TW202413655A - Use of markers in diagnosing breast cancer or predicting breast cancer risk - Google Patents

Use of markers in diagnosing breast cancer or predicting breast cancer risk Download PDF

Info

Publication number
TW202413655A
TW202413655A TW112129464A TW112129464A TW202413655A TW 202413655 A TW202413655 A TW 202413655A TW 112129464 A TW112129464 A TW 112129464A TW 112129464 A TW112129464 A TW 112129464A TW 202413655 A TW202413655 A TW 202413655A
Authority
TW
Taiwan
Prior art keywords
marker
target
methylation
breast cancer
combination
Prior art date
Application number
TW112129464A
Other languages
Chinese (zh)
Inventor
孫津
馬成城
徐敏杰
劉軼穎
蘇志熙
劉蕊
Original Assignee
大陸商江蘇鵾遠生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商江蘇鵾遠生物科技股份有限公司 filed Critical 大陸商江蘇鵾遠生物科技股份有限公司
Publication of TW202413655A publication Critical patent/TW202413655A/en

Links

Abstract

本發明涉及標誌物在診斷乳腺癌或預測乳腺癌風險中的用途。本發明公開了試劑在製備用於在個體中診斷乳腺癌或預測乳腺癌風險的套組或微陣列中的用途。本發明還公開了一種用於在個體中診斷乳腺癌或預測乳腺癌風險的套組或微陣列。The present invention relates to the use of markers in diagnosing breast cancer or predicting breast cancer risk. The present invention discloses the use of reagents in preparing a kit or microarray for diagnosing breast cancer or predicting breast cancer risk in an individual. The present invention also discloses a kit or microarray for diagnosing breast cancer or predicting breast cancer risk in an individual.

Description

標誌物在診斷乳腺癌或預測乳腺癌風險中的用途Use of markers in diagnosing breast cancer or predicting breast cancer risk

本申請涉及分子生物醫學技術領域。具體來說,本申請涉及標誌物在診斷乳腺癌或預測乳腺癌風險中的用途。This application relates to the field of molecular biomedical technology. Specifically, this application relates to the use of markers in diagnosing breast cancer or predicting breast cancer risk.

乳腺癌是女性發病率和死亡率最高的惡性癌症,其中5%-10%乳腺癌患者由於遺傳的基因突變引起,其他癌症患者主要由於環境等因素影響誘發(Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018; 5: 77-106.)。相關統計研究表明,近年來,由於飲食結構和晚婚晚育等生活方式變化,我國乳腺癌發生率增加30%,並且主要發生於30-60歲女性,嚴重威脅女性健康(Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016; 66: 115-32.)。乳腺癌的早期篩查對於患者生存意義重大,早期乳腺癌患者的5年生存率為98%,而晚期的5年生存率下降至23% (DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019; 69: 438-51.)。癌症早期篩查技術的廣泛應用顯著降低癌症死亡率,高危女性定期乳腺癌篩查技術降低美國1990年至2015年間39%乳腺癌死亡率(Byers T, Wender RC, Jemal A, et al. The American Cancer Society challenge goal to reduce US cancer mortality by 50% between 1990 and 2015: Results and reflections. CA Cancer J Clin. 2016; 66: 359-69.)。 目前臨床乳腺癌診斷策略為:一、乳腺指檢與醫生查體;二、乳腺超聲和乳腺X線;三、細針穿刺組織活檢等。其中乳腺X線可檢測乳腺腫物,發現乳腺微鈣化等惡性腫瘤指征,常用於高危女性早期篩查(Oeffinger KC, Fontham ET, Etzioni R, et al. Breast Cancer Screening for Women at Average Risk: 2015 Guideline Update From the American Cancer Society. JAMA. 2015; 314: 1599-614.)。乳腺X線檢測準確度與乳腺結構密切相關,其總體靈敏度約85%,但其在緻密型乳腺篩查靈敏度下降至47.8%-64.4% (Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002; 225: 165-75.)。而亞洲女性乳腺結構普遍為緻密型,乳腺X線診斷準確率較低。而且乳腺X線篩查存在輻射危害,不適用於年輕女性和妊娠期女性定期檢測。臨床上迫切需要其它安全、便捷、準確度高的檢查手段,用於早期乳腺癌的篩查。 液體活檢是基於血液或其他體液為基礎的非侵入性檢測技術,其具有取樣安全無創、高效便捷等優勢,已逐漸應用於多種疾病檢測中。研究發現,體液中含有大量由組織或細胞釋放的游離DNA(cfDNA),癌症病人體液中還含有癌症組織向體液釋放的游離腫瘤DNA(ctDNA),其基因組特徵如突變、片段化長度分佈、末端基序、DNA甲基化等均可作為特徵指標用於早期癌症診斷(Lo YMD, Han DSC, Jiang P, et al. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021; 372.)。其中DNA甲基化具有檢出限低,敏感度高,特異性高等優勢,已成功應用於多種癌症診斷中,如在結直腸癌血漿中使用6個甲基化標誌物甲基化水準構建機器學習診斷模型可達到92%特異性,86%敏感性(Cai G, Cai M, Feng Z, et al. A Multilocus Blood-Based Assay Targeting Circulating Tumor DNA Methylation Enables Early Detection and Early Relapse Prediction of Colorectal Cancer. Gastroenterology. 2021; 161: 2053-56 e2.);在肝癌血漿中使用10個甲基化標誌物甲基化水準構建機器學習診斷模型可達到90.5%特異性,83.3%敏感性(Xu RH, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017; 16: 1155-61.),遠高於其它篩查方法。目前已有大量研究揭示DNA甲基化在乳腺癌的發生發展中起重要作用,並鑒定出大量乳腺癌組織和癌旁組織差異甲基化區域,促進乳腺癌甲基化標誌物研究(Batra RN, Lifshitz A, Vidakovic AT, et al. DNA methylation landscapes of 1538 breast cancers reveal a replication-linked clock, epigenomic instability and cis-regulation. Nat Commun. 2021; 12: 5406.)。 然而,對於基於液體活檢的乳腺癌早期篩查,尚無特別高效的檢測標誌物。因此,亟需開發一種方法和/或套組,其可以從生物樣品中數量極為有限的細胞外游離DNA高效地讀取與乳腺癌相關的表觀遺傳學資訊,而且可以在醫院檢驗寇里很容易地配置並可以可靠地應用。 Breast cancer is the malignant cancer with the highest incidence and mortality rate in women. Among them, 5%-10% of breast cancer patients are caused by genetic mutations, and other cancer patients are mainly induced by environmental factors (Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018; 5: 77-106.). Relevant statistical studies have shown that in recent years, due to changes in diet structure and lifestyle such as late marriage and late childbearing, the incidence of breast cancer in my country has increased by 30%, and it mainly occurs in women aged 30-60, which seriously threatens women's health (Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016; 66: 115-32.). Early screening of breast cancer is of great significance to the survival of patients. The 5-year survival rate of patients with early breast cancer is 98%, while the 5-year survival rate of patients with late-stage breast cancer drops to 23% (DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019; 69: 438-51.). The widespread application of early cancer screening technology has significantly reduced cancer mortality. Regular breast cancer screening technology for high-risk women has reduced breast cancer mortality in the United States by 39% between 1990 and 2015 (Byers T, Wender RC, Jemal A, et al. The American Cancer Society challenge goal to reduce US cancer mortality by 50% between 1990 and 2015: Results and reflections. CA Cancer J Clin. 2016; 66: 359-69.). The current clinical strategies for breast cancer diagnosis are: 1. Breast digital examination and physical examination by a doctor; 2. Breast ultrasound and mammography; 3. Fine needle biopsy, etc. Among them, mammography can detect breast tumors and find signs of malignant tumors such as breast microcalcification, and is often used for early screening of high-risk women (Oeffinger KC, Fontham ET, Etzioni R, et al. Breast Cancer Screening for Women at Average Risk: 2015 Guideline Update From the American Cancer Society. JAMA. 2015; 314: 1599-614.). The accuracy of mammography is closely related to breast structure. Its overall sensitivity is about 85%, but its sensitivity drops to 47.8%-64.4% in dense breast screening (Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002; 225: 165-75.). Asian women generally have dense breast structures, and the accuracy of mammography is low. In addition, mammography screening has radiation hazards and is not suitable for regular testing of young women and pregnant women. In clinical practice, other safe, convenient and accurate examination methods are urgently needed for screening of early breast cancer. Liquid biopsy is a non-invasive detection technology based on blood or other body fluids. It has the advantages of safe and non-invasive sampling, high efficiency and convenience, and has gradually been applied to the detection of various diseases. Studies have found that body fluids contain a large amount of free DNA (cfDNA) released by tissues or cells. The body fluids of cancer patients also contain free tumor DNA (ctDNA) released by cancer tissues into the body fluids. Its genomic characteristics such as mutations, fragment length distribution, terminal motifs, DNA methylation, etc. can all be used as characteristic indicators for early cancer diagnosis (Lo YMD, Han DSC, Jiang P, et al. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021; 372.). Among them, DNA methylation has the advantages of low detection limit, high sensitivity, and high specificity. It has been successfully applied to the diagnosis of various cancers. For example, the methylation levels of 6 methylation markers in colorectal cancer plasma were used to construct a machine learning diagnosis model with a specificity of 92% and a sensitivity of 86% (Cai G, Cai M, Feng Z, et al. A Multilocus Blood-Based Assay Targeting Circulating Tumor DNA Methylation Enables Early Detection and Early Relapse Prediction of Colorectal Cancer. Gastroenterology. 2021; 161: 2053-56 e2.); the methylation levels of 10 methylation markers in liver cancer plasma were used to construct a machine learning diagnosis model with a specificity of 90.5% and a sensitivity of 83.3% (Xu RH, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017; 16: 1155-61.), far higher than other screening methods. At present, a large number of studies have revealed that DNA methylation plays an important role in the occurrence and development of breast cancer, and a large number of differentially methylated regions in breast cancer tissues and adjacent tissues have been identified, promoting the study of breast cancer methylation markers (Batra RN, Lifshitz A, Vidakovic AT, et al. DNA methylation landscapes of 1538 breast cancers reveal a replication-linked clock, epigenomic instability and cis-regulation. Nat Commun. 2021; 12: 5406.). However, there is no particularly efficient detection marker for early breast cancer screening based on liquid biopsy. Therefore, it is urgent to develop a method and/or kit that can efficiently read epigenetic information related to breast cancer from extremely limited extracellular free DNA in biological samples, and that can be easily configured and reliably applied in hospital laboratory.

