TW202414077A - Pellicle, patterning device assembly, and dynamic gas lock assembly for euv lithography - Google Patents

Pellicle, patterning device assembly, and dynamic gas lock assembly for euv lithography Download PDF

Info

Publication number
TW202414077A
TW202414077A TW112147008A TW112147008A TW202414077A TW 202414077 A TW202414077 A TW 202414077A TW 112147008 A TW112147008 A TW 112147008A TW 112147008 A TW112147008 A TW 112147008A TW 202414077 A TW202414077 A TW 202414077A
Authority
TW
Taiwan
Prior art keywords
diaphragm
pores
metal
substrate layer
layer
Prior art date
Application number
TW112147008A
Other languages
Chinese (zh)
Inventor
柔 彼德 珍 凡
印希 唐梅茲
艾利那斯 喬漢斯 瑪麗亞 吉斯波爾思
薩摩 席維斯特 赫威林
亞歷山大 路德維希 克萊茵
喬漢 亨德力克 克魯特偉傑
艾夫喬尼亞 克爾甘諾凡
雅努 威稜 諾登布
施輝東
登 沃爾德 泰斯 沃特爾 凡
可拉吉 馬可斯 傑拉度 馬堤司 瑪麗亞 凡
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202414077A publication Critical patent/TW202414077A/en

Links

Abstract

A pellicle for EUV lithography comprising: a frame; and a membrane supported by the frame, wherein the membrane comprises: a metallic or semimetallic layer, wherein the membrane comprises pores at a density of at least 5 per µm 2. The membrane may have a substrate layer for supporting the metallic or semimetallic layer, the substrate layer comprising for example silicon obtained from silicon on insulator or polysilicon.

Description

用於極紫外光(EUV)微影之護膜、圖案化裝置總成及動態氣鎖總成Protective film, patterning device assembly and dynamic airlock assembly for EUV lithography

本發明係關於一種用於極紫外光(extreme ultraviolet;EUV)微影之護膜、隔膜、圖案化裝置總成及動態氣鎖總成。The present invention relates to a pellicle, a diaphragm, a patterning device assembly and a dynamic airlock assembly for extreme ultraviolet (EUV) lithography.

微影設備為將所要之圖案塗覆至基板上(通常塗覆至基板之目標部分上)之機器。微影設備可用於例如積體電路(integrated circuit;IC)製造中。在彼情況下,圖案化裝置(其替代地稱為光罩或倍縮光罩)可用以產生待形成於IC之個別層上的電路圖案。可將此圖案轉印至基板(例如,矽晶圓)上之目標部分(例如,包含晶粒之部分、一個晶粒或若干晶粒)上。通常經由成像至提供於基板上之輻射敏感材料(抗蝕劑)層上來進行圖案之轉印。一般而言,單一基板將含有經順次地圖案化之鄰近目標部分之網路。A lithographic apparatus is a machine that applies a desired pattern onto a substrate, typically onto a target portion of the substrate. Lithographic apparatus may be used, for example, in the manufacture of integrated circuits (ICs). In that case, a patterning device (which is alternatively referred to as a mask or reticle) may be used to produce a circuit pattern to be formed on individual layers of the IC. This pattern may be transferred onto a target portion (e.g., a portion comprising a die, a die, or several dies) on a substrate (e.g., a silicon wafer). Transfer of the pattern is typically performed by imaging onto a layer of radiation-sensitive material (resist) provided on the substrate. In general, a single substrate will contain a network of sequentially patterned adjacent target portions.

微影被廣泛地認為係在IC以及其他裝置及/或結構之製造中的關鍵步驟中之一者。然而,隨著使用微影所製造之特徵之尺寸變得愈來愈小,微影正變為用於使得能夠製造小型IC或其他裝置及/或結構之更具決定性的因素。Lithography is widely recognized as one of the key steps in the fabrication of ICs and other devices and/or structures. However, as the size of features fabricated using lithography becomes smaller and smaller, lithography is becoming a more decisive factor in enabling the fabrication of small ICs or other devices and/or structures.

圖案印刷極限之理論估計可藉由瑞立(Rayleigh)解析度準則給出,如方程式(1)所展示: 其中λ為所使用輻射之波長,NA為用以印刷圖案之投影系統之數值孔徑,k1為程序相依調整因數(其亦稱為瑞立常數),且CD為經印刷特徵之特徵大小(或臨界尺寸)。自方程式(1)可見,可以三種方式來獲得特徵之最小可印刷大小之縮減:藉由縮短曝光波長λ、藉由增加數值孔徑NA,或藉由減低k1之值。 The theoretical estimate of the pattern printing limit can be given by the Rayleigh resolution criterion, as shown in equation (1): where λ is the wavelength of the radiation used, NA is the numerical aperture of the projection system used to print the pattern, k1 is a process-dependent adjustment factor (also known as the Rayleigh constant), and CD is the feature size (or critical dimension) of the printed feature. From equation (1), it can be seen that a reduction in the minimum printable size of a feature can be obtained in three ways: by shortening the exposure wavelength λ, by increasing the numerical aperture NA, or by reducing the value of k1.

為了縮短曝光波長且因此縮減最小可印刷大小,已提議使用極紫外光(EUV)輻射源。EUV輻射為具有在10至20 nm之範圍內(例如,在13至14 nm之範圍內)之波長之電磁輻射。已進一步提議可使用具有小於10 nm (例如,在5至10 nm之範圍內,諸如6.7 nm或6.8 nm)之波長之EUV輻射。此輻射稱為極紫外光輻射或軟x射線輻射。舉例而言,可能之源包括雷射產生電漿源、放電電漿源,或基於由電子儲存環提供之同步加速器輻射之源。In order to shorten the exposure wavelength and thus reduce the minimum printable size, it has been proposed to use extreme ultraviolet (EUV) radiation sources. EUV radiation is electromagnetic radiation with a wavelength in the range of 10 to 20 nm, for example in the range of 13 to 14 nm. It has further been proposed to use EUV radiation with a wavelength less than 10 nm, for example in the range of 5 to 10 nm, such as 6.7 nm or 6.8 nm. This radiation is called extreme ultraviolet radiation or soft x-ray radiation. Possible sources include, for example, laser-generated plasma sources, discharge plasma sources, or sources based on synchrotron radiation provided by electron storage rings.

微影設備包括圖案化裝置(例如,光罩或倍縮光罩)。輻射經提供通過圖案化裝置或自圖案化裝置反射以在基板上形成影像。可提供隔膜總成以保護圖案化裝置免受空浮粒子及其他形式之污染影響。用於保護圖案化裝置之隔膜總成可稱為護膜。圖案化裝置之表面上之污染可造成基板上之製造缺陷。隔膜總成可包含框架及橫越該框架拉伸之隔膜。A lithography apparatus includes a patterning device (e.g., a mask or a reticle). Radiation is provided through or reflected from the patterning device to form an image on a substrate. A diaphragm assembly may be provided to protect the patterning device from airborne particles and other forms of contamination. A diaphragm assembly used to protect the patterning device may be referred to as a pellicle. Contamination on the surface of the patterning device may cause manufacturing defects on the substrate. The diaphragm assembly may include a frame and a diaphragm stretched across the frame.

在使用中,隔膜之效能可尤其在較高溫度下隨時間推移而劣化。在較高溫度下,隔膜可釋放出一種氣體。期望將護膜之溫度保持相對較低。亦期望護膜透射高比例之EUV輻射且對基板之光斑低。In use, the performance of the diaphragm may degrade over time, especially at higher temperatures. At higher temperatures, the diaphragm may release a gas. It is desirable to keep the temperature of the pellicle relatively low. It is also desirable for the pellicle to transmit a high proportion of EUV radiation and have a low spot on the substrate.

根據本發明之一態樣,提供一種用於EUV微影之一護膜,其包含:一框架;及一隔膜,其由該框架支撐,其中該隔膜包含:一金屬或半金屬層,其中該隔膜包含一密度為至少5個/µm 2之孔隙。 According to one aspect of the present invention, a protective film for EUV lithography is provided, which includes: a frame; and a diaphragm supported by the frame, wherein the diaphragm includes: a metal or semi-metal layer, wherein the diaphragm includes a pore density of at least 5/ µm2 .

根據本發明之一態樣,提供一種用於EUV微影之一護膜之一隔膜,其包含:一非金金屬或半金屬層,其中該隔膜包含一密度為至少5個/µm 2之孔隙。 According to one aspect of the present invention, a diaphragm for a protective film for EUV lithography is provided, which comprises: a non-metallic or semi-metallic layer, wherein the diaphragm comprises pores with a density of at least 5/ µm2 .

根據本發明之一態樣,提供一種製造用於EUV微影之一護膜之方法,其包含:將一第一材料塗覆於一第二材料上以供形成該護膜之一框架;塗覆一第三材料以供在該隔膜之一基板層上形成該護膜之一隔膜之一金屬或半金屬層;以及以至少5個/µm 2之一密度在該基板層中形成孔隙。 According to one aspect of the present invention, a method for manufacturing a protective film for EUV lithography is provided, which includes: coating a first material on a second material to form a frame of the protective film; coating a third material to form a metal or semi-metal layer of a diaphragm of the protective film on a substrate layer of the diaphragm; and forming pores in the substrate layer with a density of at least 5/ µm2 .

根據本發明之一態樣,提供一種用於EUV微影之一護膜之一隔膜,其包含一光柵,該光柵包含複數個孔、孔隙或突起。該複數個孔可例如包含圓形、正方形、圓形方塊或任意形狀之孔。該隔膜可例如包含一主膜或主層。該光柵中之主膜或層厚度可例如在20 nm至100 nm範圍內。在一實施例中,該主膜或主層亦可稱為芯或隔膜芯。較佳地,光柵間距小於200 nm以確保良好發射率。該光柵間距可定義為該光柵之鄰近孔之中心之間的距離。在一實施例中,主要光柵間距較佳地小於100 nm以確保晶圓級之一低光斑。諸如30 nm或更小之一較小光柵間距可阻止碎片粒子落於倍縮光罩上。根據任何實施例之用於EUV微影之一護膜之該隔膜可包含具有介於4與15 nm之間的一厚度的一金屬層,或一厚度在20至80 nm範圍內之一半金屬。若該隔膜更開放,則該金屬層較佳地更厚。在一實施例中,該隔膜光柵具有基本上正方形的開口(亦即,孔),間距為30至200 nm,諸如100 nm,且開口面積之一百分比或由該光柵開口限定之一開口度為50%至90%,諸如75%的開口度或開口面積。厚度約為8 nm之輻射Ru層具有>0.35之發射率。該護膜隔膜之材料可包含例如與金屬層結合之SOI Si隔膜芯。在另一實施例中,包含SOI Si之該隔膜光柵具有覆蓋隔膜面積之50%至90%的基本圓形或正方形開口、小於100 nm之光柵間距及具有在5至15 nm範圍內的厚度的金屬層,該金屬層在晶圓級提供低光斑及> 0.2之發射率。According to one aspect of the present invention, a diaphragm of a protective film for EUV lithography is provided, which includes a grating, which includes a plurality of holes, pores or protrusions. The plurality of holes may, for example, include holes of circular, square, circular blocks or any shape. The diaphragm may, for example, include a main film or main layer. The thickness of the main film or layer in the grating may, for example, be in the range of 20 nm to 100 nm. In one embodiment, the main film or main layer may also be referred to as a core or a diaphragm core. Preferably, the grating spacing is less than 200 nm to ensure good emissivity. The grating spacing can be defined as the distance between the centers of adjacent holes of the grating. In one embodiment, the main grating spacing is preferably less than 100 nm to ensure a low spot at the wafer level. A smaller grating spacing, such as 30 nm or less, can prevent debris particles from falling on the multiplication mask. The diaphragm of a protective film for EUV lithography according to any embodiment may include a metal layer having a thickness between 4 and 15 nm, or a half metal with a thickness in the range of 20 to 80 nm. If the diaphragm is more open, the metal layer is preferably thicker. In one embodiment, the diaphragm grating has substantially square openings (i.e., holes) with a spacing of 30 to 200 nm, such as 100 nm, and a percentage of the open area or an openness defined by the grating opening is 50% to 90%, such as 75% openness or open area. A radiating Ru layer with a thickness of approximately 8 nm has an emissivity of >0.35. The material of the pellicle diaphragm may include, for example, a SOI Si diaphragm core bonded with a metal layer. In another embodiment, the diaphragm grating comprising SOI Si has a substantially circular or square opening covering 50% to 90% of the diaphragm area, a grating pitch less than 100 nm, and a metal layer having a thickness in the range of 5 to 15 nm, the metal layer providing low spot and an emissivity of > 0.2 at the wafer level.

圖1示意性地描繪根據本發明之一個實施例的包括源收集器模組SO之微影設備100。設備100包含: -  照明系統(或照明器) IL,其經組態以調節輻射光束B (例如,EUV輻射)。 -  支撐結構(例如,光罩台) MT,其經建構以支撐圖案化裝置(例如,光罩或倍縮光罩) MA,且連接至經組態以準確地定位該圖案化裝置之第一定位器PM; -  基板台(例如,晶圓台) WT,其經建構以固持基板(例如,抗蝕劑塗佈晶圓) W,且連接至經組態以準確地定位該基板之第二定位器PW;及 -  投影系統(例如,反射性投影系統) PS,其經組態以將藉由圖案化裝置MA賦予給輻射光束B之圖案投影於基板W的目標部分C (例如,包含一或多個晶粒)上。 FIG1 schematically depicts a lithography apparatus 100 including a source collector module SO according to one embodiment of the present invention. The apparatus 100 comprises: - an illumination system (or illuminator) IL configured to condition a radiation beam B (e.g., EUV radiation). - a support structure (e.g., a mask stage) MT, which is constructed to support a patterning device (e.g., a mask or a multiplying mask) MA and is connected to a first positioner PM configured to accurately position the patterning device; - a substrate stage (e.g., a wafer stage) WT, which is constructed to hold a substrate (e.g., an anti-etchant coated wafer) W and is connected to a second positioner PW configured to accurately position the substrate; and - a projection system (e.g., a reflective projection system) PS, which is configured to project a pattern imparted to a radiation beam B by the patterning device MA onto a target portion C (e.g., comprising one or more dies) of the substrate W.

照明系統IL可包括用於導向、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件或其任何組合。The illumination system IL may include various types of optical components for directing, shaping or controlling the radiation, such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types of optical components or any combination thereof.

支撐結構MT以取決於圖案化裝置MA之定向、微影設備之設計及其他條件(諸如該圖案化裝置是否經固持於真空環境中)的方式來固持該圖案化裝置。支撐結構MT可使用機械、真空、靜電或其他夾持技術來固持圖案化裝置MA。支撐結構MT可為例如框架或台,其可根據需要而固定或可移動。支撐結構MT可確保圖案化裝置MA例如相對於投影系統PS處於所要位置。The support structure MT holds the patterning device MA in a manner that depends on the orientation of the patterning device MA, the design of the lithography apparatus, and other conditions, such as whether the patterning device is held in a vacuum environment. The support structure MT may use mechanical, vacuum, electrostatic or other clamping techniques to hold the patterning device MA. The support structure MT may be, for example, a frame or a table, which may be fixed or movable as desired. The support structure MT may ensure that the patterning device MA is in a desired position, for example relative to the projection system PS.

