TW202416290A - System and method for recommending a treatment plan for obstructive sleep apnea - Google Patents

System and method for recommending a treatment plan for obstructive sleep apnea Download PDF

Info

Publication number
TW202416290A
TW202416290A TW111138878A TW111138878A TW202416290A TW 202416290 A TW202416290 A TW 202416290A TW 111138878 A TW111138878 A TW 111138878A TW 111138878 A TW111138878 A TW 111138878A TW 202416290 A TW202416290 A TW 202416290A
Authority
TW
Taiwan
Prior art keywords
parameters
time series
sleep apnea
obstructive sleep
patient
Prior art date
Application number
TW111138878A
Other languages
Chinese (zh)
Inventor
林志鴻
胡翔崴
Original Assignee
林志鴻
Filing date
Publication date
Application filed by 林志鴻 filed Critical 林志鴻
Publication of TW202416290A publication Critical patent/TW202416290A/en

Links

Abstract

A system and method for recommending a treatment plan for obstructive sleep apnea, including: an artificial intelligence module; and a processor connected to the artificial intelligence module; wherein the processor performs the following operations: inputting multiple patient physiological feature parameters, treating solution parameters and efficacy judgment indicators to the artificial intelligence module to train the efficacy prediction model; and inputting a plurality of treatment solutions into the efficacy prediction model to generate a ranking result of the plurality of treatment solutions. In this way, individual treatment solutions are recommended and prioritized to patients and caregivers.

Description

阻塞型睡眠呼吸中止症治療方案推薦系統及其方法Obstructive sleep apnea treatment plan recommendation system and method

本發明是有關一種阻塞型睡眠呼吸中止症(Obstructive Sleep Apnea, OSA)治療方案推薦系統及其方法。The present invention relates to a system and method for recommending treatment plans for obstructive sleep apnea (OSA).

現今的阻塞型睡眠呼吸中止症的治療可分為手術性治療與非手術性治療,其目的都在於讓呼吸道空間變大,降低睡眠呼吸中止的風險。然而,不論是手術性治療或是非手術性治療,都存在有非常多種的治療方案,實有需要針對每個病患的症狀提供較佳的治療方案。The current treatment of obstructive sleep apnea can be divided into surgical treatment and non-surgical treatment, both of which aim to increase the airway space and reduce the risk of sleep apnea. However, there are many treatment options for both surgical and non-surgical treatments, and there is a need to provide the best treatment plan for each patient's symptoms.

本發明提供一種阻塞型睡眠呼吸中止症治療方案推薦系統及其方法,可蒐集每個病患的症狀以提供治療方案的排序結果與較佳的治療方案。The present invention provides an obstructive sleep apnea treatment plan recommendation system and method, which can collect the symptoms of each patient to provide a ranking result of treatment plans and a better treatment plan.

本發明所提供的阻塞型睡眠呼吸中止症治療方案推薦系統包括人工智慧模組以及連接人工智慧模組的處理器。其中處理器執行以下操作:輸入多個病患生理特徵參數、治療解決方案參數及療效判斷指標至人工智慧模組以訓練療效預測模型;以及輸入多個治療解決方案至療效預測模型以產生多個治療解決方案的排序結果。The obstructive sleep apnea treatment plan recommendation system provided by the present invention includes an artificial intelligence module and a processor connected to the artificial intelligence module. The processor performs the following operations: inputting multiple patient physiological characteristic parameters, treatment solution parameters and efficacy judgment indicators to the artificial intelligence module to train the efficacy prediction model; and inputting multiple treatment solutions to the efficacy prediction model to generate a ranking result of multiple treatment solutions.

本發明所提供的阻塞型睡眠呼吸中止症治療方案推薦方法,適用於具有處理器的阻塞型睡眠呼吸中止症治療方案推薦系統,其中阻塞型睡眠呼吸中止症治療方案推薦方法由處理器執行包括:輸入多個病患生理特徵參數、治療解決方案參數及療效判斷指標至人工智慧模組以訓練療效預測模型;以及輸入多個治療解決方案至療效預測模型以產生多個治療解決方案的排序結果。The obstructive sleep apnea treatment plan recommendation method provided by the present invention is applicable to an obstructive sleep apnea treatment plan recommendation system having a processor, wherein the obstructive sleep apnea treatment plan recommendation method is executed by the processor and includes: inputting multiple patient physiological characteristic parameters, treatment solution parameters and efficacy judgment indicators into an artificial intelligence module to train an efficacy prediction model; and inputting multiple treatment solutions into the efficacy prediction model to generate a ranking result of multiple treatment solutions.

在本發明的一實施例中,多個病患生理特徵參數包括非時間序特徵參數與時間序特徵參數,非時間序特徵參數至少包括病患呼吸道影像參數、病患病歷參數、及病患基因參數,時間序特徵參數至少包括病患穿戴式裝置生理參數、病患呼吸暫停低通氣指數(Apnea/Hypopnea Index; AHI)參數、表面貼片電極的電刺激參數、及牙套的牙套參數。In one embodiment of the present invention, multiple patient physiological characteristic parameters include non-time series characteristic parameters and time series characteristic parameters. The non-time series characteristic parameters at least include patient respiratory imaging parameters, patient medical history parameters, and patient genetic parameters. The time series characteristic parameters at least include patient wearable device physiological parameters, patient apnea/hypopnea index (Apnea/Hypopnea Index; AHI) parameters, surface patch electrode electrical stimulation parameters, and braces parameters.