為解決現有技術的不足,發明人通過篩選大量標誌物,發現本發明的標誌物能夠以高的靈敏度、特異性和低成本診斷乳腺癌或預測乳腺癌風險。基於本發明的標誌物,可以有效區分乳腺癌患者和健康人。 更具體而言,本發明提供了79個cfDNA甲基化標誌物,並建立甲基化標誌物甲基化水準與乳腺癌關係的診斷模型,該模型具有無創檢測、檢測安全方便、通量高、檢測準確性高的優點。 在一方面,本發明涉及試劑在製備用於在個體中診斷乳腺癌或預測乳腺癌風險的套組或微陣列中的用途,其特徵在於所述試劑用於檢測分離自所述個體的樣品中選自以下任一組的至少一種標誌物的至少一個目標區域的甲基化水準: (1)TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1、TNFRSF6B以及它們的任何組合; (2)SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3、WISP2及它們的任何組合;或 (3)WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3、CHRNA4及它們的任何組合, 其中與相應的閾值相比,一種或多種標誌物的至少一個目標區域的甲基化水準等於或高於閾值表明所述個體患有乳腺癌或具有乳腺癌風險,以及其中所述目標區域包含至少一個CpG二核苷酸序列。在一些實施方案中,所述甲基化為CpG甲基化。在一些實施方案中,所述試劑為選自以下的試劑: i)與所述標誌物的至少一個目標區域雜交或擴增所述標誌物的至少一個目標區域的物質,例如寡核苷酸引子或探針;和 ii)亞硫酸氫鹽試劑或甲基化敏感限制酶試劑,所述亞硫酸氫鹽試劑或甲基化敏感限制酶試劑區分所述標誌物的至少一個目標區域內的甲基化和未甲基化二核苷酸,例如甲基化和未甲基化CpG二核苷酸。 在一些實施方案中,所述寡核苷酸引子或探針與所述標誌物的至少一個目標區域的至少9個鹼基長的片段互補或相同。 在一些實施方案中,所述標誌物為TTLL10。在一些實施方案中,所述標誌物為EPS8L3。在一些實施方案中,所述標誌物為IRF2BP2。在一些實施方案中,所述標誌物為FAM150B。在一些實施方案中,所述標誌物為ID2。在一些實施方案中,所述標誌物為TERT。在一些實施方案中,所述標誌物為PITX1。在一些實施方案中,所述標誌物為KCNMB1。在一些實施方案中,所述標誌物為BEND6。在一些實施方案中,所述標誌物為ELN。在一些實施方案中,所述標誌物為CPXM2。在一些實施方案中,所述標誌物為TH。在一些實施方案中,所述標誌物為C1QTNF9。在一些實施方案中,所述標誌物為CARKD。在一些實施方案中,所述標誌物為TMEM179。在一些實施方案中,所述標誌物為SPNS1。在一些實施方案中,所述標誌物為MYO15B。在一些實施方案中,所述標誌物為DNM2。在一些實施方案中,所述標誌物為EPHX3。在一些實施方案中,所述標誌物為PSG8。在一些實施方案中,所述標誌物為SLCO4A1。在一些實施方案中,所述標誌物為TNFRSF6B。 在一些實施方案中,所述標誌物為SKI。在一些實施方案中,所述標誌物為PRDM16。在一些實施方案中,所述標誌物為PIAS3。在一些實施方案中,所述標誌物為SLC10A4。在一些實施方案中,所述標誌物為CXXC5。在一些實施方案中,所述標誌物為NR2E1。在一些實施方案中,所述標誌物為MPC1。在一些實施方案中,所述標誌物為HOXA13。在一些實施方案中,所述標誌物為LZTS1。在一些實施方案中,所述標誌物為CHD7。在一些實施方案中,所述標誌物為ANKRD20A1。在一些實施方案中,所述標誌物為CACNA1B。在一些實施方案中,所述標誌物為ACVRL1。在一些實施方案中,所述標誌物為CCNA1。在一些實施方案中,所述標誌物為RNASEH2B。在一些實施方案中,所述標誌物為SNX20。在一些實施方案中,所述標誌物為TBCD。在一些實施方案中,所述標誌物為PIP5K1C。在一些實施方案中,所述標誌物為ZBTB7A。在一些實施方案中,所述標誌物為DNASE2。在一些實施方案中,所述標誌物為TSHZ3。在一些實施方案中,所述標誌物為WISP2。 在一些實施方案中,所述標誌物為WRAP73。在一些實施方案中,所述標誌物為C2CD4D。在一些實施方案中,所述標誌物為CCDC181。在一些實施方案中,所述標誌物為RNF144A。在一些實施方案中,所述標誌物為SIX2。在一些實施方案中,所述標誌物為NRXN1。在一些實施方案中,所述標誌物為MEIS1。在一些實施方案中,所述標誌物為LBX2。在一些實施方案中,所述標誌物為AMT。在一些實施方案中,所述標誌物為ITIH4。在一些實施方案中,所述標誌物為TRH。在一些實施方案中,所述標誌物為SHOX2。在一些實施方案中,所述標誌物為DGKG。在一些實施方案中,所述標誌物為RPL9。在一些實施方案中,所述標誌物為PFN3。在一些實施方案中,所述標誌物為FOXC1。在一些實施方案中,所述標誌物為LY86。在一些實施方案中,所述標誌物為SLC35F1。在一些實施方案中,所述標誌物為LRRC4。在一些實施方案中,所述標誌物為PDLIM2。在一些實施方案中,所述標誌物為PAX2。在一些實施方案中,所述標誌物為MVK。在一些實施方案中,所述標誌物為DTX1。在一些實施方案中,所述標誌物為RBM19。在一些實施方案中,所述標誌物為GCH1。在一些實施方案中,所述標誌物為OTX2。在一些實施方案中,所述標誌物為ZSCAN10。在一些實施方案中,所述標誌物為AHSP。在一些實施方案中,所述標誌物為NLRC5。在一些實施方案中,所述標誌物為ASXL3。在一些實施方案中,所述標誌物為TCF4。在一些實施方案中,所述標誌物為PLIN3。在一些實施方案中,所述標誌物為RASAL3。在一些實施方案中,所述標誌物為CHRNA4。 在一些實施方案中,所述標誌物為選自以下的標誌物組合:i) TTLL10、FAM150B、BEND6、ELN、TMEM179和MYO15B;或ii) EPS8L3、IRF2BP2、TERT、TH、CARKD、SPNS1和PSG8。 在一些實施方案中,所述標誌物為選自以下的標誌物組合:i) SKI、PRDM16、LZTS1、CCNA1、PIP5K1C和WISP2;或ii) PIAS3、CHD7、CACNA1B、ACVRL1、SNX20、TBCD和ZBTB7A。 在一些實施方案中,所述標誌物為選自以下的標誌物組合:i) ITIH4、FOXC1、PDLIM2、MVK、NLRC5、TCF4和PLIN3;或ii) RNF144A、SIX2、DGKG、RPL9、LRRC4和ZSCAN10。 在一些實施方案中,所述樣品選自細胞系、組織學切片、組織活檢、石蠟包埋的組織、體液及其組合;優選地,所述樣品選自血漿、血清、全血、分離的血細胞及其組合;更優選地,所述樣品為血漿cfDNA或ctDNA。 在一些實施方案中,所述目標區域選自:區域chr1:1095763-1095986、chr1:110334699-110334899、chr1:234845168-234845486、chr2:469568-469933、chr2:8314701-8314901、chr5:1291139-1291339、chr5:134374689-134374889、chr5:169805839-169806039、chr6:56716287-56716518、chr7:73407894-73408161、chr10:125650986-125651186、chr11:2226052-2226252、chr13:111277395-111277690、chr13:24844736-24844936、chr14:105102434-105102644、chr16:28984534-28984734、chr17:73607909-73608115、chr19:10823485-10823947、chr19:15344061-15344322、chr19:43271257-43271457、chr20:61304694-61304954、chr20:62330559-62330808或者它們的互補序列或經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列);或者所述互補序列的經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列);或者前述序列和/或區域的任何組合;或 所述目標區域選自:區域chr1:2166118-2166318、chr1:2978722-2978922、chr1:145562922-145563122、chr4:48485417-48485821、chr5:139076623-139076941、chr6:108488634-108488917、chr6:166970625-166970825、chr7:27260117-27260462、chr8:20375580-20375780、chr8:61788861-61789200、chr9:68413067-68413267、chr9:140683687-140683969、chr12:52311647-52311991、chr13:37005935-37006328、chr13:51417486-51417774、chr16:50715367-50715567、chr17:80745056-80745446、chr19:3688030-3688230、chr19:4059528-4059746、chr19:12978686-12978886、chr19:31842771-31842971、chr20:43331809-43332099或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合;或 所述目標區域選自:區域chr1:3567381-3567648、chr1:151811354-151811554、chr1:169396540-169396740、chr2:7148520-7148720、chr2:45232498-45232698、chr2:50574443-50574739、chr2:66666356-66666556、chr2:74731340-74731602、chr3:49459532-49459732、chr3:52864771-52864971、chr3:52865018-52865236、chr3:129693578-129693796、chr3:157825025-157825225、chr3:185973717-185973917、chr4:39448374-39448574、chr5:176829529-176829796、chr6:1614911-1615144、chr6:6724534-6724734、chr6:118229139-118229400、chr7:127744150-127744731、chr8:22438141-22438341、chr10:102497304-102497504、chr12:109996613-109997009、chr12:113515300-113515540、chr12:114162628-114162828、chr14:55243006-55243206、chr14:57264908-57265108、chr16:3139015-3139246、chr16:31580122-31580353、chr16:57025884-57026193、chr18:31159160-31159360、chr18:53447617-53447817、chr19:4912069-4912269、chr19:15580341-15580719、chr20:62046355-62046589或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合。 在另一方面,本發明涉及一種用於在個體中診斷乳腺癌或預測乳腺癌風險的套組或微陣列,其特徵在於所述套組或微陣列包含用於檢測分離自所述個體的樣品中選自以下任一組的至少一種標誌物的至少一個目標區域的甲基化水準的試劑: (1)TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1、TNFRSF6B以及它們的任何組合; (2)SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3、WISP2及它們的任何組合;或 (3)WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3、CHRNA4及它們的任何組合, 其中與相應的閾值相比,一種或多種標誌物的目標區域的甲基化水準等於或高於閾值表明所述個體患有乳腺癌或具有乳腺癌風險,以及其中所述目標區域包含至少一個CpG二核苷酸序列。 在一些實施方案中,所述甲基化為CpG甲基化。 在一些實施方案中,所述樣品選自細胞系、組織學切片、組織活檢、石蠟包埋的組織、體液及其組合;優選地,所述樣品選自血漿、血清、全血、分離的血細胞及其組合;更優選地,所述樣品為血漿cfDNA或ctDNA。 在一些實施方案中,所述試劑為選自以下的試劑: i)與所述標誌物的至少一個目標區域雜交或擴增所述標誌物的至少一個目標區域的物質,例如寡核苷酸引子或探針,優選地,所述寡核苷酸引子或探針與所述標誌物的至少一個目標區域的至少9個鹼基長的片段互補或相同;和 ii)亞硫酸氫鹽試劑或甲基化敏感限制酶試劑,所述亞硫酸氫鹽試劑或甲基化敏感限制酶試劑區分所述標誌物的至少一個目標區域內的甲基化和未甲基化二核苷酸,例如甲基化和未甲基化CpG二核苷酸。 在一些實施方案中,所述標誌物為TTLL10。在一些實施方案中,所述標誌物為EPS8L3。在一些實施方案中,所述標誌物為IRF2BP2。在一些實施方案中,所述標誌物為FAM150B。在一些實施方案中,所述標誌物為ID2。在一些實施方案中,所述標誌物為TERT。在一些實施方案中,所述標誌物為PITX1。在一些實施方案中,所述標誌物為KCNMB1。在一些實施方案中,所述標誌物為BEND6。在一些實施方案中,所述標誌物為ELN。在一些實施方案中,所述標誌物為CPXM2。在一些實施方案中,所述標誌物為TH。在一些實施方案中,所述標誌物為C1QTNF9。在一些實施方案中,所述標誌物為CARKD。在一些實施方案中,所述標誌物為TMEM179。在一些實施方案中,所述標誌物為SPNS1。在一些實施方案中,所述標誌物為MYO15B。在一些實施方案中,所述標誌物為DNM2。在一些實施方案中,所述標誌物為EPHX3。在一些實施方案中,所述標誌物為PSG8。在一些實施方案中,所述標誌物為SLCO4A1。在一些實施方案中,所述標誌物為TNFRSF6B。 在一些實施方案中,所述標誌物為SKI。在一些實施方案中,所述標誌物為PRDM16。在一些實施方案中,所述標誌物為PIAS3。在一些實施方案中,所述標誌物為SLC10A4。在一些實施方案中,所述標誌物為CXXC5。在一些實施方案中,所述標誌物為NR2E1。在一些實施方案中,所述標誌物為MPC1。在一些實施方案中,所述標誌物為HOXA13。在一些實施方案中,所述標誌物為LZTS1。在一些實施方案中,所述標誌物為CHD7。在一些實施方案中,所述標誌物為ANKRD20A1。在一些實施方案中,所述標誌物為CACNA1B。在一些實施方案中,所述標誌物為ACVRL1。在一些實施方案中,所述標誌物為CCNA1。在一些實施方案中,所述標誌物為RNASEH2B。在一些實施方案中,所述標誌物為SNX20。在一些實施方案中,所述標誌物為TBCD。在一些實施方案中,所述標誌物為PIP5K1C。在一些實施方案中,所述標誌物為ZBTB7A。在一些實施方案中,所述標誌物為DNASE2。在一些實施方案中,所述標誌物為TSHZ3。在一些實施方案中,所述標誌物為WISP2。 在一些實施方案中,所述標誌物為WRAP73。在一些實施方案中,所述標誌物為C2CD4D。在一些實施方案中,所述標誌物為CCDC181。在一些實施方案中,所述標誌物為RNF144A。在一些實施方案中,所述標誌物為SIX2。在一些實施方案中,所述標誌物為NRXN1。在一些實施方案中,所述標誌物為MEIS1。在一些實施方案中,所述標誌物為LBX2。在一些實施方案中,所述標誌物為AMT。在一些實施方案中,所述標誌物為ITIH4。在一些實施方案中,所述標誌物為TRH。在一些實施方案中,所述標誌物為SHOX2。在一些實施方案中,所述標誌物為DGKG。在一些實施方案中,所述標誌物為RPL9。在一些實施方案中,所述標誌物為PFN3。在一些實施方案中,所述標誌物為FOXC1。在一些實施方案中,所述標誌物為LY86。在一些實施方案中,所述標誌物為SLC35F1。在一些實施方案中,所述標誌物為LRRC4。在一些實施方案中,所述標誌物為PDLIM2。在一些實施方案中,所述標誌物為PAX2。在一些實施方案中,所述標誌物為MVK。在一些實施方案中,所述標誌物為DTX1。在一些實施方案中,所述標誌物為RBM19。在一些實施方案中,所述標誌物為GCH1。在一些實施方案中,所述標誌物為OTX2。在一些實施方案中,所述標誌物為ZSCAN10。在一些實施方案中,所述標誌物為AHSP。在一些實施方案中,所述標誌物為NLRC5。在一些實施方案中,所述標誌物為ASXL3。在一些實施方案中,所述標誌物為TCF4。在一些實施方案中,所述標誌物為PLIN3。在一些實施方案中,所述標誌物為RASAL3。在一些實施方案中,所述標誌物為CHRNA4。 在一些實施方案中,所述標誌物為選自以下的標誌物組合:i) TTLL10、FAM150B、BEND6、ELN、TMEM179和MYO15B;或ii) EPS8L3、IRF2BP2、TERT、TH、CARKD、SPNS1和PSG8。 在一些實施方案中,所述標誌物為選自以下的標誌物組合:i) SKI、PRDM16、LZTS1、CCNA1、PIP5K1C和WISP2;或ii) PIAS3、CHD7、CACNA1B、ACVRL1、SNX20、TBCD和ZBTB7A。 在一些實施方案中,所述標誌物為選自以下的標誌物組合:i) ITIH4、FOXC1、PDLIM2、MVK、NLRC5、TCF4和PLIN3;或ii) RNF144A、SIX2、DGKG、RPL9、LRRC4和ZSCAN10。 在一些實施方案中,所述目標區域選自:區域chr1:1095763-1095986、chr1:110334699-110334899、chr1:234845168-234845486、chr2:469568-469933、chr2:8314701-8314901、chr5:1291139-1291339、chr5:134374689-134374889、chr5:169805839-169806039、chr6:56716287-56716518、chr7:73407894-73408161、chr10:125650986-125651186、chr11:2226052-2226252、chr13:111277395-111277690、chr13:24844736-24844936、chr14:105102434-105102644、chr16:28984534-28984734、chr17:73607909-73608115、chr19:10823485-10823947、chr19:15344061-15344322、chr19:43271257-43271457、chr20:61304694-61304954、chr20:62330559-62330808或者它們的互補序列或經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列);或者所述互補序列的經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列);或者前述序列和/或區域的任何組合;或 所述目標區域選自:區域chr1:2166118-2166318、chr1:2978722-2978922、chr1:145562922-145563122、chr4:48485417-48485821、chr5:139076623-139076941、chr6:108488634-108488917、chr6:166970625-166970825、chr7:27260117-27260462、chr8:20375580-20375780、chr8:61788861-61789200、chr9:68413067-68413267、chr9:140683687-140683969、chr12:52311647-52311991、chr13:37005935-37006328、chr13:51417486-51417774、chr16:50715367-50715567、chr17:80745056-80745446、chr19:3688030-3688230、chr19:4059528-4059746、chr19:12978686-12978886、chr19:31842771-31842971、chr20:43331809-43332099或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合;或 所述目標區域選自:區域chr1:3567381-3567648、chr1:151811354-151811554、chr1:169396540-169396740、chr2:7148520-7148720、chr2:45232498-45232698、chr2:50574443-50574739、chr2:66666356-66666556、chr2:74731340-74731602、chr3:49459532-49459732、chr3:52864771-52864971、chr3:52865018-52865236、chr3:129693578-129693796、chr3:157825025-157825225、chr3:185973717-185973917、chr4:39448374-39448574、chr5:176829529-176829796、chr6:1614911-1615144、chr6:6724534-6724734、chr6:118229139-118229400、chr7:127744150-127744731、chr8:22438141-22438341、chr10:102497304-102497504、chr12:109996613-109997009、chr12:113515300-113515540、chr12:114162628-114162828、chr14:55243006-55243206、chr14:57264908-57265108、chr16:3139015-3139246、chr16:31580122-31580353、chr16:57025884-57026193、chr18:31159160-31159360、chr18:53447617-53447817、chr19:4912069-4912269、chr19:15580341-15580719、chr20:62046355-62046589或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合。 在又一個方面,本發明涉及一種用於在個體中診斷乳腺癌或預測乳腺癌風險的方法,所述方法包括如下步驟: (a)從所述個體獲取含有DNA的生物樣品;和 (b)用試劑處理步驟(a)中獲取的所述生物樣品中的DNA,所述試劑能夠區分所述DNA中的甲基化和未甲基化的位點例如CpG位點,從而獲得經處理的DNA; (c)任選地,用預擴增引子池預擴增從步驟(b)獲取的所述經處理的DNA中的至少一種靶標誌物的至少一個目標區域,其中各靶標誌物的至少一個目標區域被預擴增以獲得至少一種預擴增產物,並且所述至少一種靶標誌物包含選自以下任一組的一種或多種標誌物: (1)TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1、TNFRSF6B以及它們的任何組合; (2)SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3、WISP2及它們的任何組合;或 (3)WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3、CHRNA4及它們的任何組合, 以及其中所述目標區域包含至少一個CpG二核苷酸序列; (d)檢測步驟(b)中或者步驟(c)中至少一種靶標誌物的至少一個目標區域的甲基化範本,所述至少一種靶標誌物包含選自以下任一組的一種或多種標誌物: (1)TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1、TNFRSF6B以及它們的任何組合; (2)SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3、WISP2及它們的任何組合;或 (3)WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3、CHRNA4及它們的任何組合,和 (e)分別比較步驟(d)中的各靶標誌物的至少一個目標區域的甲基化水準和相應的閾值,其中一種或多種靶標誌物的至少一個目標區域相對於其相應的閾值具有等於或高於閾值的甲基化水準表明所述個體患有乳腺癌或具有乳腺癌風險。 在一些實施方案中,所述試劑為亞硫酸氫鹽試劑或甲基化敏感限制酶試劑,所述亞硫酸氫鹽試劑或甲基化敏感限制酶試劑區分所述標誌物的至少一個目標區域內的甲基化和未甲基化二核苷酸,例如甲基化和未甲基化CpG二核苷酸。 在一些實施方案中,在步驟(c)中,使用擴增所述標誌物的至少一個目標區域的物質,例如寡核苷酸引子,進行擴增。在一些實施方案中,所述寡核苷酸引子與所述標誌物的至少一個目標區域的至少9個鹼基長的片段互補或相同。在一些實施方案中,所述寡核苷酸引子選自SEQ ID NO: 23-66。在一些實施方案中,在步驟(d)中,使用與所述標誌物的至少一個目標區域雜交的物質,例如探針,進行檢測。在一些實施方案中,所述探針與所述標誌物的至少一個目標區域的至少9個鹼基長的片段互補或相同。 在一些實施方案中,所述標誌物為TTLL10。在一些實施方案中,所述標誌物為EPS8L3。在一些實施方案中,所述標誌物為IRF2BP2。在一些實施方案中,所述標誌物為FAM150B。在一些實施方案中,所述標誌物為ID2。在一些實施方案中,所述標誌物為TERT。在一些實施方案中,所述標誌物為PITX1。在一些實施方案中,所述標誌物為KCNMB1。在一些實施方案中,所述標誌物為BEND6。在一些實施方案中,所述標誌物為ELN。在一些實施方案中,所述標誌物為CPXM2。在一些實施方案中,所述標誌物為TH。在一些實施方案中,所述標誌物為C1QTNF9。在一些實施方案中,所述標誌物為CARKD。在一些實施方案中,所述標誌物為TMEM179。在一些實施方案中,所述標誌物為SPNS1。在一些實施方案中,所述標誌物為MYO15B。在一些實施方案中,所述標誌物為DNM2。在一些實施方案中,所述標誌物為EPHX3。在一些實施方案中,所述標誌物為PSG8。在一些實施方案中,所述標誌物為SLCO4A1。在一些實施方案中,所述標誌物為TNFRSF6B。 在一些實施方案中,所述標誌物為SKI。在一些實施方案中,所述標誌物為PRDM16。在一些實施方案中,所述標誌物為PIAS3。在一些實施方案中,所述標誌物為SLC10A4。在一些實施方案中,所述標誌物為CXXC5。在一些實施方案中,所述標誌物為NR2E1。在一些實施方案中,所述標誌物為MPC1。在一些實施方案中,所述標誌物為HOXA13。在一些實施方案中,所述標誌物為LZTS1。在一些實施方案中,所述標誌物為CHD7。在一些實施方案中,所述標誌物為ANKRD20A1。在一些實施方案中,所述標誌物為CACNA1B。在一些實施方案中,所述標誌物為ACVRL1。在一些實施方案中,所述標誌物為CCNA1。在一些實施方案中,所述標誌物為RNASEH2B。在一些實施方案中,所述標誌物為SNX20。在一些實施方案中,所述標誌物為TBCD。在一些實施方案中,所述標誌物為PIP5K1C。在一些實施方案中,所述標誌物為ZBTB7A。在一些實施方案中,所述標誌物為DNASE2。在一些實施方案中,所述標誌物為TSHZ3。在一些實施方案中,所述標誌物為WISP2。 在一些實施方案中,所述標誌物為WRAP73。在一些實施方案中,所述標誌物為C2CD4D。在一些實施方案中,所述標誌物為CCDC181。在一些實施方案中,所述標誌物為RNF144A。在一些實施方案中,所述標誌物為SIX2。在一些實施方案中,所述標誌物為NRXN1。在一些實施方案中,所述標誌物為MEIS1。在一些實施方案中,所述標誌物為LBX2。在一些實施方案中,所述標誌物為AMT。在一些實施方案中,所述標誌物為ITIH4。在一些實施方案中,所述標誌物為TRH。在一些實施方案中,所述標誌物為SHOX2。在一些實施方案中,所述標誌物為DGKG。在一些實施方案中,所述標誌物為RPL9。在一些實施方案中,所述標誌物為PFN3。在一些實施方案中,所述標誌物為FOXC1。在一些實施方案中,所述標誌物為LY86。在一些實施方案中,所述標誌物為SLC35F1。在一些實施方案中,所述標誌物為LRRC4。在一些實施方案中,所述標誌物為PDLIM2。在一些實施方案中,所述標誌物為PAX2。在一些實施方案中,所述標誌物為MVK。在一些實施方案中,所述標誌物為DTX1。在一些實施方案中,所述標誌物為RBM19。在一些實施方案中,所述標誌物為GCH1。在一些實施方案中,所述標誌物為OTX2。在一些實施方案中,所述標誌物為ZSCAN10。在一些實施方案中,所述標誌物為AHSP。在一些實施方案中,所述標誌物為NLRC5。在一些實施方案中,所述標誌物為ASXL3。在一些實施方案中,所述標誌物為TCF4。在一些實施方案中,所述標誌物為PLIN3。在一些實施方案中,所述標誌物為RASAL3。在一些實施方案中,所述標誌物為CHRNA4。 在一些實施方案中,所述標誌物為選自以下的標誌物組合:i) TTLL10、FAM150B、BEND6、ELN、TMEM179和MYO15B;或ii) EPS8L3、IRF2BP2、TERT、TH、CARKD、SPNS1和PSG8。 在一些實施方案中,所述標誌物為選自以下的標誌物組合:i) SKI、PRDM16、LZTS1、CCNA1、PIP5K1C和WISP2;或ii) PIAS3、CHD7、CACNA1B、ACVRL1、SNX20、TBCD和ZBTB7A。 在一些實施方案中,所述標誌物為選自以下的標誌物組合:i) ITIH4、FOXC1、PDLIM2、MVK、NLRC5、TCF4和PLIN3;或ii) RNF144A、SIX2、DGKG、RPL9、LRRC4和ZSCAN10。 在一些實施方案中,所述樣品選自細胞系、組織學切片、組織活檢、石蠟包埋的組織、體液及其組合;優選地,所述樣品選自血漿、血清、全血、分離的血細胞及其組合;更優選地,所述樣品為血漿cfDNA或ctDNA。 在一些實施方案中,所述檢測以基因測序、PCR (例如螢光PCR)、FISH、免疫組化、ELISA、Western或流式細胞技術為檢測方法。 在一些實施方案中,所述目標區域選自:區域chr1:1095763-1095986、chr1:110334699-110334899、chr1:234845168-234845486、chr2:469568-469933、chr2:8314701-8314901、chr5:1291139-1291339、chr5:134374689-134374889、chr5:169805839-169806039、chr6:56716287-56716518、chr7:73407894-73408161、chr10:125650986-125651186、chr11:2226052-2226252、chr13:111277395-111277690、chr13:24844736-24844936、chr14:105102434-105102644、chr16:28984534-28984734、chr17:73607909-73608115、chr19:10823485-10823947、chr19:15344061-15344322、chr19:43271257-43271457、chr20:61304694-61304954、chr20:62330559-62330808或者它們的互補序列或經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列);或者所述互補序列的經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列);或者前述序列和/或區域的任何組合;或 所述目標區域選自:區域chr1:2166118-2166318、chr1:2978722-2978922、chr1:145562922-145563122、chr4:48485417-48485821、chr5:139076623-139076941、chr6:108488634-108488917、chr6:166970625-166970825、chr7:27260117-27260462、chr8:20375580-20375780、chr8:61788861-61789200、chr9:68413067-68413267、chr9:140683687-140683969、chr12:52311647-52311991、chr13:37005935-37006328、chr13:51417486-51417774、chr16:50715367-50715567、chr17:80745056-80745446、chr19:3688030-3688230、chr19:4059528-4059746、chr19:12978686-12978886、chr19:31842771-31842971、chr20:43331809-43332099或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合;或 所述目標區域選自:區域chr1:3567381-3567648、chr1:151811354-151811554、chr1:169396540-169396740、chr2:7148520-7148720、chr2:45232498-45232698、chr2:50574443-50574739、chr2:66666356-66666556、chr2:74731340-74731602、chr3:49459532-49459732、chr3:52864771-52864971、chr3:52865018-52865236、chr3:129693578-129693796、chr3:157825025-157825225、chr3:185973717-185973917、chr4:39448374-39448574、chr5:176829529-176829796、chr6:1614911-1615144、chr6:6724534-6724734、chr6:118229139-118229400、chr7:127744150-127744731、chr8:22438141-22438341、chr10:102497304-102497504、chr12:109996613-109997009、chr12:113515300-113515540、chr12:114162628-114162828、chr14:55243006-55243206、chr14:57264908-57265108、chr16:3139015-3139246、chr16:31580122-31580353、chr16:57025884-57026193、chr18:31159160-31159360、chr18:53447617-53447817、chr19:4912069-4912269、chr19:15580341-15580719、chr20:62046355-62046589或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合。 To address the shortcomings of the existing technology, the inventors screened a large number of markers and found that the markers of the present invention can diagnose breast cancer or predict breast cancer risk with high sensitivity, specificity and low cost. Based on the markers of the present invention, breast cancer patients and healthy people can be effectively distinguished. More specifically, the present invention provides 79 cfDNA methylation markers and establishes a diagnostic model for the relationship between the methylation level of methylation markers and breast cancer. The model has the advantages of non-invasive detection, safe and convenient detection, high throughput and high detection accuracy. In one aspect, the present invention relates to the use of a reagent in preparing a kit or microarray for diagnosing breast cancer or predicting breast cancer risk in an individual, characterized in that the reagent is used to detect the methylation level of at least one target region of at least one marker selected from any of the following groups in a sample isolated from the individual: (1) TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1, TNFRSF6B and any combination thereof; (2) SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3, WISP2, and any combination thereof; or (3) WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3, CHRNA4, and any combination thereof, wherein the methylation level of at least one target region of one or more markers is equal to or higher than a threshold value compared to a corresponding threshold value, indicating that the individual has breast cancer or is at risk for breast cancer, and wherein the target region comprises at least one CpG dinucleotide sequence. In some embodiments, the methylation is CpG methylation. In some embodiments, the reagent is selected from the following reagents: i) a substance that hybridizes with at least one target region of the marker or amplifies at least one target region of the marker, such as an oligonucleotide primer or probe; and ii) a bisulfite reagent or a methylation-sensitive restriction enzyme reagent, which distinguishes between methylated and unmethylated dinucleotides, such as methylated and unmethylated CpG dinucleotides, within at least one target region of the marker. In some embodiments, the oligonucleotide primer or probe is complementary or identical to a fragment of at least 9 bases long of at least one target region of the marker. In some embodiments, the marker is TTLL10. In some embodiments, the marker is EPS8L3. In some embodiments, the marker is IRF2BP2. In some embodiments, the marker is FAM150B. In some embodiments, the marker is ID2. In some embodiments, the marker is TERT. In some embodiments, the marker is PITX1. In some embodiments, the marker is KCNMB1. In some embodiments, the marker is BEND6. In some embodiments, the marker is ELN. In some embodiments, the marker is CPXM2. In some embodiments, the marker is TH. In some embodiments, the marker is C1QTNF9. In some embodiments, the marker is CARKD. In some embodiments, the marker is TMEM179. In some embodiments, the marker is SPNS1. In some embodiments, the marker is MYO15B. In some embodiments, the marker is DNM2. In some embodiments, the marker is EPHX3. In some embodiments, the marker is PSG8. In some embodiments, the marker is SLCO4A1. In some embodiments, the marker is TNFRSF6B. In some embodiments, the marker is SKI. In some embodiments, the marker is PRDM16. In some embodiments, the marker is PIAS3. In some embodiments, the marker is SLC10A4. In some embodiments, the marker is CXXC5. In some embodiments, the marker is NR2E1. In some embodiments, the marker is MPC1. In some embodiments, the marker is HOXA13. In some embodiments, the marker is LZTS1. In some embodiments, the marker is CHD7. In some embodiments, the marker is ANKRD20A1. In some embodiments, the marker is CACNA1B. In some embodiments, the marker is ACVRL1. In some embodiments, the marker is CCNA1. In some embodiments, the marker is RNASEH2B. In some embodiments, the marker is SNX20. In some embodiments, the marker is TBCD. In some embodiments, the marker is PIP5K1C. In some embodiments, the marker is ZBTB7A. In some embodiments, the marker is DNASE2. In some embodiments, the marker is TSHZ3. In some embodiments, the marker is WISP2. In some embodiments, the marker is WRAP73. In some embodiments, the marker is C2CD4D. In some embodiments, the marker is CCDC181. In some embodiments, the marker is RNF144A. In some embodiments, the marker is SIX2. In some embodiments, the marker is NRXN1. In some embodiments, the marker is MEIS1. In some embodiments, the marker is LBX2. In some embodiments, the marker is AMT. In some embodiments, the marker is ITIH4. In some embodiments, the marker is TRH. In some embodiments, the marker is SHOX2. In some embodiments, the marker is DGKG. In some embodiments, the marker is RPL9. In some embodiments, the marker is PFN3. In some embodiments, the marker is FOXC1. In some embodiments, the marker is LY86. In some embodiments, the marker is SLC35F1. In some embodiments, the marker is LRRC4. In some embodiments, the marker is PDLIM2. In some embodiments, the marker is PAX2. In some embodiments, the marker is MVK. In some embodiments, the marker is DTX1. In some embodiments, the marker is RBM19. In some embodiments, the marker is GCH1. In some embodiments, the marker is OTX2. In some embodiments, the marker is ZSCAN10. In some embodiments, the marker is AHSP. In some embodiments, the marker is NLRC5. In some embodiments, the marker is ASXL3. In some embodiments, the marker is TCF4. In some embodiments, the marker is PLIN3. In some embodiments, the marker is RASAL3. In some embodiments, the marker is CHRNA4. In some embodiments, the marker is a marker combination selected from the following: i) TTLL10, FAM150B, BEND6, ELN, TMEM179 and MYO15B; or ii) EPS8L3, IRF2BP2, TERT, TH, CARKD, SPNS1 and PSG8. In some embodiments, the marker is a marker combination selected from the following: i) SKI, PRDM16, LZTS1, CCNA1, PIP5K1C and WISP2; or ii) PIAS3, CHD7, CACNA1B, ACVRL1, SNX20, TBCD and ZBTB7A. In some embodiments, the marker is a marker combination selected from: i) ITIH4, FOXC1, PDLIM2, MVK, NLRC5, TCF4 and PLIN3; or ii) RNF144A, SIX2, DGKG, RPL9, LRRC4 and ZSCAN10. In some embodiments, the sample is selected from cell lines, histological sections, tissue biopsies, paraffin-embedded tissues, body fluids and combinations thereof; preferably, the sample is selected from plasma, serum, whole blood, isolated blood cells and combinations thereof; more preferably, the sample is plasma cfDNA or ctDNA. In some embodiments, the target region is selected from the group consisting of: chr1:1095763-1095986, chr1:110334699-110334899, chr1:234845168-234845486, chr2:469568-469933, chr2:8314701-8314901, chr5:1291139-1291339, chr5:134374 689-134374889, chr5:169805839-169806039, chr6:56716287-56716518, chr7:73407894-73408161, chr10:125650986-125651186, chr11:2226052-2226252, chr13:111277395-111277690, chr1 3:24844736-24844936, chr14:105102434-105102644, chr16:28984534-28984734, chr17:73607909-73608115, chr19:10823485-10823947, chr19:15344061-15344322, chr19:43271257-432714 57, chr20:61304694-61304954, chr20:62330559-62330808, or complementary sequences or treated sequences thereof (e.g., bisulfite-converted corresponding sequences or MSRE-treated corresponding sequences); or treated sequences of the complementary sequences (e.g., bisulfite-converted corresponding sequences or MSRE-treated corresponding sequences); or any combination of the foregoing sequences and/or regions; or The target region is selected from: region chr1:2166118-2166318, chr1:2978722-2978922, chr1:145562922-145563122, chr4:48485417-48485821, chr5:139076623-139076941, chr6:108488634-1084 88917, chr6:166970625-166970825, chr7:27260117-27260462, chr8:20375580-20375780, chr8:61788861-61789200, chr9:68413067-68413267, chr9:140683687-1406839 69, chr12:52311647-52311991, chr13:37005935-37006328, chr13:51417486-51417774, chr16:50715367-50715567, chr17:80745056-80745446, chr19:3688030-3688230, chr19:4059528-4059746, chr19:12978686-12978886, chr19:31842771-31842971, chr20:43331809-43332099 or their complementary sequences or processed sequences; or the processed sequence of the complementary sequence; or any combination of the foregoing sequences and/or regions; or The target region is selected from: region chr1:3567381-3567648, chr1:151811354-151811554, chr1:169396540-169396740, chr2:7148520-7148720, chr2:45232498-45232698, chr2:50574443-50574739, chr2:66666356-66666556, chr2:74731340-74731602, chr3:49459532-49459732, chr3: 52864771-52864971、chr3:52865018-52865236、chr3:129693578-129693796、chr3:157825025-157825225、chr3:185973717-185973917、chr4:39448374-39448574、chr5:176829529-176829796、chr6:1614911-1615144、chr6:6724534-6724734、chr6:118229139-11 8229400, chr7:127744150-127744731, chr8:22438141-22438341, chr10:102497304-102497504, chr12:109996613-109997009, chr12:113515300-113515540, chr12:114162628-114162828, chr14:55243006-55243206, chr14:57264908-57265108, chr16:3139015-3 139246, chr16:31580122-31580353, chr16:57025884-57026193, chr18:31159160-31159360, chr18:53447617-53447817, chr19:4912069-4912269, chr19:15580341-15580719, chr20:62046355-62046589 or their complementary sequences or processed sequences; or the processed sequence of the complementary sequence; or any combination of the foregoing sequences and/or regions. In another aspect, the present invention relates to a kit or microarray for diagnosing breast cancer or predicting the risk of breast cancer in an individual, characterized in that the kit or microarray comprises a reagent for detecting the methylation level of at least one target region of at least one marker selected from any of the following groups in a sample isolated from the individual: (1) TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1, TNFRSF6B, and any combination thereof; (2) SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3, WISP2, and any combination thereof; or (3) WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3, CHRNA4, and any combination thereof, wherein the methylation level of the target region of one or more markers is equal to or higher than the threshold value compared to the corresponding threshold value, indicating that the individual has breast cancer or has a risk of breast cancer, and wherein the target region comprises at least one CpG dinucleotide sequence. In some embodiments, the methylation is CpG methylation. In some embodiments, the sample is selected from cell lines, histological sections, tissue biopsies, paraffin-embedded tissues, body fluids, and combinations thereof; preferably, the sample is selected from plasma, serum, whole blood, isolated blood cells, and combinations thereof; more preferably, the sample is plasma cfDNA or ctDNA. In some embodiments, the reagent is selected from the following reagents: i) a substance that hybridizes with at least one target region of the marker or amplifies at least one target region of the marker, such as an oligonucleotide primer or probe, preferably, the oligonucleotide primer or probe is complementary or identical to a fragment of at least 9 bases long of at least one target region of the marker; and ii) a bisulfite reagent or a methylation-sensitive restriction enzyme reagent, which distinguishes methylated and unmethylated dinucleotides in at least one target region of the marker, such as methylated and unmethylated CpG dinucleotides. In some embodiments, the marker is TTLL10. In some embodiments, the marker is EPS8L3. In some embodiments, the marker is IRF2BP2. In some embodiments, the marker is FAM150B. In some embodiments, the marker is ID2. In some embodiments, the marker is TERT. In some embodiments, the marker is PITX1. In some embodiments, the marker is KCNMB1. In some embodiments, the marker is BEND6. In some embodiments, the marker is ELN. In some embodiments, the marker is CPXM2. In some embodiments, the marker is TH. In some embodiments, the marker is C1QTNF9. In some embodiments, the marker is CARKD. In some embodiments, the marker is TMEM179. In some embodiments, the marker is SPNS1. In some embodiments, the marker is MYO15B. In some embodiments, the marker is DNM2. In some embodiments, the marker is EPHX3. In some embodiments, the marker is PSG8. In some embodiments, the marker is SLCO4A1. In some embodiments, the marker is TNFRSF6B. In some embodiments, the marker is SKI. In some embodiments, the marker is PRDM16. In some embodiments, the marker is PIAS3. In some embodiments, the marker is SLC10A4. In some embodiments, the marker is CXXC5. In some embodiments, the marker is NR2E1. In some embodiments, the marker is MPC1. In some embodiments, the marker is HOXA13. In some embodiments, the marker is LZTS1. In some embodiments, the marker is CHD7. In some embodiments, the marker is ANKRD20A1. In some embodiments, the marker is CACNA1B. In some embodiments, the marker is ACVRL1. In some embodiments, the marker is CCNA1. In some embodiments, the marker is RNASEH2B. In some embodiments, the marker is SNX20. In some embodiments, the marker is TBCD. In some embodiments, the marker is PIP5K1C. In some embodiments, the marker is ZBTB7A. In some embodiments, the marker is DNASE2. In some embodiments, the marker is TSHZ3. In some embodiments, the marker is WISP2. In some embodiments, the marker is WRAP73. In some embodiments, the marker is C2CD4D. In some embodiments, the marker is CCDC181. In some embodiments, the marker is RNF144A. In some embodiments, the marker is SIX2. In some embodiments, the marker is NRXN1. In some embodiments, the marker is MEIS1. In some embodiments, the marker is LBX2. In some embodiments, the marker is AMT. In some embodiments, the marker is ITIH4. In some embodiments, the marker is TRH. In some embodiments, the marker is SHOX2. In some embodiments, the marker is DGKG. In some embodiments, the marker is RPL9. In some embodiments, the marker is PFN3. In some embodiments, the marker is FOXC1. In some embodiments, the marker is LY86. In some embodiments, the marker is SLC35F1. In some embodiments, the marker is LRRC4. In some embodiments, the marker is PDLIM2. In some embodiments, the marker is PAX2. In some embodiments, the marker is MVK. In some embodiments, the marker is DTX1. In some embodiments, the marker is RBM19. In some embodiments, the marker is GCH1. In some embodiments, the marker is OTX2. In some embodiments, the marker is ZSCAN10. In some embodiments, the marker is AHSP. In some embodiments, the marker is NLRC5. In some embodiments, the marker is ASXL3. In some embodiments, the marker is TCF4. In some embodiments, the marker is PLIN3. In some embodiments, the marker is RASAL3. In some embodiments, the marker is CHRNA4. In some embodiments, the marker is a marker combination selected from the following: i) TTLL10, FAM150B, BEND6, ELN, TMEM179 and MYO15B; or ii) EPS8L3, IRF2BP2, TERT, TH, CARKD, SPNS1 and PSG8. In some embodiments, the marker is a marker combination selected from the following: i) SKI, PRDM16, LZTS1, CCNA1, PIP5K1C and WISP2; or ii) PIAS3, CHD7, CACNA1B, ACVRL1, SNX20, TBCD and ZBTB7A. In some embodiments, the marker is a marker combination selected from the following: i) ITIH4, FOXC1, PDLIM2, MVK, NLRC5, TCF4 and PLIN3; or ii) RNF144A, SIX2, DGKG, RPL9, LRRC4 and ZSCAN10. In some embodiments, the target region is selected from the group consisting of: chr1:1095763-1095986, chr1:110334699-110334899, chr1:234845168-234845486, chr2:469568-469933, chr2:8314701-8314901, chr5:1291139-1291339, chr5:134374 689-134374889, chr5:169805839-169806039, chr6:56716287-56716518, chr7:73407894-73408161, chr10:125650986-125651186, chr11:2226052-2226252, chr13:111277395-111277690, chr1 3:24844736-24844936, chr14:105102434-105102644, chr16:28984534-28984734, chr17:73607909-73608115, chr19:10823485-10823947, chr19:15344061-15344322, chr19:43271257-432714 57, chr20:61304694-61304954, chr20:62330559-62330808, or complementary sequences or treated sequences thereof (e.g., bisulfite-converted corresponding sequences or MSRE-treated corresponding sequences); or treated sequences of the complementary sequences (e.g., bisulfite-converted corresponding sequences or MSRE-treated corresponding sequences); or any combination of the foregoing sequences and/or regions; or The target region is selected from: region chr1:2166118-2166318, chr1:2978722-2978922, chr1:145562922-145563122, chr4:48485417-48485821, chr5:139076623-139076941, chr6:108488634-1084 88917, chr6:166970625-166970825, chr7:27260117-27260462, chr8:20375580-20375780, chr8:61788861-61789200, chr9:68413067-68413267, chr9:140683687-1406839 69, chr12:52311647-52311991, chr13:37005935-37006328, chr13:51417486-51417774, chr16:50715367-50715567, chr17:80745056-80745446, chr19:3688030-3688230, chr19:4059528-4059746, chr19:12978686-12978886, chr19:31842771-31842971, chr20:43331809-43332099 or their complementary sequences or processed sequences; or the processed sequence of the complementary sequence; or any combination of the foregoing sequences and/or regions; or The target region is selected from: region chr1:3567381-3567648, chr1:151811354-151811554, chr1:169396540-169396740, chr2:7148520-7148720, chr2:45232498-45232698, chr2:50574443-50574739, chr2:66666356-66666556, chr2:74731340-74731602, chr3:49459532-49459732, chr3: 52864771-52864971、chr3:52865018-52865236、chr3:129693578-129693796、chr3:157825025-157825225、chr3:185973717-185973917、chr4:39448374-39448574、chr5:176829529-176829796、chr6:1614911-1615144、chr6:6724534-6724734、chr6:118229139-11 8229400, chr7:127744150-127744731, chr8:22438141-22438341, chr10:102497304-102497504, chr12:109996613-109997009, chr12:113515300-113515540, chr12:114162628-114162828, chr14:55243006-55243206, chr14:57264908-57265108, chr16:3139015-3 139246, chr16:31580122-31580353, chr16:57025884-57026193, chr18:31159160-31159360, chr18:53447617-53447817, chr19:4912069-4912269, chr19:15580341-15580719, chr20:62046355-62046589 or their complementary sequences or processed sequences; or the processed sequence of the complementary sequence; or any combination of the foregoing sequences and/or regions. In another aspect, the present invention relates to a method for diagnosing breast cancer or predicting breast cancer risk in an individual, the method comprising the following steps: (a) obtaining a biological sample containing DNA from the individual; and (b) treating the DNA in the biological sample obtained in step (a) with a reagent capable of distinguishing methylated and unmethylated sites, such as CpG sites, in the DNA, thereby obtaining treated DNA; (c) optionally, pre-amplifying at least one target region of at least one target marker in the treated DNA obtained from step (b) with a pre-amplification primer pool, wherein at least one target region of each target marker is pre-amplified to obtain at least one pre-amplification product, and the at least one target marker comprises one or more markers selected from any one of the following groups: (1) TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1, TNFRSF6B, and any combination thereof; (2) SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3, WISP2, and any combination thereof; or (3) WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3, CHRNA4, and any combination thereof, and wherein the target region comprises at least one CpG dinucleotide sequence; (d) detecting a methylation profile of at least one target region of at least one target marker in step (b) or in step (c), wherein the at least one target marker comprises one or more markers selected from any one of the following groups: (1) TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1, TNFRSF6B, and any combination thereof; (2) SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3, WISP2, and any combination thereof; or (3) WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3, CHRNA4, and any combination thereof, and (e) respectively comparing the methylation level and the corresponding threshold of at least one target region of each target marker in step (d), wherein at least one target region of one or more target markers has a methylation level equal to or higher than the threshold relative to its corresponding threshold, indicating that the individual suffers from breast cancer or has a risk of breast cancer. In some embodiments, the reagent is a bisulfite reagent or a methylation-sensitive restriction enzyme reagent, and the bisulfite reagent or the methylation-sensitive restriction enzyme reagent distinguishes between methylated and unmethylated dinucleotides, such as methylated and unmethylated CpG dinucleotides, in at least one target region of the marker. In some embodiments, in step (c), a substance that amplifies at least one target region of the marker, such as an oligonucleotide primer, is used for amplification. In some embodiments, the oligonucleotide primer is complementary or identical to a fragment of at least 9 bases in length of at least one target region of the marker. In some embodiments, the oligonucleotide primer is selected from SEQ ID NO: 23-66. In some embodiments, in step (d), a substance hybridized with at least one target region of the marker, such as a probe, is used for detection. In some embodiments, the probe is complementary or identical to a fragment of at least 9 bases in length of at least one target region of the marker. In some embodiments, the marker is TTLL10. In some embodiments, the marker is EPS8L3. In some embodiments, the marker is IRF2BP2. In some embodiments, the marker is FAM150B. In some embodiments, the marker is ID2. In some embodiments, the marker is TERT. In some embodiments, the marker is PITX1. In some embodiments, the marker is KCNMB1. In some embodiments, the marker is BEND6. In some embodiments, the marker is ELN. In some embodiments, the marker is CPXM2. In some embodiments, the marker is TH. In some embodiments, the marker is C1QTNF9. In some embodiments, the marker is CARKD. In some embodiments, the marker is TMEM179. In some embodiments, the marker is SPNS1. In some embodiments, the marker is MYO15B. In some embodiments, the marker is DNM2. In some embodiments, the marker is EPHX3. In some embodiments, the marker is PSG8. In some embodiments, the marker is SLCO4A1. In some embodiments, the marker is TNFRSF6B. In some embodiments, the marker is SKI. In some embodiments, the marker is PRDM16. In some embodiments, the marker is PIAS3. In some embodiments, the marker is SLC10A4. In some embodiments, the marker is CXXC5. In some embodiments, the marker is NR2E1. In some embodiments, the marker is MPC1. In some embodiments, the marker is HOXA13. In some embodiments, the marker is LZTS1. In some embodiments, the marker is CHD7. In some embodiments, the marker is ANKRD20A1. In some embodiments, the marker is CACNA1B. In some embodiments, the marker is ACVRL1. In some embodiments, the marker is CCNA1. In some embodiments, the marker is RNASEH2B. In some embodiments, the marker is SNX20. In some embodiments, the marker is TBCD. In some embodiments, the marker is PIP5K1C. In some embodiments, the marker is ZBTB7A. In some embodiments, the marker is DNASE2. In some embodiments, the marker is TSHZ3. In some embodiments, the marker is WISP2. In some embodiments, the marker is WRAP73. In some embodiments, the marker is C2CD4D. In some embodiments, the marker is CCDC181. In some embodiments, the marker is RNF144A. In some embodiments, the marker is SIX2. In some embodiments, the marker is NRXN1. In some embodiments, the marker is MEIS1. In some embodiments, the marker is LBX2. In some embodiments, the marker is AMT. In some embodiments, the marker is ITIH4. In some embodiments, the marker is TRH. In some embodiments, the marker is SHOX2. In some embodiments, the marker is DGKG. In some embodiments, the marker is RPL9. In some embodiments, the marker is PFN3. In some embodiments, the marker is FOXC1. In some embodiments, the marker is LY86. In some embodiments, the marker is SLC35F1. In some embodiments, the marker is LRRC4. In some embodiments, the marker is PDLIM2. In some embodiments, the marker is PAX2. In some embodiments, the marker is MVK. In some embodiments, the marker is DTX1. In some embodiments, the marker is RBM19. In some embodiments, the marker is GCH1. In some embodiments, the marker is OTX2. In some embodiments, the marker is ZSCAN10. In some embodiments, the marker is AHSP. In some embodiments, the marker is NLRC5. In some embodiments, the marker is ASXL3. In some embodiments, the marker is TCF4. In some embodiments, the marker is PLIN3. In some embodiments, the marker is RASAL3. In some embodiments, the marker is CHRNA4. In some embodiments, the marker is a marker combination selected from the following: i) TTLL10, FAM150B, BEND6, ELN, TMEM179 and MYO15B; or ii) EPS8L3, IRF2BP2, TERT, TH, CARKD, SPNS1 and PSG8. In some embodiments, the marker is a marker combination selected from the following: i) SKI, PRDM16, LZTS1, CCNA1, PIP5K1C and WISP2; or ii) PIAS3, CHD7, CACNA1B, ACVRL1, SNX20, TBCD and ZBTB7A. In some embodiments, the marker is a combination of markers selected from the following: i) ITIH4, FOXC1, PDLIM2, MVK, NLRC5, TCF4 and PLIN3; or ii) RNF144A, SIX2, DGKG, RPL9, LRRC4 and ZSCAN10. In some embodiments, the sample is selected from cell lines, histological sections, tissue biopsies, paraffin-embedded tissues, body fluids and combinations thereof; preferably, the sample is selected from plasma, serum, whole blood, isolated blood cells and combinations thereof; more preferably, the sample is plasma cfDNA or ctDNA. In some embodiments, the detection is performed by gene sequencing, PCR (e.g., fluorescent PCR), FISH, immunohistochemistry, ELISA, Western or flow cytometry. In some embodiments, the target region is selected from the group consisting of: chr1:1095763-1095986, chr1:110334699-110334899, chr1:234845168-234845486, chr2:469568-469933, chr2:8314701-8314901, chr5:1291139-1291339, chr5:134374 689-134374889, chr5:169805839-169806039, chr6:56716287-56716518, chr7:73407894-73408161, chr10:125650986-125651186, chr11:2226052-2226252, chr13:111277395-111277690, chr1 3:24844736-24844936, chr14:105102434-105102644, chr16:28984534-28984734, chr17:73607909-73608115, chr19:10823485-10823947, chr19:15344061-15344322, chr19:43271257-432714 57, chr20:61304694-61304954, chr20:62330559-62330808, or complementary sequences or treated sequences thereof (e.g., bisulfite-converted corresponding sequences or MSRE-treated corresponding sequences); or treated sequences of the complementary sequences (e.g., bisulfite-converted corresponding sequences or MSRE-treated corresponding sequences); or any combination of the foregoing sequences and/or regions; or The target region is selected from: region chr1:2166118-2166318, chr1:2978722-2978922, chr1:145562922-145563122, chr4:48485417-48485821, chr5:139076623-139076941, chr6:108488634-1084 88917, chr6:166970625-166970825, chr7:27260117-27260462, chr8:20375580-20375780, chr8:61788861-61789200, chr9:68413067-68413267, chr9:140683687-1406839 69, chr12:52311647-52311991, chr13:37005935-37006328, chr13:51417486-51417774, chr16:50715367-50715567, chr17:80745056-80745446, chr19:3688030-3688230, chr19:4059528-4059746, chr19:12978686-12978886, chr19:31842771-31842971, chr20:43331809-43332099 or their complementary sequences or processed sequences; or the processed sequence of the complementary sequence; or any combination of the foregoing sequences and/or regions; or The target region is selected from: region chr1:3567381-3567648, chr1:151811354-151811554, chr1:169396540-169396740, chr2:7148520-7148720, chr2:45232498-45232698, chr2:50574443-50574739, chr2:66666356-66666556, chr2:74731340-74731602, chr3:49459532-49459732, chr3: 52864771-52864971、chr3:52865018-52865236、chr3:129693578-129693796、chr3:157825025-157825225、chr3:185973717-185973917、chr4:39448374-39448574、chr5:176829529-176829796、chr6:1614911-1615144、chr6:6724534-6724734、chr6:118229139-11 8229400, chr7:127744150-127744731, chr8:22438141-22438341, chr10:102497304-102497504, chr12:109996613-109997009, chr12:113515300-113515540, chr12:114162628-114162828, chr14:55243006-55243206, chr14:57264908-57265108, chr16:3139015-3 139246, chr16:31580122-31580353, chr16:57025884-57026193, chr18:31159160-31159360, chr18:53447617-53447817, chr19:4912069-4912269, chr19:15580341-15580719, chr20:62046355-62046589 or their complementary sequences or processed sequences; or the processed sequence of the complementary sequence; or any combination of the foregoing sequences and/or regions.