術語「圖案化裝置」應廣泛地解譯為係指可用以在輻射光束B之橫截面中向輻射光束B賦予圖案以便在基板W之目標部分C中產生圖案的任何裝置。經賦予至輻射光束B之圖案可對應於目標部分C中所產生之裝置(諸如,積體電路)中之特定功能層。The term "patterning device" should be broadly interpreted as referring to any device that can be used to impart a pattern to a radiation beam B in its cross-section so as to produce a pattern in a target portion C of a substrate W. The pattern imparted to the radiation beam B may correspond to a specific functional layer in a device (e.g., an integrated circuit) produced in the target portion C.

圖案化裝置MA可為透射的或反射的。圖案化裝置之實例包括光罩、可程式化鏡面陣列及可程式化液晶顯示器(liquid-crystal display;LCD)面板。光罩在微影中為吾人所熟知,且包括諸如二元、交變相移及衰減式相移之光罩類型,以及各種混合光罩類型。可程式化鏡面陣列之一實例使用小鏡面之矩陣配置,該等小鏡面中之每一者可個別地傾斜,以便使入射輻射光束在不同方向上反射。傾斜鏡面在由鏡面矩陣反射之輻射光束中賦予圖案。The patterning device MA may be transmissive or reflective. Examples of patterning devices include masks, programmable mirror arrays, and programmable liquid-crystal display (LCD) panels. Masks are well known in lithography, and include mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. One example of a programmable mirror array uses a matrix arrangement of mirror facets, each of which can be individually tilted so as to reflect an incident radiation beam in different directions. The tilted mirrors impart a pattern in the radiation beam reflected by the mirror array.

類似於照明系統IL,投影系統PS可包括適於所使用之曝光輻射或適於諸如真空之使用之其他因素的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件或其任何組合。可需要將真空用於EUV輻射,此係由於其他氣體可吸收過多輻射。因此,可憑藉真空壁及真空泵而將真空環境提供至整個光束路徑。Similar to the illumination system IL, the projection system PS may include various types of optical components appropriate to the exposure radiation used or to other factors such as the use of a vacuum, such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types of optical components or any combination thereof. A vacuum may be required for EUV radiation since other gases may absorb too much radiation. Therefore, a vacuum environment may be provided to the entire beam path by means of vacuum walls and a vacuum pump.

如此處所描繪,微影設備100屬於反射類型(例如,使用反射光罩)。As depicted herein, lithography apparatus 100 is of the reflective type (eg, using a reflective reticle).

微影設備100可屬於具有兩個(雙載物台)或多於兩個基板台WT (及/或兩個或多於兩個支撐結構MT)之類型。在此「多載物台」微影設備中,可並行地使用額外基板台WT (及/或額外支撐結構MT),或可在一或多個基板台WT (及/或一或多個支撐結構MT)上進行預備步驟,同時將一或多個其他基板台WT (及/或一或多個其他支撐結構MT)用於曝光。The lithography apparatus 100 may be of a type having two (dual-stage) or more substrate tables WT (and/or two or more supporting structures MT). In such a "multi-stage" lithography apparatus, additional substrate tables WT (and/or additional supporting structures MT) may be used in parallel, or preparatory steps may be performed on one or more substrate tables WT (and/or one or more supporting structures MT) while one or more other substrate tables WT (and/or one or more other supporting structures MT) are being used for exposure.

參看圖1,照明系統IL自源收集器模組SO接收極紫外光輻射光束。用以產生EUV光之方法包括但不一定限於運用EUV範圍內之一或多個發射譜線將材料轉換成具有至少一個元素(例如氙、鋰或錫)之電漿狀態。在一種此類方法(常常稱為雷射產生電漿「LPP」)中,可藉由用雷射光束來輻射燃料(諸如具有所需譜線發射元素之材料的小滴、串流或叢集)而產生所需電漿。源收集器模組SO可為包括雷射(圖1中未展示)之EUV輻射系統之部分,該雷射用於提供激發燃料之雷射光束。所得電漿發射輸出輻射(例如EUV輻射),該輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言,當使用CO 2雷射來提供用於燃料激發之雷射光束時,雷射及源收集器模組SO可為分離實體。 Referring to FIG. 1 , an illumination system IL receives an extreme ultraviolet radiation beam from a source collector module SO. Methods for generating EUV light include, but are not necessarily limited to, converting a material into a plasma state having at least one element (e.g., xenon, lithium, or tin) using one or more emission lines in the EUV range. In one such method, often referred to as laser produced plasma "LPP," the desired plasma may be generated by irradiating a fuel (e.g., a droplet, stream, or cluster of material having the desired line emitting element) with a laser beam. The source collector module SO may be part of an EUV radiation system including a laser (not shown in FIG. 1 ) for providing a laser beam that excites the fuel. The resulting plasma emits output radiation (e.g., EUV radiation) which is collected using a radiation collector disposed in a source collector module. For example, when a CO2 laser is used to provide the laser beam for fuel excitation, the laser and source collector module SO may be separate entities.

在此等狀況下,不認為雷射形成微影設備100之部分,且輻射光束B係憑藉包含例如合適導向鏡面及/或光束擴展器之光束遞送系統而自雷射傳遞至源收集器模組SO。在其他狀況下,例如,當源為放電產生電漿EUV產生器(常常稱為DPP源)時,該源可為源收集器模組SO之整體部分。In such cases, the laser is not considered to form part of the lithography apparatus 100, and the radiation beam B is delivered from the laser to the source collector module SO by means of a beam delivery system comprising, for example, suitable steering mirrors and/or a beam expander. In other cases, for example when the source is a discharge produced plasma EUV generator (often referred to as a DPP source), the source may be an integral part of the source collector module SO.

照明系統IL可包含用於調整輻射光束之角強度分佈之調整器。一般而言,可調整照明系統IL之光瞳平面中的強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別稱為σ外部及σ內部)。此外,照明系統IL可包含各種其他組件,諸如,琢面化場鏡面裝置及琢面化光瞳鏡面裝置。照明系統IL可用於調節輻射光束B,以在其橫截面中具有所要均一性及強度分佈。The illumination system IL may comprise an adjuster for adjusting the angular intensity distribution of the radiation beam. In general, at least the outer radial extent and/or the inner radial extent (commonly referred to as σ outer and σ inner, respectively) of the intensity distribution in a pupil plane of the illumination system IL may be adjusted. Furthermore, the illumination system IL may comprise various other components, such as a faceted field mirror device and a faceted pupil mirror device. The illumination system IL may be used to adjust the radiation beam B to have a desired uniformity and intensity distribution in its cross-section.

輻射光束B入射於經固持於支撐結構(例如,光罩台) MT上之圖案化裝置(例如,光罩) MA上,且由該圖案化裝置MA圖案化。在自圖案化裝置(例如,光罩) MA反射之後,輻射光束B傳遞通過投影系統PS,投影系統PS將輻射光束B聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器PS2 (例如,干涉量測裝置、線性編碼器或電容式感測器),基板台WT可準確地移動,例如以使在輻射光束B之路徑中定位不同目標部分C。相似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確地定位圖案化裝置(例如,光罩) MA。可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化裝置(例如,光罩) MA及基板W。A radiation beam B is incident on a patterning device (e.g., a mask) MA held on a support structure (e.g., a mask table) MT and is patterned by the patterning device MA. After reflection from the patterning device (e.g., a mask) MA, the radiation beam B passes through a projection system PS which focuses the radiation beam B onto a target portion C of a substrate W. With the aid of a second positioner PW and a position sensor PS2 (e.g., an interferometric measurement device, a linear encoder or a capacitive sensor), the substrate table WT can be accurately moved, for example, so that different target portions C are positioned in the path of the radiation beam B. Similarly, a first positioner PM and a further position sensor PS1 can be used to accurately position the patterning device (e.g., a mask) MA relative to the path of the radiation beam B. The patterning device (eg, mask) MA and the substrate W may be aligned using the mask alignment marks M1, M2 and the substrate alignment marks P1, P2.

控制器500控制微影設備100之總操作,且特別執行下文進一步所描述之操作程序。控制器500可體現為經適當地程式化之通用電腦,其包含中央處理單元、揮發性及非揮發性儲存構件、一或多個輸入及輸出裝置(諸如,鍵盤及螢幕)、至微影設備100之各個部分之一或多個網路連接及一或多個介面。應瞭解,控制電腦與微影設備100之間的一對一關係並不必要。在本發明之一實施例中,一個電腦可控制多個微影設備100。在本發明之一實施例中,多個網路化電腦可用於控制一個微影設備100。控制器500亦可經組態以控制微影單元或叢集中之一或多個關聯製程裝置及基板處置裝置,微影設備100形成微影單元或叢集之一部分。控制器500亦可經組態以從屬於微影單元或叢集之監督控制系統及/或廠房(fab)之總控制系統。The controller 500 controls the overall operation of the lithography apparatus 100, and in particular executes the operating procedures further described below. The controller 500 can be embodied as a suitably programmed general-purpose computer, which includes a central processing unit, volatile and non-volatile storage components, one or more input and output devices (such as a keyboard and screen), one or more network connections to various parts of the lithography apparatus 100, and one or more interfaces. It should be understood that a one-to-one relationship between the control computer and the lithography apparatus 100 is not necessary. In one embodiment of the present invention, one computer can control multiple lithography apparatuses 100. In one embodiment of the present invention, multiple networked computers can be used to control one lithography apparatus 100. The controller 500 may also be configured to control one or more associated process devices and substrate handling devices in a lithography unit or cluster of which the lithography apparatus 100 forms a part. The controller 500 may also be configured to be subordinate to a supervisory control system of the lithography unit or cluster and/or a master control system of a fab.

圖2更詳細地展示微影設備100,其包括源收集器模組SO、照明系統IL及投影系統PS。EUV輻射發射電漿210可由電漿源形成。可藉由氣體或蒸汽(例如,Xe氣體、Li蒸汽或Sn蒸汽)而產生EUV輻射,其中產生輻射發射電漿210以發射在電磁光譜之EUV範圍內之輻射。在一實施例中,提供經激發錫(Sn)電漿以產生EUV輻射。FIG2 shows the lithography apparatus 100 in more detail, including a source collector module SO, an illumination system IL, and a projection system PS. An EUV radiation emitting plasma 210 may be formed by a plasma source. EUV radiation may be generated by a gas or vapor (e.g., Xe gas, Li vapor, or Sn vapor), wherein the radiation emitting plasma 210 is generated to emit radiation in the EUV range of the electromagnetic spectrum. In one embodiment, an excited tin (Sn) plasma is provided to generate EUV radiation.

由輻射發射電漿210發射之輻射自源腔室211傳遞至收集器腔室212中。Radiation emitted by radiation emitting plasma 210 is transmitted from source chamber 211 to collector chamber 212.

收集器腔室212可包括輻射收集器CO。橫穿輻射收集器CO之輻射可聚焦於虛擬源點IF中。虛擬源點IF通常稱為中間焦點,且源收集器模組SO經配置成使得虛擬源點IF位於圍封結構220中之開口221處或附近。虛擬源點IF為輻射發射電漿210之影像。The collector chamber 212 may include a radiation collector CO. Radiation traversing the radiation collector CO may be focused into a virtual source point IF. The virtual source point IF is often referred to as an intermediate focus, and the source collector module SO is configured such that the virtual source point IF is located at or near an opening 221 in the enclosure 220. The virtual source point IF is an image of the radiation emitting plasma 210.

隨後,輻射橫穿照明系統IL,照明系統IL可包括琢面化場鏡面裝置22及琢面化光瞳鏡面裝置24,該琢面化場鏡面裝置22及該琢面化光瞳鏡面裝置24經配置以提供在圖案化裝置MA處未經圖案化光束21之所要角度分佈,以及在圖案化裝置MA處輻射強度之所要均一性。在由支撐結構MT固持之圖案化裝置MA處的未經圖案化光束21之反射後,形成經圖案化光束26,且由投影系統PS將經圖案化光束26經由反射元件28、30成像至由基板台WT固持之基板W上。The radiation then traverses the illumination system IL which may include a faceted field mirror device 22 and a faceted pupil mirror device 24 which are configured to provide a desired angular distribution of the unpatterned light beam 21 at the patterning device MA, and a desired uniformity of the radiation intensity at the patterning device MA. After reflection of the unpatterned light beam 21 at the patterning device MA held by the support structure MT, a patterned light beam 26 is formed and is imaged by the projection system PS via reflective elements 28, 30 onto a substrate W held by a substrate table WT.

比所展示元件更多之元件通常可存在於照明系統IL及投影系統PS中。此外,可存在比諸圖所展示之鏡面多的鏡面,例如,在投影系統PS中可存在比圖2所展示之反射元件多1至6個的額外反射元件。More elements than shown may typically be present in the illumination system IL and the projection system PS. Furthermore, there may be more mirrors than shown in the figures, for example, there may be 1 to 6 additional reflective elements in the projection system PS than shown in FIG. 2 .

替代地,源收集器模組SO可為LPP輻射系統之部分。Alternatively, the source collector module SO may be part of an LPP radiation system.

如圖1中所描繪,在一實施例中,微影裝置100包含照明系統IL及投影系統PS。照明系統IL經組態以發射輻射光束B。投影系統PS係由介入空間而與基板台WT分離。投影系統PS經組態以將賦予至輻射光束B之圖案投影至基板W上。圖案係用於輻射光束B之EUV輻射。As depicted in FIG1 , in one embodiment, a lithography apparatus 100 includes an illumination system IL and a projection system PS. The illumination system IL is configured to emit a radiation beam B. The projection system PS is separated from the substrate table WT by an intervening space. The projection system PS is configured to project a pattern imparted to the radiation beam B onto a substrate W. The pattern is for EUV radiation of the radiation beam B.

可至少部分地抽空介入於投影系統PS與基板台WT之間的空間。可在投影系統PS之部位處由固體表面定界介入空間,所採用輻射係自該固體表面經導向朝向基板台WT。The space intervening between the projection system PS and the substrate table WT may be at least partially evacuated. The intervening space may be bounded at the location of the projection system PS by a solid surface from which the employed radiation is directed towards the substrate table WT.

在一實施例中,微影設備100包含動態氣鎖。動態氣鎖包含隔膜總成80。在一實施例中,動態氣鎖包含由位於介入空間中之隔膜總成80覆蓋之中空部分。中空部分位於輻射之路徑周圍。在一實施例中,微影設備100包含鼓風機,鼓風機經組態以運用氣流沖洗中空部分之內部。輻射行進通過隔膜總成,之後照射於基板W上。In one embodiment, the lithography apparatus 100 includes a dynamic airlock. The dynamic airlock includes a diaphragm assembly 80. In one embodiment, the dynamic airlock includes a hollow portion covered by the diaphragm assembly 80 located in the intervening space. The hollow portion is located around the path of radiation. In one embodiment, the lithography apparatus 100 includes a blower configured to use an airflow to flush the interior of the hollow portion. The radiation travels through the diaphragm assembly and then irradiates the substrate W.

