TW202415144A - Electrostatic discharge measurement device and electrostatic discharge measurement method - Google Patents

Electrostatic discharge measurement device and electrostatic discharge measurement method Download PDF

Info

Publication number
TW202415144A
TW202415144A TW111135091A TW111135091A TW202415144A TW 202415144 A TW202415144 A TW 202415144A TW 111135091 A TW111135091 A TW 111135091A TW 111135091 A TW111135091 A TW 111135091A TW 202415144 A TW202415144 A TW 202415144A
Authority
TW
Taiwan
Prior art keywords
electrostatic discharge
distance
probe
measuring
reference axis
Prior art date
Application number
TW111135091A
Other languages
Chinese (zh)
Other versions
TWI832430B (en
Inventor
李永森
陳文華
Original Assignee
英業達股份有限公司
Filing date
Publication date
Application filed by 英業達股份有限公司 filed Critical 英業達股份有限公司
Priority to TW111135091A priority Critical patent/TWI832430B/en
Priority claimed from TW111135091A external-priority patent/TWI832430B/en
Application granted granted Critical
Publication of TWI832430B publication Critical patent/TWI832430B/en
Publication of TW202415144A publication Critical patent/TW202415144A/en

Links

Images

Abstract

A electrostatic discharge (ESD) measurement method includes disposing an ESD measurement device at a predetermined position inside a chassis under test, separating a measurement probe of the ESD device and a predetermined plane in the chassis under test by a predetermined distance, applying an ESD pulse on the chassis under test so that the measurement probe measures an electromagnetic radiation field generated by the ESD pulse, receiving a measurement signal related to the electromagnetic radiation field from the measurement probe, and installing an electrostatic protection element and/or setting an electrostatic protection distance according to the measurement signal and the predetermined distance.

Description

靜電放電量測裝置及靜電放電量測方法Electrostatic discharge measurement device and electrostatic discharge measurement method

本申請係關於一種靜電放電量測裝置及靜電放電量測方法,尤指一種可量測待測機箱之靜電放電量測裝置及靜電放電量測方法。The present application relates to an electrostatic discharge measuring device and an electrostatic discharge measuring method, and in particular to an electrostatic discharge measuring device and an electrostatic discharge measuring method capable of measuring the electrostatic discharge of a chassis under test.

靜電放電(ESD)對電子產品的影響,除了靜電放電電流饋入受害產品,可能損壞受害產品,另一問題是,當靜電放電時,放電電流所產生之輻射雜訊,可能對受害產品產生訊號干擾影響。例如,根據IEC 61000-4-2或EN 61000-4-2法規所定義的規範,當ESD 4千伏(kV)放電時,產品必須要能夠接受在1奈秒(ns)的時間內釋放15安培(A)的放電電流,且產品不可以發生有系統功能異常的現象,方可滿足法規的要求。The impact of electrostatic discharge (ESD) on electronic products is not only that the electrostatic discharge current feeds into the victim product and may damage the victim product, but also that when electrostatic discharge occurs, the radiation noise generated by the discharge current may cause signal interference to the victim product. For example, according to the specifications defined by IEC 61000-4-2 or EN 61000-4-2 regulations, when ESD 4 kilovolt (kV) discharges, the product must be able to accept a discharge current of 15 amperes (A) within 1 nanosecond (ns), and the product must not have any system function abnormalities in order to meet the regulatory requirements.

目前,機箱於開發初期階段,關於靜電放電屏蔽效能的評估,往往只能依賴工程師的經驗,於設計圖檢核後,再於原型機箱上以目視進行討論,從而評估可能的靜電放電防治因應對策,而無法進行靜電放電之實際量測。At present, in the early stages of chassis development, the evaluation of ESD shielding effectiveness often relies on the experience of engineers. After checking the design drawings, they conduct visual discussions on the prototype chassis to evaluate possible ESD prevention countermeasures, but cannot perform actual ESD measurements.

對於機箱之靜電放電防治效能的實測與評估,只能在系統相關之電路板的軟硬體安裝後,才能進行靜電放電量測。在這種情形之下,機箱之靜電放電屏蔽效能評估會過度依賴工程師的經驗,也陷入被迫以後期除錯(debug)取代前期設計的窘境。後續若機箱的靜電放電保護能力不夠高,須面對被迫修改原設計的難題。The actual measurement and evaluation of the ESD protection performance of the chassis can only be performed after the hardware and software of the system-related circuit boards are installed. In this case, the evaluation of the ESD shielding performance of the chassis will be overly dependent on the experience of engineers, and will also fall into the dilemma of being forced to replace the early design with post-debugging. If the ESD protection capability of the chassis is not high enough, it will be necessary to face the difficulty of being forced to modify the original design.

