統的保護電路。在其他實施例中,分佈式控制器可用於相同目的。當自DC源/負載1028傳送電力時,將裝置1025A及1025B放置在放大模式中,且其切換動作由高頻切換信號產生器1024提供的切換信號驅動。高頻切換信號產生器1024提供驅動裝置1025A及1025B的切換信號頻率,控制裝置1025A及1025B的切換工作週期,並確保裝置1025A及1025B的切換模式具有受控制相互相位及脈衝寬度關係。In a first embodiment, a central controller 1080 is employed. The controller 1080 may include protection circuitry for the system. In other embodiments, distributed controllers may be used for the same purpose. When power is delivered from the DC source/load 1028, the devices 1025A and 1025B are placed in an amplification mode, and their switching action is driven by a switching signal provided by a high-frequency switching signal generator 1024. The high-frequency switching signal generator 1024 provides the switching signal frequency that drives the devices 1025A and 1025B, controls the switching duty cycle of the devices 1025A and 1025B, and ensures that the switching modes of the devices 1025A and 1025B have a controlled mutual phase and pulse width relationship.
在圖37A及圖37B的系統中,高頻切換信號產生器1024將一個切換信號供應至裝置1025A及1025B中的每一者。在更一般系統(諸如下文關於圖37C及圖37D所述的那些系統)中,類似於高頻切換信號產生器1024的高頻切換信號產生器可以向多對自同步射頻整流器/放大器提供切換信號。在任一實施例中使用的高頻切換信號產生器的數量可變化的。例如,一個高頻切換信號產生器可以將切換信號提供至一對自同步射頻整流器/放大器。一個高頻切換信號產生器可以將切換信號提供至複數對自同步射頻整流器/放大器。In the systems of Figures 37A and 37B, a high frequency switching signal generator 1024 supplies a switching signal to each of devices 1025A and 1025B. In more general systems (such as those described below with respect to Figures 37C and 37D), a high frequency switching signal generator similar to high frequency switching signal generator 1024 can provide switching signals to multiple pairs of self-synchronous RF rectifiers/amplifiers. The number of high frequency switching signal generators used in any embodiment can vary. For example, a high frequency switching signal generator can provide a switching signal to a pair of self-synchronous RF rectifiers/amplifiers. A high frequency switching signal generator can provide a switching signal to a plurality of pairs of self-synchronous RF rectifiers/amplifiers.
高頻切換信號產生器1024可以由控制器1080控制以利用第一頻率為f A的第一切換信號驅動差分自同步射頻整流器/放大器1025A (在放大器模式中)。同時,高頻切換信號產生器1024可以由控制器1080控制以利用第二頻率為f B的第二切換信號驅動差分自同步射頻整流器/放大器1025B (在放大器模式中),其中: f B= f A+ ∆f …(方程式1), 在方程式1中,第二切換信號及第一切換信號的頻率之間的差頻∆f是旨在在將傳送的電力供應至AC負載/源1070的頻率的兩倍。 The high frequency switching signal generator 1024 can be controlled by the controller 1080 to drive the differential self-synchronous RF rectifier/amplifier 1025A (in amplifier mode) with a first switching signal having a first frequency of f A. At the same time, the high frequency switching signal generator 1024 can be controlled by the controller 1080 to drive the differential self-synchronous RF rectifier/amplifier 1025B (in amplifier mode) with a second switching signal having a second frequency of f B , wherein: f B = f A + ∆f … (Equation 1), In equation 1, the difference frequency ∆f between the frequencies of the second switching signal and the first switching signal is twice the frequency at which the power to be delivered is to be supplied to the AC load/source 1070.
在AC負載/源1070於不存在系統950的情況下不載運功率信號的實施例中,頻率f B及f A以及藉此差頻∆f可簡單地在高頻切換信號產生器1024中設定或由高頻切換信號產生器1024設定。頻率f B及f A可以彼此相差一差頻∆f,該差頻是旨在注入AC負載/源1070中之功率信號的頻率的兩倍大。在某些實施例中,頻率f B及f A可以由控制器1080基於設計選擇在高頻切換信號產生器1024中設定。 In embodiments where the AC load/source 1070 does not carry a power signal in the absence of the system 950, the frequencies fB and fA , and thereby the difference frequency ∆f, may simply be set in or by the high frequency switching signal generator 1024. The frequencies fB and fA may differ from each other by a difference frequency ∆f that is twice as large as the frequency of the power signal intended to be injected into the AC load/source 1070. In certain embodiments, the frequencies fB and fA may be set in the high frequency switching signal generator 1024 by the controller 1080 based on design choice.
在AC負載/源1070中(諸如住宅電網中)存在現有AC功率信號的其他實施例中,可以藉由感測AC負載/源1070的操作頻率f L在高頻切換信號產生器1024中設定切換信號的頻率f B及f A,且經由可選的隔離器系統1090及鎖相迴路1095將頻率f L的參考信號傳送至高頻切換信號產生器1024。在本說明書中,術語「負載資訊電路」用於闡述電路的節段。為了將此額外電路部分與在AC負載/源1070中不存在現有功率信號的情況下使用的電路部分區分開,此負載資訊電路及其組件在圖37A中以虛線示出。參考信號流在該電路中的方向由圖37A中的箭頭給出。在某些情況下,對於某些區域,可以包括可選的隔離器系統1090。當負載不載運功率信號時,某些區域可需要藉由調節來與AC負載/源1070隔離。可選的隔離器系統1090可以包括氣隙。熟習此項技術者將認識到如何使用隔離器來提供資料及定時信號,且本文不闡述其細節。在其他實施例中,代替採用參考信號,可以將關於負載中的功率信號的DC位準、頻率及相位中的至少一者的資訊傳送至高頻切換信號產生器1024。 In other embodiments where there is an existing AC power signal in the AC load/source 1070 (such as in a residential electrical grid), the frequencies f B and f A of the switching signals can be set in the high frequency switching signal generator 1024 by sensing the operating frequency f L of the AC load/source 1070, and a reference signal of frequency f L is transmitted to the high frequency switching signal generator 1024 via an optional isolator system 1090 and a phase-locked loop 1095. In this specification, the term "load information circuit" is used to describe a section of the circuit. To distinguish this additional circuit portion from the circuit portion used when there is no existing power signal in the AC load/source 1070, this load information circuit and its components are shown in dashed lines in Figure 37A. The direction of reference signal flow in this circuit is given by the arrows in Figure 37A. In some cases, an optional isolator system 1090 may be included for certain areas. When the load is not carrying a power signal, certain areas may need to be isolated from the AC load/source 1070 by conditioning. The optional isolator system 1090 may include an air gap. Those skilled in the art will recognize how to use isolators to provide data and timing signals, and the details are not explained herein. In other embodiments, instead of using a reference signal, information about at least one of the DC level, frequency, and phase of the power signal in the load may be transmitted to the high frequency switching signal generator 1024.
高頻切換信號產生器1024可以使所感測到的頻率f L倍增,以判定頻率f B與f A之間所需的差頻∆f,並在所得的頻率f B及f A下將切換信號施加至裝置1025A及1025B。在此實施例中,感測AC負載/源1070的操作頻率f L的程序、將信號傳送至高頻切換信號產生器1024以及使操作頻率f L倍增皆可以在控制器1080的控制下進行。為了避免使圖37A混亂,未示出自控制器1080伸展至其感測或控制的裝置(包括裝置1025A及1025B) 的控制線。應注意的是,切換信號的頻率f B及f A僅必須相差∆f=2f L。差頻∆f可以根據上述方程式1獲得。可以在高頻切換信號產生器1024中判定彼此相差∆f=2f L之兩個適合的頻率f B及f A。此處闡述的佈置有助於自DC源1028供應的電力與電網負載同相,並藉以允許高效的電力傳送。 The high frequency switching signal generator 1024 may multiply the sensed frequency f L to determine the desired difference frequency ∆f between the frequencies f B and f A and apply the switching signal to the devices 1025A and 1025B at the resulting frequencies f B and f A. In this embodiment, the process of sensing the operating frequency f L of the AC load/source 1070, transmitting the signal to the high frequency switching signal generator 1024, and multiplying the operating frequency f L may all be performed under the control of the controller 1080. To avoid cluttering FIG. 37A, the control lines extending from the controller 1080 to the devices it senses or controls (including the devices 1025A and 1025B) are not shown. It should be noted that the frequencies f B and f A of the switching signals only need to differ by ∆f = 2f L . The difference frequency ∆f can be obtained according to the above equation 1. Two suitable frequencies f B and f A which differ from each other by ∆f=2f L can be determined in the high frequency switching signal generator 1024. The arrangement described herein helps the power supplied from the DC source 1028 to be in phase with the grid load, thereby allowing efficient power transmission.
在某些實施例中,驅動裝置1025A及1025B的切換信號可以選擇為在1 Mhz與1 GHz之間的範圍內。在某些實施例中,系統950的第一切換信號及第二切換信號可以選擇為在100 kHz與1 GHz之間的範圍內。在某些實施例中,該等信號可以選擇為在本發明之前已闡述的ISM頻帶中。在本文中使用術語「高頻」(高頻)來闡述大約100 Hz與1 Hz之間的頻率。裝置1025B及1025A可以經由高頻功率鏈路系統1065將其分別在頻率f B及f A下自DC源/負載1028汲取的任何電力發射至切換模式整流器1067。整流器1067的操作可以由控制器1080使用控制線來控制,為了清楚起見,該等控制線未在圖37A中示出。 In some embodiments, the switching signals driving devices 1025A and 1025B can be selected to be in the range between 1 MHz and 1 GHz. In some embodiments, the first switching signal and the second switching signal of system 950 can be selected to be in the range between 100 kHz and 1 GHz. In some embodiments, the signals can be selected to be in the ISM band previously described in the present invention. The term "high frequency" (high frequency) is used herein to describe frequencies between approximately 100 Hz and 1 Hz. Devices 1025B and 1025A can transmit any power drawn from the DC source/load 1028 at frequencies f B and f A , respectively, to the switching mode rectifier 1067 via the high frequency power link system 1065. The operation of the rectifier 1067 can be controlled by the controller 1080 using control lines, which are not shown in Figure 37A for clarity.
高頻功率鏈路系統1065可以是有線的或無線的。在某些實施例中,高頻功率鏈路系統1065可以是近場無線鏈路。在某些實施例中,高頻功率鏈路系統1065可以是近場雙峰無線鏈路。此等各種高頻鏈路之前已在本發明中闡述。參考圖1至圖10、圖19A及圖19B以及圖32至圖36詳細闡述了近場雙峰無線鏈路。鑒於上文已闡述的雙峰鏈路之有意較低的品質因子Q,分別在頻率f B及f A下自裝置1025B及1025A發出的功率信號可以在一個近場雙峰無線鏈路上同時傳輸。 The high frequency power link system 1065 can be wired or wireless. In some embodiments, the high frequency power link system 1065 can be a near field wireless link. In some embodiments, the high frequency power link system 1065 can be a near field dual peak wireless link. Such various high frequency links have been previously described in the present invention. The near field dual peak wireless link is described in detail with reference to Figures 1 to 10, Figures 19A and 19B, and Figures 32 to 36. In view of the intentionally lower quality factor Q of the bimodal link described above, the power signals emitted from devices 1025B and 1025A at frequencies f B and f A , respectively, can be transmitted simultaneously in a near-field bimodal wireless link.
在內部,高頻功率鏈路系統1065可以包括參考圖7所述之類型的單個高頻無線接收器模組,該高頻無線接收器模組與圖6中所述之類型的一個或多個高頻無線發射器模組進行通信。在某些實施例中,高頻功率鏈路系統1065可以包括參考圖19B闡述之類型的單個接收器模組,該接收器模組配置以接收藉由導線自圖19B中闡述的類型的一個或多個發射器模組發射的電力。在某些實施例中,高頻功率鏈路系統1065可以具有單個發射器模組及單個接收器模組,如由圖37A中闡述的系統所要求。即使在高頻功率鏈路系統1065中可能僅存在單個發射器模組,該發射器模組亦可以由兩個自同步射頻整流器/放大器1025A及1025B差分地驅動。特別是在光伏系統中,採用複數個發射器模組將電力傳送至單個接收器可以是有用的,如已參考圖20A及圖20B所述。Internally, the high frequency power link system 1065 may include a single high frequency wireless receiver module of the type described with reference to FIG. 7 that communicates with one or more high frequency wireless transmitter modules of the type described in FIG. 6 . In some embodiments, the high frequency power link system 1065 may include a single receiver module of the type described with reference to FIG. 19B that is configured to receive power transmitted by wires from one or more transmitter modules of the type described in FIG. 19B . In some embodiments, the high frequency power link system 1065 may have a single transmitter module and a single receiver module as required by the system described in FIG. 37A . Even though there may be only a single transmitter module in the high frequency power link system 1065, the transmitter module can be driven differentially by the two self-synchronous RF rectifier/amplifiers 1025A and 1025B. In particular, in photovoltaic systems, it can be useful to employ multiple transmitter modules to transmit power to a single receiver, as has been described with reference to FIGS. 20A and 20B.
圖37A的系統僅需要一對自同步射頻整流器/放大器1025A及1025B。裝置1025A及1025B中的每一者示出為具有進入高頻功率鏈路系統1065的一條信號線。在下文稍後要討論的其他實施例中,可以存在其他對自同步射頻整流器/放大器。這些裝置可以在與圖37A的裝置1025A及1025B相同或不同的頻率下操作。本領域從業者將清楚,自兩個自同步射頻整流器/放大器饋送相同頻率及相位的兩個信號將不需要進入高頻功率鏈路系統1065的單獨佈線,且可以使用相同實體佈線。為減少本說明書中附圖的數量及其複雜性,將示出每一自同步射頻整流器/放大器的單獨佈線,即使來自兩個單獨的自同步射頻整流器/放大器的信號也可以是相同的。The system of FIG. 37A requires only one pair of self-synchronous RF rectifier/amplifiers 1025A and 1025B. Each of devices 1025A and 1025B is shown as having one signal line entering the high frequency power link system 1065. In other embodiments to be discussed later below, there may be other pairs of self-synchronous RF rectifier/amplifiers. These devices may operate at the same or different frequencies as the devices 1025A and 1025B of FIG. 37A. It will be clear to practitioners in the art that feeding two signals of the same frequency and phase from two self-synchronous RF rectifier/amplifiers will not require a separate wiring to enter the high frequency power link system 1065, and the same physical wiring may be used. To reduce the number and complexity of the drawings in this specification, a separate wiring for each self-synchronous RF rectifier/amplifier will be shown, even though the signals from two separate self-synchronous RF rectifier/amplifiers can be the same.
圖37A的高頻功率鏈路系統1065在其接收側中混合頻率為f B及f A的兩個高頻信號,藉以產生在頻率∆f/2下所調變之傳送的功率信號,該傳送的功率信號與由包括裝置1025B及1025A的組件中的非線性、雜訊以及其他非正弦因子所得的各種泛音頻率一起發射。由於高頻功率鏈路系統1065是調諧系統,因此除承載在差頻∆f下調變的載波信號外,所有此等信號皆可以在高頻功率鏈路系統1065的接收側來濾波。整流器1067及展開電路1069亦進一步確保僅在差頻∆f下的調變通過系統950到達負載/源1070。 The high frequency power link system 1065 of FIG37A mixes two high frequency signals of frequencies f B and f A on its receiving side to produce a transmitted power signal modulated at frequency ∆f/2, which is transmitted together with various overtone frequencies resulting from nonlinearity, noise, and other non-sinusoidal factors in the components including devices 1025B and 1025A. Since the high frequency power link system 1065 is a tuned system, all of these signals except the carrier signal modulated at the difference frequency ∆f can be filtered on the receiving side of the high frequency power link system 1065. The rectifier 1067 and expansion circuit 1069 also further ensure that only modulation at the difference frequency ∆f passes through the system 950 to reach the load/source 1070.
圖38示出由圖37A中的系統950的整流器1067產生用於傳送至AC負載/源1070的信號的波形。由整流器1067產生之整流的功率信號呈具有極性相同且頻率等於差頻∆f的一連串相鄰半波1048的形式。整流的功率信號由展開電路1069接收,且每個第二半波經反轉以在∆f/2的頻率下形成大致正弦展開的輸出功率信號1049。展開電路1069的動作可以透過控制器1080經由控制線來控制,為了避免混亂,該等控制線未在圖37A中示出。術語「展開輸出功率信號」用於闡述由展開電路1069提供至AC負載/源1070的功率信號。FIG38 shows a waveform of a signal generated by the rectifier 1067 of the system 950 in FIG37A for transmission to the AC load/source 1070. The rectified power signal generated by the rectifier 1067 is in the form of a series of adjacent half-waves 1048 having the same polarity and a frequency equal to the difference frequency ∆f. The rectified power signal is received by the spreading circuit 1069, and each second half-wave is inverted to form a substantially sinusoidal spread output power signal 1049 at a frequency of ∆f/2. The action of the spreading circuit 1069 can be controlled by the controller 1080 via control lines, which are not shown in FIG37A to avoid clutter. The term "spread output power signal" is used to describe the power signal provided by the spreading circuit 1069 to the AC load/source 1070.
在AC負載/源1070於不存在系統950的情況下不載運現有功率信號的情形下,高頻切換信號產生器1024可以觸發展開電路1069的工作,以確保其展開操作與來自整流器裝置1067的功率信號同步。In the event that the AC load/source 1070 is not carrying an existing power signal in the absence of the system 950, the high frequency switching signal generator 1024 can trigger the operation of the development circuit 1069 to ensure that its development operation is synchronized with the power signal from the rectifier device 1067.
在不存在系統950的情況下AC負載/源1070中存在功率信號的情形下,在操作頻率f L下來自AC負載/源1070的參考信號可選地直接自AC負載/源1070路由,並用於觸發展開電路1069的工作,以確保其展開操作與來自裝置1067的功率信號同步。在圖37A中,自AC負載/源1070直接向後朝展開電路1069延伸的虛線表示參考信號自AC負載/源1070朝向展開電路1069的該路線。術語「功率信號轉換電路」用於闡述裝置1067及1069的組合。 In the event that a power signal is present in AC load/source 1070 in the absence of system 950, a reference signal from AC load/source 1070 at operating frequency f L is optionally routed directly from AC load/source 1070 and used to trigger operation of deployment circuit 1069 to ensure that its deployment operation is synchronized with the power signal from device 1067. In FIG. 37A , the dashed line extending directly from AC load/source 1070 back toward deployment circuit 1069 represents this route of the reference signal from AC load/source 1070 toward deployment circuit 1069. The term “power signal conversion circuit” is used to describe the combination of devices 1067 and 1069.
在本文件之前述部分中已闡述可如何採用本文討論之一般類型的電力傳送系統來在與已在上文直接闡述之方向相反的方向上傳送電力。對於該操作,將裝置1025A及1025B設定為其整流器模式及切換模式,將整流器1067切換至常開模式,其中,裝置1067的輸入直接連接至其輸出。此模式設定可以由控制器1080經由到達彼等裝置之控制線來執行。已闡述該類型的裝置1065的鏈路可以如何在與在上文解釋的方向相反的方向上傳送電力。裝置1025A及1025B亦如此。淨效應是將電力自AC負載/源1070傳送至DC負載/源1028。It has been explained in the previous section of this document how a power transfer system of the general type discussed herein can be employed to transfer power in a direction opposite to that which has been explained directly above. For this operation, devices 1025A and 1025B are set to their rectifier mode and switching mode, and rectifier 1067 is switched to a normally open mode, wherein the input of device 1067 is directly connected to its output. This mode setting can be performed by controller 1080 via control lines to those devices. It has been explained how a link of devices 1065 of this type can transfer power in a direction opposite to that explained above. The same is true for devices 1025A and 1025B. The net effect is to transfer power from AC load/source 1070 to DC load/source 1028.
此外,如之前已在本文件中所解釋,關於源側及負載側的資訊可以在實際功率信號上直接在源與負載之間傳送,或可以由控制器1080獲得以用於控制系統的目的。在將系統950的發射側及接收側實體地分開容納的某些實施例中,經由功率信號進行資訊的傳送可以是重要的。當高頻功率鏈路系統1065是無線鏈路時,其可以是有用的。Furthermore, as has been explained previously in this document, information about the source side and the load side can be transmitted directly between the source and the load on the actual power signal, or can be obtained by the controller 1080 for the purpose of controlling the system. In certain embodiments where the transmit side and the receive side of the system 950 are physically separated and housed, the transmission of information via the power signal can be important. This can be useful when the high frequency power link system 1065 is a wireless link.
使用高頻頻率在DC源與AC電網之間傳送電力導致使用體積較小的高頻切換裝置,並為將大部分電路一體結合至半導體積體電路中創造機會。此等電路的實施遵循與關於圖33及圖34A和圖34B所呈現的線路相同。此外,在此配置中,可以控制且最小化例如自信號轉換產生的總諧波失真。The use of high frequency to transfer power between a DC source and an AC grid results in the use of relatively small high frequency switching devices and creates the opportunity to integrate much of the circuitry into a semiconductor integrated circuit. The implementation of these circuits follows the same lines as presented with respect to FIG. 33 and FIG. 34A and FIG. 34B. Furthermore, in this configuration, total harmonic distortion, such as that resulting from signal conversion, can be controlled and minimized.
圖37B示出另一可組態的雙向電力傳送系統950′,用於在DC源/負載1028與在此實施例中可以是DC或AC的負載/源1070′之間傳送電力。帶有與圖37A中相同標示之圖37B中的元件與圖37A中之對應元件相同。該系統950′亦可以配置用於在相反方向上傳送電力。與參考圖37A闡述的系統一樣,圖37B的該系統950′基於已在前述文本中所闡述之自同步射頻整流器/放大器1025A及1025B的受控制功能。FIG. 37B shows another configurable bidirectional power transfer system 950′ for transferring power between a DC source/load 1028 and a load/source 1070′, which in this embodiment can be DC or AC. Elements in FIG. 37B with the same reference numerals as in FIG. 37A are the same as the corresponding elements in FIG. 37A. The system 950′ can also be configured to transfer power in the opposite direction. As with the system described with reference to FIG. 37A, the system 950′ of FIG. 37B is based on the controlled functionality of the self-synchronous RF rectifier/amplifiers 1025A and 1025B that have been described in the preceding text.