在本發明的一實施例中,電刺激參數中的電刺激頻率為低頻率以20-100Hz的區間及1Hz以上之間隔輸入, 以及1k-10kHz區間及50Hz以上之間隔輸入,並且在表面貼片電極的各項不同位置進行排列組合。In one embodiment of the present invention, the electrical stimulation frequency in the electrical stimulation parameters is a low frequency input in the range of 20-100 Hz and at intervals above 1 Hz, and in the range of 1 k-10 kHz and at intervals above 50 Hz, and is arranged and combined at various positions of the surface patch electrode.

在本發明的一實施例中,處理器對非時間序特徵參數與時間序特徵參數進行資料填補以產生時間序列參數,資料填補至少包括刪除離群值、及遺漏值填補。In one embodiment of the present invention, the processor performs data filling on non-time series feature parameters and time series feature parameters to generate time series parameters. The data filling at least includes deleting outliers and filling missing values.

在本發明的一實施例中,處理器對時間序列參數進行資料整合以排序為三維時間序列參數,資料整合至少包括對時間序列參數進行分割、對分割後的時間序列參數進行排列。In one embodiment of the present invention, the processor performs data integration on the time series parameters to sort them into three-dimensional time series parameters, and the data integration at least includes segmenting the time series parameters and arranging the segmented time series parameters.

在本發明的一實施例中,處理器對三維時間序列參數進行特徵擷取以產生療效判斷指標,特徵擷取至少包括對三維時間序列參數進行時域-頻域轉換、卷積運算。In one embodiment of the present invention, the processor performs feature extraction on the three-dimensional time series parameters to generate therapeutic efficacy judgment indicators, and the feature extraction at least includes time domain-frequency domain conversion and convolution operation on the three-dimensional time series parameters.

本發明因收集病患的病歷與生理資料,並且以這些病例與生理資料當作輸入以訓練人工智慧模組來產生療效預測模型,因此當輸入所有治療解決方案時可以排序所有治療解決方案以獲取最佳治療方案。The present invention collects the patient's medical history and physiological data, and uses these cases and physiological data as input to train an artificial intelligence module to generate a treatment effect prediction model. Therefore, when all treatment solutions are input, all treatment solutions can be ranked to obtain the best treatment solution.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。In order to make the above and other purposes, features and advantages of the present invention more clearly understood, embodiments are specifically cited below and described in detail with reference to the accompanying drawings.