在一實施例中,微影設備100包含隔膜總成80。如上文所解釋,在一實施例中,隔膜總成80係用於動態氣鎖。在此狀況下,隔膜總成80充當用於對DUV輻射進行過濾之濾光器。另外或替代地,在一實施例中,隔膜總成80為用於EUV微影之圖案化裝置MA之護膜。本發明之隔膜總成80可用於動態氣鎖或用於護膜或用於另一目的,諸如光譜純度濾光器(spectral purity filter)。在一實施例中,隔膜總成80包含隔膜40,其亦可稱為隔膜堆疊。在一實施例中,隔膜經組態以透射至少80%的入射EUV輻射。In one embodiment, the lithography apparatus 100 includes a diaphragm assembly 80. As explained above, in one embodiment, the diaphragm assembly 80 is used for a dynamic airlock. In this case, the diaphragm assembly 80 acts as a filter for filtering DUV radiation. Additionally or alternatively, in one embodiment, the diaphragm assembly 80 is a protective film for a patterning device MA for EUV lithography. The diaphragm assembly 80 of the present invention can be used for a dynamic airlock or for a protective film or for another purpose, such as a spectral purity filter. In one embodiment, the diaphragm assembly 80 includes a diaphragm 40, which may also be referred to as a diaphragm stack. In one embodiment, the diaphragm is configured to transmit at least 80% of the incident EUV radiation.

在一實施例中,隔膜總成80經組態以密封圖案化裝置MA以保護圖案化裝置MA免受空浮粒子及其他形式之污染影響。圖案化裝置MA之表面上之污染可造成基板W上之製造缺陷。舉例而言,在一實施例中,護膜經組態以減小粒子可能遷移至微影設備100中之圖案化裝置MA之步進場中的可能性。In one embodiment, the diaphragm assembly 80 is configured to seal the patterning device MA to protect the patterning device MA from airborne particles and other forms of contamination. Contamination on the surface of the patterning device MA can cause manufacturing defects on the substrate W. For example, in one embodiment, the pellicle is configured to reduce the possibility that particles may migrate into the step-in field of the patterning device MA in the lithography apparatus 100.

若圖案化裝置MA未受保護,則污染會需要圖案化裝置MA被清潔或被捨棄。清潔圖案化裝置MA會中斷寶貴的製造時間,且捨棄圖案化裝置MA成本很高。替換圖案化裝置MA亦會中斷寶貴的製造時間。If the patterning device MA is not protected, contamination will require the patterning device MA to be cleaned or discarded. Cleaning the patterning device MA will interrupt valuable manufacturing time, and discarding the patterning device MA is costly. Replacing the patterning device MA will also interrupt valuable manufacturing time.

圖3以橫截面示意性地描繪根據本發明之一實施例之隔膜總成80的部分。隔膜總成80係用於EUV微影。隔膜總成80包含隔膜40。隔膜40對於EUV輻射為發射的。當然,隔膜40可不具有對EUV輻射100%的發射率。然而,隔膜可具有例如至少20%的發射率。如圖3中所展示,在一實施例中,隔膜40基本上為平面。在一實施例中,隔膜40之平面基本上平行於圖案化裝置MA之平面。FIG3 schematically depicts in cross section a portion of a diaphragm assembly 80 according to one embodiment of the present invention. The diaphragm assembly 80 is for EUV lithography. The diaphragm assembly 80 includes a diaphragm 40. The diaphragm 40 is emissive to EUV radiation. Of course, the diaphragm 40 may not have an emissivity of 100% to EUV radiation. However, the diaphragm may have an emissivity of, for example, at least 20%. As shown in FIG3 , in one embodiment, the diaphragm 40 is substantially planar. In one embodiment, the plane of the diaphragm 40 is substantially parallel to the plane of the patterning device MA.

舉例而言,隔膜總成80具有諸如正方形、圓形或矩形之形狀。隔膜總成80之形狀不受特定限制。隔膜總成80之大小不受特定限制。舉例而言,在一實施例中,隔膜總成80之直徑在約100 mm至約500 mm之範圍內,例如約200 mm。For example, the diaphragm assembly 80 has a shape such as a square, a circle, or a rectangle. The shape of the diaphragm assembly 80 is not particularly limited. The size of the diaphragm assembly 80 is not particularly limited. For example, in one embodiment, the diameter of the diaphragm assembly 80 is in the range of about 100 mm to about 500 mm, such as about 200 mm.

如圖3中所描繪,在一實施例中,隔膜總成80包含框架81。框架81經組態以固持隔膜40。框架81提供對隔膜40之機械穩定性。框架81經組態以減小隔膜40變形而遠離其平面形狀的可能性。在一實施例中,在隔膜40之製造期間將預張力施加至該隔膜。框架81經組態以維持隔膜40中之張力使得隔膜40在微影設備100之使用期間不具有起伏形狀。在一實施例中,框架81沿隔膜40之周邊延伸。隔膜40之外部周邊定位於框架81之頂部上(根據圖3之視圖)。As depicted in FIG3 , in one embodiment, the diaphragm assembly 80 includes a frame 81. The frame 81 is configured to hold the diaphragm 40. The frame 81 provides mechanical stability to the diaphragm 40. The frame 81 is configured to reduce the likelihood that the diaphragm 40 will deform away from its planar shape. In one embodiment, a pre-tension is applied to the diaphragm 40 during manufacture of the diaphragm 40. The frame 81 is configured to maintain tension in the diaphragm 40 so that the diaphragm 40 does not have an undulating shape during use of the lithography apparatus 100. In one embodiment, the frame 81 extends along the periphery of the diaphragm 40. The outer periphery of the diaphragm 40 is positioned on top of the frame 81 (from the view of FIG3 ).

如圖3中所描繪,在一實施例中,框架81包含直接連接至隔膜40之邊界部分。框架81之邊界部分由稍後在本發明中描述之第二材料74形成。如圖3中所展示,在一實施例中,框架81進一步包含延伸部分,該延伸部分使得隔膜總成80更容易相對於圖案化裝置MA經固定。框架81之邊界部分及延伸部分可彼此黏著。As depicted in FIG3 , in one embodiment, the frame 81 includes a border portion directly connected to the diaphragm 40. The border portion of the frame 81 is formed of a second material 74 described later in the present invention. As shown in FIG3 , in one embodiment, the frame 81 further includes an extension portion that makes it easier for the diaphragm assembly 80 to be fixed relative to the patterning device MA. The border portion and the extension portion of the frame 81 can be adhered to each other.

如圖3中所描繪,在一實施例中,隔膜總成80包含夾具50。夾具50經配置成以可移除方式耦接至相對於圖案裝置MA固定之螺柱60。總成之額外細節描述於WO 2016079051 A2中,尤其在圖11及圖28至圖31及相關聯之描述中。As depicted in Figure 3, in one embodiment, the diaphragm assembly 80 includes a clip 50. The clip 50 is configured to be removably coupled to a stud 60 fixed relative to the pattern device MA. Additional details of the assembly are described in WO 2016079051 A2, particularly in Figures 11 and 28 to 31 and the associated description.

隔膜40之效能可隨時間推移而劣化。隔膜40之劣化會導致對護膜之非所要倍縮光罩壓印。當相對較高功率EUV輻射入射於隔膜40時,隔膜40之劣化問題可為更嚴重。在高溫下,隔膜40可不需要地釋放氣體(亦即,除氣)。舉例而言,隔膜40可釋放包含氧化物之氣體。氧化物之除氣可由光誘導蝕刻加速。期望將護膜之溫度保持低,從而減小除氣之可能性。The performance of the diaphragm 40 may degrade over time. Degradation of the diaphragm 40 may result in undesirable reticulated reticle imprinting of the pellicle. The degradation problem of the diaphragm 40 may be more severe when relatively high power EUV radiation is incident on the diaphragm 40. At high temperatures, the diaphragm 40 may undesirably release gases (i.e., outgas). For example, the diaphragm 40 may release gases that include oxides. Outgassing of oxides may be accelerated by light induced etching. It is desirable to keep the temperature of the pellicle low to reduce the possibility of outgassing.

如上所解釋,在一實施例中,護膜包含框架81及隔膜40。隔膜40由框架81支撐。隔膜40包含金屬或半金屬層72。As explained above, in one embodiment, the protective film includes a frame 81 and a diaphragm 40. The diaphragm 40 is supported by the frame 81. The diaphragm 40 includes a metal or semi-metal layer 72.

圖7展示根據本發明之一實施例之隔膜40之橫截面。如圖7中所展示,在一實施例中,隔膜40包含基板層71。基板層71係用於支撐金屬或半金屬層72。如圖7中所展示,在一實施例中,基板層71比金屬或半金屬層72更厚。基板層71經組態以對隔膜40提供結構穩定性。FIG. 7 shows a cross-section of a diaphragm 40 according to one embodiment of the present invention. As shown in FIG. 7 , in one embodiment, the diaphragm 40 includes a substrate layer 71. The substrate layer 71 is used to support a metal or semi-metal layer 72. As shown in FIG. 7 , in one embodiment, the substrate layer 71 is thicker than the metal or semi-metal layer 72. The substrate layer 71 is configured to provide structural stability to the diaphragm 40.

在一實施例中,隔膜40包含基板層71與金屬或半金屬層72之間的間層。間層經組態以減小金屬或半金屬層72斷裂之可能性。在較高溫度下,此斷裂之可能性越大。在一實施例中,間層包含Mo。在一實施例中,間層具有在約1 nm至約2 nm範圍內之厚度。在一實施例中,間層由不同於金屬或半金屬層72之材料形成。在一實施例中,間層比金屬或半金屬層72薄。In one embodiment, the diaphragm 40 includes an interlayer between the substrate layer 71 and the metal or semi-metal layer 72. The interlayer is configured to reduce the possibility of cracking of the metal or semi-metal layer 72. At higher temperatures, the possibility of such cracking is greater. In one embodiment, the interlayer includes Mo. In one embodiment, the interlayer has a thickness in the range of about 1 nm to about 2 nm. In one embodiment, the interlayer is formed of a material different from the metal or semi-metal layer 72. In one embodiment, the interlayer is thinner than the metal or semi-metal layer 72.

在一實施例中,基板層71包含由自絕緣體上矽(silicon on insulator;SOI)晶圓釋放獲得之單晶Si。在一替代實施例中,基板層71包含多晶矽(polysilicon/polycrystalline silicon)。In one embodiment, the substrate layer 71 comprises single crystal Si released from a silicon on insulator (SOI) wafer. In an alternative embodiment, the substrate layer 71 comprises polysilicon (polycrystalline silicon).

然而,隔膜40不一定包含此基板層71。舉例而言,在一替代實施例中,金屬或半金屬層72提供其自身結構穩定性。舉例而言,在一實施例中,同一金屬層72形成隔膜40之總厚度之至少90%。However, the diaphragm 40 does not necessarily include such a substrate layer 71. For example, in an alternative embodiment, a metal or semi-metal layer 72 provides its own structural stability. For example, in one embodiment, the same metal layer 72 forms at least 90% of the total thickness of the diaphragm 40.

圖8展示根據本發明之一實施例之隔膜40之平面視圖。如圖8中所展示,在一實施例中,隔膜40包含孔隙73。孔隙73延伸穿過隔膜40之厚度。隔膜40不為連續的。藉由提供隔膜40包含孔隙73,隔膜40可透射入射於其上之更高比例的EUV輻射。此減少可不需要地加熱隔膜40之EUV輻射量。FIG8 shows a plan view of a membrane 40 according to one embodiment of the present invention. As shown in FIG8, in one embodiment, the membrane 40 includes pores 73. The pores 73 extend through the thickness of the membrane 40. The membrane 40 is not continuous. By providing the membrane 40 includes pores 73, the membrane 40 can transmit a higher proportion of EUV radiation incident thereon. This reduces the amount of EUV radiation that can unnecessarily heat the membrane 40.

儘管圖8展示隔膜40上之孔隙73之規則分佈,但孔隙73之配置不受特別限制。孔隙73可以規則地、半規則地或隨機地分佈於隔膜40上。Although FIG8 shows the regular distribution of the pores 73 on the diaphragm 40, the arrangement of the pores 73 is not particularly limited. The pores 73 may be regularly, semi-regularly or randomly distributed on the diaphragm 40.

需要孔隙73相對緊密地定位在一起。在一實施例中,孔隙之密度為至少5個/µm 2。鄰近孔隙73之中心之間的距離稱為間距p。間距p展示於圖8中。一般而言,孔隙73之較大密度對應於較小間距p。對於不規則分佈之孔隙73,實際上在隔膜40之不同位置可存在不同的間距。然而,主間距可藉由考慮具有至少1 μm 2之大小的隔膜40之面積上之孔隙73之間的平均距離來判定。5個孔隙73/μm 2之密度對應於大致450 nm之間距p。 It is desirable that the pores 73 be positioned relatively closely together. In one embodiment, the density of the pores is at least 5/µm 2 . The distance between the centers of adjacent pores 73 is referred to as the pitch p. The pitch p is shown in FIG8 . In general, a greater density of pores 73 corresponds to a smaller pitch p. For irregularly distributed pores 73, different pitches may actually exist at different locations of the diaphragm 40. However, the main pitch may be determined by considering the average distance between pores 73 over an area of the diaphragm 40 having a size of at least 1 μm 2. A density of 5 pores 73/μm 2 corresponds to a pitch p of approximately 450 nm.

藉由提供為至少5個/μm 2之孔隙73之密度,孔隙73之主間距p小於1 μm。間距p小於由隔膜40發射之輻射(亦即,紅外輻射)之波長。本發明人已發現此有助於提高隔膜40之發射率E。 By providing a density of pores 73 of at least 5/ μm2 , the primary spacing p of pores 73 is less than 1 μm. The spacing p is less than the wavelength of the radiation (ie, infrared radiation) emitted by membrane 40. The inventors have found that this helps to increase the emissivity E of membrane 40.

藉由提供為至少5個/μm 2之孔隙73之密度,隔膜40之發射率E可保持相對較高。一般而言,孔隙73導致隔膜40之發射率E相對於連續隔膜40(亦即,沒有孔隙之隔膜)降低。孔隙73之較高密度(對應於更小間距p)對於較高發射率E為較佳的。 By providing a density of pores 73 of at least 5/μm 2 , the emissivity E of the membrane 40 can be kept relatively high. In general, the pores 73 cause the emissivity E of the membrane 40 to be reduced relative to a continuous membrane 40 (i.e., a membrane without pores). A higher density of pores 73 (corresponding to a smaller pitch p) is preferred for a higher emissivity E.

