TW202414805A - Cmos影像感測器 - Google Patents

Cmos影像感測器 Download PDF

Info

Publication number
TW202414805A
TW202414805A TW112127226A TW112127226A TW202414805A TW 202414805 A TW202414805 A TW 202414805A TW 112127226 A TW112127226 A TW 112127226A TW 112127226 A TW112127226 A TW 112127226A TW 202414805 A TW202414805 A TW 202414805A
Authority
TW
Taiwan
Prior art keywords
color filter
image sensor
oxide semiconductor
metal oxide
phase detection
Prior art date
Application number
TW112127226A
Other languages
English (en)
Inventor
楊明憲
周俊豪
李國政
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202414805A publication Critical patent/TW202414805A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一種CMOS影像感測器包括在平面圖中分佈於一影像畫素陣列中的多個PDAF畫素。每一PDAF畫素包括m × m個格化光電二極體、上覆格化光電二極體且由一第一隔離結構側向包圍的一PDAF彩色濾光片以及上覆PDAF彩色濾光片的一PDAF微型透鏡。PDAF彩色濾光片之一中心與格化光電二極體之一中心之間的一第一水平距離依據CMOS影像感測器中PDAF畫素在平面圖中的一方位發生變化。第一隔離結構包括第一低n介電質柵格、第二低n介電質柵格及金屬柵格。第二低n介電質柵格包括不同於第二低n介電質柵格材料的一填料介電材料。因此,CMOS影像感測器之量子效率及均勻性得以改良。