參考用於說明的示例應用在下文中描述本發明的數個方面。應當理解的是,陳述許多具體細節、關係和方法來提供對本發明的充分理解。然而,在相關領域的普通技術人員將容易地認識到,可在不含一個或多個具體細節的情況下實施本發明或者可用其他方法來實施本發明。 本發明涉及新發現的標誌物的甲基化水準與乳腺癌之間的關係。本文所述標誌物提供用於在個體中診斷乳腺癌或評估乳腺癌風險的方法。因此,本發明的一個實施方案代表標誌物的改進,所述標誌物適用於診斷乳腺癌或評估乳腺癌風險。在又一個實施方案中,本發明新發現的標誌物可與本領域已知的一種或多種其它乳腺癌標誌物(例如CEA、CA 15-3、CA 125、Ki-67、HER-2、ER、PR等)和/或常規檢查手段例如乳腺指檢與醫生查體、乳腺超聲和乳腺X線、細針穿刺組織活檢等聯用,例如用於在個體中診斷乳腺癌或評估乳腺癌風險或用於製備用於此目的的套組和/或微陣列。 術語“樣品”意指已知或疑似表現或含有本文所述標誌物的材料。樣品可來源於生物來源(“生物樣品”),例如組織(例如活組織檢查樣品)、提取物或包括細胞(例如腫瘤細胞)、細胞裂解物在內的細胞培養物和生物或生理流體,例如全血、血漿、血清、唾液、腦髓液、汗、尿液、乳汁、腹膜液等。獲自來源的樣品或在預處理以改進樣品特徵(例如從血液製備血漿等)後的樣品可直接使用。在本發明的某些方面,樣品是人生理流體,例如人血漿。在本發明的某些方面,樣品是活組織檢查樣品例如經組織檢查獲得的腫瘤組織或細胞。 可按照本發明進行分析的樣品包括臨床來源的多核苷酸。正如本領域技術人員應理解的是,靶多核苷酸可包括DNA或RNA,尤其是DNA,特別是游離DNA例如細胞外游離DNA。在本發明的某些具體方面,樣品是血漿cfDNA或ctDNA。 可採用本領域已知方法,在一個或多個核苷酸上對靶多核苷酸或者對與靶多核苷酸雜交或擴增的物質(如寡核苷酸引子或探針)進行可檢測標記。可檢測標記可以是而不限於發光標記、螢光標記、生物發光標記、化學發光標記、放射性標記和比色標記。 如本文所用,術語“標誌物”是指這樣的目的核酸、基因區域或甲基化位元點:其甲基化水準或基於甲基化水準的計算模型的得分(例如在使用機器學習模型例如邏輯回歸模型的情況下,ROC曲線的AUC)指示乳腺癌診斷或乳腺癌高風險。基因應被認為包括其所有轉錄變體及其所有啟動子和調控元件。如本領域技術人員所理解的,已知某些基因在個體之間表現出等位基因變異或單核苷酸多態性(“SNP”)。SNP包括不同長度的簡單的重複序列(例如二核苷酸和三核苷酸重複)的插入和缺失。因此,本申請應被理解為擴展到由任何其他突變、多態性或等位元基因變異產生的標誌物/基因的所有形式。另外,應當理解,術語“標誌物”應既包括標誌物或基因的正義鏈序列,也包括標誌物或基因的反義鏈序列。 本文所用的術語“標誌物”被寬泛地解釋為既包括1)在生物樣品或基因組DNA中發現的原始標誌物(處於特定的甲基化狀態),也包括2)其經過處理的序列(例如亞硫酸氫鹽轉化後的對應區域或MSRE處理後的對應區域)。亞硫酸氫鹽轉化後的對應區域與基因組序列中的目標標誌物不同之處在於,一個或多個未甲基化的胞嘧啶殘基被轉化為尿嘧啶鹼基、胸腺嘧啶鹼基或在雜交行為上與胞嘧啶不同的其他鹼基。經MSRE處理的對應區域與基因組序列中的目標標誌物不同之處在於,該序列在一個或多個MSRE切割位點處被切割。 本發明中,“甲基化狀態”是指一種或多種甲基化核苷酸鹼基在核酸分子中的存在、不存在和/或其量。例如,含有甲基化胞嘧啶的核酸分子被認為是甲基化的,此時核酸分子的甲基化狀態是甲基化的。不含有任何甲基化修飾的胞嘧啶的核酸分子被認為是未甲基化的,此時核酸分子的甲基化狀態是未甲基化的。在一些實施方案中,如果核酸在特定基因座(例如特定單一CpG二核苷酸的基因座)或基因座特定組合處不是甲基化的,則核酸可表徵為“未甲基化”,即使它在相同基因或分子的其他基因座處為甲基化的。 因此,甲基化狀態描述了核酸(例如基因組序列)的甲基化的狀態。另外,甲基化狀態是指在特定基因組基因座處的核酸區段與甲基化相關的特徵。此類特徵包括但不限於此DNA序列內的任何胞嘧啶(C)殘基是否為甲基化的、一個或多個甲基化C殘基的位置、貫穿核酸的任何特定區域的甲基化C的頻率或百分比以及由於例如等位基因起點的差異而導致的甲基化等位基因差異。“甲基化狀態”是指在生物樣品中貫穿核酸的任何特定區域的甲基化C或未甲基化C的相對濃度、絕對濃度或模式。例如,如果核酸序列內的一個或多個胞嘧啶(C)殘基是甲基化的,則其可稱為“超甲基化”或具有“增加的甲基化”,而如果DNA序列內的一個或多個胞嘧啶(C)殘基是未甲基化的,則其可稱為“去甲基化”或具有“減少的甲基化”。同樣地,如果核酸序列內的一個或多個胞嘧啶(C)殘基與另一個核酸序列(例如來自不同區域或來自不同個體等)相比是甲基化的,則該序列被認為與其他核酸序列相比是超甲基化的或具有增加的甲基化。或者,如果DNA序列內的一個或多個胞嘧啶(C)殘基與另一個核酸序列(例如來自不同區域或來自不同個體等)相比是未甲基化的,則該序列被認為與其他核酸序列相比是去甲基化的或具有減少的甲基化。 本發明中,甲基化水準代表一個或多個位點處於甲基化狀態的比例。一個區域(或一組位元點)的甲基化水準是該區域中所有位元點(或組中所有位點)的甲基水準的均值。因此,區域的甲基化水準上升或下降並不表示區域中所有甲基化位元點的甲基化水準都上升或下降。本領域知曉將檢測DNA甲基化的方法(例如簡化甲基化測序、螢光定量PCR)所得結果轉化為甲基化水準的過程。 本文所述“甲基化水準”包括所涉序列中任意數量、和任意位置的CpG的甲基化狀態的關係。所述關係可以是甲基化狀態參數(例如0或1)的加減或數學演算法的計算結果(例如均值、百分比、份數、比例、程度或利用數學模型進行的計算),包括但不限於甲基化水準度量值、甲基化單倍型比值、甲基化單倍型負荷或在使用機器學習模型例如邏輯回歸模型的情況下,ROC曲線的AUC。 在本發明中用作標誌物的基因預期包括所述基因的天然存在的變體、其互補序列、其所有啟動子和調控元件(例如基因注釋起始位點上游5 kb (例如4 kb、3 kb、2 kb或1 kb)和其基因注釋終止位點下游5 kb以內的核酸序列)以及所述基因或所述變體的片段,特別是分子生物學上可檢測的片段。在本發明中,術語“分子生物學上可檢測的片段”、“目標區域”和“靶基因區域”可以互換使用。分子生物學上可檢測的片段優選地包含所述標誌物的至少16、17、18、19、20、22、25、30、35、40、45、50、60、70、80、90、100、150、200、250、300或更多個連續核苷酸。在一些實施方案中,所述連續核苷酸包含至少1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、12個、15個或更多個CpG二核苷酸序列。在一些實施方案中,優選靶基因區域富含CpG二核苷酸。 在本發明中,術語“目標區域”或“靶基因區域”是指由標誌物基因本身、其基因注釋起始位點上游5 kb (例如4 kb、3 kb、2 kb或1 kb)和其基因注釋終止位點下游5 kb (例如4 kb、3 kb、2 kb或1 kb)所構成的核酸區域內的任何分子生物學上可檢測的片段、或者其互補序列或經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列)、或者所述互補序列的經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列)。例如,下表1A、表1B和表1C中的靶標誌物的靶基因區域包括其Hg19座標以及該座標上下游5 kb (例如4 kb、3 kb、2 kb或1 kb)以內的任何分子生物學上可檢測的片段、其互補序列或經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列)、以及所述互補序列的經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列)。更優選地,下表1A、表1B和表1C中的靶標誌物的靶基因區域包括其Hg19座標以及該座標上游5 kb (例如4 kb、3 kb、2 kb或1 kb)以內的任何分子生物學上可檢測的片段、其互補序列或經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列)、以及所述互補序列的經過處理的序列(例如亞硫酸氫鹽轉化後的對應序列或MSRE處理後的對應序列)。 在一些實施方案中,優選使用和檢測選自下表1A、表1B和表1C的靶標誌物及其靶基因區域或它們的任何組合: 本文所述的TTLL10為蛋白編碼基因,又稱Tubulin Tyrosine Ligase Like 10等,編碼蛋白功能與蛋白甘胺酸連接酶活性相關。 本文所述的EPS8L3為蛋白編碼基因,又稱EPS8 Like 3等,編碼蛋白與表皮生長因子受體通路底物8相關。 本文所述的IRF2BP2為蛋白編碼基因,又稱Interferon Regulatory Factor 2 Binding Protein 2等,編碼蛋白與IRF2蛋白結合形成轉錄抑制複合物。 本文所述的FAM150B為蛋白編碼基因,又稱ALKAL2、ALK And LTK Ligand 2等,編碼蛋白為絡胺酸激酶ALK和LTK受體的配體。 本文所述的ID2為蛋白編碼基因,又稱Inhibitor Of DNA Binding 2等,編碼蛋白功能與轉錄調控相關。 本文所述的TERT為蛋白編碼基因,又稱Telomerase Reverse Transcriptase等,編碼蛋白參與滑膜成纖維細胞的凋亡和WNT信號通路等。 本文所述的PITX1為蛋白編碼基因,又稱Paired Like Homeodomain 1等,功能為轉錄調控因子啟動基因表現。 本文所述的KCNMB1為蛋白編碼基因,又稱Potassium Calcium-Activated Channel Subfamily M Regulatory Beta Subunit 1,編碼蛋白與鉀鈣離子通道活性相關。 本文所述的BEND6為蛋白編碼基因,又稱BEN Domain Containing 6,編碼蛋白參與Notch信號通路。 本文所述的ELN為蛋白編碼基因,又稱Elastin,編碼蛋白參與構成細胞外基質。 本文所述的CPXM2為蛋白編碼基因,又稱Carboxypeptidase X, M14 Family Member 2,編碼蛋白與金屬羧肽酶活性有關。 本文所述的TH為蛋白編碼基因,又稱Tyrosine Hydroxylase,編碼蛋白功能為酪胺酸羥化酶。 本文所述的C1QTNF9為蛋白編碼基因,又稱C1q And TNF Related 9,編碼蛋白啟動AMPK, AKT,和p44/42 MAPK信號通路。 本文所述的CARKD為蛋白編碼基因,又稱NAXD、NAD(P)HX Dehydratase,編碼蛋白參與水溶性維生素和輔因子的代謝和煙酸代謝通路。 本文所述的TMEM179為蛋白編碼基因,又稱Transmembrane Protein 179。 本文所述的SPNS1為蛋白編碼基因,又稱Sphingolipid Transporter 1 (Putative),編碼蛋白功能與轉運體活性相關。 本文所述的MYO15B為蛋白編碼基因,又稱Myosin XVB。 本文所述的DNM2為蛋白編碼基因,又稱Dynamin 2,編碼蛋白為GTP結合蛋白的亞類之一。 本文所述的EPHX3為蛋白編碼基因,又稱Epoxide Hydrolase 3,編碼蛋白催化含環氧脂肪酸水解。 本文所述的PSG8為蛋白編碼基因,又稱Pregnancy Specific Beta-1-Glycoprotein 8,編碼蛋白參與血管壁細胞表面互作信號通路和血小板鈣離子升高回應信號通路。 本文所述的SLCO4A1為蛋白編碼基因,又稱Solute Carrier Organic Anion Transporter Family Member 4A1,編碼蛋白與轉運活性有關。 本文所述的TNFRSF6B為蛋白編碼基因,又稱TNF Receptor Superfamily Member 6b,編碼蛋白屬於腫瘤壞死因子受體家族。 在一些實施方案中,優選使用和檢測表1A中的靶標誌物及其靶基因區域的兩種或更多種(例如3種、4種、5種或6種)的組合。在一些實施方案中,優選使用和檢測表1A中的靶標誌物及其靶基因區域的以下組合:i) TTLL10、FAM150B、BEND6、ELN、TMEM179和MYO15B;或ii) EPS8L3、IRF2BP2、TERT、TH、CARKD、SPNS1和PSG8。 在一些實施方案中,優選使用和檢測靶標誌物CARKD及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物TTLL10及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物EPS8L3及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物IRF2BP2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物FAM150B及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物ID2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物TERT及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物PITX1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物KCNMB1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物BEND6及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物ELN及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物CPXM2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物TH及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物C1QTNF9及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物TMEM179及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物SPNS1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物MYO15B及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、DNM2、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物DNM2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、EPHX3、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物EPHX3及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、PSG8、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物PSG8及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、SLCO4A1和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物SLCO4A1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8和TNFRSF6B。 在一些實施方案中,優選使用和檢測靶標誌物TNFRSF6B及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8和SLCO4A1。 本文所述的SKI為蛋白編碼基因,又名SKI Proto-Oncogene,編碼蛋白功能為TGF-beta信號通路抑制子。 本文所述的PRDM16為蛋白編碼基因,又名PR/SET Domain 16,編碼蛋白可調控基因轉錄。 本文所述的PIAS3為蛋白編碼基因,又名Protein Inhibitor Of Activated STAT 3,編碼蛋白抑制STAT3信號通路啟動。 本文所述的SLC10A4為蛋白編碼基因,又名Solute Carrier Family 10 Member 4,編碼蛋白為轉運蛋白,參與膽汁酸等轉運。 本文所述的CXXC5為蛋白編碼基因,又名CXXC Finger Protein 5,編碼蛋白結合特定DNA基序,參與NF-kappa-B, MAPK, WNT等多種信號通路信號轉導。 本文所述的NR2E1為蛋白編碼基因,又名Nuclear Receptor Subfamily 2 Group E Member 1,編碼蛋白參與構成核受體。 本文所述的MPC1為蛋白編碼基因,又名Mitochondrial Pyruvate Carrier 1,編碼蛋白參與線粒體丙酮酸轉運。 本文所述的HOXA13為蛋白編碼基因,又名Homeobox A13,編碼蛋白為轉錄因子,參與轉錄調控。 本文所述的LZTS1為蛋白編碼基因,又稱Leucine Zipper Tumor Suppressor 1,編碼蛋白參與調控細胞週期。 本文所述的CHD7為蛋白編碼基因,又稱Chromodomain Helicase DNA Binding Protein 7,參與到的基因本體注釋為染色質結合和解旋酶活性。 本文所述的ANKRD20A1為蛋白編碼基因,又稱Ankyrin Repeat Domain 20 Family Member A1。 本文所述的CACNA1B為蛋白編碼基因,又稱Calcium Voltage-Gated Channel Subunit Alpha1 B,編碼蛋白參與構成鈣離子通道。 本文所述的ACVRL1為蛋白編碼基因,又稱Activin A Receptor Like Type 1,編碼蛋白為TFG-beta家族配體受體,參與調控血管發育。 本文所述的CCNA1為蛋白編碼基因,又稱Cyclin A1,編碼蛋白參與調控細胞週期。 本文所述的RNASEH2B為蛋白編碼基因,又稱Ribonuclease H2 Subunit B,編碼蛋白為核酸內切酶亞基。 本文所述的SNX20為蛋白編碼基因,又稱Sorting Nexin 20,編碼蛋白參與細胞囊泡運輸。 本文所述的TBCD為蛋白編碼基因,又稱Tubulin Folding Cofactor D,編碼蛋白參與微管蛋白折疊。 本文所述的PIP5K1C為蛋白編碼基因,又稱Phosphatidylinositol-4-Phosphate 5-Kinase Type 1 Gamma,編碼蛋白功能為磷酸激酶。 本文所述的ZBTB7A為蛋白編碼基因,又稱Zinc Finger And BTB Domain Containing 7A,編碼蛋白為轉錄因子,抑制轉錄啟動。 本文所述的DNASE2為蛋白編碼基因,又稱Deoxyribonuclease 2, Lysosomal,編碼蛋白屬於DNA內切酶家族。 本文所述的TSHZ3為蛋白編碼基因,又稱Teashirt Zinc Finger Homeobox 3,編碼蛋白參與轉錄調控。 本文所述的WISP2為蛋白編碼基因,又稱CCN5或Cellular Communication Network Factor 5,編碼蛋白屬於WISP蛋白家族成員。 在一些實施方案中,優選使用和檢測表1B中的靶標誌物及其靶基因區域的兩種或更多種(例如3種、4種、5種或6種)的組合。在一些實施方案中,優選使用和檢測表1B中的靶標誌物及其靶基因區域的以下組合:i) SKI、PRDM16、LZTS1、CCNA1、PIP5K1C和WISP2;或ii) PIAS3、CHD7、CACNA1B、ACVRL1、SNX20、TBCD和ZBTB7A。 在一些實施方案中,優選使用和檢測靶標誌物SKI及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物PRDM16及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物PIAS3及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物SLC10A4及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物CXXC5及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物NR2E1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物MPC1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物HOXA13及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物LZTS1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物CHD7及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物ANKRD20A1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物CACNA1B及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物ACVRL1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物CCNA1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物RNASEH2B及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物SNX20及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物 TBCD、及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、PIP5K1C、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物PIP5K1C及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、ZBTB7A、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物ZBTB7A及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、DNASE2、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物DNASE2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、TSHZ3和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物TSHZ3及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、和WISP2。 在一些實施方案中,優選使用和檢測靶標誌物WISP2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2和TSHZ3。 本文所述的WRAP73為蛋白編碼基因,又稱WD Repeat Containing, Antisense To TP73,編碼蛋白屬於WD repeat蛋白家族成員。 本文所述的C2CD4D為蛋白編碼基因,又稱C2 Calcium Dependent Domain Containing 4D。 本文所述的CCDC181為蛋白編碼基因,又稱Coiled-Coil Domain Containing 181。 本文所述的RNF144A為蛋白編碼基因,又稱Ring Finger Protein 144A,編碼蛋白屬於鋅指蛋白家族。 本文所述的SIX2為蛋白編碼基因,又稱SIX Homeobox 2,編碼蛋白為轉錄因子。 本文所述的NRXN1為蛋白編碼基因,又稱Neurexin 1,編碼蛋白為細胞表面蛋白。 本文所述的MEIS1為蛋白編碼基因,又稱Meis Homeobox 1,編碼蛋白為PAX6的轉錄調控子。 本文所述的LBX2為蛋白編碼基因,又稱Ladybird Homeobox 2,編碼蛋白為轉錄調控因子。 本文所述的AMT為蛋白編碼基因,又稱Aminomethyltransferase,編碼蛋白參與甘胺酸降解。 本文所述的ITIH4為蛋白編碼基因,又稱Inter-Alpha-Trypsin Inhibitor Heavy Chain 4,編碼蛋白為分泌蛋白。 本文所述的TRH為蛋白編碼基因,又稱Thyrotropin Releasing Hormone,編碼蛋白屬於促甲狀腺素釋放激素家族成員。 本文所述的SHOX2為蛋白編碼基因,又稱Short Stature Homeobox 2,編碼蛋白為轉錄因子。 本文所述的DGKG為蛋白編碼基因,又稱Diacylglycerol Kinase Gamma,編碼蛋白屬於二醯甘油激酶家族。 本文所述的RPL9為蛋白編碼基因,又稱Ribosomal Protein L9,編碼蛋白參與構成核糖體亞基。 本文所述的PFN3為蛋白編碼基因,又稱Profilin 3,編碼蛋白屬於肌動蛋白家族。 本文所述的FOXC1為蛋白編碼基因,又稱Forkhead Box C1,編碼蛋白為轉錄因子。 本文所述的LY86為蛋白編碼基因,又稱Lymphocyte Antigen 86,編碼蛋白參與免疫相應信號通路。 本文所述的SLC35F1為蛋白編碼基因,又稱Solute Carrier Family 35 Member F1,編碼蛋白為離子轉運家族成員。 本文所述的LRRC4為蛋白編碼基因,又稱Leucine Rich Repeat Containing 4,編碼蛋白為突觸黏附蛋白。 本文所述的PDLIM2為蛋白編碼基因,又稱PDZ And LIM Domain 2,編碼蛋白功能與細胞黏附相關。 本文所述的PAX2為蛋白編碼基因,又稱Paired Box 2,編碼蛋白為轉錄因子。 本文所述的MVK為蛋白編碼基因,又稱Mevalonate Kinase,編碼蛋白為甲羥戊酸激酶。 本文所述的DTX1為蛋白編碼基因,又稱Deltex E3 Ubiquitin Ligase 1,編碼蛋白為泛素化連接酶。 本文所述的RBM19為蛋白編碼基因,又稱RNA Binding Motif Protein 19。 本文所述的GCH1為蛋白編碼基因,又稱GTP Cyclohydrolase 1,編碼蛋白屬於GTP環水解酶家族成員。 本文所述的OTX2為蛋白編碼基因,又稱Orthodenticle Homeobox 2,編碼蛋白為轉錄因子。 本文所述的ZSCAN10為蛋白編碼基因,又稱Zinc Finger And SCAN Domain Containing 10,編碼蛋白為轉錄因子。 本文所述的AHSP為蛋白編碼基因,又稱Alpha Hemoglobin Stabilizing Protein。 本文所述的NLRC5為蛋白編碼基因,又稱NLR Family CARD Domain Containing 5,編碼蛋白參與調控免疫系統。 本文所述的ASXL3為蛋白編碼基因,又稱ASXL Transcriptional Regulator 3,編碼蛋白參與調控基因轉錄。 本文所述的TCF4為蛋白編碼基因,又稱Transcription Factor 4,編碼蛋白為轉錄因子。 本文所述的PLIN3為蛋白編碼基因,又稱Perilipin 3。 本文所述的RASAL3為蛋白編碼基因,又稱RAS Protein Activator Like 3,編碼蛋白為RasGAP家族成員。 本文所述的CHRNA4為蛋白編碼基因,又稱Cholinergic Receptor Nicotinic Alpha 4 Subunit,編碼蛋白為煙鹼性乙醯膽鹼受體亞基。 在一些實施方案中,優選使用和檢測表1C中的靶標誌物及其靶基因區域的兩種或更多種(例如3種、4種、5種或6種)的組合。在一些實施方案中,優選使用和檢測表1C中的靶標誌物及其靶基因區域的以下組合:i) ITIH4、FOXC1、PDLIM2、MVK、NLRC5、TCF4和PLIN3;或ii) RNF144A、SIX2、DGKG、RPL9、LRRC4和ZSCAN10。 在一些實施方案中,優選使用和檢測靶標誌物WRAP73及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物C2CD4D及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物CCDC181及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物RNF144A及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物SIX2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物NRXN1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物MEIS1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物LBX2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物AMT及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物ITIH4及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物TRH及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物SHOX2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物DGKG及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物RPL9及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物PFN3及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物FOXC1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物LY86及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物SLC35F1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物LRRC4及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物PDLIM2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物PAX2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物MVK及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物DTX1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物RBM19及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物GCH1及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物OTX2及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物ZSCAN10及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物AHSP及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、NLRC5、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物NLRC5及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、ASXL3、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物ASXL3及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、TCF4、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物TCF4及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、PLIN3、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物PLIN3及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、RASAL3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物RASAL3及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3和CHRNA4。 在一些實施方案中,優選使用和檢測靶標誌物CHRNA4及其靶基因區域,任選地另外使用和檢測選自以下的靶標誌物及其靶基因區域或它們的任何組合:WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3和RASAL3。 在一些實施方案中,使用本發明的靶標誌物及其靶基因區域或它們的組合能夠在大於80%例如大於85%或大於90%的特異性的情況下實現至少25%例如至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少81%、至少82%或至少83%的靈敏度。 術語“受試者”、“患者”和“個體”在本文可互換使用,是指溫血動物,例如哺乳動物。該術語包括但不限於家畜、齧齒動物(例如大鼠和小鼠)、靈長類動物和人。優選該術語是指人。 術語“甲基化測定”是指確定DNA序列內一個或多個二核苷酸(例如CpG)序列的甲基化狀態的任何測定。 在本文中,術語“閾值”應根據本領域技術人員的一般理解來理解,並且表示用於反映DNA甲基化水準的任何有用的參考。在一些實施方案中,閾值用陽性參考區間表示,其中在陽性參考區間內表明所述個體患有乳腺癌或具有乳腺癌風險;例如與相應的陽性參考區間相比,一種或多種標誌物的甲基化水準在陽性參考區間內則表明所述個體患有乳腺癌或具有乳腺癌風險。閾值或陽性參考區間的獲得可由已知資料庫或個人研究獲得。在本發明中,閾值或陽性參考區間是指來自陽性對照(即患有乳腺癌的個體)的水準。閾值或陽性參考區間可以獲自患者自身的血液參考樣本;患有乳腺癌的個體的標誌物基因的表現;或預先確定的患有乳腺癌的個體的乳腺癌細胞。 在一些實施方案中,在使用機器學習模型(包括但不限於邏輯回歸模型)判定乳腺癌的情況下,使用ROC曲線的AUC值設置陽性參考區間,例如以各標誌物大於90%特異性(未患乳腺癌樣本檢測為陽性的比例小於10%)的AUC值設置陽性參考區間。在使用上述第(1)組的22個標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.362。在使用TTLL10、FAM150B、BEND6、ELN、TMEM179和MYO15B標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.609。在使用EPS8L3、IRF2BP2、TERT、TH、CARKD、SPNS1和PSG8標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.604。 在使用單獨CARKD標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨TTLL10標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨EPS8L3標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨IRF2BP2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨FAM150B標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨ID2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨TERT標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨PITX1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨KCNMB1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨BEND6標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨ELN標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.534。 在使用單獨CPXM2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.531。 在使用單獨TH標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨C1QTNF9標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.534。 在使用單獨TMEM179標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨SPNS1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨MYO15B標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨DNM2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨EPHX3標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.534。 在使用單獨PSG8標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨SLCO4A1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.537。 在使用單獨TNFRSF6B標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.531。 在一些實施方案中,在使用機器學習模型(包括但不限於邏輯回歸模型)判定乳腺癌的情況下,使用ROC曲線的AUC值設置陽性參考區間,例如以各標誌物大於90%特異性(未患乳腺癌樣本檢測為陽性的比例小於10%)的AUC值設置陽性參考區間。在使用上述第(2)組的22個標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.440。在使用SKI、PRDM16、LZTS1、CCNA1、PIP5K1C和WISP2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.541。在使用PIAS3、CHD7、CACNA1B、ACVRL1、SNX20、TBCD和ZBTB7A標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.513。 在使用單獨SKI標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.534。 在使用單獨PRDM16標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨PIAS3標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨SLC10A4標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨CXXC5標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.534。 在使用單獨NR2E1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨MPC1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.540。 在使用單獨HOXA13標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.534。 在使用單獨LZTS1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.534。 在使用單獨CHD7標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨ANKRD20A1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.530。 在使用單獨CACNA1B標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨ACVRL1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.530。 在使用單獨CCNA1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨RNASEH2B標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨SNX20標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.548。 在使用單獨TBCD標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨PIP5K1C標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨ZBTB7A標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.529。 在使用單獨DNASE2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨TSHZ3標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨WISP2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在一些實施方案中,在使用機器學習模型(包括但不限於邏輯回歸模型)判定乳腺癌的情況下,使用ROC曲線的AUC值設置陽性參考區間,例如以各標誌物大於90%特異性(未患乳腺癌樣本檢測為陽性的比例小於10%)的AUC值設置陽性參考區間。在使用上述第(3)組的35個標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.505。在使用ITIH4、FOXC1、PDLIM2、MVK、NLRC5、TCF4和PLIN3標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.445。在使用RNF144A、SIX2、DGKG、RPL9、LRRC4和ZSCAN10標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.447。 在使用單獨WRAP73標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨C2CD4D標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨CCDC181標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨RNF144A標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨SIX2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.534。 在使用單獨NRXN1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨MEIS1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨LBX2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨AMT標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨ITIH4標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.529。 在使用單獨ITIH4標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨TRH標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨SHOX2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨DGKG標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.534。 在使用單獨RPL9標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.531。 在使用單獨PFN3標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.535。 在使用單獨FOXC1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨LY86標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨SLC35F1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨LRRC4標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨PDLIM2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨PAX2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨MVK標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨DTX1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.535。 在使用單獨RBM19標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨GCH1標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨OTX2標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨ZSCAN10標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨AHSP標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨NLRC5標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.531。 在使用單獨ASXL3標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨TCF4標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 在使用單獨PLIN3標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.531。 在使用單獨RASAL3標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.533。 在使用單獨CHRNA4標誌物構建邏輯回歸模型的一些實施方案中,AUC閾值設定為例如等於或大於0.532。 術語“寡核苷酸”是指任何長度的核苷酸的多聚體形式,為核糖核苷酸或去氧核糖核苷酸。該術語包括雙鏈和單鏈DNA和RNA,例如多核苷酸的甲基化或帽化等修飾形式和未修飾形式。術語“多核苷酸”和“寡核苷酸”在本文可互換使用。寡核苷酸可但非必需包括其它編碼或非編碼序列,或者它可以但不一定與其它分子和/或載體或支援材料連接。用於本發明方法或套組的寡核苷酸可具有適於具體方法的任何長度。在某些應用中,該術語是指反義核酸分子(例如處於與編碼本發明標誌物的有義多核苷酸相反方向的mRNA或DNA鏈)。 用於本發明的寡核苷酸包括互補核酸序列和與這些序列基本相同的核酸,並且還包括因遺傳密碼簡並而不同於核酸序列的序列。可用於本發明的寡核苷酸還包括在嚴格條件下、優選高嚴格性條件下與寡核苷酸癌症標誌物核酸序列雜交的核酸。 核苷酸雜交測定是本領域熟知的。雜交測定程式和條件將根據應用而變化並依據已知的通用結合方法選擇,參見例如J. 薩姆布魯克等,分子選殖:實驗指南(第三版. 科學出版社,2002);以及Young和Davis,P.N.A.S,80: 1194 (1983)。進行重複和受控雜交反應的方法和設備已經描述於美國專利號5,871,928、5,874,219、6,045,996、6,386,749和6,391,623中,其各自通過引用結合到本文中。 本文所用的“引子”通常指與靶序列互補和退火的線性寡核苷酸。引子長度的下限按雜交能力而定,因為非常短的引子(例如小於5個核苷酸)在大多數雜交條件下不形成熱力學穩定的雙鏈體。引子長度通常在8-50個核苷酸內變化。在某些實施方案中,引子介於大約15-25個核苷酸之間。天然存在的核苷酸(尤其是鳥嘌呤、腺嘌呤、胞嘧啶和胸腺嘧啶,在下文稱為“G”、“A”、“C”和“T”)以及核苷酸類似物,都可用於本發明的引子。 本文使用的“擴增產物”是指自核酸範本,通過核酸擴增而產生的擴增的核酸。 本文使用的術語“核苷酸類似物”指與天然存在的核苷酸在結構上相似的化合物。核苷酸類似物可以具有改變的磷酸骨架、糖部分、核鹼基或其組合。通常具有改變的核鹼基的核苷酸類似物尤其賦予不同的鹼基配對和鹼基堆積特性。具有改變的磷酸-糖骨架的核苷酸類似物(例如肽核酸(PNA)、鎖核酸(LNA))通常尤其改變鏈特性,例如二級結構形成。 本發明中使用的引子和探針的實例如表2A、表2B和表2C所示,它們針對的靶基因區域如表1A、表1B和表1C所示。 本發明的引子和探針的核苷酸序列還包括其修飾形式,只要所述引子的擴增或探測效果不受到明顯的影響即可。所述修飾可以為例如在核苷酸序列中或兩端添加一個或多個核苷酸殘基、在核苷酸序列中缺失一個或多個核苷酸殘基、或者將序列中的一個或多個核苷酸殘基替換成另外的核苷酸殘基,例如將A替換成T,將C替換成G等。本領域技術人員清楚,所述修飾形式的引子也涵蓋在本發明之內、特別是申請專利範圍的保護範圍之內。在一個實施方案中,引子的核苷酸序列的修飾形式為如CN103270174A中所公開的化學增強型引子。 可以使用例如通用DNA合成儀(例如由Applied Biosystems製造的394型),經化學方法合成本發明引子中的各個核苷酸。還可採用本領域眾所周知的任何其它方法來合成寡核苷酸。 使用從樣品中提取的DNA作為範本,並使用PCR引子對靶標誌物進行擴增反應,以獲得擴增產物。擴增反應包括但不限於聚合酶鏈式反應(PCR)、連接酶鏈式反應(LCP)、自動維持序列複製(3SR)、基於核酸序列的擴增(NASBA)、鏈置換擴增(SDA)、多重置換擴增(MDA)和滾環擴增(RCA),其公開於以下參考文獻(在此引作參考)中:Mullis等,美國專利第4,683,195號;第4,965,188號;第4,683,202號;第4,800,159 (PCR)號;Gelfand等,美國專利第5,210,015號(用“Taqman”或”Taq” [注冊商標]探針進行的即時PCR);Wittwer等,美國專利第6,174,670號;Kacian等,美國專利第5,399,491號(“NASBA”);Lizardi,美國專利第5,854,033號;Aono等,日本專利公開第JP 4-262799號(滾環擴增);等等。 優選使用PCR法對靶標誌物進行擴增。PCR法本身是本領域眾所周知的。術語“PCR”包括該反應的衍生形式,其包括但不限於反轉錄PCR、即時PCR、嵌模式PCR、多重PCR和螢光定量PCR等。優選使用螢光定量PCR法對靶核苷酸進行定量擴增。 在引子、範本DNA和耐熱DNA聚合酶存在下,使用與有義鏈雜交的引子(反向引子)和與反義鏈雜交的引子(正向引子),通過使變性、退火和延伸步驟的迴圈重複大約30次~60次(例如50次)來進行PCR。在一個實施方案中,PCR為螢光定量PCR。在一個實施方案中PCR使用了如表2所示的引子。本領域技術人員能夠理解的是,也可使用其它PCR法和引子,只要可擴增出目標片段即可。 在本發明的PCR中,可使用各種常規的耐熱DNA聚合酶進行擴增,包括但不限於FastStart Taq DNA聚合酶(Roche)、Ex Taq (注冊商標, Takara)、Z-Taq、AccuPrime Taq DNA聚合酶和HotStarTaq Plus DNA聚合酶。 基於引子Tm值選擇合適PCR反應條件的方法是本領域眾所周知的,本領域普通技術人員可以根據引子長度、GC含量、目標特異性和靈敏度、所使用的聚合酶性質等,選出最佳條件。例如,可使用以下條件進行螢光定量PCR反應:95℃ 5分鐘;95℃ 15秒,56℃ 40秒,迴圈50次。反應體系為25 μL。 可用於檢測本發明靶標誌物的甲基化水準的試劑是本領域眾所周知的。適用於本發明的這種試劑例如亞硫酸氫鹽試劑或甲基化敏感限制酶可市購獲得或通過本領域技術人員熟知的方法常規地制得。 術語“亞硫酸氫鹽試劑”是指用於區分甲基化的和未甲基化的CpG二核苷酸序列的亞硫酸氫鹽。 術語“甲基化敏感限制酶”應被理解為根據其識別位元點的甲基化狀態而選擇性消化核酸的酶。對於當識別位點未被甲基化或半甲基化時才特異性剪切的限制酶來說,當識別位點被甲基化時,不會發生剪切,或以顯著降低的效率剪切。對於當識別位點被甲基化時才特異性剪切的限制酶來說,當識別位點未被甲基化時,不會發生剪切,或以顯著降低的效率剪切。優選以下甲基化敏感限制酶,其識別序列含有CG二核苷酸(例如cgcg或cccggg)。在一些實施方案中,進一步優選的為當該二核苷酸中的胞嘧啶在C5碳原子被甲基化時不切割的限制酶。 本發明的套組可以通過本領域常規方法製備。套組可包含實施本發明方法所用的材料或試劑(包括用於檢測各靶標誌物的試劑)。套組可以包括儲存反應試劑(例如在合適容器中的引子、dNTP、酶等)和/或支持材料(例如緩衝液、實施檢測的說明書等)。例如,套組可以包括一個或多個含有相應反應試劑和/或支持材料的容器(例如盒子)。這樣的內容物可一起或分開遞送給既定的接受者。作為一個實例,套組可含有用於檢測各靶標誌物的試劑、緩衝液以及使用說明書。套組還可含有聚合酶和dTNP等。套組還可含有用於質控的內標、陽性和陰性對照等。套組還可包含用於從樣品製備核酸例如DNA的試劑。以上實例不能理解為限制適用於本發明的套組及其內容物。 微陣列是指具有平坦表面的固相支援體,其具有核酸陣列,陣列中的各個成員包含固定在空間上確定的區域或位元點上的寡核苷酸或多核苷酸的相同的拷貝,所述區域或位元點不與陣列中的其它成員的區域或位元點重疊;也就是說,所述區域或位元點在空間上是離散的。此外,空間上確定的雜交位點可為“可定址的”,因為其位置及其固定化的寡核苷酸的身份是已知或預先確定的(例如在其使用前是已知或預先確定的)。通常寡核苷酸或多核苷酸為單鏈,並通常由5'-端或3'-端與固相支援體共價連接。微陣列中含有非重疊區的核酸的密度通常大於100/cm 2,更優選大於1000/cm 2。微陣列技術公開於例如以下參考文獻中:Schena編輯的Microarrays: A Practical Approach (IRL Press, Oxford, 2000);Southern, Current Opin. Chem. Biol., 2:404-410,1998,其全部內容通過引用結合到本文中。 本發明公開了標誌物在診斷乳腺癌和預測其風險中的用途,本領域技術人員可以借鑒本文內容,適當改進工藝參數實現。特別需要指出的是,所有類似的替換和改動對本領域技術人員來說是顯而易見的,它們都被視為包括在本發明。本發明所述用途已經通過較佳實施例進行了描述,相關人員明顯能在不脫離本發明內容、精神和範圍內對本文所述用途進行改動或適當變更與組合,來實現和應用本發明技術。 實施例為了更清楚的理解本發明的內容,將結合附圖和實施例詳細說明。 實施例 1: 甲基化靶向測序篩選血漿中乳腺癌甲基化標誌物發明人收集了總計132例女性樣品,其中70例乳腺癌女性患者,62例健康女性,入組人群均簽署知情同意書。將這些樣本按照一定的比例分為訓練集和測試集,其中訓練集用於下述機器學習模型的構建,測試集用於模型的性能測試,樣本資訊見下表3。 本申請通過Methyl-Titan (中國專利號CN201910515830)的方法獲得樣本血漿cfDNA的甲基化測序數據,篩選出其中的甲基化標誌物。 具體技術方案如下: 1、血漿cfDNA樣本的提取 採用streck血液收集管收集志願者2ml全血樣本,入組志願者樣品資訊見表3,及時(3天內)離心分離血漿,轉運至實驗室後,採用QIAGEN QIAamp Circulating Nucleic Acid Kit套組根據說明書提取cfDNA。 2、測序及數據預處理 a)  文庫用Illumina Nextseq 500測序儀進行150bp雙端測序,測序量不低於5M。 b)  Pear (v0.6.0) 軟體將測序儀下機的雙端150bp測序的同一片段雙端測序數據合併成一條序列,最短重疊長度20 bp,合併之後最短30bp。 c)  使用Trim_galore v 0.6.0、cutadapt v1.8.1軟體對合併後的測序數據進行去接頭處理,接頭序列為“AGATCGGAAGAGCAC”,並去除兩端測序品質值低於20的鹼基。 3、測序數據比對 本文使用的參考基因組資料來自UCSC資料庫 (UCSC: HG19, http://hgdownload.soe.ucsc.edu/goldenPath/ hg19/ bigZips/hg19.fa.gz)。 a)  使用Bismark軟體將HG19基因組序列分別進行胞嘧啶到胸腺嘧啶(CT)和腺嘌呤到鳥嘌呤(GA)的轉化,並且分別對轉換後的基因組使用Bowtie2軟體構建索引。 b)  將預處理的資料同樣進行CT和GA轉化。 c)  使用Bowtie2軟體分別將轉化後的序列比對到轉化後的HG19參考基因組,最短種子序列長度20,種子序列不允許錯配。 4、每個樣本AMF、MHF的計算 根據上述比對結果,獲取每個目標甲基化區間每個CpG位點對應的甲基化狀態。 a)  計算目標甲基化區間平均甲基化率AMF值。AMF的計算公式如下: 其中M為該目標甲基化區間中總的CpG位點數,i為區間內CpG位點,N C,i為該CpG位點測序為C的reads數(即甲基化reads數),N T,i為該CpG位點測序為T的reads數(即未甲基化的測序reads數)。 b)  計算目標甲基化區間甲基化單倍型率MHF值。一個目標甲基化區間可能有多個甲基化單倍型haplotype,對於目標區域內的每一個甲基化單倍型haplotype都需要進行該值的計算,MHF的計算公式示例如下: 其中l表示目標甲基化區間,h表示目標的甲基化haplotype,N l表示位於目標甲基化區間的reads數目,N l,h表示包含目標甲基化haplotype的reads數目 5、特徵矩陣構建 a)  分別合併訓練集、測試集各個樣本的每個目標甲基化區間的AMF, MHF值為訓練集、測試集特徵矩陣,並將reads數目低於100的目標甲基化區間做為缺失值。 b)  去除缺失值比例高於10%的目標甲基化區間。 c)  使用KNN演算法對訓練集矩陣訓練轉換器,並用該轉換器對訓練集和測試集特徵矩陣進行缺失資料插補。 6. 根據訓練集樣本尋找乳腺癌甲基化標誌物(見圖1) a)  訓練集中,對每一個特徵構建邏輯回歸模型區分乳腺癌與健康人,計算3折交叉驗證平均AUC,並從高到低排序 b)  依次將剩餘特徵加入特徵集合,並重新構建邏輯回歸模型 c)  若邏輯回歸模型5折交叉驗證平均AUC升高,則保留該特徵,反之則去除 d)  遍歷所有特徵後得到最優標誌物組合,並使用最優組合進行建模,最後使用測試集樣本驗證模型的效果。 7. 上述過程中共篩選出79個乳腺癌甲基化標誌物。 上述過程共篩選出79個乳腺癌甲基化標誌物(第(1)組22個,第(2)組22個,第(3)組35個),其中單獨一個或者多個甲基化標誌物的組合都可以用作乳腺癌鑒別的甲基化標誌物。 (1) 甲基化標誌物關聯基因指距離該甲基化標誌物100Kb內最鄰近TSS所對應基因,具體關聯基因和甲基化水準見表4A。 第(1)組22個甲基化標誌物在訓練集和測試集乳腺癌樣品和健康人樣品甲基化水準如圖2A和表4A。甲基化標誌物關聯基因指距離該甲基化標誌物100Kb內最鄰近TSS所對應基因。甲基化標誌物基因組位置指該甲基化標誌物在UCSC(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19) HG19基因組位置。對於訓練集和測試集健康人和乳腺癌患者樣品分別計算每個樣品甲基化標誌物甲基化水準,計算該類別中位數作為該類別甲基化水準,使用’Wilcox.test’分別計算訓練集和測試集健康人和乳腺癌患者差異甲基化統計顯著性,若Wilcox.P值<0.05,則認為該甲基化標誌物在健康人和乳腺癌患者樣品間具有顯著甲基化差異。在22個甲基化標誌物中,19個甲基化標誌物在訓練集樣品中存在顯著甲基化差異,14個在測試集樣品存在顯著甲基化差異。這些結果說明我們篩選出的22個甲基化標誌物在樣品甲基化水準上也可較好地區分健康人和乳腺癌患者。 我們以Seq ID NO:14詳細展示該甲基化標誌物在訓練集和測試集乳腺癌和健康人甲基化水準,如下表4A,該甲基化標誌物在訓練集和測試集乳腺癌和健康人均具有極顯著甲基化差異,訓練集Wilcox.P值為1.2E-11,測試集Wilcox.P值為1.0E-08。 (2) 甲基化標誌物關聯基因指距離該甲基化標誌物100Kb內最鄰近TSS所對應基因,具體關聯基因和甲基化水準見表4     B。 第(2)組22個甲基化標誌物在訓練集和測試集乳腺癌樣品和健康人樣品甲基化水準如圖1和表2B。甲基化標誌物關聯基因指距離該甲基化標誌物100Kb內最鄰近TSS所對應基因。甲基化標誌物基因組位置指該甲基化標誌物在UCSC(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19) HG19基因組位置。對於訓練集和測試集健康人和乳腺癌患者樣品分別計算每個樣品甲基化標誌物甲基化水準,計算該類別中位數作為該類別甲基化水準,使用’Wilcox.test’分別計算訓練集和測試集健康人和乳腺癌患者差異甲基化統計顯著性,若Wilcox.P值<0.05,則認為該甲基化標誌物在健康人和乳腺癌患者樣品間具有顯著甲基化差異。在22個甲基化標誌物中,19個甲基化標誌物在訓練集樣品中存在顯著甲基化差異,13個在測試集樣品存在顯著甲基化差異。這些結果說明我們篩選出的22個甲基化標誌物在樣品甲基化水準上也可較好地區分健康人和乳腺癌患者。 我們以Seq ID NO:75詳細展示該甲基化標誌物在訓練集和測試集乳腺癌和健康人甲基化水準,如下表4B,該甲基化標誌物在訓練集和測試集乳腺癌和健康人均具有極顯著甲基化差異,訓練集Wilcox.P值為9.6E-12,測試集Wilcox.P值為2.5E-03。 (3) 甲基化標誌物關聯基因指距離該甲基化標誌物100Kb內最鄰近TSS所對應基因,具體關聯基因和甲基化水準見表4     C。 第(3)組35個甲基化標誌物在訓練集和測試集乳腺癌樣品和健康人樣品甲基化水準如圖1和表4C。甲基化標誌物基因組位置指該甲基化標誌物在UCSC(https://genome. ucsc.edu/cgi-bin/hgTracks?db=hg19)HG19基因組位置。甲基化標誌物關聯基因指TSS距離甲基化標誌物100Kb內,並且距離最近的基因。對於訓練集和測試集健康人和乳腺癌患者樣品分別計算每個樣品甲基化標誌物甲基化水準,計算該類別中位數作為該類別甲基化水準,使用’Wilcox.test’分別計算訓練集和測試集中健康人和乳腺癌患者差異甲基化統計顯著性,若P值<0.05,則認為該甲基化標誌物在健康人和乳腺癌患者樣品間具有顯著甲基化差異。在35個甲基化標誌物中,28個甲基化標誌物在訓練集樣品中存在顯著甲基化差異,18個在測試集樣品存在顯著甲基化差異。這些結果說明我們篩選出的甲基化標誌物在樣品甲基化水準上也可較好地區分健康人和乳腺癌患者。 我們以Seq ID NO:152為例詳細展示該甲基化標誌物在訓練集和測試集乳腺癌和健康人的甲基化水準,如下表4C,該甲基化標誌物在訓練集和測試集乳腺癌和健康人間均具有極顯著甲基化差異,訓練集’Wilcox.test’ P值為6.0E-7,測試集’Wilcox.test’ P值為7.8E-04。 實施例 2 :所有甲基化標誌物的機器學習診斷模型 AllModel本實施例使用79個甲基化標誌物構建邏輯回歸的機器學習模型,用以鑒別健康人和乳腺癌患者血漿樣品。 (1) 使用實施例1中訓練集的樣本22個甲基化標誌物甲基化水準進行模型訓練,再使用測試集的樣本對模型的效果進行測試,具體步驟如下: 1.  使用python (V3.9.7)中的sklearn (V1.0.1)包中的邏輯回歸模型:AllModel = LogisticRegression() 2.  使用訓練集的樣本進行訓練:AllModel.fit (Traindata, TrainPheno),其中TrainData是訓練集的資料,TrainPheno是訓練集樣本的性狀(乳腺癌為1,健康人為0),並根據訓練集的樣本確定模型的相關閾值。 3.  使用測試集的樣本進行測試:TestPred= AllModel.predict_proba(TestData)[:, 1],其中TestData為測試集資料,TestPred為模型預測分值,使用該預測分值並根據上述閾值對樣本是否是乳腺癌進行判斷。 訓練集和測試集中模型預測分值分佈見圖4A,從圖中可看出乳腺癌和健康人樣本模型分值具有顯著的差異。ROC曲線見圖5A。在訓練集中,乳腺癌與健康人區分模型AUC為0.992,測試集AUC為0.935,根據訓練集資料設置閾值為0.362,大於該值則為乳腺癌,反之則為健康人。在該閾值下,測試集準確性為0.825,特異性為0.737,敏感性為0.905,具體資料見表5A。 該模型可以較好的區分乳腺癌血漿樣品和健康人血漿樣品,可用於乳腺癌早期篩查。 (2) 使用實施例1中訓練集的樣本22個甲基化標誌物甲基化水準進行模型訓練,再使用測試集的樣本對模型的效果進行測試,具體步驟如下: 1.  