實施例提供一種靜電放電量測裝置,包含一量測探棒及一調整裝置。該量測探棒包含一第一端及一第二端,其中該第一端用以量測一靜電放電脈衝產生之一電磁波輻射場,且該第二端用以輸出相關於該電磁波輻射場之一量測訊號。該調整裝置用以沿一第一參考軸移動該量測探棒。The embodiment provides an electrostatic discharge measuring device, comprising a measuring probe and an adjusting device. The measuring probe comprises a first end and a second end, wherein the first end is used to measure an electromagnetic wave radiation field generated by an electrostatic discharge pulse, and the second end is used to output a measurement signal related to the electromagnetic wave radiation field. The adjusting device is used to move the measuring probe along a first reference axis.

另一實施例提供一種靜電放電量測方法,包含將一靜電放電量測裝置設置於一受測機箱內之一預定位置;使該靜電放電量測裝置之一量測探棒及該受測機箱內之一預定平面之間具有一預定距離;施加一靜電放電脈衝於該受測機箱,以使該量測探棒量測該靜電放電脈衝產生之一電磁波輻射場;從該量測探棒接收一量測訊號,其中該量測訊號係相關於該電磁波輻射場;及根據該量測訊號及該預定距離,安裝一靜電放電防護元件及/或設置一靜電放電防護距離。Another embodiment provides an electrostatic discharge measurement method, comprising placing an electrostatic discharge measurement device at a predetermined position in a tested chassis; allowing a predetermined distance between a measurement probe of the electrostatic discharge measurement device and a predetermined plane in the tested chassis; applying an electrostatic discharge pulse to the tested chassis so that the measurement probe measures an electromagnetic wave radiation field generated by the electrostatic discharge pulse; receiving a measurement signal from the measurement probe, wherein the measurement signal is related to the electromagnetic wave radiation field; and installing an electrostatic discharge protection element and/or setting an electrostatic discharge protection distance based on the measurement signal and the predetermined distance.

為了有效降低上述難題,實施例提供解決方案如下述。第1圖為實施例中,靜電放電量測裝置100之斜視圖。第2圖為第1圖之靜電放電量測裝置100之另一視角的斜視圖。舉例而言,第1圖可為由上方觀之的斜視圖,且第2圖可為由下方觀之的斜視圖。第3圖為使用第1圖及第2圖之靜電放電量測裝置100進行靜電放電量測之示意圖。In order to effectively reduce the above-mentioned difficulties, the embodiment provides a solution as follows. FIG. 1 is an oblique view of the electrostatic discharge measuring device 100 in the embodiment. FIG. 2 is an oblique view of the electrostatic discharge measuring device 100 in FIG. 1 from another angle. For example, FIG. 1 may be an oblique view viewed from above, and FIG. 2 may be an oblique view viewed from below. FIG. 3 is a schematic diagram of electrostatic discharge measurement using the electrostatic discharge measuring device 100 in FIG. 1 and FIG. 2.

如第1圖及第2圖所示,靜電放電量測裝置100可包含量測探棒110及調整裝置120。量測探棒110可包含第一端110A及第二端110B,其中第一端110A可用以量測靜電放電脈衝產生之電磁波輻射場E1,且第二端110B可用以輸出相關於電磁波輻射場E1之量測訊號S1。調整裝置120可用以沿第一參考軸X1移動量測探棒110。舉例而言,量測探棒110可沿第一參考軸X1前後移動。As shown in FIG. 1 and FIG. 2, the electrostatic discharge measuring device 100 may include a measuring probe 110 and an adjusting device 120. The measuring probe 110 may include a first end 110A and a second end 110B, wherein the first end 110A may be used to measure the electromagnetic wave radiation field E1 generated by the electrostatic discharge pulse, and the second end 110B may be used to output a measurement signal S1 related to the electromagnetic wave radiation field E1. The adjusting device 120 may be used to move the measuring probe 110 along the first reference axis X1. For example, the measuring probe 110 may move forward and backward along the first reference axis X1.

如第1圖及第2圖所示,調整裝置120可包含移動平台122及探棒固定座124。移動平台122可用以沿第一參考軸X1移動。探棒固定座124可固定於移動平台122之第一側122A,用以固定量測探棒110。因此,當移動平台122沿第一參考軸X1移動,可透過探棒固定座124帶動量測探棒110沿第一參考軸X1移動,從而調整量測探棒110之位置。As shown in FIG. 1 and FIG. 2 , the adjustment device 120 may include a moving platform 122 and a probe holder 124. The moving platform 122 may be used to move along the first reference axis X1. The probe holder 124 may be fixed to the first side 122A of the moving platform 122 to fix the measuring probe 110. Therefore, when the moving platform 122 moves along the first reference axis X1, the measuring probe 110 may be driven to move along the first reference axis X1 through the probe holder 124, thereby adjusting the position of the measuring probe 110.