在圖37B中所示的某些實施例中,採用中央控制器1080。控制器1080可以包括用於系統的保護電路。在某些實施例中,分佈式控制器可以用於相同目的。當自DC源/負載1028傳送電力時,將裝置1025A及1025B放置於放大模式中。高頻切換信號產生器1024為裝置1025A及1025B提供共用切換頻率f C,並控制裝置1025A及1025B的切換工作週期,且確保裝置1025A及1025B的切換模式具有受控制相互相位及脈衝寬度關係。在某些實施例中,高頻切換信號產生器1024可以用於調整供應至裝置1025A及1025B的兩個切換信號的相互相位差。 In certain embodiments shown in FIG. 37B , a central controller 1080 is employed. The controller 1080 may include protection circuitry for the system. In certain embodiments, a distributed controller may be used for the same purpose. When power is delivered from the DC source/load 1028 , the devices 1025A and 1025B are placed in an amplification mode. The high frequency switching signal generator 1024 provides a common switching frequency f C for the devices 1025A and 1025B and controls the switching duty cycle of the devices 1025A and 1025B and ensures that the switching patterns of the devices 1025A and 1025B have a controlled mutual phase and pulse width relationship. In some embodiments, the high frequency switching signal generator 1024 may be used to adjust the relative phase difference between the two switching signals supplied to the devices 1025A and 1025B.
高頻切換信號產生器1024可以由控制器1080控制以利用頻率為f C且第一相位為ɸ1的第一切換信號驅動差分自同步射頻整流器/放大器1025A (在放大器模式中)。同時地或基本上同時地,高頻切換信號產生器1024可以由控制器1080控制以利用具有相同頻率f C但具有不同第二相位的第二切換信號驅動差分自同步射頻整流器/放大器1025A (在放大器模式中),該第二相位由以下方程式給出: ɸ2 = ɸ1+∆ɸ … (方程式2), 其中,∆ɸ是第一切換信號及第二切換信號的相互相位差。 The high-frequency switching signal generator 1024 can be controlled by the controller 1080 to drive the differential self-synchronous RF rectifier/amplifier 1025A (in amplifier mode) with a first switching signal having a frequency of f C and a first phase of ɸ1. Simultaneously or substantially simultaneously, the high-frequency switching signal generator 1024 can be controlled by the controller 1080 to drive the differential self-synchronous RF rectifier/amplifier 1025A (in amplifier mode) with a second switching signal having the same frequency f C but a different second phase, which is given by the following equation: ɸ2 = ɸ1 + ∆ɸ … (Equation 2), where ∆ɸ is the mutual phase difference between the first switching signal and the second switching signal.
第一切換信號及第二切換信號的頻率f C可以在高頻切換信號產生器1024中設定。在某些實施例中,可以基於設計選擇在高頻切換信號產生器1024中設定頻率f C。在某些實施例中,頻率f C可以在高頻切換信號產生器1024中設定為對高頻功率鏈路系統1065優選的頻率f C。然而,在如圖37A所示的系統950的情形下,頻率f A及f B經由其差頻∆f至少部分地與負載頻率相關,圖37B的系統950′的頻率f C不基於AC/DC負載/源1070′中之任何信號的頻率。相反地,在圖37B的系統950′的情形下,高頻切換信號產生器1024基於自負載/源1070′獲得的資訊將相互相位差∆ɸ強加在第一切換信號及第二切換信號上。 The frequency f C of the first switching signal and the second switching signal may be set in the high frequency switching signal generator 1024. In some embodiments, the frequency f C may be set in the high frequency switching signal generator 1024 based on design choice. In some embodiments, the frequency f C may be set in the high frequency switching signal generator 1024 to a frequency f C that is preferred for the high frequency power link system 1065. However, in the case of the system 950 shown in FIG37A, the frequencies f A and f B are at least partially related to the load frequency via their difference frequency ∆f, and the frequency f C of the system 950′ of FIG37B is not based on the frequency of any signal in the AC/DC load/source 1070′. In contrast, in the case of system 950′ of FIG. 37B , the high frequency switching signal generator 1024 imposes a mutual phase difference ∆ɸ on the first switching signal and the second switching signal based on information obtained from the load/source 1070′.
在頻率f C下通過差分自同步射頻整流器/放大器1025A及1025B自DC源/負載1028提取電力,以產生兩個獨立的高頻功率信號,其頻率f C及相位透過可調的相互相位差∆ɸ而不同。高頻功率鏈路系統1065在其操作期間在其接收側將來自差分自同步射頻整流器/放大器1025A及1025B的兩個高頻功率信號混合,以產生傳送的功率信號。在高頻切換信號產生器1024的控制下,在頻率f C下傳送的功率信號具有由第一切換信號與第二切換信號之間的相位差∆ɸ判定的振幅。在頻率域中,其進一步包括由包含裝置1025B及1025A的組件中的非線性、雜訊及其他非正弦因素所得的各種泛音頻率。由於高頻功率鏈路系統1065是經調諧的系統,因此其可以濾除除頻率f C下所傳送的功率信號以外的所有信號。 Power is extracted from a DC source/load 1028 at a frequency f C by differential self-synchronous RF rectifiers/amplifiers 1025A and 1025B to generate two independent high-frequency power signals whose frequencies f C and phases differ by an adjustable mutual phase difference ∆ɸ. The high-frequency power link system 1065 mixes the two high-frequency power signals from the differential self-synchronous RF rectifiers/amplifiers 1025A and 1025B at its receiving side during its operation to generate a transmitted power signal. Under the control of the high-frequency switching signal generator 1024, the transmitted power signal at a frequency f C has an amplitude determined by the phase difference ∆ɸ between the first switching signal and the second switching signal. In the frequency domain, it further includes various overtone frequencies resulting from nonlinearity, noise, and other non-sinusoidal factors in the components including devices 1025B and 1025A. Since high frequency power link system 1065 is a tuned system, it can filter out all signals except the power signal transmitted at frequency fC .
若相位差∆ɸ未調整,則產生在頻率f C下具有固定振幅之所傳送的功率信號。藉由調整第一切換信號與第二切換信號之間的相位差∆ɸ,可以調整已參考圖37A闡述之由高頻功率鏈路系統1065產生的信號的振幅。高頻切換信號產生器1024可以配置以基於負載的類型及其瞬時電荷位準來調整相位差以向負載提供充電信號。此充電位準可以經由控制器1080設定及控制。為此,控制器可以提供適於負載/源1070′(例如Ni-Cd、鋰離子等)之類型或技術的粗略設定,以及基於例如負載中電荷的耗盡百分比來控制所選負載類型的充電程序的精細設定。 If the phase difference ∆ɸ is not adjusted, a transmitted power signal having a fixed amplitude at frequency f C is generated. By adjusting the phase difference ∆ɸ between the first switching signal and the second switching signal, the amplitude of the signal generated by the high frequency power link system 1065 described with reference to FIG. 37A can be adjusted. The high frequency switching signal generator 1024 can be configured to adjust the phase difference based on the type of load and its instantaneous charge level to provide a charging signal to the load. This charging level can be set and controlled via the controller 1080. To this end, the controller may provide coarse settings appropriate for the type or technology of load/source 1070′ (e.g., Ni—Cd, lithium ion, etc.), as well as fine settings to control the charging process for the selected load type based on, for example, the percentage of charge depleted in the load.
在負載/源1070′是AC負載的情形下,可以操作相同系統950′以將電力以AC形式傳送至負載/源1070′。藉由在高頻切換信號產生器1024中在預定相位調變頻率f M下調變相位差∆ɸ,可以將AC電力傳送至負載/源1070′。因此,通常,藉由經由高頻切換信號產生器1024對相位差∆ɸ進行適合控制,電力可以作為大小及極性可調的DC及/或作為AC功率信號自DC源/負載1028傳送至負載/源1070′。 In the case where the load/source 1070′ is an AC load, the same system 950′ can be operated to deliver power to the load/source 1070′ in AC form. By modulating the phase difference ∆ɸ at a predetermined phase modulation frequency f M in the high-frequency switching signal generator 1024, the AC power can be delivered to the load/source 1070′. Thus, in general, by appropriately controlling the phase difference ∆ɸ via the high-frequency switching signal generator 1024, power can be delivered from the DC source/load 1028 to the load/source 1070′ as a DC and/or AC power signal with adjustable magnitude and polarity.
接下來,考慮第一切換信號與第二切換信號之間的相位差∆ɸ的調變及相位調變頻率f M的預先判定。在AC/DC負載/源1070′中存在現有AC功率信號的實施例中(諸如在住宅電網中),可以在高頻切換信號產生器1024中藉由以下操作設定預先判定的相位調變頻率f M:感測負載/源1070′的操作頻率f L,並經由可選的隔離器系統1090及鎖相迴路1095將具有頻率f L的參考信號傳送至高頻切換信號產生器1024。在本說明書中,術語「負載資訊電路」用於闡述電路的此節段。為了將此額外電路部分與在負載/源1070′中不存在現有AC功率信號的情況下使用的電路部分區分開,此負載資訊電路及其組件在圖37B中以虛線示出。參考信號流在該電路中的方向由圖37B中的箭頭給出。在某些情況下,例如無限制地,當負載/源1070′是DC負載/源時可以包括可選的隔離器系統1090。當負載不載運功率信號時,某些區域亦可以特定地需要藉由調節與AC負載/源1070隔離。可選的隔離器系統1090可以包括氣隙。經由隔離器提供資料及定時信號的方法在本領域中是眾所周知的,且將不在本文中進行擴大。 Next, consider the modulation of the phase difference ∆ɸ between the first switching signal and the second switching signal and the pre-determination of the phase modulation frequency f M. In embodiments where an existing AC power signal is present in the AC/DC load/source 1070′ (such as in a residential power grid), the pre-determined phase modulation frequency f M can be set in the high-frequency switching signal generator 1024 by sensing the operating frequency f L of the load/source 1070′ and transmitting a reference signal having a frequency f L to the high-frequency switching signal generator 1024 via the optional isolator system 1090 and the phase-locked loop 1095. In this specification, the term “load information circuit” is used to describe this section of the circuit. In order to distinguish this additional circuit portion from the circuit portion used when there is no existing AC power signal in the load/source 1070', this load information circuit and its components are shown in dashed lines in Figure 37B. The direction of reference signal flow in this circuit is given by the arrows in Figure 37B. In some cases, such as without limitation, when the load/source 1070' is a DC load/source, an optional isolator system 1090 may be included. When the load does not carry a power signal, certain areas may also specifically need to be isolated from the AC load/source 1070 by conditioning. The optional isolator system 1090 may include an air gap. Methods for providing data and timing signals via isolators are well known in the art and will not be expanded upon herein.
高頻切換信號產生器1024可以基於AC/DC負載/源1070′之所感測操作頻率f L來判定相位調變頻率f M,且將此調變應用於分別供應至裝置1025A及1025B的第一切換信號與第二切換信號之間的相位差∆ɸ。在某些實施例中,感測AC負載/源1070′的操作頻率f L的程序、將信號傳送至高頻切換信號產生器1024以及判定相位調變頻率f M皆可以在控制器1080的控制下進行。為避免使圖37B混亂,未示出自控制器1080伸展至其感測或控制的裝置(包括裝置1025A及1025B)的控制線。自DC源1028供應的電力可以與AC/DC負載/源1070′中的功率信號保持同相,從而允許高效電力傳送。此將在下文中進一步解釋。 The high frequency switching signal generator 1024 can determine the phase modulation frequency f M based on the sensed operating frequency f L of the AC/DC load/source 1070 ′ and apply this modulation to the phase difference ∆ɸ between the first switching signal and the second switching signal supplied to the devices 1025A and 1025B, respectively. In some embodiments, the process of sensing the operating frequency f L of the AC load/source 1070 ′, transmitting the signal to the high frequency switching signal generator 1024, and determining the phase modulation frequency f M can all be performed under the control of the controller 1080. To avoid cluttering FIG. 37B , control lines extending from the controller 1080 to the devices it senses or controls (including devices 1025A and 1025B) are not shown. The power supplied from the DC source 1028 can be kept in phase with the power signal in the AC/DC load/source 1070', thereby allowing efficient power transfer. This will be further explained below.
用於驅動裝置1025A及1025B的系統950′的第一切換信號及第二切換信號可以選擇為在1 MHz與1 GHz之間的範圍內。在某些實施例中,系統950′的第一切換信號及第二切換信號可以選擇為在100 kHz與1 GHz之間的範圍內。在某些實施例中,該等信號可以選擇為在本發明之前已闡述的ISM頻帶中。裝置1025B及1025A可以將其在頻率f C下自DC源/負載1028提取的任何電力經由高頻功率鏈路系統1065發射至切換模式整流器1067。切換模式整流器1067可以具有與圖37A中所示的佈置相同或類似的佈置。整流器1067的操作可以由控制器1080使用控制線來控制,為了清楚起見,該等控制線未在圖37B中示出。 The first switching signal and the second switching signal of the system 950' for driving the devices 1025A and 1025B can be selected to be in the range between 1 MHz and 1 GHz. In some embodiments, the first switching signal and the second switching signal of the system 950' can be selected to be in the range between 100 kHz and 1 GHz. In some embodiments, the signals can be selected to be in the ISM band previously described in the present invention. The devices 1025B and 1025A can transmit any power they extract from the DC source/load 1028 at a frequency f C to the switching mode rectifier 1067 via the high frequency power link system 1065. The switching mode rectifier 1067 can have an arrangement that is the same or similar to the arrangement shown in FIG. 37A. The operation of the rectifier 1067 may be controlled by the controller 1080 using control lines which are not shown in FIG. 37B for clarity.
高頻功率鏈路系統1065可以是有線的或無線的。在某些實施例中,高頻功率鏈路系統1065可以是近場無線鏈路。在某些實施例中,高頻功率鏈路系統1065可以是近場雙峰無線鏈路。此等各種高頻鏈路之前已在本發明中闡述。參考圖1至圖10、圖19A及圖19B以及圖32至圖36詳細闡述了近場雙峰無線鏈路。鑒於上文已闡述之雙峰鏈路之有意較低的品質因子Q,在頻率f C下自裝置1025A及1025B發出之分別具有相位ɸ1及ɸ2的功率信號可以在一個近場雙峰無線鏈路上同時傳輸。 The high frequency power link system 1065 can be wired or wireless. In some embodiments, the high frequency power link system 1065 can be a near field wireless link. In some embodiments, the high frequency power link system 1065 can be a near field dual peak wireless link. Such various high frequency links have been previously described in the present invention. The near field dual peak wireless link is described in detail with reference to Figures 1 to 10, Figures 19A and 19B, and Figures 32 to 36. In view of the intentionally lower quality factor Q of the dual-peak link described above, power signals with phases ɸ1 and ɸ2 emitted from devices 1025A and 1025B, respectively, at frequency f C can be transmitted simultaneously in a near-field dual-peak wireless link.
如之前已陳述,高頻功率鏈路系統1065可以在內部包括關於圖7及圖19B所闡述之類型的單個高頻接收器模組,該高頻接收器模組與圖6及圖19B中所闡述之類型的一個或多個高頻發射器模組進行通信。與圖37A一樣,圖37B的高頻功率鏈路系統1065可以具有由裝置1025A及1025B差分驅動的單個高頻接收器模組及單個發射器模組。As previously stated, the high frequency power link system 1065 may internally include a single high frequency receiver module of the type described with respect to Figures 7 and 19B, which communicates with one or more high frequency transmitter modules of the type described in Figures 6 and 19B. As with Figure 37A, the high frequency power link system 1065 of Figure 37B may have a single high frequency receiver module and a single transmitter module differentially driven by devices 1025A and 1025B.
在圖37B的系統950’的情形下,與圖37A的系統950一樣,由整流器1067產生之經整流的功率信號可以呈極性相同的一連串相鄰半波的形式。經整流的功率信號由展開電路1069接收,且每個第二半波經反轉以在負載(若存在)中的信號的頻率下形成大致正弦展開的輸出功率信號。與系統950一樣,術語「展開輸出功率信號」用於闡述由展開電路1069提供至AC負載/源1070的功率信號。In the case of the system 950' of FIG. 37B, as with the system 950 of FIG. 37A, the rectified power signal produced by the rectifier 1067 can be in the form of a series of adjacent half-waves of the same polarity. The rectified power signal is received by the spreading circuit 1069, and each second half-wave is inverted to form a substantially sinusoidal spread output power signal at the frequency of the signal in the load (if present). As with the system 950, the term "spread output power signal" is used to describe the power signal provided by the spreading circuit 1069 to the AC load/source 1070.
在負載/源1070′ 不存在系統950′的情況下不載運現有功率信號的情形下,高頻切換信號產生器1024可以觸發展開電路1069的工作,以確保其展開操作與來自整流器裝置1067的功率信號同步。In the absence of a load/source 1070′ in the system 950′ and without carrying an existing power signal, the high frequency switching signal generator 1024 can trigger the operation of the development circuit 1069 to ensure that its development operation is synchronized with the power signal from the rectifier device 1067.
在不存在系統950′的情況下負載/源1070′中存在功率信號的情形下,在操作頻率f L下來自負載/源1070′參考信號可選地直接自負載/源1070′路由,並用於觸發展開電路1069的工作,藉以確保其展開操作與來自裝置1067的功率信號同步。在圖37B中,自負載/源1070′直接向後朝展開電路1069延伸的虛線表示參考信號自負載/源1070′朝向展開電路1069的該路線。術語「功率信號轉換電路」用於闡述裝置1067及1069的組合。 In the event that a power signal is present in load/source 1070′ in the absence of system 950′, a reference signal from load/source 1070′ at operating frequency f L is optionally routed directly from load/source 1070′ and used to trigger operation of deployment circuit 1069 to ensure that its deployment operation is synchronized with the power signal from device 1067. In FIG. 37B , the dashed line extending directly back from load/source 1070′ toward deployment circuit 1069 represents the route of the reference signal from load/source 1070′ toward deployment circuit 1069. The term “power signal conversion circuit” is used to describe the combination of devices 1067 and 1069.
在本文件之前述部分中已闡述可如何採用本文討論之一般類型的電力傳送系統來在與已在上文闡述方向相反之方向上傳送電力。對於該操作,將裝置1025A及1025B設定為其整流器模式及切換模式,將整流器1067切換至常開模式。此模式設定可以由控制器1080經由到達彼等裝置的控制線來執行。在某些實施例中,已闡述該類型之裝置1065的鏈路可如何在與在上文中解釋之方向相反的方向上傳送電力。裝置1025A及1025B亦如此。淨效應是將電力自負載/源1070′傳送至DC源/負載1028。It has been explained in the previous section of this document how a power transmission system of the general type discussed herein can be employed to transmit power in a direction opposite to that which has been explained above. For this operation, devices 1025A and 1025B are set to their rectifier mode and switching mode, with rectifier 1067 switched to a normally open mode. This mode setting can be performed by controller 1080 via control lines to those devices. In certain embodiments, it has been explained how a link of devices 1065 of the type described herein can transmit power in a direction opposite to that which has been explained above. The same is true for devices 1025A and 1025B. The net effect is that power is transmitted from load/source 1070′ to DC source/load 1028.
此外,如之前已在本文件中所解釋,關於源側及負載側的資訊可以在實際功率信號上直接在源與負載之間傳送,或可以由控制器1080獲得以用於控制系統的目的。在將系統950′的發射側及接收側實體地分開容納的彼等實施例中,經由該功率信號進行的資訊傳送可以是重要的。當高頻功率鏈路系統1065是無線鏈路時,其可以是有用的。Furthermore, as has been explained previously in this document, information about the source side and the load side can be transmitted directly between the source and the load on the actual power signal, or can be obtained by the controller 1080 for the purpose of controlling the system. In those embodiments where the transmit side and the receive side of the system 950' are physically separated and accommodated, the information transmission via the power signal can be important. This can be useful when the high frequency power link system 1065 is a wireless link.
使用高頻頻率在DC源與AC電網之間傳送電力導致對高頻切換裝置體積較小的要求,且為將大部分電路一體結合至半導體積體電路中創造機會。此等電路的實施遵循與關於圖33及圖34A及圖34B已呈現的線路相同。此外,在此佈置中,可以控制且最小化例如自信號轉換產生的總諧波失真。The use of high frequencies to transfer power between a DC source and an AC grid results in a requirement for a smaller size of the high frequency switching device and creates an opportunity to integrate most of the circuitry into a semiconductor integrated circuit. The implementation of these circuits follows the same lines as already presented with respect to FIG. 33 and FIG. 34A and FIG. 34B. Furthermore, in this arrangement, the total harmonic distortion resulting, for example, from the signal conversion can be controlled and minimized.
圖37A及圖37B呈現用於在DC源1028及可變負載1070、1070′之間傳送電力的電力傳送系統950、950′。該些系統950及950′在結構上是相同的,但在兩個實施例中關於其如何在功能上應用、關於產生及施加之信號性質以及電力是傳送至AC負載還是DC負載方面是不同的。第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B配置以分別在第一高頻頻率及第二高頻頻率下自DC源1028提取第一高頻(高頻)功率信號及第二高頻(高頻)功率信號。高頻功率鏈路系統1065配置以接收及混合第一高頻功率信號及第二高頻功率信號以產生傳送的功率信號。與高頻功率鏈路系統1065及可變負載1070、1070′進行通信的功率信號轉換電路配置以自傳送的功率信號產生輸出的功率信號,並將該輸出的功率信號供應至可變負載1070、1070′。37A and 37B present power transfer systems 950, 950' for transferring power between a DC source 1028 and a variable load 1070, 1070'. The systems 950 and 950' are identical in structure, but differ in the two embodiments as to how they are functionally applied, as to the nature of the signals generated and applied, and whether the power is transferred to an AC load or a DC load. A first self-synchronous RF rectifier/amplifier 1025A and a second self-synchronous RF rectifier/amplifier 1025B are configured to extract a first high frequency (HF) power signal and a second high frequency (HF) power signal from a DC source 1028 at a first high frequency frequency and a second high frequency frequency, respectively. The high frequency power link system 1065 is configured to receive and mix the first high frequency power signal and the second high frequency power signal to generate a transmitted power signal. The power signal conversion circuit in communication with the high frequency power link system 1065 and the variable load 1070, 1070' is configured to generate an output power signal from the transmitted power signal and supply the output power signal to the variable load 1070, 1070'.