Description

CMOS影像感測器
隨著半導體行業在尋求較高裝置密度、較大效能且較低成本中已進展至奈米技術製程節點,針對積體電路之設計及製造兩者的挑戰已極大地增大。現今,CMOS影像感測器已被廣泛使用。然而,歸因於尋求增大之解析度中持續減小的畫素尺寸,CMOS影像感測器可面臨挑戰或風險,例如不足之量子效率(quantum efficiency,QE)及不均勻畫素效能。因此需要用於改良CMOS影像感測器之效能的技術。
應理解,以下揭示內容提供用於實施本揭露之不同特徵的許多不同實施例或實例。下文描述組件及配置之特定實施例或實例以簡化本揭露。當然,這些組件及配置僅為實例且並非意欲為限制性的。舉例而言,元件之尺寸不限於所揭示範圍或值,而是可取決於裝置之處理條件及/或所要性質。此外,在以下描述中,第一特徵於第二特徵上方或上的形成可包括第一及第二特徵直接接觸地形成的實施例,且亦可包括額外特徵可形成從而插入於第一特徵與第二特徵之間使得第一特徵及第二特徵可不直接接觸的實施例。各種特徵可為了簡單且清楚以不同比例尺任意地繪製。在隨附圖式中,一些層/特徵可為了簡單被省略。
另外,空間相對術語,例如「下面」、「下方」、「下部」、「上方」、「上部」及類似者本文中可出於易於描述來使用以描述如諸圖中繪示的一個或多個元素或特徵與另一或另一些元素或特徵的關係。空間相對術語意欲涵蓋裝置在使用或操作中除了描繪於諸圖中之定向外的不同定向。裝置可以其他方式定向(旋轉90度或處於其他定向),且本文中使用之空間相對描述詞可同樣經因此解譯。此外,術語「由……製成」可意謂「包含」或「由……組成」。另外,在以下製造製程中,在所描述操作中/之間可存在一或多個額外操作,且操作的次序可被改變。在以下實施例中,術語「上部」、「在……上方」及/或「上方」沿著距前表面及背表面之距離增大的方向界定。如關於一個實施例解釋的材料、組態、尺寸、製程及/或操作可用於其他實施例中,且其詳細描述內容可被省略。
在積體電路(integrated circuit,IC)及半導體行業的技術進展中,CMOS影像感測器(CMOS image sensor,CIS)之影像畫素(或畫素)的尺寸或間距被極大地減小以增大影像解析度且降低成本。下文中,互換地使用「影像畫素」及「畫素」。然而,隨著畫素尺寸繼續降低至靠近於可見光波長範圍或在可見光波長範圍內的位準,存在降低之量子效率(quantum efficiency,QE)及畫素間差的均勻性的問題或風險,尤其在CMOS影像感測器的邊緣區處。
本揭露大體上係關於一種CMOS影像感測器,其包括分佈於畫素陣中的複數個相位偵測自動聚焦(phase detection auto-focusing,PDAF)感測器(或PDAF畫素)。畫素陣列包括光電二極體層中之光電二極體陣列、彩色濾光片層中且光電二極體陣列上方的彩色濾光片陣列,及微型透鏡層中且彩色濾光片陣列上方的畫素微型透鏡陣列。畫素彩色濾光片陣列包括複數個畫素彩色濾光片矩陣,該些矩陣皆具有相同配置圖案(例如拜耳彩色濾光片圖案)且各自包括例如三個不同色彩的2 × 2個彩色濾光片。每一彩色濾光片單元包括具有同一色彩的預定數目個彩色濾光片。在一些實施例中,PDAF感測器包括半導體基板中的m × m個格化光電二極體(binned photodiodes),上覆m × m個格化光電二極體的PDAF彩色濾光片及上覆PDAF彩色濾光片的PDAF微型透鏡。本文中,m為等於或大於2的整數(例如2、3、4……)。PDAF感測器可使用相位差以快速地計算透鏡需要行進多遠來到達焦點,且因此可增強自動聚焦速度。在一些實施例中,PDAF彩色濾光片之光電二極體覆蓋率與CMOS影像感測器之光電二極體覆蓋率的比率大於零且高達100%,且在其他實施例中係在自約4%至約10%的範圍內。
在本揭露之一些實施例中,PDAF彩色濾光片之重心與m × m個格化光電二極體之重心之間的第一水平距離歸因於PDAF彩色濾光片關於下伏m × m個格化光電二極體之全域移位依據CMOS影像感測器中PDAF畫素的方位而發生變化。在一些實施例中,PDAF微型透鏡之重心與PDAF彩色濾光片之重心之間的第二水平距離歸因於PDAF微型透鏡關於下伏PDAF彩色濾光片之全域移位依據CMOS影像感測器中PDAF畫素的方位亦發生變化。歸因於由PDAF彩色濾光片及PDAF微型透鏡進行的全域移位,CMOS影像感測器的效能均勻性經有利地改良。
此外,在本揭露之一些實施例中,CMOS影像感測器包括複合柵格隔離結構以側向分離彼此相鄰的畫素彩色濾光片且側向分離每一PDAF彩色濾光片與彩色濾光片層中的相鄰畫素彩色濾光片。在一些實施例中,複合隔離結構包括第一介電材料之第一低折射率(低n)介電質柵格、第二介電材料且下伏於第一低n介電質柵格之第二低n介電質柵格,及至少部分由第二低n介電質柵格圍封的金屬柵格。在一些實施例中,第二低n介電質柵格在第二介電材料中包括不同於第二介電材料且與第二介電材料混合的填料介電材料,且填料介電材料之折射率不同於第二介電材料之折射率以增強入射光的反射及主要散射。因此,CMOS影像感測器之畫素通道中入射光的內部反射經增大,且CMOS影像感測器的量子效率(quantum efficiency,QE)有利地得以改良。
第1A圖繪示根據實施例的CMOS影像感測器100之一部分的橫截面圖。CMOS影像感測器100包括影像畫素105之陣列,及在平面圖中分佈於影像畫素105之陣列中的一或多個PDAF畫素115。第1B圖繪示根據實施例的影像畫素105及PDAF畫素115的俯視平面圖(或佈局)的一部分。佈局可由第一隔離結構150界定。
在一些實施例中,CMOS影像感測器100包括形成於半導體基板110中之光電二極體層120、光電二極體層120上方的彩色濾光片層140,及彩色濾光片層140上方的微型透鏡層145。光電二極體層120包括設置於半導體基板110中之光電二極體20’的陣列20。基板110可包括例如但不限於矽的單晶半導體材料。
彩色濾光片層140包括彩色濾光片(或畫素彩色濾光片) 40A及複數個PDAF彩色濾光片40B的陣列40。下文中,互換地使用「畫素彩色濾光片」及「彩色濾光片」。每一畫素彩色濾光片40A設置於單一對應光電二極體20’上方,且每一PDAF彩色濾光片40B設置於一串m × m個格化光電二極體20’上方。
微型透鏡層145包括以下兩者的陣列:畫素微型透鏡60A,其上覆畫素彩色濾光片40A的陣列並與畫素彩色濾光片40A對準;及複數個PDAF微型透鏡60B,其上覆複數個PDAF彩色濾光片40B並與PDAF彩色濾光片40B對準。
CMOS影像感測器100包括第一隔離結構150 (更多細節繪示於第6A圖至第6E圖中),其設置於彩色濾光片層140中以側向分離相鄰彩色濾光片40A且側向分離PDAF彩色濾光片40B與相鄰彩色濾光片40A。
CMOS影像感測器100亦包括第二隔離結構160,其設置於半導體基板110中以側向分離光電二極體層120中光電二極體陣列20的相鄰光電二極體20’。在一些實施例中,第二隔離結構160包括深溝槽隔離(deep trench isolation,DTI)柵格,該深溝槽隔離柵格自光電二極體層120之上表面垂直延伸至基板110中。在一些實施例中,DTI柵格160與第一隔離結構150實質上對準。
在一些實施例中,CMOS影像感測器100包括設置於半導體基板110中的傳送電晶體70之陣列。CMOS影像感測器100包括,該柵格170與DTI柵格160對準且側向分離相鄰傳送電晶體70。每一傳送電晶體70包括閘極結構、源極/汲極區及閘極介電質。在本揭露中互換地使用源極及汲極。
在一些實施例中,CMOS影像感測器100亦包括離子植入柵格190,該柵格190在半導體基板110中設置於DTI柵格160與STI柵格170之間以側向分離光電二極體陣列20的相鄰光電二極體20’。
在一些實施例中,CMOS影像感測器100包括分離層180 (或「底層」),該分離層180分離微型透鏡層145與彩色濾光片層140。
在第1B圖中,如前文所述,影像畫素105之畫素彩色濾光片40A及PDAF畫素115之PDAF彩色濾光片40B的邊界由彩色濾光片層140中之第一隔離結構150界定。第一隔離結構150之柵格區段的形狀在一些實施例中為正方形,且在其他實施例中為矩形。因此,第一隔離結構150作為「壁」的柵格區段界定彩色濾光片層140中畫素彩色濾光片40A及PDAF彩色濾光片40B的空間。
在一些實施例中,第一隔離結構150包括金屬柵格結構,其界定彩色濾光片層140中畫素彩色濾光片40A及PDAF彩色濾光片40B的空間及方位,如第1A圖中所繪示。
參看第1A圖及第1B圖,如前文所提及,CMOS影像感測器100包括影像畫素105的陣列,及分佈於影像畫素105之陣列中的一或多個PDAF畫素115。每一影像畫素105包括由第二隔離結構(例如DTI) 160的一區段包圍的光電二極體20’、設置於光電二極體20’上方之色彩(例如,紅色、藍色或綠色)的彩色濾光片40A及設置於彩色濾光片40A上方的微型透鏡60A,因此形成光通道。
影像畫素105之頂表面上的入射光由微型透鏡60A聚焦於彩色濾光片40A的有效區域,由彩色濾光片40A濾光以變成單色光束,且由光電二極體20’接收到。光電二極體20’將接收到之入射光的強度轉變成電信號。對應於畫素105中之光電二極體20’的傳送電晶體70有助於電信號的讀出。分佈於畫素105之陣列中之一或多個PDAF畫素115由CMOS影像感測器100促成於預期目標上的快速自動聚焦。