如第1圖及第2圖所示,調整裝置120可另包含調整部126、螺桿及旋鈕。調整部126可設置於移動平台122之第二側122B且包含第一穿孔H1。螺桿128可沿第一參考軸X1穿過第一穿孔H1,用以被旋轉以使調整部126及移動平台122沿第一參考軸X1移動。旋鈕129可連接於螺桿128,用以旋轉螺桿128。As shown in FIG. 1 and FIG. 2 , the adjustment device 120 may further include an adjustment portion 126, a screw and a knob. The adjustment portion 126 may be disposed on the second side 122B of the moving platform 122 and include a first through hole H1. The screw 128 may pass through the first through hole H1 along the first reference axis X1 to be rotated so that the adjustment portion 126 and the moving platform 122 move along the first reference axis X1. The knob 129 may be connected to the screw 128 to rotate the screw 128.

如第1圖及第2圖所示,調整部126可另包含至少一第二穿孔H2。調整裝置120可另包含至少一平行銷132,每個平行銷132可沿第一參考軸X1穿過第二穿孔H2,用以穩定調整部126及移動平台122,以使調整部126及移動平台122沿第一參考軸X1移動時更為穩定。As shown in FIG. 1 and FIG. 2 , the adjustment portion 126 may further include at least one second through hole H2. The adjustment device 120 may further include at least one parallel pin 132, each of which may pass through the second through hole H2 along the first reference axis X1 to stabilize the adjustment portion 126 and the moving platform 122, so that the adjustment portion 126 and the moving platform 122 are more stable when moving along the first reference axis X1.

如第1圖及第2圖所示,調整裝置120可另包含固定架134、連接件135及磁座136。固定架134可連接於平行銷132,包含第三穿孔H3,其中螺桿128可沿第一參考軸X1穿過第三穿孔H3。連接件135可連接於固定架134。磁座136可連接於連接件135,用以透過磁力以將靜電放電量測裝置100設置於預定位置P1(如第3圖所示)。As shown in FIG. 1 and FIG. 2, the adjustment device 120 may further include a fixing frame 134, a connector 135, and a magnetic base 136. The fixing frame 134 may be connected to the parallel pin 132, and includes a third through hole H3, wherein the screw 128 may pass through the third through hole H3 along the first reference axis X1. The connector 135 may be connected to the fixing frame 134. The magnetic base 136 may be connected to the connector 135, and is used to set the electrostatic discharge measurement device 100 at a predetermined position P1 (as shown in FIG. 3) through magnetic force.

於第1圖及第2圖中,磁座136可包含座體136A及控制轉鈕136B,當控制轉鈕136B轉至第一位置,座體136A可具有磁力,而當控制轉鈕136B轉至第二位置,座體136A可不具有磁力,從而便於調整靜電放電量測裝置100的位置。第1圖及第2圖僅為舉例,根據其他實施例,可使用其他適宜的方式(例如螺栓或滑軌等)以調整及固定靜電放電量測裝置100的位置。In FIG. 1 and FIG. 2, the magnetic base 136 may include a base 136A and a control knob 136B. When the control knob 136B is turned to the first position, the base 136A may have a magnetic force, and when the control knob 136B is turned to the second position, the base 136A may not have a magnetic force, thereby facilitating the adjustment of the position of the electrostatic discharge measurement device 100. FIG. 1 and FIG. 2 are merely examples. According to other embodiments, other appropriate methods (such as bolts or slide rails, etc.) may be used to adjust and fix the position of the electrostatic discharge measurement device 100.

如第1圖及第2圖所示,調整裝置120可另包含調整塊137。調整塊137可連接於固定架134,用以沿垂直於第一參考軸X1之第二參考軸X2調整移動平台122。舉例而言,可使用調整塊137以使移動平台122上下移動,從而上下移動量測探棒110。舉例而言,調整塊137可具有螺栓,可先將螺栓放鬆後,沿第二參考軸X2調整移動平台122至適宜的位置,再將螺栓栓緊以固定移動平台122的位置。As shown in FIG. 1 and FIG. 2 , the adjustment device 120 may further include an adjustment block 137. The adjustment block 137 may be connected to the fixing frame 134 to adjust the moving platform 122 along a second reference axis X2 perpendicular to the first reference axis X1. For example, the adjustment block 137 may be used to move the moving platform 122 up and down, thereby moving the measuring probe 110 up and down. For example, the adjustment block 137 may have a bolt, and the bolt may be loosened first, and then the moving platform 122 may be adjusted to a suitable position along the second reference axis X2, and then the bolt may be tightened to fix the position of the moving platform 122.