請參閱圖1所示,為本發明一實施例所提供的阻塞型睡眠呼吸中止症治療方案推薦系統的示意圖。本發明所提供的阻塞型睡眠呼吸中止症治療方案推薦系統1包括人工智慧模組2、處理器3、儲存裝置4、電刺激單元5、生理感測模組6、及電極電池7,其中處理器3連接人工智慧模組2、儲存裝置4、電刺激單元5、及生理感測模組6,其中人工智慧模組2用以依照病患背景資料結合生理感測資料以進行電刺激參數與牙套參數的預測,儲存裝置4如雲端伺服器或本地端伺服器等儲存由處理器3執行的阻塞型睡眠呼吸中止症治療方案推薦方法的程序以及所有病患的病歷與生理特徵參數、治療解決方案參數及療效判斷指標,電刺激單元5用以進行電刺激,生理感測模組6用以偵測生理感測資料,電極電池7連接並提供電源給人工智慧模組2、處理器3、儲存裝置4、電刺激單元5及生理感測模組6,其中特別的是處理器3用以接收生理感測資料並通過人工智慧模組2執行及時運算以決定電刺激參數與牙套參數。詳細地說,電刺激參數為膠囊式電極貼片A、黏貼式電極貼片B及C放在口內如圖2中或下巴與喉嚨交接處如圖3中的位置,並依病患個人參數進行波型、大小及頻率的最佳參數調整,其中黏貼式電極貼片設計表面可為微陣列電極,運用大面積貼片,可涵蓋至少16個區域,以多對多正負電極,依人工智慧演算法來做即時判斷與更換其正負電極之位置;而牙套參數為運用牙套D驅使下顎前移進行矯正,並依病患個人化生理參數與背景資料進行矯正參數預測,可運用人工智慧排出個人化最佳療效的牙套,例如可以決定OSA牙套定位點以及設計可調適機械關節與軟體設計可調控式OSA牙套,其中OSA牙套主要運用於下頷向前延伸的位置做上下顎牙齒間定位,將下顎做前突,牽引舌頭、呼吸道肌群,來擴張呼吸道以保持呼吸道與咽喉暢通並防止舌根與軟顎肌肉墜於後下方。其下顎前突與輕微開口之定位原則,顳顎關節平衡位置,進行開口動作,能避免配戴 OSA牙套期間,開口過大致使肌肉不適,減少造成顳顎關節症狀與咀嚼肌群不適;同時按病患個別上下顎間差異、上下正中門牙水平間距為參考,牽引下顎骨至足量的水平向移動,達到呼吸道與咽喉暢通之功效。OSA牙套厚度,將參考上下後牙垂直向間距、上下前牙間距、上門牙顎側及下門牙切端形成之導引面、咬合平面傾斜方向、關節活動係數,於最適下顎張開、向前延伸的距離下,給予OSA牙套足夠厚度。OSA牙套於牙齒頰舌側包覆之面積與高度,將依牙齒析量方向、置入路徑做參考,避免難以配戴或過於緊繃,也避免過於鬆動致使於睡眠時期配戴鬆脫。其牙套具有特殊帶刺設計,若舌頭癱軟於此,可運用帶刺設計讓舌頭反射性縮回,可避免呼吸道阻塞。在一示例中,本發明可依個人化資訊所建立的人工智慧模型,執行及時運算決定電刺激參數,當睡眠呼吸中止發生時,藉由生理感測模組6(如血氧濃度計)即時收到生理資訊(SpO2之變化),輸入至處理器3中判斷是否執行電刺激,並依所收到的生理資訊來做電刺激大小的調整,接著再執行電刺激單元5,若電刺激使睡眠呼吸中止症改善,可再藉由即時生理資訊來自動化回饋停止其電刺激,其中貼片所電的位置皆為非侵入式舌下神經位置。另外,可以注意的是,人工智慧模組2可以包含在處理器3中,亦可以是單獨的硬體、軟硬體結合、或可執行機器學習的神經網路的裝置、設備等。在本實施例中,人工智慧模組2獨立於處理器3存在於阻塞型睡眠呼吸中止症治療方案推薦系統1中。Please refer to FIG. 1, which is a schematic diagram of an obstructive sleep apnea treatment plan recommendation system provided by an embodiment of the present invention. The obstructive sleep apnea treatment plan recommendation system 1 provided by the present invention includes an artificial intelligence module 2, a processor 3, a storage device 4, an electrical stimulation unit 5, a physiological sensing module 6, and an electrode battery 7, wherein the processor 3 is connected to the artificial intelligence module 2, the storage device 4, the electrical stimulation unit 5, and the physiological sensing module 6, wherein the artificial intelligence module 2 is used to predict the electrical stimulation parameters and the braces parameters according to the patient's background data combined with the physiological sensing data, and the storage device 4, such as a cloud server or a local server, stores the obstructive sleep apnea treatment plan recommendation system 1 executed by the processor 3. The procedure for recommending a treatment plan for obstructive sleep apnea, as well as the medical history and physiological characteristic parameters of all patients, treatment solution parameters and efficacy judgment indicators, the electrical stimulation unit 5 is used for electrical stimulation, the physiological sensing module 6 is used to detect physiological sensing data, the electrode battery 7 is connected to and provides power to the artificial intelligence module 2, the processor 3, the storage device 4, the electrical stimulation unit 5 and the physiological sensing module 6, among which the processor 3 is particularly used to receive the physiological sensing data and perform real-time calculations through the artificial intelligence module 2 to determine the electrical stimulation parameters and the braces parameters. Specifically, the electrical stimulation parameters are that the capsule electrode patch A, adhesive electrode patch B and C are placed in the mouth as shown in Figure 2 or at the junction of the chin and throat as shown in Figure 3, and the optimal parameters of waveform, size and frequency are adjusted according to the patient's individual parameters. The adhesive electrode patch can be designed with a micro-array electrode surface, using a large-area patch to cover at least 16 areas, with many-to-many positive and negative electrodes, and the position of the positive and negative electrodes is determined and replaced in real time according to the artificial intelligence algorithm; and the brace parameter is to use brace D to drive the front of the lower jaw The system can correct the abnormalities by adjusting the position of the braces and predict the correction parameters according to the patient's personalized physiological parameters and background data. It can also use artificial intelligence to select the best personalized braces. For example, it can determine the positioning points of OSA braces and design adjustable mechanical joints and software-controlled OSA braces. OSA braces are mainly used to position the upper and lower teeth at the position where the mandible extends forward, protrude the mandible, pull the tongue and respiratory muscles, expand the respiratory tract to keep the respiratory tract and throat open, and prevent the tongue root and soft palate muscles from falling backward and downward. The positioning principle of mandibular protrusion and slight opening, the balance position of temporomandibular joint, and the opening action can avoid muscle discomfort caused by excessive opening of the mouth during wearing OSA braces, reduce temporomandibular joint symptoms and discomfort of the masticatory muscles; at the same time, according to the individual difference between the upper and lower jaws of the patient and the horizontal distance between the upper and lower central incisors, the mandibular bone is guided to move horizontally to a sufficient amount to achieve the effect of unobstructed airway and throat. The thickness of OSA braces will refer to the vertical distance between the upper and lower posterior teeth, the distance between the upper and lower front teeth, the guide surface formed by the upper incisor palate and the incisor tip of the lower incisor, the inclination direction of the occlusal plane, and the joint activity coefficient. At the most suitable distance for the mandibular opening and forward extension, the OSA braces are given sufficient thickness. The area and height of the OSA braces on the cheek and lingual side of the teeth will be based on the tooth analysis direction and the insertion path to avoid being difficult to wear or too tight, and to avoid being too loose and falling off during sleep. The braces have a special barbed design. If the tongue is paralyzed here, the barbed design can be used to reflexively retract the tongue to avoid airway obstruction. In one example, the present invention can perform real-time calculations to determine electrical stimulation parameters based on an artificial intelligence model established by personalized information. When sleep apnea occurs, the physiological information (SpO2 changes) is received in real time by the physiological sensing module 6 (such as a blood oximeter), and input into the processor 3 to determine whether to perform electrical stimulation, and adjust the size of the electrical stimulation according to the received physiological information, and then execute the electrical stimulation unit 5. If the electrical stimulation improves sleep apnea, the electrical stimulation can be automatically stopped by feedback based on the real-time physiological information, and the location of the patch is the non-invasive hypoglossal nerve location. In addition, it can be noted that the artificial intelligence module 2 can be included in the processor 3, or it can be a separate hardware, a combination of hardware and software, or a device or equipment that can perform machine learning neural networks. In this embodiment, the artificial intelligence module 2 exists independently of the processor 3 in the obstructive sleep apnea treatment plan recommendation system 1.