電力傳送系統950、950′進一步包括高頻切換信號產生器1024,該高頻切換信號產生器配置以在各自的第一高頻頻率及第二高頻頻率下將第一切換信號及第二切換信號供應至第一整流器/放大器1025A及第二整流器/放大器1025B,並建立及控制第一切換信號與第二切換信號之間的相互相位關係。The power transmission system 950, 950' further includes a high-frequency switching signal generator 1024, which is configured to supply a first switching signal and a second switching signal to a first rectifier/amplifier 1025A and a second rectifier/amplifier 1025B at respective first high-frequency frequencies and second high-frequency frequencies, and to establish and control a mutual phase relationship between the first switching signal and the second switching signal.
該功率信號轉換電路包括:切換模式整流器1067,配置以自高頻功率鏈路系統1065接收傳送的功率信號,且對傳送的功率信號進行整流以產生整流的功率信號;以及展開電路1069,配置以自切換模式整流器接收該整流的功率信號且展開該整流的功率信號以產生輸出的功率信號。The power signal conversion circuit includes: a switching mode rectifier 1067, configured to receive a transmitted power signal from a high-frequency power link system 1065, and to rectify the transmitted power signal to generate a rectified power signal; and an expansion circuit 1069, configured to receive the rectified power signal from the switching mode rectifier and to expand the rectified power signal to generate an output power signal.
第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B可以配置以在整流模式中操作,且切換模式整流器1067可以配置以在常開模式中操作,藉以允許自可變負載1070、1070′提取電力且經由功率信號轉換電路(元件1067及元件1069)及高頻功率鏈路系統1065將該電力傳送至DC源1028。The first self-synchronous RF rectifier/amplifier 1025A and the second self-synchronous RF rectifier/amplifier 1025B can be configured to operate in a rectification mode, and the switching mode rectifier 1067 can be configured to operate in a normally open mode, thereby allowing power to be extracted from the variable load 1070, 1070' and transmitted to the DC source 1028 via the power signal conversion circuit (element 1067 and element 1069) and the high-frequency power link system 1065.
該展開電路可以配置以自可變負載1070、1070′接收參考信號以展開與可變負載1070、1070′中的信號同步之經整流的功率信號。該功率信號轉換電路(元件1067及元件1069)、高頻功率鏈路系統1065及複數對自同步射頻整流器/放大器1025A、1025B可以配置以將控制資訊自系統950、950′的其餘部分傳送至高頻切換信號產生器1024。系統950、950′可以進一步包括一個或多個控制器1080,該一或多個控制器與系統950、950′的複數個元件進行資料通信且配置以控制該複數個元件。系統950、950′可以進一步包括可隔離的負載資訊電路,該可隔離的負載資訊電路配置以將關於可變負載1070、1070′中的功率信號的DC位準、頻率及相位中的至少一者的資訊傳送至高頻切換信號產生器1024。該負載資訊電路可以包括鎖相迴路1095。該負載資訊電路可以進一步包括隔離器系統1090,且隔離器系統1090可以包括氣隙。The spreading circuit may be configured to receive a reference signal from the variable load 1070, 1070' to spread a rectified power signal synchronized with the signal in the variable load 1070, 1070'. The power signal conversion circuit (element 1067 and element 1069), the high frequency power link system 1065, and the plurality of pairs of self-synchronous RF rectifier/amplifiers 1025A, 1025B may be configured to transmit control information from the rest of the system 950, 950' to the high frequency switching signal generator 1024. The system 950, 950' may further include one or more controllers 1080 in data communication with the plurality of components of the system 950, 950' and configured to control the plurality of components. The system 950, 950' may further include an isolable load information circuit configured to communicate information about at least one of a DC level, a frequency, and a phase of a power signal in the variable load 1070, 1070' to the high frequency switching signal generator 1024. The load information circuit may include a phase locked loop 1095. The load information circuit may further include an isolator system 1090, and the isolator system 1090 may include an air gap.
系統950、950′的高頻功率鏈路系統1065可以包括無線的功率鏈路系統。無線的高頻功率鏈路系統1065可以包括雙峰無線高頻功率鏈路系統。高頻功率鏈路系統1065可以包括有線功率鏈路系統。The high frequency power link system 1065 of the system 950, 950' may include a wireless power link system. The wireless high frequency power link system 1065 may include a dual peak wireless high frequency power link system. The high frequency power link system 1065 may include a wired power link system.
在特定於圖37B的電力傳送系統950′的兩個基於相位差的實施方式中,第一高頻頻率及第二高頻頻率是相同頻率;以及第一切換信號及第二切換信號具有可由高頻切換信號產生器1024調整的相互相位差。In two phase difference based implementations of the power transmission system 950′ specific to FIG. 37B , the first high frequency and the second high frequency are the same frequency; and the first switching signal and the second switching signal have a mutual phase difference that can be adjusted by the high frequency switching signal generator 1024.
在基於第一相位差實施方式中,高頻切換信號產生器1024配置以基於可變負載1070′中的DC位準調整第一切換信號與第二切換信號之間的相互相位差,藉以自高頻功率鏈路系統1065產生該傳送的功率信號作為在振幅方面對應地調整的DC信號。In the first phase difference based implementation, the high frequency switching signal generator 1024 is configured to adjust the mutual phase difference between the first switching signal and the second switching signal based on the DC level in the variable load 1070′, thereby generating the transmitted power signal from the high frequency power link system 1065 as a DC signal correspondingly adjusted in amplitude.
在基於第二相位差實施方式中,高頻切換信號產生器1024配置以在自可變負載中1070′之功率信號的頻率得出的相位調變頻率下調變第一切換信號與第二切換信號之間的相互相位差,藉以自高頻功率鏈路系統1065產生傳送的功率信號作為在可變負載中1070′的功率信號的頻率下調變的AC功率信號。調變可以至少部分地基於相位調變頻率下的調變函數,該調變函數包括例如鋸齒函數。In a second phase difference based implementation, the high frequency switching signal generator 1024 is configured to modulate the mutual phase difference between the first switching signal and the second switching signal at a phase modulation frequency derived from the frequency of the power signal in the variable load 1070′, thereby generating a transmitted power signal from the high frequency power link system 1065 as an AC power signal modulated at the frequency of the power signal in the variable load 1070′. The modulation can be based at least in part on a modulation function at the phase modulation frequency, the modulation function including, for example, a sawtooth function.
在特定於圖37A的電力傳送系統950之基於頻差的實施方式中,第一高頻頻率及第二高頻頻率相差一差頻∆f。在此實施方式中,高頻切換信號產生器1024配置以判定第一高頻頻率及第二高頻頻率,且將差頻∆f設定為使可變負載1070中之功率信號的頻率倍增。高頻功率鏈路系統1065配置以在差頻∆f下產生傳送的功率信號,且功率信號轉換電路(元件1067及元件1069)配置以在可變負載1070中之功率信號的頻率下將輸出功率信號供應至可變負載1070。In a frequency difference based implementation of the power transmission system 950 specific to FIG. 37A , the first high frequency frequency and the second high frequency frequency differ by a difference frequency ∆f. In this implementation, the high frequency switching signal generator 1024 is configured to determine the first high frequency frequency and the second high frequency frequency, and set the difference frequency ∆f to multiply the frequency of the power signal in the variable load 1070. The high frequency power link system 1065 is configured to generate the transmitted power signal at the difference frequency ∆f, and the power signal conversion circuit (components 1067 and 1069) is configured to supply the output power signal to the variable load 1070 at the frequency of the power signal in the variable load 1070.
參考圖39,提供一種用於在DC源1028與可變負載1070、1070′之間傳送電力的方法[2300],該方法包括:[2310]經由對應的第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B在第一高頻頻率及第二高頻頻率下自DC源1028提取對應的第一高頻(高頻)功率信號及第二高頻(高頻)功率信號;[2320]在高頻功率鏈路系統1065中接收及混合第一高頻功率信號及第二高頻功率信號以產生傳送的功率信號;在與高頻功率鏈路系統1065及可變負載1070、1070′進行通信的功率信號轉換電路(圖37A及圖37B的元件1067及元件1069)中自傳送的功率信號產生輸出的功率信號;以及將輸出的功率信號供應至可變負載1070、1070′(參見圖39的步驟[2334]、[2339]及[2344])。Referring to FIG. 39 , a method [2300] for transmitting power between a DC source 1028 and a variable load 1070, 1070′ is provided, the method comprising: [2310] extracting a corresponding first high frequency (HF) power signal and a second high frequency (HF) power signal from the DC source 1028 at a first high frequency and a second high frequency via a corresponding first self-synchronous RF rectifier/amplifier 1025A and a second self-synchronous RF rectifier/amplifier 1025B; [2320] transmitting a corresponding first high frequency (HF) power signal and a second high frequency (HF) power signal to the DC source 1028 at a first high frequency and a second high frequency; [2321] transmitting a corresponding first high frequency (HF) power signal to the DC source 1028 at a first high frequency and a second high frequency via a corresponding first self-synchronous RF rectifier/amplifier 1025A and a second self-synchronous RF rectifier/amplifier 1025B; [2322] transmitting a corresponding first high frequency (HF) power signal to the DC source 1028 at a first high frequency and a second high frequency; [2323] transmitting a corresponding second high frequency (HF) power signal to the DC source 1028 at a first high frequency and a second high frequency; [2324] transmitting a corresponding first high frequency (HF) power signal to the DC source 1028 at a first high frequency and a second high frequency; [2325] transmitting a corresponding first high frequency (HF) power signal to the DC source 1028 at a first high frequency and a second high frequency; [2326] transmitting a corresponding first high frequency (HF) power signal to the DC source 1028 at a first high frequency and a second high frequency; [2327] transmitting a corresponding second high frequency (HF) power signal to the DC source 1028 at a first high frequency and a second high frequency; [2330] transmitting a corresponding first high frequency (HF) 5 receives and mixes the first high frequency power signal and the second high frequency power signal to generate a transmitted power signal; generates an output power signal from the transmitted power signal in a power signal conversion circuit (components 1067 and 1069 in Figures 37A and 37B) that communicates with the high frequency power link system 1065 and the variable loads 1070, 1070'; and supplies the output power signal to the variable loads 1070, 1070' (see steps [2334], [2339] and [2344] in Figure 39).
該方法可以進一步包括:在高頻切換信號產生器1024中產生第一切換信號及第二切換信號,且在各自的第一高頻頻率及第二高頻頻率下將第一切換信號及第二切換信號傳送至第一整流器/放大器1025A及第二整流器/放大器1025B;以及在高頻切換信號產生器1024中建立及控制第一切換信號與第二切換信號之間的相互相位關係。The method may further include: generating a first switching signal and a second switching signal in a high-frequency switching signal generator 1024, and transmitting the first switching signal and the second switching signal to a first rectifier/amplifier 1025A and a second rectifier/amplifier 1025B at respective first high-frequency frequencies and second high-frequency frequencies; and establishing and controlling a mutual phase relationship between the first switching signal and the second switching signal in the high-frequency switching signal generator 1024.
該方法可以進一步包括:自高頻功率鏈路系統1065接收傳送的功率信號且在該功率信號轉換電路的切換模式整流器1067中對該傳送的功率信號進行整流;以及自切換模式整流器1067接收整流的功率信號且在該功率信號轉換電路的展開電路1069中將該整流的功率信號展開。The method may further include: receiving a transmitted power signal from the high-frequency power link system 1065 and rectifying the transmitted power signal in a switching mode rectifier 1067 of the power signal conversion circuit; and receiving a rectified power signal from the switching mode rectifier 1067 and expanding the rectified power signal in an expansion circuit 1069 of the power signal conversion circuit.
該方法可以進一步包括:將第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B設定為整流模式;將切換模式整流器1067設定為常開模式;自可變負載1070、1070′提取電力;且經由該功率信號轉換電路(元件1067及元件1069)及高頻功率鏈路系統1065將所提取電力傳送至DC源1028。The method may further include: setting the first self-synchronous RF rectifier/amplifier 1025A and the second self-synchronous RF rectifier/amplifier 1025B to rectification mode; setting the switching mode rectifier 1067 to normally open mode; extracting power from the variable load 1070, 1070'; and transmitting the extracted power to the DC source 1028 via the power signal conversion circuit (element 1067 and element 1069) and the high-frequency power link system 1065.
該方法可以進一步包括:基於來自可變負載1070、1070′的參考信號展開與可變負載1070、1070′中的信號同步之經整流的功率信號;經由功率信號轉換電路(元件1067及元件1069)、高頻功率鏈路系統1065以及第一自同步射頻整流器/放大器1025A和第二自同步射頻整流器/放大器1025B將控制資訊自系統的其餘部分傳送至高頻切換信號產生器1024;藉助與複數個元件進行資料通信的一個或多個控制器1080來控制系統的複數個元件;以及使用包含鎖相迴路1095及可選的隔離器系統1090之可隔離的負載資訊電路將關於可變負載1070、1070′中的功率信號的DC位準、頻率及相位中之至少一者的資訊傳送至高頻切換信號產生器1024。The method may further include: developing a rectified power signal synchronized with the signal in the variable load 1070, 1070' based on a reference signal from the variable load 1070, 1070'; transmitting the control information from the system to the other components via the power signal conversion circuit (components 1067 and 1069), the high frequency power link system 1065, and the first self-synchronous RF rectifier/amplifier 1025A and the second self-synchronous RF rectifier/amplifier 1025B. the remainder is transmitted to the high frequency switching signal generator 1024; multiple components of the system are controlled by one or more controllers 1080 that communicate data with the multiple components; and at least one of the DC level, frequency and phase of the power signal in the variable load 1070, 1070' is transmitted to the high frequency switching signal generator 1024 using an isolable load information circuit including a phase-locked loop 1095 and an optional isolator system 1090.
在高頻功率鏈路系統1065中傳送功率信號可以包括無線地傳送功率信號。在高頻功率鏈路系統1065中無線地傳送功率信號可以包括雙峰無線地傳送功率信號。在高頻功率鏈路系統1065中傳送功率信號可以包括有線地傳送功率信號。Transmitting the power signal in the high frequency power link system 1065 may include wirelessly transmitting the power signal. Transmitting the power signal in the high frequency power link system 1065 may include wirelessly transmitting the power signal with a double peak. Transmitting the power signal in the high frequency power link system 1065 may include wirelessly transmitting the power signal with a wire.
用於將電力自圖37B的DC源1028傳送至可變負載1070′的兩種方法由圖39的分支[2330]表示,其中,電力傳送系統950′採用切換信號之間的相位差。在此等實施方式中,第一切換信號及第二切換信號的第一高頻頻率及第二高頻頻率具有相同頻率;以及第一切換信號及第二切換信號具有可由高頻切換信號產生器1024調整的相互相位差。Two methods for transmitting power from the DC source 1028 of FIG. 37B to the variable load 1070′ are represented by branch [2330] of FIG. 39 , wherein the power transmission system 950′ employs a phase difference between switching signals. In these embodiments, the first high frequency frequency and the second high frequency frequency of the first switching signal and the second switching signal have the same frequency; and the first switching signal and the second switching signal have a mutual phase difference that can be adjusted by the high frequency switching signal generator 1024.
該兩種方法中的第一種包括:基於可變負載1070′中的DC位準調整[2332]第一切換信號與第二切換信號之間的相互相位差,以藉此自高頻功率鏈路系統1065產生該傳送的功率信號作為在振幅方面對應地調整[2334] 的DC信號。The first of the two methods includes: adjusting [2332] the mutual phase difference between the first switching signal and the second switching signal based on the DC level in the variable load 1070', thereby generating the transmitted power signal from the high frequency power link system 1065 as a DC signal that is correspondingly adjusted [2334] in amplitude.
該兩種方法中的第二種包括:在自可變負載1070′中之功率信號的頻率得出的相位調變頻率下調變[2335]第一切換信號與第二切換信號之間的相互相位差,藉以自高頻功率鏈路系統1065產生傳送的功率信號作為在可變負載1070′中之功率信號的頻率下調變的AC功率信號。(參見圖39的步驟[2337]及[2339])。The second of the two methods includes modulating [2335] the mutual phase difference between the first switching signal and the second switching signal at a phase modulation frequency derived from the frequency of the power signal in the variable load 1070', thereby generating the transmitted power signal from the high frequency power link system 1065 as an AC power signal modulated at the frequency of the power signal in the variable load 1070'. (See steps [2337] and [2339] of Figure 39).
一種由圖39的分支[2340]表示之用於基於頻差之實施方式的方法包括:判定對應第一切換信號及第二切換信號的第一高頻頻率及第二高頻頻率;以及將差頻∆f設定[2340]為等於可變負載1070中之功率信號的頻率f L的兩倍。該方法進一步包括:在差頻下自高頻功率鏈路系統1065產生[2342]傳送的功率信號;以及在可變負載中之功率信號的頻率下將輸出的功率信號供應[2344]至可變負載1070。 A method for a frequency difference based implementation represented by branch [2340] of FIG. 39 includes: determining a first high frequency and a second high frequency corresponding to a first switching signal and a second switching signal; and setting [2340] a difference frequency ∆f equal to twice the frequency f L of the power signal in the variable load 1070. The method further includes: generating [2342] a transmitted power signal from the high frequency power link system 1065 at the difference frequency; and supplying [2344] the output power signal to the variable load 1070 at the frequency of the power signal in the variable load.
關於使用圖37A及圖37B中的類型的一對或多對第一自同步射頻整流器/放大器及第二自同步射頻整流器/放大器的一系列實施方式在下文中參考圖37C及圖37D闡述。此等實施方式基於電力(i)是自單個DC源還是(ii)複數個DC源傳送或基於實施方式採用(i)單個高頻切換信號產生器還是(ii)參考圖37A及圖37B闡述之類型的多個高頻切換信號產生器而不同。實施方式亦基於其依賴於(i)一對中的第一自同步射頻整流器/放大器與第二自同步射頻整流器/放大器之間的頻率差、還是(ii)其等之間的相位差(無論是調變的、簡單調整的、還是根本未調整的)而不同。此等實施方式適用於藉由各種方式將電力自多個源提取至單個可變負載且經由多個通道將電力自單個源提取至單個可變負載以維持更大電力傳送。該等實施方式的不同之處亦在於,一些傳送AC電力,另一些傳送DC電力,且還有其他傳送AC電力與DC電力混合至可變負載,該可變負載可以是AC負載、DC負載或載運AC電力與DC電力混合的負載。各種實施方式最終可歸結為兩種電路拓撲,即圖37C的電路拓撲及圖37D的電路拓撲。應注意的是,圖37C及圖37D兩圖中之所有自同步射頻整流器/放大器1025A、1025B可以是相同的,僅觸發該等自同步射頻整流器/放大器的切換信號在實施例之間是不同的。A series of embodiments using one or more pairs of first and second self-synchronous RF rectifier/amplifiers of the type in Figures 37A and 37B are described below with reference to Figures 37C and 37D. These embodiments differ based on whether the power (i) is delivered from a single DC source or (ii) multiple DC sources or based on whether the embodiment employs (i) a single high frequency switching signal generator or (ii) multiple high frequency switching signal generators of the type described with reference to Figures 37A and 37B. Implementations also differ based on whether they rely on (i) a frequency difference between a first self-synchronous RF rectifier/amplifier and a second self-synchronous RF rectifier/amplifier in a pair, or (ii) a phase difference therebetween (whether modulated, simply adjusted, or not adjusted at all). These implementations are applicable to extracting power from multiple sources to a single variable load in various ways and extracting power from a single source to a single variable load through multiple channels to maintain greater power delivery. These implementations also differ in that some deliver AC power, others deliver DC power, and still others deliver a mixture of AC and DC power to a variable load, which can be an AC load, a DC load, or a load carrying a mixture of AC and DC power. The various implementations can ultimately be reduced to two circuit topologies, namely the circuit topology of FIG37C and the circuit topology of FIG37D. It should be noted that all the self-synchronous RF rectifiers/amplifiers 1025A, 1025B in FIG37C and FIG37D can be the same, and only the switching signals that trigger the self-synchronous RF rectifiers/amplifiers are different between the embodiments.
在圖37C中,多對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B在單個DC源1028與單個可變負載1070′之間傳送電力。實際傳送機制及其強加在去往各個對中之各種自同步射頻整流器/放大器1025A及1025B的切換信號上的要求在實施例之間是不同的,如下文所述。In Figure 37C, multiple pairs of first self-synchronous RF rectifier/amplifiers 1025A and second self-synchronous RF rectifier/amplifiers 1025B transfer power between a single DC source 1028 and a single variable load 1070'. The actual transfer mechanism and the requirements it imposes on the switching signals to the various self-synchronous RF rectifier/amplifiers 1025A and 1025B in each pair vary between embodiments, as described below.
在圖37D中,多對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B在多個DC源1028與單一可變負載1070′之間傳送電力,存在與每一DC源1028相關聯的一對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B。實際傳送機制及其強加在去往各個對中之各種自同步射頻整流器/放大器1025A及1025B之切換信號上的要求在實施例之間是不同的,如下文所述。In FIG37D , multiple pairs of first self-synchronous RF rectifier/amplifiers 1025A and second self-synchronous RF rectifier/amplifiers 1025B transfer power between multiple DC sources 1028 and a single variable load 1070′, with one pair of first self-synchronous RF rectifier/amplifiers 1025A and second self-synchronous RF rectifier/amplifiers 1025B associated with each DC source 1028. The actual transfer mechanism and the requirements imposed on the switching signals to the various self-synchronous RF rectifier/amplifiers 1025A and 1025B in each pair vary between embodiments, as described below.