如第1圖及第2圖所示,靜電放電量測裝置100可另包含伸縮探針141及距離量表142。伸縮探針141可伸縮,且包含第一端141A及第二端141B,其中第一端141A可用以抵壓受測機箱C1內之預定平面F1(如第3圖所示)。距離量表142可設置於移動平台122之第一側122A,及連接於伸縮探針141之第二端141B,距離量表142可用以量測量測探棒110及預定平面F1之間的距離。舉例而言,可先將伸縮探針141之第一端141A抵壓住受測機箱C1內之預定平面F1以使伸縮探針141縮短,將距離量表142歸零,沿第一參考軸X1移動移動平台122以使量測探棒110更遠離預定平面F1,再讀取距離量表142以得知量測探棒110被移動之距離。藉此,可控制及得知量測探棒110被移動之距離。舉例而言,距離量表142可為千分表(dial indicator),其精確度可為0.01公釐(millimeter,mm)。As shown in FIG. 1 and FIG. 2, the electrostatic discharge measuring device 100 may further include a telescopic probe 141 and a distance meter 142. The telescopic probe 141 is telescopic and includes a first end 141A and a second end 141B, wherein the first end 141A may be used to press against a predetermined plane F1 in the tested chassis C1 (as shown in FIG. 3). The distance meter 142 may be disposed on the first side 122A of the moving platform 122 and connected to the second end 141B of the telescopic probe 141, and the distance meter 142 may be used to measure the distance between the measuring probe rod 110 and the predetermined plane F1. For example, the first end 141A of the telescopic probe 141 may be pressed against the predetermined plane F1 in the tested case C1 to shorten the telescopic probe 141, the distance gauge 142 may be reset to zero, the moving platform 122 may be moved along the first reference axis X1 to move the measuring probe 110 further away from the predetermined plane F1, and then the distance gauge 142 may be read to know the distance the measuring probe 110 has been moved. In this way, the distance the measuring probe 110 has been moved may be controlled and known. For example, the distance gauge 142 may be a dial indicator, and its accuracy may be 0.01 millimeter (mm).

如第3圖所示,靜電放電量測裝置100可設置於受測機箱C1內之預定位置P1。可先使伸縮探針141抵壓於受測機箱C1內之預定平面F1,再調整選鈕129以調整量測探棒110之位置。舉例而言,預定位置P1可位於受測機箱C1的內底部,且預定平面F1可為受測機箱C1的內側壁。可使用靜電放電模擬器310(例如靜電放電模擬槍)施加靜電放電脈衝,以產生電磁波輻射場E1。舉例而言,靜電放電脈衝可施加於受測機箱C1之開口或狹縫的鄰近處。靜電放電量測裝置100之量測探棒110可根據電磁波輻射場E1的強度,透過電纜線320傳送量測訊號S1至示波器330。使用者可於可於示波器330讀取量測結果。舉例而言,示波器330可置於隔離裝置340(例如法拉第籠)之內,以降低電磁波輻射場導致的非預期影響。As shown in FIG. 3 , the electrostatic discharge measuring device 100 can be set at a predetermined position P1 in the tested case C1. The retractable probe 141 can be pressed against the predetermined plane F1 in the tested case C1, and then the adjustment button 129 can be adjusted to adjust the position of the measuring probe 110. For example, the predetermined position P1 can be located at the inner bottom of the tested case C1, and the predetermined plane F1 can be the inner wall of the tested case C1. An electrostatic discharge simulator 310 (e.g., an electrostatic discharge simulation gun) can be used to apply an electrostatic discharge pulse to generate an electromagnetic wave radiation field E1. For example, the electrostatic discharge pulse can be applied near an opening or a slit of the tested case C1. The measuring probe 110 of the electrostatic discharge measuring device 100 can transmit the measuring signal S1 to the oscilloscope 330 through the cable 320 according to the intensity of the electromagnetic wave radiation field E1. The user can read the measuring result on the oscilloscope 330. For example, the oscilloscope 330 can be placed in an isolation device 340 (such as a Faraday cage) to reduce the unexpected influence caused by the electromagnetic wave radiation field.

第1圖至第3圖之舉例中,提及可沿第一參考軸X1(例如前後方向)及第二參考軸X2(例如上下方向)以移動移動平台122,從而調整量測探棒110的位置。然而,此僅為舉例,若再增加調整塊,則可沿第三參考軸(例如左右方向)以移動移動平台122,從而調整量測探棒110的位置。In the examples of FIG. 1 to FIG. 3, it is mentioned that the moving platform 122 can be moved along the first reference axis X1 (e.g., the front-back direction) and the second reference axis X2 (e.g., the up-down direction) to adjust the position of the measuring probe 110. However, this is only an example, and if an adjustment block is added, the moving platform 122 can be moved along the third reference axis (e.g., the left-right direction) to adjust the position of the measuring probe 110.

第4圖為實施中,靜電放電量測方法400的流程圖。執行靜電放電量測方法400時,可使用第1圖及第2圖之靜電放電量測裝置100。如第1圖至第4圖所示,靜電放電量測方法400可包含以下步驟:FIG. 4 is a flow chart of an electrostatic discharge measurement method 400 in an implementation. When executing the electrostatic discharge measurement method 400, the electrostatic discharge measurement device 100 of FIG. 1 and FIG. 2 may be used. As shown in FIG. 1 to FIG. 4, the electrostatic discharge measurement method 400 may include the following steps:

步驟410:將靜電放電量測裝置100設置於受測機箱C1內之預定位置P1;Step 410: placing the electrostatic discharge measuring device 100 at a predetermined position P1 in the tested chassis C1;

步驟420:使靜電放電量測裝置100之量測探棒110及受測機箱C1內之預定平面F1之間具有預定距離D1;Step 420: A predetermined distance D1 is established between the measuring probe 110 of the electrostatic discharge measuring device 100 and a predetermined plane F1 in the tested chassis C1;