第2A圖繪示根據實施例的PDAF畫素115及畫素105之n × n (例如,n = 4)矩陣42的示意圖。CMOS影像感測器100包括影像畫素105之陣列及複數個PDAF畫素115。PDAF畫素115包括光電二極體層中之m x m個格化光電二極體20’,彩色濾光片層中上覆m x m個格化光電二極體20’的PDAF彩色濾光片40B及上覆PDAF彩色濾光片40B的PDAF微型透鏡60B。
第2B圖、第2C圖、第2D圖及第2E圖繪示CMOS影像感測器之PDAF畫素的功能。如第2B圖至第2E圖中所繪示,例如,兩個專用PDAF畫素(或感測器) 115用於CMOS影像感測器中以俘獲來自目標或物件之分離影像以供比較。當目標與CMOS影像感測器之間的距離非常遠、過遠、非常近或過近時,兩個模糊影像由兩個PDAF畫素俘獲。兩個模糊影像之間的相位差可經計算以判定焦點,且以此方式,PDAF畫素115促進由CMOS影像感測器進行的對目標的自動聚焦。
第2F圖、第2G圖及第2H圖繪示根據實施例的分佈於影像畫素105之陣列中的PDAF畫素115。在一些實施例中,PDAF畫素115為綠色。在其他實施例中,PDAF畫素115為紅色或藍色。比率(例如,12.5%)界定為色彩(例如,綠色)之PDAF之數目(例如,8)除以陣列中m × m個畫素之單元的數目(例如,64)。PDAF 115對應於m × m個畫素105的單元。本文中,m為等於或大於2的整數(例如2、3、4……)。第2F圖繪示8個綠色PDAF畫素115,其分佈於影像畫素105的陣列中,且具有PDAF彩色濾光片40B之光電二極體覆蓋率與CMOS影像感測器100之光電二極體覆蓋率的約12.5% (8/64)的比率。第2G圖繪示4個綠色PDAF畫素115,其分佈於影像畫素105的陣列中,且具有PDAF彩色濾光片40B之光電二極體覆蓋率與CMOS影像感測器100之光電二極體覆蓋率的約6.25% (4/64) 的比率。PDAF 115的PDAF彩色濾光片尺寸及PDAF微型透鏡尺寸遠遠大於畫素105的畫素彩色濾光片尺寸及微型透鏡尺寸。CMOS影像感測器100中具有更多PDAF 115可增大動態範圍。
第2H圖繪示PDAF畫素115,其具有PDAF彩色濾光片40B之光電二極體覆蓋率與CMOS影像感測器100之光電二極體覆蓋率的100%比率,且配置成拜耳圖案或佈局。如第2H圖中所繪示,PDAF可為紅色、藍色及綠色的組合,且可配置成拜耳圖案。以此方式,第2H圖中之CMOS影像感測器100僅包括無任何影像畫素105的PDAF畫素,且因此CMOS影像感測器100的動態範圍增大,且CMOS影像感測器100的解析度被可降低。
隨著影像畫素105之尺寸在尋求高解析度上繼續減小以靠近或係在可見光波長範圍內,存在CMOS影像感測器100之非均一效能的問題或風險。在本揭露中,揭示針對PDAF畫素115的新穎積體電路結構及設計。
第3A圖繪示根據實施例的CMOS影像感測器100之彩色濾光片40A及複數個PDAF彩色濾光片40B之陣列40的俯視平面圖。CMOS影像感測器100之彩色濾光片陣列40包括中心區45及超出中心區45的邊緣區(例如,右側邊緣區47)。舉例而言,彩色濾光片陣列40可經矩形塑形,從而具有長度L 40且寬度W 40(L 40> W 40)且以中心點45C定中心,且中心區45可經正方形塑形,從而具有邊緣長度L 45且亦以中心點45C定中心。舉例而言,彩色濾光片陣列40亦可經正方形塑形,且因此L 40= W 40。在一些實施例中,針對Y方向,彩色濾光片陣列40之中心區45的邊緣長度L 45與寬度W 40的比率經界定為在自約0.3至約0.8的範圍內。在一些實施例中,針對X方向,彩色濾光片陣列40的中心區45之邊緣長度L 45與長度L 40的比率經界定為在自約0.15至約0.3的範圍內。超出中心區45的例如右側邊緣區47的任何區界定為邊緣區。PDAF畫素115之複數個PDAF彩色濾光片40B分佈於影像畫素105的彩色濾光片陣列40中。
在一些實施例中,彩色濾光片40A經水平(X)且垂直(Y)配置於複數個彩色濾光片矩陣42中。每一彩色濾光片矩陣42在平面圖中具有相同水平及/或垂直配置圖案。在一些實施例中,每一彩色濾光片矩陣42包括由第一隔離結構150界定的n × n正方形彩色濾光片矩陣,其中n = 偶數。舉例而言,當n = 4時,每一彩色濾光片矩陣42包括2 × 2個彩色濾光片單元44 (例如,44G、44R、44B及44G,如第3A圖中所繪示),且每一彩色濾光片單元44包括選自紅色、藍色及綠色之同一色彩的4 (2 × 2) (亦即,4/2 × 4/2)個畫素彩色濾光片40A。舉例而言,紅色彩色濾光片單元44R包括4個紅色畫素濾光片40A。在彩色濾光片矩陣42下方存在n × n個正方形光電二極體矩陣。
在一些實施例中,彩色濾光片矩陣42由第一隔離結構150界定(如第1A圖及第1B圖中所繪示),第一隔離結構150的邊界由相鄰畫素色彩濾光片40A共用。PDAF彩色濾光片40B亦由第一隔離結構150界定,第一隔離結構150的邊界由相鄰畫素彩色濾光片40A共用。
在一些實施例中,PDAF彩色濾光片40B (如第3E圖、第3F圖及第3G圖中所繪示)進行「全域移位」,該全域移位係在特定水平方向上整體上相對於下伏於PDAF彩色濾光片40B之m × m個格化光電二極體20’的水平偏移(m為等於或大於2的整數,例如2、3、4……)。在一些實施例中,PDAF彩色濾光片40B係呈紅色、藍色或綠色。在一些實施例中,PDAF微型透鏡60B (如第3E圖、第3F圖及第3G圖)進行「全域移位」,全域移位係特定水平方向上整體上相對於下伏於PDAF微型透鏡60B之PDAF彩色濾光片40B的水平偏移。
第3B圖、第3C圖及第3D圖繪示根據實施例的CMOS影像感測器100之中心區45中無「全域移位」情況下具有PDAF彩色濾光片40B及PDAF微型透鏡60B之PDAF畫素115的橫截面圖。在一些實施例中,PDAF彩色濾光片40B係呈紅色、藍色或綠色。在一些實施例中,PDAF彩色濾光片40B及PDAF微型透鏡60B在CMOS影像感測器100之中心區45中未進行任何全域移位。在一些實施例中,分佈於CMOS影像感測器100之畫素陣列105中的複數個PDAF畫素115之彩色濾光片40B係選自綠色、紅色或藍色的同一色彩。
第3E圖、第3F圖及第3G圖繪示根據實施例的在CMOS影像感測器100之邊緣區47中進行「全域移位」(如第3A圖中所繪示)的PDAF彩色濾光片及PDAF微型透鏡的橫截面圖。在一些實施例中,PDAF彩色濾光片40B及/或PDAF微型透鏡60B在彩色濾光片陣列40之邊緣區47中的任一者中進行全域移位。
如第3E圖、第3F圖及第3G圖中所繪示,在邊緣區47中形成於入射光123與PDAF畫素115之垂直中心線C1之間的角度A大於在中心區45中形成於入射光123與PDAF畫素115之垂直中心線C1之間的角度A’ (逼近零,如第3B圖、第3C圖及第3D圖中所繪示)。邊緣區47中到達PDAF畫素115之格化光電二極體20’的入射光123的量因此小於中心區45中的量。在邊緣區中,到達PDAF畫素115之格化光電二極體20’之入射光123的量依據邊緣區47中PDAF畫素115的方位而發生變化。PDAF畫素115距中心區45之中心愈遠,到達PDAF畫素115之格化光電二極體20’的入射光123的量愈少。對PDAF畫素115之PDAF色彩濾光片40B及PDAF微型透鏡60B進行的「全域移位」可增大到達邊緣區47中PDAF畫素115之格化光電二極體20’的入射光123之量,且因此有利地改良CMOS影像感測器100的光學效能及均勻性。
第4A圖繪示根據實施例的繪示PDAF畫素115A在CMOS影像感測器100之中心區45中並未進行「全域移位」的橫截面圖。第4B圖及第4C圖繪示根據實施例的橫截面圖,該些橫截面圖分別繪示PDAF畫素115B及115C在CMOS影像感測器100之邊緣區47中進行各種「全域移位」(例如PDAF彩色濾光片全域移位,及PDAF微型濾光片全域移位,如第3E圖、第3F圖及第3G圖中繪示),如第3A圖中所繪示。PDAF畫素115C相較於PDAF畫素115B相對進一步遠離中心點45C。
在一些實施例中,在如第3A圖中所繪示的超出CMOS影像感測器100之中心區45的邊緣區47 (例如,右側區)中,PDAF彩色濾光片40B及/或PDAF微型透鏡60B進行全域移位達全域移位量,該些全域移位量依據CMOS影像感測器中PDAF畫素115的方位以同一趨勢發生變化(例如,沿著某方法增大)。
在一些實施例中,在如第3A圖中所繪示的超出CMOS影像感測器100之中心區45的邊緣區47 (例如,右側區)中,PDAF彩色濾光片40B及/或PDAF微型透鏡60B藉由在自中心區45之中心45C至邊緣區47的邊緣47E的第一水平方向上逐漸增大移位量來進行全域移位。
在第4A圖至第4C圖中,垂直中心線C1表示PDAF畫素115之m × m (m = 2)個格化光電二極體20’的中心(或重心)。垂直中心線C2表示上覆對應m × m個格化光電二極體20’的PDAF彩色濾光片40B的中心(或重心)。垂直中心線C3表示上覆對應彩色濾光片40B的PDAF微型透鏡60B之中心(或重心)。