首先,提供適用於與圖37C及圖37D兩個圖相關聯之所有實施方式的通用敘述。然後,該敘述繼續深入探究更具體的實施方式,首先聚焦於具有圖37C的拓撲的實施方式,且然後聚焦於具有圖37D的拓撲的實施方式。First, a general description is provided that applies to all implementations associated with both Figures 37C and 37D. The description then proceeds to delve into more specific implementations, first focusing on implementations having the topology of Figure 37C, and then focusing on implementations having the topology of Figure 37D.
參考圖37C及圖37D,提供用於在至少一個DC源1028與可變負載1070′之間傳送電力的電力傳送系統950C、950D,該系統950C、950D包括:至少一對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B,每一對整流器/放大器配置以分別在對應對的第一高頻頻率及第二高頻頻率下自至少一個DC源1028中的單個DC源分別提取一對應對的第一高頻(高頻)功率信號及第二高頻(高頻)功率信號;高頻功率鏈路系統1065,配置以接收至少一對第一高頻功率信號及第二高頻功率信號並將該等功率信號混合在一起以產生傳送的功率信號;以及功率信號轉換電路,與高頻功率鏈路系統1065及可變負載1070′進行通信(將元件1067及元件1069組合)。該功率信號轉換電路配置以自傳送的功率信號產生輸出的功率信號且將該輸出的功率信號供應至可變負載1070′。37C and 37D, a power transmission system 950C, 950D for transmitting power between at least one DC source 1028 and a variable load 1070' is provided, the system 950C, 950D comprising: at least one pair of first self-synchronous radio frequency rectifier/amplifier 1025A and second self-synchronous radio frequency rectifier/amplifier 1025B, each pair of rectifier/amplifiers configured to transmit power from at least one DC source 1028 at a corresponding first high frequency and a second high frequency, respectively. 28, respectively extracting a pair of corresponding first high frequency (HF) power signals and second high frequency (HF) power signals; a high frequency power link system 1065, configured to receive at least one pair of the first high frequency power signal and the second high frequency power signal and mix the power signals together to generate a transmitted power signal; and a power signal conversion circuit, communicating with the high frequency power link system 1065 and the variable load 1070' (combining element 1067 and element 1069). The power signal conversion circuit is configured to generate an output power signal from the transmitted power signal and supply the output power signal to the variable load 1070'.
該系統進一步包括:一個或多個高頻切換信號產生器1024,其中,至少一對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B中的每一者配置以分別在一對應對的第一高頻頻率及第二高頻頻率下自一個或多個高頻切換信號產生器1024中之單個高頻切換信號產生器接收對應對的第一切換信號及第二切換信號;以及一個或多個高頻切換信號產生器1024中的每一者經配置以:將多對第一切換信號及第二切換信號供應至一對或多對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B;以及建立及控制每一對切換信號中之第一切換信號與第二切換信號之間的相互相位關係。The system further includes: one or more high frequency switching signal generators 1024, wherein each of at least one pair of first self-synchronous RF rectifier/amplifier 1025A and second self-synchronous RF rectifier/amplifier 1025B is configured to receive a corresponding first high frequency frequency and a second high frequency frequency from a single high frequency switching signal generator in the one or more high frequency switching signal generators 1024. A switching signal and a second switching signal; and each of the one or more high-frequency switching signal generators 1024 is configured to: supply multiple pairs of first switching signals and second switching signals to one or more pairs of first self-synchronous RF rectifier/amplifiers 1025A and second self-synchronous RF rectifier/amplifiers 1025B; and establish and control the mutual phase relationship between the first switching signal and the second switching signal in each pair of switching signals.
應注意的是,除非特別說明,否則複數對高頻切換信號中的第一切換信號不必具有相同頻率,且複數對高頻功率信號中之對應的第一高頻功率信號不必具有相同頻率。此情況單獨地適用於複數對切換信號中的第二切換信號及複數對高頻功率信號中之對應的第二高頻功率信號。It should be noted that, unless otherwise specified, the first switching signals in the plurality of pairs of high-frequency switching signals do not necessarily have the same frequency, and the corresponding first high-frequency power signals in the plurality of pairs of high-frequency power signals do not necessarily have the same frequency. This situation is applicable to the second switching signal in the plurality of pairs of switching signals and the corresponding second high-frequency power signal in the plurality of pairs of high-frequency power signals separately.
如圖37C中所示,在某些實施例(在此情形下為系統950C)中,至少一個DC源1028可以是單一DC源1028;至少一對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B可以是全部與單一DC源1028進行通信的複數個自同步射頻整流器/放大器1025A、1025B (在圖37C的示例中為兩對);以及一個或多個高頻切換信號產生器1024可以是單個高頻切換信號產生器,該單個高頻切換信號產生器配置以將對應對的第一切換信號及第二切換信號提供至複數對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B。在圖37C中,切換信號對(ψA、ψB)示出為提供至第一對自同步射頻整流器/放大器1025A、1025B,且切換信號對(ψA′、ψB′)示出為提供至第二對自同步射頻整流器/放大器1025A、1025B。高頻功率鏈路系統1065將來自多對自同步射頻整流器/放大器1025A、1025B的多對高頻功率信號混合。下文所述的多個詳細實施例符合本文參考圖37C所述的電路拓撲。As shown in FIG. 37C , in certain embodiments (in this case system 950C), at least one DC source 1028 may be a single DC source 1028; at least one pair of first self-synchronous RF rectifier/amplifier 1025A and second self-synchronous RF rectifier/amplifier 1025B may be a plurality of self-synchronous RF rectifier/amplifiers 1025A, 1025B (two pairs in the example of FIG. 37C ) that all communicate with the single DC source 1028; and one or more high-frequency switching signal generators 1024 may be a single high-frequency switching signal generator configured to provide corresponding pairs of first switching signals and second switching signals to a plurality of pairs of first self-synchronous RF rectifier/amplifier 1025A and second self-synchronous RF rectifier/amplifier 1025B. In FIG. 37C , the switching signal pair (ψA, ψB) is shown as being provided to a first pair of self-synchronous RF rectifier/amplifiers 1025A, 1025B, and the switching signal pair (ψA′, ψB′) is shown as being provided to a second pair of self-synchronous RF rectifier/amplifiers 1025A, 1025B. The high-frequency power link system 1065 mixes multiple pairs of high-frequency power signals from multiple pairs of self-synchronous RF rectifier/amplifiers 1025A, 1025B. The multiple detailed embodiments described below are consistent with the circuit topology described herein with reference to FIG. 37C .
如圖37D中所示,在某些實施例(在此情形下為系統950D)中,至少一個DC源1028可以是複數個直流源1028;至少一對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B可以是對應之複數對的自同步射頻整流器/放大器1025A、1025B,每一對與複數個DC源/負載1028中之對應的DC源進行通信;以及一個或多個高頻切換信號產生器1024可以是複數個高頻切換信號產生器1024,每一高頻切換信號產生器配置以將對應對的第一切換信號及第二切換信號提供至複數對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B中的一對應對。在圖37D中,與在圖37C中一樣,切換信號對(ψA、ψB)示出為提供至第一對自同步射頻整流器/放大器1025A、1025B,且切換信號對(ψA′、ψB′)示出為提供至第二對自同步射頻整流器/放大器1025A、1025B。高頻功率鏈路系統1065將來自第一對自同步射頻整流器/放大器1025A、1025B的一對切換信號(ψA、ψB)混合在一起,且將來自第二對自同步射頻整流器/放大器1025A、1025B的一對切換信號(ψA′、ψB′)混合在一起。當存在輸出額外對切換信號之額外對自同步射頻整流器/放大器1025A、1025B時,額外對切換信號中的每一者可以由高頻功率鏈路系統1065混合且分別輸出傳送至展開電路1069的功率信號。例如,可以將第一對切換信號混合(不混合其他對切換信號)以產生第一功率信號,可以將第二對切換信號混合以產生第二功率信號等。下文所闡述之多個詳細實施例符合本文參考圖37D所闡述的電路拓撲。此拓撲電路配置特別適用於光伏陣列面板系統,諸如參考圖20A及圖20B所闡述。As shown in FIG. 37D , in some embodiments (in this case, system 950D), at least one DC source 1028 may be a plurality of DC sources 1028; at least one pair of first self-synchronous RF rectifier/amplifier 1025A and second self-synchronous RF rectifier/amplifier 1025B may be a corresponding plurality of pairs of self-synchronous RF rectifier/amplifiers 1025A, 1025B, each pair being connected to the plurality of DC sources. / load 1028 to communicate with the corresponding DC source; and one or more high-frequency switching signal generators 1024 can be a plurality of high-frequency switching signal generators 1024, each of which is configured to provide a corresponding first switching signal and a second switching signal to a corresponding pair of a plurality of pairs of first self-synchronous RF rectifiers/amplifiers 1025A and second self-synchronous RF rectifiers/amplifiers 1025B. In FIG37D, as in FIG37C, the switching signal pair (ψA, ψB) is shown as being provided to the first pair of self-synchronous RF rectifiers/amplifiers 1025A, 1025B, and the switching signal pair (ψA', ψB') is shown as being provided to the second pair of self-synchronous RF rectifiers/amplifiers 1025A, 1025B. The high frequency power link system 1065 mixes a pair of switching signals (ψA, ψB) from the first pair of self-synchronous RF rectifier/amplifiers 1025A, 1025B, and mixes a pair of switching signals (ψA′, ψB′) from the second pair of self-synchronous RF rectifier/amplifiers 1025A, 1025B. When there are additional pairs of self-synchronous RF rectifier/amplifiers 1025A, 1025B that output additional pairs of switching signals, each of the additional pairs of switching signals can be mixed by the high frequency power link system 1065 and output separately as power signals transmitted to the expansion circuit 1069. For example, the first pair of switching signals can be mixed (without mixing other pairs of switching signals) to generate a first power signal, the second pair of switching signals can be mixed to generate a second power signal, and so on. The detailed embodiments described below are consistent with the circuit topology described herein with reference to FIG. 37D. This topology circuit configuration is particularly suitable for photovoltaic array panel systems, such as described with reference to FIG. 20A and FIG. 20B.
圖37C及圖37D的功率信號轉換電路950C、950D可以包括切換模式整流器1067,配置以自高頻功率鏈路系統1065接收傳送的功率信號,且對傳送的功率信號進行整流以產生整流的功率信號;以及展開電路1069,配置以自切換模式整流器接收整流的功率信號且展開整流的功率信號以產生輸出的功率信號。The power signal conversion circuits 950C and 950D of Figures 37C and 37D may include a switching mode rectifier 1067, configured to receive a transmitted power signal from a high-frequency power link system 1065 and rectify the transmitted power signal to generate a rectified power signal; and an expansion circuit 1069, configured to receive the rectified power signal from the switching mode rectifier and expand the rectified power signal to generate an output power signal.
圖37C及圖37D中之每一對中的第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B可以配置以在整流模式中操作,且切換模式整流器1067可以配置以在常開模式中操作,藉以允許自可變負載1070′提取電力且經由功率信號轉換電路(元件1067及元件1069)及高頻功率鏈路系統1065將該電力傳送至DC源1028。The first self-synchronous RF rectifier/amplifier 1025A and the second self-synchronous RF rectifier/amplifier 1025B in each pair in Figures 37C and 37D can be configured to operate in a rectification mode, and the switching mode rectifier 1067 can be configured to operate in a normally open mode, thereby allowing power to be extracted from the variable load 1070' and transmitted to the DC source 1028 via the power signal conversion circuit (element 1067 and element 1069) and the high frequency power link system 1065.
圖37C及圖37D中的展開電路(元件1067及元件1069)可以配置以自可變負載1070′接收參考信號以展開與可變負載1070′中的信號同步之經整流的功率信號。功率信號轉換電路(元件1067及元件1069)、高頻功率鏈路系統1065及複數對自同步射頻整流器/放大器1025A、1025B可以配置以將控制資訊自系統950C、950D的其餘部分傳送至至少一個高頻切換信號產生器1024。系統950C、950D可以進一步包括一個或多個控制器1080,該一個或多個控制器與系統950C、950D的複數個元件進行資料通信且配置以控制該複數個元件。系統950C、950D可以進一步包括可隔離的負載資訊電路,該可隔離的負載資訊電路配置以將關於可變負載1070′中的功率信號的DC位準、頻率及相位中之至少一者的資訊傳送至至少一個高頻切換信號產生器1024。該負載資訊電路可以包括鎖相迴路1095。負載資訊電路可以進一步包括隔離器系統1090。隔離器系統1090可以包括氣隙。The expansion circuits (components 1067 and 1069) in FIG. 37C and FIG. 37D can be configured to receive a reference signal from a variable load 1070′ to expand a rectified power signal that is synchronized with the signal in the variable load 1070′. The power signal conversion circuits (components 1067 and 1069), the high frequency power link system 1065, and the plurality of pairs of self-synchronous RF rectifier/amplifiers 1025A, 1025B can be configured to transmit control information from the rest of the system 950C, 950D to the at least one high frequency switching signal generator 1024. The system 950C, 950D can further include one or more controllers 1080 that are in data communication with the plurality of components of the system 950C, 950D and are configured to control the plurality of components. The system 950C, 950D may further include an isolable load information circuit configured to communicate information about at least one of a DC level, a frequency, and a phase of a power signal in the variable load 1070′ to the at least one high frequency switching signal generator 1024. The load information circuit may include a phase locked loop 1095. The load information circuit may further include an isolator system 1090. The isolator system 1090 may include an air gap.
圖37C及圖37D的系統950C、950D的高頻功率鏈路系統1065可以包括無線的功率鏈路系統。無線的高頻功率鏈路系統1065可以包括雙峰無線高頻功率鏈路系統。高頻功率鏈路系統1065可以包括有線功率鏈路系統。The high frequency power link system 1065 of the systems 950C and 950D of FIG. 37C and FIG. 37D may include a wireless power link system. The wireless high frequency power link system 1065 may include a dual peak wireless high frequency power link system. The high frequency power link system 1065 may include a wired power link system.
在下文直接闡述之三個基於相位差的實施方式中,每一對高頻頻率內的第一高頻頻率及第二高頻頻率可以是相同頻率,且每一對切換信號內的第一切換信號及第二切換信號之間可以具有可由對應高頻切換信號產生器調整的相互相位差∆Ф。應注意的是,複數對切換信號中的第一切換信號不必具有相同相位,且對應複數對高頻功率信號中之對應的第一高頻功率信號不必具有相同頻率。亦應注意,所有三個實施方式皆適用於圖37C的拓撲及圖37D的拓撲。In the three phase difference based implementations described directly below, the first high frequency frequency and the second high frequency frequency in each pair of high frequency frequencies can be the same frequency, and the first switching signal and the second switching signal in each pair of switching signals can have a mutual phase difference ∆Φ that can be adjusted by the corresponding high frequency switching signal generator. It should be noted that the first switching signals in the plurality of pairs of switching signals do not have to have the same phase, and the corresponding first high frequency power signals in the corresponding plurality of pairs of high frequency power signals do not have to have the same frequency. It should also be noted that all three implementations are applicable to the topology of Figure 37C and the topology of Figure 37D.
在第一基於相位差的實施方式中,高頻切換信號產生器1024中的至少一者可以配置以基於可變負載1070′中的DC位準調整至少一個對應的切換信號對內之第一切換信號與第二切換信號之間的相互相位差,藉以自高頻功率鏈路系統1065產生傳送的功率信號作為在振幅方面對應地調整的DC信號。In a first phase difference-based implementation, at least one of the high-frequency switching signal generators 1024 can be configured to adjust the relative phase difference between the first switching signal and the second switching signal within at least one corresponding switching signal pair based on the DC level in the variable load 1070′, thereby generating a transmitted power signal from the high-frequency power link system 1065 as a DC signal correspondingly adjusted in amplitude.
在第二基於相位差的實施方式中,所有高頻切換信號產生器1024可以配置以在自可變負載中1070′之功率信號的頻率得出的相位調變頻率下調變每一對切換信號內的第一切換信號與第二切換信號之間的相互相位差,藉以自高頻功率鏈路系統1065產生傳送的功率信號作為在可變負載1070′中功率信號的頻率下所調變的AC功率信號。In a second phase difference based implementation, all high frequency switching signal generators 1024 may be configured to modulate the mutual phase difference between the first switching signal and the second switching signal within each pair of switching signals at a phase modulation frequency derived from the frequency of the power signal in the variable load 1070′, thereby generating a transmitted power signal from the high frequency power link system 1065 as an AC power signal modulated at the frequency of the power signal in the variable load 1070′.
在第三基於相位差的實施方式中,一個或多個高頻切換信號產生器1024中的至少一者可以配置以在自可變負載中1070′之功率信號的頻率得到的相位調變頻率下調變複數對切換信號中之至少一對內的第一切換信號與第二切換信號之間的相互相位差,藉以自該高頻功率鏈路系統產生傳送的功率信號作為承載在可變負載1070′中功率信號的頻率下所調變的信號的一部分的DC功率信號。In a third phase difference-based implementation, at least one of the one or more high-frequency switching signal generators 1024 can be configured to modulate the mutual phase difference between the first switching signal and the second switching signal within at least one pair of the multiple pairs of switching signals at a phase modulation frequency obtained from the frequency of the power signal in the variable load 1070′, thereby generating a transmitted power signal from the high-frequency power link system as a DC power signal that is a portion of the signal modulated at the frequency of the power signal in the variable load 1070′.
在基於頻率差的實施方式中,每一對高頻頻率中的第一高頻頻率及第二高頻頻率可以相差一差頻∆f。至少一個高頻切換信號產生器1024可以配置以判定每一對切換信號中的第一高頻頻率及第二高頻頻率,且將每一對中的差頻∆f設定為使可變負載1070′中的功率信號的頻率倍增。高頻功率鏈路系統1065可以配置以在差頻∆f下產生傳送的功率信號,且功率信號轉換電路(元件1067及元件1069)可以配置以在可變負載1070′中功率信號的頻率下將輸出的功率信號供應至可變負載1070′。In a frequency difference based implementation, the first high frequency frequency and the second high frequency frequency in each pair of high frequency frequencies may differ by a difference frequency ∆f. At least one high frequency switching signal generator 1024 may be configured to determine the first high frequency frequency and the second high frequency frequency in each pair of switching signals, and set the difference frequency ∆f in each pair to multiply the frequency of the power signal in the variable load 1070′. The high frequency power link system 1065 may be configured to generate a transmitted power signal at the difference frequency ∆f, and the power signal conversion circuit (components 1067 and 1069) may be configured to supply the output power signal to the variable load 1070′ at the frequency of the power signal in the variable load 1070′.
參考圖37C及圖37D的系統950C及950D,提供一種用於在至少一個DC源1028與可變負載1070′之間傳送電力的方法,該方法包括:分別使用一對應對之第一自同步射頻整流器1025A/放大器及第二自同步射頻整流器/放大器1025B分別在一對應對之第一高頻頻率及第二高頻頻率下自至少一個DC源1028中的每一者提取至少一對第一高頻功率信號及第二高頻功率信號;在高頻功率鏈路系統1065中接收每一對的第一高頻功率信號及第二高頻功率信號且將該等功率信號混合在一起,以產生傳送的功率信號;在與高頻功率鏈路系統1065及可變負載1070′進行通信的功率信號轉換電路(元件1067及元件1069)中自傳送的功率信號產生輸出的功率信號;以及將輸出的功率信號供應至可變負載1070′。每一對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B配置以自至少一個DC源1028的單個DC源提取一對應對的第一高頻功率信號及第二高頻功率信號。Referring to the systems 950C and 950D of FIG. 37C and FIG. 37D , a method for transmitting power between at least one DC source 1028 and a variable load 1070′ is provided, the method comprising: extracting at least a pair of first high frequency power from each of the at least one DC source 1028 at a pair of first high frequency and second high frequency using a pair of first self-synchronous RF rectifiers 1025A/amplifiers and a second self-synchronous RF rectifier/amplifier 1025B, respectively. The invention relates to a first self-synchronous RF rectifier/amplifier 1025A and a second self-synchronous RF rectifier/amplifier 1025B. The first self-synchronous RF rectifier/amplifier 1025A and the second self-synchronous RF rectifier/amplifier 1025B are configured to extract a corresponding pair of the first high frequency power signal and the second high frequency power signal from a single DC source of at least one DC source 1028.
該方法進一步包括:分別在對應對的第一高頻頻率及第二高頻頻率下將複數對第一高頻切換信號及第二高頻切換信號自一個或多個高頻切換信號產生器1024供應至一對或多對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B;以及在一個或多個高頻切換信號產生器1024中建立及控制每一對中的第一切換信號與第二切換信號之間的相互相位關係。至少一對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B中的每一者配置以分別在一對應對的第一高頻頻率及第二高頻頻率下自一個或多個高頻切換信號產生器1024中的單個高頻切換信號產生器接收一對應對的第一切換信號及第二切換信號。The method further includes: supplying a plurality of pairs of first high-frequency switching signals and second high-frequency switching signals from one or more high-frequency switching signal generators 1024 to one or more pairs of first self-synchronous RF rectifier/amplifiers 1025A and second self-synchronous RF rectifier/amplifiers 1025B at corresponding pairs of first high-frequency frequencies and second high-frequency frequencies, respectively; and establishing and controlling the mutual phase relationship between the first switching signal and the second switching signal in each pair in one or more high-frequency switching signal generators 1024. Each of at least one pair of first self-synchronous RF rectifier/amplifier 1025A and second self-synchronous RF rectifier/amplifier 1025B is configured to receive a pair of corresponding first switching signals and second switching signals from a single high frequency switching signal generator in one or more high frequency switching signal generators 1024 at a pair of corresponding first high frequency frequencies and second high frequency frequencies, respectively.