使用python (V3.9.7)中的sklearn (V1.0.1)包中的邏輯回歸模型:AllModel = LogisticRegression() 2.  使用訓練集的樣本進行訓練:AllModel.fit (Traindata, TrainPheno),其中TrainData是訓練集的資料,TrainPheno是訓練集樣本的性狀(乳腺癌為1,健康人為0),並根據訓練集的樣本確定模型的相關閾值。 3.  使用測試集的樣本進行測試:TestPred= AllModel.predict_proba(TestData)[:, 1],其中TestData為測試集資料,TestPred為模型預測分值,使用該預測分值並根據上述閾值對樣本是否是乳腺癌進行判斷。 訓練集和測試集中模型預測分值分佈見圖4B,從圖中可看出乳腺癌和健康人樣本模型分值具有顯著的差異。ROC曲線見圖5B。在訓練集中,乳腺癌與健康人區分模型AUC為0.995,測試集AUC為0.962,根據訓練集資料設置閾值為0.440,大於該值為乳腺癌,反之則為健康人。在該閾值下,測試集準確性為0.900,特異性為0.842,敏感性為0.952,具體資料見表5B。 該模型可以較好的區分乳腺癌血漿樣品和健康人血漿樣品,可用於乳腺癌早期篩查。 (3) 使用實施例1中訓練集的樣本35個甲基化標誌物甲基化水準進行模型訓練,再使用測試集的樣本對模型的效果進行測試,具體步驟如下: 4.  使用python (V3.9.7)中的sklearn (V1.0.1)包中的邏輯回歸模型:AllModel = LogisticRegression() 5.  使用訓練集的樣本進行訓練:AllModel.fit (Traindata, TrainPheno),其中TrainData是訓練集的資料,TrainPheno是訓練集樣本的性狀(乳腺癌為1,健康人為0),並根據訓練集的樣本確定模型的相關閾值。 6.  使用測試集的樣本進行測試:TestPred= AllModel.predict_proba(TestData)[:, 1],其中TestData為測試集資料,TestPred為模型預測分值,使用該預測分值並根據上述閾值對樣本是否是乳腺癌進行判斷。 訓練集和測試集中模型預測分值分佈見圖4C,從圖中可看出乳腺癌和健康人樣本模型分值具有顯著的差異。ROC曲線見圖5C。在訓練集中,乳腺癌與健康人區分模型AUC為0.975,測試集AUC為0.932,根據訓練集資料設置閾值為0.505,大於該值為乳腺癌,反之則為健康人。在該閾值下,測試集準確性為0.875,特異性為0.789,敏感性為0.952,見表5C。 該模型可以有效的區分乳腺癌血漿樣品和健康人血漿樣品,可用於乳腺癌早期篩查。 實施例 3 : 隨機甲基化標誌物組合 1 機器學習診斷模型 Sub1 (1) 為了驗證隨機甲基化標誌物組合的效果,本實施例從所有22個甲基化標誌物中選取了Seq ID NO:1, Seq ID NO:4, Seq ID NO:9, Seq ID NO:10, Seq ID NO:15, Seq ID NO:17一共6個甲基化標誌物構建新的機器學習模型Sub1。 機器學習模型構建的方法同實施例2一致,但只選用隨機甲基化標誌物組合1中6個甲基化標誌物,該模型在訓練集和測試集中的模型得分見圖6A,該模型ROC曲線見圖7A。可看出該模型在訓練集和測試集中,乳腺癌樣本分值同健康人分值具有顯著差異,該模型訓練集AUC為0.944,測試集AUC為0.912,當閾值設成0.609時,測試集準確性為0.750、特異性為0.895、敏感性為0.619,具體資料見表5A,說明了該組合模型良好的性能。 (2) 為了驗證隨機甲基化標誌物組合的效果,本實施例從所有22個甲基化標誌物中選取了Seq ID NO:67, Seq ID NO:68, Seq ID NO:75, Seq ID NO:80, Seq ID NO:84, Seq ID NO:88一共6個甲基化標誌物構建新的機器學習模型Sub1。 機器學習模型構建的方法同實施例2一致,但只選用隨機甲基化標誌物組合1中6個甲基化標誌物,該模型在訓練集和測試集中的模型得分見圖6B,該模型ROC曲線見圖7B。可看出該模型在訓練集和測試集中,乳腺癌樣本分值同健康人分值具有顯著差異,該模型訓練集AUC為0.930,測試集AUC為0.867,當閾值設成0.541時,測試集準確性為0.775、特異性為0.842、敏感性為0.714,具體資料見表5B,說明了該組合模型良好的性能。 (3) 為了驗證隨機甲基化標誌物組合的效果,本實施例從所有35個甲基化標誌物中選取了Seq ID NO:142, Seq ID NO:149, Seq ID NO:153, Seq ID NO:155, Seq ID NO:162, Seq ID NO:164, Seq ID NO:165一共7個甲基化標誌物構建新的機器學習診斷模型Sub1。 機器學習模型構建的方法同實施例2一致,但只選用隨機甲基化標誌物組合1中7個甲基化標誌物,該模型在訓練集和測試集中的模型得分見圖6C,該模型ROC曲線見圖7C。可看出該模型在訓練集和測試集中,乳腺癌樣本分值同健康人分值具有顯著差異,該模型訓練集AUC為0.884,測試集AUC為0.847,當閾值設成0.445時,測試集準確性為0.775、特異性為0.737、敏感性為0.810,見表5C,說明了該模型良好的性能。 實施例 4 :隨機甲基化標誌物組合 2 機器學習診斷模型 Sub2 (1) 該實施例使用另一組隨機甲基化標誌物組合:Seq ID NO:2, Seq ID NO:3, Seq ID NO:6, Seq ID NO:12,Seq ID NO:14, Seq ID NO:16, Seq ID NO:20,一共7個甲基化標誌物進行機器學習模型Sub2的構建。 該模型構建方法同樣與實施例2一致。該模型在訓練集和測試集中的模型得分見圖8A,ROC曲線見圖9A。從圖中可看出該模型在訓練集和測試集中,乳腺癌樣本得分明顯高於健康人得分。該模型訓練集AUC為0.935,測試集AUC為0.852,當閾值設成0.604時,測試集準確性為0.700、特異性為0.789、敏感性為0.619,具體資料見表5A,同樣可以較好的區分乳腺癌和正常人。 (2) 該實施例使用另一組隨機甲基化標誌物組合:Seq ID NO:69, Seq ID NO:76, Seq ID NO:78, Seq ID NO:79, Seq ID NO:82, Seq ID NO:83, Seq ID NO:85,一共7個甲基化標誌物進行機器學習模型Sub2的構建。 該模型構建方法同樣與實施例2一致。該模型在訓練集和測試集中的模型得分見圖8B,ROC曲線見圖9B。從圖中可看出該模型在訓練集和測試集中,乳腺癌樣本得分明顯高於健康人得分。該模型訓練集AUC為0.910,測試集AUC為0.875,當閾值設成0.513時,測試集準確性為0.850、特異性為0.789、敏感性為0.905,具體資料見表5B,同樣可以較好的區分乳腺癌和正常人。 (3) 該實施例使用另一組隨機甲基化標誌物組合:Seq ID NO:136, Seq ID NO:137, Seq ID NO:146, Seq ID NO:147, Seq ID NO:152, Seq ID NO:160,一共6個甲基化標誌物進行機器學習模型Sub2的構建。 該模型構建方法同樣與實施例2一致。該模型在訓練集和測試集中的模型得分見圖8C,ROC曲線見圖9C。從圖中可看出該模型在訓練集和測試集中,乳腺癌樣本得分明顯高於健康人得分。該模型訓練集AUC為0.849,測試集AUC為0.865,當閾值設成0.447時,測試集準確性為0.800、特異性為0.632、敏感性為0.952,見表5C,同樣可以較好的區分乳腺癌和正常人。 實施例 5 單個標誌物的效果 (1) 本申請發明人發現22個甲基化標誌物中單個甲基化標誌物甲基化水準也具有良好的分類效果,單個甲基化標誌物區分乳腺癌與健康人效果見表6A。以Seq ID NO:14為例,若單獨使用該甲基化標誌物構建機器學習模型,模型訓練集AUC為0.880,測試集AUC為0.962,當閾值設為0.532時,測試集準確性為0.875、特異性為0.789、敏感性為0.952,分類效果明顯。 (2) 本申請發明人發現22個甲基化標誌物中單個甲基化標誌物甲基化水準也具有良好的分類效果,單個甲基化標誌物區分乳腺癌與健康人效果見表6B。以Seq ID NO:75為例,若單獨使用該甲基化標誌物構建機器學習模型,模型訓練集AUC為0.882,測試集AUC為0.774,當閾值設為0.534時,測試集準確性為0.725、特異性為0.684、敏感性為0.762,分類效果明顯。 (3) 本申請發明人發現35個甲基化標誌物中,單個甲基化標誌物甲基化水準也具有良好的分類效果,單個甲基化標誌物區分乳腺癌與健康人效果見表6C。以Seq ID NO:152為例,若單獨使用該甲基化標誌物構建機器學習模型,模型訓練集AUC為0.792,測試集AUC為0.802,當閾值設為0.533時,測試集準確性為0.800、特異性為0.684、敏感性為0.905,分類效果明顯。 本申請篩選出了79個乳腺癌的甲基化標誌物,根據這些甲基化標誌物的甲基化水準構建的機器學習診斷模型可以較好的區分乳腺癌和健康人,對乳腺癌早期篩查具有重要意義。 以上所述僅是本發明的優選實施方式,應當指出,對於本技術領域的普通技術人員來說,在不脫離本發明原理的前提下,還可以做出若干改進和潤飾,這些改進和潤飾也應視為本發明的保護範圍。 Several aspects of the present invention are described below with reference to example applications for illustration. It should be understood that many specific details, relationships, and methods are set forth to provide a full understanding of the present invention. However, a person of ordinary skill in the relevant art will readily recognize that the present invention may be practiced without one or more of the specific details or may be practiced with other methods. The present invention relates to the relationship between the methylation level of a newly discovered marker and breast cancer. The markers described herein provide methods for diagnosing breast cancer or assessing breast cancer risk in an individual. Therefore, one embodiment of the present invention represents an improvement in a marker that is suitable for diagnosing breast cancer or assessing breast cancer risk. In another embodiment, the newly discovered markers of the present invention can be used in combination with one or more other breast cancer markers known in the art (e.g., CEA, CA 15-3, CA 125, Ki-67, HER-2, ER, PR, etc.) and/or conventional examination methods such as breast finger examination and doctor's examination, breast ultrasound and mammography, fine needle aspiration tissue biopsy, etc., for example, to diagnose breast cancer or assess breast cancer risk in an individual or to prepare kits and/or microarrays for this purpose. The term "sample" means a material known or suspected to express or contain the markers described herein. The sample may be derived from a biological source ("biological sample"), such as a tissue (e.g., a biopsy sample), an extract or a cell culture including cells (e.g., tumor cells), a cell lysate, and a biological or physiological fluid, such as whole blood, plasma, serum, saliva, cerebrospinal fluid, sweat, urine, milk, peritoneal fluid, etc. The sample obtained from the source or after pretreatment to improve the characteristics of the sample (e.g., preparing plasma from blood, etc.) can be used directly. In certain aspects of the present invention, the sample is a human physiological fluid, such as human plasma. In certain aspects of the present invention, the sample is a biopsy sample such as a tumor tissue or cell obtained by tissue examination. Samples that can be analyzed according to the present invention include polynucleotides of clinical origin. As will be understood by those skilled in the art, the target polynucleotide may include DNA or RNA, in particular DNA, in particular free DNA such as extracellular free DNA. In certain specific aspects of the invention, the sample is plasma cfDNA or ctDNA. The target polynucleotide or a substance hybridized or amplified with the target polynucleotide (such as an oligonucleotide primer or probe) may be detectably labeled on one or more nucleotides using methods known in the art. The detectable label may be, but is not limited to, a luminescent label, a fluorescent label, a bioluminescent label, a chemiluminescent label, a radioactive label, and a colorimetric label. As used herein, the term "marker" refers to a target nucleic acid, gene region or methylation site whose methylation level or the score of a computational model based on the methylation level (e.g., the AUC of a ROC curve when a machine learning model such as a logical regression model is used) indicates a diagnosis of breast cancer or a high risk of breast cancer. A gene should be considered to include all its transcriptional variants and all its promoters and regulatory elements. As understood by those skilled in the art, certain genes are known to exhibit allelic variation or single nucleotide polymorphisms ("SNPs") between individuals. SNPs include insertions and deletions of simple repeat sequences (e.g., dinucleotide and trinucleotide repeats) of varying lengths. Therefore, this application should be understood to extend to all forms of markers/genes produced by any other mutation, polymorphism, or allelic gene variation. In addition, it should be understood that the term "marker" should include both the positive-sense and anti-sense sequences of the marker or gene. The term "marker" used herein is broadly interpreted to include both 1) the original marker found in a biological sample or genomic DNA (in a specific methylation state) and 2) its treated sequence (e.g., the corresponding region after bisulfite conversion or the corresponding region after MSRE treatment). The corresponding region after bisulfite conversion is different from the target marker in the genomic sequence in that one or more unmethylated cytosine residues are converted to uracil bases, thymine bases, or other bases that are different from cytosine in hybridization behavior. The corresponding region treated with MSRE differs from the target marker in the genomic sequence in that the sequence is cut at one or more MSRE cutting sites. In the present invention, "methylation state" refers to the presence, absence and/or amount of one or more methylated nucleotide bases in a nucleic acid molecule. For example, a nucleic acid molecule containing methylated cytosine is considered to be methylated, and the methylation state of the nucleic acid molecule is methylated. A nucleic acid molecule that does not contain any methylated modified cytosine is considered to be unmethylated, and the methylation state of the nucleic acid molecule is unmethylated. In some embodiments, if a nucleic acid is not methylated at a specific locus (e.g., a locus of a specific single CpG dinucleotide) or a specific combination of loci, the nucleic acid can be characterized as "unmethylated", even if it is methylated at other loci of the same gene or molecule. Therefore, the methylation state describes the state of methylation of a nucleic acid (e.g., a genomic sequence). Additionally, methylation status refers to characteristics associated with methylation of a nucleic acid segment at a specific genomic locus. Such characteristics include, but are not limited to, whether any cytosine (C) residues within the DNA sequence are methylated, the location of one or more methylated C residues, the frequency or percentage of methylated C throughout any specific region of the nucleic acid, and allelic differences in methylation due to, for example, differences in allelic origins. "Methylation status" refers to the relative concentration, absolute concentration, or pattern of methylated or unmethylated C throughout any specific region of a nucleic acid in a biological sample. For example, if one or more cytosine (C) residues within a nucleic acid sequence are methylated, it may be referred to as "hypermethylated" or having "increased methylation", whereas if one or more cytosine (C) residues within a DNA sequence are unmethylated, it may be referred to as "demethylated" or having "reduced methylation". Similarly, if one or more cytosine (C) residues within a nucleic acid sequence are methylated compared to another nucleic acid sequence (e.g., from a different region or from a different individual, etc.), the sequence is considered to be hypermethylated or having increased methylation compared to the other nucleic acid sequence. Alternatively, if one or more cytosine (C) residues within a DNA sequence are unmethylated compared to another nucleic acid sequence (e.g., from a different region or from a different individual, etc.), the sequence is considered to be demethylated or having reduced methylation compared to the other nucleic acid sequence. In the present invention, the methylation level represents the proportion of one or more sites in the methylation state. The methylation level of a region (or a group of sites) is the average of the methylation levels of all sites in the region (or all sites in the group). Therefore, an increase or decrease in the methylation level of a region does not mean that the methylation levels of all methylated sites in the region are increased or decreased. The art knows the process of converting the results obtained by the method of detecting DNA methylation (such as simplified methylation sequencing, fluorescent quantitative PCR) into methylation levels. The "methylation level" described herein includes the relationship between the methylation status of CpGs of any number and any position in the sequence involved. The relationship can be the addition or subtraction of a methylation state parameter (e.g., 0 or 1) or the calculation result of a mathematical algorithm (e.g., mean, percentage, fraction, ratio, degree, or calculation using a mathematical model), including but not limited to methylation level metric, methylation haplotype ratio, methylation haplotype load, or when using a machine learning model such as a logical regression model, the AUC of the ROC curve. The genes used as markers in the present invention are expected to include naturally occurring variants of the genes, their complementary sequences, all of their promoters and regulatory elements (e.g., nucleic acid sequences within 5 kb (e.g., 4 kb, 3 kb, 2 kb, or 1 kb) upstream of the gene annotation start site and within 5 kb downstream of the gene annotation end site) and fragments of the genes or variants, especially fragments detectable in molecular biology. In the present invention, the terms "molecularly biologically detectable fragment", "target region" and "target gene region" can be used interchangeably. The molecularly biologically detectable fragment preferably contains at least 16, 17, 18, 19, 20, 22, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300 or more consecutive nucleotides of the marker. In some embodiments, the consecutive nucleotides contain at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15 or more CpG dinucleotide sequences. In some embodiments, the target gene region is preferably rich in CpG dinucleotides. In the present invention, the term "target region" or "target gene region" refers to any molecular biologically detectable fragment within the nucleic acid region consisting of the marker gene itself, 5 kb upstream of its gene annotation start site (e.g., 4 kb, 3 kb, 2 kb or 1 kb) and 5 kb downstream of its gene annotation end site (e.g., 4 kb, 3 kb, 2 kb or 1 kb), or its complementary sequence or treated sequence (e.g., the corresponding sequence after bisulfite conversion or the corresponding sequence after MSRE treatment), or the treated sequence of the complementary sequence (e.g., the corresponding sequence after bisulfite conversion or the corresponding sequence after MSRE treatment). For example, the target gene region of the target markers in Table 1A, Table 1B and Table 1C below includes its Hg19 coordinate and any molecular biologically detectable fragment within 5 kb (e.g., 4 kb, 3 kb, 2 kb or 1 kb) upstream and downstream of the coordinate, its complementary sequence or treated sequence (e.g., the corresponding sequence after bisulfite conversion or the corresponding sequence after MSRE treatment), and the treated sequence of the complementary sequence (e.g., the corresponding sequence after bisulfite conversion or the corresponding sequence after MSRE treatment). More preferably, the target gene region of the target marker in Table 1A, Table 1B and Table 1C below includes its Hg19 coordinate and any molecular biologically detectable fragment within 5 kb (e.g., 4 kb, 3 kb, 2 kb or 1 kb) upstream of the coordinate, its complementary sequence or treated sequence (e.g., the corresponding sequence after bisulfite conversion or the corresponding sequence after MSRE treatment), and the treated sequence of the complementary sequence (e.g., the corresponding sequence after bisulfite conversion or the corresponding sequence after MSRE treatment). In some embodiments, it is preferred to use and detect the target markers selected from Table 1A, Table 1B and Table 1C below and their target gene regions or any combination thereof: The TTLL10 described in this article is a protein-coding gene, also known as Tubulin Tyrosine Ligase Like 10, etc., and the function of the encoded protein is related to the activity of protein glycine ligase. The EPS8L3 described in this article is a protein-coding gene, also known as EPS8 Like 3, etc., and the encoded protein is related to epidermal growth factor receptor pathway substrate 8. The IRF2BP2 described in this article is a protein-coding gene, also known as Interferon Regulatory Factor 2 Binding Protein 2, etc., and the encoded protein binds to the IRF2 protein to form a transcriptional inhibition complex. The FAM150B described in this article is a protein-coding gene, also known as ALKAL2, ALK And LTK Ligand 2, etc., and the encoded protein is a ligand for lysine kinase ALK and LTK receptor. The ID2 described in this article is a protein-coding gene, also known as Inhibitor Of DNA Binding 2, etc., and the function of the encoded protein is related to transcriptional regulation. TERT described in this article is a protein-coding gene, also known as Telomerase Reverse Transcriptase, etc. The encoded protein is involved in the apoptosis of synovial fibroblasts and the WNT signaling pathway, etc. PITX1 described in this article is a protein-coding gene, also known as Paired Like Homeodomain 1, etc., and its function is to activate gene expression by transcriptional regulatory factors. KCNMB1 described in this article is a protein-coding gene, also known as Potassium Calcium-Activated Channel Subfamily M Regulatory Beta Subunit 1, and the encoded protein is related to the activity of potassium and calcium ion channels. BEND6 described in this article is a protein-coding gene, also known as BEN Domain Containing 6, and the encoded protein is involved in the Notch signaling pathway. ELN described in this article is a protein-coding gene, also known as Elastin, and the encoded protein is involved in the formation of the extracellular matrix. CPXM2 described in this article is a protein-coding gene, also known as Carboxypeptidase X, M14 Family Member 2, and the encoded protein is related to metal carboxypeptidase activity. TH described in this article is a protein-coding gene, also known as Tyrosine Hydroxylase, and the encoded protein function is tyrosine hydroxylase. C1QTNF9 described in this article is a protein-coding gene, also known as C1q And TNF Related 9, and the encoded protein activates AMPK, AKT, and p44/42 MAPK signaling pathways. CARKD described in this article is a protein-coding gene, also known as NAXD, NAD(P)HX Dehydratase, and the encoded protein is involved in the metabolism of water-soluble vitamins and cofactors and the niacin metabolism pathway. TMEM179 described in this article is a protein-coding gene, also known as Transmembrane Protein 179. SPNS1 described in this article is a protein-coding gene, also known as Sphingolipid Transporter 1 (Putative), and the function of the encoded protein is related to transporter activity. MYO15B described in this article is a protein-coding gene, also known as Myosin XVB. DNM2 described in this article is a protein-coding gene, also known as Dynamin 2, and the encoded protein is one of the subclasses of GTP-binding proteins. EPHX3 described in this article is a protein-coding gene, also known as Epoxide Hydrolase 3, and the encoded protein catalyzes the hydrolysis of epoxy fatty acids. PSG8 described in this article is a protein-coding gene, also known as Pregnancy Specific Beta-1-Glycoprotein 8, and the encoded protein is involved in the vascular wall cell surface interaction signaling pathway and the platelet calcium ion elevated response signaling pathway. SLCO4A1 described in this article is a protein-coding gene, also known as Solute Carrier Organic Anion Transporter Family Member 4A1, and the encoded protein is related to transport activity. TNFRSF6B described herein is a protein coding gene, also known as TNF Receptor Superfamily Member 6b, and the encoded protein belongs to the tumor necrosis factor receptor family. In some embodiments, it is preferred to use and detect two or more (e.g., 3, 4, 5, or 6) combinations of the target markers and their target gene regions in Table 1A. In some embodiments, it is preferred to use and detect the following combinations of the target markers and their target gene regions in Table 1A: i) TTLL10, FAM150B, BEND6, ELN, TMEM179, and MYO15B; or ii) EPS8L3, IRF2BP2, TERT, TH, CARKD, SPNS1, and PSG8. In some embodiments, the target marker CARKD and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker TTLL10 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker EPS8L3 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker IRF2BP2 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker FAM150B and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker ID2 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker TERT and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker PITX1 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker KCNMB1 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker BEND6 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker ELN and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker CPXM2 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker TH and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker C1QTNF9 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker TMEM179 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker SPNS1 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker MYO15B and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, DNM2, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker DNM2 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, EPHX3, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker EPHX3 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, PSG8, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker PSG8 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, SLCO4A1 and TNFRSF6B. In some embodiments, the target marker SLCO4A1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8 and TNFRSF6B. In some embodiments, the target marker TNFRSF6B and its target gene region are preferably used and detected, and optionally, target markers selected from the following and their target gene regions or any combination thereof are additionally used and detected: TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8 and SLCO4A1. The SKI described herein is a protein coding gene, also known as SKI Proto-Oncogene, and the function of the encoded protein is a TGF-beta signaling pathway inhibitor. The PRDM16 described herein is a protein coding gene, also known as PR/SET Domain 16, and the encoded protein can regulate gene transcription. PIAS3 described in this article is a protein-coding gene, also known as Protein Inhibitor Of Activated STAT 3, and the encoded protein inhibits the activation of the STAT3 signaling pathway. SLC10A4 described in this article is a protein-coding gene, also known as Solute Carrier Family 10 Member 4, and the encoded protein is a transport protein that participates in the transport of bile acid, etc. CXXC5 described in this article is a protein-coding gene, also known as CXXC Finger Protein 5, and the encoded protein binds to a specific DNA motif and participates in signal transduction of multiple signaling pathways such as NF-kappa-B, MAPK, and WNT. NR2E1 described in this article is a protein-coding gene, also known as Nuclear Receptor Subfamily 2 Group E Member 1, and the encoded protein participates in the formation of nuclear receptors. MPC1 described in this article is a protein-coding gene, also known as Mitochondrial Pyruvate Carrier 1, and the encoded protein participates in mitochondrial pyruvate transport. HOXA13 described in this article is a protein-coding gene, also known as Homeobox A13, and the protein it encodes is a transcription factor that participates in transcriptional regulation. LZTS1 described in this article is a protein-coding gene, also known as Leucine Zipper Tumor Suppressor 1, and the protein it encodes participates in regulating the cell cycle. CHD7 described in this article is a protein-coding gene, also known as Chromodomain Helicase DNA Binding Protein 7, and the gene body involved is annotated as chromatin binding and helicase activity. ANKRD20A1 described in this article is a protein-coding gene, also known as Ankyrin Repeat Domain 20 Family Member A1. CACNA1B described in this article is a protein-coding gene, also known as Calcium Voltage-Gated Channel Subunit Alpha1 B, and the protein it encodes participates in the formation of calcium ion channels. ACVRL1 described in this article is a protein-coding gene, also known as Activin A Receptor Like Type 1, and the protein it encodes is a TFG-beta family ligand receptor that participates in regulating vascular development. CCNA1 described in this article is a protein-coding gene, also known as Cyclin A1, and the encoded protein is involved in regulating the cell cycle. RNASEH2B described in this article is a protein-coding gene, also known as Ribonuclease H2 Subunit B, and the encoded protein is a nuclease subunit. SNX20 described in this article is a protein-coding gene, also known as Sorting Nexin 20, and the encoded protein is involved in cell vesicle transport. TBCD described in this article is a protein-coding gene, also known as Tubulin Folding Cofactor D, and the encoded protein is involved in tubulin folding. PIP5K1C described in this article is a protein-coding gene, also known as Phosphatidylinositol-4-Phosphate 5-Kinase Type 1 Gamma, and the encoded protein function is a phosphokinase. ZBTB7A described in this article is a protein-coding gene, also known as Zinc Finger And BTB Domain Containing 7A, and the encoded protein is a transcription factor that inhibits transcription initiation. DNASE2 described herein is a protein coding gene, also known as Deoxyribonuclease 2, Lysosomal, and the coding protein belongs to the DNA endonuclease family. TSHZ3 described herein is a protein coding gene, also known as Teashirt Zinc Finger Homeobox 3, and the coding protein is involved in transcriptional regulation. WISP2 described herein is a protein coding gene, also known as CCN5 or Cellular Communication Network Factor 5, and the coding protein belongs to the WISP protein family. In some embodiments, it is preferred to use and detect a combination of two or more (e.g., 3, 4, 5, or 6) of the target markers and their target gene regions in Table 1B. In some embodiments, the following combinations of target markers and their target gene regions in Table 1B are preferably used and detected: i) SKI, PRDM16, LZTS1, CCNA1, PIP5K1C and WISP2; or ii) PIAS3, CHD7, CACNA1B, ACVRL1, SNX20, TBCD and ZBTB7A. In some embodiments, the target marker SKI and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker PRDM16 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker PIAS3 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker SLC10A4 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker CXXC5 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker NR2E1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker MPC1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker HOXA13 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker LZTS1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker CHD7 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker ANKRD20A1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker CACNA1B and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker ACVRL1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker CCNA1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker RNASEH2B and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker SNX20 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker TBCD and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, PIP5K1C, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker PIP5K1C and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, ZBTB7A, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker ZBTB7A and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, DNASE2, TSHZ3 and WISP2. In some embodiments, the target marker DNASE2 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, TSHZ3 and WISP2. In some embodiments, the target marker TSHZ3 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, and WISP2. In some embodiments, the target marker WISP2 and its target gene region are preferably used and detected, and optionally, target markers selected from the following and their target gene regions or any combination thereof are additionally used and detected: SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2 and TSHZ3. WRAP73 described herein is a protein coding gene, also known as WD Repeat Containing, Antisense To TP73, and the encoded protein belongs to a member of the WD repeat protein family. C2CD4D described herein is a protein coding gene, also known as C2 Calcium Dependent Domain Containing 4D. CCDC181 described herein is a protein-coding gene, also known as Coiled-Coil Domain Containing 181. RNF144A described herein is a protein-coding gene, also known as Ring Finger Protein 144A, and the encoded protein belongs to the zinc finger protein family. SIX2 described herein is a protein-coding gene, also known as SIX Homeobox 2, and the encoded protein is a transcription factor. NRXN1 described herein is a protein-coding gene, also known as Neurexin 1, and the encoded protein is a cell surface protein. MEIS1 described herein is a protein-coding gene, also known as Meis Homeobox 1, and the encoded protein is a transcriptional regulator of PAX6. LBX2 described herein is a protein-coding