參看第4A圖及第3A圖,在一些實施例中,在CMOS影像感測器100之中心區45中,相對於下伏於PDAF彩色濾光片40B(0)的對應m × m (m = 2)個格化光電二極體20’對PDAF彩色濾光片40B(0)進行零全域移位或不進行全域移位。垂直中心線C2與C1之間的距離(Scf)為零,Scf(0) = 0。
在一些實施例中,零全域移位或無全域移位相對於對應PDAF彩色濾光片40B(0)對PDAF微型透鏡60B(0)進行。垂直中心線C3與C2之間的距離(Sml)為零,Sml(0) = 0。
參看第4B圖及第3A圖,在一些實施例中,在CMOS影像感測器100之邊緣區47 (例如右側邊緣區)中,位於右側邊緣區47中的PDAF畫素115的PDAF彩色濾光片40B(1)關於下伏於PDAF彩色濾光片40B(1)之對應m × m (m = 2)個格化光電二極體20’以第一彩色濾光片全域移位量Scf(1)向右(例如,+X)進行第一彩色濾光片全域移位。中心線C2與C1之間的第一距離Scf(1)大於零,Scf(1) > 0。
在一些實施例中,上覆PDAF畫素115之對應PDAF彩色濾光片40B(1)的PDAF微型透鏡60B(1)關於對應PDAF彩色濾光片40B(1)以第一微型透鏡全域移位量Sml(1)向右(例如,+X)進行第一微型透鏡全域移位。中心線C3與C2之間的第一距離Sml(1)大於零,Sml(1) > 0。
參看第4C圖及第3A圖,在一些實施例中,在CMOS影像感測器100之邊緣區47 (例如右側邊緣區)中,位於邊緣區47中且進一步遠離中心區45的PDAF畫素115的PDAF彩色濾光片40B(2)關於下伏於PDAF彩色濾光片40B(2)之對應下伏的m x m (m = 2)個格化光電二極體20’以第二彩色濾光片全域移位量Scf(2) 向右(例如,+X)進行第二彩色濾光片全域移位。中心線C2與C1之間的第二距離Scf(2)大於Scf(1),Scf(2) > Scf(1)。
在一些實施例中,上覆PDAF畫素115之對應PDAF彩色濾光片40B(2)的PDAF微型透鏡60B(2)關於對應PDAF彩色濾光片40B(2)以第二微型透鏡全域移位量Sml(2)向右(例如,+X)進行第二微型透鏡全域移位。中心線C3與C2之間的第二距離Scf(2)大於Scf(1),Scf(2) > Scf(1)。
在右側邊緣區47中PDAF畫素115的彩色濾光片及微型透鏡的全域移位可如前文所描述進行。然而,邊緣區47的邊緣47E可為CMOS影像感測器100中的任何邊緣(例如,右側、左側、上部或下部邊緣)。以相同方式或類似地,在一些實施例中,在CMOS影像感測器100之左側區(-X)、上部區(+Y)或下部區(-Y)中,PDAF彩色濾光片及PDAF微型透鏡的全域移位藉由依據PDAF畫素115距CMOS影像感測器100之中心的距離增大全域移位量來施加。在一些實施例中,Y方向上之全域移位量(例如,彩色濾光片全域移位量及微型透鏡全域移位量)相同或類似於X方向上的全域移位量。
第4D圖、第4E圖及第4F圖為根據實施例的繪示例如彩色濾光片全域移位量(Scf)及微型透鏡全域移位量(Sml)的全域移位量S發生變化之不同方式的座標圖。在一些實施例中,如第4D圖中所繪示,移位量S在自中心45C至邊緣之邊緣47E的方向上線性增大,如第3A圖中所繪示。在一些實施例中,如第4E圖中所繪示,移位量S自中心45C至邊緣之邊緣47E非線性地增大(例如逐漸且緩慢地增大),如第3A圖中所繪示。在一些實施例中,如第4F圖中所繪示,移位量S自中心45C至邊緣之邊緣47E以階梯式方式增大,如第3A圖中所繪示。繪示於第4D圖、第4E圖及第4F圖中之移位量的任何組合為可能的。全域移位之方向平面圖中係沿著影像感測器的水平方向及/或垂直方向。在一些實施例中,彩色濾光片陣列之邊緣處的最大移位量係在約50 nm至約300 nm的範圍內。
在一些實施例中,CMOS影像感測器100中PDAF畫素115之彩色濾光片40B及微型透鏡60B在平面圖中的尺寸依據CMOS影像感測器100中PDAF畫素115的方位發生變化。在一些實施例中,PDAF畫素115之彩色濾光片40B及微型透鏡60B在平面圖中的尺寸在自中心區45之中心45C至邊緣區47之邊緣47E的第一方向上逐漸減小。
有利地,對在CMOS影像感測器100之平面圖中超出中心區45在邊緣區47中的PDAF畫素115之PDAF彩色濾光片40B及/或PDAF微型透鏡60B進行的全域移位增大邊緣區47中到達下伏於PDAF畫素115之PDAF彩色濾光片40B之光電二極體的入射光的量,藉此補償歸因於PDAF之狹窄通道寬度及邊緣區中增大的入射光角度的減小之入射光,且因此增大CMOS影像感測器100之邊緣區中PDAF畫素的效能均勻性。
第5圖繪示根據實施例的第一隔離結構150之第一光罩151的部分及第二隔離結構160之第二光罩161的部分相對於CMOS影像感測器100之頂表面的俯視平面圖。第一隔離結構150可包括金屬柵格結構。第二隔離結構160可包括DTI結構。在一些實施例中,第一光罩151及第二光罩161中的每一者包括對應於彩色濾光片40A的佈局圖案。如第5圖中所繪示,在CMOS影像感測器100之頂表面的中央部中,第一隔離結構150之第一光罩151的圖案及第二隔離結構160之第二光照161的圖案在無全域移位的情況下彼此對準。在遠離中央部的邊緣部分中,第一光罩151之圖案自第二光罩161之圖案進一步偏移。換言之,第一光罩151之圖案相對於第二光罩161的圖案經移位或偏移達較大量。以此方式,可進行PDAF彩色濾光片的全域移位。
第6A圖至第6D圖繪示根據實施例的CMOS影像感測器之第一隔離結構150的橫截面圖。第6E圖繪示根據實施例的CMOS影像感測器100之第一隔離結構150的俯視平面圖。
第6A圖至第6D圖為對應於第6E圖之線X1-X1的橫截面圖。第6E圖繪示對應於在第1B圖中繪示之柵格之交叉點的部分。在一些實施例中,第一隔離結構150藉由使用一或多個微影及蝕刻操作、使用一或多個光罩來製造。
根據實施例,如第6A圖及第6B圖中所繪示,第一隔離結構150包括第一低折射率(低n)介電質柵格51、下伏於該第一低n介電質柵格51之第二低n介電質柵格52,及至少部分由第二低n介電質柵格52圍封的金屬柵格53。
在一些實施例中,如第6A圖及第6B圖中所繪示,第一隔離結構150包括在第二低n介電質柵格52中至少部分包覆金屬柵格53的蝕刻終止膜54,且因此分離金屬柵格53與第二低n介電質柵格52。蝕刻終止膜54由介電材料,例如氧化鋁(例如,Al 2O 3)、氮化矽、氧化鉿、氧化鋯或任何其他合適材料製成。
在一些實施例中,第二低n介電質柵格52及第一低n介電質柵格51的材料彼此不同,如第6A圖及第6B圖中所繪示。在其他實施例中,第一低n介電質柵格51及第二低n介電質柵格52由相同材料51A製成,如第6C圖及第6D圖中所繪示。
在一些實施例中,如第6A圖中所繪示,第二低n介電質柵格52包括不同於第二介電材料52的填料介電材料55。在一些實施例中,填料介電材料55與第二介電材料52混合,且填料介電材料55之總體積小於第二低n介電質柵格52中第二介電材料52的總體積。在一些實施例中,填料介電材料55之總體積與第二低n介電質柵格52中第二介電材料之總體積的比率係在約20%至約80%的範圍內。在一些實施例中,填料介電材料55之折射率不同於第二介電材料52之折射率。在一些實施例中,填料介電材料55包括介電材料,例如氧化物材料(例如,氧化矽及氧化鋁)。在一些實施例中,填料介電材料55係呈隨機尺寸。在一些實施例中,填料介電材料55係非均一的。在一些實施例中,填料介電材料55係呈隨機形狀,包括但不限於正方形形狀、矩形形狀、球形形狀、球體性轉及橢圓形形狀。填料55用來減小或甚至防止光越過第二低n介電質柵格52自左側穿透至右側或自右側穿透至左側。在一些實施例中,填料介電材料55之折射率係在大於1且小於1.5的範圍內。與第二介電材料52混合且設置於第二介電材料52中的填料介電材料55增強CMOS影像感測器之畫素通道中入射光的反射及主要散射,因此改良CMOS影像感測器的量子效率(quantum efficiency,QE)。
在一些實施例中,如第6B圖中所繪示,第一低n介電質柵格51包括不同於第一介電材料51的填料介電材料55。在一些實施例中,填料介電材料55與第一介電材料51混合,且填料介電材料55之總體積小於第一低n介電質柵格51中的第一介電材料51的總體積。在一些實施例中,第一介電材料51中填料介電材料55之總體積與第一介電材料51之總體積的比率係在約20%至約80%的範圍內。在一些實施例中,填料介電材料55之折射率不同於第一介電材料51的折射率。
在一些實施例中,第一低n介電質柵格51及第二介電材料52兩者包括不同於第一介電材料51及第二介電材料52兩者的填料介電材料55。
以此方式,填料介電材料55可增大第一低n介電質柵格51及/或第二低n介電質柵格52上入射光的反射及散射,且因此可增強第一低n介電質柵格51及/或第二低n介電質柵格52的圈內反射率(total internal reflection,TIR),因此改良CMOS影像感測器100的量子效率(quantum efficiency,QE)。
在一些實施例中,第二低n介電質柵格52之上部隅角實質上為直角,如第6A圖及第6C圖中所繪示。在其他實施例中,第二低n介電質柵格52之上部隅角為圓角,如第6B圖及第6D圖中所繪示。在一些實施例中,隅角之半徑為約1 nm至約10 nm。