應注意的是,除非特別說明,否則複數對高頻切換信號中的第一切換信號不必具有相同頻率,且複數對高頻功率信號中之對應的第一高頻功率信號不必具有相同頻率。此情況單獨地適用於複數對切換信號中的第二切換信號及複數對高頻功率信號中之對應的第二高頻功率信號。It should be noted that, unless otherwise specified, the first switching signals in the plurality of pairs of high-frequency switching signals do not necessarily have the same frequency, and the corresponding first high-frequency power signals in the plurality of pairs of high-frequency power signals do not necessarily have the same frequency. This situation is applicable to the second switching signal in the plurality of pairs of switching signals and the corresponding second high-frequency power signal in the plurality of pairs of high-frequency power signals separately.
在上文且參考圖37C闡述的實施例的方法中,至少一個DC源1028可以是單個DC源1028;至少一對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B可以是全部與單個DC源1028進行通信之複數個自同步射頻整流器/放大器1025A、1025B;以及一個或多個高頻切換信號產生器1024可以是單個高頻切換信號產生器1024,該單個高頻切換信號產生器配置以將對應對的第一切換信號及第二切換信號提供至複數對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B。In the method of the embodiment described above and with reference to FIG. 37C , at least one DC source 1028 may be a single DC source 1028; at least one pair of first self-synchronous RF rectifier/amplifier 1025A and second self-synchronous RF rectifier/amplifier 1025B may be a plurality of self-synchronous RF rectifier/amplifiers 1025A, 1025B that all communicate with the single DC source 1028; and one or more high-frequency switching signal generators 1024 may be a single high-frequency switching signal generator 1024 that is configured to provide corresponding first switching signals and second switching signals to a plurality of pairs of first self-synchronous RF rectifier/amplifiers 1025A and second self-synchronous RF rectifier/amplifiers 1025B.
在上文且參考圖37D闡述的實施例的方法中,至少一個DC源1028可以是複數個DC源1028;至少一對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B可以是複數對自同步射頻整流器/放大器1025A、1025B,每一對與複數個DC源1028中之對應的DC源進行通信;以及一個或多個高頻切換信號產生器1024可以是複數個高頻切換信號產生器1024,每一高頻切換信號產生器配置以將對應對的第一切換信號及第二切換信號提供至複數對第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B中的一對應對。In the method of the embodiment described above and with reference to FIG. 37D , at least one DC source 1028 may be a plurality of DC sources 1028; at least one pair of a first self-synchronous RF rectifier/amplifier 1025A and a second self-synchronous RF rectifier/amplifier 1025B may be a plurality of pairs of self-synchronous RF rectifier/amplifiers 1025A, 1025B, each pair communicating with a corresponding DC source in the plurality of DC sources 1028; and one or more high-frequency switching signal generators 1024 may be a plurality of high-frequency switching signal generators 1024, each high-frequency switching signal generator being configured to provide a corresponding pair of first switching signals and second switching signals to a corresponding pair in the plurality of pairs of first self-synchronous RF rectifier/amplifiers 1025A and second self-synchronous RF rectifier/amplifiers 1025B.
回到關於圖37C及圖37D兩者的方法,該方法可以進一步包括:自高頻功率鏈路系統1065接收傳送的功率信號且在功率信號轉換電路的切換模式整流器1067中對傳送的功率信號進行整流;以及自切換模式整流器1067接收整流的功率信號且在功率信號轉換電路的展開電路1069中將該整流的功率信號展開以產生輸出的功率信號。Returning to the method regarding Figures 37C and 37D, the method may further include: receiving a transmitted power signal from the high-frequency power link system 1065 and rectifying the transmitted power signal in the switching mode rectifier 1067 of the power signal conversion circuit; and receiving the rectified power signal from the switching mode rectifier 1067 and expanding the rectified power signal in the expansion circuit 1069 of the power signal conversion circuit to generate an output power signal.
該方法可以進一步包括:將每一對中的第一自同步射頻整流器/放大器1025A及第二自同步射頻整流器/放大器1025B設定為整流模式;將切換模式整流器1067設定為常開模式;自可變負載1070′提取電力;以及經由功率信號轉換電路(圖37C及圖37D的元件1067及元件106)及高頻功率鏈路系統1065將所提取的電力傳送至至少一個DC源1028。The method may further include: setting the first self-synchronous RF rectifier/amplifier 1025A and the second self-synchronous RF rectifier/amplifier 1025B in each pair to rectification mode; setting the switching mode rectifier 1067 to normally-on mode; extracting power from the variable load 1070′; and transmitting the extracted power to at least one DC source 1028 via the power signal conversion circuit (element 1067 and element 106 in Figures 37C and 37D) and the high-frequency power link system 1065.
該方法可以進一步包括基於來自可變負載1070′的參考信號展開與可變負載1070′中的信號同步之整流的功率信號;經由功率信號轉換電路(元件1067及元件1069)、高頻功率鏈路系統1065以及複數對第一自同步射頻整流器/放大器1025A、1025B將控制資訊自系統的其餘部分傳送至至少一個高頻切換信號產生器1024;藉助與複數個元件進行資料通信的一個或多個控制器1080來控制系統950C、950D的複數個元件;以及使用包含鎖相迴路1095及可選的隔離器系統1090之可隔離的負載資訊電路將關於可變負載1070′中功率信號的DC位準、頻率及相位中的至少一者的資訊傳送至至少一個高頻切換信號產生器1024。The method may further include developing a rectified power signal synchronized with the signal in the variable load 1070' based on a reference signal from the variable load 1070'; transmitting control information from the rest of the system to at least one high frequency switching signal generator via the power signal conversion circuit (components 1067 and 1069), the high frequency power link system 1065, and the plurality of pairs of first self-synchronous RF rectifier/amplifiers 1025A, 1025B. generator 1024; controlling a plurality of components of the systems 950C, 950D by means of one or more controllers 1080 in data communication with the plurality of components; and transmitting information about at least one of the DC level, frequency, and phase of the power signal in the variable load 1070′ to at least one high frequency switching signal generator 1024 using an isolable load information circuit including a phase-locked loop 1095 and an optional isolator system 1090.
在高頻功率鏈路系統中傳送功率信號可以包括無線地傳送功率信號;在高頻功率鏈路系統中無線地傳送功率信號可以包括雙峰無線地傳送功率信號;以及在高頻功率鏈路系統中傳送功率信號可以包括有線地傳送功率信號。Transmitting a power signal in a high frequency power link system may include wirelessly transmitting the power signal; transmitting a power signal in a high frequency power link system wirelessly may include bi-peak wirelessly transmitting the power signal; and transmitting a power signal in a high frequency power link system may include wiredly transmitting the power signal.
在下文參考圖37C及圖37D直接闡述之三個基於相位差的實施方式中,每一對高頻頻率內的第一高頻頻率及第二高頻頻率可以是相同頻率,且每一對切換信號內的第一切換信號及第二切換信號之間可以具有可由對應的高頻切換信號產生器調整的相互相位差。應注意的是,複數對切換信號中的第一切換信號不必具有相同相位,且對應的複數對高頻功率信號中之對應的第一高頻功率信號不必具有相同頻率。In the three phase difference based implementations described directly below with reference to FIG. 37C and FIG. 37D , the first high frequency frequency and the second high frequency frequency in each pair of high frequency frequencies can be the same frequency, and the first switching signal and the second switching signal in each pair of switching signals can have a mutual phase difference that can be adjusted by the corresponding high frequency switching signal generator. It should be noted that the first switching signals in the plurality of pairs of switching signals do not have to have the same phase, and the corresponding first high frequency power signals in the corresponding plurality of pairs of high frequency power signals do not have to have the same frequency.
用於第一基於相位差的實施方式的方法包括:基於可變負載1070′中的DC位準調整至少一個對應的切換信號對內的第一切換信號與第二切換信號之間的相互相位差,以自高頻功率鏈路系統1065產生傳送的功率信號作為在振幅方面對應地調整的DC信號。藉助高頻切換信號產生器1024中的至少一者調整相互相位差。The method for the first phase difference based implementation includes adjusting a mutual phase difference between a first switching signal and a second switching signal within at least one corresponding switching signal pair based on a DC level in the variable load 1070′ to generate a transmitted power signal from the high frequency power link system 1065 as a DC signal correspondingly adjusted in amplitude. The mutual phase difference is adjusted by at least one of the high frequency switching signal generators 1024.
用於第二基於相位差的實施方式的方法包括:在自可變負載1070′中的功率信號的頻率得出的相位調變頻率下調變每一對切換信號內的第一切換信號與第二切換信號之間的相互相位差,以自高頻功率鏈路系統1065產生傳送的功率信號作為在可變負載1070′中功率信號的頻率下所調變的AC功率信號。藉助所有高頻切換信號產生器1024調整相互相位差。The method for the second phase difference based implementation includes modulating the mutual phase difference between the first switching signal and the second switching signal in each pair of switching signals at a phase modulation frequency derived from the frequency of the power signal in the variable load 1070′ to generate the transmitted power signal from the high frequency power link system 1065 as an AC power signal modulated at the frequency of the power signal in the variable load 1070′. The mutual phase difference is adjusted by all high frequency switching signal generators 1024.
用於第三基於相位差的實施方式的方法包括:在自可變負載中1070′的功率信號的頻率得出的相位調變頻率下調變複數對切換信號中之至少一個對內的第一切換信號與第二切換信號之間的相互相位差,以自高頻功率鏈路系統1065產生傳送的功率信號作為承載在可變負載1070′中功率信號的頻率下所調變的信號的一部分的DC功率信號。藉助高頻切換信號產生器1024中的至少一者調整相互相位差。The method for the third phase difference based implementation includes modulating a mutual phase difference between a first switching signal and a second switching signal within at least one of the plurality of pairs of switching signals at a phase modulation frequency derived from the frequency of the power signal in the variable load 1070′ to generate a transmitted power signal from the high frequency power link system 1065 as a DC power signal that carries a portion of the signal modulated at the frequency of the power signal in the variable load 1070′. The mutual phase difference is adjusted by at least one of the high frequency switching signal generators 1024.
在基於頻率差的實施方式中,每一對高頻頻率中的第一高頻頻率及第二高頻頻率可以相差一差頻∆f。該方法包括:判定每一對對應的第一切換信號及第二切換信號中的第一高頻頻率及第二高頻頻率;將每一對中的差頻∆f設定為使可變負載1070′中的功率信號的頻率倍增。在差頻∆f下自高頻功率鏈路系統1065產生傳送的功率信號;以及在可變負載1070中功率信號的頻率下將輸出的功率信號供應至可變負載1070′。In a frequency difference based implementation, the first high frequency and the second high frequency in each pair of high frequency frequencies may differ by a difference frequency ∆f. The method includes: determining the first high frequency and the second high frequency in each pair of corresponding first switching signals and second switching signals; setting the difference frequency ∆f in each pair to double the frequency of the power signal in the variable load 1070′; generating a transmitted power signal from the high frequency power link system 1065 at the difference frequency ∆f; and supplying the output power signal to the variable load 1070′ at the frequency of the power signal in the variable load 1070.
圖40A示出光伏模組3220的後視圖,該光伏模組包括光伏電池3420及接近光伏電池3420的高頻電力模組3019。高頻電力模組3019包括印刷電路板3024上的高頻電力電路3016。圖40A中之視圖沿軸線3018分解,其示出與高頻電力模組3019分離之用於高頻電力模組3019的保護帽3017。陽光沿箭頭3010的方向照射在光伏電池3420的前表面上。後表面金屬化條帶3424及前表面金屬化連接器3428跨越光伏電池3420延伸,且經由金屬帶3020利用PC板指狀件3026上的電觸點連接至高頻電力電路3016。在操作中,光伏電池3420將DC電力傳送至高頻電力電路3016以用於轉換為高頻功率信號。FIG40A shows a rear view of a photovoltaic module 3220, which includes a photovoltaic cell 3420 and a high-frequency power module 3019 close to the photovoltaic cell 3420. The high-frequency power module 3019 includes a high-frequency power circuit 3016 on a printed circuit board 3024. The view in FIG40A is exploded along axis 3018, which shows a protective cap 3017 for the high-frequency power module 3019 separated from the high-frequency power module 3019. Sunlight shines on the front surface of the photovoltaic cell 3420 in the direction of arrow 3010. The rear surface metallized strip 3424 and the front surface metallized connector 3428 extend across the photovoltaic cell 3420 and connect to the high frequency power circuit 3016 via the metal strip 3020 using electrical contacts on the PC board fingers 3026. In operation, the photovoltaic cell 3420 transmits DC power to the high frequency power circuit 3016 for conversion to a high frequency power signal.
已在上文討論使用無線鏈路或有線鏈路來傳送電力的各種電力傳送系統。專用於光伏電池的電力傳送系統先前已參考圖35A及圖35B討論。在併入無線鏈路的電力傳送系統中使用圖40A的高頻電力電路3016,如圖41A中指示。在併入有線鏈路的電力傳送系統中使用圖40B的高頻電力電路3016′,如圖41B中指示,且將在下文進一步討論。Various power transmission systems that use wireless links or wired links to transmit power have been discussed above. Power transmission systems dedicated to photovoltaic cells have been previously discussed with reference to Figures 35A and 35B. The high-frequency power circuit 3016 of Figure 40A is used in a power transmission system that incorporates a wireless link, as indicated in Figure 41A. The high-frequency power circuit 3016' of Figure 40B is used in a power transmission system that incorporates a wired link, as indicated in Figure 41B, and will be discussed further below.
圖41A是圖37D的再現,其中,圖37D的DC源/負載1028可以是複數個光伏電池3420中的一者,以及其中,基於圖35A更詳細地示出圖37D的高頻功率鏈路系統1065。圖40A的高頻電力電路3016包括:高頻切換信號產生器1024;以及已參考圖37D所述的高頻切換模式電力整流器/放大器1025A及1025B和圖35A的發射器模組20′′及發射器共振器30′′。應注意的是,光伏電池3420並非高頻電力電路3016的一部分,而僅是根據圖40A連接至該高頻電力電路。在圖41A內,光伏電池3420表示如圖37D中所示之DC源1028中的單一個DC源。FIG41A is a reproduction of FIG37D, wherein the DC source/load 1028 of FIG37D may be one of a plurality of photovoltaic cells 3420, and wherein the high frequency power link system 1065 of FIG37D is shown in more detail based on FIG35A. The high frequency power circuit 3016 of FIG40A includes: a high frequency switching signal generator 1024; and the high frequency switching mode power rectifier/amplifier 1025A and 1025B described with reference to FIG37D and the transmitter module 20″ and transmitter resonator 30″ of FIG35A. It should be noted that the photovoltaic cell 3420 is not part of the high frequency power circuit 3016, but is only connected to the high frequency power circuit according to FIG40A. In FIG. 41A , photovoltaic cell 3420 represents a single DC source in DC source 1028 as shown in FIG. 37D .
接收器共振器3050的作用與圖35A的接收器共振器50′′的作用相同,為清楚起見,在圖41A中使用不同的標示。如圖41A中所示,聚合器3040(亦參見圖42A)包括:圖35A的接收器模組40′′;以及已參考圖37D所述的切換模式整流器1067及展開電路1069。聚合器3040亦可以包括任何電磁干擾濾波器、接線結以及闡明圖41A中的系統的功能不需要的其他組件。在某些實施例中,聚合器3040亦可以包括控制器1080。聚合器3040可以接線至可變負載1070′。高頻電力電路3016的元件可以使用可隔離的負載資訊電路相位鎖定至可變負載1070′,該可隔離的負載資訊電路包括圖41A中的鎖相迴路1095及可選的隔離器系統1090。另一選擇是,高頻信號產生器1024將適當的切換信號φ A及φ B提供至高頻切換模式電力整流器/放大器1025A及1025B所需的資訊在實際實施方式中可以經由展開電路1069、切換模式整流器1067、高頻功率鏈路系統1065′以及高頻切換模式功率放大器1025A及1025B在相反方向上沿電力傳輸路徑引導至高頻切換信號產生器1024。高頻功率鏈路系統1065ꞌ進行此資訊傳送的能力已在本文中參考圖7及圖1闡述。由於此可以針對複數個光伏電池3420中之所有個別光伏電池3420同相地進行,因此源自複數個光伏電池3420的功率信號可以藉由聚合器3040在相位方面聚合。正如圖37D中,高頻功率鏈路系統1065可以是高頻雙峰近場無線鏈路,該高頻雙峰近場無線鏈路配置以用於雙峰無線電力傳送。 The receiver resonator 3050 functions the same as the receiver resonator 50″ of FIG. 35A, but is labeled differently in FIG. 41A for clarity. As shown in FIG. 41A, the aggregator 3040 (see also FIG. 42A) includes: the receiver module 40″ of FIG. 35A; and the switch-mode rectifier 1067 and expansion circuit 1069 described with reference to FIG. 37D. The aggregator 3040 may also include any electromagnetic interference filters, wiring junctions, and other components not required to illustrate the function of the system in FIG. 41A. In some embodiments, the aggregator 3040 may also include a controller 1080. The aggregator 3040 may be wired to a variable load 1070′. The components of the high frequency power circuit 3016 can be phase locked to the variable load 1070' using an isolable load information circuit, which includes the phase locked loop 1095 and optional isolator system 1090 in Figure 41A. Alternatively, the information required for the high frequency signal generator 1024 to provide the appropriate switching signals φ A and φ B to the high frequency switch mode power rectifier/amplifiers 1025A and 1025B can be directed in an actual implementation to the high frequency switching signal generator 1024 in the opposite direction along the power transmission path via the expansion circuit 1069, the switch mode rectifier 1067, the high frequency power link system 1065′ and the high frequency switch mode power amplifiers 1025A and 1025B. The ability of the high frequency power link system 1065 to perform this information transmission has been described herein with reference to FIG. 7 and FIG. 1. Since this can be done in phase for all individual photovoltaic cells 3420 in the plurality of photovoltaic cells 3420, the power signals from the plurality of photovoltaic cells 3420 can be aggregated in phase by the aggregator 3040. As shown in FIG37D, the high frequency power link system 1065 can be a high frequency dual peak near field wireless link configured for dual peak wireless power transmission.
圖40B示出包含光伏電池3420及高頻電力模組3019′的光伏模組3220′、包含印刷電路板3024上之高頻電力電路3016′的高頻電力模組3019′。在電力傳送系統中使用圖40B的高頻電力電路3016′,該高頻電力電路併入圖35B中所示的有線鏈路。40B shows a photovoltaic module 3220′ including a photovoltaic cell 3420 and a high-frequency power module 3019′, and a high-frequency power module 3019′ including a high-frequency power circuit 3016′ on a printed circuit board 3024. The high-frequency power circuit 3016′ of FIG40B is used in a power transmission system and is incorporated into the wired link shown in FIG35B.
如圖41B所示,其中,圖37D的DC源/負載1028可以是複數個光伏電池3420中的一者,圖40B的高頻電力電路3016′包括圖37D的高頻切換信號產生器1024、高頻切換模式功率整流器/放大器1025A及1025B、高頻功率鏈路系統1065′′以及切換模式整流器1067。電力傳送的有線特性排除任一發射器共振器或接收器共振器(亦參見圖35B,與圖35A相比),使得高頻功率鏈路系統1065′′包括圖35B的發射器模組20′′及接收器模組40′′。應注意的是,光伏電池3420在此處亦並非高頻電力電路3016的一部分,而僅是根據圖40B連接至該高頻電力電路。圖41B之系統的其他實施例可以類似地基於圖37D及文本中之其相關聯來闡述,因為圖41B很大程度上是對圖37D的元件如何在實際光伏系統中分組的闡述。As shown in FIG41B, where the DC source/load 1028 of FIG37D can be one of a plurality of photovoltaic cells 3420, the high-frequency power circuit 3016′ of FIG40B includes the high-frequency switching signal generator 1024 of FIG37D, high-frequency switching mode power rectifiers/amplifiers 1025A and 1025B, a high-frequency power link system 1065″, and a switching mode rectifier 1067. The wired nature of power transmission excludes any transmitter resonator or receiver resonator (see also FIG35B, compared to FIG35A), so that the high-frequency power link system 1065″ includes the transmitter module 20″ and the receiver module 40″ of FIG35B. It should be noted that the photovoltaic cell 3420 is not part of the high frequency power circuit 3016 here either, but is only connected to the high frequency power circuit according to Figure 40B. Other embodiments of the system of Figure 41B can be similarly described based on Figure 37D and its association in the text, because Figure 41B is largely a description of how the elements of Figure 37D are grouped in an actual photovoltaic system.
對於此有線實施方式,聚合器3040′(亦參見圖42B)包括圖37D的展開電路1069。其亦可以包括任何電磁干擾濾波器、接線結及闡明圖41B中的系統的功能不需要的其他組件。在某些實施例中,聚合器3040亦可以包括控制器1080。聚合器3040′的展開電路1069可以經由有線連接自接線至對應的複數個光伏電池3420的複數個高頻電力電路3016′收集低頻功率信號。術語「低頻」在此處用於闡述可變負載1070′中AC信號的頻率階的頻率,與在高頻功率鏈路系統1065′′內部採用的高頻形成對比。聚合器3040′可以接至可變負載1070′。高頻電力電路3016′的元件可以使用可隔離的負載資訊電路相位鎖定至可變負載1070′,該可隔離的負載資訊電路包括圖41B中的鎖相迴路1095及可選的隔離器1090。如參考圖41A的實施例所述,另一選擇是,所需資訊亦可以經由電力傳送電路進行傳輸。由於此可以針對複數個光伏電池3420中之所有個別光伏電池3420同相地進行,因此源自複數個光伏電池3420的功率信號可以藉由聚合器3040′在相位方面聚合。For this wired implementation, the aggregator 3040′ (see also FIG. 42B ) includes the expanded circuit 1069 of FIG. 37D . It may also include any electromagnetic interference filters, wiring junctions, and other components not required to illustrate the function of the system in FIG. 41B . In some embodiments, the aggregator 3040 may also include a controller 1080 . The expanded circuit 1069 of the aggregator 3040′ may collect low frequency power signals via wired connections from a plurality of high frequency power circuits 3016′ wired to a corresponding plurality of photovoltaic cells 3420 . The term “low frequency” is used here to describe the frequency of the frequency order of the AC signal in the variable load 1070′, in contrast to the high frequency employed within the high frequency power link system 1065″. Aggregator 3040' may be connected to variable load 1070'. Elements of high frequency power circuit 3016' may be phase locked to variable load 1070' using an isolable load information circuit comprising phase locked loop 1095 and optional isolator 1090 in FIG. 41B. Alternatively, the desired information may also be transmitted via a power transmission circuit as described with reference to the embodiment of FIG. 41A. Since this may be done in phase for all individual photovoltaic cells 3420 in a plurality of photovoltaic cells 3420, the power signals originating from a plurality of photovoltaic cells 3420 may be aggregated in phase by aggregator 3040'.