步驟430:施加靜電放電脈衝於受測機箱C1,以使量測探棒110量測靜電放電脈衝產生之電磁波輻射場E1;Step 430: applying an electrostatic discharge pulse to the tested chassis C1 so that the measuring probe 110 measures the electromagnetic wave radiation field E1 generated by the electrostatic discharge pulse;

步驟440:從量測探棒110接收量測訊號S1,其中量測訊號S1可相關於電磁波輻射場E1;及Step 440: Receive a measurement signal S1 from the measurement probe 110, wherein the measurement signal S1 may be related to the electromagnetic wave radiation field E1; and

步驟450:根據量測訊號S1及預定距離D1,安裝靜電放電防護元件及/或設置靜電放電防護距離。Step 450: Install an ESD protection element and/or set an ESD protection distance according to the measurement signal S1 and the predetermined distance D1.

舉例而言,步驟420中,可旋轉第1圖之旋鈕129以步進方式沿第一參考軸X1調整量測探棒110的位置,每一步之調整距離可例如為1公釐。For example, in step 420, the knob 129 in FIG. 1 may be rotated to adjust the position of the measuring probe 110 along the first reference axis X1 in a stepwise manner, and the adjustment distance of each step may be, for example, 1 mm.

根據實施例,步驟450中,可根據量測訊號S1、預定距離D1及受測裝置之電氣特性,以安裝靜電放電防護元件及/或設置靜電放電防護距離。According to an embodiment, in step 450, an ESD protection element may be installed and/or an ESD protection distance may be set according to the measurement signal S1, the predetermined distance D1, and the electrical characteristics of the device under test.

根據另一實施例,步驟450中,可根據量測訊號S1、預定距離D1及受測裝置之靜電放電預先量測值,以安裝靜電放電防護元件及/或設置靜電放電防護距離。According to another embodiment, in step 450, an ESD protection element may be installed and/or an ESD protection distance may be set according to the measurement signal S1, the predetermined distance D1, and the pre-measured value of ESD of the device under test.

舉例而言,若將來會設置於受測機箱C1內之受測裝置係包含電路板、及安裝於電路板上的電子元件(例如處理器、記憶體、PCI Express等匯流排卡,等元件),則可根據電路板、及電路板上的電子元件之相關文件中所記載的靜電放電防護相關電氣特性,以安裝靜電放電防護元件及/或設置靜電放電防護距離。For example, if the device under test to be installed in the tested chassis C1 in the future includes a circuit board and electronic components mounted on the circuit board (such as a processor, a memory, a PCI Express bus card, and other components), then the electrostatic discharge protection component can be installed and/or the electrostatic discharge protection distance can be set according to the electrostatic discharge protection related electrical characteristics recorded in the relevant documents of the circuit board and the electronic components on the circuit board.

此外,可根據先前施加靜電放電於受測裝置,所得到的靜電放電預先量測值,以安裝靜電放電防護元件及/或設置靜電放電防護距離。In addition, an electrostatic discharge protection element may be installed and/or an electrostatic discharge protection distance may be set based on a pre-measured electrostatic discharge value obtained by previously applying electrostatic discharge to the device under test.

第5圖為實施例中,以上述靜電放電量測裝置100及靜電放電量測方法400量測的受測機箱內C1之各位置的示意圖。如第5圖所示,可多次施加靜電放電脈衝於位置P54之鄰近處,並進行多次量測以得到受測機箱內C1的位置P51至P59,其受到靜電放電影響的嚴重度。舉例而言,可如第1表所示: 位置P59 受靜電放電影響程度:L0 位置P58 受靜電放電影響程度:L1 位置P57 受靜電放電影響程度:L2 位置P56 受靜電放電影響程度:L1 位置P55 受靜電放電影響程度:L2 位置P54 受靜電放電影響程度:L3 位置P53 受靜電放電影響程度:L0 位置P52 受靜電放電影響程度:L1 位置P51 受靜電放電影響程度:L2 關於受靜電放電影響程度,L3>L2>L1>L0 (第1表) FIG. 5 is a schematic diagram of various positions of C1 in the tested chassis measured by the electrostatic discharge measuring device 100 and the electrostatic discharge measuring method 400 in an embodiment. As shown in FIG. 5, electrostatic discharge pulses can be applied multiple times near position P54, and multiple measurements can be performed to obtain the severity of the electrostatic discharge impact of positions P51 to P59 of C1 in the tested chassis. For example, it can be shown in Table 1: Position P59 Electrostatic discharge impact level: L0 Position P58 Electrostatic discharge impact level: L1 Position P57 Electrostatic discharge impact level: L2 Position P56 Electrostatic discharge impact level: L1 Position P55 Electrostatic discharge impact level: L2 Position P54 Electrostatic discharge impact level: L3 Position P53 Electrostatic discharge impact level: L0 Position P52 Electrostatic discharge impact level: L1 Position P51 Electrostatic discharge impact level: L2 Regarding the degree of influence of electrostatic discharge, L3>L2>L1>L0 (Table 1)

第1表僅為舉例,而非限制所量測的位置數量及結果。第1表係描述可求得受測機箱C1內各位置受到靜電放電的影響程度,從而幫助使用者設計機箱及決定電子元件於機箱內的位置。Table 1 is only an example and does not limit the number of locations and results to be measured. Table 1 describes the degree of influence of electrostatic discharge on each location in the tested chassis C1, thereby helping users design the chassis and determine the location of electronic components in the chassis.