在一些實施例中,第一低n介電質柵格51由介電材料(例如氧化矽,例如SiO 2)或陶瓷材料製成,且第二低n介電質柵格52由介電材料(例如,Al 2O 3或SiO 2)或陶瓷材料製成。在一些實施例中,金屬柵格53由金屬材料(例如,W、Al、Cu或Cr,或金屬合金材料(例如TiN))製成。
第一隔離結構150使用第一低n介電質柵格51及第二低n介電質柵格52來界定針對影像畫素105之彩色濾光片40A及PDAF畫素115之PDAF彩色濾光片40B的空位或空間。在一些實施例中,影像畫素105之彩色濾光片40A及PDAF彩色濾光片40B由有機或無機介電材料製成。
在一些實施例中,第一低n介電質柵格51的折射率n1係在大於1的值(例如,1.01)至約1.50的範圍內,亦即1 < n1 < 1.50。在一些實施例中,第二低n介電質柵格52的折射率n2係在大於1的值(例如,1.01)至約1.50的範圍內,亦即1 < n2 < 1.50。在一些實施例中,第一低n介電質柵格51的折射率n1等於或大於第二低n介電質柵格52的折射率n2,即n1 = n2或n1 > n2。
在一些實施例中,第一隔離結構150的第一低n介電質柵格51之折射率n1及第二低n介電質柵格52的折射率n2小於彩色濾光片陣列40的彩色濾光片40’的折射率n,即n1 < n且n2 < n。以此方式,畫素影像感測器陣列之彩色濾光片中的全內反射可經增強,且畫素影像感測器陣列的量子效率(quantum efficiency,QE)可因此得以改良。
在一些實施例中,第一低n介電質柵格51之第一寬度W1係在約50 nm至約200 nm的範圍內,且第一低n介電質柵格51的第一高度H1係在約100 nm至約1000 nm的範圍內。在一些實施例中,第二低n介電質柵格52之第二寬度W2係在約90 nm至約300 nm的範圍內,且第二低n介電質柵格52的第二高度H2係在約100 nm至約1000 nm的範圍內。在一些實施例中,金屬柵格53之第三寬度W3係在約20 nm至約80 nm的範圍內,且金屬柵格53的第三高度H3係在約30 nm至約500 nm的範圍內。
在一些實施例中,第一低n介電質柵格51之第一寬度W1小於第二低n介電質柵格52的第二寬度W2。在一些實施例中,第一低n介電質柵格51之第一高度H1大於第二低n介電質柵格52的第二高度H2。在一些實施中,H1與H2的一比率(H1/H2)係在約1.2與約10之間。以此方式,CMOS影像感測器100之彩色濾光片陣列40之每一彩色濾光片40’中每一彩色濾光片40’的空位或空間可經放大,且畫素影像感測器陣列之每一單元畫素的量子效率(quantum efficiency,QE)可因此被增強。
第7A圖至第7F圖繪示根據實施例的具有變化之彩色濾光片高度H cf及變化之第一隔離柵格高度H ln的CMOS影像感測器的橫截面圖。在一些實施例中,彩色濾光片高度H cf影響分離層(或底層) 180的厚度,此係由於一些彩色濾光片40A延伸至分離層180中,如第7A圖、第7C圖、第7E圖及第7F圖中所繪示。在一些實施例中,彩色濾光片高度H cf高於CMOS影像感測器100中的隔離柵格高度H ln,如第7A圖中所繪示。在一些實施例中,彩色濾光片高度H cf低於CMOS影像感測器100中的隔離柵格高度H ln,如第7B圖中所繪示。在一些實施例中,同一色彩之彩色濾光片40A在CMOS影像感測器100中具有相同彩色濾光片高度H cf,如第7A圖至第7F圖中所繪示。在一些實施例中,具有大於CMOS影像感測器100中隔離柵格高度H ln的彩色濾光片高度H cf的彩色濾光片40A延伸至分離層180中,如7A圖、第7C圖、第7E圖及第7F圖中所繪示。
第8A圖及第8B圖繪示CMOS影像感測器100之具有保齡球瓶形輪廓的第二隔離柵格結構160 (例如DTI)。第8A圖為CMOS影像感測器100的對應於第8B圖之線X1-X1的橫截面圖。第8B圖為CMOS影像感測器100之彩色濾光片40A的俯視平面圖。如第8A圖及8B圖中所繪示,DTI 160在X方向且Y方向上延伸,且在Z方向上深深蝕刻至基板110中。在如第8A圖中所繪示的DTI 160在X方向及Y方向上的交叉地點(或十字路地點) 80處,DTI 160在Z方向上比DTI 160的超出交叉地點80的任何其他部分蝕刻至基板110中更深,如第8B圖中所繪示,且因此習知保齡球瓶形DTI 160具有十字路坑81A,該坑81A具有坑深度Dp及坑寬度Wp。
第9A圖及第9B圖繪示根據實施例的CMOS影像感測器100之具有筆直或針狀輪廓的第二隔離柵格結構160 (例如DTI)。第9A圖為對應於第9B圖之線X1-X1的CMOS影像感測器100的橫截面圖。第9B圖為CMOS影像感測器100之彩色濾光片40A的俯視平面圖。如第9A圖及第9B圖中所繪示,DTI 160在X方向且Y方向上延伸,且在Z方向上深深蝕刻至基板110中。在如第9A圖中所繪示的DTI 160在X方向及Y方向上的交叉地點(或十字路地點) 80處,DTI 160在Z方向上比DTI 160的超出交叉地點80之任何其他部分更深地蝕刻至基板110中,如第9B圖中所繪示。在一些實施例中,筆直或針狀DTI 160具有淺於十字路坑81A的十字路坑81B。因此,筆直或針狀DTI 160之十字路坑81B有利地對基板110中下伏於十字路坑81B的電元件(例如,傳送電晶體或金屬間連接)具有小的影響,此係因為十字路坑81B與下伏於十字路坑81B之電元素之間的距離大於十字路坑81A與下伏於十字路坑81A之電元件之間的距離。在一些實施例中,十字路坑81B之深度Dp係在約250 nm至約450 nm的範圍內,且十字路坑81B的寬度Wp係在約100 nm至約200 nm的範圍內。
在一些實施例中,例如電漿蝕刻製程的乾式蝕刻製程用以藉由控制且調整電漿蝕刻製程的參數來形成筆直或針狀DTI 160。在電漿蝕刻製程中,橫越控制電力及偏壓電力兩者可經控制且調整以便形成筆直或針狀DTI 160。在一些實施例中,橫越控制功率經減低,且偏壓電力經增強。歸因於短的轟擊時段,筆直或針狀DTI 160的十字路坑81B有利地淺於保齡球瓶形DTI 160的十字路坑81A。
根據本揭露之實施例,一種CMOS影像感測器包括在平面圖中分佈於一畫素感測器陣列中的複數個PDAF畫素。每一PDAF畫素包括m × m個格化光電二極體、上覆該些格化光電二極體且由一第一隔離結構側向包圍的一PDAF彩色濾光片以及上覆該PDAF彩色濾光片的一PDAF微型透鏡。該PDAF彩色濾光片之一重心與該些格化光電二極體之一重心之間的一第一水平距離依據該CMOS影像感測器中該PDAF畫素在平面圖中的一方位發生變化。該PDAF微型透鏡之一重心與該PDAF彩色濾光片之該重心之間在平面圖中的一第二水平距離依據該CMOS影像感測器中該PDAF畫素的方位發生變化。PDAF彩色濾光片及PDAF微型透鏡之全域移位有利地改良CMOS影像感測器的均勻性。
另外,CMOS影像感測器之彩色濾光片層中的第一隔離結構包括一第一低n介電質柵格、下伏於該第一低n介電質柵格之一第二低n介電質柵格,及至少部分由該第二低n介電質柵格圍封的一金屬柵格。該第二低n介電質柵格包括不同於一第二低n介電質柵格材料且與該第二低n介電質柵格材料混合的一填料介電材料。該第一隔離結構增強CMOS影像感測器之畫素通道中入射光的總全內反射,且因此有利地增大CMOS影像感測器的量子效率(quantum efficiency,QE)。
根據本揭露之一態樣,一種CMOS影像感測器包括:一光電二極體陣列,其係在一光電二極體層中且設置於一半導體基板中;一彩色濾光片陣列,其係在一彩色濾光片層中且上覆光電二極體陣列;一微型透鏡陣列,其係在一微型透鏡層中且上覆該彩色濾光片陣列;及一第一隔離結構,其設置於該彩色濾光片層中以側向分離相鄰彩色濾光片且包括一第一介電材料之第一低折射率(低n)介電質柵格、一第二介電材料且下伏於第一低n介電質柵格的第二低n介電質柵格,及至少部分由第二低n介電質柵格圍封的一金屬柵格。該第二低n介電質柵格包括不同於一第二介電材料且與該第二介電材料混合的一填料介電材料。該填料介電材料之一總體積小於該第二低n介電質柵格中該第二介電材料的一總體積。該填料介電材料之一折射率不同於該第二介電材料之一折射率。在前述及/或以下實施例中的一或多者中,填料介電材料包括氧化物材料。填料介電材料係呈隨機形狀。在前述及/或以下實施例中的一或多者中,該第一低n介電質柵格及該第二低n介電質柵格的折射率小於該填料介電材料之該折射率,且該第一低n介電質柵格及該第二低n介電質柵格以及該填料介電材料的該些折射率係在大於1且小於1.5的一範圍內。在前述及/或以下實施例中的一或多者中,該第一低n介電質柵格包括不同於該第一介電材料且與該第一介電材料混合的另一填料介電材料。該另一填料介電材料之一總體積小於該第一低n介電質柵格中該第一介電材料的一總體積,且該另一填料介電材料之一折射率不同於該第一介電材料的一折射率。在前述及/或以下實施例中的一或多者中,該第一低n介電質柵格之一第一寬度小於該第二低n介電質柵格的一第二寬度。在前述及/或以下實施例中的一或多者中,該金屬柵格至少部分由一介電質蝕刻終止膜包覆以分離該金屬柵格與該第二低n介電質柵格,且該金屬柵格由一金屬材料或一金屬合金材料製成。在前述及/或以下實施例中的一或多者中,該CMOS影像感測器進一步包括分離該微型透鏡層與彩色濾光片層的一分離層。在前述及/或以下實施例中的一或多者中,該CMOS影像感測器進一步包括第二隔離結構,該第二隔離結構設置於半導體基板中以側向分離相鄰光電二極體。在前述及/或以下實施例中的一或多者中,該第二隔離結構包括具有一針狀或矩形輪廓的一深溝槽隔離柵格。在前述及/或以下實施例中的一或多者中,CMOS影像感測器進一步包括複數個相位偵測自動聚焦(phase detection auto-focusing,PDAF)畫素。每一PDAF畫素包括:m × m個格化光電二極體、設置於該彩色濾光片層中且上覆該m × m個格化光電二極體的一PADF彩色濾光片,及設置於該微型透鏡層中且上覆該PDAF彩色濾光片的PDAF微型透鏡。該第一隔離結構側向分離該PDAF彩色濾光片與該彩色濾光片陣列的相鄰彩色濾光片。