如參考圖41A所述,來自可變負載1070′的相位及頻率資訊,在圖41A及圖41B兩圖中所示,可以經由鎖相迴路1095及可選的隔離器1090發送至高頻切換信號產生器1024,且在實際實施方式中可以沿電力傳輸路徑在相反方向上引導至高頻切換信號產生器1024。在某些實施例中,圖41A及圖41B的控制器及保護電路1080可以分別在聚合器3040及聚合器3040′中實施。將注意的是,在分別在圖41A及圖41B中示出的無線及有線兩實施方式中,聚合器3040、3040′包括展開電路1069,該展開電路配置以當存在於可變負載1070′中時在AC負載線頻率之兩倍的頻率下接收源自至少一個光伏電池3420中的每一者的發射功率,且然後將信號展開為AC負載線頻率。As described with reference to FIG. 41A , the phase and frequency information from the variable load 1070′, as shown in both FIG. 41A and FIG. 41B , can be sent to the high frequency switching signal generator 1024 via the phase-locked loop 1095 and the optional isolator 1090, and in an actual implementation can be directed in the opposite direction along the power transmission path to the high frequency switching signal generator 1024. In some embodiments, the controller and protection circuit 1080 of FIG. 41A and FIG. 41B can be implemented in the aggregator 3040 and the aggregator 3040′, respectively. It will be noted that in both the wireless and wired embodiments shown in FIGS. 41A and 41B , respectively, the aggregators 3040, 3040′ include an expansion circuit 1069 configured to receive transmitted power from each of at least one photovoltaic cell 3420 at a frequency twice the AC load line frequency when present in a variable load 1070′ and then expand the signal to the AC load line frequency.
在圖41C中所示的又一實施例中,圖41B的展開電路1069可以併入每一高頻電力電路3016′′中,且因此聚合器可以是僅收集來自與對應的光伏電池3420中的每一者相關聯的展開電路1069中的每一者的所有展開的信號或DC信號的裝置。聚合器亦可以包括任何電磁干擾濾波器、接線結等。在某些實施例中,聚合器亦可以包括控制器1080。如在圖37D中,高頻功率鏈路系統1065可以是有線的或無線的。如在上文所述的其他實施例中,高頻電力電路3016′′的元件可以相位鎖定至可變負載1070′。可以採用相同手段來傳送關於可變負載1070′的資訊,如已參考圖41A及圖41B所述。由於此可以針對複數個光伏電池3420中的所有個別光伏電池3420同相地進行,因此源自複數個光伏電池3420的功率信號可以藉由聚合器在相位方面聚合。In yet another embodiment shown in FIG. 41C , the expanded circuit 1069 of FIG. 41B may be incorporated into each high frequency power circuit 3016″, and thus the aggregator may be a device that collects only all expanded signals or DC signals from each of the expanded circuits 1069 associated with each of the corresponding photovoltaic cells 3420. The aggregator may also include any electromagnetic interference filters, wiring junctions, etc. In certain embodiments, the aggregator may also include a controller 1080. As in FIG. 37D , the high frequency power link system 1065 may be wired or wireless. As in other embodiments described above, the elements of the high frequency power circuit 3016″ may be phase locked to the variable load 1070′. The same means can be used to transmit information about the variable load 1070', as described with reference to Figures 41A and 41B. Since this can be done in phase for all individual photovoltaic cells 3420 in the plurality of photovoltaic cells 3420, the power signals originating from the plurality of photovoltaic cells 3420 can be aggregated in phase by the aggregator.
在圖41C的系統的一組實施例中,圖41C的高頻功率鏈路系統1065可以是無線高頻功率鏈路系統,正如圖41A的高頻功率鏈路系統1065′一樣。在某些實施例中,高頻功率鏈路系統1065特定而言可以是在高頻電力電路3016′′內本地傳送電力的雙峰無線高頻功率鏈路。在此實施例中,高頻功率鏈路系統1065可實體地位於接近光伏電池(例如圖40A的光伏電池3420)處。此局域電力傳送可以是在單個印刷電路板、例如圖40A的印刷電路板3024上的組件之間,或者跨越一個印刷電路板3024的不同層,或甚至在不同印刷電路板3024上的單獨高頻電力電路3016′之間。如在上文所述的其他實施例中,高頻電力電路的元件可以相位鎖定至可變負載1070′中可存在的任一信號。可以採用相同手段來傳送關於可變負載1070′的資訊,如已參考圖41A及圖41B所述。In one set of embodiments of the system of FIG. 41C , the high frequency power link system 1065 of FIG. 41C may be a wireless high frequency power link system, just as the high frequency power link system 1065′ of FIG. 41A . In some embodiments, the high frequency power link system 1065 may be a dual peak wireless high frequency power link that transmits power locally within the high frequency power circuit 3016″. In this embodiment, the high frequency power link system 1065 may be physically located near a photovoltaic cell (e.g., the photovoltaic cell 3420 of FIG. 40A ). This local power transfer can be between components on a single printed circuit board, such as printed circuit board 3024 of FIG. 40A , or across different layers of one printed circuit board 3024, or even between separate high frequency power circuits 3016′ on different printed circuit boards 3024. As in other embodiments described above, the elements of the high frequency power circuit can be phase locked to any signal that may be present in the variable load 1070′. The same means can be used to transfer information about the variable load 1070′, as described with reference to FIGS. 41A and 41B .
圖42A是基於光伏模組3220陣列的太陽能板3400的分解示意性後視圖。高頻電力模組3019自光伏電池3420獲得電力,且圖40A及圖40B中所示的保護帽3017自光伏模組3220省略。太陽能板3400進一步包括:透明太陽能蓋3440;以及框架3460。對於根據圖35A及圖41A的電力傳送的無線實施方式,聚合器3040可以設置在框架3460上或設置在接收器共振器3050上。儘管接收器共振器3050在圖43A中示出為單個大板,但在其他實施例中,接收器共振器3050可以實施為網或線結構。此佈置在雙面太陽能板中是有用的,除正面以外,亦自背面照射該太陽能板。FIG42A is an exploded schematic rear view of a solar panel 3400 based on an array of photovoltaic modules 3220. The high frequency power module 3019 obtains power from the photovoltaic cells 3420, and the protective cap 3017 shown in FIG40A and FIG40B is omitted from the photovoltaic module 3220. The solar panel 3400 further includes: a transparent solar cover 3440; and a frame 3460. For wireless implementations of power transmission according to FIG35A and FIG41A, the aggregator 3040 can be disposed on the frame 3460 or on the receiver resonator 3050. Although the receiver resonator 3050 is shown as a single large panel in FIG43A, in other embodiments, the receiver resonator 3050 can be implemented as a mesh or wire structure. This arrangement is useful in bifacial solar panels, where the solar panel is illuminated from the back in addition to the front.
對於如圖41B及圖42B中所示的有線電力傳送,基於光伏模組3220′陣列之太陽能板3400′的高頻電力模組3019′可以接線至位於框架3460上或位於填充框架3460之尺寸適合的保護薄片3062上的聚合器3040′。For wired power transmission as shown in Figures 41B and 42B, the high frequency power module 3019' of the solar panel 3400' based on the array of photovoltaic modules 3220' can be wired to the concentrator 3040' located on the frame 3460 or on a protective sheet 3062 of appropriate size that fills the frame 3460.
值得指出的一點是,根據圖41A、圖41B及圖41C針對光伏「太陽能」板實施之關於圖37D所述的概念實施方案以及圖42A及圖42B中所示的實體佈置提供光伏太陽能板,該光伏太陽能板固有地能夠在住宅及工業線頻率下提供AC電力,且在某些實施例中,自與光伏電池3420定位在一起的高頻電力電路3016、3016′在PC板位準下如此操作,如圖40A及圖40B中所示。此外,此等系統之使用消除對反向器的需要,該等反向器是先前技術之住宅光伏系統地特性。藉由將自中央重型反向器產生AC電力的任務轉移至各個發電點,每個板或每個電池皆可以利用重量更輕、單位成本更低的電力組件,此有助於降低產生光伏電力的成本。此外,作為高頻切換信號產生器1024內的選擇在∆φ模式中切換此等系統的能力使得可以在具有現有基於反向器的AC電力供應系統的DC發電組態中採用完全相同的板。It is worth pointing out that the conceptual implementation described with respect to FIG. 37D and the physical arrangement shown in FIG. 42A and FIG. 42B implemented for photovoltaic "solar" panels according to FIG. 41A, FIG. 41B and FIG. 41C provide photovoltaic solar panels that are inherently capable of providing AC power at residential and industrial line frequencies, and in certain embodiments, do so at the PC board level from the high frequency power circuits 3016, 3016' located with the photovoltaic cells 3420, as shown in FIG. 40A and FIG. 40B. In addition, the use of such systems eliminates the need for inverters, which are characteristic of residential photovoltaic systems of the prior art. By shifting the task of generating AC power from a central heavy inverter to each generating point, each panel or each battery can utilize lighter weight, lower unit cost power components, which helps reduce the cost of generating photovoltaic power. In addition, the ability to switch these systems in ∆φ mode as a selection within the high frequency switching signal generator 1024 makes it possible to employ the exact same panels in a DC generation configuration with an existing inverter-based AC power supply system.
分別在圖42A及圖42B中的組件的分組3410及3410′是分別在圖42A及圖42B中的光伏模組3220及3220′陣列的封裝中所使用的組件。儘管併入光伏模組3220及3220′中的電子器件對於無線或有線實施例存在差異,但封裝以相同方式繼續進行。因此,將僅參考無線實施例來闡述封裝且有線實施例以相同方式繼續進行,不同之處在於,在有線情形下,來自光伏模組3220′的接線路由至聚合器3040′。圖42A中的分組3410,下文中亦稱為「層壓堆疊」,包括:囊封層3150;在囊封層3150的保形應用之前的光伏模組3220陣列;可選額外的光學透明聚合層3154;以及透明太陽能蓋3440。The groupings 3410 and 3410' of components in Figures 42A and 42B, respectively, are components used in the packaging of the arrays of photovoltaic modules 3220 and 3220' in Figures 42A and 42B, respectively. Although the electronics incorporated into the photovoltaic modules 3220 and 3220' differ for the wireless or wired embodiments, the packaging proceeds in the same manner. Therefore, the packaging will only be explained with reference to the wireless embodiment and the wired embodiment proceeds in the same manner, except that in the wired case, the wiring from the photovoltaic module 3220' is routed to the aggregator 3040'. The grouping 3410 in FIG. 42A , also referred to hereinafter as a “laminated stack,” includes: an encapsulation layer 3150 ; an array of photovoltaic modules 3220 prior to conformal application of the encapsulation layer 3150 ; an optional additional optically transparent polymer layer 3154 ; and a transparent solar cover 3440 .
圖43A示出圖40A之光伏模組3220的一部分的示意性側視圖(未按比例示出),該部分包括光伏電池3420及高頻功率模組3019。光伏電池3420的正面太陽能輻射接收表面設置在透明太陽能蓋3440上。透明太陽能蓋3440可以由適宜的太陽能輻射透明玻璃組成。高頻功率模組3019的印刷電路板3024類似地在透明太陽能蓋3440上安裝成接近光伏電池3420,其中,高頻電力電路3016位於距印刷電路板3024與透明太陽能蓋3440相對的一側上。為了清晰起見,已誇大圖43A中之元件的相對尺寸。將光伏模組3220囊封在保形的囊封層3150下方,該保形的囊封層設置在光伏模組322O的背面且延伸至透明太陽能蓋3440上。如在下文進一步所述,藉由熱真空密封施加保形的囊封層3150,使得任囊封間隙(例如間隙3160)處於比環境空氣壓力低的壓力。FIG43A shows a schematic side view (not shown to scale) of a portion of the photovoltaic module 3220 of FIG40A, which includes a photovoltaic cell 3420 and a high frequency power module 3019. The front solar radiation receiving surface of the photovoltaic cell 3420 is disposed on a transparent solar cover 3440. The transparent solar cover 3440 may be composed of a suitable solar radiation transparent glass. The printed circuit board 3024 of the high frequency power module 3019 is similarly mounted on the transparent solar cover 3440 close to the photovoltaic cell 3420, wherein the high frequency power circuit 3016 is located on the side of the printed circuit board 3024 opposite to the transparent solar cover 3440. For the sake of clarity, the relative sizes of the components in FIG43A have been exaggerated. The photovoltaic module 3220 is encapsulated beneath a conformal encapsulation layer 3150 disposed on the back side of the photovoltaic module 3220 and extending onto the transparent solar cover 3440. As described further below, the conformal encapsulation layer 3150 is applied by thermal vacuum sealing so that any encapsulation gaps, such as gap 3160, are at a pressure lower than the ambient air pressure.
在圖43B中示出的某些實施例中,透明太陽能蓋3440之面向光伏模組3220的表面可以包括可選額外的光學透明聚合層3154。例如無限制地,該層3154的材料可以包括乙烯醋酸乙烯酯(EVA)。可選額外的光學透明聚合層3154可以增強光伏模組3220及保形的囊封層3150與透明太陽能蓋3440的接合,同時仍允許穿過太陽能輻射。In certain embodiments shown in FIG. 43B , the surface of the transparent solar cover 3440 facing the photovoltaic module 3220 may include an optional additional optically transparent polymer layer 3154. For example, without limitation, the material of the layer 3154 may include ethylene vinyl acetate (EVA). The optional additional optically transparent polymer layer 3154 may enhance the bonding of the photovoltaic module 3220 and the conformal encapsulation layer 3150 to the transparent solar cover 3440 while still allowing the passage of solar radiation.
在某些實施例中,基於圖42A及圖43A的元件以及圖41A的無線實施方式,本文闡述生產太陽能板3400的方法。基於圖42B的元件以及圖41B之有線實施方式的太陽能板3400′的製造以相同方式繼續進行,不同之處在於,在有線情形下,來自光伏模組3220′的接線路由至聚合器3040′。圖43A中所示之形式的囊封層3150可以藉由使用熱真空層壓機將圖42A的熱可變形聚合薄片3150熱真空密封至光伏模組陣列3220上方的透明太陽能蓋3440上而保形地施加。此通用類型的機器亦配置以在真空下加熱之同時將機械壓力施加至囊封薄片及太陽能電池的佈置或堆疊。光伏模組陣列3220的主動太陽能輻射接收「正面」表面可鋪放於透明太陽能蓋3440上,且熱可變形聚合薄片3150鋪放於光伏模組陣列3220背面以在插入至層壓機前產生層壓堆疊3410。空氣自層壓機排出且施加熱。在加熱期間,可法向於薄片及太陽能電池之堆疊的平面施加機械壓力。在返回至層壓機之環境空氣壓力的作用下,將熱可變形聚合薄片3150強壓至透明太陽能蓋3440上,從而保形地囊封光伏模組3220陣列,因此產生圖43A及圖43B中所示之保形的囊封層3150。由於上述真空密封方法,任一囊封間隙(例如圖43A及圖43B的間隙3160)處於比環境空氣壓力低的壓力。在某些實施例中,圖43B以及圖42A中所示之額外的光學透明聚合薄片3154可以在層壓程序之前放置在透明太陽能蓋3440與光伏模組3220之間。In certain embodiments, a method of producing a solar panel 3400 is described herein based on the elements of Figures 42A and 43A and the wireless implementation of Figure 41A. The fabrication of a solar panel 3400' based on the elements of Figure 42B and the wired implementation of Figure 41B proceeds in the same manner, except that in the wired case, the wiring from the photovoltaic module 3220' is routed to the concentrator 3040'. An encapsulation layer 3150 of the form shown in Figure 43A can be conformally applied by heat vacuum sealing the heat deformable polymeric sheet 3150 of Figure 42A to the transparent solar cover 3440 above the photovoltaic module array 3220 using a heat vacuum laminating press. This general type of machine is also configured to apply mechanical pressure to the arrangement or stack of encapsulated sheets and solar cells while heating under vacuum. The active solar radiation receiving "front" surface of the photovoltaic module array 3220 can be laid on the transparent solar cover 3440, and the heat deformable polymer sheet 3150 is laid on the back of the photovoltaic module array 3220 to produce the laminated stack 3410 before insertion into the laminating press. Air is exhausted from the laminating press and heat is applied. During heating, mechanical pressure can be applied normal to the plane of the stack of sheets and solar cells. Under the pressure of the ambient air returning to the laminating press, the heat deformable polymer sheet 3150 is pressed against the transparent solar cover 3440 to conformally encapsulate the array of photovoltaic modules 3220, thereby producing the conformal encapsulation layer 3150 shown in Figures 43A and 43B. Due to the vacuum sealing method described above, any encapsulation gap (such as gap 3160 in Figures 43A and 43B) is at a pressure lower than the ambient air pressure. In some embodiments, an additional optically transparent polymer sheet 3154 shown in Figures 43B and 42A can be placed between the transparent solar cover 3440 and the photovoltaic module 3220 prior to the laminating process.
在某些實施例中,保護帽3017 (參見圖40A及圖40B)可置於光伏模組3220、3220′的高頻電力模組3019、3019′上。保護帽3017可以包括一種或多種聚合物,包括但不限於:聚醯胺、聚苯氧化物、聚苯硫醚、聚乳酸、聚醚醚酮、丙烯腈-丁二烯-苯乙烯、聚碳酸酯、聚對苯二甲酸乙二醇、丙烯腈-苯乙烯-丙烯酸酯、聚乙烯、聚丙烯、聚甲醛、聚苯并咪唑、聚醚碸、聚醚醯亞胺、聚偏二氟乙烯、聚四氟乙烯。由此等化合物中之任何一者或多者形成的帽可為高頻電力模組3019、3019′提供適合保護。保護帽3017可以在囊封之前或之後置於高頻電力模組3019、3019′上。可以將保護帽3017作為外殼囊封在保形的囊封層3150下方。In some embodiments, a protective cap 3017 (see FIG. 40A and FIG. 40B ) may be placed on the high-frequency power module 3019, 3019′ of the photovoltaic module 3220, 3220′. The protective cap 3017 may include one or more polymers, including but not limited to: polyamide, polyphenylene oxide, polyphenylene sulfide, polylactic acid, polyetheretherketone, acrylonitrile-butadiene-styrene, polycarbonate, polyethylene terephthalate, acrylonitrile-styrene-acrylate, polyethylene, polypropylene, polyoxymethylene, polybenzimidazole, polyethersulfone, polyetherimide, polyvinylidene fluoride, polytetrafluoroethylene. The cap formed by any one or more of these compounds can provide suitable protection for the high-frequency power module 3019, 3019′. The protective cap 3017 can be placed on the high frequency power module 3019, 3019' before or after encapsulation. The protective cap 3017 can be encapsulated as an outer shell under the conformal encapsulation layer 3150.
在某些實施例中,保護帽3017可以突出穿過保形的囊封層3150。在圖44中所示的某些實施例中,保護帽3017遮擋高頻電力模組3019或3019′。用於太陽能板3400′′之實施例的層壓堆疊3410′包括熱可變形聚合薄片3150′。在層壓之前,適合的孔洞3152可以在保護帽3017上面之熱可變形聚合薄片3150′中成型,該等孔洞的橫向尺寸比保護帽3017的橫向尺寸小,以保持囊封層3150′與帽3017之間的合成密封件的一體性。In some embodiments, the protective cap 3017 may protrude through the conformal encapsulation layer 3150. In some embodiments shown in FIG. 44, the protective cap 3017 shields the high frequency power module 3019 or 3019'. The laminated stack 3410' for an embodiment of a solar panel 3400'' includes a heat deformable polymeric sheet 3150'. Prior to lamination, suitable holes 3152 may be formed in the heat deformable polymeric sheet 3150' above the protective cap 3017, the holes having a lateral dimension smaller than the lateral dimension of the protective cap 3017 to maintain the integrity of the composite seal between the encapsulation layer 3150' and the cap 3017.
保形的囊封層3150用作對光伏模組3220或3220′的保護。保形的囊封層3150可以包括一層或多層可交聯及熱可變形聚合材料,包括但不限於:聚對苯二甲酸乙二醇酯、雙軸取向聚對苯二甲酸乙二醇酯、乙烯醋酸乙烯酯、氟化塗料、氟化聚酯、聚氟乙烯;聚偏二氟乙烯、聚乙烯醋酸乙烯酯、聚萘二甲酸乙二醇酯、乙烯-四氟乙烯、氟乙烯基醚、四氟乙烯-六氟丙烯-偏二氟乙烯共聚物、聚醯胺、聚丙烯、聚乙烯、聚偏二氟乙烯短糖棕櫚纖維。The conformal encapsulation layer 3150 is used to protect the photovoltaic module 3220 or 3220'. The conformal encapsulation layer 3150 may include one or more layers of cross-linkable and thermoformable polymeric materials, including but not limited to: polyethylene terephthalate, biaxially oriented polyethylene terephthalate, ethylene vinyl acetate, fluorinated coatings, fluorinated polyesters, polyvinyl fluoride; polyvinylidene fluoride, polyethylene vinyl acetate, polyethylene naphthalate, ethylene-tetrafluoroethylene, fluorovinyl ether, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, polyamide, polypropylene, polyethylene, polyvinylidene fluoride short sugar palm fiber.