gene, also known as Ladybird Homeobox 2, and the encoded protein is a transcriptional regulatory factor. AMT described herein is a protein-coding gene, also known as Aminomethyltransferase, and the encoded protein is involved in glycine degradation. ITIH4 described in this article is a protein-coding gene, also known as Inter-Alpha-Trypsin Inhibitor Heavy Chain 4, and the encoded protein is a secretory protein. TRH described in this article is a protein-coding gene, also known as Thyrotropin Releasing Hormone, and the encoded protein belongs to the thyrotropin-releasing hormone family. SHOX2 described in this article is a protein-coding gene, also known as Short Stature Homeobox 2, and the encoded protein is a transcription factor. DGKG described in this article is a protein-coding gene, also known as Diacylglycerol Kinase Gamma, and the encoded protein belongs to the diacylglycerol kinase family. RPL9 described in this article is a protein-coding gene, also known as Ribosomal Protein L9, and the encoded protein participates in the formation of ribosomal subunits. PFN3 described in this article is a protein-coding gene, also known as Profilin 3, and the encoded protein belongs to the actin family. FOXC1 described in this article is a protein-coding gene, also known as Forkhead Box C1, and the encoded protein is a transcription factor. LY86 described in this article is a protein-coding gene, also known as Lymphocyte Antigen 86, and the encoded protein is involved in the immune response signaling pathway. SLC35F1 described in this article is a protein-coding gene, also known as Solute Carrier Family 35 Member F1, and the encoded protein is a member of the ion transport family. LRRC4 described in this article is a protein-coding gene, also known as Leucine Rich Repeat Containing 4, and the encoded protein is a synaptic adhesion protein. PDLIM2 described in this article is a protein-coding gene, also known as PDZ And LIM Domain 2, and the encoded protein function is related to cell adhesion. PAX2 described in this article is a protein-coding gene, also known as Paired Box 2, and the encoded protein is a transcription factor. MVK described in this article is a protein-coding gene, also known as Mevalonate Kinase, and the encoded protein is mevalonate kinase. DTX1 described in this article is a protein-coding gene, also known as Deltex E3 Ubiquitin Ligase 1, and the encoded protein is a ubiquitin ligase. RBM19 described in this article is a protein-coding gene, also known as RNA Binding Motif Protein 19. GCH1 described in this article is a protein-coding gene, also known as GTP Cyclohydrolase 1, and the encoded protein belongs to the GTP cyclohydrolase family. OTX2 described in this article is a protein-coding gene, also known as Orthodenticle Homeobox 2, and the encoded protein is a transcription factor. ZSCAN10 described in this article is a protein-coding gene, also known as Zinc Finger And SCAN Domain Containing 10, and the encoded protein is a transcription factor. AHSP described in this article is a protein-coding gene, also known as Alpha Hemoglobin Stabilizing Protein. NLRC5 described in this article is a protein-coding gene, also known as NLR Family CARD Domain Containing 5, and the encoded protein is involved in regulating the immune system. ASXL3 described in this article is a protein-coding gene, also known as ASXL Transcriptional Regulator 3, and the encoded protein is involved in regulating gene transcription. TCF4 described herein is a protein coding gene, also known as Transcription Factor 4, and the coding protein is a transcription factor. PLIN3 described herein is a protein coding gene, also known as Perilipin 3. RASAL3 described herein is a protein coding gene, also known as RAS Protein Activator Like 3, and the coding protein is a member of the RasGAP family. CHRNA4 described herein is a protein coding gene, also known as Cholinergic Receptor Nicotinic Alpha 4 Subunit, and the coding protein is a nicotinic acetylcholine receptor subunit. In some embodiments, it is preferred to use and detect a combination of two or more (e.g., 3, 4, 5, or 6) of the target markers and their target gene regions in Table 1C. In some embodiments, the following combinations of target markers and their target gene regions in Table 1C are preferably used and detected: i) ITIH4, FOXC1, PDLIM2, MVK, NLRC5, TCF4 and PLIN3; or ii) RNF144A, SIX2, DGKG, RPL9, LRRC4 and ZSCAN10. In some embodiments, the target marker WRAP73 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker C2CD4D and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker CCDC181 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker RNF144A and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker SIX2 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker NRXN1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker MEIS1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker LBX2 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker AMT and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker ITIH4 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker TRH and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker SHOX2 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker DGKG and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker RPL9 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker PFN3 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker FOXC1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker LY86 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker SLC35F1 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker LRRC4 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker PDLIM2 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker PAX2 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker MVK and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker DTX1 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker RBM19 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker GCH1 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker OTX2 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker ZSCAN10 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker AHSP and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, NLRC5, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker NLRC5 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, ASXL3, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker ASXL3 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, TCF4, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker TCF4 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, PLIN3, RASAL3 and CHRNA4. In some embodiments, the target marker PLIN3 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, RASAL3 and CHRNA4. In some embodiments, the target marker RASAL3 and its target gene region are preferably used and detected, and optionally a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3 and CHRNA4. In some embodiments, the target marker CHRNA4 and its target gene region are preferably used and detected, and optionally, a target marker selected from the following and its target gene region or any combination thereof is additionally used and detected: WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3 and RASAL3. In some embodiments, the use of the target markers of the present invention and their target gene regions or combinations thereof can achieve a sensitivity of at least 25%, such as at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 81%, at least 82% or at least 83% with a specificity of greater than 80%, such as greater than 85% or greater than 90%. The terms "subject", "patient" and "individual" are used interchangeably herein and refer to warm-blooded animals, such as mammals. The term includes but is not limited to livestock, rodents (such as rats and mice), primates and humans. Preferably, the term refers to humans. The term "methylation assay" refers to any assay that determines the methylation state of one or more dinucleotide (e.g., CpG) sequences within a DNA sequence. In this article, the term "threshold" should be understood according to the general understanding of those skilled in the art, and represents any useful reference for reflecting the level of DNA methylation. In some embodiments, the threshold is represented by a positive reference interval, wherein within the positive reference interval, it is indicated that the individual suffers from breast cancer or has a risk of breast cancer; for example, compared with the corresponding positive reference interval, the methylation level of one or more markers within the positive reference interval indicates that the individual suffers from breast cancer or has a risk of breast cancer. The threshold or positive reference interval can be obtained from a known database or personal study. In the present invention, the threshold or positive reference interval refers to the level from a positive control (i.e., an individual suffering from breast cancer). The threshold or positive reference interval can be obtained from the patient's own blood reference sample; the expression of marker genes of individuals with breast cancer; or breast cancer cells of individuals with breast cancer who are predetermined to have breast cancer. In some embodiments, when a machine learning model (including but not limited to a logical regression model) is used to determine breast cancer, the AUC value of the ROC curve is used to set the positive reference interval, for example, the AUC value of each marker greater than 90% specificity (the proportion of samples without breast cancer detected as positive is less than 10%) is used to set the positive reference interval. In some embodiments in which the 22 markers of group (1) above are used to construct a logical regression model, the AUC threshold is set to, for example, equal to or greater than 0.362. In some embodiments of constructing a logical regression model using TTLL10, FAM150B, BEND6, ELN, TMEM179, and MYO15B markers, the AUC threshold is set to, for example, equal to or greater than 0.609. In some embodiments of constructing a logical regression model using EPS8L3, IRF2BP2, TERT, TH, CARKD, SPNS1, and PSG8 markers, the AUC threshold is set to, for example, equal to or greater than 0.604. In some embodiments of constructing a logical regression model using a single CARKD marker, the AUC threshold is set to, for example, equal to or greater than 0.532. In some embodiments of constructing a logical regression model using a single TTLL10 marker, the AUC threshold is set to, for example, equal to or greater than 0.533. In some embodiments where a single EPS8L3 marker is used to construct a logistic regression model, the AUC threshold is set to, for example, equal to or greater than 0.533. In some embodiments where a single IRF2BP2 marker is used to construct a logistic regression model, the AUC threshold is set to, for example, equal to or greater than 0.533. In some embodiments where a single FAM150B marker is used to construct a logistic regression model, the AUC threshold is set to, for example, equal to or greater than 0.532. In some embodiments where a single ID2 marker is used to construct a logistic regression model, the AUC threshold is set to, for example, equal to or greater than 0.532. In some embodiments where a single TERT marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single PITX1 marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single KCNMB1 marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single BEND6 marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single ELN marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.534. In some embodiments where a single CPXM2 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.531. In some embodiments where a single TH marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single C1QTNF9 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.534. In some embodiments where a single TMEM179 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single SPNS1 marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single MYO15B marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single DNM2 marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single EPHX3 marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.534. In some embodiments where a single PSG8 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single SLCO4A1 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.537. In some embodiments where a single TNFRSF6B marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.531. In some embodiments, when a machine learning model (including but not limited to a logical regression model) is used to determine breast cancer, the AUC value of the ROC curve is used to set a positive reference interval, for example, the AUC value of each marker greater than 90% specificity (the proportion of samples without breast cancer detected as positive is less than 10%) is used to set a positive reference interval. In some embodiments in which the 22 markers of the above group (2) are used to construct a logical regression model, the AUC threshold is set to, for example, equal to or greater than 0.440. In some embodiments in which the SKI, PRDM16, LZTS1, CCNA1, PIP5K1C, and WISP2 markers are used to construct a logical regression model, the AUC threshold is set to, for example, equal to or greater than 0.541. In some embodiments where the PIAS3, CHD7, CACNA1B, ACVRL1, SNX20, TBCD, and ZBTB7A markers are used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.513. In some embodiments where the SKI marker alone is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.534. In some embodiments where the PRDM16 marker alone is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where the PIAS3 marker alone is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single SLC10A4 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single CXXC5 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.534. In some embodiments where a single NR2E1 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single MPC1 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.540. In some embodiments where a single HOXA13 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.534. In some embodiments where a single LZTS1 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.534. In some embodiments where a single CHD7 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single ANKRD20A1 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.530. In some embodiments where a single CACNA1B marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single ACVRL1 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.530. In some embodiments where a single CCNA1 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single RNASEH2B marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single SNX20 marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.548. In some embodiments where a single TBCD marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single PIP5K1C marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single ZBTB7A marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.529. In some embodiments where a single DNASE2 marker is used to construct a logical regression model, the AUC threshold is set to, for example, be equal to or greater than 0.533. In some embodiments where a single TSHZ3 marker is used to construct a logical regression model, the AUC threshold is set to, for example, be equal to or greater than 0.532. In some embodiments where a single WISP2 marker is used to construct a logical regression model, the AUC threshold is set to, for example, be equal to or greater than 0.532. In some embodiments, when a machine learning model (including but not limited to a logical regression model) is used to determine breast cancer, the AUC value of the ROC curve is used to set a positive reference interval, for example, the AUC value of each marker greater than 90% specificity (the proportion of samples without breast cancer detected as positive is less than 10%) is used to set a positive reference interval. In some embodiments in which the 35 markers of the above group (3) are used to construct a logical regression model, the AUC threshold is set to, for example, equal to or greater than 0.505. In some embodiments in which the ITIH4, FOXC1, PDLIM2, MVK, NLRC5, TCF4, and PLIN3 markers are used to construct a logical regression model, the AUC threshold is set to, for example, equal to or greater than 0.445. In some embodiments of constructing a logical regression model using RNF144A, SIX2, DGKG, RPL9, LRRC4, and ZSCAN10 markers, the AUC threshold is set to, for example, equal to or greater than 0.447. In some embodiments of constructing a logical regression model using a single WRAP73 marker, the AUC threshold is set to, for example, equal to or greater than 0.533. In some embodiments of constructing a logical regression model using a single C2CD4D marker, the AUC threshold is set to, for example, equal to or greater than 0.533. In some embodiments of constructing a logical regression model using a single CCDC181 marker, the AUC threshold is set to, for example, equal to or greater than 0.533. In some embodiments where a single RNF144A marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single SIX2 marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.534. In some embodiments where a single NRXN1 marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a single MEIS1 marker is used to construct a logical regression model, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a logistic regression model is constructed using a single LBX2 marker, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a logistic regression model is constructed using a single AMT marker, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a logistic regression model is constructed using a single ITIH4 marker, the AUC threshold is set, for example, to be equal to or greater than 0.529. In some embodiments where a logistic regression model is constructed using a single ITIH4 marker, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a logistic regression model is constructed using a single TRH marker, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single SHOX2 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single DGKG marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.534. In some embodiments where a single RPL9 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.531. In some embodiments where a single PFN3 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.535. In some embodiments where a single FOXC1 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single LY86 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single SLC35F1 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single LRRC4 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a logical regression model is constructed using a single PDLIM2 marker, the AUC threshold is set to, for example, be equal to or greater than 0.533. In some embodiments where a logical regression model is constructed using a single PAX2 marker, the AUC threshold is set to, for example, be equal to or greater than 0.533. In some embodiments where a logical regression model is constructed using a single MVK marker, the AUC threshold is set to, for example, be equal to or greater than 0.533. In some embodiments where a logical regression model is constructed using a single DTX1 marker, the AUC threshold is set to, for example, be equal to or greater than 0.535. In some embodiments where a logical regression model is constructed using a single RBM19 marker, the AUC threshold is set to, for example, be equal to or greater than 0.533. In some embodiments where a single GCH1 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single OTX2 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single ZSCAN10 marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a single AHSP marker is used to construct a logistic regression model, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a logistic regression model is constructed using a single NLRC5 marker, the AUC threshold is set, for example, to be equal to or greater than 0.531. In some embodiments where a logistic regression model is constructed using a single ASXL3 marker, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments where a logistic regression model is constructed using a single TCF4 marker, the AUC threshold is set, for example, to be equal to or greater than 0.532. In some embodiments where a logistic regression model is constructed using a single PLIN3 marker, the AUC threshold is set, for example, to be equal to or greater than 0.531. In some embodiments where a logistic regression model is constructed using a single RASAL3 marker, the AUC threshold is set, for example, to be equal to or greater than 0.533. In some embodiments of constructing a logical regression model using a single CHRNA4 marker, the AUC threshold is set to, for example, equal to or greater than 0.532. The term "oligonucleotide" refers to a polymer form of nucleotides of any length, which is a ribonucleotide or a deoxyribonucleotide. The term includes double-stranded and single-stranded DNA and RNA, such as modified and unmodified forms of methylated or capped polynucleotides. The terms "polynucleotide" and "oligonucleotide" are used interchangeably herein. Oligonucleotides may but need not include other coding or non-coding sequences, or they may but need not be connected to other molecules and/or carriers or supporting materials. Oligonucleotides used in the methods or kits of the present invention may have any length suitable for a specific method. In some applications, the term refers to an antisense nucleic acid molecule (e.g., an mRNA or DNA chain in the opposite direction of a sense polynucleotide encoding a marker of the present invention). Oligonucleotides used in the present invention include complementary nucleic acid sequences and nucleic acids substantially identical to these sequences, and also include sequences that differ from nucleic acid sequences due to genetic code degeneracy. Oligonucleotides that can be used in the present invention also include nucleic acids that hybridize with oligonucleotide cancer marker nucleic acid sequences under stringent conditions, preferably highly stringent conditions. Nucleotide hybridization assays are well known in the art. Hybridization assay procedures and conditions will vary depending on the application and are selected based on known general binding methods, see, for example, J. Sambrook et al., Molecular Cloning: A Laboratory Manual (3rd Edition. Science Press, 2002); and Young and Davis, P.N.A.S, 80: 1194 (1983). Methods and apparatus for performing repeated and controlled hybridization reactions have been described in U.S. Patent Nos. 5,871,928, 5,874,219, 6,045,996, 6,386,749, and 6,391,623, each of which is incorporated herein by reference. As used herein, "primer" generally refers to a linear oligonucleotide that is complementary to and anneals to a target sequence. The lower limit of primer length is determined by hybridization ability, because very short primers (e.g., less than 5 nucleotides) do not form thermodynamically stable duplexes under most hybridization conditions. Primer lengths generally vary from 8-50 nucleotides. In certain embodiments, primers are between about 15-25 nucleotides. Naturally occurring nucleotides (especially guanine, adenine, cytosine and thymine, hereinafter referred to as "G", "A", "C" and "T"), as well as nucleotide analogs, can be used in the primers of the present invention. "Amplification product" as used herein refers to an amplified nucleic acid produced from a nucleic acid template by nucleic acid amplification. The term "nucleotide analog" as used herein refers to a compound that is structurally similar to a naturally occurring nucleotide. Nucleotide analogs may have altered phosphate backbones, sugar moieties, nucleobases or combinations thereof. Nucleotide analogs with altered nucleobases typically impart different base pairing and base stacking properties, among others. Nucleotide analogs with altered phosphate-sugar backbones (e.g., peptide nucleic acids (PNA), locked nucleic acids (LNA)) typically alter chain properties, such as secondary structure formation, among others. Examples of primers and probes used in the present invention are shown in Table 2A, Table 2B and Table 2C, and the target gene regions they target are shown in Table 1A, Table 1B and Table 1C. The nucleotide sequences of the primers and probes of the present invention also include modified forms thereof, as long as the amplification or detection effect of the primers is not significantly affected. The modification may be, for example, adding one or more nucleotide residues in the nucleotide sequence or at both ends, deleting one or more nucleotide residues in the nucleotide sequence, or replacing one or more nucleotide residues in the sequence with other nucleotide residues, such as replacing A with T, replacing C with G, etc. It is clear to those skilled in the art that the modified form of the primer is also covered within the scope of protection of the present invention, especially within the scope of the patent application. In one embodiment, the modified form of the nucleotide sequence of the primer is a chemically enhanced primer as disclosed in CN103270174A. Each nucleotide in the primer of the present invention can be synthesized by chemical methods using, for example, a universal DNA synthesizer (e.g., Model 394 manufactured by Applied Biosystems). Oligonucleotides may also be synthesized by any other method known in the art. DNA extracted from a sample is used as a template, and a PCR primer is used to amplify the target marker to obtain an amplification product. Amplification reactions include, but are not limited to, polymerase chain reaction (PCR), ligase chain reaction (LCP), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), chain displacement amplification (SDA), multiple displacement amplification (MDA) and circular amplification (RCA), which are disclosed in the following references (incorporated herein by reference): Mullis et al., U.S. Patent Nos. 4,683,195; 4,965,188; 4,683,202; 4,800,159 (PCR); Gelfand et al., U.S. Patent No. 5,210,015 (referred to as "Taqman" or "Taq" [Registered Trademark] Real-time PCR with probe); Wittwer et al., U.S. Patent No. 6,174,670; Kacian et al., U.S. Patent No. 5,399,491 ("NASBA"); Lizardi, U.S. Patent No. 5,854,033; Aono et al., Japanese Patent Publication No. JP 4-262799 (Rolling Circle Amplification); etc. The target marker is preferably amplified using PCR. The PCR method itself is well known in the art. The term "PCR" includes derivative forms of the reaction, including but not limited to reverse transcription PCR, real-time PCR, embedded mode PCR, multiplex PCR and fluorescent quantitative PCR. It is preferred to use fluorescent quantitative PCR to quantitatively amplify the target nucleotide. In the presence of primers, template DNA and thermostable DNA polymerase, a primer hybridized with the sense strand (reverse primer) and a primer hybridized with the antisense strand (forward primer) are used to perform PCR by repeating the cycle of denaturation, annealing and extension steps for about 30 to 60 times (e.g., 50 times). In one embodiment, PCR is fluorescent quantitative PCR. In one embodiment, PCR uses the primers shown in Table 2. It can be understood by those skilled in the art that other PCR methods and primers can also be used as long as the target fragment can be amplified. In the PCR of the present invention, various conventional thermostable DNA polymerases can be used for amplification, including but not limited to FastStart Taq DNA polymerase (Roche), Ex Taq (registered trademark, Takara), Z-Taq, AccuPrime Taq DNA polymerase and HotStarTaq Plus DNA polymerase. The method of selecting suitable PCR reaction conditions based on the primer Tm value is well known in the art, and ordinary technicians in the art can select the best conditions based on primer length, GC content, target specificity and sensitivity, the properties of the polymerase used, etc. For example, the following conditions can be used for fluorescent quantitative PCR reaction: 95°C for 5 minutes; 95°C for 15 seconds, 56°C for 40 seconds, and 50 cycles. The reaction system is 25 μL. Reagents that can be used to detect the methylation level of the target marker of the present invention are well known in the art. Such reagents suitable for the present invention, such as bisulfite reagents or methylation-sensitive restriction enzymes, can be purchased commercially or routinely prepared by methods well known to technicians in the field. The term "bisulfite reagent" refers to bisulfite used to distinguish between methylated and unmethylated CpG dinucleotide sequences. The term "methylation-sensitive restriction enzyme" should be understood as an enzyme that selectively digests nucleic acids based on the methylation status of its recognition site. For restriction enzymes that specifically cleave when the recognition site is unmethylated or hemimethylated, when the recognition site is methylated, cleavage does not occur, or cleavage occurs with significantly reduced efficiency. For restriction enzymes that specifically cleave when the recognition site is methylated, when the recognition site is unmethylated, cleavage does not occur, or cleavage occurs with significantly reduced efficiency. The following methylation-sensitive restriction