綜上所述,透過使用上述的靜電放電量測裝置100及靜電放電量測方法400,可於電路板及電子元件尚未設置於機箱時,就預先量測靜電放電對於機箱內之各位置的影響。因此,可提供準確的量測資料,以助於使用者設計機箱、決定電子元件於機箱內的位置、及設計相關的靜電放電防護裝置,從而可改善靜電放電防護之相關設計流程。靜電放電量測裝置100及靜電放電量測方法400亦可有助於人工智慧、5G通訊、6G通訊、邊緣計算、機器學習、車聯網、物聯網及雲端服務等應用。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 In summary, by using the above-mentioned electrostatic discharge measurement device 100 and electrostatic discharge measurement method 400, the impact of electrostatic discharge on various positions in the chassis can be measured in advance before the circuit board and electronic components are installed in the chassis. Therefore, accurate measurement data can be provided to help users design the chassis, determine the position of electronic components in the chassis, and design related electrostatic discharge protection devices, thereby improving the related design process of electrostatic discharge protection. The electrostatic discharge measurement device 100 and the electrostatic discharge measurement method 400 can also be helpful for applications such as artificial intelligence, 5G communication, 6G communication, edge computing, machine learning, Internet of Vehicles, Internet of Things, and cloud services. The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:靜電放電量測裝置 110:量測探棒 110A,141A:第一端 110B,141B:第二端 120:調整裝置 122:移動平台 122A:第一側 122B:第二側 124:探棒固定座 126:調整部 128:螺桿 129:旋鈕 132:平行銷 134:固定架 135:連接件 136:磁座 136A:座體 136B:控制轉鈕 137:調整塊 141:伸縮探針 142:距離量表 310:靜電放電模擬器 320:電纜線 330:示波器 340:隔離裝置 400:靜電放電量測方法 410至450:步驟 C1:受測機箱 E1:電磁波輻射場 F1:預定平面 H1:第一穿孔 H2:第二穿孔 H3:第三穿孔 P1:預定位置 P51至P59:位置 S1:量測訊號 X1:第一參考軸 X2:第二參考軸 100: ESD measuring device 110: Measuring probe 110A, 141A: First end 110B, 141B: Second end 120: Adjustment device 122: Moving platform 122A: First side 122B: Second side 124: Probe holder 126: Adjustment unit 128: Screw 129: Knob 132: Parallel pin 134: Fixing bracket 135: Connector 136: Magnetic base 136A: Base 136B: Control knob 137: Adjustment block 141: Telescopic probe 142: Distance meter 310: ESD simulator 320: Cable 330: Oscilloscope 340: Isolation device 400: Electrostatic discharge measurement method 410 to 450: Steps C1: Chassis under test E1: Electromagnetic wave radiation field F1: Predetermined plane H1: First perforation H2: Second perforation H3: Third perforation P1: Predetermined position P51 to P59: Position S1: Measurement signal X1: First reference axis X2: Second reference axis

第1圖為實施例中,靜電放電量測裝置之斜視圖。 第2圖為第1圖之靜電放電量測裝置之另一視角的斜視圖。 第3圖為使用第1圖及第2圖之靜電放電量測裝置進行靜電放電量測之示意圖。 第4圖為實施中,靜電放電量測方法的流程圖。 第5圖為實施例中,所量測之受測機箱內之各位置的示意圖。 FIG. 1 is an oblique view of the electrostatic discharge measuring device in the embodiment. FIG. 2 is an oblique view of the electrostatic discharge measuring device in FIG. 1 from another angle. FIG. 3 is a schematic diagram of electrostatic discharge measurement using the electrostatic discharge measuring devices in FIG. 1 and FIG. 2. FIG. 4 is a flow chart of the electrostatic discharge measurement method in the embodiment. FIG. 5 is a schematic diagram of each position in the tested chassis to be measured in the embodiment.