圖5為展示隔膜40之入射輻射及發射率E之角度θ之間的關係之圖。角度θ為EUV輻射相對於隔膜40之平面法線之角度。線91係用於具有側向間距為200 nm之隔膜40(對應於25個孔隙/μm 2之密度)。線92係用於具有同一特性之隔膜40,除了具有2000 nm之側向間距p (對應於約0.25個孔隙/μm 2之密度)。線93係用於具有類似特性之隔膜40,除了具有20000 nm之側向間距p (對應於約0.0025個孔隙/μm 2之孔隙密度)之外。隔膜40之其他主要特性為其75%之面積由孔隙73形成,且金屬層72由厚度為4 nm之Ru形成。 FIG5 is a graph showing the relationship between the incident radiation and the angle θ of the emissivity E of the membrane 40. Angle θ is the angle of the EUV radiation relative to the plane normal of the membrane 40. Line 91 is for a membrane 40 having a lateral spacing of 200 nm (corresponding to a density of 25 pores/μm 2 ). Line 92 is for a membrane 40 having the same characteristics, except having a lateral spacing p of 2000 nm (corresponding to a density of about 0.25 pores/μm 2 ). Line 93 is for a membrane 40 having similar characteristics, except having a lateral spacing p of 20000 nm (corresponding to a pore density of about 0.0025 pores/μm 2 ). Other key characteristics of the membrane 40 are that 75% of its area is formed by pores 73 and that the metal layer 72 is formed of Ru with a thickness of 4 nm.

如圖5中所展示,隔膜40之發射率E增加以供用於減小側向間距p。較高發射率E為所要的,使得隔膜40輻射更多其吸收之能量,從而保持隔膜40之溫度降低。本發明之一實施例預期在使用期間實現隔膜40之降低溫度。As shown in Figure 5, the emissivity E of the diaphragm 40 increases for decreasing the lateral spacing p. A higher emissivity E is desirable so that the diaphragm 40 radiates more of the energy it absorbs, thereby keeping the temperature of the diaphragm 40 reduced. One embodiment of the present invention contemplates achieving a reduced temperature of the diaphragm 40 during use.

在一實施例中,孔隙73之密度為至少20個/μm 2。此對應於大致220 nm之側向間距。如圖5中所展示,此增加隔膜40之發射率E。此又有助於在使用期間保持隔膜40較冷。 In one embodiment, the density of pores 73 is at least 20/ μm2 . This corresponds to a lateral spacing of approximately 220 nm. As shown in Figure 5, this increases the emissivity E of the membrane 40. This in turn helps keep the membrane 40 cooler during use.

在一實施例中,孔隙之密度為至少100個/μm 2。此對應於約100 nm之側向間距p。藉由提供孔隙之密度為至少100個/μm 2(亦即,至多100 nm之側向間距p),可減少自隔膜40至基板W之光斑。光斑係關於散射於基板W上之隔膜40之EUV入射之能量之比例。在一實施例中,隔膜40經組態使得對基板W之光斑至多為0.25%。此有助於提供良好質量的成像。若光斑過高,則此可不需要地影響基板W之層級上之成像。 In one embodiment, the density of the pores is at least 100/μm 2 . This corresponds to a lateral spacing p of about 100 nm. By providing a density of pores of at least 100/μm 2 (i.e., a lateral spacing p of at most 100 nm), the spot from the membrane 40 to the substrate W can be reduced. The spot is related to the proportion of the energy of the EUV incident on the membrane 40 that is scattered on the substrate W. In one embodiment, the membrane 40 is configured so that the spot on the substrate W is at most 0.25%. This helps to provide good quality imaging. If the spot is too high, this may undesirably affect the imaging on the level of the substrate W.

本發明人已發現具有孔隙73之隔膜40充當繞射光柵。當側向間距p為至多150 nm時,正入射照明之光斑基本上為零。本發明人已發現,實務上,在任何照明模式下,約100 nm之較低最大側向間距p對基板W提供基本上為零之光斑。The inventors have found that the membrane 40 with the apertures 73 acts as a diffraction grating. When the lateral spacing p is at most 150 nm, the spot of the normal incident illumination is substantially zero. The inventors have found that, in practice, a lower maximum lateral spacing p of about 100 nm provides a substantially zero spot for the substrate W in any illumination mode.

下表展示具有不同側向間距p及不同金屬及半金屬層72之隔膜40之光斑值之實例。金屬或半金屬層72之材料及厚度展示於該表之每一行之頂部。表中之值為朝向基板W之光斑之百分比。The following table shows examples of spot values for diaphragms 40 with different lateral spacings p and different metal and semi-metal layers 72. The material and thickness of the metal or semi-metal layer 72 are shown at the top of each row of the table. The values in the table are percentages of the spot toward the substrate W.

間距/nm Pitch/nm 8nm Ru 8nm Ru 4nm Ru 4nm Ru 4nm Zr 4nm Zr 8nm Zr 8nm Zr 8nm Zr及8nm SiO 2 8nm Zr and 8nm SiO2 100 100 0 0 0 0 0 0 0 0 0 0 150 150 0 0 0 0 0 0 0 0 0 0 160 160 00.53 00.53 0.15 0.15 0.032 0.032 0.09 0.09 0.23 0.23 180 180 1.1 1.1 0.31 0.31 0.063 0.063 0.18 0.18 0.47 0.47 300 300             0.065 0.065 0.19 0.19       400 400             0.12 0.12 0.35 0.35       600 600             0.16 0.16 0.46 0.46      

如表中所展示,Ru金屬層之光斑往往會比Zr金屬層高。此係因為Ru在光學上比Zr更強。表中演算所基於之隔膜40之其他特性為:其具有50 nm厚之矽的基板層71及75%之開口面積(亦即,隔膜40之75%的面積由孔隙73形成)。As shown in the table, the spot of the Ru metal layer tends to be higher than that of the Zr metal layer. This is because Ru is optically stronger than Zr. Other characteristics of the diaphragm 40 on which the calculations in the table are based are: it has a substrate layer 71 of 50 nm thick silicon and 75% of the open area (i.e., 75% of the area of the diaphragm 40 is formed by pores 73).

在一實施例中,金屬層72具有至少4 nm之厚度。此有助於提高隔膜40之發射率E。圖6為展示隔膜40之入射輻射及發射率E之角度θ之間的關係之圖。有三條線對應於不同類型之隔膜40。對於所有隔膜40,孔隙73具有約200 nm之側向間距p。孔隙73形成隔膜40之面積的約75%。線61係用於具有由厚度為8 nm之Ru形成之金屬層72的隔膜40。線62係用於具有由厚度為4 nm之Ru形成之金屬層72的隔膜40。線63係用於具有由厚度為8 nm之Zr形成之金屬層72的隔膜40。In one embodiment, the metal layer 72 has a thickness of at least 4 nm. This helps to increase the emissivity E of the diaphragm 40. Figure 6 is a graph showing the relationship between the incident radiation of the diaphragm 40 and the angle θ of the emissivity E. There are three lines corresponding to different types of diaphragms 40. For all diaphragms 40, the pores 73 have a lateral spacing p of approximately 200 nm. The pores 73 form approximately 75% of the area of the diaphragm 40. Line 61 is for a diaphragm 40 having a metal layer 72 formed of Ru with a thickness of 8 nm. Line 62 is for a diaphragm 40 having a metal layer 72 formed of Ru with a thickness of 4 nm. Line 63 is for a diaphragm 40 having a metal layer 72 formed of Zr with a thickness of 8 nm.

如圖6中所展示,一般而言,較厚的金屬或半金屬層72增加隔膜40之發射率E。藉由提供金屬層72具有至少4 nm之厚度,即使在孔隙73形成隔膜40之總面積之相對較高百分比之情況下,亦可相對較高地保持發射率E。6, in general, a thicker metal or semi-metal layer 72 increases the emissivity E of the diaphragm 40. By providing the metal layer 72 with a thickness of at least 4 nm, the emissivity E can be kept relatively high even when the pores 73 form a relatively high percentage of the total area of the diaphragm 40.

在一實施例中,金屬層72具有至少8 nm之厚度。如圖6中所展示,此進一步增加隔膜40之發射率E。當然,存在權衡,即愈厚的金屬層72可導致入射輻射之愈大吸收。期望在由隔膜40透射之EUV輻射之比例與隔膜40之發射率之間提供良好平衡。In one embodiment, metal layer 72 has a thickness of at least 8 nm. As shown in FIG6 , this further increases the emissivity E of diaphragm 40 . Of course, there is a tradeoff in that a thicker metal layer 72 may result in greater absorption of incident radiation. It is desirable to provide a good balance between the proportion of EUV radiation transmitted by diaphragm 40 and the emissivity of diaphragm 40 .

舉例而言,在一實施例中,護膜滿足 ,其中E為用於入射EUV輻射之發射率,且T為透射穿過隔膜40之入射EUV輻射之比例。舉例而言,在一實施例中,發射率E可為約0.2且EUV透射率T可為約95%。此將提供為4之E:(1-T)之比率。在一實施例中,此比率為至少5、至少6、至少7、至少8、至少9或至少10。 For example, in one embodiment, the protective film satisfies , where E is the emissivity for incident EUV radiation and T is the proportion of incident EUV radiation that is transmitted through membrane 40. For example, in one embodiment, the emissivity E may be about 0.2 and the EUV transmittance T may be about 95%. This would provide a ratio of E:(1-T) of 4. In one embodiment, this ratio is at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10.

如上所述,代替金屬層,可存在半金屬層72。當提供半金屬層而非金屬層時,期望半金屬層72之厚度更大。舉例而言,在一實施例中,半金屬層具有至少10 nm之厚度。As described above, instead of the metal layer, there may be a semi-metal layer 72. When the semi-metal layer is provided instead of the metal layer, it is desirable that the thickness of the semi-metal layer 72 is greater. For example, in one embodiment, the semi-metal layer has a thickness of at least 10 nm.

如以上進一步解釋,當提供半金屬層72時,可能不需要提供分離的基板層71。然而,當沒有提供額外基板層71時,期望半金屬層72更厚。舉例而言,在一實施例中,半金屬層72具有至少20 nm之厚度。As further explained above, when providing the semi-metal layer 72, it may not be necessary to provide a separate substrate layer 71. However, when no additional substrate layer 71 is provided, it is desirable that the semi-metal layer 72 is thicker. For example, in one embodiment, the semi-metal layer 72 has a thickness of at least 20 nm.

在一實施例中,孔隙73形成隔膜40之總面積之至少50%。圖4為展示隔膜40之入射輻射及發射率E之角度θ之間的關係之圖。不同的線41至45用於不同的隔膜40,除了具有不同開放程度之外,該等不同的隔膜40為類似的。線41係用於沒有孔隙之連續隔膜。線42係用於9%開口之多孔隔膜42 (亦即,孔隙73形成隔膜40之總面積之9%)。線43係用於36%開口之隔膜40。線44係用於64%開口之隔膜40。線45係用於81%開口之隔膜40。In one embodiment, the pores 73 form at least 50% of the total area of the membrane 40. FIG. 4 is a graph showing the relationship between the angle θ of the incident radiation and the emissivity E of the membrane 40. Different lines 41 to 45 are used for different membranes 40 that are similar except for having different degrees of openness. Line 41 is used for a continuous membrane with no pores. Line 42 is used for a porous membrane 42 that is 9% open (i.e., the pores 73 form 9% of the total area of the membrane 40). Line 43 is used for a membrane 40 that is 36% open. Line 44 is used for a membrane 40 that is 64% open. Line 45 is used for a membrane 40 that is 81% open.

如圖4中所展示,增加隔膜40之開放程度會降低發射率E。然而,增加開放程度會增加隔膜40之EUV透射率T。本發明之一實施例預期增加由隔膜40透射之EUV輻射之比例。4 , increasing the openness of membrane 40 decreases the emissivity E. However, increasing the openness increases the EUV transmittance T of membrane 40 . One embodiment of the present invention contemplates increasing the proportion of EUV radiation transmitted by membrane 40 .

在一實施例中,孔隙形成隔膜40之總面積之至少75%。此可將未經隔膜40透射之EUV輻射之比例減少約5倍。因此,儘管發射率E減少了約2倍,仍存在顯著的整體效益。加熱隔膜40之能量之量總體減少。In one embodiment, the pores form at least 75% of the total area of the membrane 40. This can reduce the proportion of EUV radiation not transmitted by the membrane 40 by a factor of about 5. Thus, although the emissivity E is reduced by a factor of about 2, there is still a significant overall benefit. The amount of energy required to heat the membrane 40 is generally reduced.

如圖8中所展示,在一實施例中,孔隙73為圓形。孔隙73之直徑為d。可選擇直徑d,從而提供隔膜40之所要填充因數。As shown in FIG8 , in one embodiment, the pores 73 are circular. The diameter of the pores 73 is d. The diameter d can be selected to provide a desired fill factor for the diaphragm 40.

然而,孔隙73不一定為圓形。圖9展示其中孔隙73為正方形之一替代實施例。孔隙73具有尺寸d。可選擇尺寸d,從而為隔膜40提供所要填充因數。However, the pores 73 need not be circular. FIG. 9 shows an alternative embodiment in which the pores 73 are square. The pores 73 have a dimension d. The dimension d may be selected to provide a desired fill factor for the diaphragm 40.

孔隙73之形狀不受特別限制。在一實施例中,孔隙73不具有任何規則形狀。The shape of the pore 73 is not particularly limited. In one embodiment, the pore 73 does not have any regular shape.

本發明之一實施例經預期將減少隔膜40中吸收之EUV輻射之量。更大比例之入射EUV輻射由隔膜40透射。然而,並非所有額外透射EUV輻射皆透射至基板W。特定言之,孔隙73繞射輻射,使得透射EUV輻射達至基板W之外部的其他面積。此意謂基板W之層級上之成像可保持高質量。One embodiment of the present invention is expected to reduce the amount of EUV radiation absorbed in the diaphragm 40. A greater proportion of the incident EUV radiation is transmitted by the diaphragm 40. However, not all of the additional transmitted EUV radiation is transmitted to the substrate W. In particular, the apertures 73 divert the radiation so that the transmitted EUV radiation reaches other areas outside of the substrate W. This means that the imaging at the level of the substrate W can remain high quality.

在一實施例中,隔膜40經組態以具有至少80%之鏡面EUV透射率。在一實施例中,隔膜40經組態以具有至多0.25%之達至基板W之非鏡面EUV透射率(例如,相對於隔膜40之平面之法線具有小於4.7度之角度)。在一實施例中,隔膜40經組態以在隔膜40中具有至多10%之EUV吸收率。在一實施例中,隔膜40經組態以具有至多10%之非鏡面EUV透射率,該透射率不進入投影光學器件或基板W。鏡面EUV透射率、非鏡面EUV透射率及吸收率總計為100%。In one embodiment, the membrane 40 is configured to have a specular EUV transmission of at least 80%. In one embodiment, the membrane 40 is configured to have a non-specular EUV transmission to the substrate W of at most 0.25% (e.g., having an angle of less than 4.7 degrees relative to the normal to the plane of the membrane 40). In one embodiment, the membrane 40 is configured to have a EUV absorptivity of at most 10% in the membrane 40. In one embodiment, the membrane 40 is configured to have a non-specular EUV transmission of at most 10%, which does not enter the projection optics or the substrate W. The specular EUV transmission, non-specular EUV transmission, and absorptivity total 100%.