enzymes are preferred, whose recognition sequences contain CG dinucleotides (e.g., cgcg or cccggg). In some embodiments, it is further preferred that the restriction enzyme does not cut when the cytosine in the dinucleotide is methylated at the C5 carbon atom. The kit of the present invention can be prepared by conventional methods in the art. The kit may contain materials or reagents used to implement the method of the present invention (including reagents for detecting each target marker). The kit may include storage reaction reagents (such as primers, dNTPs, enzymes, etc. in suitable containers) and/or support materials (such as buffers, instructions for performing the detection, etc.). For example, the kit may include one or more containers (such as boxes) containing corresponding reaction reagents and/or support materials. Such contents can be delivered to a predetermined recipient together or separately. As an example, the kit may contain reagents, buffers, and instructions for use for detecting each target marker. The kit may also contain polymerases and dTNPs, etc. The kit may also contain internal standards, positive and negative controls, etc. for quality control. The kit may also contain reagents for preparing nucleic acids, such as DNA, from samples. The above examples should not be construed as limiting the kits and their contents applicable to the present invention. A microarray refers to a solid support having a flat surface, which has an array of nucleic acids, each member of the array comprising an identical copy of an oligonucleotide or polynucleotide fixed to a spatially defined region or site, which does not overlap with the regions or sites of other members in the array; that is, the region or site is spatially discrete. In addition, a spatially defined hybrid site can be "addressable" because its position and the identity of its immobilized oligonucleotide are known or predetermined (e.g., known or predetermined before its use). Typically, the oligonucleotide or polynucleotide is a single strand and is covalently linked to a solid support, usually at the 5'-end or the 3'-end. The density of nucleic acids containing non-overlapping regions in the microarray is usually greater than 100/cm 2, preferably greater than 1000/cm 2. Microarray technology is disclosed in, for example, the following references: Microarrays: A Practical Approach (IRL Press, Oxford, 2000), edited by Schena; Southern, Current Opin. Chem. Biol., 2:404-410, 1998, all of which are incorporated herein by reference. The present invention discloses the use of markers in diagnosing breast cancer and predicting its risk. A person skilled in the art can refer to the contents of this article and appropriately improve the process parameters to achieve the purpose. It is particularly important to point out that all similar substitutions and modifications are obvious to a person skilled in the art, and they are all considered to be included in the present invention. The uses described in this invention have been described through preferred embodiments. Relevant personnel can obviously modify or appropriately change and combine the uses described in this article without departing from the content, spirit and scope of this invention to realize and apply the technology of this invention. EmbodimentIn order to more clearly understand the content of the present invention, it will be described in detail with reference to the attached drawings and embodiments. Embodiment 1: Methylation targeted sequencing to screen for breast cancer methylation markers in plasmaThe inventor collected a total of 132 female samples, including 70 female breast cancer patients and 62 healthy women. All participants signed informed consent. These samples were divided into training sets and test sets according to a certain ratio. The training set was used to build the following machine learning model, and the test set was used to test the performance of the model. The sample information is shown in Table 3 below. This application obtains the methylation sequencing data of sample plasma cfDNA by the method of Methyl-Titan (China Patent No. CN201910515830) and screens out the methylation markers therein. The specific technical scheme is as follows: 1. Extraction of plasma cfDNA samples A streck blood collection tube is used to collect 2ml whole blood samples from volunteers. The sample information of the volunteers included in the group is shown in Table 3. The plasma is centrifuged and separated in time (within 3 days). After being transferred to the laboratory, the QIAGEN QIAamp Circulating Nucleic Acid Kit is used to extract cfDNA according to the instructions. 2. Sequencing and data preprocessing a) The library is sequenced with 150bp double-end using the Illumina Nextseq 500 sequencer, and the sequencing amount is not less than 5M. b)  Pear (v0.6.0) software merged the double-end sequencing data of the same fragment of 150bp sequencing off the sequencer into one sequence, with the shortest overlap length of 20 bp and the shortest length after merging of 30bp. c)  Trim_galore v 0.6.0 and cutadapt v1.8.1 software were used to remove the junction of the merged sequencing data. The junction sequence was "AGATCGGAAGAGCAC" and the bases with sequencing quality values less than 20 at both ends were removed. 3. Sequencing data alignment The reference genome data used in this article comes from the UCSC database (UCSC: HG19, http://hgdownload.soe.ucsc.edu/goldenPath/ hg19/ bigZips/hg19.fa.gz). a)  Use Bismark software to convert HG19 genome sequences from cytosine to thymine (CT) and adenine to guanine (GA), and use Bowtie2 software to build indexes for the converted genomes. b)  Perform CT and GA conversion on the preprocessed data in the same way. c)  Use Bowtie2 software to align the converted sequences to the converted HG19 reference genome, with a minimum seed sequence length of 20 and no mismatches in the seed sequence. 4. Calculation of AMF and MHF for each sample Based on the above comparison results, obtain the methylation status corresponding to each CpG site in each target methylation interval. a)  Calculate the average methylation rate AMF value of the target methylation interval. The calculation formula for AMF is as follows: Where M is the total number of CpG sites in the target methylation interval, i is the CpG site in the interval, and N C,iis the number of reads sequenced as C at the CpG site (i.e., the number of methylation reads), N T,iis the number of reads with T sequenced at the CpG site (i.e., the number of unmethylated sequenced reads). b) Calculate the MHF value of the target methylation interval methylation haplotype rate. A target methylation interval may have multiple methylation haplotypes. This value needs to be calculated for each methylation haplotype in the target region. The calculation formula of MHF is as follows: Where l represents the target methylation interval, h represents the target methylation haplotype, N lIndicates the number of reads located in the target methylation region, N l,hIndicates the number of reads containing the target methylation haplotype 5. Feature matrix construction a) Merge the AMF and MHF values of each target methylation interval of each sample in the training set and the test set into the training set and the test set feature matrix, and treat the target methylation interval with less than 100 reads as missing values. b) Remove the target methylation interval with a missing value ratio higher than 10%. c) Use the KNN algorithm to train the transformer for the training set matrix, and use the transformer to interpolate missing data for the training set and the test set feature matrix. 6. Search for breast cancer methylation markers based on training set samples (see Figure 1) a) In the training set, construct a logical regression model for each feature to distinguish breast cancer from healthy people, calculate the average AUC of 3-fold cross-validation, and sort from high to low b) Add the remaining features to the feature set in turn, and reconstruct the logical regression model c) If the average AUC of the 5-fold cross-validation of the logical regression model increases, retain the feature, otherwise remove it d) After traversing all features, obtain the optimal marker combination, use the optimal combination to build a model, and finally use the test set samples to verify the effect of the model. 7. A total of 79 breast cancer methylation markers were screened in the above process. The above process screened out 79 breast cancer methylation markers (22 in group (1), 22 in group (2), and 35 in group (3), among which a single methylation marker or a combination of multiple methylation markers can be used as methylation markers for breast cancer identification. No. (1) GroupThe methylation marker-associated gene refers to the gene corresponding to the nearest TSS within 100Kb of the methylation marker. The specific associated genes and methylation levels are shown in Table 4A. The methylation levels of the 22 methylation markers in the training set and test set breast cancer samples and healthy human samples are shown in Figure 2A and Table 4A. The methylation marker-associated gene refers to the gene corresponding to the nearest TSS within 100Kb of the methylation marker. The methylation marker genomic position refers to the methylation marker in the UCSC (https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19) HG19 genomic position. For the training set and test set samples of healthy people and breast cancer patients, the methylation level of each sample methylation marker was calculated respectively, and the median of the category was calculated as the methylation level of the category. The statistical significance of the difference in methylation between healthy people and breast cancer patients in the training set and test set was calculated using 'Wilcox.test'. If the Wilcox.P value is <0.05, it is considered that the methylation marker has a significant methylation difference between healthy people and breast cancer patients. Among the 22 methylation markers, 19 methylation markers have significant methylation differences in the training set samples, and 14 have significant methylation differences in the test set samples. These results show that the 22 methylation markers we screened can also better distinguish healthy people and breast cancer patients in terms of sample methylation levels. We use Seq ID NO:14 to show the methylation level of this methylation marker in the training set and test set of breast cancer and healthy people in detail, as shown in Table 4A below. This methylation marker has extremely significant methylation differences in the training set and test set of breast cancer and healthy people, with the training set Wilcox.P value being 1.2E-11 and the test set Wilcox.P value being 1.0E-08. No. (2) GroupThe methylation marker-associated gene refers to the gene corresponding to the nearest TSS within 100Kb of the methylation marker. The specific associated genes and methylation levels are shown in Table 4     B. The methylation levels of the 22 methylation markers in the training set and test set breast cancer samples and healthy human samples are shown in Figure 1 and Table 2B. The methylation marker-associated gene refers to the gene corresponding to the nearest TSS within 100Kb of the methylation marker. The methylation marker genomic position refers to the methylation marker in the UCSC (https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19) HG19 genomic position. For the training set and test set samples of healthy people and breast cancer patients, the methylation level of each sample methylation marker was calculated respectively, and the median of the category was calculated as the methylation level of the category. The statistical significance of the difference in methylation between healthy people and breast cancer patients in the training set and test set was calculated using 'Wilcox.test'. If the Wilcox.P value is <0.05, it is considered that the methylation marker has a significant methylation difference between healthy people and breast cancer patients. Among the 22 methylation markers, 19 methylation markers have significant methylation differences in the training set samples, and 13 have significant methylation differences in the test set samples. These results show that the 22 methylation markers we screened can also better distinguish healthy people and breast cancer patients in terms of sample methylation levels. We use Seq ID NO:75 to show the methylation level of this methylation marker in the training set and test set of breast cancer and healthy people in detail, as shown in Table 4B below. This methylation marker has extremely significant methylation differences in the training set and test set of breast cancer and healthy people, with the training set Wilcox.P value of 9.6E-12 and the test set Wilcox.P value of 2.5E-03. No. (3) GroupThe methylation marker-associated gene refers to the gene corresponding to the nearest TSS within 100Kb of the methylation marker. The specific associated genes and methylation levels are shown in Table 4    C. The methylation levels of the 35 methylation markers in the training set and test set breast cancer samples and healthy human samples of Group (3) are shown in Figure 1 and Table 4C. The methylation marker genomic position refers to the methylation marker position in the UCSC (https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19) HG19 genome. The methylation marker-associated gene refers to the gene whose TSS is within 100Kb of the methylation marker and is the closest to it. For the samples of healthy people and breast cancer patients in the training set and the test set, the methylation level of each sample methylation marker was calculated respectively, and the median of the category was calculated as the methylation level of the category. The statistical significance of the difference in methylation between healthy people and breast cancer patients in the training set and the test set was calculated using 'Wilcox.test'. If the P value is <0.05, it is considered that the methylation marker has a significant methylation difference between healthy people and breast cancer patients. Among the 35 methylation markers, 28 methylation markers have significant methylation differences in the training set samples, and 18 have significant methylation differences in the test set samples. These results show that the methylation markers we screened can also better distinguish healthy people and breast cancer patients in terms of sample methylation levels. We use Seq ID NO:152 as an example to show the methylation level of this methylation marker in the training set and test set of breast cancer and healthy people in detail, as shown in Table 4C below. This methylation marker has extremely significant methylation differences between breast cancer and healthy people in both the training set and the test set. The P value of the training set ‘Wilcox.test’ is 6.0E-7, and the P value of the test set ‘Wilcox.test’ is 7.8E-04. Embodiment 2 :Machine learning diagnostic model for all methylation markers AllModelThis embodiment uses 79 methylation markers to construct a logical regression machine learning model to identify plasma samples of healthy people and breast cancer patients. No. (1) GroupThe methylation levels of 22 methylation markers in the training set samples in Example 1 were used for model training, and then the effect of the model was tested using the samples in the test set. The specific steps are as follows: 1. Use the logical regression model in the sklearn (V1.0.1) package in python (V3.9.7): AllModel = LogisticRegression() 2. Use the samples in the training set for training: AllModel.fit (Traindata, TrainPheno), where TrainData is the data of the training set, TrainPheno is the trait of the training set samples (breast cancer is 1, healthy people are 0), and determine the relevant threshold of the model based on the samples in the training set. 3. Test the samples in the test set: TestPred = AllModel.predict_proba(TestData)[:, 1], where TestData is the test set data, TestPred is the model prediction score, and the prediction score is used to judge whether the sample is breast cancer based on the above threshold. The distribution of model prediction scores in the training set and test set is shown in Figure 4A. It can be seen from the figure that the model scores of breast cancer and healthy people samples are significantly different. The ROC curve is shown in Figure 5A. In the training set, the AUC of the breast cancer and healthy people discrimination model is 0.992, and the AUC of the test set is 0.935. According to the training set data, the threshold is set to 0.362. If it is greater than this value, it is breast cancer, otherwise it is a healthy person. Under this threshold, the test set accuracy is 0.825, specificity is 0.737, and sensitivity is 0.905. See Table 5A for specific data. This model can better distinguish breast cancer plasma samples from healthy people's plasma samples and can be used for early screening of breast cancer. No. (2) GroupThe methylation levels of 22 methylation markers in the training set samples in Example 1 were used for model training, and then the effect of the model was tested using the samples in the test set. The specific steps are as follows: 1. Use the logical regression model in the sklearn (V1.0.1) package in python (V3.9.7): AllModel = LogisticRegression() 2. Use the samples in the training set for training: AllModel.fit (Traindata, TrainPheno), where TrainData is the data of the training set, TrainPheno is the trait of the training set samples (breast cancer is 1, healthy people are 0), and determine the relevant threshold of the model based on the samples in the training set. 3. Test the samples in the test set: TestPred = AllModel.predict_proba(TestData)[:, 1], where TestData is the test set data, TestPred is the model prediction score, and the prediction score is used to judge whether the sample is breast cancer based on the above threshold. The distribution of model prediction scores in the training set and test set is shown in Figure 4B. It can be seen from the figure that the model scores of breast cancer and healthy people samples are significantly different. The ROC curve is shown in Figure 5B. In the training set, the AUC of the breast cancer and healthy people distinction model is 0.995, and the AUC of the test set is 0.962. According to the training set data, the threshold is set to 0.440. If it is greater than this value, it is breast cancer, otherwise it is a healthy person. Under this threshold, the test set accuracy is 0.900, the specificity is 0.842, and the sensitivity is 0.952. See Table 5B for specific data. This model can better distinguish breast cancer plasma samples from healthy people's plasma samples and can be used for early screening of breast cancer. No. (3) GroupThe methylation levels of 35 methylation markers in the training set samples in Example 1 were used for model training, and then the effect of the model was tested using the samples in the test set. The specific steps are as follows: 4. Use the logical regression model in the sklearn (V1.0.1) package in python (V3.9.7): AllModel = LogisticRegression() 5. Use the samples in the training set for training: AllModel.fit (Traindata, TrainPheno), where TrainData is the data of the training set, TrainPheno is the trait of the training set samples (breast cancer is 1, healthy people are 0), and determine the relevant threshold of the model based on the samples in the training set. 6. Test the samples in the test set: TestPred = AllModel.predict_proba(TestData)[:, 1], where TestData is the test set data, TestPred is the model prediction score, and the prediction score is used to judge whether the sample is breast cancer based on the above threshold. The distribution of model prediction scores in the training set and test set is shown in Figure 4C. It can be seen from the figure that the model scores of breast cancer and healthy people samples are significantly different. The ROC curve is shown in Figure 5C. In the training set, the AUC of the breast cancer and healthy people distinction model is 0.975, and the AUC of the test set is 0.932. According to the training set data, the threshold is set to 0.505. A value greater than this value is breast cancer, otherwise it is a healthy person. At this threshold, the test set accuracy is 0.875, the specificity is 0.789, and the sensitivity is 0.952, see Table 5C. This model can effectively distinguish breast cancer plasma samples from healthy people's plasma samples and can be used for early screening of breast cancer. Embodiment 3 : Random methylation marker combination 1 Machine Learning Diagnostic Models Sub1 No. (1) GroupIn order to verify the effect of the random methylation marker combination, this embodiment selected 6 methylation markers, Seq ID NO:1, Seq ID NO:4, Seq ID NO:9, Seq ID NO:10, Seq ID NO:15, Seq ID NO:17, from all 22 methylation markers to construct a new machine learning model Sub1. The method of constructing the machine learning model is the same as that of Example 2, but only 6 methylation markers in the random methylation marker combination 1 are selected. The model scores of the model in the training set and the test set are shown in Figure 6A, and the ROC curve of the model is shown in Figure 7A. It can be seen that in the training set and test set, the scores of breast cancer samples are significantly different from those of healthy people. The AUC of the training set is 0.944, and the AUC of the test set is 0.912. When the threshold is set to 0.609, the accuracy of the test set is 0.750, the specificity is 0.895, and the sensitivity is 0.619. The specific data are shown in Table 5A, which shows the good performance of the combined model. No. (2) GroupIn order to verify the effect of the random methylation marker combination, this embodiment selected 6 methylation markers, Seq ID NO:67, Seq ID NO:68, Seq ID NO:75, Seq ID NO:80, Seq ID NO:84, Seq ID NO:88, from all 22 methylation markers to construct a new machine learning model Sub1. The method of constructing the machine learning model is the same as that of Example 2, but only 6 methylation markers in the random methylation marker combination 1 are selected. The model scores of the model in the training set and the test set are shown in Figure 6B, and the ROC curve of the model is shown in Figure 7B. It can be seen that in the training set and test set of this model, the scores of breast cancer samples are significantly different from those of healthy people. The AUC of the training set of this model is 0.930, and the AUC of the test set is 0.867. When the threshold is set to 0.541, the accuracy of the test set is 0.775, the specificity is 0.842, and the sensitivity is 0.714. The specific data are shown in Table 5B, which shows the good performance of this combined model. No. (3) GroupIn order to verify the effect of the random methylation marker combination, this embodiment selected 7 methylation markers, including Seq ID NO:142, Seq ID NO:149, Seq ID NO:153, Seq ID NO:155, Seq ID NO:162, Seq ID NO:164, and Seq ID NO:165, from all 35 methylation markers to construct a new machine learning diagnosis model Sub1. The method for constructing the machine learning model is the same as that of Example 2, but only 7 methylation markers in the random methylation marker combination 1 are selected. The model scores of the model in the training set and the test set are shown in Figure 6C, and the ROC curve of the model is shown in Figure 7C. It can be seen that in the training set and test set of this model, the scores of breast cancer samples are significantly different from those of healthy people. The AUC of the training set of this model is 0.884, and the AUC of the test set is 0.847. When the threshold is set to 0.445, the accuracy of the test set is 0.775, the specificity is 0.737, and the sensitivity is 0.810, as shown in Table 5C, which shows the good performance of this model. Embodiment 4 : Random methylation marker combination 2 Machine Learning Diagnostic Models Sub2 No. (1) GroupThis embodiment uses another set of random methylation marker combinations: Seq ID NO:2, Seq ID NO:3, Seq ID NO:6, Seq ID NO:12, Seq ID NO:14, Seq ID NO:16, Seq ID NO:20, a total of 7 methylation markers to construct the machine learning model Sub2. The model construction method is also consistent with Example 2. The model scores of the model in the training set and the test set are shown in Figure 8A, and the ROC curve is shown in Figure 9A. It can be seen from the figure that in the training set and the test set, the breast cancer sample scores of the model are significantly higher than the healthy person scores. The model training set AUC is 0.935, and the test set AUC is 0.852. When the threshold is set to 0.604, the test set accuracy is 0.700, the specificity is 0.789, and the sensitivity is 0.619. The specific data are shown in Table 5A. It can also distinguish breast cancer from normal people. No. (2) GroupThis embodiment uses another set of random methylation marker combinations: Seq ID NO:69, Seq ID NO:76, Seq ID NO:78, Seq ID NO:79, Seq ID NO:82, Seq ID NO:83, Seq ID NO:85, a total of 7 methylation markers to construct the machine learning model Sub2. The model construction method is also consistent with Example 2. The model scores of the model in the training set and the test set are shown in Figure 8B, and the ROC curve is shown in Figure 9B. It can be seen from the figure that in the training set and the test set, the breast cancer sample scores of the model are significantly higher than the healthy person scores. The model training set AUC is 0.910, and the test set AUC is 0.875. When the threshold is set to 0.513, the test set accuracy is 0.850, the specificity is 0.789, and the sensitivity is 0.905. The specific data are shown in Table 5B. It can also better distinguish breast cancer from normal people. No. (3) GroupThis embodiment uses another set of random methylation marker combinations: Seq ID NO:136, Seq ID NO:137, Seq ID NO:146, Seq ID NO:147, Seq ID NO:152, Seq ID NO:160, a total of 6 methylation markers to construct the machine learning model Sub2. The model construction method is also consistent with Example 2. The model scores of the model in the training set and the test set are shown in Figure 8C, and the ROC curve is shown in Figure 9C. It can be seen from the figure that in the training set and the test set, the breast cancer sample scores of the model are significantly higher than the healthy person scores. The model training set AUC is 0.849, and the test set AUC is 0.865. When the threshold is set to 0.447, the test set accuracy is 0.800, the specificity is 0.632, and the sensitivity is 0.952, as shown in Table 5C. It can also better distinguish breast cancer from normal people. Embodiment 5 Effect of a single landmark No. (1) GroupThe inventors of this application found that the methylation level of a single methylation marker among the 22 methylation markers also has a good classification effect. The effect of a single methylation marker in distinguishing breast cancer from healthy people is shown in Table 6A. Taking Seq ID NO:14 as an example, if the methylation marker is used alone to construct a machine learning model, the model training set AUC is 0.880, and the test set AUC is 0.962. When the threshold is set to 0.532, the test set accuracy is 0.875, the specificity is 0.789, and the sensitivity is 0.952, and the classification effect is obvious. No. (2) GroupThe inventors of this application found that the methylation level of a single methylation marker among the 22 methylation markers also has a good classification effect. The effect of a single methylation marker in distinguishing breast cancer from healthy people is shown in Table 6B. Taking Seq ID NO:75 as an example, if the methylation marker is used alone to construct a machine learning model, the model training set AUC is 0.882, and the test set AUC is 0.774. When the threshold is set to 0.534, the test set accuracy is 0.725, the specificity is 0.684, and the sensitivity is 0.762, and the classification effect is obvious. No. (3) GroupThe inventors of this application found that among the 35 methylation markers, the methylation level of a single methylation marker also has a good classification effect. The effect of a single methylation marker in distinguishing breast cancer from healthy people is shown in Table 6C. Taking Seq ID NO:152 as an example, if the methylation marker is used alone to construct a machine learning model, the model training set AUC is 0.792, and the test set AUC is 0.802. When the threshold is set to 0.533, the test set accuracy is 0.800, the specificity is 0.684, and the sensitivity is 0.905, and the classification effect is obvious. This application screened out 79 methylation markers of breast cancer. The machine learning diagnosis model constructed based on the methylation levels of these methylation markers can better distinguish breast cancer from healthy people, which is of great significance for early screening of breast cancer. The above is only the preferred implementation of the present invention. It should be pointed out that for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the principle of the present invention, and these improvements and modifications should also be regarded as the scope of protection of the present invention.