請參閱圖4所示,為本發明一實施例所提供的阻塞型睡眠呼吸中止症治療方案推薦方法的流程圖。本發明所提供的阻塞型睡眠呼吸中止症治療方案推薦方法包括步驟S1:處理器3輸入多個病患生理特徵參數、治療解決方案參數及療效判斷指標至人工智慧模組2以訓練療效預測模型,其中多個病患生理特徵參數包括非時間序特徵參數與時間序特徵參數,而療效判斷指標至少包括病患呼吸暫停低通氣指數指標(AHI)、血氧濃度指標、鼾聲指標等,但本發明包括上述判斷指標但不限制其他判斷指標。非時間序特徵參數至少包括病患呼吸道影像參數、病患病歷參數、及病患基因參數,例如醫學影像相關資訊(針對 鼻腔、鼻咽部、咽喉、頭顱、顱顏及上呼吸道位置的電腦斷層影像、超音波及X光影像)、病歷資料(身高、年齡、體重、BMI,其他共病如糖尿病、高血壓、慢性腎臟病、心臟病及憂鬱症等)、看診紀錄(脖圍大小、安眠藥或鎮定劑之用藥紀錄)、基因資料(先天中樞性換氣不足、菌種基因、骨骼性戽斗上下顎咬合異常)、抽血檢驗(心血管疾病數據CRP、hsCRP及同半胱胺酸等; 糖尿病數據 糖化血色素及血糖值等; 腎功能數據 尿液白蛋白、肌酸酐、血中尿素氮及腎絲球過濾率; 血脂指標數據(低密度脂蛋白膽固醇、高密度脂蛋白膽固醇、三酸甘油脂及總膽固醇)等,但本發明包括上述非時間序特徵參數但不限制其他非時間序特徵參數。時間序特徵參數至少包括病患穿戴式裝置生理參數(腦波圖、眼動參數、下顎肌電圖參數心率變異及心電圖等,例如血氧濃度、血壓(收縮壓、舒張壓或平均動脈壓))、病患呼吸暫停低通氣指數參數(每個小時中出現的呼吸暫停和呼吸道狹窄所導致的低度通氣量的次數,例如呼吸氣流(氣流大小及阻塞位置)、呼吸動態(呼吸道擴張大小、頻率及長度)及呼吸噪聲(打鼾聲音大小、打鼾長度及發生頻率)等)、表面貼片電極的電刺激參數(時間長度、波長、強度、表面電極刺激位置及電刺激頻率)、及牙套的牙套參數(U型參數設計、下顎前移定位位置、上下列咬合位置、矯正歷程軌跡),但本發明包括上述時間序特徵參數但不限制其他時間序特徵參數。具體地說,處理器3對非時間序特徵參數與時間序特徵參數進行資料填補以產生時間序列參數,其中該資料填補至少包括對統計後的各種參數進行離群值刪除、及遺漏值填補;接著,處理器3對時間序列參數進行資料整合以排序為三維時間序列參數,其中資料整合至少包括對時間序列參數進行分割、對分割後的時間序列參數進行排列以產生三維時間序列參數;以及,處理器3對三維時間序列參數進行特徵擷取以產生療效判斷指標,其中特徵擷取至少包括對三維時間序列參數進行時域-頻域轉換、及卷積運算以獲取特徵來定義療效判斷指標。接著,處理器3運用人工智慧模組2例如RNN 模型或機器學習進行預測訓練(如SVM、Xgboost、LightGBM)來訓練療效預測模型,可分為AHI數值預測模型、二元分類是否有療效之預測模型及複合型併發症風險評估預測。藉此,可提供最低傷害、不影響睡眠的電刺激參數以及最具療效、兼具美觀的牙套參數。接著,進入步驟S3。Please refer to FIG. 4, which is a flow chart of a method for recommending a treatment plan for obstructive sleep apnea provided by an embodiment of the present invention. The method for recommending a treatment plan for obstructive sleep apnea provided by the present invention includes step S1: the processor 3 inputs a plurality of patient physiological characteristic parameters, treatment solution parameters and efficacy judgment indicators to the artificial intelligence module 2 to train the efficacy prediction model, wherein the plurality of patient physiological characteristic parameters include non-time series characteristic parameters and time series characteristic parameters, and the efficacy judgment indicators at least include the patient's apnea hypopnea index (AHI), blood oxygen concentration index, snoring index, etc., but the present invention includes the above judgment indicators but does not limit other judgment indicators. Non-time series characteristic parameters at least include patient respiratory imaging parameters, patient medical history parameters, and patient genetic parameters, such as medical imaging related information (computer tomography, ultrasound and X-ray images of the nasal cavity, nasopharynx, pharynx, head, craniofacial and upper respiratory tract), medical history data (height, age, weight, BMI, other comorbidities such as diabetes, hypertension, chronic kidney disease, heart disease and depression, etc.), medical records (neck size, medication records of sleeping pills or sedatives), genetic data (congenital central hypoventilation, bacterial strain genes, skeletal occlusal abnormalities of upper and lower jaws), blood tests (cardiovascular disease data CRP, hsCRP and homocysteine, etc.; diabetes data glycosylated hemoglobin and blood sugar level, etc.); Renal function data: urine albumin, creatinine, blood urea nitrogen and glomerular filtration rate; blood lipid index data (low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides and total cholesterol), etc. However, the present invention includes the above-mentioned non-time series characteristic parameters but does not limit other non-time series characteristic parameters. Time series characteristic parameters at least include physiological parameters of the patient's wearable device (electroencephalogram, eye movement parameters, mandibular electromyogram parameters, heart rate variability and electrocardiogram, such as blood oxygen concentration, blood pressure (systolic pressure, diastolic pressure or mean arterial pressure)), patient respiratory arrest hypopnea index The clinical parameters of the patient were as follows: respiratory parameters (number of hypoventilation caused by respiratory arrest and airway stenosis in each hour, such as respiratory airflow (airflow size and obstruction location), respiratory dynamics (airway dilation size, frequency and length) and respiratory noise (snoring sound size, snoring length and frequency), electrical stimulation parameters of the surface patch electrode (duration, wavelength, intensity, surface electrode stimulation location and electrical stimulation frequency), and brace parameters (U-shaped parameter design, mandibular The present invention includes the above-mentioned time series characteristic parameters but does not limit other time series characteristic parameters. Specifically, the processor 3 performs data filling on the non-time series characteristic parameters and the time series characteristic parameters to generate time series parameters, wherein the data filling at least includes outlier removal and missing value filling on the various parameters after statistics; then, the processor 3 performs data integration on the time series parameters to sort them into three-dimensional time series parameters. The data integration at least includes segmenting the time series parameters and arranging the segmented time series parameters to generate three-dimensional time series parameters; and the processor 3 performs feature extraction on the three-dimensional time series parameters to generate a therapeutic efficacy judgment indicator, wherein the feature extraction at least includes performing a time domain-frequency domain conversion and a convolution operation on the three-dimensional time series parameters to obtain features to define the therapeutic efficacy judgment indicator. Then, the processor 3 uses the artificial intelligence module 2 such as RNN Models or machine learning are used for prediction training (such as SVM, Xgboost, LightGBM) to train efficacy prediction models, which can be divided into AHI numerical prediction models, binary classification prediction models for whether there is efficacy, and complex complication risk assessment predictions. In this way, the electrical stimulation parameters with the lowest damage and no impact on sleep, as well as the most effective and aesthetic braces parameters can be provided. Then, enter step S3.