金屬層72之金屬不受特別限制。一些金屬可在使用中氧化。在一實施例中,提供氧化保護層。舉例而言,可提供由硼形成之氧化保護層。氧化保護層用於減少金屬層72之氧化。氧化保護層可塗佈於金屬層72上。The metal of the metal layer 72 is not particularly limited. Some metals may oxidize during use. In one embodiment, an oxidation protection layer is provided. For example, an oxidation protection layer formed of boron may be provided. The oxidation protection layer is used to reduce oxidation of the metal layer 72. The oxidation protection layer may be coated on the metal layer 72.

在一實施例中,金屬層72之金屬不為金。在一實施例中,金屬為過渡金屬。在一實施例中,金屬為第3族至第10族之過渡金屬。在一實施例中,金屬為第4週期至第5週期之過渡金屬。In one embodiment, the metal of the metal layer 72 is not gold. In one embodiment, the metal is a transition metal. In one embodiment, the metal is a transition metal from Group 3 to Group 10. In one embodiment, the metal is a transition metal from Period 4 to Period 5.

在一實施例中,金屬為過渡金屬。特定過渡金屬不受特定限制,但可為例如Zr、Y、Mo、Cr、Hf、Ir、Mn、Nb、Os、Pd、Pt、Re、Rh、Ru、Ta、Ti、V或W。In one embodiment, the metal is a transition metal. The specific transition metal is not particularly limited, but can be, for example, Zr, Y, Mo, Cr, Hf, Ir, Mn, Nb, Os, Pd, Pt, Re, Rh, Ru, Ta, Ti, V or W.

在一實施例中,將隔膜總成80應用為護膜或應用為動態氣鎖之部分。替代地,隔膜總成80可應用於諸如識別之其他濾光領域中,或應用於光束分光器。在一實施例中,動態氣鎖經組態以阻擋微影設備100內之碎片。在一實施例中,動態氣鎖經定位於投影系統PS與基板W之間。動態氣鎖減小粒子自基板W或自基板W附近達至投影系統PS中或周圍之光學組件的可能性。相似地,動態氣鎖可保護照明系統IL。在一替代實施例中,動態氣鎖經定位於虛擬源點IF處。舉例而言,動態氣鎖可定位於源收集器模組SO與照明系統IL之間。In one embodiment, the diaphragm assembly 80 is applied as a protective film or as part of a dynamic air lock. Alternatively, the diaphragm assembly 80 can be applied in other filtering areas such as identification, or in a beam splitter. In one embodiment, the dynamic air lock is configured to block debris within the lithography apparatus 100. In one embodiment, the dynamic air lock is positioned between the projection system PS and the substrate W. The dynamic air lock reduces the possibility of particles from the substrate W or from near the substrate W reaching the optical components in or around the projection system PS. Similarly, the dynamic air lock can protect the illumination system IL. In an alternative embodiment, the dynamic air lock is positioned at the virtual source point IF. For example, the dynamic air lock can be positioned between the source collector module SO and the illumination system IL.

根據一實施例,提供一種製造用於EUV微影之護膜的方法。圖10至圖13示意性地描繪根據本發明之一實施例之製造護膜之方法之不同階段。According to one embodiment, a method for manufacturing a pellicle for EUV lithography is provided. Figures 10 to 13 schematically illustrate different stages of a method for manufacturing a pellicle according to one embodiment of the present invention.

如圖10中所展示,在一實施例中,方法包含將第一材料塗覆於第二材料74上。第二材料74係用於形成隔膜總成80之框架81的一部分。將針對其中第一材料係用於形成基板層71之實施例描述本發明。然而,如隨後將更詳細描述,第一材料可替代地形成犧牲層,基板層71形成於該犧牲層上。As shown in FIG. 10 , in one embodiment, a method includes coating a first material on a second material 74. The second material 74 is used to form a portion of a frame 81 of a diaphragm assembly 80. The present invention will be described with respect to an embodiment in which the first material is used to form a substrate layer 71. However, as will be described in more detail subsequently, the first material may alternatively form a sacrificial layer on which the substrate layer 71 is formed.

如圖10中所展示,在一實施例中,將形成基板層71之第一材料塗覆至第二材料74之所有側面(橫截面上)。將第一材料沈積於第二材料74上之方法不受特別限制。10, in one embodiment, the first material forming the substrate layer 71 is coated onto all sides (in cross section) of the second material 74. The method of depositing the first material on the second material 74 is not particularly limited.

如圖11中所展示,在一實施例中,方法包含在第二材料74之背側處圖案化第一材料。背側為與形成隔膜總成80之隔膜40的一側相對的側。第一材料經圖案化從而形成光罩,用於隨後蝕刻第二材料74。11, in one embodiment, the method includes patterning the first material at the back side of the second material 74. The back side is the side opposite to the side of the diaphragm 40 that forms the diaphragm assembly 80. The first material is patterned to form a mask for subsequently etching the second material 74.

如圖11中所展示,在一實施例中,方法包含塗覆第三材料以在基板層71上形成隔膜40之金屬或半金屬層72。第三材料為例如如上所述之Ru或Zr之金屬或半金屬。將第三材料塗覆於基板層71上之方法不受特別限制。在一實施例中,第三材料經由物理氣相沈積來沈積。As shown in FIG. 11 , in one embodiment, the method includes coating a third material to form a metal or semi-metal layer 72 of the diaphragm 40 on the substrate layer 71. The third material is a metal or semi-metal such as Ru or Zr as described above. The method of coating the third material on the substrate layer 71 is not particularly limited. In one embodiment, the third material is deposited by physical vapor deposition.

如圖12中所展示,在一實施例中,方法包含在基板層71中形成孔隙73。孔隙73可以至少5個µm 2之密度形成。如圖12中所展示,在一實施例中,孔隙73在金屬或半金屬層72及基板層71之組合堆疊上打開。如圖11至圖12之進程中所展示,在一實施例中,在形成孔隙73之前將第三材料(其形成金屬或半金屬層72)塗覆於基板層71上。此允許在基本上相同製程步驟中,孔隙73形成於金屬或半金屬層72及基板層71兩者中。此有助於在金屬或半金屬層72及基板層71中提供孔隙73之形狀的良好均一性。存在各種方法用於在基板層71中形成孔隙73,如將在下文更詳細地描述。 As shown in FIG. 12 , in one embodiment, the method includes forming pores 73 in a substrate layer 71. The pores 73 may be formed at a density of at least 5 μm 2. As shown in FIG. 12 , in one embodiment, the pores 73 are opened on a combined stack of a metal or semi-metal layer 72 and a substrate layer 71. As shown in the process of FIG. 11 to FIG. 12 , in one embodiment, a third material (which forms the metal or semi-metal layer 72) is coated on the substrate layer 71 before forming the pores 73. This allows the pores 73 to be formed in both the metal or semi-metal layer 72 and the substrate layer 71 in substantially the same process steps. This helps to provide good uniformity of the shape of the pores 73 in the metal or semi-metal layer 72 and the substrate layer 71. There are various methods for forming the apertures 73 in the substrate layer 71, as will be described in more detail below.

在一實施例中,方法包含將犧牲層75塗覆於金屬或半金屬層72及基板層71之堆疊上。在一實施例中,方法包含將機械支撐層76塗覆於犧牲層75及隔膜總成80之側面上。在後續步驟中,方法包含蝕刻第二材料74,從而暴露隔膜40之背側(隔膜40由基板層71上之金屬或半金屬層72形成)。In one embodiment, the method includes coating a sacrificial layer 75 on the stack of the metal or semi-metal layer 72 and the substrate layer 71. In one embodiment, the method includes coating a mechanical support layer 76 on the sacrificial layer 75 and the side of the diaphragm assembly 80. In a subsequent step, the method includes etching the second material 74 to expose the back side of the diaphragm 40 (the diaphragm 40 is formed by the metal or semi-metal layer 72 on the substrate layer 71).

蝕刻第二材料74從而暴露隔膜40之方法不受特別限制。在一實施例中,藉由執行濕式各向異性蝕刻來蝕刻第二材料74。機械支撐層76係用於在蝕刻第二材料74之步驟期間將機械支撐提供至隔膜總成80。此減小隔膜40在蝕刻步驟期間損壞(例如斷裂)之可能性。機械支撐層76經組態以保護堆疊之頂側免受移除第二材料74之蝕刻劑的影響。The method of etching the second material 74 to expose the diaphragm 40 is not particularly limited. In one embodiment, the second material 74 is etched by performing a wet anisotropic etch. The mechanical support layer 76 is used to provide mechanical support to the diaphragm assembly 80 during the step of etching the second material 74. This reduces the possibility of damage (e.g., cracking) to the diaphragm 40 during the etching step. The mechanical support layer 76 is configured to protect the top side of the stack from the etchant that removes the second material 74.

在一實施例中,第二材料包含矽。如上所述,在一實施例中,可藉由執行濕式蝕刻來蝕除第二材料。作為替代方案,可使用乾式蝕刻製程蝕除第二材料。In one embodiment, the second material includes silicon. As described above, in one embodiment, the second material can be etched by performing a wet etch. Alternatively, a dry etch process can be used to etch the second material.

如圖13中所展示,在一實施例中,方法包含移除機械支撐層76。移除機械支撐層76之方法不受特別限制。如圖13中所展示,在一實施例中,方法包含移除犧牲層75。犧牲層75係用於在移除機械支撐層76時保護隔膜40之頂側。舉例而言,犧牲層75可保護隔膜40之頂側免受用於移除機械支撐層76之任何試劑的影響。移除犧牲層75之方法不受特別限制。As shown in FIG. 13 , in one embodiment, the method includes removing the mechanical support layer 76. The method of removing the mechanical support layer 76 is not particularly limited. As shown in FIG. 13 , in one embodiment, the method includes removing the sacrificial layer 75. The sacrificial layer 75 is used to protect the top side of the diaphragm 40 when the mechanical support layer 76 is removed. For example, the sacrificial layer 75 can protect the top side of the diaphragm 40 from any reagents used to remove the mechanical support layer 76. The method of removing the sacrificial layer 75 is not particularly limited.

犧牲層75充當保護層,以防止基板層71及/或金屬半金屬層72之氧化。可在不損害或氧化基板層71或金屬或半金屬層72之情況下執行移除犧牲層75之製程。The sacrificial layer 75 acts as a protective layer to prevent oxidation of the substrate layer 71 and/or the metal or semi-metal layer 72. The process of removing the sacrificial layer 75 can be performed without damaging or oxidizing the substrate layer 71 or the metal or semi-metal layer 72.

如圖13中所展示,藉由移除機械支撐層76及犧牲層75,在基板層71上形成由金屬或半金屬層72形成之隔膜40。隔膜40延伸穿過由第二材料形成之框架81之邊界部分。13, by removing the mechanical support layer 76 and the sacrificial layer 75, a diaphragm 40 formed of a metal or semi-metal layer 72 is formed on a substrate layer 71. The diaphragm 40 extends through a boundary portion of a frame 81 formed of a second material.

現將描述上文參看圖10至圖13描述之製程之修改。A modification of the process described above with reference to Figures 10 to 13 will now be described.

在一實施例中,形成基板層71之第一材料為諸如氮化聚矽氧之低應力氮化物。低應力氮化物耐濕式蝕刻。此意謂在濕式蝕刻步驟期間(亦即,當蝕除第二材料74之大部分時),基板層71不需要額外犧牲層來保護它。低應力氮化物亦適合於在總成之背側形成硬蝕刻光罩,如圖11中所展示。In one embodiment, the first material forming the substrate layer 71 is a low stress nitride such as polysilicon nitride. Low stress nitrides are resistant to wet etching. This means that during the wet etching step (i.e., when etching away a large portion of the second material 74), the substrate layer 71 does not require an additional sacrificial layer to protect it. Low stress nitrides are also suitable for forming a hard etch mask on the back side of the assembly, as shown in FIG. 11 .

然而,在一實施例中,基板層71包含多晶矽。當基板層71由多晶矽形成時,則第一材料不形成基板層。實情為,當蝕刻第二材料74時,第一材料充當犧牲層以保護多晶矽基板層。因此,方法可包含在蝕刻第二材料74之步驟之前,將多晶矽(或將形成隔膜40之基板層之其他材料)塗覆於第一材料上之步驟。當第一材料用作犧牲層以保護基板層時,第一材料可包含SiO 2However, in one embodiment, the substrate layer 71 comprises polysilicon. When the substrate layer 71 is formed of polysilicon, then the first material does not form a substrate layer. Instead, when the second material 74 is etched, the first material acts as a sacrificial layer to protect the polysilicon substrate layer. Therefore, the method may include a step of coating the first material with polysilicon (or other material that will form the substrate layer of the diaphragm 40) before the step of etching the second material 74. When the first material acts as a sacrificial layer to protect the substrate layer, the first material may include SiO2 .

在上文所描述之製程中,在形成孔隙73之前將第三材料塗覆於基板層71上。然而,未必為此狀況。圖14至圖16展示其中在形成孔隙73之後將第三材料塗覆於基板層71上之替代方法之不同階段。In the process described above, the third material is coated on the substrate layer 71 before the pores 73 are formed. However, this is not necessarily the case. Figures 14 to 16 show different stages of an alternative method in which the third material is coated on the substrate layer 71 after the pores 73 are formed.

在此替代實施例中,將第一材料塗覆於第二材料74上,如圖10中所展示。然而,如圖14中所展示,將第一材料之背側圖案化以形成硬式光罩,而未在頂側上沈積金屬或半金屬層72。In this alternative embodiment, the first material is coated on the second material 74, as shown in Figure 10. However, as shown in Figure 14, the back side of the first material is patterned to form a hard mask without depositing a metal or semi-metal layer 72 on the top side.

如圖15中所展示,孔隙73形成於基板層71中。在提供金屬或半金屬層72之前執行此步驟。因此,孔隙73未同時形成於金屬或半金屬層72中。As shown in FIG15 , pores 73 are formed in substrate layer 71. This step is performed before providing metal or semi-metal layer 72. Therefore, pores 73 are not formed in metal or semi-metal layer 72 at the same time.

然後,將犧牲層75及機械支撐層76塗覆於基板層71周圍。此允許蝕除第二材料。Then, a sacrificial layer 75 and a mechanical support layer 76 are coated around the substrate layer 71. This allows the second material to be etched away.