儘管上文已論述若干個例示性態樣及實施例,但如熟習此項技術者亦將認識到其某些修改、排列、添加及子組合。因此,旨在將以下附隨的申請專利範圍及此後經引入之申請專利範圍解釋為包含與作為整體之本說明書之最廣泛解釋一致的所有此等修改、排列、添加及子組合。 〔術語解釋〕 Although several exemplary aspects and embodiments have been discussed above, those skilled in the art will also recognize certain modifications, arrangements, additions, and sub-combinations thereof. Therefore, it is intended that the following attached patent scope and the patent scope introduced hereafter be interpreted as including all such modifications, arrangements, additions, and sub-combinations consistent with the broadest interpretation of this specification as a whole. [Term Explanation]
除非上下文另外明確要求,否則貫穿本說明書及申請專利範圍:Unless the context clearly requires otherwise, throughout this specification and patent application:
「包括、包含(comprise)」、「包括、包含(comprising)」及諸如此類應在與排他性或詳盡性意義相反之包容性意義上進行解釋;亦即,在「包含但不限於」的意義上。“Include,” “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is, in the sense of “including but not limited to.”
「連接」、「耦合」或其任一變體意指兩個或兩個以上元件之間的任一直接或間接連接或耦合;元件之間的耦合或連接可以是實體的、邏輯的或其組合;一體形成的元件可以被認為是經連接或經耦合。"Connected", "coupled" or any variation thereof means any direct or indirect connection or coupling between two or more elements; the coupling or connection between elements may be physical, logical or a combination thereof; elements formed as one may be considered to be connected or coupled.
「有線」、「經由有線連接」或其任一變體意指經由導電媒體、中間電路或其他構件允許電流在系統的組件之間、透過該等組件或跨該等組件流動的任一實體連接。"Wired," "wired connection," or any variation thereof, means any physical connection that allows electrical current to flow between, through, or across components of a system through a conductive medium, intermediate circuits, or other means.
「電通信」、「電力通信」或其任一變體意指適合於在系統的組件之間、透過該等組件或跨該等組件傳送電信號的任一連接、耦合、介面或其他通信方式、硬接線、無線或其組合。"Electrical communication," "power communication," or any variation thereof, means any connection, coupling, interface, or other communication means, hardwired, wireless, or a combination thereof, suitable for transmitting electrical signals between, through, or across components of a system.
「此處」、「上文」、「下文」及具有類似含義之詞語在用於闡述本說明書時應指本說明書之整體,而非本說明書之任何特定部分。"Herein," "above," "below," and words of similar meaning when used in describing this specification shall refer to this specification as a whole rather than any specific part of this specification.
當參考兩個或兩個以上項目的清單使用措詞「或」時,該措詞涵蓋該措詞之以下解釋中的全部:該清單中的項目中的任一者、該清單中的全部項目及該清單中之項目的任何組合。When the term "or" is used with reference to a list of two or more items, the term includes all of the following interpretations of the term: any one of the items in the list, all of the items in the list, and any combination of the items in the list.
單數形式「一(a)」、「一(an)」及「該(the)」亦包括任何適當的複數形式的含義。The singular forms “a”, “an” and “the” are intended to include any appropriate plural forms.
「同時」及其變體可以包括同時、基本上同時及/或同時發生的含義。"Simultaneously" and variations thereof may include simultaneously, substantially simultaneously, and/or occurring simultaneously.
在本說明書及任何隨附申請專利範圍(若存在)中使用之指示方向的措辭(諸如「垂直」、「橫向」、「水平」、「向上」、「向下」、「向前」、「向後」、「向內」、「向外」、「豎直」,「橫向」,「左」、「右」、「前」、「後」、「頂」、「底部」、「下方」、「上方」、「下面」等)取決於所闡述及圖示之設備的特定定向。本文闡述的主題可以採用各種替代定向。因此,此等方向性術語非嚴格界定且不應作狹義解釋。The directional terms used in this specification and any accompanying claims (if any) (e.g., "vertical," "lateral," "horizontal," "upward," "downward," "forward," "backward," "inward," "outward," "vertical," "lateral," "left," "right," "front," "back," "top," "bottom," "below," "above," "below," etc.) depend on the particular orientation of the device described and illustrated. The subject matter described herein can be employed in a variety of alternative orientations. Accordingly, such directional terms are not strictly defined and should not be construed narrowly.
實施例包括本文所述的各種操作。此等操作可以由硬體組件、軟體、韌體或其組合執行。Embodiments include various operations described herein. Such operations can be performed by hardware components, software, firmware, or a combination thereof.
某些實施例可以實施為電腦程式產品,該電腦程式產品可以包括儲存在機器可讀媒體上的指令。此等指令可以用於對通用或專用處理器進行程式化以執行該等所述的操作。機器可讀媒體包括用於以機器(例如,電腦)可讀之形式(例如,軟體或處理應用程序)儲存資訊的任何機制。該機器可讀媒體可以包括但不限於磁儲存媒體(例如軟盤)、光學儲存媒體(例如CD-ROM)、磁光儲存媒體、只讀記憶體(ROM)、隨機存取記憶體(RAM)、可擦除可程式化記憶體(例如EPROM及EEPROM)、閃存或適合於儲存電子指令的另一媒體類型。Certain embodiments may be implemented as a computer program product that may include instructions stored on a machine-readable medium. Such instructions may be used to program a general or special processor to perform the operations described. Machine-readable media include any mechanism for storing information in a form (e.g., software or processing application) that is readable by a machine (e.g., a computer). The machine-readable medium may include, but is not limited to, magnetic storage media (e.g., floppy disks), optical storage media (e.g., CD-ROMs), magneto-optical storage media, read-only memory (ROM), random access memory (RAM), erasable programmable memory (e.g., EPROM and EEPROM), flash memory, or another type of media suitable for storing electronic instructions.
另外,某些實施例可以在分佈式計算環境中實踐,其中,機器可讀媒體儲存在一個以上電腦系統上及/或由一個以上電腦系統執行。另外,在電腦系統之間傳送的資訊可以是跨連接電腦系統之通信媒體拉動或推送的。In addition, some embodiments may be practiced in a distributed computing environment, where the machine-readable medium is stored on and/or executed by more than one computer system. In addition, information transmitted between computer systems may be pulled or pushed across the communication media connecting the computer systems.
在各種實施例的實施方式中使用的電腦處理組件包括一個或多個通用處理裝置,諸如微處理器或中央處理單元、控制器、圖形處理單元(GPU)、移動電腦等。另一選擇是,此數位處理組件可以包括一個或多個專用處理裝置,諸如數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可程式化門陣列(FPGA)等。在某些實施例中,例如,數位處理裝置可以是具有包括核心單元及多個微引擎之多個處理器的網路處理器。另外,數位處理裝置可以包括通用處理裝置及專用處理裝置的任一組合。The computer processing components used in the implementation of various embodiments include one or more general-purpose processing devices, such as a microprocessor or central processing unit, a controller, a graphics processing unit (GPU), a mobile computer, etc. Alternatively, the digital processing component may include one or more special-purpose processing devices, such as a digital signal processor (DSP), a special application integrated circuit (ASIC), a field programmable gate array (FPGA), etc. In some embodiments, for example, the digital processing device may be a network processor having multiple processors including a core unit and multiple microengines. In addition, the digital processing device may include any combination of a general-purpose processing device and a special-purpose processing device.
儘管本文中的方法的操作以一特定順序示出及闡述,但可以改變每一方法的操作順序,使得某些操作可以按相反順序執行,或使得某些操作可至少部分地與其他操作同時執行。在另一實施例中,不同操作的指令或子操作可以是按間歇及/或交替方式進行。Although the operations of the methods herein are shown and described in a particular order, the order of operations of each method may be changed so that certain operations may be performed in reverse order, or certain operations may be performed at least partially simultaneously with other operations. In another embodiment, instructions or sub-operations of different operations may be performed in an intermittent and/or alternating manner.
在上文提及的組件(例如,軟體模組、處理器、組合件、裝置、電路等)的情況下,除非另有指示,否則對彼組件之提及(包括對「手段」的提及)應解釋為包括執行所闡述組件之功能(即功能等效)的任何組件,包括在結構上不與執行所說明例示性實施例中之功能之所披露結構等效的組件。In the case of components mentioned above (e.g., software modules, processors, assemblies, devices, circuits, etc.), unless otherwise indicated, references to such components (including references to "means") should be interpreted as including any components that perform the function of the described components (i.e., functional equivalents), including components that are not structurally equivalent to the disclosed structures that perform the functions in the described exemplary embodiments.
出於說明目的,本文已闡述系統、方法及設備的具體示例。此等僅是示例。本文提供的技術可以應用於除上文所闡示例系統以外的系統。在本發明的實踐中,諸多改變、修改、添加、省略及排列是可能的。本發明包括關於所述實施例之對熟習此項技術者顯而易見的變化,包括藉由以下方式獲得的變化:用等效特徵、元件及/或動作替換特徵、元件及/或動作;來自不同實施例的特徵、元件及/或動作的混合及匹配;將如本文所述的實施例的特徵、元件及/或動作與其他技術的特徵、元件及/或動作組合;及/或省略將來自所述實施例的特徵、元件及/或動作組合。For illustrative purposes, specific examples of systems, methods, and apparatus have been described herein. These are merely examples. The techniques provided herein may be applied to systems other than the example systems described above. In the practice of the invention, many changes, modifications, additions, omissions, and arrangements are possible. The invention includes variations of the described embodiments that are obvious to one skilled in the art, including variations obtained by: replacing features, elements, and/or actions with equivalent features, elements, and/or actions; mixing and matching features, elements, and/or actions from different embodiments; combining features, elements, and/or actions of the embodiments described herein with features, elements, and/or actions of other technologies; and/or omitting to combine features, elements, and/or actions from the described embodiments.
本申請主張於2022年3月16日提交之美國申請第63/320,590號、於2022年10月14日提交之美國申請第63/379,547號、於2022年12月22日提交之美國申請第63/476,781號以及於2023年3月15日提交之PCT/IB2023/000167的權益,該等申請案中之每一者的內容出於所有目的以其全文引用的方式併入本文中。This application claims the benefit of U.S. Application No. 63/320,590 filed on March 16, 2022, U.S. Application No. 63/379,547 filed on October 14, 2022, U.S. Application No. 63/476,781 filed on December 22, 2022, and PCT/IB2023/000167 filed on March 15, 2023, the contents of each of which are incorporated herein by reference in their entirety for all purposes.
10:無線電力傳送系統(WPT系統) 10′:多發射器雙峰近場共振無線電力傳送系統 10′′:近場共振無線電力傳送系統 12:初級側、發射器子系統 12′:多發射器子系統 14:次級側、共振接收器子系統 14A:接收器子系統 14B:接收器子系統 16:發射子系統 20,20′′,20A′,20B′,20C′,20D′,20E′,20F′,20G′,20H′,20I′:發射器模組 22,22′′:控制器 24:感測器 24A:負載偵測器 24B:發射器電力感測器 24C:周圍物體偵測器(SOD) 24D:距離偵測器 24E:點 26:組件 26A,26A′′:振盪器 26B:功率放大器、自同步射頻整流器/放大器 26B′′:射頻功率放大器、功率放大器 26C:濾波器網路、濾波器、調諧組件 26D:匹配網路、調諧組件 26E:補償網路 、調諧組件 26F:V/I調諧器、調諧組件 28′′:傳輸調諧網路、發射器調諧網路 30:發射器共振器、共振器 30A′,30B′,30C′,30D′,30E′,30F′,30G′,30H′,30I′,30′′:發射器共振器 32:第一發射器天線、天線、發射器天線子系統 31A:磁場 31B:電場 33′:接地屏蔽網 35′:接地基板 40,40′′:接收器模組 42:控制器 42′′:接收器控制器 44:感測器 44A:接收器電力感測器 44B:負載偵測器 44C,44D:點 46:元件、組件 46A:補償網路 46B:匹配網路 46C:濾波器 46D:整流器 46E:負載管理器 46E′′:負載管理 48′′:接收器調諧網路 50:接收器共振器、共振器、接收器天線、發射器共振器 50′′,50′′′:接收器共振器 52:第一接收器天線、天線、接收器天線子系統 60′′:非空氣間隙連接、連接 70:負載 70′′:負載(電池) 70′′′:AC負載、電網 80:天線、伸長元件、第一發射器天線 80A:伸長元件 80B:間隙 80C:伸長元件的厚度 82A:彎曲部 82B:邊緣 127C,127D:主動裝置、電晶體 127E:DC源、DC電壓源 127F:第三諧波終端 127G:汲極節點 127H:第二諧波終端 127I:第一諧波終端 127J:AC負載、AC源、AC信號過載 127K:位準移位器 127L:移相器 130:發射器共振器 132:天線、第一發射器天線、發射器天線子系統 132A:伸長元件 132A-1,132A-2,132A-3:伸長元件的部分 132B-1,132B-2,132B-3:間隙 134:天線、第二發射器天線、發射器天線子系統 134A:伸長元件 134A-1,134A-2,134A-3:伸長元件的部分 134B-1,134B-2,134B-3:間隙 138:間隔件、介電元件 147A:輸入、AC電力、AC源、AC負載 147B:主動裝置、電晶體 147C:DC負載 147D:第三諧波終端、輸出 147E:汲極節點 147F:第二諧波終端 147G:第一諧波終端 147H:移相器 147I:位準移位器 150:接收器共振器 152:第一接收器天線、接收器天線子系統、天線 154:第二接收器天線、接收器天線子系統、天線 158:間隔件、介電元件 180:天線 180A:伸長元件 180B:間隙 182A:彎曲部 182B:邊緣 230:發射器共振器 232:第一發射器天線、發射器天線子系統 234:第二發射器天線、發射器天線子系統 238:間隔件 250:接收器共振器 252:第一接收器天線、接收器天線子系統 254:第二接收器天線、接收器天線子系統 258:間隔件 261A,261B:路徑 262:分離器 263A:第一分相器控制線 263B:第二分相器控制線 264A:第一移相器 264B:第二移相器 265A:第一主動開關控制線 265B:第二主動開關控制線 266A:第一主動開關 266B:第二主動開關 268A,268B:被動信號成形網路 269:組合器 280:天線 280A:伸長元件、轂元件 280a:邊緣 280B:間隙 280C:扇形元件 282C:扇形元件的厚度 330:發射器共振器 332:第一發射器天線、發射器天線子系統 334:第二發射器天線、發射器天線子系統 336:第三發射器、發射器天線子系統 338:間隔件 339:第二間隔件、間隔件 350:接收器共振器 352:第一接收器天線、接收器天線子系統、 354:第二接收器天線、接收器天線子系統 356:第三接收器天線、接收器天線子系統 358:間隔件 359:第二間隔件、間隔件 400,400′:太陽能板、陣列 400′′:太陽能板佈置、系統、陣列 410:電力調節單元、系統、電力傳送系統 420:太陽能電池、電源 430:電力調節單元(PCU) 440:透明太陽能蓋 450:合併組件 460:框架 470:板 500,500′:電動運載工具 510:底盤、機械負載承載結構 520:電池 530:電動馬達 600,600′:電力供應系統 610:電腦監視器、監視器 620:桌面 630:殼體、框架 700:DC源/負載 700′:AC源/負載 800:電力傳送電路裝置 801:矽晶圓 802,806,808:襯墊 810:多端子電力切換裝置(MPS裝置) 812:矽單晶晶圓 814:光伏電池 818:連接 820:相位、頻率及工作週期調整電路(PFDCA電路) 830:調諧網路 840:振幅/頻率/相位偵測器(AFPD) 850:電壓/電流偵測器(VID) 860:PM電路 870:記憶體 880:控制器 890:通信電路 894:天線 898:外部裝置及電路 900:AC負載/源 900′:電網 950,950′:電力傳送系統、系統 950C,950D:電力傳送系統、功率信號轉換電路、系統 1024:高頻切換信號產生器 1025A:高頻切換模式功率整流器/放大器、自同步射頻整流器/放大器 1025B:高頻切換模式功率整流器/放大器、自同步射頻整流器/放大器 1028:DC源/負載、DC源 1048:相鄰半波 1049:輸出功率信號 1065,1065′,1065′′:高頻功率鏈路系統 1067:整流器 1069:展開電路 1070:AC負載/源 1070′:AC/DC負載/源、可變負載 1080:控制器及保護電路、控制器 1090:隔離器系統 1095:鎖相迴路 3010:箭頭 3016,3016′,3016′′:高頻電力電路 3017:保護帽 3018:軸線 3019,3019′:高頻電力模組 3020:金屬帶 3024:印刷電路板 3026:PC板指狀件 3040,3040′:聚合器 3050:接收器共振器 3062:保護薄片 3150:熱可變形聚合薄片、囊封層 3150′:熱可變形聚合薄片 3160:間隙 3152:孔洞 3154:光學透明聚合層、光學透明聚合薄片 3220,3220′:光伏模組 3400,3400′,3400′′:太陽能板 3410,3410′,3410′′:層壓堆疊、分組 3420:光伏電池 3424:後表面金屬化條帶 3428:前表面金屬化連接器 3440:透明太陽能蓋 3460:框架 f A,f B:頻率 f L:操作頻率 ∆f:差頻 ψ A′,ψ A,ψ B,ψ B′:切換信號 1000,1100.1200,1300,1400,1500,1600,1700,1800,2000,2100,2200,2300:方法 1010〜1060:步驟 1110〜1170:步驟 1210〜1270:步驟 1310〜1370:步驟 1410〜1470:步驟 1510〜1550:步驟 1610〜1650:步驟 1710〜1750:步驟 1810〜1850:步驟 2010〜2050:步驟 2110〜2140:步驟 2210,2220:步驟 2310〜2344:步驟 10: Wireless power transmission system (WPT system) 10′: Multi-transmitter dual-peak near-field resonance wireless power transmission system 10′′: Near-field resonance wireless power transmission system 12: Primary side, transmitter subsystem 12′: Multi-transmitter subsystem 14: Secondary side, resonance receiver subsystem 14A: Receiver subsystem 14B: Receiver subsystem 16: Transmitter subsystem 20, 20′′, 20A′, 20B′, 20C′, 20D′, 20E′, 20F′, 20G′, 20H′, 20I′: Transmitter module 22, 22′′: Controller 24: Sensor 24A: Load detector 24B: Transmitter power sensor 24C: Surrounding object detector (SOD) 24D: distance detector 24E: point 26: component 26A, 26A'': oscillator 26B: power amplifier, self-synchronous RF rectifier/amplifier 26B'': RF power amplifier, power amplifier 26C: filter network, filter, tuning component 26D: matching network, tuning component 26E: compensation network, tuning component 26F: V/I tuning Harmonizer, tuning component 28'': transmission tuning network, transmitter tuning network 30: transmitter resonator, resonator 30A', 30B', 30C', 30D', 30E', 30F', 30G', 30H', 30I', 30'': transmitter resonator 32: first transmitter antenna, antenna, transmitter antenna subsystem 31A: magnetic field 31B : electric field 33': ground shield 35': ground substrate 40, 40'': receiver module 42: controller 42'': receiver controller 44: sensor 44A: receiver power sensor 44B: load detector 44C, 44D: point 46: component, assembly 46A: compensation network 46B: matching network 46C: filter 46D: rectifier 46E: load manager 46E'': load management 48'': receiver tuning network 50: receiver resonator, resonator, receiver antenna, transmitter resonator 50'', 50''': receiver resonator 52: first receiver antenna, antenna, receiver antenna subsystem 60'': non-air gap connection, connection 70: load 70'': load (battery) 70''': AC load, power grid 80: antenna, elongated element, first transmitter antenna 80A: elongated element 80B: gap 80C: thickness of elongated element 82A: bent portion 82B: edge 127C, 127D: active device, transistor 127E: DC source, DC voltage source 127F: third harmonic terminal 127G: drain node 127H : Second harmonic terminal 127I: First harmonic terminal 127J: AC load, AC source, AC signal overload 127K: Level shifter 127L: Phase shifter 130: Transmitter resonator 132: Antenna, first transmitter antenna, transmitter antenna subsystem 132A: Elongated element 132A-1, 132A-2, 132A-3: Part of the elongated element 132B-1, 132B-2, 132B-3: gap 134: antenna, second transmitter antenna, transmitter antenna subsystem 134A: extension element 134A-1, 134A-2, 134A-3: portion of extension element 134B-1, 134B-2, 134B-3: gap 138: spacer, dielectric element 147A: input, AC power, AC source, AC load 147B: active device, transistor 147C: DC load 147D: third harmonic terminal, output 147E: drain node 147F: second harmonic terminal 147G: first harmonic terminal 147H: phase shifter 147I: level shifter 150: receiver resonator 152: first receiver antenna, receiver antenna subsystem system, antenna 154: second receiver antenna, receiver antenna subsystem, antenna 158: spacer, dielectric element 180: antenna 180A: extension element 180B: gap 182A: bend 182B: edge 230: transmitter resonator 232: first transmitter antenna, transmitter antenna subsystem 234: second transmitter antenna, transmitter antenna subsystem 238: spacer 250: receiver resonator 252: first receiver antenna, receiver antenna subsystem 254: second receiver antenna, receiver antenna subsystem 258: spacer 261A, 261B: path 262: splitter 263A: first phase splitter control line 263B: second phase splitter control line 264A: first phase shifter 264B: second Second phase shifter 265A: first active switch control line 265B: second active switch control line 266A: first active switch 266B: second active switch 268A, 268B: passive signal shaping network 269: combiner 280: antenna 280A: extension element, hub element 280a: edge 280B: gap 280C: sector element 282C: thickness of sector element 330: transmitter resonator 332: first transmitter antenna, transmitter antenna subsystem 334: second transmitter antenna, transmitter antenna subsystem 336: third transmitter, transmitter antenna subsystem 338: spacer 339: second spacer, spacer 350: receiver resonator 352: first receiver antenna, receiver antenna subsystem, 354: second receiver antenna, receiver antenna subsystem 356: third receiver antenna, receiver antenna subsystem 358: spacer 359: second spacer, spacer 400, 400': solar panel, array 400'': solar panel arrangement, system, array 410: power conditioning unit, system, power transmission system 420: solar cell, power supply 430: power conditioning unit (PCU) 440: Transparent solar cover 450: Combined assembly 460: Frame 470: Plate 500, 500′: Electric vehicle 510: Chassis, mechanical load bearing structure 520: Battery 530: Electric motor 600, 600′: Power supply system 610: Computer monitor, monitor 620: Desktop 630: Housing, frame 700: DC source/load 700′: AC source/load 800: Power transmission circuit device 801: Silicon wafer 802, 806, 808: Pad 810: Multi-terminal power switching device (MPS device) 812: Silicon single crystal wafer 814: Photovoltaic cell 818: Connection 820: Phase, frequency and duty cycle adjustment circuit (PFDCA circuit) 830: Tuning network 840: Amplitude/frequency/phase detector (AFPD) 850: Voltage/current detector (VID) 860: PM circuit 870: memory 880: controller 890: communication circuit 894: antenna 898: external device and circuit 900: AC load/source 900′: power grid 950, 950′: power transmission system, system 950C, 950D: power transmission system, power signal conversion circuit, system 1024: high frequency switching signal generator 1025A: high frequency switching mode power rectifier/amplifier, self-synchronous RF rectifier/amplifier 102 5B: High frequency switching mode power rectifier/amplifier, self-synchronous RF rectifier/amplifier 1028: DC source/load, DC source 1048: adjacent half-wave 1049: output power signal 1065, 1065′, 1065′′: high frequency power link system 1067: rectifier 1069: unfolded circuit 1070: AC load/source 1070′: AC/DC load/source, variable load 1080: controller and protection circuit, controller 1090: Isolator system 1095: phase-locked loop 3010: arrows 3016, 3016′, 3016′′: high-frequency power circuit 3017: protective cap 3018: axis 3019, 3019′: high-frequency power module 3020: metal strip 3024: printed circuit board 3026: PC board fingers 3040, 3040′: polymerizer 3050: receiver resonator 3062: protective sheet 3150: thermally deformable polymer sheet, encapsulation layer 3150 ′: thermally deformable polymer sheet 3160: gap 3152: hole 3154: optically transparent polymer layer, optically transparent polymer sheet 3220, 3220′: photovoltaic module 3400, 3400′, 3400′′: solar panel 3410, 3410′, 3410′′: lamination, grouping 3420: photovoltaic cell 3424: rear surface metallized strip 3428: front surface metallized connector 3440: transparent solar cover 3460: frame f A, f B : frequency f L : operating frequency ∆f: difference frequency ψ A ′, ψ A, ψ B, ψ B ': switching signal 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 2000, 2100, 2200, 2300: method 1010-1060: step 1110-1170: step 1210-1270: step 1310- 1370: Steps 1410 to 1470: Steps 1510 to 1550: Steps 1610 to 1650: Steps 1710 to 1750: Steps 1810 to 1850: Steps 2010 to 2050: Steps 2110 to 2140: Steps 2210, 2220: Steps 2310 to 2344: Steps