步驟S3:處理器3輸入多個治療解決方案至療效預測模型以產生多個治療解決方案的排序結果。Step S3: Processor 3 inputs multiple treatment solutions into the treatment effect prediction model to generate a ranking result of the multiple treatment solutions.

整體來說,經過建立療效預測模型之後,首先輸入病患背景之各項參數 (影像呼吸道特徵、病歷資料、基因資料 、穿戴生理特徵資料及 AHI 診療評估 ),再將各類治療參數輸入進去,例如輸入參數為電刺激參數如低頻率以20-100Hz的區間及1Hz以上之間隔輸入,以1k-10kHz區間,及50Hz以上之間隔輸入,並且在表面貼片電極的各項不同位置進行排列組合,找最佳療效數值來決定最佳參數組合,其運用感測端例如血氧濃度計來測得因為呼吸終止症而缺氧的狀態,藉以表示該病患是否需要電刺激,同時藉由無線電刺激回饋系統以在睡覺的時候自動電一下來減少打鼾的狀態,及可能在牙套內部設計有刺讓舌頭內縮,電刺激與舌頭訓練用於讓舌頭肌肉訓練,舌頭縮小下來,也同時增加舌頭靈活度,改善(老人)吞嚥問題,但是每個病患的參數不一樣,因此通過療效預測模型來預測進行個人化治療,並且利用每個病患的基因資料、CT、血氧濃度和超音波來取得各項數值運用人工智慧演算法以計算最佳參數來達到剛好的波型、強度、電刺激長度及頻率(其中使用基因的原因在於每個病患的疼痛指數跟基因有關係、血氧濃度可針對呼吸中止症嚴重程度來做選擇、CT影像能針對呼吸道狀況來確定舌頭電刺激肌肉訓練模式);以及例如輸入參數為牙套參數如針對牙齒排列U型所構成的數學模型如多項式,將針對各項構成U型參數進行調整,特別針對U型開口係數,以0.1 以上進行不同開口輸入療效模型來決定出最佳U型開口以獲得參數組合排序決定最佳參數解決方案,其根據病患的各種不同參數包含基因、看診資料、CT、超音波(對於排牙困難度的基因、呼吸道空腔狀況、顱顏位置狀況)去了解牙齒排列的最佳U型(如牙套的形狀參數)來達到最有療效的關鍵預測和不同的參數。可以注意的是,最佳解決方案之療效預測指標可針對單一指標,或是多項指標共同評分而定,以便獲得各項解決方案及其排序推薦給予病患和護理人員。Generally speaking, after establishing the efficacy prediction model, the various parameters of the patient's background (image respiratory characteristics, medical history data, genetic data, wearable physiological characteristics data and AHI diagnosis and evaluation) are first input, and then various treatment parameters are input. For example, the input parameters are electrical stimulation parameters such as low frequency in the range of 20-100Hz and intervals above 1Hz, in the range of 1k-10kHz, and intervals above 50Hz, and the various positions of the surface patch electrodes are arranged and combined to find the best efficacy value to determine the best parameter combination. The use of the sensing end example For example, a blood oximeter can be used to measure the state of hypoxia due to respiratory arrest, indicating whether the patient needs electrical stimulation. At the same time, a wireless electrical stimulation feedback system can be used to automatically apply electrical stimulation during sleep to reduce snoring. Barbs may be designed inside the braces to retract the tongue. Electrical stimulation and tongue training are used to train the tongue muscles, shrink the tongue, and increase the flexibility of the tongue, improving The swallowing problem of the elderly is treated, but the parameters of each patient are different. Therefore, the efficacy prediction model is used to predict and conduct personalized treatment. The genetic data, CT, blood oxygen concentration and ultrasound of each patient are used to obtain various values. The artificial intelligence algorithm is used to calculate the best parameters to achieve the right waveform, intensity, electrical stimulation length and frequency (the reason for using genes is that the pain index of each patient is related to genes, blood oxygen concentration can be selected according to the severity of apnea, and CT images can determine the tongue electrical stimulation muscle training mode according to the respiratory condition); and for example, the input parameters are braces parameters, such as the mathematical model formed by the U-shaped tooth arrangement, such as polynomials, and the parameters that constitute the U-shaped will be adjusted, especially for the U-shaped opening coefficient, with a value of 0.1. The above different openings are input into the efficacy model to determine the best U-shaped opening to obtain the parameter combination ranking to determine the best parameter solution. According to the various parameters of the patient including genes, medical data, CT, ultrasound (genes for difficulty in tooth arrangement, respiratory cavity conditions, craniofacial position conditions) to understand the best U-shaped tooth arrangement (such as the shape parameters of braces) to achieve the most effective key prediction and different parameters. It can be noted that the efficacy prediction index of the best solution can be based on a single indicator or multiple indicators to be scored together, so as to obtain various solutions and their ranking recommendations to patients and caregivers.