如圖16中所展示,隨後可以上文所描述之相同之方式移除機械支撐層76及犧牲層75。如圖16中所展示,此使得基板層71延伸穿過由第二材料74形成之框架81之邊界部分。As shown in Figure 16, the mechanical support layer 76 and the sacrificial layer 75 can then be removed in the same manner as described above. As shown in Figure 16, this allows the substrate layer 71 to extend through the border portion of the frame 81 formed by the second material 74.

可隨後塗覆第三材料以在基板層71上形成隔膜40之金屬或半金屬層72。此產生展示於圖13中之總成。A third material may then be applied to form the metal or semi-metal layer 72 of the diaphragm 40 on the substrate layer 71. This produces the assembly shown in FIG.

下文描述形成孔隙73之各種方法。Various methods of forming the pores 73 are described below.

圖17至圖20示意性地描繪用於形成孔隙73之製程之不同階段。特定言之,圖17至圖20描繪奈米壓印微影之製程之階段。Figures 17 to 20 schematically depict different stages of a process for forming the pores 73. Specifically, Figures 17 to 20 depict stages of a process of nanoimprint lithography.

如圖17中所展示,在一實施例中,形成孔隙73之製程包含將模具77壓於覆蓋基板層71之光罩材料79上。模具77為包含凹痕78之基本平板。凹痕78以對應於所要孔隙位置(亦即,其中孔隙73意欲位於隔膜40中之位置)之圖案配置。在一實施例中,模具77為柔性的。在一實施例中,模具77由對UV輻射基本上透明的材料製成。此允許當模具77經塗覆至光罩材料79時,光罩材料79由UV輻射來輻射。As shown in FIG. 17 , in one embodiment, the process of forming the aperture 73 includes pressing a mold 77 onto a mask material 79 covering the substrate layer 71. The mold 77 is a substantially flat plate including indentations 78. The indentations 78 are arranged in a pattern corresponding to the desired aperture locations (i.e., the locations where the apertures 73 are intended to be located in the diaphragm 40). In one embodiment, the mold 77 is flexible. In one embodiment, the mold 77 is made of a material that is substantially transparent to UV radiation. This allows the mask material 79 to be irradiated by UV radiation when the mold 77 is applied to the mask material 79.

光罩材料之類型不受特別限制。在一實施例中,光罩材料為光阻。替代地,光罩材料可為溶膠-凝膠(sol-gel)。The type of the photomask material is not particularly limited. In one embodiment, the photomask material is a photoresist. Alternatively, the photomask material may be a sol-gel.

如圖18中所展示,藉由將模具77壓於光罩材料79上,壓印圖案形成於對應於孔隙位置之光罩材料79中。模具77之應用導致光罩材料79具有對比厚度。特定言之,光罩材料79具有柱82及凹陷83。模具77壓入至光罩材料79中,且接著經由UV輻射固化以硬化/固化光罩材料79。然後,移除模具77以暴露現在固化(固體)且圖案化的層。As shown in FIG. 18 , by pressing a mold 77 onto a mask material 79, an embossed pattern is formed in the mask material 79 corresponding to the locations of the apertures. The application of the mold 77 results in the mask material 79 having a contrasting thickness. Specifically, the mask material 79 has pillars 82 and recesses 83. The mold 77 is pressed into the mask material 79 and then cured by UV radiation to harden/cure the mask material 79. The mold 77 is then removed to expose the now cured (solid) and patterned layer.

如圖19中所展示,在一實施例中,形成孔隙73之製程包含蝕刻光罩材料79以形成對應於孔隙位置之空隙。在一實施例中,反應離子蝕刻用於蝕刻光罩材料79。反應離子蝕刻製程基本上為同質的。蝕刻製程導致凹陷83經蝕除,從而在對應於孔隙位置之空隙處暴露下伏基板層71。柱82亦經蝕除,但繼續覆蓋基板層71,藉此充當光罩。As shown in FIG. 19 , in one embodiment, the process of forming the aperture 73 includes etching a mask material 79 to form a void corresponding to the aperture location. In one embodiment, reactive ion etching is used to etch the mask material 79. The reactive ion etching process is substantially homogenous. The etching process causes the recess 83 to be etched away, thereby exposing the underlying substrate layer 71 at the void corresponding to the aperture location. The pillar 82 is also etched away, but continues to cover the substrate layer 71, thereby acting as a mask.

如圖20中所展示,在一實施例中,形成孔隙73之製程包含經由空隙蝕刻基板層71以形成孔隙73。光罩材料79之柱82保護基板層71之一些區域不經蝕除。在基板層71經暴露的情況下,將其蝕除,從而形成孔隙73。孔隙73形成於對應於模具77之凹痕78之位置。可設計模具77以在隔膜40之基板層71中提供孔隙73之所要圖案。As shown in FIG. 20 , in one embodiment, the process of forming the pores 73 includes etching the substrate layer 71 through the voids to form the pores 73. Pillars 82 of the mask material 79 protect some areas of the substrate layer 71 from being etched. Where the substrate layer 71 is exposed, it is etched away to form the pores 73. The pores 73 are formed at locations corresponding to the indentations 78 of the mold 77. The mold 77 can be designed to provide the desired pattern of pores 73 in the substrate layer 71 of the diaphragm 40.

奈米壓印微影之製程使得精細調節孔隙73之週期性及護膜之填充因數成為可能。此可藉由適當設計模具77來實現。模具77可重複使用。此有助於降低製造成本。The process of nanoimprint lithography makes it possible to finely adjust the periodicity of the pores 73 and the filling factor of the protective film. This can be achieved by properly designing the mold 77. The mold 77 can be reused. This helps to reduce manufacturing costs.

圖21至圖24示意性地描繪用於形成孔隙73之替代製程之不同階段。如圖21中所展示,在一實施例中,形成孔隙73之製程包含將球體84沈積於基板層71上。以對應於所要孔隙位置之圖案沈積球體84。特定言之,每一球體84之中心定位於對應於孔隙73之中心之位置。展示於圖21至圖24中之製程可稱為奈米球微影。奈米球微影技術為奈米壓印微影之替代技術。展示於圖21至圖24中之奈米球微影技術可替代以上展示於圖12及圖15中之步驟。Figures 21 to 24 schematically depict different stages of an alternative process for forming pores 73. As shown in Figure 21, in one embodiment, the process for forming pores 73 includes depositing spheres 84 on substrate layer 71. Spheres 84 are deposited in a pattern corresponding to the desired pore locations. Specifically, the center of each sphere 84 is positioned at a location corresponding to the center of pore 73. The process shown in Figures 21 to 24 can be referred to as nanosphere lithography. Nanosphere lithography is an alternative to nanoimprint lithography. The nanosphere lithography shown in Figures 21 to 24 can replace the steps shown in Figures 12 and 15 above.

球體84之材料不受特別限制。在一實施例中,此等球體由聚苯乙烯製成。在一實施例中,球體84經配置成在六角緊密封裝層中。在一實施例中,球體84之層為單層。The material of the spheres 84 is not particularly limited. In one embodiment, the spheres are made of polystyrene. In one embodiment, the spheres 84 are arranged in a hexagonal tight packing layer. In one embodiment, the layer of spheres 84 is a single layer.

如圖21至圖22之過渡中所展示,在一實施例中,製程包括減小球體84之大小。舉例而言,可藉由蝕刻球體84來減小球體84之大小。舉例而言,可使用電漿蝕刻。減小球體之大小之步驟為可選的。舉例而言,若塗覆至基板層71之球體84已具有適合之大小,則可不需要減小其大小。As shown in the transition from FIG. 21 to FIG. 22, in one embodiment, the process includes reducing the size of the sphere 84. For example, the size of the sphere 84 can be reduced by etching the sphere 84. For example, plasma etching can be used. The step of reducing the size of the sphere is optional. For example, if the sphere 84 coated on the substrate layer 71 already has a suitable size, it may not be necessary to reduce its size.

如圖22中所展示,在一實施例中,形成孔隙73之製程包含將第三材料塗覆於球體84及基板層71上。第三材料係用於形成隔膜40之金屬或半金屬層72。如圖22中所展示,第三材料覆蓋球體84之頂部,且覆蓋球體84之間的基板層71之部分。形成於隔膜40中之孔隙73之圖案可藉由控制球體84在基板層71上之大小及配置來控制As shown in FIG. 22 , in one embodiment, the process of forming the pores 73 includes coating a third material on the spheres 84 and the substrate layer 71. The third material is used to form the metal or semi-metal layer 72 of the diaphragm 40. As shown in FIG. 22 , the third material covers the top of the spheres 84 and covers the portion of the substrate layer 71 between the spheres 84. The pattern of the pores 73 formed in the diaphragm 40 can be controlled by controlling the size and arrangement of the spheres 84 on the substrate layer 71.

如圖23中所展示,在一實施例中,形成孔隙73之製程包含移除球體84。此形成對應於孔隙位置之基板層71之暴露部分。此導致第三材料形成保護基板層71之適當部分之光罩。除了形成金屬或半金屬層72之外,第三材料充當光罩。As shown in FIG. 23 , in one embodiment, the process of forming the aperture 73 includes removing the sphere 84. This forms an exposed portion of the substrate layer 71 corresponding to the location of the aperture. This causes the third material to form a mask that protects the appropriate portion of the substrate layer 71. In addition to forming the metal or semi-metal layer 72, the third material acts as a mask.

如圖24中所展示,在一實施例中,形成孔隙73之製程包含蝕刻基板層71之暴露部分以形成孔隙73。僅作為一實例,電漿蝕刻之製程可用以蝕除基板層71之適當部分。24, in one embodiment, the process of forming the pore 73 includes etching the exposed portion of the substrate layer 71 to form the pore 73. As just one example, a plasma etching process may be used to etch the appropriate portion of the substrate layer 71.

可選擇球體84之尺寸,以便提供適當尺寸及配置之孔隙73。一般而言,球體84之大小對應於孔隙73之大小。在一實施例中,球體84之大小為至少100 nm及至多10 µm。The size of the spheres 84 can be selected so as to provide appropriately sized and configured pores 73. Generally, the size of the spheres 84 corresponds to the size of the pores 73. In one embodiment, the size of the spheres 84 is at least 100 nm and at most 10 μm.

圖25為用於形成孔隙73之替代製程中之金屬層之影像。在用於形成孔73之替代製程中,將金屬塗覆於基板層71上。舉例而言,金屬可為銀或金。可使用適用於金屬輔助化學蝕刻製程之其他金屬。在一實施例中,將金屬最初作為基本均一的層(亦即,具有均一厚度)塗覆於整個基板層71上。FIG. 25 is an image of a metal layer in an alternative process for forming aperture 73. In an alternative process for forming aperture 73, metal is applied to substrate layer 71. For example, the metal may be silver or gold. Other metals suitable for metal assisted chemical etching processes may be used. In one embodiment, the metal is initially applied as a substantially uniform layer (i.e., having a uniform thickness) over the entire substrate layer 71.

在一實施例中,形成孔隙73之製程包含退火金屬以在基板層71上形成金屬島狀物85。金屬島狀物85在圖25中可見。金屬島狀物85彼此分離。退火製程導致金屬完全去濕。特定言之,退火製程導致金屬層之斷裂。隨著退火製程繼續,斷裂連接在一起以形成網路,如圖25中所見,留下個別金屬島狀物85。當金屬經退火至足夠高溫時,金屬粒子移動至能量上更有利之配置。此導致金屬島狀物85之形成。In one embodiment, the process of forming the pores 73 includes annealing the metal to form metal islands 85 on the substrate layer 71. The metal islands 85 are visible in FIG. 25. The metal islands 85 are separated from each other. The annealing process causes the metal to be completely dehumidified. Specifically, the annealing process causes fractures in the metal layer. As the annealing process continues, the fractures connect together to form a network, as seen in FIG. 25, leaving individual metal islands 85. When the metal is annealed to a sufficiently high temperature, the metal particles move to a more energetically favorable configuration. This results in the formation of metal islands 85.

在一實施例中,形成孔隙73之製程包含執行金屬輔助化學蝕刻以蝕刻金屬島狀物85下方之基板層71之部分,從而形成孔隙73。金屬島狀物85充當催化劑以蝕刻每一金屬島狀物85 (亦即,金屬小滴)下方之基板層71。In one embodiment, the process of forming the pores 73 includes performing metal assisted chemical etching to etch a portion of the substrate layer 71 below the metal islands 85, thereby forming the pores 73. The metal islands 85 act as a catalyst to etch the substrate layer 71 below each metal island 85 (i.e., metal droplet).

圖26為在形成孔隙73之替代製程中使用之金屬或半金屬層72之影像。在一實施例中,將形成金屬或半金屬層72之第三材料塗覆於基板層71上。在一實施例中,形成孔隙73之製程包含退火第三材料以在金屬或半金屬層72中形成空隙。此等空隙在圖26之影像中可見。可以選擇退火製程之條件(例如溫度、時間),使得如圖26所展示形成空隙,而空隙未連接在一起以形成如圖25中所展示之分離金屬島狀物的網路。圖26展示第三材料之部分去濕(而非展示於圖25中之完全去濕)之結果。FIG. 26 is an image of a metal or semi-metal layer 72 used in an alternative process for forming pores 73. In one embodiment, a third material forming the metal or semi-metal layer 72 is coated on a substrate layer 71. In one embodiment, the process for forming pores 73 includes annealing the third material to form voids in the metal or semi-metal layer 72. These voids are visible in the image of FIG. 26. The conditions (e.g., temperature, time) of the annealing process can be selected so that voids are formed as shown in FIG. 26, but the voids are not connected together to form a network of isolated metal islands as shown in FIG. 25. FIG. 26 shows the result of partial dewetting of the third material (rather than complete dewetting as shown in FIG. 25).

展示於圖26中之所得金屬或半金屬晶格可用作蝕刻基板層71之蝕刻光罩。在一實施例中,形成孔隙73之製程包含經由空隙蝕刻基板層71以形成孔隙73。金屬或半金屬晶格可隨後保留為金屬或半金屬層72,從而提高隔膜40之發射率。The resulting metal or semi-metal lattice shown in FIG26 can be used as an etching mask for etching the substrate layer 71. In one embodiment, the process of forming the pores 73 includes etching the substrate layer 71 through the voids to form the pores 73. The metal or semi-metal lattice can then remain as the metal or semi-metal layer 72, thereby increasing the emissivity of the diaphragm 40.

在一實施例中,可執行退火及蝕刻步驟替代展示於圖12中之步驟。替代地,可在製造護膜之方法結束時執行退火及蝕刻步驟。舉例而言,護膜可由具有連續表面(亦即,沒有孔隙73)之隔膜形成。可隨後執行退火及蝕刻步驟,從而產生孔隙73。因此,可在連續膜隔膜釋放之後執行退火及蝕刻步驟。In one embodiment, annealing and etching steps may be performed instead of the steps shown in FIG. 12 . Alternatively, annealing and etching steps may be performed at the end of the method of making the pellicle. For example, the pellicle may be formed from a membrane having a continuous surface (i.e., without pores 73). Annealing and etching steps may then be performed to create pores 73. Thus, annealing and etching steps may be performed after the continuous membrane diaphragm is released.