在參考附圖中圖解說明例示性實施例。本文所揭示的實施例及圖式旨在視為說明性而非限制性的。其中: 圖 1是根據一個示例實施例的無線電力傳送系統的示意圖。 圖 2A、圖 2B及圖 2C描繪可在各示例實施例中使用或單獨使用或與其他所揭示的元件組合使用的天線。 圖 3A及圖 3B描繪可在各示例實施例中使用或單獨使用或與其他所揭示的元件組合使用的天線的側輪廓視圖。 圖 4A、圖 4B、圖 4C及圖 4D描繪可在各示例實施例中使用或單獨使用或與其他所揭示的元件組合使用的示例共振器的側輪廓視圖。 圖 5描繪可在各示例實施例中使用或單獨使用或與其他所揭示的元件組合使用的示例共振器的截面。 圖 6是根據一個示例實施例的無線電力傳送系統的初級側的示意繪圖。 圖 7是根據一個示例實施例的無線電力傳送系統的次級側的示意繪圖。 圖 8是可在各示例實施例中使用或單獨使用或與其他所揭示的元件組合使用的例示性功率放大器的示意繪圖。 圖 9是可在各示例實施例中使用或單獨使用或與其他所揭示的元件組合使用的例示性自同步整流器的示意繪圖。 圖 10示出根據一個示例按照圖6之用以調整前往發射器共振器的功率信號的V/I調諧器的更詳細示意繪圖。 圖 11示出用於根據一個示例實施例在共振功率信號振盪頻率下根據可調的傳送模式比雙峰地傳送電力的近場共振無線方法的流程圖。 圖 12是用於將電力傳送至單個接收器子系統的多發射器近場共振無線電力傳送系統的示意性代表。 圖 13A及圖 13B描繪用於將電力傳送至單個接收器子系統的多發射器近場共振無線電力傳送系統。 圖 14描繪用於將電力傳送至一個以上接收器子系統的多發射器近場共振無線電力傳送系統。 圖 15示出用於在可變共振功率信號振盪頻率下將電力自多發射器子系統傳送至單個共振接收器子系統的無線近場方法的流程圖。 圖 16示出用於在可變共振功率信號振盪頻率下將電力自多發射器子系統傳送至單個共振接收器子系統的另一無線近場方法的流程圖。 圖 17示出用於在可變共振功率信號振盪頻率下將電力自多發射器子系統傳送至一個以上共振接收器子系統的無線近場方法的流程圖。 圖 18示出用於在可變共振功率信號振盪頻率下將電力自多發射器子系統傳送至一個以上共振接收器子系統的另一無線近場方法的流程圖。 圖 19A示出用於將電力自光伏太陽能電池無線地傳送至電力負載的近場共振無線電力傳送系統。 圖 19B示出用於將電力自光伏太陽能電池傳送至電力負載的電力傳送系統。 圖 20A及圖 20B示出配置用於在多對一組態中使用圖19A的近場共振無線電力傳送系統的太陽能電池陣列的前視圖及後視圖。 圖 21A及圖 21B示出配置用於在一對一組態中使用圖19A的近場共振無線電力傳送系統的太陽能電池陣列的前視圖及後視圖。 圖 22A及圖 22B示出配置用於在基於行的組態中使用圖19A的近場共振無線電力傳送系統的太陽能電池陣列的前視圖及後視圖。 圖 23示出用於將電力自光伏太陽能電池無線地傳送至電力負載的方法的流程圖的圖式。 圖 24示出用於將電力自光伏太陽能電池陣列無線地傳送至電力負載的另一方法的流程圖。 圖 25示出用於將電力自光伏太陽能電池陣列無線地傳送至電力負載的另一方法的流程圖。 圖 26示出用於將電力自光伏太陽能電池陣列無線地傳送至電力負載的另一方法的流程圖。 圖 27A示出使用電力傳送系統的實施例的電動運載工具的一部分的圖式。 圖 27B示出使用電力傳送系統的實施例的電動運載工具的一部分的另一圖式。 圖 28A示出使用電力傳送系統的實施例的電腦監視器的圖式。 圖 28B示出使用電力傳送系統的另一實施例的電腦監視器。 圖 29示出用於將電力自直流電源傳送至電力負載的方法的流程圖。 圖 30示出用於將電力自直流電源傳送至電力負載的又一方法的流程圖。 圖 31示出用於在雙峰共振近場射頻電力傳送系統中於發射-接收模組之間傳送電力的方法的流程圖。 圖 32示出雙向電力傳送電路裝置的示意圖。 圖 33示出雙向電力傳送電路裝置的實施方案。 圖 34示出在與光伏電池相同的矽晶圓中實施的雙向電力傳送電路裝置的實施方案。 圖 34B示出圖 34A與共振器在矽晶圓的表面上的組合裝置。 圖 35A示出用於將電力自光伏太陽能電池無線地傳送至AC電力負載的近場共振無線電力傳送系統。 圖 35B示出用於將電力自光伏太陽能電池傳送至AC電力負載的電力傳送系統。 圖 36示出雙向電力傳送電路裝置的示意圖。 圖 37A示出用於使用兩個高頻信號的頻率差在DC電源與AC電力負載之間傳送電力的雙向電力傳送系統的示意圖。 圖 37B示出用於使用兩個高頻信號的相位差在DC電源與可變電力負載之間傳送可以是AC或DC的電力的雙向電力傳送系統的示意圖。 圖 37C示出用於使用兩個高頻信號的相位差以及多對整流器/放大器在DC電源與可變電力負載之間傳送可以是AC或DC的電力的雙向電力傳送系統的示意圖。 圖 37D示出用於使用兩個高頻信號的相位差及多個高頻切換信號產生器以及多對整流器/放大器在多個DC電源與可變電力負載之間傳送可以是AC或DC的電力的雙向電力傳送系統的示意圖。 圖 38示出呈一連串半波形式之整流的功率信號及展開的功率信號的結果。 圖 39示出用於在DC電源與可變電力負載之間傳送可以是AC或DC的電力的方法的流程圖。 圖 40A示出包含光伏電池及高頻功率模組之用於無線傳送電力的光伏模組的分解後視圖。 圖 40B示出包含光伏電池及高頻功率模組之用於有線傳送電力的光伏模組的分解後視圖。 圖 41A示出用於將可以是AC或DC的電力自光伏電池無線傳送至可變電力負載的電力傳送系統。 圖 41B示出用於將可以是AC或DC的電力自光伏電池無線傳送至可變電力負載的電力傳送系統。 圖 41C示出用於將可以是AC或DC的電力自光伏電池無線傳送至可變電力負載的電力傳送系統。 圖 42A是用於在囊封層的保形應用之前基於光伏模組陣列無線傳送電力的太陽能板的示意性分解後視圖。 圖 42B是用於在囊封層的保形應用之前基於光伏模組陣列有線傳送電力的太陽能板的示意性分解後視圖。 圖 43A示出囊封在保形的囊封層下的光伏模組的示意性側視圖。 圖 43B示出囊封在保形的囊封層下的光伏模組的又一實施方案的示意性側視圖。 圖 44是用於在囊封層的保形應用之前基於包含保護帽的光伏模組陣列無線傳送電力的太陽能板的示意性分解後視圖。 圖 45示出用於製作太陽能板的方法的流程圖。 Illustrative embodiments are illustrated in the referenced drawings. The embodiments and drawings disclosed herein are intended to be illustrative and not restrictive. In particular: FIG. 1 is a schematic diagram of a wireless power transmission system according to an exemplary embodiment. FIG. 2A , FIG. 2B , and FIG . 2C depict antennas that may be used in various exemplary embodiments, either alone or in combination with other disclosed elements. FIG. 3A and FIG . 3B depict side profile views of antennas that may be used in various exemplary embodiments, either alone or in combination with other disclosed elements. FIG. 4A , FIG. 4B , FIG. 4C , and FIG. 4D depict side profile views of exemplary resonators that may be used in various exemplary embodiments, either alone or in combination with other disclosed elements. FIG. 5 depicts a cross-section of an exemplary resonator that may be used in various exemplary embodiments, either alone or in combination with other disclosed elements. FIG . 6 is a schematic diagram of a primary side of a wireless power transmission system according to an example embodiment. FIG. 7 is a schematic diagram of a secondary side of a wireless power transmission system according to an example embodiment. FIG. 8 is a schematic diagram of an exemplary power amplifier that may be used in various example embodiments, either alone or in combination with other disclosed components. FIG. 9 is a schematic diagram of an exemplary self-synchronous rectifier that may be used in various example embodiments, either alone or in combination with other disclosed components. FIG. 10 shows a more detailed schematic diagram of a V/I tuner for adjusting a power signal to a transmitter resonator according to FIG. 6 according to an example. FIG. 11 shows a flow chart of a near field resonant wireless method for transmitting power bimodally according to an adjustable transmission mode ratio at a resonant power signal oscillation frequency according to an example embodiment. FIG12 is a schematic representation of a multi-transmitter near-field resonant wireless power transfer system for transferring power to a single receiver subsystem. FIG13A and FIG13B depict a multi-transmitter near-field resonant wireless power transfer system for transferring power to a single receiver subsystem. FIG14 depicts a multi-transmitter near-field resonant wireless power transfer system for transferring power to more than one receiver subsystem. FIG15 shows a flow chart of a wireless near-field method for transferring power from multiple transmitter subsystems to a single resonant receiver subsystem at a variable resonant power signal oscillation frequency. FIG16 shows a flow chart of another wireless near-field method for transferring power from multiple transmitter subsystems to a single resonant receiver subsystem at a variable resonant power signal oscillation frequency. FIG . 17 shows a flow chart of a wireless near-field method for transferring power from a multiple transmitter subsystem to one or more resonant receiver subsystems at a variable resonant power signal oscillation frequency. FIG. 18 shows a flow chart of another wireless near-field method for transferring power from a multiple transmitter subsystem to one or more resonant receiver subsystems at a variable resonant power signal oscillation frequency. FIG . 19A shows a near-field resonant wireless power transfer system for wirelessly transferring power from a photovoltaic solar cell to a power load. FIG. 19B shows a power transfer system for transferring power from a photovoltaic solar cell to a power load. FIG. 20A and FIG . 20B show front and rear views of a solar cell array configured for use with the near-field resonant wireless power transfer system of FIG. 19A in a many-to-one configuration. FIG21A and FIG21B show front and rear views of a solar cell array configured for use with the near-field resonant wireless power transfer system of FIG19A in a one-to-one configuration. FIG22A and FIG22B show front and rear views of a solar cell array configured for use with the near-field resonant wireless power transfer system of FIG19A in a row-based configuration. FIG23 shows a diagram of a flow chart of a method for wirelessly transferring power from a photovoltaic solar cell to a power load. FIG24 shows a flow chart of another method for wirelessly transferring power from a photovoltaic solar cell array to a power load. FIG25 shows a flow chart of another method for wirelessly transferring power from a photovoltaic solar cell array to a power load. FIG26 illustrates a flow chart of another method for wirelessly transmitting power from a photovoltaic solar cell array to an electrical load. FIG27A illustrates a diagram of a portion of an electric vehicle using an embodiment of a power transmission system. FIG27B illustrates another diagram of a portion of an electric vehicle using an embodiment of a power transmission system. FIG28A illustrates a diagram of a computer monitor using an embodiment of a power transmission system. FIG28B illustrates a computer monitor using another embodiment of a power transmission system. FIG29 illustrates a flow chart of a method for transmitting power from a DC power source to an electrical load. FIG30 illustrates a flow chart of yet another method for transmitting power from a DC power source to an electrical load. FIG . 31 shows a flow chart of a method for transferring power between transmit-receive modules in a dual peak resonant near field RF power transfer system. FIG . 32 shows a schematic diagram of a bidirectional power transfer circuit device. FIG. 33 shows an embodiment of a bidirectional power transfer circuit device. FIG . 34 shows an embodiment of a bidirectional power transfer circuit device implemented in the same silicon wafer as a photovoltaic cell. FIG. 34B shows a combined device of FIG. 34A with a resonator on the surface of a silicon wafer. FIG . 35A shows a near field resonant wireless power transfer system for wirelessly transferring power from a photovoltaic solar cell to an AC power load. FIG. 35B shows a power transfer system for transferring power from a photovoltaic solar cell to an AC power load. FIG36 shows a schematic diagram of a bidirectional power transmission circuit device. FIG37A shows a schematic diagram of a bidirectional power transmission system for transmitting power between a DC power source and an AC power load using the frequency difference of two high frequency signals. FIG37B shows a schematic diagram of a bidirectional power transmission system for transmitting power, which may be AC or DC, between a DC power source and a variable power load using the phase difference of two high frequency signals. FIG37C shows a schematic diagram of a bidirectional power transmission system for transmitting power, which may be AC or DC, between a DC power source and a variable power load using the phase difference of two high frequency signals and multiple pairs of rectifiers/amplifiers. FIG37D shows a schematic diagram of a bidirectional power transmission system for transmitting power, which may be AC or DC, between multiple DC power sources and variable power loads using a phase difference of two high frequency signals and multiple high frequency switching signal generators and multiple pairs of rectifiers/amplifiers. FIG38 shows the result of the rectified power signal and the expanded power signal in the form of a series of half waves. FIG39 shows a flow chart of a method for transmitting power, which may be AC or DC, between a DC power source and a variable power load. FIG40A shows an exploded view of a photovoltaic module for wirelessly transmitting power, including a photovoltaic cell and a high frequency power module. FIG40B shows an exploded view of a photovoltaic module for wired power transmission, including a photovoltaic cell and a high frequency power module. FIG41A shows a power transmission system for wirelessly transmitting power, which may be AC or DC, from a photovoltaic cell to a variable power load. FIG41B shows a power transmission system for wirelessly transmitting power, which may be AC or DC, from a photovoltaic cell to a variable power load. FIG41C shows a power transmission system for wirelessly transmitting power, which may be AC or DC, from a photovoltaic cell to a variable power load. FIG42A is a schematic exploded rear view of a solar panel for wirelessly transmitting power based on a photovoltaic module array prior to conformal application of an encapsulation layer. FIG42B is a schematic exploded rear view of a solar panel for wired transmission of power based on a photovoltaic module array prior to conformal application of an encapsulation layer. FIG43A shows a schematic side view of a photovoltaic module encapsulated under a conformal encapsulation layer. Figure 43B shows a schematic side view of yet another embodiment of a photovoltaic module encapsulated under a conformal encapsulation layer. Figure 44 is a schematic exploded rear view of a solar panel for wirelessly transmitting power based on a photovoltaic module array including a protective cap prior to conformal application of an encapsulation layer. Figure 45 shows a flow chart of a method for making a solar panel.
10:無線電力傳送系統(WPT系統) 10: Wireless power transmission system (WPT system)
12:初級側、發射器子系統 12: Primary side, transmitter subsystem
14:次級側、共振接收器子系統 14: Secondary side, resonant receiver subsystem
20:發射器模組 20: Transmitter module
30:發射器共振器 30: Transmitter Resonator
31A:磁場 31A: Magnetic field
31B:電場 31B: Electric field
40:接收器模組 40: Receiver module
50:接收器共振器、共振器、接收器天線、發射器共振器 50: Receiver resonator, resonator, receiver antenna, transmitter resonator
Claims (61)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263379547P | 2022-10-14 | 2022-10-14 | |
US63/379,547 | 2022-10-14 | ||
US202263476781P | 2022-12-22 | 2022-12-22 | |
US63/476,781 | 2022-12-22 | ||
WOPCT/IB2023/000167 | 2023-03-15 | ||
PCT/IB2023/000167 WO2023175399A2 (en) | 2022-03-16 | 2023-03-15 | Power transfer system and methods |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202416627A true TW202416627A (en) | 2024-04-16 |
Family
ID=88237347
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112124178A TW202416627A (en) | 2022-10-14 | 2023-06-28 | Power transfer system and methods |
TW112134867A TW202416628A (en) | 2022-10-14 | 2023-09-13 | Power transfer system and methods |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112134867A TW202416628A (en) | 2022-10-14 | 2023-09-13 | Power transfer system and methods |
Country Status (2)
Country | Link |
---|---|
TW (2) | TW202416627A (en) |
WO (1) | WO2024079729A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017175409A (en) * | 2016-03-24 | 2017-09-28 | デクセリアルズ株式会社 | Transmission device, antenna driving device, tuning method, and program for implementing tuning method |
JP2023551753A (en) * | 2020-09-15 | 2023-12-13 | ダアナア レゾリューション インク. | Power transmission system and method |
-
2023
- 2023-06-28 TW TW112124178A patent/TW202416627A/en unknown
- 2023-09-13 TW TW112134867A patent/TW202416628A/en unknown
- 2023-09-13 WO PCT/IL2023/050992 patent/WO2024079729A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
TW202416628A (en) | 2024-04-16 |
WO2024079729A1 (en) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3132484A1 (en) | Power transfer system and methods | |
US11682649B2 (en) | Radio frequency modules | |
US20230278437A1 (en) | Power transfer system and methods | |
AU2016231618B2 (en) | Wireless energy transfer systems | |
CN105765783B (en) | A kind of RF energy collector | |
US9601266B2 (en) | Multiple connected resonators with a single electronic circuit | |
US9508488B2 (en) | Resonant apparatus for wireless power transfer | |
US8629578B2 (en) | Wireless energy transfer systems | |
CN102656771B (en) | Wireless power transmission apparatus | |
US6395971B1 (en) | Apparatus for converting solar energy into electrical energy and for radiating and/or receiving high frequency electromagnetic waves | |
WO2017044211A1 (en) | Wireless power transmitting unit using metal plates | |
US20110248570A1 (en) | Resonance power receiving apparatus and method with wireless power transform function, and resonance device | |
US20110248575A1 (en) | Television system with wireless power transmission function, television set, and set-top box | |
US20180183274A1 (en) | Wireless energy harvesting | |
JP2016213927A (en) | Electric power transmission-reception array antenna | |
Hu et al. | A Ku-band microwave wireless energy transmission system based on rectifier diode | |
TW202416627A (en) | Power transfer system and methods | |
US20220368159A1 (en) | Power transfer system and methods | |
US20240128998A1 (en) | Power transfer system and methods | |
WO2023175399A2 (en) | Power transfer system and methods | |
US20240162756A1 (en) | Power transfer system and methods | |
Pirzada et al. | A mid-range wireless power transfer system for portable electronic devices using beam forming | |
CN105375649A (en) | Integrated circuit with radio energy receiving structure and integrating method thereof | |
CN103904783A (en) | Automobile wireless charging transmitting module |