400:靜電放電量測方法 400: Electrostatic discharge measurement method

410至450:步驟 410 to 450: Steps

Claims (10)

一種靜電放電量測裝置,包含: 一量測探棒,包含一第一端,用以量測一靜電放電脈衝產生之一電磁波輻射場,及一第二端,用以輸出相關於該電磁波輻射場之一量測訊號;及 一調整裝置,用以沿一第一參考軸移動該量測探棒。 An electrostatic discharge measuring device comprises: a measuring probe comprising a first end for measuring an electromagnetic wave radiation field generated by an electrostatic discharge pulse, and a second end for outputting a measurement signal related to the electromagnetic wave radiation field; and an adjusting device for moving the measuring probe along a first reference axis. 如請求項1所述的靜電放電量測裝置,其中該調整裝置包含: 一移動平台,用以沿該第一參考軸移動;及 一探棒固定座,固定於該移動平台之一第一側,用以固定該量測探棒。 The electrostatic discharge measuring device as described in claim 1, wherein the adjusting device comprises: a moving platform for moving along the first reference axis; and a probe fixing seat fixed to a first side of the moving platform for fixing the measuring probe. 如請求項2所述的靜電放電量測裝置,其中該調整裝置另包含: 一調整部,設置於該移動平台之一第二側,包含一第一穿孔; 一螺桿,沿該第一參考軸穿過該第一穿孔,用以被旋轉以使該調整部及該移動平台沿該第一參考軸移動;及 一旋鈕,連接於該螺桿,用以旋轉該螺桿。 The electrostatic discharge measuring device as described in claim 2, wherein the adjusting device further comprises: an adjusting portion, disposed on a second side of the moving platform, comprising a first through hole; a screw, passing through the first through hole along the first reference axis, for being rotated to move the adjusting portion and the moving platform along the first reference axis; and a knob, connected to the screw, for rotating the screw. 如請求項3所述的靜電放電量測裝置,其中該調整部另包含一第二穿孔,且該移動裝置另包含: 一平行銷,沿該第一參考軸穿過該第二穿孔,用以穩定該調整部及該移動平台。 The electrostatic discharge measuring device as described in claim 3, wherein the adjusting portion further comprises a second through hole, and the moving device further comprises: A parallel pin passing through the second through hole along the first reference axis to stabilize the adjusting portion and the moving platform. 如請求項4所述的靜電放電量測裝置,其中該調整裝置另包含: 一固定架,連接於該平行銷,包含一第三穿孔,其中該螺桿係沿該第一參考軸穿過該第三穿孔; 一連接件,連接於該固定架;及 一磁座,連接於該連接件,用以透過磁力以將該靜電放電量測裝置設置於一預定位置。 The electrostatic discharge measuring device as described in claim 4, wherein the adjusting device further comprises: a fixing frame connected to the parallel pin, comprising a third through hole, wherein the screw passes through the third through hole along the first reference axis; a connecting member connected to the fixing frame; and a magnetic base connected to the connecting member, for setting the electrostatic discharge measuring device at a predetermined position through magnetic force. 如請求項4所述的靜電放電量測裝置,其中該調整裝置另包含: 一調整塊,連接於該固定架,用以沿垂直於該第一參考軸之一第二參考軸調整該移動平台。 The electrostatic discharge measuring device as described in claim 4, wherein the adjusting device further comprises: An adjusting block connected to the fixing frame for adjusting the moving platform along a second reference axis perpendicular to the first reference axis. 如請求項2所述的靜電放電量測裝置,另包含: 一伸縮探針,包含一第一端,用以抵壓一受測機箱內之一預定平面,及一第二端;及 一距離量表,設置於該移動平台之該第一側,及連接於該伸縮探針之該第二端,該距離量表用以量測該量測探棒及該預定平面之間的距離。 The electrostatic discharge measuring device as described in claim 2 further comprises: a telescopic probe, comprising a first end for pressing against a predetermined plane in a tested chassis, and a second end; and a distance meter, disposed on the first side of the moving platform and connected to the second end of the telescopic probe, the distance meter being used to measure the distance between the measuring probe and the predetermined plane. 一種靜電放電量測方法,包含: 將一靜電放電量測裝置設置於一受測機箱內之一預定位置; 使該靜電放電量測裝置之一量測探棒及該受測機箱內之一預定平面之間具有一預定距離; 施加一靜電放電脈衝於該受測機箱,以使該量測探棒量測該靜電放電脈衝產生之一電磁波輻射場; 從該量測探棒接收一量測訊號,其中該量測訊號係相關於該電磁波輻射場;及 根據該量測訊號及該預定距離,安裝一靜電放電防護元件及/或設置一靜電放電防護距離。 A method for measuring electrostatic discharge comprises: Placing an electrostatic discharge measuring device at a predetermined position in a tested chassis; Making a predetermined distance between a measuring probe of the electrostatic discharge measuring device and a predetermined plane in the tested chassis; Applying an electrostatic discharge pulse to the tested chassis so that the measuring probe measures an electromagnetic wave radiation field generated by the electrostatic discharge pulse; Receiving a measurement signal from the measuring probe, wherein the measurement signal is related to the electromagnetic wave radiation field; and Installing an electrostatic discharge protection element and/or setting an electrostatic discharge protection distance according to the measurement signal and the predetermined distance. 如請求項8所述的靜電放電量測方法,其中根據該量測訊號及該預定距離,安裝該靜電放電防護元件及/或設置該靜電放電防護距離,包含: 根據該量測訊號、該預定距離及一受測裝置之一電氣特性,以安裝該靜電放電防護元件及/或設置該靜電放電防護距離。 The electrostatic discharge measurement method as described in claim 8, wherein the electrostatic discharge protection element is installed and/or the electrostatic discharge protection distance is set according to the measurement signal and the predetermined distance, comprising: Installing the electrostatic discharge protection element and/or setting the electrostatic discharge protection distance according to the measurement signal, the predetermined distance and an electrical characteristic of a device under test. 如請求項8所述的靜電放電量測方法,其中根據該量測訊號及該預定距離,安裝該靜電放電防護元件及/或設置該靜電放電防護距離,包含: 根據該量測訊號、該預定距離及一靜電放電預先量測值,以安裝該靜電放電防護元件及/或設置該靜電放電防護距離。 The electrostatic discharge measurement method as described in claim 8, wherein the electrostatic discharge protection element is installed and/or the electrostatic discharge protection distance is set according to the measurement signal and the predetermined distance, comprising: Installing the electrostatic discharge protection element and/or setting the electrostatic discharge protection distance according to the measurement signal, the predetermined distance and a pre-measured value of electrostatic discharge.
TW111135091A 2022-09-16 2022-09-16 Electrostatic discharge measurement device and electrostatic discharge measurement method TWI832430B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111135091A TWI832430B (en) 2022-09-16 2022-09-16 Electrostatic discharge measurement device and electrostatic discharge measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111135091A TWI832430B (en) 2022-09-16 2022-09-16 Electrostatic discharge measurement device and electrostatic discharge measurement method