[圖1]示出乳腺癌標誌物篩選流程。 [圖2A]示出所選22個標誌物在訓練集和測試集中的甲基化水準;[圖2B]示出所選22個標誌物在訓練集和測試集中的甲基化水準;[圖2C]示出所選35個標誌物在訓練集和測試集中的甲基化水準。 [圖3A]示出Seq ID NO:14在訓練集和測試集中的甲基化水準;[圖3B]示出Seq ID NO:75在訓練集和測試集中的甲基化水準;[圖3C]示出Seq ID NO:152在訓練集和測試集中的甲基化水準 [圖4A、圖4B]和[圖4C]示出AllModel模型預測分值分佈。 [圖5A、圖5B]和[圖5C]示出AllModel模型在訓練集和測試集中的ROC曲線。 [圖6A、圖6B]和[圖6C]示出Sub1模型預測分值分佈。 [圖7A、圖7B]和[圖7C]示出Sub1模型在訓練集和測試集中的ROC曲線。 [圖8A、圖8B]和[圖8C]示出Sub2模型預測分值分佈。 [圖9A、圖9B]和[圖9C]示出Sub2模型在訓練集和測試集中的ROC曲線。 [Figure 1] shows the breast cancer marker screening process. [Figure 2A] shows the methylation levels of the selected 22 markers in the training set and the test set; [Figure 2B] shows the methylation levels of the selected 22 markers in the training set and the test set; [Figure 2C] shows the methylation levels of the selected 35 markers in the training set and the test set. [Figure 3A] shows the methylation level of Seq ID NO:14 in the training set and the test set; [Figure 3B] shows the methylation level of Seq ID NO:75 in the training set and the test set; [Figure 3C] shows the methylation level of Seq ID NO:152 in the training set and the test set [Figure 4A, Figure 4B] and [Figure 4C] show the distribution of AllModel model prediction scores. [Figure 5A, Figure 5B] and [Figure 5C] show the ROC curves of the AllModel model in the training set and the test set. [Figure 6A, Figure 6B] and [Figure 6C] show the prediction score distribution of the Sub1 model. [Figure 7A, Figure 7B] and [Figure 7C] show the ROC curves of the Sub1 model in the training set and the test set. [Figure 8A, Figure 8B] and [Figure 8C] show the prediction score distribution of the Sub2 model. [Figure 9A, Figure 9B] and [Figure 9C] show the ROC curves of the Sub2 model in the training set and the test set.