綜上所述,本發明所提供的阻塞型睡眠呼吸中止症治療方案推薦系統及其方法,可收集病患的病歷與生理資料,並且以這些病例與生理資料當作輸入以訓練人工智慧模組來產生療效預測模型,因此當輸入所有治療解決方案時可以排序所有治療解決方案以獲取最佳治療方案。確切地說,治療解決方案包含調整貼片位置、調整電刺激參數、調整牙套治療參數等。這些治療解決方案的不同組合結合該病患生理參數輸入療效預測模型後,會獲得不同組合的治療解決方案的療效預測結果。而獲得最佳治療方案的方式可以例如是,可由不同組合的治療解決方案的所獲得的AHI數值大小進行排序,可由AHI數值進行評估以獲得最佳療效預測結果,以便推薦最佳療效的治療解決方案的參數組合。In summary, the obstructive sleep apnea treatment plan recommendation system and method provided by the present invention can collect the patient's medical history and physiological data, and use these cases and physiological data as input to train the artificial intelligence module to generate a treatment effect prediction model, so that when all treatment solutions are input, all treatment solutions can be sorted to obtain the best treatment solution. Specifically, the treatment solution includes adjusting the patch position, adjusting the electrical stimulation parameters, adjusting the braces treatment parameters, etc. After different combinations of these treatment solutions are combined with the patient's physiological parameters and input into the treatment effect prediction model, the treatment effect prediction results of different combinations of treatment solutions will be obtained. The best treatment plan can be obtained, for example, by ranking different combinations of treatment solutions according to their AHI values, and evaluating the AHI values to obtain the best efficacy prediction result, so as to recommend the parameter combination of the treatment solution with the best efficacy.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed as above by way of embodiments, they are not intended to limit the present invention. A person having ordinary knowledge in the technical field to which the present invention belongs may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined in the attached patent application.

1:阻塞型睡眠呼吸中止症治療方案推薦系統 2:人工智慧模組 3:處理器 4:儲存裝置 5:電刺激單元 6:生理感測模組 7:電極電池 S1, S3:步驟 1: Obstructive sleep apnea treatment plan recommendation system 2: Artificial intelligence module 3: Processor 4: Storage device 5: Electrical stimulation unit 6: Physiological sensing module 7: Electrode battery S1, S3: Steps

圖1為本發明一實施例所提供的阻塞型睡眠呼吸中止症治療方案推薦系統的示意圖; 圖2為本發明一實施例所提供的口腔內部貼片位置的示意圖; 圖3為本發明一實施例所提供的咽喉外部貼片位置的示意圖;以及 圖4為本發明一實施例所提供的阻塞型睡眠呼吸中止症治療方案推薦方法的流程圖。 FIG1 is a schematic diagram of a system for recommending treatment plans for obstructive sleep apnea provided in an embodiment of the present invention; FIG2 is a schematic diagram of the position of a patch inside the oral cavity provided in an embodiment of the present invention; FIG3 is a schematic diagram of the position of a patch outside the throat provided in an embodiment of the present invention; and FIG4 is a flow chart of a method for recommending treatment plans for obstructive sleep apnea provided in an embodiment of the present invention.