根據本揭露之一態樣,一種CMOS影像感測器包括:一影像畫素陣列,每一影像畫素包括:由一光電二極體層中之一光電二極體隔離結構包圍的一光電二極體、上覆該光電二極體且由一彩色濾光片層中之一彩色濾光片隔離結構包圍的一彩色濾光片及上覆一微型透鏡層中之該彩色濾光片的一微型透鏡;以及在平面圖中分佈於該影像畫素陣列中之複數個相位偵測自動聚焦(PDAF)畫素,每一PDAF畫素包括:該光電二極體層中的m × m個格化光電二極體、上覆該m × m個格化光電二極體且由該彩色濾光片層中之該彩色濾光片隔離結構包圍的一PDAF彩色濾光片及上覆該PDAF彩色濾光片的一PDAF微型透鏡。該PDAF彩色濾光片之一重心與該m × m個格化光電二極體之一重心之間的一第一水平距離依據該CMOS影像感測器中該PDAF畫素的一方位發生變化。在前述及/或以下實施例中的一或多者中,在該CMOS影像感測器之一邊緣區中,該PDAF彩色濾光片之該重心與該m × m個格化光電二極體之該重心之間的該第一水平距離在平面圖中自該CMOS影像感測器之一中心至該邊緣區的一邊緣在一第一方向上逐漸增大。在前述及/或以下實施例中的一或多者中,該PDAF微型透鏡之一重心與該PDAF彩色濾光片之該重心之間在水平平面圖中的一第二水平距離依據該CMOS影像感測器中該PDAF畫素的一方位發生變化。在前述及/或以下實施例中的一或多者中,在該CMOS影像感測器之一邊緣區中,該PDAF微型透鏡之該重心與該PDAF彩色濾光片之該重心之間的該第二水平距離在平面圖中自該CMOS影像感測器之一中心至該邊緣區的一邊緣在一第一方向上逐漸增大。在前述及/或以下實施例中的一或多者中,該些PDAF畫素的一光電二極體覆蓋率與該CMOS影像感測器之一總光電二極體覆蓋率的一比率係在約4%與約10%的一範圍內。
根據本揭露之一態樣,一種CMOS影像感測器包括:在平面圖中分佈於一影像畫素陣列中之複數個相位偵測自動聚焦(PDAF)畫素,每一PDAF畫素包括:一光電二極體層中的m × m個格化光電二極體、上覆該m × m個格化光電二極體且由一彩色濾光片層中之一彩色濾光片隔離結構包圍的一PDAF彩色濾光片,及上覆一微型透鏡層中的該PDAF彩色濾光片的一PDAF微型透鏡。該PDAF彩色濾光片之一重心與該m × m個格化光電二極體之一重心之間的一第一水平距離依據該CMOS影像感測器中該PDAF畫素的一方位發生變化。在前述及/或以下實施例中的一或多者中,在該CMOS影像感測器之一邊緣區中,該PDAF彩色濾光片之該重心與該m × m個格化光電二極體之該重心之間的該第一水平距離在平面圖中自該CMOS影像感測器之一中心至該邊緣區的一邊緣在一第一方向上逐漸增大。在前述及/或以下實施例中的一或多者中,該PDAF微型透鏡之一重心與該PDAF彩色濾光片之該重心之間在水平平面圖中的一第二水平距離依據該CMOS影像感測器中該PDAF畫素的方位發生變化。在前述及/或以下實施例中的一或多者中,在該CMOS影像感測器之一邊緣區中,該PDAF微型透鏡之該重心與該PDAF彩色濾光片之該重心之間的該第二水平距離在平面圖中自該CMOS影像感測器之一中心至該邊緣區的一邊緣在一第一方向上逐漸增大。在前述及/或以下實施例中的一或多者中,該些PDAF畫素的一光電二極體覆蓋率與該CMOS影像感測器之一總光電二極體覆蓋率的一比率係在約4%至約10%的一範圍內。
應理解,並非所有優勢已有必要在本文中論述,無特定優勢對於所有實施例或實例被要求,且其他實施例或實例可給予不同優勢。
前述內容概述若干實施例或實例之特徵,使得熟習此項技術者可更佳地理解本揭露之態樣。熟習此項技術者應瞭解,其可易於使用本揭露作為用於設計或修改用於實施本文中引入之實施例或實例之相同目的及/或達成相同優勢之其他製程及結構的基礎。熟習此項技術者亦應認識到,此類等效構造並不偏離本揭露之精神及範疇,且此類等效構造可在本文中進行各種改變、取代及替代而不偏離本揭露的精神及範疇。
20:陣列 20’:光電二極體 40:陣列 40’:彩色濾光片 40A:彩色濾光片 40B:彩色濾光片 40B(0)~ 40B(2):相位偵測自動聚焦(PDAF)彩色濾光片 42:矩陣 44:彩色濾光片單元 44G:彩色濾光片單元 44R:彩色濾光片單元 44B:彩色濾光片單元 45:中心區 45C:中心點 47:右側區 47E:邊緣 51:第一低折射率(低n)介電質柵格 51A:相同材料 52:第二低n介電質柵格 53:金屬柵格 54:蝕刻終止膜 55:填料介電材料 60A:微型透鏡 60B:微型透鏡 60B(0)~60B(2):微型透鏡 70:傳送電晶體 80:交叉地點 81A:坑 81B:十字路坑 100:CMOS影像感測器 105:畫素 110:基板 115:相位偵測自動聚焦(PDAF)畫素 115A~115C:相位偵測自動聚焦(PDAF)畫素 120:光電二極體層 123:入射光 140:彩色濾光片層 145:微型透鏡層 150:第一隔離結構 151:第一光罩 160:第二隔離結構/深溝槽隔離(DTI)柵格 161:第二光罩 170:淺溝槽隔離(STI)柵格 180:分離層 190:離子植入柵格 A:角度 A’:角度 C1:垂直中心線 C2:垂直中心線 C3:垂直中心線 Dp:坑深度 H1:第一高度 H2:第二高度 H3:第三高度 Hcf:彩色濾光片高度 Hln:第一隔離柵格高度 L40:長度 L45:邊緣長度 S:全域移位量 Scf:距離/彩色濾光片全域移位量 Sml:距離/微型透鏡全域移位量 Scf(1):第一距離 Scf(2):第二距離 Sml(1):第一距離 Sml(2):第二微型透鏡全域移位量 W1:第一寬度 W2:第二寬度 W3:第三寬度 W40:寬度 Wp:寬度
本揭露之態樣在與隨附圖式一起研讀時自以下詳細描述內容來最佳地理解。請注意,根據行業標準慣例,各種特徵未按比例繪製。實際上,各種特徵之尺寸可為了論述清楚經任意地增大或減小。 第1A圖繪示根據實施例的CMOS影像感測器之一部分的橫截面圖。 第1B圖繪示根據實施例的畫素影像感測器及相位偵測自動聚焦(phase detection auto-focusing,PDAF)感測器(或PDAF畫素)之佈局的一部分。 第2A圖繪示根據實施例的影像畫素及PDAF畫素之矩陣的示意圖。 第2B圖、第2C圖、第2D圖及第2E圖繪示根據實施例的CMOS影像感測器之PDAF畫素的功能。 第2F圖、第2G圖及第2H圖繪示根據實施例的影像畫素陣列的各種PDAF感測器分佈。 第3A圖繪示根據實施例的CMOS影像感測器之畫素彩色濾光片陣列及複數個PDAF彩色濾光片的俯視平面圖。 第3B圖、第3C圖及第3D圖繪示根據實施例的並未對CMOS影像感測器之中心區中的PDAF彩色濾光片及PDAF微型透鏡進行「全域移位」的PDAF畫素的橫截面圖。 第3E圖、第3F圖及第3G圖繪示根據實施例的對CMOS影像感測器之邊緣區中的PDAF彩色濾光片及PDAF微型透鏡進行「全域移位」的PDAF畫素的橫截面圖。 第4A圖繪示根據實施例的繪示由CMOS影像感測器之中心區中的PDAF畫素進行之零「全域移位」的橫截面圖。 第4B圖及第4C圖繪示根據實施例的繪示由CMOS影像感測器之邊緣區中的PDAF畫素進行之趨勢情況下「全域移位」的橫截面圖。 第4D圖、第4E圖及第4F圖繪示根據實施例的繪示全域移位量發生變化之不同方式的座標圖。 第5圖繪示根據實施例的第一光罩及第二光罩之部分相對於CMOS影像感測器之頂表面的俯視平面圖。 第6A圖、第6B圖、第6C圖及第6D圖繪示根據實施例的CMOS影像感測器之第一隔離結構的橫截面圖。 第6E圖繪示根據實施例的CMOS影像感測器之第一隔離結構的俯視平面圖。 第7A圖、第7B圖、第7C圖、第7D圖、第7E圖及第7F圖繪示根據實施例的具有變化之彩色濾光片高度及隔離柵格高度的CMOS影像感測器的橫截面圖。 第8A圖及第8B圖繪示具有習知保齡球瓶形輪廓的第二隔離柵格結構。 第9A圖及第9B圖繪示根據實施例的具有筆直及針狀輪廓的第二隔離柵格結構。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
20:陣列
20’:光電二極體
40:陣列
40A:彩色濾光片
40B:彩色濾光片
60A:微型透鏡
60B:微型透鏡
70:傳送電晶體
100:CMOS影像感測器
105:影像畫素
110:半導體基板
115:相位偵測自動聚焦(PDAF) 畫素
120:光電二極體層
140:彩色濾光片層
145:微型透鏡層
150:第一隔離結構
160:第二隔離結構
170:淺溝槽隔離(STI)柵格
180:分離層
190:離子植入柵格