圖27為用於形成孔隙73之替代製程中之蜂巢結構86之影像。在一實施例中,用於形成孔隙73之製程包含提供蜂巢結構86作為蝕刻光罩。舉例而言,蜂巢結構86可定位於基板層71之上。27 is an image of a honeycomb structure 86 in an alternative process for forming the aperture 73. In one embodiment, the process for forming the aperture 73 includes providing the honeycomb structure 86 as an etching mask. For example, the honeycomb structure 86 can be positioned above the substrate layer 71.

在一實施例中,蜂巢結構86包含高度有序及同質的奈米孔。舉例而言,在一實施例中,蜂巢結構包含多孔陽極氧化鋁。In one embodiment, the honeycomb structure 86 comprises highly ordered and homogeneous nanopores. For example, in one embodiment, the honeycomb structure comprises porous anodic alumina.

在一實施例中,用於形成孔隙73之製程包含經由蜂巢結構86蝕刻基板層71以形成孔隙73。隨後移除蜂巢結構86。In one embodiment, the process for forming the pores 73 includes etching the substrate layer 71 through the honeycomb structure 86 to form the pores 73. The honeycomb structure 86 is then removed.

舉例而言,提供蜂巢結構及蝕刻之製程可替代展示於圖12及圖15中之步驟來執行。For example, the process of providing the honeycomb structure and etching may be performed instead of the steps shown in FIGS. 12 and 15 .

在一實施例中,蜂巢結構86經由黏著層塗覆至堆疊。替代地,可在製造製程期間產生蜂巢結構86。In one embodiment, the honeycomb structure 86 is applied to the stack via an adhesive layer. Alternatively, the honeycomb structure 86 can be created during the manufacturing process.

根據本發明之一態樣,提供一種用於EUV微影之護膜之隔膜,其包含光柵,該光柵包含複數個孔、孔隙或突起。複數個孔可例如包含圓形、正方形、圓形方塊或任意形狀之孔。隔膜可例如包含主膜或主層。光柵中之主膜或層厚度可例如在20 nm至100 nm範圍內。在一實施例中,主膜或主層亦可稱為芯或隔膜芯。較佳地,光柵間距小於200 nm以確保良好發射率。光柵間距可定義為該光柵之鄰近孔之中心之間的距離。在一實施例中,主要光柵間距較佳地小於100 nm以確保晶圓級之低光斑。諸如30 nm或更小之更小光柵間距可阻止碎片粒子落於倍縮光罩上。根據任何實施例之用於EUV微影之護膜之隔膜可包含具有介於4與15 nm之間的厚度的金屬層,或厚度在20至80 nm範圍內之半金屬。若隔膜更開放,則金屬層較佳地更厚。在一實施例中,隔膜光柵具有基本上正方形的開口(亦即,孔),間距為30至200 nm,諸如100 nm,且開口面積之百分比或由光柵開口限定之開口度為50%至90%,諸如75%的開口度或開口面積。厚度約為8 nm之輻射Ru層具有>0.35之發射率。護膜隔膜之材料可包含例如與金屬層結合之SOI Si隔膜芯。在另一實施例中,包含SOI Si之隔膜光柵具有覆蓋隔膜面積之50%至90%的基本圓形或正方形開口、小於100 nm之光柵間距及具有在5至15 nm範圍內的厚度的金屬層,該金屬層在晶圓級提供低光斑及> 0.2之發射率。According to one aspect of the present invention, a diaphragm for a protective film for EUV lithography is provided, which includes a grating, which includes a plurality of holes, pores or protrusions. The plurality of holes may, for example, include circular, square, circular blocks or holes of any shape. The diaphragm may, for example, include a main film or a main layer. The thickness of the main film or layer in the grating may, for example, be in the range of 20 nm to 100 nm. In one embodiment, the main film or main layer may also be referred to as a core or a diaphragm core. Preferably, the grating spacing is less than 200 nm to ensure good emissivity. The grating spacing can be defined as the distance between the centers of adjacent holes of the grating. In one embodiment, the main grating spacing is preferably less than 100 nm to ensure low spot at the wafer level. Smaller grating spacings, such as 30 nm or less, can prevent debris particles from falling on the multiplication mask. The diaphragm of the protective film for EUV lithography according to any embodiment may include a metal layer having a thickness between 4 and 15 nm, or a semi-metal with a thickness in the range of 20 to 80 nm. If the diaphragm is more open, the metal layer is preferably thicker. In one embodiment, the diaphragm grating has substantially square openings (i.e., holes) with a spacing of 30 to 200 nm, such as 100 nm, and the percentage of open area or the openness defined by the grating opening is 50% to 90%, such as 75% openness or open area. A radiative Ru layer with a thickness of approximately 8 nm has an emissivity of >0.35. The material of the overcoat diaphragm may include, for example, a SOI Si diaphragm core bonded with a metal layer. In another embodiment, a diaphragm grating comprising SOI Si has a substantially circular or square opening covering 50% to 90% of the diaphragm area, a grating pitch less than 100 nm, and a metal layer having a thickness in the range of 5 to 15 nm, which provides low spot and an emissivity of > 0.2 at the wafer level.

儘管在本文中可特定地參看微影設備在IC製造中之使用,但應理解,本文中所描述之微影設備可具有其他應用,諸如製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、LCD、薄膜磁頭等。可在曝光之前或之後在例如塗佈顯影系統(通常將抗蝕劑層塗覆至基板且顯影經曝光抗蝕劑之工具)、度量衡工具及/或檢測工具中處理本文中所提及之基板。在適用情況下,可將本文中之揭示內容應用於此等及其他基板處理工具。此外,可將基板處理多於一次,(例如)以便產生多層IC,使得本文所使用之術語「基板」亦可指已經含有多個經處理層之基板。Although specific reference may be made herein to the use of lithography equipment in IC manufacturing, it should be understood that the lithography equipment described herein may have other applications, such as manufacturing integrated optical systems, guide and detection patterns for magnetic resonance memory, flat panel displays, LCDs, thin film heads, etc. The substrates mentioned herein may be processed before or after exposure in, for example, a coating and development system (a tool that typically applies a layer of resist to a substrate and develops the exposed resist), a metrology tool, and/or an inspection tool. Where applicable, the disclosures herein may be applied to these and other substrate processing tools. In addition, a substrate may be processed more than once, for example, to produce a multi-layer IC, so that the term "substrate" used herein may also refer to a substrate that already contains multiple processed layers.

雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述方式不同之其他方式來實踐本發明。舉例而言,各種光阻層可由執行同一功能之非光阻層替換。以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍及條項之範疇的情況下對所描述之本發明進行修改。 1. 一種用於EUV微影之護膜,其包含: 框架;及 隔膜,其由框架支撐,其中隔膜包含: 金屬或半金屬層, 其中隔膜包含密度為至少5個/µm 2的孔隙。 2. 如條項1之護膜,其中孔隙之密度為至少20個/µm 2。 3. 如條項1之護膜,其中孔隙之密度為至少100個/µm 2。 4. 如前述條項中任一項之護膜,其中隔膜包含: 基板層,其用於支撐金屬或半金屬層。 5. 如任一條項4之護膜,其中基板層包含自絕緣體上矽或多晶矽獲得之矽。 6. 如前述條項中任一項之護膜,其中金屬層具有至少4 nm之厚度。 7. 如前述條項中任一項之護膜,其中金屬層具有至少8 nm之厚度。 8. 如前述條項中任一項之護膜,其中半金屬層具有至少10 nm之厚度。 9. 如前述條項中任一項之護膜,其中半金屬層形成隔膜之總厚度的至少90%。 10.    如前述條項中任一項之護膜,其中半金屬層具有至少20 nm之厚度。 11.    如前述條項中任一項之護膜,其中孔隙形成隔膜之總面積的至少50%。 12.    如前述條項中任一項之護膜,其中孔隙形成隔膜之總面積的至少75%。 13.    如前述條項中任一項之護膜,其中金屬為第3族至第10族之過渡金屬。 14.    如前述條項中任一項之護膜,其中金屬為第4週期至第5週期之過渡金屬。 15.    如前述條項中任一項之護膜,其中金屬選自由以下組成之群:Zr、Y、Mo、Cr、Hf、Ir、Mn、Nb、Os、Pd、Pt、Re、Rh、Ru、Ta、Ti、V及W。 16.    如前述條項中任一項之護膜,其中孔隙為圓形或正方形。 17.    如前述條項中任一項之護膜,滿足 ,其中E為入射EUV輻射之發射率,且T為透射穿過隔膜之入射EUV輻射之比例。 18.    如前述條項中任一項之護膜,其對於入射EUV輻射具有至少0.2之發射率。 19.    如前述條項中任一項之護膜,其經組態以透射至少95%之入射EUV輻射。 20.    一種用於EUV微影之護膜之隔膜,其包含: 非金金屬或半金屬層, 其中隔膜包含密度為至少5個/µm 2的孔隙。 21.    一種用於EUV微影之護膜,其包含: 框架;及 如條項20之隔膜,其由框架支撐。 22.    一種用於EUV微影之圖案化裝置總成,其包含如條項1至19或21中任一項之護膜。 23.    一種用於EUV微影之動態氣鎖總成,其包含如請求項1至19或21中任一項之護膜。 24.    一種製造用於EUV微影之護膜之方法,其包含: 將第一材料塗覆於第二材料上以供形成護膜之框架; 塗覆第三材料以供在隔膜之基板層上形成護膜之隔膜之金屬或半金屬層;以及 以至少5個/µm 2之密度在基板層中形成孔隙。 25.    如條項24之方法,其中第一材料形成基板層。 26.    如條項24或25之方法,其中在形成孔隙之前將第三材料塗覆於基板層上。 27.    如條項24或25之方法,其中在形成孔隙之後將第三材料塗覆於基板層上。 28.    如條項24至27中任一項之方法,其中形成孔隙包含: 將模具壓於覆蓋基板層之光罩材料上,以在光罩材料中形成對應於孔隙位置的壓印圖案; 蝕刻光罩材料以形成對應於孔隙位置之空隙;及 經由空隙蝕刻基板層以形成孔隙。 29.    如條項24至27中任一項之方法,其中形成孔隙包含: 以對應於孔隙位置之圖案將球體沈積於基板層上; 將第三材料塗覆於球體及基板層上; 移除球體從而形成對應於孔隙位置之基板層之暴露部分;及 蝕刻基板層之暴露部分以形成孔隙。 30.    如條項24至27中任一項之方法,其中形成孔隙包含: 將金屬塗覆於基板層上; 退火金屬以形成基板層上之金屬島狀物;及 執行金屬輔助化學蝕刻以蝕刻金屬島狀物下方之基板層之部分以形成孔隙。 31.    如條項24至27中任一項之方法,其中形成孔隙包含: 退火第三材料以形成金屬或半金屬層中之空隙;及 經由空隙蝕刻基板層以形成孔隙。 32.    如條項24至27中任一項之方法,其中形成孔隙包含: 提供蜂巢結構作為蝕刻光罩; 蝕刻基板層以形成孔隙;及 移除蜂巢結構。 33.    如條項32之方法,其中蜂巢結構包含多孔陽極氧化鋁。 34.    一種用於EUV微影之護膜之隔膜,該隔膜包含包含複數個孔之光柵。 35.    如條項34之隔膜,其中光柵之光柵間距<200 nm,較佳地<100 nm,更佳地<30 nm。 36.    如條項34或35之隔膜,其中光柵包含具有介於20 nm與100 nm之間的厚度的芯。 37.    如條項34至36中任一項之隔膜,其中光柵包含金屬或半金屬。 38.    如條項34至37中任一項之隔膜,其中光柵包含SOI Si隔膜芯。 39.    如條項38之隔膜,其中光柵進一步包含一或多個金屬層。 40.    如條項38或39之隔膜,其中光柵包含基本上圓形或正方形的開口及在50%與90%之間,較佳地在70%與80%之間的開口面積。 Although specific embodiments of the invention have been described above, it will be appreciated that the invention may be practiced in other ways than those described. For example, various photoresist layers may be replaced by non-photoresist layers that perform the same function. The above description is intended to be illustrative and not restrictive. Therefore, it will be apparent to one skilled in the art that modifications may be made to the invention as described without departing from the scope of the claims and clauses set forth below. 1. A pellicle for EUV lithography comprising: a frame; and a diaphragm supported by the frame, wherein the diaphragm comprises: a metal or semi-metal layer, wherein the diaphragm comprises pores having a density of at least 5/µm 2. 2. A pellicle as in clause 1, wherein the density of the pores is at least 20/µm 2 . 3. A protective film as in item 1, wherein the density of pores is at least 100/ µm2 . 4. A protective film as in any of the preceding items, wherein the diaphragm comprises: a substrate layer for supporting a metal or semi-metal layer. 5. A protective film as in any of item 4, wherein the substrate layer comprises silicon obtained from silicon or polycrystalline silicon on an insulator. 6. A protective film as in any of the preceding items, wherein the metal layer has a thickness of at least 4 nm. 7. A protective film as in any of the preceding items, wherein the metal layer has a thickness of at least 8 nm. 8. A protective film as in any of the preceding items, wherein the semi-metal layer has a thickness of at least 10 nm. 9. A protective film as in any of the preceding items, wherein the semi-metal layer forms at least 90% of the total thickness of the diaphragm. 10. A protective film as in any of the preceding clauses, wherein the semi-metal layer has a thickness of at least 20 nm. 11. A protective film as in any of the preceding clauses, wherein the pores form at least 50% of the total area of the membrane. 12. A protective film as in any of the preceding clauses, wherein the pores form at least 75% of the total area of the membrane. 13. A protective film as in any of the preceding clauses, wherein the metal is a transition metal from Group 3 to Group 10. 14. A protective film as in any of the preceding clauses, wherein the metal is a transition metal from Period 4 to Period 5. 15. A protective film as in any of the preceding clauses, wherein the metal is selected from the group consisting of: Zr, Y, Mo, Cr, Hf, Ir, Mn, Nb, Os, Pd, Pt, Re, Rh, Ru, Ta, Ti, V and W. 16. A protective film as in any of the preceding clauses, wherein the pores are circular or square. 17. A protective film as in any of the preceding clauses, satisfying , where E is the emissivity of incident EUV radiation and T is the proportion of incident EUV radiation transmitted through the diaphragm. 18. A pellicle as in any of the preceding clauses, having an emissivity of at least 0.2 for incident EUV radiation. 19. A pellicle as in any of the preceding clauses, configured to transmit at least 95% of incident EUV radiation. 20. A pellicle for EUV lithography comprising: a non-metal or semi-metal layer, wherein the diaphragm comprises pores at a density of at least 5/ µm2 . 21. A pellicle for EUV lithography comprising: a frame; and a diaphragm as in clause 20, supported by the frame. 22. A patterning device assembly for EUV lithography comprising a pellicle as in any of clauses 1 to 19 or 21. 23. A dynamic airlock assembly for EUV lithography, comprising a pellicle as claimed in any one of claims 1 to 19 or 21. 24. A method of manufacturing a pellicle for EUV lithography, comprising: coating a first material on a second material to form a frame of the pellicle; coating a third material to form a metal or semi-metal layer of a diaphragm of the pellicle on a substrate layer of the diaphragm; and forming pores in the substrate layer at a density of at least 5/ µm2 . 25. The method of clause 24, wherein the first material forms the substrate layer. 26. The method of clause 24 or 25, wherein the third material is coated on the substrate layer before the pores are formed. 27. The method of clause 24 or 25, wherein the third material is coated on the substrate layer after the pores are formed. 28. The method of any one of clauses 24 to 27, wherein forming the pores comprises: pressing a mold onto a mask material overlying the substrate layer to form an embossed pattern in the mask material corresponding to the location of the pores; etching the mask material to form voids corresponding to the location of the pores; and etching the substrate layer through the voids to form the pores. 29. The method of any one of clauses 24 to 27, wherein forming the pores comprises: depositing spheres on the substrate layer in a pattern corresponding to the location of the pores; coating a third material over the spheres and the substrate layer; removing the spheres to form exposed portions of the substrate layer corresponding to the location of the pores; and etching the exposed portions of the substrate layer to form the pores. 30. The method of any one of clauses 24 to 27, wherein forming the pores comprises: coating a metal on a substrate layer; annealing the metal to form metal islands on the substrate layer; and performing metal assisted chemical etching to etch a portion of the substrate layer below the metal islands to form the pores. 31. The method of any one of clauses 24 to 27, wherein forming the pores comprises: annealing a third material to form voids in the metal or semi-metal layer; and etching the substrate layer through the voids to form the pores. 32. The method of any one of clauses 24 to 27, wherein forming the pores comprises: providing a honeycomb structure as an etching mask; etching the substrate layer to form the pores; and removing the honeycomb structure. 33. The method of clause 32, wherein the honeycomb structure comprises porous anodic alumina. 34. A diaphragm for a pellicle for EUV lithography, the diaphragm comprising a grating comprising a plurality of holes. 35. The diaphragm of clause 34, wherein the grating has a grating pitch of <200 nm, preferably <100 nm, more preferably <30 nm. 36. The diaphragm of clause 34 or 35, wherein the grating comprises a core having a thickness between 20 nm and 100 nm. 37. The diaphragm of any of clauses 34 to 36, wherein the grating comprises a metal or a semi-metal. 38. The diaphragm of any of clauses 34 to 37, wherein the grating comprises a SOI Si diaphragm core. 39. The diaphragm of clause 38, wherein the grating further comprises one or more metal layers. 40. A diaphragm as claimed in clause 38 or 39, wherein the grating comprises substantially circular or square openings and an open area between 50% and 90%, preferably between 70% and 80%.