1:阻塞型睡眠呼吸中止症治療方案推薦系統 1: Obstructive sleep apnea treatment recommendation system

2:人工智慧模組 2: Artificial intelligence module

3:處理器 3: Processor

4:儲存裝置 4: Storage device

5:電刺激單元 5:Electrostimulation unit

6:生理感測模組 6: Physiological sensing module

7:電極電池 7: Electrode battery

Claims (12)

一種阻塞型睡眠呼吸中止症治療方案推薦系統,包括: 一人工智慧模組;以及 一處理器,連接該人工智慧模組; 其中該處理器執行以下操作: 輸入多個病患生理特徵參數、治療解決方案參數及療效判斷指標至該人工智慧模組以訓練一療效預測模型;以及 輸入多個治療解決方案至該療效預測模型以產生該些治療解決方案的一排序結果。 A system for recommending treatment plans for obstructive sleep apnea, comprising: an artificial intelligence module; and a processor connected to the artificial intelligence module; wherein the processor performs the following operations: inputting multiple patient physiological characteristic parameters, treatment solution parameters and efficacy judgment indicators into the artificial intelligence module to train an efficacy prediction model; and inputting multiple treatment solutions into the efficacy prediction model to generate a ranking result of the treatment solutions. 如請求項1所述之阻塞型睡眠呼吸中止症治療方案推薦系統,其中該些病患生理特徵參數包括非時間序特徵參數與時間序特徵參數,該非時間序特徵參數至少包括病患呼吸道影像參數、病患病歷參數、及病患基因參數,該時間序特徵參數至少包括病患穿戴式裝置生理參數、病患呼吸暫停低通氣指數參數、表面貼片電極的電刺激參數、及牙套的牙套參數。The obstructive sleep apnea treatment plan recommendation system as described in claim 1, wherein the patient's physiological characteristic parameters include non-temporal characteristic parameters and temporal characteristic parameters, the non-temporal characteristic parameters at least include patient respiratory imaging parameters, patient medical history parameters, and patient genetic parameters, and the temporal characteristic parameters at least include patient wearable device physiological parameters, patient apnea-hypopnea index parameters, surface patch electrode electrical stimulation parameters, and braces parameters. 如請求項2所述之阻塞型睡眠呼吸中止症治療方案推薦系統,其中該電刺激參數中的電刺激頻率為低頻率以20-100Hz的區間及1Hz以上之間隔輸入, 以及1k-10kHz區間及50Hz以上之間隔輸入,並且在該表面貼片電極的各項不同位置進行排列組合。A system for recommending treatment plans for obstructive sleep apnea as described in claim 2, wherein the electrical stimulation frequency in the electrical stimulation parameters is a low frequency input in the range of 20-100 Hz and at intervals above 1 Hz, and input in the range of 1k-10kHz and at intervals above 50 Hz, and is arranged and combined at different positions of the surface patch electrode. 如請求項2所述之阻塞型睡眠呼吸中止症治療方案推薦系統,其中該處理器對該非時間序特徵參數與該時間序特徵參數進行資料填補以產生時間序列參數,該資料填補至少包括刪除離群值、及遺漏值填補。The obstructive sleep apnea treatment plan recommendation system as described in claim 2, wherein the processor performs data filling on the non-time series characteristic parameters and the time series characteristic parameters to generate time series parameters, and the data filling at least includes deleting outliers and filling missing values. 如請求項4所述之阻塞型睡眠呼吸中止症治療方案推薦系統,其中該處理器對該時間序列參數進行資料整合以排序為一三維時間序列參數,該資料整合至少包括對該時間序列參數進行分割、對分割後的該時間序列參數進行排列。The obstructive sleep apnea treatment plan recommendation system as described in claim 4, wherein the processor performs data integration on the time series parameters to sort them into a three-dimensional time series parameter, and the data integration at least includes segmenting the time series parameters and arranging the segmented time series parameters. 如請求項5所述之阻塞型睡眠呼吸中止症治療方案推薦系統,其中該處理器對該三維時間序列參數進行特徵擷取以產生該療效判斷指標,該特徵擷取至少包括對該三維時間序列參數進行時域-頻域轉換、卷積運算。The obstructive sleep apnea treatment plan recommendation system as described in claim 5, wherein the processor performs feature extraction on the three-dimensional time series parameters to generate the treatment efficacy judgment indicator, and the feature extraction at least includes time domain-frequency domain conversion and convolution operation on the three-dimensional time series parameters. 一種阻塞型睡眠呼吸中止症治療方案推薦方法,適用於具有一處理器的阻塞型睡眠呼吸中止症治療方案推薦系統,其中該阻塞型睡眠呼吸中止症治療方案推薦方法由該處理器執行包括: 輸入多個病患生理特徵參數、治療解決方案參數及療效判斷指標至一人工智慧模組以訓練一療效預測模型;以及 輸入多個治療解決方案至該療效預測模型以產生該些治療解決方案的一排序結果。 A method for recommending treatment plans for obstructive sleep apnea is applicable to an obstructive sleep apnea treatment plan recommendation system having a processor, wherein the method for recommending treatment plans for obstructive sleep apnea is executed by the processor and includes: Inputting multiple patient physiological characteristic parameters, treatment solution parameters and efficacy judgment indicators into an artificial intelligence module to train an efficacy prediction model; and Inputting multiple treatment solutions into the efficacy prediction model to generate a ranking result of the treatment solutions. 如請求項7所述之阻塞型睡眠呼吸中止症治療方案推薦方法,其中該些病患生理特徵參數包括非時間序特徵參數與時間序特徵參數,該非時間序特徵參數至少包括病患呼吸道影像參數、病患病歷參數、及病患基因參數,該時間序特徵參數至少包括病患穿戴式裝置生理參數、病患呼吸暫停低通氣指數參數、表面貼片電極的電刺激參數、及牙套的牙套參數。A method for recommending a treatment plan for obstructive sleep apnea as described in claim 7, wherein the patient's physiological characteristic parameters include non-temporal characteristic parameters and temporal characteristic parameters, the non-temporal characteristic parameters at least include patient respiratory imaging parameters, patient medical history parameters, and patient genetic parameters, and the temporal characteristic parameters at least include patient wearable device physiological parameters, patient apnea-hypopnea index parameters, surface patch electrode electrical stimulation parameters, and braces parameters. 如請求項8所述之阻塞型睡眠呼吸中止症治療方案推薦方法,其中該電刺激參數中的電刺激頻率為低頻率以20-100Hz的區間及1Hz以上之間隔輸入, 以及1k-10kHz區間及50Hz以上之間隔輸入,並且在該表面貼片電極的各項不同位置進行排列組合。A method for recommending a treatment plan for obstructive sleep apnea as described in claim 8, wherein the electrical stimulation frequency in the electrical stimulation parameters is a low frequency input in the range of 20-100 Hz and at intervals above 1 Hz, and input in the range of 1k-10kHz and at intervals above 50 Hz, and is arranged and combined at different positions of the surface patch electrode. 如請求項8所述之阻塞型睡眠呼吸中止症治療方案推薦方法,其中該處理器對該非時間序特徵參數與該時間序特徵參數進行資料填補以產生時間序列參數,該資料填補至少包括刪除離群值、及遺漏值填補。A method for recommending a treatment plan for obstructive sleep apnea as described in claim 8, wherein the processor performs data filling on the non-time series characteristic parameters and the time series characteristic parameters to generate time series parameters, and the data filling at least includes deleting outliers and filling in missing values. 如請求項10所述之阻塞型睡眠呼吸中止症治療方案推薦方法,其中該處理器對該時間序列參數進行資料整合以排序為一三維時間序列參數,該資料整合至少包括對該時間序列參數進行分割、對分割後的該時間序列參數進行排列。A method for recommending a treatment plan for obstructive sleep apnea as described in claim 10, wherein the processor performs data integration on the time series parameters to sort them into a three-dimensional time series parameter, and the data integration at least includes segmenting the time series parameters and arranging the segmented time series parameters. 如請求項11所述之阻塞型睡眠呼吸中止症治療方案推薦方法,其中該處理器對該三維時間序列參數進行特徵擷取以產生該療效判斷指標,該特徵擷取至少包括對該三維時間序列參數進行時域-頻域轉換、卷積運算。A method for recommending a treatment plan for obstructive sleep apnea as described in claim 11, wherein the processor performs feature extraction on the three-dimensional time series parameters to generate the therapeutic efficacy judgment indicator, and the feature extraction at least includes performing time domain-frequency domain conversion and convolution operation on the three-dimensional time series parameters.
TW111138878A 2022-10-13 System and method for recommending a treatment plan for obstructive sleep apnea TW202416290A (en)