Claims (20)

  1. 一種互補式金氧半導體(CMOS)影像感測器,包含: 一光電二極體陣列,位於一半導體基板中之一光電二極體層中; 一彩色濾光片陣列,位於上覆該光電二極體陣列之一彩色濾光片層中; 一微型透鏡陣列,位於上覆該彩色濾光片陣列之一微型透鏡層中;及 一第一隔離結構,設置於該彩色濾光片層中,該第一隔離結構側向分離多個相鄰彩色濾光片且包含一第一介電材料之一第一低折射率(低n)介電質柵格、下伏於該第一低n介電質柵格的一第二介電材料之一第二低n介電質柵格,及至少部分由該第二低n介電質柵格圍封的一金屬柵格, 其中該第二低n介電質柵格包含不同於該第二介電材料且與該第二介電材料混合的一填料介電材料,其中該填料介電材料之一總體積小於該第二低n介電質柵格中該第二介電材料的一總體積,且其中該填料介電材料之一折射率不同於該第二介電材料之一折射率。
  2. 如請求項1所述之互補式金氧半導體影像感測器,其中該填料介電材料包含一氧化物材料,且其中該填料介電材料經隨機塑形。
  3. 如請求項1所述之互補式金氧半導體影像感測器,其中該第一低n介電質柵格及該第二低n介電質柵格的多個折射率小於該填料介電材料之該折射率,且其中該第一低n介電質柵格及該第二低n介電質柵格以及該填料介電材料的該些折射率係在大於1且小於1.5的範圍內。
  4. 如請求項1所述之互補式金氧半導體影像感測器,其中該第一低n介電質柵格包含不同於該第一介電材料且與該第一介電材料混合的另一填料介電材料,其中該另一填料介電材料之一總體積小於該第一低n介電質柵格中該第一介電材料的一總體積,且其中該另一填料介電材料之一折射率不同於該第一介電材料之一折射率。
  5. 如請求項1所述之互補式金氧半導體影像感測器,其中該第一低n介電質柵格之一第一寬度小於該第二低n介電質柵格的一第二寬度。
  6. 如請求項1所述之互補式金氧半導體影像感測器,其中該金屬柵格至少部分由分離該金屬柵格與該第二低n介電質柵格的一介電質蝕刻終止膜包覆,且其中該金屬柵格由一金屬材料或一金屬合金材料製成。
  7. 如請求項1所述之互補式金氧半導體影像感測器,進一步包含分離該微型透鏡層與該彩色濾光片層的一分離層。
  8. 如請求項1所述之互補式金氧半導體影像感測器,進一步包含一第二隔離結構,設置於該半導體基板中從而側向分離多個相鄰光電二極體。
  9. 如請求項8所述之互補式金氧半導體影像感測器,其中該第二隔離結構包含具有一針狀或矩形輪廓的一深溝槽隔離柵格。
  10. 如請求項1所述之互補式金氧半導體影像感測器,進一步包含複數個相位偵測自動聚焦(PDAF)畫素,其中每一該相位偵測自動聚焦畫素包含: m×m個格化光電二極體,m為等於或大於2的一整數; 一相位偵測自動聚焦彩色濾光片,設置於該彩色濾光片層中且上覆該m×m個格化光電二極體;及 一相位偵測自動聚焦微型透鏡,設置於該微型透鏡層中且上覆該相位偵測自動聚焦彩色濾光片, 其中該第一隔離結構側向分離該相位偵測自動聚焦彩色濾光片與該彩色濾光片陣列的多個相鄰彩色濾光片。
  11. 一種互補式金氧半導體(CMOS)影像感測器,包含: 一影像畫素陣列,其中每一影像畫素包含: 一光電二極體,由一光電二極體層中的一光電二極體隔離結構包圍; 一彩色濾光片,上覆該光電二極體且由一彩色濾光片層中之一彩色濾光片隔離結構包圍;及 一微型透鏡,上覆一微型透鏡層中的該彩色濾光片;及 複數個相位偵測自動聚焦畫素,在平面圖中分佈於該影像畫素陣列中,其中每一該相位偵測自動聚焦畫素包含: 該光電二極體層中的m × m個格化光電二極體,m為等於或大於2的一整數, 一相位偵測自動聚焦彩色濾光片,上覆該m × m個格化光電二極體且由該彩色濾光片層中之該彩色濾光片隔離結構包圍,及 一相位偵測自動聚焦微型透鏡,上覆該相位偵測自動聚焦彩色濾光片, 其中該相位偵測自動聚焦彩色濾光片之重心與該m × m個格化光電二極體之重心之間的一第一水平距離依據該互補式金氧半導體影像感測器中該相位偵測自動聚焦畫素的方位發生變化。
  12. 如請求項11所述之互補式金氧半導體影像感測器,其中在該互補式金氧半導體影像感測器之一邊緣區中,該相位偵測自動聚焦彩色濾光片之該重心與該2×2個格化光電二極體之該重心之間的該第一水平距離在平面圖中自該互補式金氧半導體影像感測器之一中心至該邊緣區的一邊緣在一第一方向上逐漸增大。
  13. 如請求項11所述之互補式金氧半導體影像感測器,其中該相位偵測自動聚焦微型透鏡之一重心與該相位偵測自動聚焦彩色濾光片之該重心之間的在水平平面圖中的一第二水平距離依據該互補式金氧半導體影像感測器中該相位偵測自動聚焦畫素的該方位發生變化。
  14. 如請求項13所述之互補式金氧半導體影像感測器,其中在該互補式金氧半導體影像感測器之一邊緣區中,該相位偵測自動聚焦微型透鏡之該重心與該相位偵測自動聚焦彩色濾光片之該重心之間的該第二水平距離在平面圖中自該互補式金氧半導體影像感測器之一中心至該邊緣區的一邊緣在一第一方向上逐漸增大。
  15. 如請求項11所述之互補式金氧半導體影像感測器,其中該些相位偵測自動聚焦畫素的一光電二極體覆蓋率與該互補式金氧半導體影像感測器之一總光電二極體覆蓋率的一比率係在約4%至約10%的一範圍內。
  16. 一種互補式金氧半導體(CMOS)影像感測器,包含: 複數個相位偵測自動聚焦畫素,在平面圖中分佈於一影像畫素陣列中,其中每一該相位偵測自動聚焦畫素包含: 一光電二極體層中的m × m個格化光電二極體,m為等於或大於2的一整數, 一相位偵測自動聚焦彩色濾光片,上覆該m × m個格化光電二極體且由一彩色濾光片層中之一彩色濾光片隔離結構包圍,及 一相位偵測自動聚焦微型透鏡,上覆一微型透鏡層中的該相位偵測自動聚焦彩色濾光片, 其中該相位偵測自動聚焦彩色濾光片之一重心與該m × m個格化光電二極體之一重心之間的一第一水平距離依據該互補式金氧半導體影像感測器中該相位偵測自動聚焦畫素的一方位發生變化。
  17. 如請求項16所述之互補式金氧半導體影像感測器,其中在該互補式金氧半導體影像感測器之一邊緣區中,該相位偵測自動聚焦彩色濾光片之該重心與該m × m個格化光電二極體之該重心之間的該第一水平距離在平面圖中自該互補式金氧半導體影像感測器之一中心至該邊緣區的一邊緣在一第一方向上逐漸增大。
  18. 如請求項16所述之互補式金氧半導體影像感測器,其中該相位偵測自動聚焦微型透鏡之一重心與該相位偵測自動聚焦彩色濾光片之該重心之間的在水平平面圖中的一第二水平距離依據該互補式金氧半導體影像感測器中該相位偵測自動聚焦畫素的該方位發生變化。
  19. 如請求項18所述之互補式金氧半導體影像感測器,其中在該互補式金氧半導體影像感測器之一邊緣區中,該相位偵測自動聚焦微型透鏡之該重心與該相位偵測自動聚焦彩色濾光片之該重心之間的該第二水平距離在平面圖中自該互補式金氧半導體影像感測器之一中心至該邊緣區的一邊緣在一第一方向上逐漸增大。
  20. 如請求項16所述之互補式金氧半導體影像感測器,其中該些相位偵測自動聚焦畫素的一光電二極體覆蓋率與該互補式金氧半導體影像感測器之一總光電二極體覆蓋率的一比率係在約4%至約10%的一範圍內。
TW112127226A 2022-09-23 2023-07-20 Cmos影像感測器 TW202414805A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263409535P 2022-09-23 2022-09-23
US63/409,535 2022-09-23
US18/110,843 2023-02-16
US18/110,843 US20240105750A1 (en) 2022-09-23 2023-02-16 Cmos image sensor