21:未經圖案化光束 22:琢面化場鏡面裝置 24:琢面化光瞳鏡面裝置 26:經圖案化光束 28:反射元件 30:反射元件 40:隔膜 41:線 42:線 43:線 44:線 45:線 50:夾具 60:螺柱 61:線 62:線 63:線 71:基板層 72:金屬或半金屬層 73:孔隙 74:第二材料 75:犧牲層 76:機械支撐層 77:模具 78:凹痕 79:光罩材料 80:隔膜總成 81:框架 82:柱 83:凹陷 84:球體 85:金屬島狀物 86:蜂巢結構 91:線 92:線 93:線 100:微影設備 210:輻射發射電漿 211:源腔室 212:收集器腔室 220:圍封結構 221:開口 500:控制器 B:輻射光束 C:目標部分 CO:輻射收集器 d:直徑 E:發射率 IF:虛擬源點 IL:照明系統 M1:光罩對準標記 M2:光罩對準標記 MA:圖案化裝置 MT:支撐結構 p:間距 P1:基板對準標記 P2:基板對準標記 PM:第一定位器 PS:投影系統 PS1:位置感測器 PS2:位置感測器 PW:第二定位器 SO:源收集器模組 W:基板 WT:基板台 21: unpatterned beam 22: faceted field mirror device 24: faceted pupil mirror device 26: patterned beam 28: reflective element 30: reflective element 40: diaphragm 41: wire 42: wire 43: wire 44: wire 45: wire 50: fixture 60: stud 61: wire 62: wire 63: wire 71: substrate layer 72: metal or semi-metal layer 73: aperture 74: second material 75: sacrificial layer 76: mechanical support layer 77: mold 78: indentation 79: mask material 80: diaphragm assembly 81: frame 82: post 83: depression 84: sphere 85: metal island 86: honeycomb structure 91: line 92: line 93: line 100: lithography equipment 210: radiation emitting plasma 211: source chamber 212: collector chamber 220: enclosure structure 221: opening 500: controller B: radiation beam C: target part CO: radiation collector d: diameter E: emissivity IF: virtual source point IL: illumination system M1: mask alignment mark M2: mask alignment mark MA: patterning device MT: support structure p: spacing P1: substrate alignment mark P2: substrate alignment mark PM: first positioner PS: projection system PS1: position sensor PS2: Position sensor PW: Second positioner SO: Source collector module W: Substrate WT: Substrate stage

現將參看隨附示意性圖式僅藉助於實例描述本發明之實施例,在圖式中對應元件符號指示對應部件,且其中:Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference numerals indicate corresponding parts, and in which:

圖1描繪根據本發明之一實施例之微影設備;FIG. 1 depicts a lithography apparatus according to an embodiment of the present invention;

圖2為微影設備之更詳細視圖;FIG2 is a more detailed view of the lithography equipment;

圖3以橫截面示意性地描繪根據本發明之一實施例之隔膜總成的部分;FIG3 schematically depicts a portion of a diaphragm assembly according to an embodiment of the present invention in cross section;

圖4為展示具有不同填充因素之隔膜之入射輻射之角度與發射率之間的關係之圖;FIG. 4 is a graph showing the relationship between the angle of incident radiation and the emissivity for diaphragms having different fill factors;

圖5為展示在孔隙之間具有不同距離之隔膜之入射輻射之角度與發射率之間的關係之圖;FIG5 is a graph showing the relationship between the angle of incident radiation and the emissivity for membranes having different distances between pores;

圖6為展示具有不同金屬層之隔膜之入射輻射之角度與發射率之間的關係之圖;FIG6 is a graph showing the relationship between the angle of incident radiation and the emissivity for diaphragms having different metal layers;

圖7為根據本發明之一實施例之護膜之隔膜之橫截面視圖;FIG. 7 is a cross-sectional view of a diaphragm of a protective film according to an embodiment of the present invention;

圖8為根據本發明之一實施例之具有圓形孔隙之護膜之隔膜之平面視圖;FIG8 is a plan view of a diaphragm having a protective film with circular pores according to an embodiment of the present invention;

圖9為根據本發明之一實施例之具有正方形孔隙之護膜之隔膜之平面視圖;FIG. 9 is a plan view of a diaphragm having a protective film with square pores according to an embodiment of the present invention;

圖10至圖13示意性地描繪根據本發明之一實施例之製造護膜之隔膜之方法之階段;10 to 13 schematically illustrate the stages of a method for manufacturing a protective membrane diaphragm according to an embodiment of the present invention;

圖14至圖16示意性地描繪根據本發明之一實施例之製造護膜之隔膜之替代方法之不同階段;14 to 16 schematically illustrate different stages of an alternative method for manufacturing a protective membrane diaphragm according to an embodiment of the present invention;

圖17至圖20示意性地描繪根據本發明之一實施例之在護膜之隔膜中形成孔隙之不同階段;17 to 20 schematically illustrate different stages of forming pores in the diaphragm of the protective film according to an embodiment of the present invention;

圖21至圖24示意性地描繪根據本發明之一實施例之在護膜之隔膜中形成孔隙之替代方法之不同階段;21 to 24 schematically illustrate different stages of an alternative method for forming pores in a membrane of a protective film according to an embodiment of the present invention;

圖25為根據本發明之一實施例之用於在護膜之隔膜中形成孔隙之金屬島狀物之影像;FIG. 25 is an image of metal islands used to form pores in a membrane of a protective film according to an embodiment of the present invention;

圖26為根據本發明之一實施例之護膜之隔膜之金屬層之影像;及FIG. 26 is an image of a metal layer of a diaphragm of a protective film according to an embodiment of the present invention; and

圖27為根據本發明之一實施例之用於在護膜之隔膜中形成孔隙之蜂巢結構之影像。FIG. 27 is an image of a honeycomb structure for forming pores in a membrane of a protective film according to an embodiment of the present invention.

40:隔膜 40: Diaphragm

73:孔隙 73: Porosity

d:直徑 d: Diameter

p:間距 p: Spacing

Claims (17)

一種用於EUV微影之一護膜(pellicle)之隔膜(membrane),該隔膜包含一光柵,該光柵包含複數個孔。A membrane of a pellicle for EUV lithography includes a grating having a plurality of holes. 如請求項1之隔膜,其中該光柵具有一光柵間距,該光柵間距<200 nm,較佳地<100 nm,更佳地<30 nm。A membrane as claimed in claim 1, wherein the grating has a grating pitch, the grating pitch is less than 200 nm, preferably less than 100 nm, and more preferably less than 30 nm. 如請求項1或2之隔膜,其中該光柵包含一芯,該芯具有介於20 nm與100 nm之間之一厚度。A membrane as claimed in claim 1 or 2, wherein the grating comprises a core having a thickness between 20 nm and 100 nm. 如請求項1或2之隔膜,其中該光柵包含一金屬或半金屬。A diaphragm as claimed in claim 1 or 2, wherein the grating comprises a metal or a semi-metal. 如請求項1或2之隔膜,其中該光柵包含一SOI Si隔膜芯。A diaphragm as claimed in claim 1 or 2, wherein the grating comprises a SOI Si diaphragm core. 如請求項5之隔膜,其中該光柵進一步包含一或多個金屬層。A diaphragm as in claim 5, wherein the grating further comprises one or more metal layers. 如請求項5之隔膜,其中該光柵包含基本上圓形或正方形的開口及在50%與90%之間,較佳地在70%與80%之間之一開口面積。A diaphragm as claimed in claim 5, wherein the grating comprises a substantially circular or square opening and an opening area between 50% and 90%, preferably between 70% and 80%. 如請求項1或2之隔膜,其中該等孔隙(pores)形成該隔膜之一總面積的至少75%。A membrane as claimed in claim 1 or 2, wherein the pores form at least 75% of a total area of the membrane. 如請求項1或2之隔膜,其對於入射EUV輻射具有至少0.2之一發射率。A diaphragm as claimed in claim 1 or 2, having an emissivity of at least 0.2 for incident EUV radiation. 如請求項1或2之隔膜,其經組態以透射至少95%之入射EUV輻射。The diaphragm of claim 1 or 2, configured to transmit at least 95% of incident EUV radiation. 一種用於EUV微影之圖案化裝置總成或動態氣鎖總成,其包含如請求項1至10中任一項之隔膜。A patterning device assembly or a dynamic airlock assembly for EUV lithography, comprising a diaphragm as claimed in any one of claims 1 to 10. 一種製造用於EUV微影之一護膜之方法,其包含: 將一第一材料塗覆於一第二材料上以形成該護膜之一框架; 塗覆一第三材料以在該隔膜之一基板層上形成該護膜之一隔膜的一金屬或半金屬層;以及 以至少5個/µm 2之一密度在該基板層中形成孔隙。 A method for manufacturing a pellicle for EUV lithography comprises: coating a first material on a second material to form a frame of the pellicle; coating a third material to form a metal or semi-metal layer of a diaphragm of the pellicle on a substrate layer of the diaphragm; and forming pores in the substrate layer at a density of at least 5/ µm2 . 如請求項12之方法,其中該第一材料形成該基板層。The method of claim 12, wherein the first material forms the substrate layer. 如請求項12或13之方法,其中在形成該等孔隙之前將該第三材料塗覆於該基板層上。A method as claimed in claim 12 or 13, wherein the third material is coated on the substrate layer before forming the pores. 如請求項12或13之方法,其中在形成該等孔隙之後將該第三材料塗覆於該基板層上。A method as claimed in claim 12 or 13, wherein the third material is coated on the substrate layer after forming the pores. 如請求項12或13之方法,其中形成該等孔隙包含: 將一模具壓(press)於覆蓋該基板層之一光罩材料上,以在該光罩材料中形成對應於孔隙位置的一壓印圖案(pattern of imprints); 蝕刻該光罩材料以形成對應於該等孔隙位置之空隙(gaps);及 經由該等空隙蝕刻該基板層以形成該等孔隙。 A method as claimed in claim 12 or 13, wherein forming the pores comprises: Pressing a mold onto a mask material covering the substrate layer to form a pattern of imprints in the mask material corresponding to the pore locations; Etching the mask material to form gaps corresponding to the pore locations; and Etching the substrate layer through the gaps to form the pores. 如請求項12或13之方法,其中形成該等孔隙包含: 以對應於孔隙位置之圖案將球體(spheres)沈積於該基板層上; 將該第三材料塗覆於該等球體及該基板層上; 移除該等球體從而形成對應於該等孔隙位置之該基板層之暴露部分;及 蝕刻該基板層之該等暴露部分以形成該等孔隙。 The method of claim 12 or 13, wherein forming the pores comprises: depositing spheres on the substrate layer in a pattern corresponding to the pore locations; coating the third material on the spheres and the substrate layer; removing the spheres to form exposed portions of the substrate layer corresponding to the pore locations; and etching the exposed portions of the substrate layer to form the pores.
TW112147008A 2018-11-16 2019-11-08 Pellicle, patterning device assembly, and dynamic gas lock assembly for euv lithography TW202414077A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18206667.0 2018-11-16
EP19151377.9 2019-01-11

Publications (1)

Publication Number Publication Date
TW202414077A true TW202414077A (en) 2024-04-01

Family

ID=

Similar Documents

Publication Publication Date Title
TWI826575B (en) Pellicle, patterning device assembly, and dynamic gas lock assembly for euv lithography
JP4546547B2 (en) Filter window manufacturing method
TWI706217B (en) Membrane assembly for euv lithography and method for manufacturing the same
TWI545406B (en) Lithographic apparatus and method
JP7174625B2 (en) Method for manufacturing membrane assembly for EUV lithography, membrane assembly, lithographic apparatus and device manufacturing method
CN108351586A (en) Method for manufacturing diaphragm assembly
TW201732418A (en) A membrane assembly
TW201728992A (en) Pellicle apparatus for semiconductor lithography process
TWI716478B (en) A method for manufacturing a membrane assembly
TW202414077A (en) Pellicle, patterning device assembly, and dynamic gas lock assembly for euv lithography
CN109564394A (en) Membrane module and grain catcher
JP2008227083A (en) Exposure apparatus and manufacturing method of semiconductor device
JP2023540020A (en) Pellicle membrane for lithography equipment
TW202409716A (en) Pellicle for euv lithography