TW202413655A_112129464_SEQL.xmlTW202413655A_112129464_SEQL.xml

Claims (10)

一種試劑在製備用於在個體中診斷乳腺癌或預測乳腺癌風險的套組或微陣列中的用途,其特徵在於所述試劑用於檢測分離自所述個體的樣品中選自以下任一組的至少一種標誌物的至少一個目標區域的甲基化水準: (1)TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1、TNFRSF6B及它們的任何組合; (2)SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3、WISP2及它們的任何組合;或 (3)WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3、CHRNA4及它們的任何組合, 其中與相應的閾值相比,一種或多種標誌物的至少一個目標區域的甲基化水準等於或高於閾值表明所述個體患有乳腺癌或具有乳腺癌風險,以及其中所述目標區域包含至少一個CpG二核苷酸序列。 A reagent for use in preparing a kit or microarray for diagnosing breast cancer or predicting breast cancer risk in an individual, characterized in that the reagent is used to detect the methylation level of at least one target region of at least one marker selected from any of the following groups in a sample isolated from the individual: (1) TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1, TNFRSF6B and any combination thereof; (2)SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3, WISP2 and any combination thereof; or (3) WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3, CHRNA4, and any combination thereof, wherein the methylation level of at least one target region of one or more markers is equal to or higher than the threshold value compared to the corresponding threshold value, indicating that the individual has breast cancer or is at risk for breast cancer, and wherein the target region comprises at least one CpG dinucleotide sequence. 根據請求項1所述的用途,其中所述甲基化為CpG甲基化。The use according to claim 1, wherein the methylation is CpG methylation. 根據請求項1所述的用途,其中所述試劑為選自以下的試劑: i)與所述標誌物的至少一個目標區域雜交或擴增所述標誌物的至少一個目標區域的物質,例如寡核苷酸引子或探針;和 ii)亞硫酸氫鹽試劑或甲基化敏感限制酶試劑,所述亞硫酸氫鹽試劑或甲基化敏感限制酶試劑區分所述標誌物的至少一個目標區域內的甲基化和未甲基化二核苷酸,例如甲基化和未甲基化CpG二核苷酸。 The use according to claim 1, wherein the reagent is selected from the following reagents: i) a substance that hybridizes with or amplifies at least one target region of the marker, such as an oligonucleotide primer or a probe; and ii) a bisulfite reagent or a methylation-sensitive restriction enzyme reagent, wherein the bisulfite reagent or the methylation-sensitive restriction enzyme reagent distinguishes between methylated and unmethylated dinucleotides, such as methylated and unmethylated CpG dinucleotides, within at least one target region of the marker. 根據請求項3所述的用途,其中所述寡核苷酸引子或探針與所述標誌物的至少一個目標區域的至少9個鹼基長的片段互補或相同。The use according to claim 3, wherein the oligonucleotide primer or probe is complementary to or identical to a fragment of at least 9 bases in length of at least one target region of the marker. 根據請求項1-4中任一項所述的用途,其中, 所述標誌物為CARKD;或者為選自以下的標誌物組合:i) TTLL10、FAM150B、BEND6、ELN、TMEM179和MYO15B;或ii) EPS8L3、IRF2BP2、TERT、TH、CARKD、SPNS1和PSG8;或 所述標誌物為LZTS1;或者為選自以下的標誌物組合:i) SKI、PRDM16、LZTS1、CCNA1、PIP5K1C和WISP2;或ii) PIAS3、CHD7、CACNA1B、ACVRL1、SNX20、TBCD和ZBTB7A;或 所述標誌物為LRRC4;或者為選自以下的標誌物組合:i) ITIH4、FOXC1、PDLIM2、MVK、NLRC5、TCF4和PLIN3;或ii) RNF144A、SIX2、DGKG、RPL9、LRRC4和ZSCAN10。 The use according to any one of claims 1-4, wherein, the marker is CARKD; or a marker combination selected from the following: i) TTLL10, FAM150B, BEND6, ELN, TMEM179 and MYO15B; or ii) EPS8L3, IRF2BP2, TERT, TH, CARKD, SPNS1 and PSG8; or the marker is LZTS1; or a marker combination selected from the following: i) SKI, PRDM16, LZTS1, CCNA1, PIP5K1C and WISP2; or ii) PIAS3, CHD7, CACNA1B, ACVRL1, SNX20, TBCD and ZBTB7A; or the marker is LRRC4; or a marker combination selected from the following: i) ITIH4, FOXC1, PDLIM2, MVK, NLRC5, TCF4 and PLIN3; or ii) RNF144A, SIX2, DGKG, RPL9, LRRC4 and ZSCAN10. 根據請求項1-4中任一項所述的用途,其中所述樣品選自細胞系、組織學切片、組織活檢、石蠟包埋的組織、體液及其組合;優選地,所述樣品選自血漿、血清、全血、分離的血細胞及其組合;更優選地,所述樣品為血漿cfDNA或ctDNA;和/或 所述目標區域選自:區域chr1:1095763-1095986、chr1:110334699-110334899、chr1:234845168-234845486、chr2:469568-469933、chr2:8314701-8314901、chr5:1291139-1291339、chr5:134374689-134374889、chr5:169805839-169806039、chr6:56716287-56716518、chr7:73407894-73408161、chr10:125650986-125651186、chr11:2226052-2226252、chr13:111277395-111277690、chr13:24844736-24844936、chr14:105102434-105102644、chr16:28984534-28984734、chr17:73607909-73608115、chr19:10823485-10823947、chr19:15344061-15344322、chr19:43271257-43271457、chr20:61304694-61304954、chr20:62330559-62330808或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合;或 所述目標區域選自:區域chr1:2166118-2166318、chr1:2978722-2978922、chr1:145562922-145563122、chr4:48485417-48485821、chr5:139076623-139076941、chr6:108488634-108488917、chr6:166970625-166970825、chr7:27260117-27260462、chr8:20375580-20375780、chr8:61788861-61789200、chr9:68413067-68413267、chr9:140683687-140683969、chr12:52311647-52311991、chr13:37005935-37006328、chr13:51417486-51417774、chr16:50715367-50715567、chr17:80745056-80745446、chr19:3688030-3688230、chr19:4059528-4059746、chr19:12978686-12978886、chr19:31842771-31842971、chr20:43331809-43332099或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合;或 所述目標區域選自:區域chr1:3567381-3567648、chr1:151811354-151811554、chr1:169396540-169396740、chr2:7148520-7148720、chr2:45232498-45232698、chr2:50574443-50574739、chr2:66666356-66666556、chr2:74731340-74731602、chr3:49459532-49459732、chr3:52864771-52864971、chr3:52865018-52865236、chr3:129693578-129693796、chr3:157825025-157825225、chr3:185973717-185973917、chr4:39448374-39448574、chr5:176829529-176829796、chr6:1614911-1615144、chr6:6724534-6724734、chr6:118229139-118229400、chr7:127744150-127744731、chr8:22438141-22438341、chr10:102497304-102497504、chr12:109996613-109997009、chr12:113515300-113515540、chr12:114162628-114162828、chr14:55243006-55243206、chr14:57264908-57265108、chr16:3139015-3139246、chr16:31580122-31580353、chr16:57025884-57026193、chr18:31159160-31159360、chr18:53447617-53447817、chr19:4912069-4912269、chr19:15580341-15580719、chr20:62046355-62046589或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合。 The use according to any one of claims 1-4, wherein the sample is selected from cell lines, histological sections, tissue biopsies, paraffin-embedded tissues, body fluids and combinations thereof; preferably, the sample is selected from plasma, serum, whole blood, separated blood cells and combinations thereof; more preferably, the sample is plasma cfDNA or ctDNA; and/or The target region is selected from: region chr1:1095763-1095986, chr1:110334699-110334899, chr1:234845168-234845486, chr2:469568-469933, chr2:8314701-8314901, chr5:1291139-1291339, chr 5:134374689-134374889, chr5:169805839-169806039, chr6:56716287-56716518, chr7:73407894-73408161, chr10:125650986-125651186, chr11:2226052-2226252, chr13 :111277395-111277690, chr13:24844736-24844936, chr14:105102434-105102644, chr16:28984534-28984734, chr17:73607909-73608115, chr19:10823485-10823947, chr 19:15344061-15344322, chr19:43271257-43271457, chr20:61304694-61304954, chr20:62330559-62330808 or their complementary sequences or processed sequences; or the processed sequences of the complementary sequences; or any combination of the aforementioned sequences and/or regions; or The target region is selected from: region chr1:2166118-2166318, chr1:2978722-2978922, chr1:145562922-145563122, chr4:48485417-48485821, chr5:139076623-139076941, chr6:108488634-1084 88917, chr6:166970625-166970825, chr7:27260117-27260462, chr8:20375580-20375780, chr8:61788861-61789200, chr9:68413067-68413267, chr9:140683687-14068396 9, chr12:52311647-52311991, chr13:37005935-37006328, chr13:51417486-51417774, chr16:50715367-50715567, chr17:80745056-80745446, chr19:3688030-3688230, c hr19:4059528-4059746, chr19:12978686-12978886, chr19:31842771-31842971, chr20:43331809-43332099 or their complementary sequences or processed sequences; or the processed sequences of the complementary sequences; or any combination of the aforementioned sequences and/or regions; or The target region is selected from: region chr1:3567381-3567648, chr1:151811354-151811554, chr1:169396540-169396740, chr2:7148520-7148720, chr2:45232498-45232698, chr2:50574443-50574739, chr2:66666356-66666556, chr2:74731340-74731602, chr3:49459532-49459732, chr3: 52864771-52864971、chr3:52865018-52865236、chr3:129693578-129693796、chr3:157825025-157825225、chr3:185973717-185973917、chr4:39448374-39448574、chr5:176829529-176829796、chr6:1614911-1615144、chr6:6724534-6724734、chr6:118229139-118 229400, chr7:127744150-127744731, chr8:22438141-22438341, chr10:102497304-102497504, chr12:109996613-109997009, chr12:113515300-113515540, chr12:114162628-114162828, chr14:55243006-55243206, chr14:57264908-57265108, chr16:3139015-31 39246, chr16:31580122-31580353, chr16:57025884-57026193, chr18:31159160-31159360, chr18:53447617-53447817, chr19:4912069-4912269, chr19:15580341-15580719, chr20:62046355-62046589 or their complementary sequences or processed sequences; or the processed sequences of the complementary sequences; or any combination of the aforementioned sequences and/or regions. 一種用於在個體中診斷乳腺癌或預測乳腺癌風險的套組或微陣列,其中所述套組或微陣列包含用於檢測分離自所述個體的樣品中選自以下任一組的至少一種標誌物的至少一個目標區域的甲基化水準的試劑: (1)TTLL10、EPS8L3、IRF2BP2、FAM150B、ID2、TERT、PITX1、KCNMB1、BEND6、ELN、CPXM2、TH、C1QTNF9、CARKD、TMEM179、SPNS1、MYO15B、DNM2、EPHX3、PSG8、SLCO4A1、TNFRSF6B以及它們的任何組合; (2)SKI、PRDM16、PIAS3、SLC10A4、CXXC5、NR2E1、MPC1、HOXA13、LZTS1、CHD7、ANKRD20A1、CACNA1B、ACVRL1、CCNA1、RNASEH2B、SNX20、TBCD、PIP5K1C、ZBTB7A、DNASE2、TSHZ3、WISP2及它們的任何組合;或 (3)WRAP73、C2CD4D、CCDC181、RNF144A、SIX2、NRXN1、MEIS1、LBX2、AMT、ITIH4、TRH、SHOX2、DGKG、RPL9、PFN3、FOXC1、LY86、SLC35F1、LRRC4、PDLIM2、PAX2、MVK、DTX1、RBM19、GCH1、OTX2、ZSCAN10、AHSP、NLRC5、ASXL3、TCF4、PLIN3、RASAL3、CHRNA4及它們的任何組合, 其中與相應的閾值相比,一種或多種標誌物的至少一個目標區域的甲基化水準等於或高於閾值表明所述個體患有乳腺癌或具有乳腺癌風險,以及其中所述目標區域包含至少一個CpG二核苷酸序列。 A kit or microarray for diagnosing breast cancer or predicting breast cancer risk in an individual, wherein the kit or microarray comprises a reagent for detecting the methylation level of at least one target region of at least one marker selected from any of the following groups in a sample isolated from the individual: (1) TTLL10, EPS8L3, IRF2BP2, FAM150B, ID2, TERT, PITX1, KCNMB1, BEND6, ELN, CPXM2, TH, C1QTNF9, CARKD, TMEM179, SPNS1, MYO15B, DNM2, EPHX3, PSG8, SLCO4A1, TNFRSF6B and any combination thereof; (2)SKI, PRDM16, PIAS3, SLC10A4, CXXC5, NR2E1, MPC1, HOXA13, LZTS1, CHD7, ANKRD20A1, CACNA1B, ACVRL1, CCNA1, RNASEH2B, SNX20, TBCD, PIP5K1C, ZBTB7A, DNASE2, TSHZ3, WISP2 and any combination thereof; or (3) WRAP73, C2CD4D, CCDC181, RNF144A, SIX2, NRXN1, MEIS1, LBX2, AMT, ITIH4, TRH, SHOX2, DGKG, RPL9, PFN3, FOXC1, LY86, SLC35F1, LRRC4, PDLIM2, PAX2, MVK, DTX1, RBM19, GCH1, OTX2, ZSCAN10, AHSP, NLRC5, ASXL3, TCF4, PLIN3, RASAL3, CHRNA4, and any combination thereof, wherein the methylation level of at least one target region of one or more markers is equal to or higher than the threshold value compared to the corresponding threshold value, indicating that the individual has breast cancer or is at risk for breast cancer, and wherein the target region comprises at least one CpG dinucleotide sequence. 根據請求項7所述的套組或微陣列,其中所述樣品選自細胞系、組織學切片、組織活檢、石蠟包埋的組織、體液及其組合;優選地,所述樣品選自血漿、血清、全血、分離的血細胞及其組合;更優選地,所述樣品為血漿cfDNA或ctDNA;和/或 所述目標區域選自:區域chr1:1095763-1095986、chr1:110334699-110334899、chr1:234845168-234845486、chr2:469568-469933、chr2:8314701-8314901、chr5:1291139-1291339、chr5:134374689-134374889、chr5:169805839-169806039、chr6:56716287-56716518、chr7:73407894-73408161、chr10:125650986-125651186、chr11:2226052-2226252、chr13:111277395-111277690、chr13:24844736-24844936、chr14:105102434-105102644、chr16:28984534-28984734、chr17:73607909-73608115、chr19:10823485-10823947、chr19:15344061-15344322、chr19:43271257-43271457、chr20:61304694-61304954、chr20:62330559-62330808或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合;或 所述目標區域選自:區域chr1:2166118-2166318、chr1:2978722-2978922、chr1:145562922-145563122、chr4:48485417-48485821、chr5:139076623-139076941、chr6:108488634-108488917、chr6:166970625-166970825、chr7:27260117-27260462、chr8:20375580-20375780、chr8:61788861-61789200、chr9:68413067-68413267、chr9:140683687-140683969、chr12:52311647-52311991、chr13:37005935-37006328、chr13:51417486-51417774、chr16:50715367-50715567、chr17:80745056-80745446、chr19:3688030-3688230、chr19:4059528-4059746、chr19:12978686-12978886、chr19:31842771-31842971、chr20:43331809-43332099或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合;或 所述目標區域選自:區域chr1:3567381-3567648、chr1:151811354-151811554、chr1:169396540-169396740、chr2:7148520-7148720、chr2:45232498-45232698、chr2:50574443-50574739、chr2:66666356-66666556、chr2:74731340-74731602、chr3:49459532-49459732、chr3:52864771-52864971、chr3:52865018-52865236、chr3:129693578-129693796、chr3:157825025-157825225、chr3:185973717-185973917、chr4:39448374-39448574、chr5:176829529-176829796、chr6:1614911-1615144、chr6:6724534-6724734、chr6:118229139-118229400、chr7:127744150-127744731、chr8:22438141-22438341、chr10:102497304-102497504、chr12:109996613-109997009、chr12:113515300-113515540、chr12:114162628-114162828、chr14:55243006-55243206、chr14:57264908-57265108、chr16:3139015-3139246、chr16:31580122-31580353、chr16:57025884-57026193、chr18:31159160-31159360、chr18:53447617-53447817、chr19:4912069-4912269、chr19:15580341-15580719、chr20:62046355-62046589或者它們的互補序列或經過處理的序列;或者所述互補序列的經過處理的序列;或者前述序列和/或區域的任何組合。 The kit or microarray according to claim 7, wherein the sample is selected from cell lines, histological sections, tissue biopsies, paraffin-embedded tissues, body fluids and combinations thereof; preferably, the sample is selected from plasma, serum, whole blood, isolated blood cells and combinations thereof; more preferably, the sample is plasma cfDNA or ctDNA; and/or The target region is selected from: region chr1:1095763-1095986, chr1:110334699-110334899, chr1:234845168-234845486, chr2:469568-469933, chr2:8314701-8314901, chr5:1291139-1291339, chr 5:134374689-134374889, chr5:169805839-169806039, chr6:56716287-56716518, chr7:73407894-73408161, chr10:125650986-125651186, chr11:2226052-2226252, chr13 :111277395-111277690, chr13:24844736-24844936, chr14:105102434-105102644, chr16:28984534-28984734, chr17:73607909-73608115, chr19:10823485-10823947, chr 19:15344061-15344322, chr19:43271257-43271457, chr20:61304694-61304954, chr20:62330559-62330808 or their complementary sequences or processed sequences; or the processed sequences of the complementary sequences; or any combination of the aforementioned sequences and/or regions; or The target region is selected from: region chr1:2166118-2166318, chr1:2978722-2978922, chr1:145562922-145563122, chr4:48485417-48485821, chr5:139076623-139076941, chr6:108488634-1084 88917, chr6:166970625-166970825, chr7:27260117-27260462, chr8:20375580-20375780, chr8:61788861-61789200, chr9:68413067-68413267, chr9:140683687-14068396 9, chr12:52311647-52311991, chr13:37005935-37006328, chr13:51417486-51417774, chr16:50715367-50715567, chr17:80745056-80745446, chr19:3688030-3688230, c hr19:4059528-4059746, chr19:12978686-12978886, chr19:31842771-31842971, chr20:43331809-43332099 or their complementary sequences or processed sequences; or the processed sequences of the complementary sequences; or any combination of the aforementioned sequences and/or regions; or The target region is selected from: region chr1:3567381-3567648, chr1:151811354-151811554, chr1:169396540-169396740, chr2:7148520-7148720, chr2:45232498-45232698, chr2:50574443-50574739, chr2:66666356-66666556, chr2:74731340-74731602, chr3:49459532-49459732, chr3: 52864771-52864971、chr3:52865018-52865236、chr3:129693578-129693796、chr3:157825025-157825225、chr3:185973717-185973917、chr4:39448374-39448574、chr5:176829529-176829796、chr6:1614911-1615144、chr6:6724534-6724734、chr6:118229139-118 229400, chr7:127744150-127744731, chr8:22438141-22438341, chr10:102497304-102497504, chr12:109996613-109997009, chr12:113515300-113515540, chr12:114162628-114162828, chr14:55243006-55243206, chr14:57264908-57265108, chr16:3139015-31 39246, chr16:31580122-31580353, chr16:57025884-57026193, chr18:31159160-31159360, chr18:53447617-53447817, chr19:4912069-4912269, chr19:15580341-15580719, chr20:62046355-62046589 or their complementary sequences or processed sequences; or the processed sequences of the complementary sequences; or any combination of the aforementioned sequences and/or regions. 根據請求項7或8所述的套組或微陣列,其中所述試劑為選自以下的試劑: i)與所述標誌物的至少一個目標區域雜交或擴增所述標誌物的至少一個目標區域的物質,例如寡核苷酸引子或探針,優選地,所述寡核苷酸引子或探針與所述標誌物的至少一個目標區域的至少9個鹼基長的片段互補或相同;和 ii)亞硫酸氫鹽試劑或甲基化敏感限制酶試劑,所述亞硫酸氫鹽試劑或甲基化敏感限制酶試劑區分所述標誌物的至少一個目標區域內的甲基化和未甲基化二核苷酸,例如甲基化和未甲基化CpG二核苷酸。 A kit or microarray according to claim 7 or 8, wherein the reagent is selected from the following reagents: i) a substance that hybridizes with or amplifies at least one target region of the marker, such as an oligonucleotide primer or probe, preferably, the oligonucleotide primer or probe is complementary to or identical to a fragment of at least 9 bases in length of at least one target region of the marker; and ii) a bisulfite reagent or a methylation-sensitive restriction enzyme reagent, the bisulfite reagent or the methylation-sensitive restriction enzyme reagent distinguishing between methylated and unmethylated dinucleotides, such as methylated and unmethylated CpG dinucleotides, within at least one target region of the marker. 根據請求項7或8所述的套組或微陣列,其中, 所述標誌物為CARKD;或者為選自以下的標誌物組合:i) TTLL10、FAM150B、BEND6、ELN、TMEM179和MYO15B;或ii) EPS8L3、IRF2BP2、TERT、TH、CARKD、SPNS1和PSG8;或 所述標誌物為LZTS1;或者為選自以下的標誌物組合:i) SKI、PRDM16、LZTS1、CCNA1、PIP5K1C和WISP2;或ii) PIAS3、CHD7、CACNA1B、ACVRL1、SNX20、TBCD和ZBTB7A;或 所述標誌物為LRRC4;或者為選自以下的標誌物組合:i) ITIH4、FOXC1、PDLIM2、MVK、NLRC5、TCF4和PLIN3;或ii) RNF144A、SIX2、DGKG、RPL9、LRRC4和ZSCAN10。 The kit or microarray according to claim 7 or 8, wherein the marker is CARKD; or a marker combination selected from the following: i) TTLL10, FAM150B, BEND6, ELN, TMEM179 and MYO15B; or ii) EPS8L3, IRF2BP2, TERT, TH, CARKD, SPNS1 and PSG8; or the marker is LZTS1; or a marker combination selected from the following: i) SKI, PRDM16, LZTS1, CCNA1, PIP5K1C and WISP2; or ii) PIAS3, CHD7, CACNA1B, ACVRL1, SNX20, TBCD and ZBTB7A; or the marker is LRRC4; or a marker combination selected from the following: i) ITIH4, FOXC1, PDLIM2, MVK, NLRC5, TCF4 and PLIN3; or ii) RNF144A, SIX2, DGKG, RPL9, LRRC4 and ZSCAN10.
TW112129464A 2022-08-04 2023-08-04 Use of markers in diagnosing breast cancer or predicting breast cancer risk TW202413655A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2022109311918 2022-08-04
CN2022109311937 2022-08-04
CN2022109314013 2022-08-04

Publications (1)

Publication Number Publication Date
TW202413655A true TW202413655A (en) 2024-04-01

Family

ID=

Similar Documents

Publication Publication Date Title
EP3194624B1 (en) Methods for diagnosis, prognosis and monitoring of breast cancer and reagents therefor
EP2253714B1 (en) Lung cancer detecting method using lung cancer specific methylation marker gene
EP2748333B1 (en) Dna methylation in colorectal cancer diagnostic methods
CN110129436A (en) The Serial No. of DNA methylation is analyzed
JP2009533066A5 (en)
CN110484621B (en) Early warning method for liver cancer
WO2012143481A2 (en) Prostate cancer markers
EP2768980A2 (en) Composite biomarkers for non-invasive screening, diagnosis and prognosis of colorectal cancer
JP2016015963A (en) Method, system and program for acquiring information about plural types of cancers
JP6395131B2 (en) Method for acquiring information on lung cancer, and marker and kit for acquiring information on lung cancer
JP2024020392A (en) Composition for diagnosing liver cancer by using cpg methylation changes in specific genes, and use thereof
CN107630093B (en) Reagent, kit, detection method and application for diagnosing liver cancer
CN111788317B (en) Compositions and methods for characterizing cancer
US11535897B2 (en) Composite epigenetic biomarkers for accurate screening, diagnosis and prognosis of colorectal cancer
WO2024027796A1 (en) Use of marker in diagnosing breast cancer or predicting breast cancer risks
CN115572764A (en) Tumor detection marker and application thereof
WO2017119510A1 (en) Test method, gene marker, and test agent for diagnosing breast cancer
US11542559B2 (en) Methylation-based biomarkers in breast cancer screening, diagnosis, or prognosis
TW202413655A (en) Use of markers in diagnosing breast cancer or predicting breast cancer risk
EP2450455A1 (en) Method for determining presence or absence of epithelial cancer-origin cell in biological sample, and molecular marker and kit therefor
JP4756288B2 (en) Method for determining cancer lymph node metastasis or risk thereof and rapid determination kit therefor
CN117587121A (en) Use of markers for diagnosing breast cancer or predicting breast cancer risk
CN117660633A (en) Use of markers for diagnosing breast cancer or predicting breast cancer risk
CN117660634A (en) Use of markers for diagnosing breast cancer or predicting breast cancer risk
CN115678990A (en) Use of markers for predicting the risk of recurrence and/or metastasis of colorectal cancer