Publications (1)

Publication Number Publication Date
TW202416290A true TW202416290A (en) 2024-04-16

Family

ID=

Similar Documents

Publication Publication Date Title
Hamoda et al. Oral appliances for the management of OSA: an updated review of the literature
Ma et al. The effect of gradually increased mandibular advancement on the efficacy of an oral appliance in the treatment of obstructive sleep apnea
AU2020381572A1 (en) Dynamic mandibular and lingual repositioning devices, controller station, and methods of treating and/or diagnosing medical disorders
García et al. Oral appliance for obstructive sleep apnea: prototyping and optimization of the mandibular protrusion device
Miura et al. Masticatory function assessment of adult patients with cleft lip and palate after orthodontic treatment
Wang et al. Treatment success with titratable thermoplastic mandibular advancement devices for obstructive sleep apnea: A comparison of patient characteristics
WO2021167855A1 (en) Intra-oral appliance with thermoelectric power source
TW202416290A (en) System and method for recommending a treatment plan for obstructive sleep apnea
Palotie et al. The Effect of mandible advancement splints in mild, moderate, and severe obstructive sleep apnea—the need for sleep registrations during follow up
TWM647364U (en) System for recommending a treatment plan for obstructive sleep apnea
Chaves Junior et al. Brazilian consensus of snoring and sleep apnea: aspects of interest for orthodontists
Mohammadieh et al. Mandibular advancement splint therapy
US11806273B2 (en) Maxillary and mandibular devices that increase the smallest concentric airway cross-sectional area of a user for improvements during physical activities
US11819449B2 (en) Maxillary and mandibular devices that increase the smallest concentric airway cross-sectional area of a user for improvements during physical activities
US20240016654A1 (en) Oral appliance for the treatment of sleep apnea
CN112587157B (en) Noninvasive intraoral genioglossus myoelectrical activity assessment method and system
US20240066291A1 (en) Orthodontic devices and systems and methods for using such devices
US20230077980A1 (en) Anti-obstructive dental orthotic producing increased intraoral volume
Madani et al. Definitions, abbreviations, and acronyms of sleep apnea
Xia Characteristics of Patients Undergoing Oral and Maxillofacial Surgery
Rajendiran Gneuromuscular Dentistry–a new paradigm
Berant et al. More Than Straightening Teeth: The Orthodontist’s Role in Sleep Dentistry.
Shdyfat et al. Oral device therapy for obstructive sleep apnea
Bencheva et al. Treatment Of Snoring And Mild And Moderate Obstructive Sleep Apnea (Osa) Using Oral Appliances–An Update And Overview
Galić et al. Cephalometric changes associated with MAD therapy