Publications (2)

Publication Number Publication Date
TWI832430B TWI832430B (en) 2024-02-11
TW202415144A true TW202415144A (en) 2024-04-01

Family

ID=90824809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111135091A TWI832430B (en) 2022-09-16 2022-09-16 Electrostatic discharge measurement device and electrostatic discharge measurement method

Country Status (1)

Country Link
TW (1) TWI832430B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940429B2 (en) * 1995-02-23 1999-08-25 日本電気株式会社 Electrostatic discharge evaluation device, electrostatic discharge evaluation method, electrostatic discharge test device, and electrostatic discharge test method
GB2488515B (en) * 2011-02-11 2015-05-20 Teraview Ltd A test system
CN105264680B (en) * 2011-03-30 2019-11-26 阿姆巴托雷股份有限公司 By extremely low resistance material formed it is electrical, mechanical, calculate and/or other equipment
US20170365451A1 (en) * 2016-06-17 2017-12-21 Semiconductor Energy Laboratory Co., Ltd. Sputtering apparatus and method for forming semiconductor film using sputtering apparatus

Similar Documents

Publication Publication Date Title
US8035409B2 (en) System and method implementing short-pulse propagation technique on production-level boards with incremental accuracy and productivity levels
Wilson et al. Fields radiated by electrostatic discharges
Song et al. Detection and location of multiple wiring faults via time–frequency-domain reflectometry
US10012688B2 (en) Discharge occurrence status evaluation device and evaluation method
KR101939758B1 (en) Method for measuring performance of antenna
Yao et al. Time-domain simulation and measurement of a guided-wave EMP simulator's field uniformity
TW202415144A (en) Electrostatic discharge measurement device and electrostatic discharge measurement method
TWI832430B (en) Electrostatic discharge measurement device and electrostatic discharge measurement method
Daijavad et al. Modeling common-mode radiation of 3D structures
Silaghi et al. Near-field scan technique for reducing radiated emissions in automotive EMC
CN117741274A (en) Electrostatic discharge measurement device and electrostatic discharge measurement method
RU2686880C1 (en) Method of estimating efficiency of screening devices of radioelectronic equipment
Silaghi et al. Analysis of Radiated Immunity of an Automotive Display by means of Testing and Simulation
US6173427B1 (en) Immunity evaluation method and apparatus for electronic circuit device and LSI tester
US20050177328A1 (en) Process for the electromagnetic modelling of electronic components and systems
Seimova et al. Software-hardware complex for assessing the effect of an electrostatic discharge on electronic devices
Jeon et al. A new method of component-level ESD test to assess system-level ESD risk for ICs
Chetouani et al. A Technique to Assess Conducted Immunity of an Electronic Equipment after an Obsolete Integrated Circuit Change
Doerr et al. Electrical characterisation of a power SO-package in the context of electrostatic discharge
Hackl et al. Comparison of BBSPICE to PEEC equivalent circuit models for simulation of floating PCB above ground plane
Dróżdż et al. Analysis of the actual shape of the ESD generator pulse in relation to the normative requirements
Long et al. A method to determine shielding effectiveness in a reverberation chamber using radar cross-section simulations with a planar wave excitation
US6829553B2 (en) Method of and apparatus for measuring the correctness of and correcting an automatic test arrangement
Wang et al. Electrostatic Discharge Simulation and Experimental Verification of a Simple PCB Device
Atanasković et al. Study of Loop Probe Dimensions Influence on a Probe Calibration Factor in Near-Field Measurements