Publications (1)

Publication Number Publication Date
TW202414805A true TW202414805A (zh) 2024-04-01

Family

ID=90359861

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112127226A TW202414805A (zh) 2022-09-23 2023-07-20 Cmos影像感測器

Country Status (2)

Country Link
US (1) US20240105750A1 (zh)
TW (1) TW202414805A (zh)

Also Published As

Publication number Publication date
US20240105750A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
US11699718B2 (en) Semiconductor image sensor
US7280280B2 (en) Micro-lenses for CMOS imagers and method for manufacturing micro-lenses
TWI651563B (zh) 透鏡陣列及其製造方法、固體攝像裝置及電子機器
TW201719875A (zh) 針對複合格狀結構中相位偵測自動對焦像素的微透鏡及其形成方法
TWI581414B (zh) 影像感測器及其形成方法
CN102315232B (zh) 固体摄像装置的制造方法
US20060076591A1 (en) Solid state image pickup element and method of manufacturing solid state image pickup element
US8193025B2 (en) Photomask, image sensor, and method of manufacturing the image sensor
TW201639137A (zh) 背面感光式影像感測器及其形成方法
JP2001208902A (ja) 固体撮像素子及びその製造方法
US11552118B2 (en) Image sensor including a double-sided spherical lens
KR100832710B1 (ko) 이미지 센서 및 이의 제조 방법
JP6206681B2 (ja) イメージセンサー用の光導波路アレイ
CN106158891B (zh) 用于提高光学性能和隔离的堆叠栅格设计
TW202127543A (zh) 影像感測件、光學結構及其形成方法
TW202414805A (zh) Cmos影像感測器
TWI664450B (zh) 光學感應器及其形成方法
KR20100067982A (ko) 이미지 센서 및 그 제조 방법
TWI684269B (zh) 光學感應器及其形成方法
US7713775B2 (en) CMOS image sensor
CN117423712A (zh) Cmos影像感测器
KR20080113489A (ko) 이미지센서 및 그 제조방법
KR100871793B1 (ko) 이미지센서 및 그 제조방법
JP2008060571A (ja) イメージセンサ及びイメージセンサの製造方法
TWI799117B (zh) 影像感測器